1
|
Koop J, Fedde S, Hägele FA, Beunink C, Müller MJ, Bosy-Westphal A. Nutritional value and environmental aspects of high-protein ultra-processed foods on the German market. Public Health Nutr 2024; 27:e211. [PMID: 39422054 DOI: 10.1017/s1368980024001836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2024]
Abstract
OBJECTIVE To compare nutritional value and aspects with environmental impact of high-protein (HP) and 'normal-protein' (NP) ultra-processed foods (UPF). DESIGN 299 HP and 286 NP products were evaluated regarding aspects of nutritional value, energy density, Nutri-Score, number of additives as well as hyper-palatability and price. Environmental impact of HP UPF was addressed by analysing protein sources and the use of environmentally persistent non-nutritive artificial sweeteners. SETTING Cross-sectional market analysis in German supermarkets and online shops. PARTICIPANTS 299 HP and 286 NP UPF products. RESULTS HP compared to NP UPF had a lower energy density, a lower content of sugar, total and saturated fat, whereas fibre and protein content (62·2 % animal protein) were higher (all P < 0·001). HP products therefore had a higher prevalence of Nutri-Score A (67·2 % v. 21·7 %) and a lower prevalence of Nutri-Score E (0·3 % v. 11·2 %) labelling (both P < 0·001). By contrast, salt content and the number of additives (environmentally persistent sweeteners, sugar alcohols, flavourings) were higher in HP compared to NP UPF (P < 0·001). When compared to HP products, twice as many NP were identified as hyper-palatable (82·5 % v. 40·5 %; P < 0·001). The price of HP was on average 132 % higher compared to NP UPF (P < 0·001). CONCLUSIONS While major adverse aspects of UPF regarding nutritional profile and hyper-palatability are less pronounced in HP compared to NP products, higher salt content, increased number of additives and negative environmental effects from frequent use of animal protein and environmentally persistent sweeteners are major drawbacks of HP UPF.
Collapse
Affiliation(s)
- Jana Koop
- Institute of Human Nutrition and Food Science, Christian-Albrechts-University Kiel, Düsternbrooker Weg 17, Kiel24105, Germany
| | - Svenja Fedde
- Institute of Human Nutrition and Food Science, Christian-Albrechts-University Kiel, Düsternbrooker Weg 17, Kiel24105, Germany
| | - Franziska A Hägele
- Institute of Human Nutrition and Food Science, Christian-Albrechts-University Kiel, Düsternbrooker Weg 17, Kiel24105, Germany
| | - Christina Beunink
- Institute of Human Nutrition and Food Science, Christian-Albrechts-University Kiel, Düsternbrooker Weg 17, Kiel24105, Germany
| | - Manfred J Müller
- Institute of Human Nutrition and Food Science, Christian-Albrechts-University Kiel, Düsternbrooker Weg 17, Kiel24105, Germany
| | - Anja Bosy-Westphal
- Institute of Human Nutrition and Food Science, Christian-Albrechts-University Kiel, Düsternbrooker Weg 17, Kiel24105, Germany
| |
Collapse
|
2
|
Ma J, Palmer DJ, Lai CT, Prescott SL, D'Vaz N, Vlaskovsky P, Stinson LF, Gridneva Z, Geddes DT. Macronutrients in Human Milk and Early Childhood Growth-Is Protein the Main Driver? Nutrients 2024; 16:3514. [PMID: 39458508 PMCID: PMC11510703 DOI: 10.3390/nu16203514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Revised: 10/11/2024] [Accepted: 10/14/2024] [Indexed: 10/28/2024] Open
Abstract
BACKGROUND Infant growth trajectories reflect current health status and may predict future obesity and metabolic diseases. Human milk is tailored to support optimal infant growth. However, nutrient intake rather than milk composition more accurately predicts growth outcomes. Although the role of protein leverage in infant growth is unclear, protein intake is important for early infancy growth. MATERIALS AND METHODS This study of exclusively breastfeeding mothers with allergies (n = 161) from the Infant Fish Oil Supplementation Study assessed relationships between intake of human milk macronutrients and infant growth. Human milk fat, protein and lactose concentrations were measured at 3 months postpartum, and infant daily intakes were estimated using an average milk intake of 800 mL/day. RESULTS Higher human milk protein:energy ratio was associated with higher weight-for-age z-score at 2.5 years compared to 3 months and higher body mass index-for-age z-score change (6 months to 1 year compared to 3-6 months). Maternal atopy and birth season (summer) were negatively associated with human milk lactose concentration. Passive smoke exposure was associated with reduced energy and fat concentrations and increased lactose:energy ratio. CONCLUSIONS Our results indicate that intake of human milk macronutrients may impact early childhood growth.
Collapse
Affiliation(s)
- Jie Ma
- School of Molecular Sciences, The University of Western Australia, Crawley, WA 6009, Australia
- ABREAST Network, Perth, WA 6000, Australia
- UWA Centre for Human Lactation Research and Translation, Crawley, WA 6009, Australia
| | - Debra J Palmer
- ABREAST Network, Perth, WA 6000, Australia
- UWA Centre for Human Lactation Research and Translation, Crawley, WA 6009, Australia
- The Kids Research Institute Australia, The University of Western Australia, Nedlands, WA 6009, Australia
- School of Medicine, The University of Western Australia, Crawley, WA 6009, Australia
| | - Ching Tat Lai
- School of Molecular Sciences, The University of Western Australia, Crawley, WA 6009, Australia
- ABREAST Network, Perth, WA 6000, Australia
- UWA Centre for Human Lactation Research and Translation, Crawley, WA 6009, Australia
| | - Susan L Prescott
- The Kids Research Institute Australia, The University of Western Australia, Nedlands, WA 6009, Australia
- School of Medicine, The University of Western Australia, Crawley, WA 6009, Australia
- Nova Institute for Health, Baltimore, MD 21231, USA
- Department of Family and Community Medicine, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Nina D'Vaz
- The Kids Research Institute Australia, The University of Western Australia, Nedlands, WA 6009, Australia
- School of Medical and Health Sciences, Edith Cowan University, Joondalup, WA 6027, Australia
| | - Philip Vlaskovsky
- School of Mathematics and Statistics, The University of Western Australia, Crawley, WA 6009, Australia
| | - Lisa F Stinson
- School of Molecular Sciences, The University of Western Australia, Crawley, WA 6009, Australia
- ABREAST Network, Perth, WA 6000, Australia
- UWA Centre for Human Lactation Research and Translation, Crawley, WA 6009, Australia
| | - Zoya Gridneva
- School of Molecular Sciences, The University of Western Australia, Crawley, WA 6009, Australia
- ABREAST Network, Perth, WA 6000, Australia
- UWA Centre for Human Lactation Research and Translation, Crawley, WA 6009, Australia
| | - Donna T Geddes
- School of Molecular Sciences, The University of Western Australia, Crawley, WA 6009, Australia
- ABREAST Network, Perth, WA 6000, Australia
- UWA Centre for Human Lactation Research and Translation, Crawley, WA 6009, Australia
| |
Collapse
|
3
|
Wu G, Ma T, Hancock CE, Gonzalez S, Aryal B, Vaz S, Chan G, Palarca-Wong M, Allen N, Chung CI, Shu X, Liu Q. Opposing GPCR signaling programs protein intake setpoint in Drosophila. Cell 2024; 187:5376-5392.e17. [PMID: 39197448 PMCID: PMC11437785 DOI: 10.1016/j.cell.2024.07.047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 05/31/2024] [Accepted: 07/25/2024] [Indexed: 09/01/2024]
Abstract
Animals defend a target level for their fundamental needs, including food, water, and sleep. Deviation from the target range, or "setpoint," triggers motivated behaviors to eliminate that difference. Whether and how the setpoint itself is encoded remains enigmatic for all motivated behaviors. Employing a high-throughput feeding assay in Drosophila, we demonstrate that the protein intake setpoint is set to different values in male, virgin female, and mated female flies to meet their varying protein demands. Leveraging this setpoint variability, we found, remarkably, that the information on the intake setpoint is stored within the protein hunger neurons as the resting membrane potential. Two RFamide G protein-coupled receptor (GPCR) pathways, by tuning the resting membrane potential in opposite directions, coordinately program and adjust the protein intake setpoint. Together, our studies map the protein intake setpoint to a single trackable physiological parameter and elucidate the cellular and molecular mechanisms underlying setpoint determination and modulation.
Collapse
Affiliation(s)
- Guangyan Wu
- Department of Anatomy, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Tianji Ma
- Department of Anatomy, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Clare E Hancock
- Department of Anatomy, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Santiago Gonzalez
- Department of Anatomy, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Binod Aryal
- Department of Anatomy, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Sharon Vaz
- Department of Anatomy, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Gabrielle Chan
- Department of Anatomy, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Madison Palarca-Wong
- Department of Anatomy, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Nick Allen
- Department of Anatomy, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Chan-I Chung
- Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, CA 94158, USA; Cardiovascular Research Institute, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Xiaokun Shu
- Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, CA 94158, USA; Cardiovascular Research Institute, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Qili Liu
- Department of Anatomy, University of California, San Francisco, San Francisco, CA 94158, USA; Kavli Institute for Fundamental Neuroscience, University of California, San Francisco, San Francisco, CA 94158, USA.
| |
Collapse
|
4
|
M JN, Bharadwaj D. The complex web of obesity: from genetics to precision medicine. Expert Rev Endocrinol Metab 2024; 19:403-418. [PMID: 38869356 DOI: 10.1080/17446651.2024.2365785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Accepted: 06/05/2024] [Indexed: 06/14/2024]
Abstract
INTRODUCTION Obesity is a growing public health concern affecting both children and adults. Since it involves both genetic and environmental components, the management of obesity requires both, an understanding of the underlying genetics and changes in lifestyle. The knowledge of obesity genetics will enable the possibility of precision medicine in anti-obesity medications. AREAS COVERED Here, we explore health complications and the prevalence of obesity. We discuss disruptions in energy balance as a symptom of obesity, examining evolutionary theories, its multi-factorial origins, and heritability. Additionally, we discuss monogenic and polygenic obesity, the converging biological pathways, potential pharmacogenomics applications, and existing anti-obesity medications - specifically focussing on the leptin-melanocortin and incretin pathways. Comparisons between childhood and adult obesity genetics are made, along with insights into structural variants, epigenetic changes, and environmental influences on epigenetic signatures. EXPERT OPINION With recent advancements in anti-obesity drugs, genetic studies pinpoint new targets and allow for repurposing existing drugs. This creates opportunities for genotype-informed treatment options. Also, lifestyle interventions can help in the prevention and treatment of obesity by altering the epigenetic signatures. The comparison of genetic architecture in adults and children revealed a significant overlap. However, more robust studies with diverse ethnic representation is required in childhood obesity.
Collapse
Affiliation(s)
- Janaki Nair M
- Systems Genomics Laboratory, School of Biotechnology, Jawaharlal Nehru University, New Delhi, India
| | - Dwaipayan Bharadwaj
- Systems Genomics Laboratory, School of Biotechnology, Jawaharlal Nehru University, New Delhi, India
| |
Collapse
|
5
|
Illescas-Zárate D, Batis C, Singh GM, Mozaffarian D, Ramírez-Silva I, Barraza-Villarreal A, Romieu I, Barrientos-Gutiérrez T. Association between consumption of nonessential energy-dense food and body mass index among Mexican school-aged children: a prospective cohort study. Int J Obes (Lond) 2024; 48:1292-1299. [PMID: 38851840 DOI: 10.1038/s41366-024-01552-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 05/02/2024] [Accepted: 05/23/2024] [Indexed: 06/10/2024]
Abstract
BACKGROUND/OBJECTIVES Obesity prevalence in Mexican children has increased rapidly and is among the highest in the world. We aimed to estimate the longitudinal association between nonessential energy-dense food (NEDF) consumption and body mass index (BMI) in school-aged children 5 to 11 years, using a cohort study with 6 years of follow-up. SUBJECTS/METHODS We studied the offspring of women in the Prenatal omega-3 fatty acid supplementation, child growth, and development (POSGRAD) cohort study. NEDF was classified into four main groups: chips and popcorn, sweet bakery products, non-cereal based sweets, and ready-to-eat cereals. We fitted fixed effects models to assess the association between change in NEDF consumption and changes in BMI. RESULTS Between 5 and 11 years, children increased their consumption of NEDF by 225 kJ/day (53.9 kcal/day). In fully adjusted models, we found that change in total NEDF was not associated with change in children's BMI (0.033 kg/m2, [p = 0.246]). However, BMI increased 0.078 kg/m2 for every 418.6 kJ/day (100 kcal/day) of sweet bakery products (p = 0.035) in fully adjusted models. For chips and popcorn, BMI increased 0.208 kg/m2 (p = 0.035), yet, the association was attenuated after adjustment (p = 0.303). CONCLUSIONS Changes in total NEDF consumption were not associated with changes in BMI in children. However, increases in the consumption of sweet bakery products were associated with BMI gain. NEDF are widely recognized as providing poor nutrition yet, their impact in Mexican children BMI seems to be heterogeneous.
Collapse
Affiliation(s)
- Daniel Illescas-Zárate
- Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Dirección de Nutrición, Vigilancia Epidemiológica, Ciudad de México, México
- Tecnologico de Monterrey, Escuela de Medicina y Ciencias de la Salud, Ciudad de México, México
| | - Carolina Batis
- CONACYT - Instituto Nacional de Salud Pública, Centro de Investigación en Nutrición y Salud, Cuernavaca, Morelos, México
| | - Gitanjali M Singh
- Tufts University, Friedman School of Nutrition Science and Policy, Boston, MA, USA
| | - Dariush Mozaffarian
- Tufts University, Friedman School of Nutrition Science and Policy, Boston, MA, USA
| | - Ivonne Ramírez-Silva
- Instituto Nacional de Salud Pública, Centro de Investigación en Nutrición y Salud, Cuernavaca, Morelos, México
| | - Albino Barraza-Villarreal
- Instituto Nacional de Salud Pública, Centro de Investigación en Salud Poblacional, Cuernavaca, Morelos, México
| | - Isabelle Romieu
- Instituto Nacional de Salud Pública, Centro de Investigación en Salud Poblacional, Cuernavaca, Morelos, México
| | | |
Collapse
|
6
|
Ribeiro RV, Senior AM, Simpson SJ, Tan J, Raubenheimer D, Le Couteur D, Macia L, Holmes A, Eberhard J, O'Sullivan J, Koay YC, Kanjrawi A, Yang J, Kim T, Gosby A. Rapid benefits in older age from transition to whole food diet regardless of protein source or fat to carbohydrate ratio: Arandomised control trial. Aging Cell 2024:e14276. [PMID: 39011855 DOI: 10.1111/acel.14276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 06/20/2024] [Accepted: 06/24/2024] [Indexed: 07/17/2024] Open
Abstract
Plant-based diets reduces the risk of chronic conditions. The interaction between protein source and other macronutrients-fat (F) and carbohydrate (C)-has yet to be investigated. The aim was to assess the main and interactive effects of protein-source (plant vs. animal) and F:C (high or low) and the transition from an Australian diet to a whole food diet on various health markers in older individuals. This single-blinded, parallel, randomised experimental trial used a 2 × 2 factorial design to compare pro-vegetarian (70:30 plant to animal) versus omnivorous (50:50 plant to animal) diets at 14% protein and varying fat-to-carbohydrate ratios (high fat ~40% vs. low fat ~30%) over 4 weeks. Study foods were provided, alcohol consumption was discouraged, and dietary intake was determined through food records. Analysis included both RCT and observational data. Changes in appetite, palatability of diets, and dietary intake were assessed. Body composition, muscle strength, function, gut microbiome, and cardiometabolic health parameters were measured. Data from 113 (of the 128 randomised) individuals aged 65-75 years were analysed. Pro-vegetarian diets reduced diastolic blood pressure, total cholesterol and glucose levels. Moreover, the overall sample exhibited increased short-chain fatty acids and FGF21 levels, as well as improvements in body composition, function, and cardio-metabolic parameters irrespective of dietary treatment. Transitioning to a diet rich in fruit, vegetables, fibre, and moderate protein was associated with improved health markers in older age, with added benefits from pro-vegetarian diets. Further research on long-term effects is needed.
Collapse
Affiliation(s)
- Rosilene V Ribeiro
- School of Life and Environmental Sciences, University of Sydney, Sydney, New South Wales, Australia
- Charles Perkins Centre, University of Sydney, Sydney, New South Wales, Australia
| | - Alistair M Senior
- School of Life and Environmental Sciences, University of Sydney, Sydney, New South Wales, Australia
- Charles Perkins Centre, University of Sydney, Sydney, New South Wales, Australia
| | - Stephen J Simpson
- School of Life and Environmental Sciences, University of Sydney, Sydney, New South Wales, Australia
- Charles Perkins Centre, University of Sydney, Sydney, New South Wales, Australia
| | - Jian Tan
- Charles Perkins Centre, University of Sydney, Sydney, New South Wales, Australia
- Chronic Disease Theme, School of Medical Sciences, Faculty of Medicine and Health, University of Sydney, Sydney, New South Wales, Australia
| | - David Raubenheimer
- School of Life and Environmental Sciences, University of Sydney, Sydney, New South Wales, Australia
- Charles Perkins Centre, University of Sydney, Sydney, New South Wales, Australia
| | - David Le Couteur
- Charles Perkins Centre, University of Sydney, Sydney, New South Wales, Australia
- Centre for Education and Research on Ageing and Ageing and Alzheimers Institute, Concord Hospital, University of Sydney, Sydney, New South Wales, Australia
- ANZAC Research Institute, University of Sydney, Concord Hospital, Sydney, New South Wales, Australia
| | - Laurence Macia
- Charles Perkins Centre, University of Sydney, Sydney, New South Wales, Australia
- Chronic Disease Theme, School of Medical Sciences, Faculty of Medicine and Health, University of Sydney, Sydney, New South Wales, Australia
- Sydney Cytometry, University of Sydney, Sydney, New South Wales, Australia
| | - Andrew Holmes
- Charles Perkins Centre, University of Sydney, Sydney, New South Wales, Australia
| | - Joerg Eberhard
- Charles Perkins Centre, University of Sydney, Sydney, New South Wales, Australia
- The University of Sydney School of Dentistry, Faculty of Medicine and Health, University of Sydney, Sydney, New South Wales, Australia
| | - John O'Sullivan
- Cardiometabolic Medicine, School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Sydney, New South Wales, Australia
- Department of Cardiology, Royal Prince Alfred Hospital, Camperdown, New South Wales, Australia
| | - Yen Chin Koay
- Cardiometabolic Medicine, School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Sydney, New South Wales, Australia
| | - Alisar Kanjrawi
- School of Life and Environmental Sciences, University of Sydney, Sydney, New South Wales, Australia
- Charles Perkins Centre, University of Sydney, Sydney, New South Wales, Australia
| | - Jean Yang
- Charles Perkins Centre, University of Sydney, Sydney, New South Wales, Australia
- School of Mathematics and Statistics, University of Sydney, Sydney, New South Wales, Australia
| | - Taiyun Kim
- Charles Perkins Centre, University of Sydney, Sydney, New South Wales, Australia
- School of Mathematics and Statistics, University of Sydney, Sydney, New South Wales, Australia
| | - Alison Gosby
- School of Life and Environmental Sciences, University of Sydney, Sydney, New South Wales, Australia
- Charles Perkins Centre, University of Sydney, Sydney, New South Wales, Australia
| |
Collapse
|
7
|
Zaman K, Mun HC, Solon-Biet SM, Senior AM, Raubenheimer D, Simpson SJ, Conigrave AD. Mice Regulate Dietary Amino Acid Balance and Energy Intake by Selecting between Complementary Protein Sources. J Nutr 2024; 154:1766-1780. [PMID: 38583524 DOI: 10.1016/j.tjnut.2024.04.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 03/05/2024] [Accepted: 04/02/2024] [Indexed: 04/09/2024] Open
Abstract
BACKGROUND A balanced intake of protein and constituent amino acids (AAs) requires adjustments to total food intake (protein leverage [PL]) and food selection to balance deficits and excesses (complementary feeding). We provided mice with choices of casein and whey, 2 protein sources that are complementary in AA balance, across a range of protein concentrations (P%) of digestible energy (DE). OBJECTIVES We aimed to determine if: 1) PL operates similarly for casein and whey; 2) one protein source is preferred at control P%; 3) the preference changes as P% falls; and 4) AA intakes under control and low P% levels identify AAs that drive changes in protein selection. METHODS Food intake and plasma fibroblast growth factor-21 (FGF21) concentrations were measured in mice at various P% (P7.5%-P33%). For direct comparisons, defined diets were used in which the protein source was either casein or whey. In food choice studies, mice had access to foods in which both casein and whey were provided at the same P% level at the same time. RESULTS PL operated at different P% thresholds in casein (13%)- and whey (10%)-based diets, and the magnitude of PL was greater for casein. Although mice preferred casein under control conditions (P23%), a pronounced preference shift to whey occurred as P% fell to P13% and P10%. At low P%, increases in food intake were accompanied by increases in plasma FGF21, a protein hunger signal. Among AAs deficient in casein and enriched in whey, the intake of Cys was the most invariant as P% changed between P23% and P10%, appearing to drive the switch in protein preference. CONCLUSIONS Mice selected between complementary protein sources, casein and whey, achieving stable total energy intake and regulated intake of AAs as P% varied. Supplementation of low P% casein diets with one whey-enriched AA, Cys, suppressed plasma FGF21 and total food intake.
Collapse
Affiliation(s)
- Kamrul Zaman
- Charles Perkins Centre and School of Life & Environmental Sciences, University of Sydney, Sydney, NSW, Australia
| | - Hee-Chang Mun
- Charles Perkins Centre and School of Life & Environmental Sciences, University of Sydney, Sydney, NSW, Australia
| | - Samantha M Solon-Biet
- Charles Perkins Centre and School of Life & Environmental Sciences, University of Sydney, Sydney, NSW, Australia
| | - Alistair M Senior
- Charles Perkins Centre and School of Life & Environmental Sciences, University of Sydney, Sydney, NSW, Australia
| | - David Raubenheimer
- Charles Perkins Centre and School of Life & Environmental Sciences, University of Sydney, Sydney, NSW, Australia
| | - Stephen J Simpson
- Charles Perkins Centre and School of Life & Environmental Sciences, University of Sydney, Sydney, NSW, Australia
| | - Arthur D Conigrave
- Charles Perkins Centre and School of Life & Environmental Sciences, University of Sydney, Sydney, NSW, Australia.
| |
Collapse
|
8
|
Jarman AK, Shaw ME, Liu SY, Grueber CE. An insight into vitamin E and lipid nutrition of the plains-wanderer Pedionomus torquatus. Zoo Biol 2024; 43:213-223. [PMID: 38294092 DOI: 10.1002/zoo.21815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 12/04/2023] [Accepted: 12/29/2023] [Indexed: 02/01/2024]
Abstract
Vitamin E, as α-tocopherol, is an essential antioxidant protecting the body from free radicals. The vitamin E requirement of managed wildlife species is known to be greater than their wild counterparts, predominantly due to higher dietary lipid content and potentially stressful environments. The plains-wanderer (Pedionomus torquatus, Family Pedionomidae [monotypical]) is a critically endangered, superficially quail-like bird that is the focus of an ongoing captive breeding programme in Australia. It is estimated that plains-wanderers have a high vitamin E requirement (compared with domestic poultry species) to offset a high lipid diet and their naturally flighty temperament. This study therefore aims to gain a greater understanding of the nutritional status and vitamin E requirements of plains-wanderers in managed environments. Total lipid and α-tocopherol intake were quantified for 26 zoo-managed plains-wanderers over a series of diet intake trials in addition to measurement of plasma α-tocopherol and cholesterol concentrations. Plains-wanderers that consumed higher portions of dietary fat had significantly lower circulating α-tocopherol concentrations than birds that consumed lower total dietary fat (p < .001). Additionally, plasma cholesterol concentrations of managed plains-wanderers were found to be significantly greater than all other bird species reviewed, irrespective of Family or feeding type. We also present the first published data quantifying the nutritional makeup of stomach contents of a wild plains-wanderer for use as a potential guide for diet formulation. This study forms a vital foundational insight into the nutritional management of plains-wanderers, but further research is required to understand their dietary habits and cholesterol metabolism.
Collapse
Affiliation(s)
- Angela K Jarman
- School of Life and Environmental Sciences, The University of Sydney, Sydney, New South Wales, Australia
- Taronga Animal Nutrition Centre, Taronga Conservation Society Australia, Mosman, New South Wales, Australia
| | - Michelle E Shaw
- Taronga Animal Nutrition Centre, Taronga Conservation Society Australia, Mosman, New South Wales, Australia
| | - Sonia Y Liu
- School of Life and Environmental Sciences, The University of Sydney, Sydney, New South Wales, Australia
- Poultry Research Foundation, Faculty of Science, The University of Sydney, Camden, New South Wales, Australia
| | - Catherine E Grueber
- School of Life and Environmental Sciences, The University of Sydney, Sydney, New South Wales, Australia
- The Charles Perkins Centre, The University of Sydney, Sydney, New South Wales, Australia
| |
Collapse
|
9
|
Honfo SH, Senior AM, Legault V, Presse N, Turcot V, Gaudreau P, Simpson SJ, Raubenheimer D, Cohen AA. Evidence for protein leverage on total energy intake, but not body mass index, in a large cohort of older adults. Int J Obes (Lond) 2024; 48:654-661. [PMID: 38145994 DOI: 10.1038/s41366-023-01455-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 12/11/2023] [Accepted: 12/15/2023] [Indexed: 12/27/2023]
Abstract
BACKGROUND Protein leverage (PL) is the phenomenon of consuming food until absolute intake of protein approaches a 'target value', such that total energy intake (TEI) varies passively with the ratio of protein: non-protein energy (fat + carbohydrate) in the diet. The PL hypothesis (PLH) suggests that the dilution of protein in energy-dense foods, particularly those rich in carbohydrates and fats, combines with protein leverage to contribute to the global obesity epidemic. Evidence for PL has been reported in younger adults, children and adolescents. This study aimed to test for PL and the protein leverage hypothesis (PLH) in a cohort of older adults. METHODS We conducted a retrospective analysis of dietary intake in a cohort of 1699 community-dwelling older adults aged 67-84 years from the NuAge cohort. We computed TEI and the energy contribution (EC) from each macronutrient. The strength of leverage of macronutrients was assessed through power functions ( TEI = μ * EC L ). Body mass index (BMI) was calculated, and mixture models were fitted to predict TEI and BMI from macronutrients' ECs. RESULTS In this cohort of older adults, 53% of individuals had obesity and 1.5% had severe cases. The mean TEI was 7673 kJ and macronutrients' ECs were 50.4%, 33.2% and 16.4%, respectively for carbohydrates, fat, and protein. There was a strong negative association (L = -0.37; p < 0.001) between the protein EC and TEI. Each percent of energy intake from protein reduced TEI by 77 kJ on average, ceteris paribus. However, BMI was unassociated with TEI in this cohort. CONCLUSIONS Findings indicate clear evidence for PL on TEI, but not on BMI, likely because of aging, body composition, sarcopenia, or protein wasting.
Collapse
Affiliation(s)
- Sewanou H Honfo
- PRIMUS Research Group, Department of Family Medicine, Université de Sherbrooke, 3001 12e Ave N, Sherbrooke, QC, J1H 5N4, Canada
| | - Alistair M Senior
- University of Sydney, Charles Perkins Centre, Camperdown, NSW, 2006, Australia
- University of Sydney, School of Life and Environmental Science, Camperdown, NSW, 2006, Australia
- University of Sydney, Sydney Precision Data Science Centre, Camperdown, NSW, 2006, Australia
| | - Véronique Legault
- Research Center on Aging, CIUSSS-de-l'Estrie-CHUS, Sherbrooke, QC, Canada
| | - Nancy Presse
- Research Center on Aging, CIUSSS-de-l'Estrie-CHUS, Sherbrooke, QC, Canada
- Centre de Recherche de l'Institut Universitaire de Gériatrie de Montréal, Montréal, QC, Canada
- Department of Community Health Sciences, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Valérie Turcot
- Research Center on Aging, CIUSSS-de-l'Estrie-CHUS, Sherbrooke, QC, Canada
| | - Pierrette Gaudreau
- Department of Medicine, Université de Montréal, Montréal, QC, Canada
- Centre de recherche du Centre hospitalier de l'Université de Montréal, Montréal, QC, Canada
| | - Stephen J Simpson
- University of Sydney, Charles Perkins Centre, Camperdown, NSW, 2006, Australia
- University of Sydney, School of Life and Environmental Science, Camperdown, NSW, 2006, Australia
| | - David Raubenheimer
- University of Sydney, Charles Perkins Centre, Camperdown, NSW, 2006, Australia
- University of Sydney, School of Life and Environmental Science, Camperdown, NSW, 2006, Australia
| | - Alan A Cohen
- PRIMUS Research Group, Department of Family Medicine, Université de Sherbrooke, 3001 12e Ave N, Sherbrooke, QC, J1H 5N4, Canada.
- Research Center on Aging, CIUSSS-de-l'Estrie-CHUS, Sherbrooke, QC, Canada.
- Department of Environmental Health Sciences, Butler Columbia Aging Center, Mailman School of Public Health, Columbia University, New York, NY, USA.
| |
Collapse
|
10
|
Sutton J, Habibi M, Shili CN, Beker A, Salak-Johnson JL, Foote A, Pezeshki A. Low-Protein Diets Differentially Regulate Energy Balance during Thermoneutral and Heat Stress in Cobb Broiler Chicken ( Gallus domesticus). Int J Mol Sci 2024; 25:4369. [PMID: 38673954 PMCID: PMC11050574 DOI: 10.3390/ijms25084369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 04/08/2024] [Accepted: 04/11/2024] [Indexed: 04/28/2024] Open
Abstract
The objective was to assess whether low-protein (LP) diets regulate food intake (FI) and thermogenesis differently during thermoneutral (TN) and heat stress (HS) conditions. Two-hundred-day-old male broiler chicks were weight-matched and assigned to 36 pens with 5-6 chicks/pen. After 2 weeks of acclimation, birds were subjected into four groups (9 pens/group) including (1) a normal-protein diet under TN (ambient temperature), (2) an LP diet under TN, (3) a normal-protein diet under HS (35 °C for 7 h/day), and (4) an LP diet under HS, for 4 weeks. During HS, but not TN, LP tended to decrease FI, which might be associated with a lower mRNA abundance of duodenal ghrelin and higher GIP during HS. The LP group had a higher thermal radiation than NP under TN, but during HS, the LP group had a lower thermal radiation than NP. This was linked with higher a transcript of muscle β1AR and AMPKα1 during TN, but not HS. Further, LP increased the gene expression of COX IV during TN but reduced COX IV and the sirtuin 1 abundance during HS. The dietary protein content differentially impacted plasma metabolome during TN and HS with divergent changes in amino acids such as tyrosine and tryptophan. Compared to NP, LP had increased abundances of p_Tenericutes, c_Mollicutes, c_Mollicutes_RF9, and f_tachnospiraceae under HS. Overall, LP diets may mitigate the negative outcome of heat stress on the survivability of birds by reducing FI and heat production. The differential effect of an LP diet on energy balance during TN and HS is likely regulated by gut and skeletal muscle and alterations in plasma metabolites and cecal microbiota.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Adel Pezeshki
- Department of Animal and Food Sciences, Oklahoma State University, Stillwater, OK 74078, USA; (J.S.); (M.H.); (C.N.S.); (A.B.); (J.L.S.-J.); (A.F.)
| |
Collapse
|
11
|
Crean AJ, Senior AM, Freire T, Clark TD, Mackay F, Austin G, Pulpitel TJ, Nobrega MA, Barrès R, Simpson SJ. Paternal dietary macronutrient balance and energy intake drive metabolic and behavioral differences among offspring. Nat Commun 2024; 15:2982. [PMID: 38582785 PMCID: PMC10998877 DOI: 10.1038/s41467-024-46782-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Accepted: 03/11/2024] [Indexed: 04/08/2024] Open
Abstract
Paternal diet can influence the phenotype of the next generation, yet, the dietary components inducing specific responses in the offspring are not identified. Here, we use the Nutritional Geometry Framework to determine the effects of pre-conception paternal dietary macronutrient balance on offspring metabolic and behavioral traits in mice. Ten isocaloric diets varying in the relative proportion of protein, fats, and carbohydrates are fed to male mice prior to mating. Dams and offspring are fed standard chow and never exposed to treatment diets. Body fat in female offspring is positively associated with the paternal consumption of fat, while in male offspring, an anxiety-like phenotype is associated to paternal diets low in protein and high in carbohydrates. Our study uncovers that the nature and the magnitude of paternal effects are driven by interactions between macronutrient balance and energy intake and are not solely the result of over- or undernutrition.
Collapse
Affiliation(s)
- Angela Jane Crean
- Charles Perkins Centre and School of Life and Environmental Sciences, The University of Sydney, Sydney, NSW, 2006, Australia
| | - Alistair McNair Senior
- Charles Perkins Centre and School of Life and Environmental Sciences, The University of Sydney, Sydney, NSW, 2006, Australia
| | - Therese Freire
- Charles Perkins Centre and School of Life and Environmental Sciences, The University of Sydney, Sydney, NSW, 2006, Australia
| | - Thomas Daniel Clark
- Charles Perkins Centre and School of Life and Environmental Sciences, The University of Sydney, Sydney, NSW, 2006, Australia
| | - Flora Mackay
- Charles Perkins Centre and School of Life and Environmental Sciences, The University of Sydney, Sydney, NSW, 2006, Australia
| | - Gracie Austin
- Charles Perkins Centre and School of Life and Environmental Sciences, The University of Sydney, Sydney, NSW, 2006, Australia
| | - Tamara Jayne Pulpitel
- Charles Perkins Centre and School of Life and Environmental Sciences, The University of Sydney, Sydney, NSW, 2006, Australia
| | | | - Romain Barrès
- Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, Copenhagen, DK, 2200, Denmark.
- Institut de Pharmacologie Moléculaire et Cellulaire, Université Côte d'Azur & Centre National pour la Recherche Scientifique (CNRS), Valbonne, 06560, France.
| | - Stephen James Simpson
- Charles Perkins Centre and School of Life and Environmental Sciences, The University of Sydney, Sydney, NSW, 2006, Australia.
| |
Collapse
|
12
|
Le Couteur DG, Raubenheimer D, Solon-Biet S, de Cabo R, Simpson SJ. Does diet influence aging? Evidence from animal studies. J Intern Med 2024; 295:400-415. [PMID: 35701180 DOI: 10.1111/joim.13530] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Nutrition profoundly influences the risk for many age-related diseases. Whether nutrition influences human aging biology directly is less clear. Studies in different animal species indicate that reducing food intake ("caloric restriction" [CR]) can increase lifespan and delay the onset of diseases and the biological hallmarks of aging. Obesity has been described as "accelerated aging" and therefore the lifespan and health benefits generated by CR in both aging and obesity may occur via similar mechanisms. Beyond calorie intake, studies based on nutritional geometry have shown that protein intake and the interaction between dietary protein and carbohydrates influence age-related health and lifespan. Studies where animals are calorically restricted by providing free access to diluted diets have had less impact on lifespan than those studies where animals are given a reduced aliquot of food each day and are fasting between meals. This has drawn attention to the role of fasting in health and aging, and exploration of the health effects of various fasting regimes. Although definitive human clinical trials of nutrition and aging would need to be unfeasibly long and unrealistically controlled, there is good evidence from animal experiments that some nutritional interventions based on CR, manipulating dietary macronutrients, and fasting can influence aging biology and lifespan.
Collapse
Affiliation(s)
- David G Le Couteur
- Charles Perkins Centre, The University of Sydney, Sydney, Australia
- ANZAC Research Institute, The Concord Hospital, Concord, Australia
| | - David Raubenheimer
- Charles Perkins Centre, The University of Sydney, Sydney, Australia
- School of Life and Environmental Sciences, The University of Sydney, Sydney, Australia
| | - Samantha Solon-Biet
- Charles Perkins Centre, The University of Sydney, Sydney, Australia
- School of Life and Environmental Sciences, The University of Sydney, Sydney, Australia
| | - Rafael de Cabo
- Translational Gerontology Branch, Intramural Research Program, National Institute on Aging (NIH), Baltimore, Maryland, USA
| | - Stephen J Simpson
- Charles Perkins Centre, The University of Sydney, Sydney, Australia
- School of Life and Environmental Sciences, The University of Sydney, Sydney, Australia
| |
Collapse
|
13
|
Gao L, Hu S, Yang D, Wang L, Togo J, Wu Y, Li B, Li M, Wang G, Zhang X, Li L, Xu Y, Mazidi M, Couper E, Whittington-Davies A, Niu C, Speakman JR. The hedonic overdrive model best explains high-fat diet-induced obesity in C57BL/6 mice. Obesity (Silver Spring) 2024; 32:733-742. [PMID: 38410048 DOI: 10.1002/oby.23991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 12/05/2023] [Accepted: 12/20/2023] [Indexed: 02/28/2024]
Abstract
OBJECTIVE High-fat diets cause obesity in male mice; however, the underlying mechanisms remain controversial. Here, three contrasting ideas were assessed: hedonic overdrive, reverse causality, and passive overconsumption models. METHODS A total of 12 groups of 20 individually housed 12-week-old C57BL/6 male mice were exposed to 12 high-fat diets with varying fat content from 40% to 80% (by calories), protein content from 5% to 30%, and carbohydrate content from 8.4% to 40%. Body weight and food intake were monitored for 30 days after 7 days at baseline on a standard low-fat diet. RESULTS After exposure to the diets, energy intake increased first, and body weight followed later. Intake then declined. The peak energy intake was dependent on both dietary protein and carbohydrate, but not the dietary fat and energy density, whereas the rate of decrease in intake was only related to dietary protein. On high-fat diets, the weight of food intake declined, but despite this average reduction of 14.4 g in food intake, they consumed, on average, 357 kJ more energy than at baseline. CONCLUSIONS The hedonic overdrive model fit the data best. The other two models were not supported.
Collapse
Affiliation(s)
- Lin Gao
- Shenzhen Key Laboratory of Metabolic Health, Center for Energy Metabolism and Reproduction, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Sumei Hu
- Shenzhen Key Laboratory of Metabolic Health, Center for Energy Metabolism and Reproduction, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Dengbao Yang
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Lu Wang
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Jacques Togo
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Yingga Wu
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Baoguo Li
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Min Li
- Shenzhen Key Laboratory of Metabolic Health, Center for Energy Metabolism and Reproduction, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Guanlin Wang
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Xueying Zhang
- Shenzhen Key Laboratory of Metabolic Health, Center for Energy Metabolism and Reproduction, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Li Li
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Yanchao Xu
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Moshen Mazidi
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Elspeth Couper
- Institute of Biological and Environmental Sciences, University of Aberdeen, Aberdeen, UK
| | | | - Chaoqun Niu
- Shenzhen Key Laboratory of Metabolic Health, Center for Energy Metabolism and Reproduction, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - John R Speakman
- Shenzhen Key Laboratory of Metabolic Health, Center for Energy Metabolism and Reproduction, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
- Institute of Biological and Environmental Sciences, University of Aberdeen, Aberdeen, UK
- Institute of Public Health Sciences, China Medical University, Shenyang, China
| |
Collapse
|
14
|
Freire T, Clark X, Pulpitel T, Bell-Anderson K, Ribeiro R, Raubenheimer D, Crean AJ, Simpson SJ, Solon-Biet SM. Maternal macronutrient intake effects on offspring macronutrient targets and metabolism. Obesity (Silver Spring) 2024; 32:743-755. [PMID: 38328970 DOI: 10.1002/oby.23995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/26/2023] [Revised: 12/04/2023] [Accepted: 12/21/2023] [Indexed: 02/09/2024]
Abstract
OBJECTIVE Exposure in utero to maternal diet can program offspring health and susceptibility to disease. Using C57BL6/JArc mice, we investigated how maternal dietary protein to carbohydrate balance influences male and female offspring appetite and metabolic health. METHODS Dams were placed on either a low-protein (LP) or high-protein (HP) diet. Male and female offspring were placed on a food choice experiment post weaning and were then constrained to either a standard diet or Western diet. Food intake, body weight, and composition were measured, and various metabolic tests were performed at different timepoints. RESULTS Offspring from mothers fed HP diets selected a higher protein intake and had increased body weight in early life relative to offspring from LP diet-fed dams. As predicted by protein leverage theory, higher protein intake targets led to increased food intake when offspring were placed on no-choice diets, resulting in greater body weight and fat mass. The combination of an HP maternal diet and a Western diet further exacerbated this obesity phenotype and led to long-term consequences for body composition and metabolism. CONCLUSIONS This work could help explain the association between elevated protein intake in humans during early life and increased risk of obesity in childhood and later life.
Collapse
Affiliation(s)
- Therese Freire
- Charles Perkins Centre, The University of Sydney, Camperdown, New South Wales, Australia
- School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Camperdown, New South Wales, Australia
| | - Ximonie Clark
- Charles Perkins Centre, The University of Sydney, Camperdown, New South Wales, Australia
| | - Tamara Pulpitel
- Charles Perkins Centre, The University of Sydney, Camperdown, New South Wales, Australia
- School of Life and Environmental Sciences, Faculty of Science, The University of Sydney, Camperdown, New South Wales, Australia
| | - Kim Bell-Anderson
- Charles Perkins Centre, The University of Sydney, Camperdown, New South Wales, Australia
| | - Rosilene Ribeiro
- Charles Perkins Centre, The University of Sydney, Camperdown, New South Wales, Australia
- School of Life and Environmental Sciences, Faculty of Science, The University of Sydney, Camperdown, New South Wales, Australia
| | - David Raubenheimer
- Charles Perkins Centre, The University of Sydney, Camperdown, New South Wales, Australia
- School of Life and Environmental Sciences, Faculty of Science, The University of Sydney, Camperdown, New South Wales, Australia
| | - Angela J Crean
- Charles Perkins Centre, The University of Sydney, Camperdown, New South Wales, Australia
- School of Life and Environmental Sciences, Faculty of Science, The University of Sydney, Camperdown, New South Wales, Australia
| | - Stephen J Simpson
- Charles Perkins Centre, The University of Sydney, Camperdown, New South Wales, Australia
- School of Life and Environmental Sciences, Faculty of Science, The University of Sydney, Camperdown, New South Wales, Australia
| | - Samantha M Solon-Biet
- Charles Perkins Centre, The University of Sydney, Camperdown, New South Wales, Australia
- School of Life and Environmental Sciences, Faculty of Science, The University of Sydney, Camperdown, New South Wales, Australia
| |
Collapse
|
15
|
Baghdassarian HM, Lewis NE. Resource allocation in mammalian systems. Biotechnol Adv 2024; 71:108305. [PMID: 38215956 PMCID: PMC11182366 DOI: 10.1016/j.biotechadv.2023.108305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 12/17/2023] [Accepted: 12/18/2023] [Indexed: 01/14/2024]
Abstract
Cells execute biological functions to support phenotypes such as growth, migration, and secretion. Complementarily, each function of a cell has resource costs that constrain phenotype. Resource allocation by a cell allows it to manage these costs and optimize their phenotypes. In fact, the management of resource constraints (e.g., nutrient availability, bioenergetic capacity, and macromolecular machinery production) shape activity and ultimately impact phenotype. In mammalian systems, quantification of resource allocation provides important insights into higher-order multicellular functions; it shapes intercellular interactions and relays environmental cues for tissues to coordinate individual cells to overcome resource constraints and achieve population-level behavior. Furthermore, these constraints, objectives, and phenotypes are context-dependent, with cells adapting their behavior according to their microenvironment, resulting in distinct steady-states. This review will highlight the biological insights gained from probing resource allocation in mammalian cells and tissues.
Collapse
Affiliation(s)
- Hratch M Baghdassarian
- Bioinformatics and Systems Biology Graduate Program, University of California, San Diego, La Jolla, CA 92093, USA; Department of Pediatrics, University of California, San Diego, La Jolla, CA 92093, USA
| | - Nathan E Lewis
- Department of Pediatrics, University of California, San Diego, La Jolla, CA 92093, USA; Department of Bioengineering, University of California, San Diego, La Jolla, CA 92093, USA.
| |
Collapse
|
16
|
Morimoto J. Optimum ratio of dietary protein and carbohydrate that maximises lifespan is shared among related insect species. Aging Cell 2024; 23:e14067. [PMID: 38093527 PMCID: PMC10928577 DOI: 10.1111/acel.14067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 11/21/2023] [Accepted: 11/27/2023] [Indexed: 03/13/2024] Open
Abstract
Animals often regulate the intake and quantity of nutrients to maximise fitness through life-history traits such as lifespan, but we still lack a proper understanding of how specific nutrients influence these traits. Here, I developed an algorithm which allowed me to create a nutrient-specific database from literature data, and investigated how the requirements of protein (P) and carbohydrate (C) needed to maximise lifespan evolved across nine insect species. I found moderate evidence of a phylogenetic signal on the optimal ratio of protein to carbohydrate ratio (PC ratio) that maximised lifespan, suggesting that optimal PC ratio for lifespan could have evolved non-independently among related species. I also found evidence for weak-to-strong sex-specific optimal PC ratios for lifespan, suggesting that sex-specific nutritional needs to maximise lifespan can emerge and persist in some species. Although limited in the number of species, the approach adopted here is portable to experiments withn number of nutrients and, thus, can be used in complex comparative precision nutrition studies for insights into the evolution of animal nutrition.
Collapse
Affiliation(s)
- Juliano Morimoto
- Institute of Mathematics, University of Aberdeen, King's CollegeAberdeenUK
- Programa de Pós‐graduação em Ecologia e ConservaçãoUniversidade Federal do ParanáCuritibaBrazil
| |
Collapse
|
17
|
Du H, Li D, Molive LM, Wu N. Advances in free fatty acid profiles in gestational diabetes mellitus. J Transl Med 2024; 22:180. [PMID: 38374136 PMCID: PMC10875910 DOI: 10.1186/s12967-024-04922-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Accepted: 01/21/2024] [Indexed: 02/21/2024] Open
Abstract
The morbidity of gestational diabetes mellitus (GDM) is increasing and is associated with adverse perinatal outcomes and long-term maternal and infant health. The exact mechanism underlying changes in plasma free fatty acid (FFA) profiles in patients with GDM is unknown. However, it is believed that changes in diet and lipid metabolism may play a role. Fatty acids contain many specific FFAs, and the type of FFA has different impacts on physiological processes; hence, determining changes in FFAs in individual plasma is essential. Alterations in FFA concentration or profile may facilitate insulin resistance. Additionally, some FFAs show potential to predict GDM in early pregnancy and are strongly associated with the growth and development of the fetus and occurrence of macrosomia. Here, we aimed to review changes in FFAs in women with GDM and discuss the relationship of FFAs with GDM incidence and adverse outcomes.
Collapse
Affiliation(s)
- Haoyi Du
- Department of Endocrinology, Shengjing Hospital of China Medical University, Shenyang, 110004, People's Republic of China
| | - Danyang Li
- Department of Endocrinology, Shengjing Hospital of China Medical University, Shenyang, 110004, People's Republic of China
| | - Laura Monjowa Molive
- Department of Endocrinology, Shengjing Hospital of China Medical University, Shenyang, 110004, People's Republic of China
| | - Na Wu
- Department of Endocrinology, Shengjing Hospital of China Medical University, Shenyang, 110004, People's Republic of China.
- Medical Department, Shengjing Hospital of China Medical University, Liaoning Province, Shenyang, People's Republic of China.
| |
Collapse
|
18
|
Farris KM, Senior AM, Sobreira DR, Mitchell RM, Weber ZT, Ingerslev LR, Barrès R, Simpson SJ, Crean AJ, Nobrega MA. Dietary macronutrient composition impacts gene regulation in adipose tissue. Commun Biol 2024; 7:194. [PMID: 38365885 PMCID: PMC10873408 DOI: 10.1038/s42003-024-05876-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Accepted: 01/30/2024] [Indexed: 02/18/2024] Open
Abstract
Diet is a key lifestyle component that influences metabolic health through several factors, including total energy intake and macronutrient composition. While the impact of caloric intake on gene expression and physiological phenomena in various tissues is well described, the influence of dietary macronutrient composition on these parameters is less well studied. Here, we use the Nutritional Geometry framework to investigate the role of macronutrient composition on metabolic function and gene regulation in adipose tissue. Using ten isocaloric diets that vary systematically in their proportion of energy from fat, protein, and carbohydrates, we find that gene expression and splicing are highly responsive to macronutrient composition, with distinct sets of genes regulated by different macronutrient interactions. Specifically, the expression of many genes associated with Bardet-Biedl syndrome is responsive to dietary fat content. Splicing and expression changes occur in largely separate gene sets, highlighting distinct mechanisms by which dietary composition influences the transcriptome and emphasizing the importance of considering splicing changes to more fully capture the gene regulation response to environmental changes such as diet. Our study provides insight into the gene regulation plasticity of adipose tissue in response to macronutrient composition, beyond the already well-characterized response to caloric intake.
Collapse
Affiliation(s)
- Kathryn M Farris
- Department of Human Genetics, University of Chicago, Chicago, IL, 60637, USA.
| | - Alistair M Senior
- Charles Perkins Centre, The University of Sydney, Sydney, NSW, 2006, Australia
- School of Life and Environmental Sciences, University of Sydney, Sydney, NSW, 2006, Australia
| | - Débora R Sobreira
- Department of Human Genetics, University of Chicago, Chicago, IL, 60637, USA
| | - Robert M Mitchell
- Department of Human Genetics, University of Chicago, Chicago, IL, 60637, USA
| | - Zachary T Weber
- Department of Human Genetics, University of Chicago, Chicago, IL, 60637, USA
| | - Lars R Ingerslev
- Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, DK-2200, Copenhagen, Denmark
| | - Romain Barrès
- Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, DK-2200, Copenhagen, Denmark.
- Institut de Pharmacologie Moléculaire et Cellulaire, Université Côte d'Azur & Centre National pour la Recherche Scientifique (CNRS), Valbonne, 06560, France.
| | - Stephen J Simpson
- Charles Perkins Centre, The University of Sydney, Sydney, NSW, 2006, Australia.
- School of Life and Environmental Sciences, University of Sydney, Sydney, NSW, 2006, Australia.
| | - Angela J Crean
- Charles Perkins Centre, The University of Sydney, Sydney, NSW, 2006, Australia.
| | - Marcelo A Nobrega
- Department of Human Genetics, University of Chicago, Chicago, IL, 60637, USA.
| |
Collapse
|
19
|
Solon-Biet SM, Clark X, Bell-Anderson K, Rusu PM, Perks R, Freire T, Pulpitel T, Senior AM, Hoy AJ, Aung O, Le Couteur DG, Raubenheimer D, Rose AJ, Conigrave AD, Simpson SJ. Toward reconciling the roles of FGF21 in protein appetite, sweet preference, and energy expenditure. Cell Rep 2023; 42:113536. [PMID: 38060447 DOI: 10.1016/j.celrep.2023.113536] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 10/10/2023] [Accepted: 11/17/2023] [Indexed: 12/30/2023] Open
Abstract
Fibroblast growth factor 21 (FGF21), an endocrine signal robustly increased by protein restriction independently of an animal's energy status, exerts profound effects on feeding behavior and metabolism. Here, we demonstrate that considering the nutritional contexts within which FGF21 is elevated can help reconcile current controversies over its roles in mediating macronutrient preference, food intake, and energy expenditure. We show that FGF21 is primarily a driver of increased protein intake in mice and that the effect of FGF21 on sweet preference depends on the carbohydrate balance of the animal. Under no-choice feeding, FGF21 infusion either increased or decreased energy expenditure depending on whether the animal was fed a high- or low-energy diet, respectively. We show that while the role of FGF21 in mediating feeding behavior is complex, its role in promoting protein appetite is robust and that the effects on sweet preference and energy expenditure are macronutrient-state-dependent effects of FGF21.
Collapse
Affiliation(s)
- Samantha M Solon-Biet
- Charles Perkins Centre, The University of Sydney, Sydney, NSW 2006, Australia; School of Life and Environmental Sciences, Faculty of Science, The University of Sydney, Sydney, NSW 2006, Australia; School of Medicine, The University of Notre Dame, Darlinghurst, NSW 2010, Australia.
| | - Ximonie Clark
- Charles Perkins Centre, The University of Sydney, Sydney, NSW 2006, Australia; School of Life and Environmental Sciences, Faculty of Science, The University of Sydney, Sydney, NSW 2006, Australia
| | - Kim Bell-Anderson
- Charles Perkins Centre, The University of Sydney, Sydney, NSW 2006, Australia; School of Life and Environmental Sciences, Faculty of Science, The University of Sydney, Sydney, NSW 2006, Australia
| | - Patricia M Rusu
- Department of Biochemistry and Molecular Biology, Metabolism, Diabetes and Obesity Program, Biomedicine Discovery Institute, Monash University, Clayton, VIC 3800, Australia
| | - Ruth Perks
- Charles Perkins Centre, The University of Sydney, Sydney, NSW 2006, Australia; School of Life and Environmental Sciences, Faculty of Science, The University of Sydney, Sydney, NSW 2006, Australia
| | - Therese Freire
- Charles Perkins Centre, The University of Sydney, Sydney, NSW 2006, Australia; Sydney Medical School, Faculty of Health and Medicine, The University of Sydney, Sydney, NSW 2006, Australia
| | - Tamara Pulpitel
- Charles Perkins Centre, The University of Sydney, Sydney, NSW 2006, Australia; School of Life and Environmental Sciences, Faculty of Science, The University of Sydney, Sydney, NSW 2006, Australia
| | - Alistair M Senior
- Charles Perkins Centre, The University of Sydney, Sydney, NSW 2006, Australia; School of Life and Environmental Sciences, Faculty of Science, The University of Sydney, Sydney, NSW 2006, Australia
| | - Andrew J Hoy
- Charles Perkins Centre, The University of Sydney, Sydney, NSW 2006, Australia; School of Medical Sciences, Faculty of Health and Medicine, The University of Sydney, Sydney, NSW 2006, Australia
| | - Okka Aung
- Department of Biochemistry and Molecular Biology, Metabolism, Diabetes and Obesity Program, Biomedicine Discovery Institute, Monash University, Clayton, VIC 3800, Australia
| | - David G Le Couteur
- Charles Perkins Centre, The University of Sydney, Sydney, NSW 2006, Australia; Sydney Medical School, Faculty of Health and Medicine, The University of Sydney, Sydney, NSW 2006, Australia; Ageing and Alzheimer's Institute and Centre for Education and Research on Ageing, Concord Hospital, Concord, NSW 2139, Australia
| | - David Raubenheimer
- Charles Perkins Centre, The University of Sydney, Sydney, NSW 2006, Australia; School of Life and Environmental Sciences, Faculty of Science, The University of Sydney, Sydney, NSW 2006, Australia
| | - Adam J Rose
- Department of Biochemistry and Molecular Biology, Metabolism, Diabetes and Obesity Program, Biomedicine Discovery Institute, Monash University, Clayton, VIC 3800, Australia
| | - Arthur D Conigrave
- Charles Perkins Centre, The University of Sydney, Sydney, NSW 2006, Australia; School of Life and Environmental Sciences, Faculty of Science, The University of Sydney, Sydney, NSW 2006, Australia; Department of Endocrinology, Royal Prince Alfred Hospital, Camperdown, NSW 2050 Australia
| | - Stephen J Simpson
- Charles Perkins Centre, The University of Sydney, Sydney, NSW 2006, Australia; School of Life and Environmental Sciences, Faculty of Science, The University of Sydney, Sydney, NSW 2006, Australia.
| |
Collapse
|
20
|
Raubenheimer D, Hou R, Dong Y, Ren C, Cui Z. Towards an integrated understanding of dietary phenotypes. Philos Trans R Soc Lond B Biol Sci 2023; 378:20220545. [PMID: 37839453 PMCID: PMC10577033 DOI: 10.1098/rstb.2022.0545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Accepted: 07/26/2023] [Indexed: 10/17/2023] Open
Abstract
Diet and nutrition comprise a complex, multi-faceted interface between animal biology and food environments. With accumulating information on the many facets of this association arises a need for systems-based approaches that integrate dietary components and their links with ecology, feeding, post-ingestive processes and the functional and ecological consequences of these interactions. We briefly show how a modelling approach, nutritional geometry, has used the experimental control afforded in laboratory studies to begin to unravel these links. Laboratory studies, however, have limited ability to establish whether and how the feeding and physiological mechanisms interface with realistic ecological environments. We next provide an overview of observational field studies of free-ranging primates that have examined this, producing largely correlative data suggesting that similar feeding mechanisms operate in the wild as in the laboratory. Significant challenges remain, however, in establishing causal links between feeding, resource variation and physiological processes in the wild. We end with a more detailed account of two studies of temperate primates that have capitalized on the discrete variation provided by seasonal environments to strengthen causal inference in field studies and link patterns of intake to dynamics of nutrient processing. This article is part of the theme issue 'Food processing and nutritional assimilation in animals'.
Collapse
Affiliation(s)
- David Raubenheimer
- Charles Perkins Centre and School of Life and Environmental Sciences, The University of Sydney, Sydney, New South Wales 2006, Australia
- Centre for Nutritional Ecology, Centre for Sport Nutrition and Health, Zhengzhou University, Zhengzhou, Henan, 450001, People's Republic of China
| | - Rong Hou
- Shanxi Key Laboratory for Animal Conservation, Northwest University, Xi'an, Shaanxi, 710069, People's Republic of China
| | - Yunlong Dong
- Centre for Nutritional Ecology, Centre for Sport Nutrition and Health, Zhengzhou University, Zhengzhou, Henan, 450001, People's Republic of China
| | - Cuiru Ren
- Centre for Nutritional Ecology, Centre for Sport Nutrition and Health, Zhengzhou University, Zhengzhou, Henan, 450001, People's Republic of China
| | - Zhenwei Cui
- Centre for Nutritional Ecology, Centre for Sport Nutrition and Health, Zhengzhou University, Zhengzhou, Henan, 450001, People's Republic of China
| |
Collapse
|
21
|
Ramne S, Duizer L, Nielsen MS, Jørgensen NR, Svenningsen JS, Grarup N, Sjödin A, Raben A, Gillum MP. Meal sugar-protein balance determines postprandial FGF21 response in humans. Am J Physiol Endocrinol Metab 2023; 325:E491-E499. [PMID: 37729024 PMCID: PMC10874651 DOI: 10.1152/ajpendo.00241.2023] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 09/05/2023] [Accepted: 09/14/2023] [Indexed: 09/22/2023]
Abstract
Biological mechanisms to promote dietary balance remain unclear. Fibroblast growth factor 21 (FGF21) has been suggested to contribute to such potential regulation considering that FGF21 1) is genetically associated with carbohydrate/sugar and protein intake in opposite directions, 2) is secreted after sugar ingestion and protein restriction, and 3) pharmacologically reduces sugar and increases protein intake in rodents. To gain insight of the nature of this potential regulation, we aimed to study macronutrient interactions in the secretory regulation of FGF21 in healthy humans. We conducted a randomized, double-blinded, crossover meal study (NCT05061485), wherein healthy volunteers consumed a sucrose drink, a sucrose + protein drink, and a sucrose + fat drink (matched sucrose content), and compared postprandial FGF21 responses between the three macronutrient combinations. Protein suppressed the sucrose-induced FGF21 secretion [incremental area under the curve (iAUC) for sucrose 484 ± 127 vs. sucrose + protein -35 ± 49 pg/mL × h, P < 0.001]. The same could not be demonstrated for fat (iAUC 319 ± 102 pg/mL × h, P = 203 for sucrose + fat vs. sucrose). We found no indications that regulators of glycemic homeostasis could explain this effect. This indicates that FGF21 responds to disproportionate intake of sucrose relative to protein acutely within a meal, and that protein outweighs sucrose in FGF21 regulation. Together with previous findings, our results suggests that FGF21 might act to promote macronutrient balance and sufficient protein intake.NEW & NOTEWORTHY Here we test the interactions between sugar, protein, and fat in human FGF21 regulation and demonstrate that protein, but not fat, suppresses sugar-induced FGF21 secretion. This indicates that protein outweighs the effects of sugar in the secretory regulation of FGF21, and could suggest that the nutrient-specific appetite-regulatory actions of FGF21 might prioritize ensuring sufficient protein intake over limiting sugar intake.
Collapse
Affiliation(s)
- Stina Ramne
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Lisanne Duizer
- Department of Nutrition, Exercise and Sports, Faculty of Science, University of Copenhagen, Frederiksberg, Denmark
| | - Mette S Nielsen
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Niklas Rye Jørgensen
- Department of Clinical Biochemistry, Copenhagen University Hospital, Glostrup, Denmark
- Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Jens S Svenningsen
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Niels Grarup
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Anders Sjödin
- Department of Nutrition, Exercise and Sports, Faculty of Science, University of Copenhagen, Frederiksberg, Denmark
| | - Anne Raben
- Department of Nutrition, Exercise and Sports, Faculty of Science, University of Copenhagen, Frederiksberg, Denmark
- Department of Clinical and Translational Research, Copenhagen University Hospital-Diabetes Center Copenhagen, Herlev, Denmark
| | - Matthew P Gillum
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
22
|
Pontzer H. The provisioned primate: patterns of obesity across lemurs, monkeys, apes and humans. Philos Trans R Soc Lond B Biol Sci 2023; 378:20220218. [PMID: 37661747 PMCID: PMC10475869 DOI: 10.1098/rstb.2022.0218] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2023] [Accepted: 08/04/2023] [Indexed: 09/05/2023] Open
Abstract
Non-human primates are potentially informative but underutilized species for investigating obesity. I examined patterns of obesity across the Primate order, calculating the ratio of body mass in captivity to that in the wild. This index, relative body mass, for n = 40 non-human primates (mean ± s.d.: females: 1.28 ± 0.30, range 0.67-1.78, males: 1.24 ± 0.28, range 0.70-1.97) overlapped with a reference value for humans (women: 1.52, men: 1.44). Among non-human primates, relative body mass was unrelated to dietary niche, and was marginally greater among female cohorts of terrestrial species. Males and females had similar relative body masses, but species with greater sexual size dimorphism (male/female mass) in wild populations had comparatively larger female body mass in captivity. Provisioned populations in wild and free-ranging settings had similar relative body mass to those in research facilities and zoos. Compared to the wild, captive diets are unlikely to be low in protein or fat, or high in carbohydrate, suggesting these macronutrients are not driving overeating in captive populations. Several primate species, including chimpanzees, a sister-species to humans, had relative body masses similar to humans. Humans are not unique in the propensity to overweight and obesity. This article is part of a discussion meeting issue 'Causes of obesity: theories, conjectures and evidence (Part II)'.
Collapse
Affiliation(s)
- Herman Pontzer
- Department of Evolutionary Anthropology, Duke University, Durham, NC 27708, USA
- Duke Global Health Institute, Duke University, Durham, NC 27708, USA
| |
Collapse
|
23
|
Raubenheimer D, Simpson SJ. Protein appetite as an integrator in the obesity system: the protein leverage hypothesis. Philos Trans R Soc Lond B Biol Sci 2023; 378:20220212. [PMID: 37661737 PMCID: PMC10475875 DOI: 10.1098/rstb.2022.0212] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Accepted: 06/21/2023] [Indexed: 09/05/2023] Open
Abstract
Despite the large volume and extensive range of obesity research, there is substantial disagreement on the causes and effective preventative strategies. We suggest the field will benefit from greater emphasis on integrative approaches that examine how various potential contributors interact, rather than regarding them as competing explanations. We demonstrate the application of nutritional geometry, a multi-nutrient integrative framework developed in the ecological sciences, to obesity research. Such studies have shown that humans, like many other species, regulate protein intake more strongly than other dietary components, and consequently if dietary protein is diluted there is a compensatory increase in food intake-a process called protein leverage. The protein leverage hypothesis (PLH) proposes that the dilution of protein in modern food supplies by fat and carbohydrate-rich highly processed foods has resulted in increased energy intake through protein leverage. We present evidence for the PLH from a variety of sources (mechanistic, experimental and observational), and show that this mechanism is compatible with many other findings and theories in obesity research. This article is part of a discussion meeting issue 'Causes of obesity: theories, conjectures and evidence (Part II)'.
Collapse
Affiliation(s)
- David Raubenheimer
- Charles Perkins Centre and School of Life and Environmental Sciences, The University of Sydney, Sydney, New South Wales 2006, Australia
| | - Stephen J. Simpson
- Charles Perkins Centre and School of Life and Environmental Sciences, The University of Sydney, Sydney, New South Wales 2006, Australia
| |
Collapse
|
24
|
Hall KD. From dearth to excess: the rise of obesity in an ultra-processed food system. Philos Trans R Soc Lond B Biol Sci 2023; 378:20220214. [PMID: 37482782 PMCID: PMC10363698 DOI: 10.1098/rstb.2022.0214] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Accepted: 05/23/2023] [Indexed: 07/25/2023] Open
Abstract
More people now have obesity than suffer from starvation thanks to our modern food system. Agriculture was transformed over the 20th century by a variety of technological advancements that relied heavily on fossil fuels. In the United States, government policies and economic incentives led to surplus production of cheap inputs to processed food industries that produced a wide variety of heavily marketed, convenient, rewarding, timesaving, and relatively inexpensive ultra-processed foods. The energy available in the food supply increased by much more than the population needs, albeit with large inequities in nutrition security. While most of the rise in per capita food availability during the late 20th and early 21st centuries in the United States resulted in increased food waste, a variety of mechanisms have been proposed by which changes in the increasingly ultra-processed food environment resulted in excess energy intake disproportionately in people genetically susceptible to obesity. As populations continue to grow, substantial investments in coordinated nutrition and agricultural research are needed to transform our current food system to one that relies less on fossil fuels, preserves biodiversity, ensures environmental health, and provides equitable access to affordable, safe and nutritious food that reduces the prevalence of chronic diet-related diseases like obesity. This article is part of a discussion meeting issue 'Causes of obesity: theories, conjectures and evidence (Part I)'.
Collapse
Affiliation(s)
- Kevin D. Hall
- Integrative Physiology Section Chief, Laboratory of Biological Modeling, National Institute of Diabetes & Digestive & Kidney Diseases, National Institutes of Health, 12A South Drive, Room 4007, Bethesda, MD 20892-4007, USA
| |
Collapse
|
25
|
Abstract
Obesity is now a global pandemic, but there is little consensus about the causes.
Collapse
Affiliation(s)
- John R Speakman
- Shenzhen Key Laboratory of Metabolic Health, Center for Energy Metabolism and Reproduction, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
- School of Biological Sciences, University of Aberdeen, Aberdeen, Scotland, UK
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
- China Medical University, Shenyang, Liaoning, China
| | - Thorkild I A Sørensen
- Department of Public Health, University of Copenhagen, Copenhagen, Denmark
- Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, Copenhagen, Denmark
| | - Kevin D Hall
- National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, USA
| | - David B Allison
- School of Public Health, Indiana University, Bloomington, IN, USA
| |
Collapse
|
26
|
Longman DP, Wells JCK, Stock JT. Human energetic stress associated with upregulation of spatial cognition. AMERICAN JOURNAL OF BIOLOGICAL ANTHROPOLOGY 2023; 182:32-44. [PMID: 37494592 DOI: 10.1002/ajpa.24820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 06/12/2023] [Accepted: 07/09/2023] [Indexed: 07/28/2023]
Abstract
OBJECTIVES Evolutionary life history theory has a unique potential to shed light on human adaptive capabilities. Ultra-endurance challenges are a valuable experimental model allowing the direct testing of phenotypic plasticity via physiological trade-offs in resource allocation. This enhances our understanding of how the body prioritizes different functions when energetically stressed. However, despite the central role played by the brain in both hominin evolution and metabolic budgeting, cognitive plasticity during energetic deficit remains unstudied. MATERIALS We considered human cognitive plasticity under conditions of energetic deficit by evaluating variability in performance in three key cognitive domains. To achieve this, cognitive performance in a sample of 48 athletes (m = 29, f = 19) was assessed before and after competing in multiday ultramarathons. RESULTS We demonstrate that under conditions of energetic deficit, performance in tasks of spatial working memory (which assessed ability to store location information, promoting landscape navigation and facilitating resource location and calorie acquisition) increased. In contrast, psychomotor speed (reaction time) remained unchanged and episodic memory performance (ability to recall information about specific events) decreased. DISCUSSION We propose that prioritization of spatial working memory performance during conditions of negative energy balance represents an adaptive response due to its role in facilitating calorie acquisition. We discuss these results with reference to a human evolutionary trajectory centred around encephalisation. Encephalisation affords great plasticity, facilitating rapid responses tailored to specific environmental conditions, and allowing humans to increase their capabilities as a phenotypically plastic species.
Collapse
Affiliation(s)
- Daniel P Longman
- School of Sport, Health and Exercise Sciences, Loughborough University, Loughborough, UK
- ISSUL, Institute of Sport Science, University of Lausanne, Lausanne, Vaud, Switzerland
| | - Jonathan C K Wells
- Childhood Nutrition Research Centre, UCL Institute of Child Health, London, UK
| | - Jay T Stock
- Department of Anthropology, University of Western Ontario, London, Ontario, Canada
| |
Collapse
|
27
|
Rodriguez-Murguia N, Malacara JM, Kusnir D, Siniego A, Melendez-Rios D, Raubenheimer D, Simpson S, Martinez-Cordero C. Testing for Protein Leverage in Patients with Gastric Bypass: A Pilot Study. ANNALS OF NUTRITION & METABOLISM 2023; 79:355-360. [PMID: 37536296 PMCID: PMC10614273 DOI: 10.1159/000532125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Accepted: 07/01/2023] [Indexed: 08/05/2023]
Abstract
INTRODUCTION Protein leverage (PL) is the phenomenon whereby a dominant appetite for protein drives overconsumption of energy with a decline in the ratio of protein to fat and carbohydrate in the diet. PL has been independently verified in several randomized control trials, and its predictions are supported by diet surveillance data. Our aim in the present study was to test whether surgical intervention through gastric bypass will ameliorate the PL effect. METHODS Ten patients with gastric bypass (2-5 years postsurgical time) were given ad libitum access to study food comprising 10%, 15%, or 25% protein and no access to other foods for 3 days while controlling food palatability and variety. Food intake was measured, and energy and nutrient intakes were calculated. Body weight, blood chemistry, lipid profile, hormones (insulin, leptin, and ghrelin), and creatinine were determined before and after each experimental period. RESULTS The gastric bypass patients in our study did not show evidence for protein intake regulation as predicted under PL but ate to constant total energy intake on the 10%, 15%, and 25% protein diets with protein intake varying significantly. Patients lost weight in the three study periods, but significant weight loss was observed only on the 15% protein diet. CONCLUSION Our results suggest that gastric bypass might disengage the PL mechanism, thus ameliorating an appetite-specific mechanism that drives energy overconsumption in modern food environments.
Collapse
Affiliation(s)
| | | | | | | | | | - David Raubenheimer
- Charles Perkins Centre, School of Life and Environmental Sciences, University of Sydney, Camperdown, NSW, Australia
| | - Stephen Simpson
- Charles Perkins Centre, School of Life and Environmental Sciences, University of Sydney, Camperdown, NSW, Australia
| | | |
Collapse
|
28
|
Santos EW, Dias CC, Fock RA, Paredes-Gamero EJ, Zheng YM, Wang YX, Borelli P. Protein restriction impairs the response activation/responsivity of MAPK signaling pathway of hematopoietic stem cells. Nutr Res 2023; 116:12-23. [PMID: 37320947 DOI: 10.1016/j.nutres.2023.05.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 05/11/2023] [Accepted: 05/20/2023] [Indexed: 06/17/2023]
Abstract
Protein restriction (PR) leads to bone marrow hypoplasia with changes in stromal cellularity components of the extracellular matrix in hematopoietic stem cells (HSCs). However, the underlying signaling mechanisms are poorly understood. We hypothesize that PR impairs the HSC mitogen-activated protein kinase (MAPK) signaling pathway response activation. Our aim is to evaluate the activation of MAPK and interleukin-3 (IL-3) proteins in HSC to explain PR-induced bone marrow hypoplasia, which causes altered proliferation and differentiation. C57BL/6 male mice were subjected to a low-protein diet (2% protein) or normoproteic (12% protein). PKC, PLCγ2, CaMKII, AKT, STAT3/5, ERK1/2, JNK, and p38d phosphorylation were evaluated by flow cytometry, and GATA1/2, PU.1, C/EBPα, NF-E2, and Ikz-3 genes (mRNAs) assessed by quantitative real-time-polymerase chain reaction. Pathway proteins, such as PLCγ2, JAK2, STAT3/5, PKC, and RAS do not respond to the IL-3 stimulus in PR, leading to lower activation of ERK1/2 and Ca2+ signaling pathways, consequently lowering the production of hematopoietic transcription factors. Colony forming units granulocyte-macrophage and colony forming units macrophage formation are impaired in PR even after being stimulated with IL-3. Long-term hematopoietic stem cells, short-term hematopoietic stem cells, granulocyte myeloid progenitor, and megakaryocyte-erythroid progenitor cells were significantly reduced in PR animals. This study shows for the first time that activation of MAPK pathway key proteins in HSCs is impaired in cases of PR. Several pathway proteins, such as PLCγ2, JAK2, STAT3, PKC, and RAS do not respond to IL-3 stimulation, leading to lower activation of extracellular signal-regulated protein kinase 1/2 and consequently lower production of hematopoietic transcription factors GATA1/2, PU.1, C/EBPa, NF-E2, and Ikz3. These changes result in a reduction in colony-forming units, proliferation, and differentiation, leading to hypocellularity.
Collapse
Affiliation(s)
- Ed Wilson Santos
- Department of Molecular and Cellular Physiology, Albany Medical College, NY, USA; Experimental Hematology Laboratory, Department of Clinical e Toxicological Analyses, Faculty of Pharmaceutical Sciences, University of Sao Paulo, Sao Paulo, Brazil.
| | - Carolina Carvalho Dias
- Experimental Hematology Laboratory, Department of Clinical e Toxicological Analyses, Faculty of Pharmaceutical Sciences, University of Sao Paulo, Sao Paulo, Brazil.
| | - Ricardo Ambrósio Fock
- Experimental Hematology Laboratory, Department of Clinical e Toxicological Analyses, Faculty of Pharmaceutical Sciences, University of Sao Paulo, Sao Paulo, Brazil.
| | - Edgar Julian Paredes-Gamero
- Faculty of Pharmaceutical Sciences, Food and Nutrition (FACFAN), Federal University of Mato Grosso do Sul, 79070-900, Campo Grande, Mato Grosso do Sul, Brazil.
| | - Yun-Min Zheng
- Department of Molecular and Cellular Physiology, Albany Medical College, NY, USA.
| | - Yong-Xiao Wang
- Department of Molecular and Cellular Physiology, Albany Medical College, NY, USA.
| | - Primavera Borelli
- Experimental Hematology Laboratory, Department of Clinical e Toxicological Analyses, Faculty of Pharmaceutical Sciences, University of Sao Paulo, Sao Paulo, Brazil.
| |
Collapse
|
29
|
Wali JA, Ni D, Facey HJW, Dodgson T, Pulpitel TJ, Senior AM, Raubenheimer D, Macia L, Simpson SJ. Determining the metabolic effects of dietary fat, sugars and fat-sugar interaction using nutritional geometry in a dietary challenge study with male mice. Nat Commun 2023; 14:4409. [PMID: 37479702 PMCID: PMC10362033 DOI: 10.1038/s41467-023-40039-w] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Accepted: 07/10/2023] [Indexed: 07/23/2023] Open
Abstract
The metabolic effects of sugars and fat lie at the heart of the "carbohydrate vs fat" debate on the global obesity epidemic. Here, we use nutritional geometry to systematically investigate the interaction between dietary fat and the major monosaccharides, fructose and glucose, and their impact on body composition and metabolic health. Male mice (n = 245) are maintained on one of 18 isocaloric diets for 18-19 weeks and their metabolic status is assessed through in vivo procedures and by in vitro assays involving harvested tissue samples. We find that in the setting of low and medium dietary fat content, a 50:50 mixture of fructose and glucose (similar to high-fructose corn syrup) is more obesogenic and metabolically adverse than when either monosaccharide is consumed alone. With increasing dietary fat content, the effects of dietary sugar composition on metabolic status become less pronounced. Moreover, higher fat intake is more harmful for glucose tolerance and insulin sensitivity irrespective of the sugar mix consumed. The type of fat consumed (soy oil vs lard) does not modify these outcomes. Our work shows that both dietary fat and sugars can lead to adverse metabolic outcomes, depending on the dietary context. This study shows how the principles of the two seemingly conflicting models of obesity (the "energy balance model" and the "carbohydrate insulin model") can be valid, and it will help in progressing towards a unified model of obesity. The main limitations of this study include the use of male mice of a single strain, and not testing the metabolic effects of fructose intake via sugary drinks, which are strongly linked to human obesity.
Collapse
Affiliation(s)
- Jibran A Wali
- Charles Perkins Centre, The University of Sydney, Sydney, NSW, Australia.
- Faculty of Science, School of Life and Environmental Sciences, The University of Sydney, Sydney, NSW, Australia.
| | - Duan Ni
- Charles Perkins Centre, The University of Sydney, Sydney, NSW, Australia
- School of Medical Sciences, Chronic Diseases Theme, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, Australia
| | - Harrison J W Facey
- Charles Perkins Centre, The University of Sydney, Sydney, NSW, Australia
| | - Tim Dodgson
- Charles Perkins Centre, The University of Sydney, Sydney, NSW, Australia
- Faculty of Science, School of Life and Environmental Sciences, The University of Sydney, Sydney, NSW, Australia
| | - Tamara J Pulpitel
- Charles Perkins Centre, The University of Sydney, Sydney, NSW, Australia
- Faculty of Science, School of Life and Environmental Sciences, The University of Sydney, Sydney, NSW, Australia
| | - Alistair M Senior
- Charles Perkins Centre, The University of Sydney, Sydney, NSW, Australia
- Faculty of Science, School of Life and Environmental Sciences, The University of Sydney, Sydney, NSW, Australia
- Sydney Precision Data Science Centre, The University of Sydney, Sydney, NSW, Australia
| | - David Raubenheimer
- Charles Perkins Centre, The University of Sydney, Sydney, NSW, Australia
- Faculty of Science, School of Life and Environmental Sciences, The University of Sydney, Sydney, NSW, Australia
| | - Laurence Macia
- Charles Perkins Centre, The University of Sydney, Sydney, NSW, Australia
- School of Medical Sciences, Chronic Diseases Theme, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, Australia
- Sydney Cytometry, The University of Sydney, Sydney, NSW, Australia
| | - Stephen J Simpson
- Charles Perkins Centre, The University of Sydney, Sydney, NSW, Australia.
- Faculty of Science, School of Life and Environmental Sciences, The University of Sydney, Sydney, NSW, Australia.
| |
Collapse
|
30
|
Munoz MD, Zamudio A, McCann M, Gil V, Xu P, Liew CW. Activation of brown adipose tissue by a low-protein diet ameliorates hyperglycemia in a diabetic lipodystrophy mouse model. Sci Rep 2023; 13:11808. [PMID: 37479751 PMCID: PMC10362023 DOI: 10.1038/s41598-023-37482-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Accepted: 06/22/2023] [Indexed: 07/23/2023] Open
Abstract
Long-term ad libitum dietary restrictions, such as low-protein diets (LPDs), improve metabolic health and extend the life span of mice and humans. However, most studies conducted thus far have focused on the preventive effects of LPDs on metabolic syndromes. To test the therapeutic potential of LPD, we treated a lipodystrophy mouse model IRFKO (adipose-specific insulin receptor knockout) in this study. We have previously shown that IRFKO mice have profound insulin resistance, hyperglycemia, and whitening of interscapular brown adipose tissue (BAT), closely mimicking the phenotypes in lipoatrophic diabetic patients. Here, we demonstrate that 14-day of LPD (5.1% kcal from protein) feeding is sufficient to reduce postprandial blood glucose, improve insulin resistance, and normalize glucose tolerance in the IRFKO mice. This profound metabolic improvement is associated with BAT activation and increase in whole body energy expenditure. To confirm, we showed that surgical denervation of BAT attenuated the beneficial metabolic effects of LPD feeding in IRFKO mice, including the 'browning' effects on BAT and the glucose-ameliorating results. However, BAT denervation failed to affect the body weight-lowering effects of LPD. Together, our results imply a therapeutic potential to use LPD for the treatment of lipoatrophic diabetes.
Collapse
Affiliation(s)
- Marcos David Munoz
- Department of Physiology and Biophysics, The University of Illinois at Chicago, 909 S Wolcott Ave, RM 2099, Chicago, IL, 60612, USA
- Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, The University of Illinois at Chicago, Chicago, IL, 60612, USA
| | - Alexa Zamudio
- Department of Physiology and Biophysics, The University of Illinois at Chicago, 909 S Wolcott Ave, RM 2099, Chicago, IL, 60612, USA
| | - Maximilian McCann
- Department of Physiology and Biophysics, The University of Illinois at Chicago, 909 S Wolcott Ave, RM 2099, Chicago, IL, 60612, USA
| | - Victoria Gil
- Department of Physiology and Biophysics, The University of Illinois at Chicago, 909 S Wolcott Ave, RM 2099, Chicago, IL, 60612, USA
| | - Pingwen Xu
- Department of Physiology and Biophysics, The University of Illinois at Chicago, 909 S Wolcott Ave, RM 2099, Chicago, IL, 60612, USA
- Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, The University of Illinois at Chicago, Chicago, IL, 60612, USA
| | - Chong Wee Liew
- Department of Physiology and Biophysics, The University of Illinois at Chicago, 909 S Wolcott Ave, RM 2099, Chicago, IL, 60612, USA.
- Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, The University of Illinois at Chicago, Chicago, IL, 60612, USA.
| |
Collapse
|
31
|
Asiimwe OH, Rubaihayo J, Sulaiman SO, Osuwat LO, Kasozi KI. A protein restricted diet induces a stable increased fat storage phenotype in flies. Toxicol Rep 2023; 10:706-713. [PMID: 37396850 PMCID: PMC10313861 DOI: 10.1016/j.toxrep.2023.06.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 06/02/2023] [Accepted: 06/05/2023] [Indexed: 07/04/2023] Open
Abstract
Background Scientific evidence has revealed possible confounders in diet induced obesity models of Drosophila melanogaster. High Sugar Diet (HSD) induction of obesity in flies has been associated with fly hyperosmolarity and glucotoxicity, while High Fat Diet (HFD) induction has been associated with lipotoxicity. The objective of this study was to assess for a healthy obesity phenotype by comparison of fly survival, physio-chemical and biochemical changes associated with HSD, HFD and Protein Restricted Diet (PRD) obesity induction models of male Drosophila melanogaster. Here, we provide information on a PRD as the plausible option in obesity research not involving cancer, diabetes, glucotoxicity and lipotoxicity studies. Methods Obesity was induced by exposing Drosophila melanogaster white mutant w1118 to four experimental diets for four weeks. Group 1 was fed regular food (control), group 2 was fed a 0.5% less yeast than in regular feed (PRD), group 3 was fed a 30% w/v sucrose to regular cornmeal food (HSD) and group 4 was fed a 10% w/v food-grade coconut oil to regular cornmeal food (HFD). Peristaltic waves were measured on 3rd instar larvae of all experimental groups. Negative geotaxis, fly survival, body mass, catalase activity, triglycerides (TG/TP), sterol, and total protein were measured in adult Drosophila melanogaster after four weeks. Results Triglycerides (TG/TP) and total protein levels were significantly higher in HSD phenotype. Sterols were higher in HFD phenotype. Though catalase enzyme activity was highest in PRD phenotype, this activity was not statistically significant when compared to that of HSD and HFD phenotypes. However, PRD phenotype had the lowest mass, highest survival rate and the highest negative geotaxis, thus demonstrating a balanced, stable and more viable metabolic status in the experimental model. Conclusion A protein restricted diet induces a stable increased fat storage phenotype in Drosophila melanogaster.
Collapse
Affiliation(s)
- Oscar Hilary Asiimwe
- Faculty of Health Sciences, Mountains of the Moon University, Box 837, Fort Portal, Uganda
- Zhejiang University-University of Edinburgh Institute, Zhejiang University School of Medicine, International Campus, Zhejiang University, Haining, China
| | - John Rubaihayo
- Faculty of Health Sciences, Mountains of the Moon University, Box 837, Fort Portal, Uganda
| | - Sheu Oluwadare Sulaiman
- Graduate Program in Cell Biology, Institute of Biological Sciences, Federal University of Minas Gerais (UFMG), Belo Horizonte, Brazil
- Department of Physiology, School of Medicine and Pharmacy, College of Medicine and Health Sciences, University of Rwanda, Huye, Rwanda
| | | | - Keneth Iceland Kasozi
- School of Medicine, Kabale University, Box 317, Kabale, Uganda
- Infection Medicine, Deanery of Biomedical Sciences, College of Medicine and Veterinary Medicine, University of Edinburgh, EH8 9JZ, Edinburgh, United Kingdom
| |
Collapse
|
32
|
Harb AA, Shechter A, Koch PA, St-Onge MP. Ultra-processed foods and the development of obesity in adults. Eur J Clin Nutr 2023; 77:619-627. [PMID: 36280730 PMCID: PMC10123172 DOI: 10.1038/s41430-022-01225-z] [Citation(s) in RCA: 20] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 10/04/2022] [Accepted: 10/06/2022] [Indexed: 11/09/2022]
Abstract
Ultra-processed foods (UPF) are ubiquitous in the modern-day food supply and widely consumed. High consumption of these foods has been suggested to contribute to the development of obesity in adults. The purpose of this review is to present and evaluate current literature on the relationship between UPF consumption and adult obesity. Cross-sectional studies (n = 9) among different populations worldwide show a positive association between UPF consumption and obesity. Longitudinal studies (n = 7) further demonstrate a positive association between UPF consumption and development of obesity, suggesting a potential causal influence of UPF consumption on obesity risk. However, only one randomized controlled trial has tested the causality of this association. The study included in this review found greater energy intake and weight gain with consumption of a high UPF diet compared to a high unprocessed food diet. The potential mechanisms by which UPF increase the risk of obesity include increased energy intake due to increased sugar consumption, decreased fiber consumption, and decreased protein density; however, more research is needed. Overall, the evidence identified in the current review consistently support a positive relation between high UPF consumption and obesity. While there is a need for more experimental research to establish causality and elucidate the mechanisms, the sum of the evidence supports a need for research on treatment modalities that include reductions in UPF consumption for the management of adult obesity.
Collapse
Affiliation(s)
- Amanda A Harb
- Doctoral Candidate, Teachers College, Columbia University, 525 West 120th Street, Box 137, New York, NY, 10027, USA
| | - Ari Shechter
- Department of Medicine, Columbia University Irving Medical Center, New York, USA
| | - Pamela A Koch
- Teachers College, Columbia University, 525 West 120th Street, Box 137, New York, NY, 10027, USA
| | - Marie-Pierre St-Onge
- Department of Medicine, Columbia University Irving Medical Center, New York, USA.
| |
Collapse
|
33
|
Morimoto J. Nutrigonometry IV: Thales' theorem to measure the rules of dietary compromise in animals. Sci Rep 2023; 13:7466. [PMID: 37156830 PMCID: PMC10167223 DOI: 10.1038/s41598-023-34722-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2023] [Accepted: 05/06/2023] [Indexed: 05/10/2023] Open
Abstract
Diet specialists and generalists face a common challenge: they must regulate the intake and balance of nutrients to achieve a target diet for optimum nutrition. When optimum nutrition is unattainable, organisms must cope with dietary imbalances and trade-off surplus and deficits of nutrients that ensue. Animals achieve this through compensatory rules that dictate how to cope with nutrient imbalances, known as 'rules of compromise'. Understanding the patterns of the rules of compromise can provide invaluable insights into animal physiology and behaviour, and shed light into the evolution of diet specialisation. However, we lack an analytical method for quantitative comparisons of the rules of compromise within and between species. Here, I present a new analytical method that uses Thales' theorem as foundation, and that enables fast comparisons of the rules of compromise within and between species. I then apply the method on three landmark datasets to show how the method enables us to gain insights into how animals with different diet specialisation cope with nutrient imbalances. The method opens new avenues of research to understand how animals cope with nutrient imbalances in comparative nutrition.
Collapse
Affiliation(s)
- Juliano Morimoto
- Institute of Mathematics, University of Aberdeen, King's College, Aberdeen, AB24 3FX, Scotland.
- School of Biological Sciences, University of Aberdeen, Zoology Building, Tillydrone Ave, Aberdeen, AB24 2TZ, Scotland.
- Programa de Pós-graduação em Ecologia e Conservação, Universidade Federal do Paraná, Curitiba, 82590-300, Brazil.
| |
Collapse
|
34
|
Brunstrom JM, Flynn AN, Rogers PJ, Zhai Y, Schatzker M. Human nutritional intelligence underestimated? Exposing sensitivities to food composition in everyday dietary decisions. Physiol Behav 2023; 263:114127. [PMID: 36787811 DOI: 10.1016/j.physbeh.2023.114127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 02/03/2023] [Accepted: 02/11/2023] [Indexed: 02/16/2023]
Abstract
The social and cultural significance of food is woven into every aspect of our dietary behaviour, and it contributes to our complex interaction with food. To find order within this complexity scientists often look for dietary 'universals' - phenomena or basic principles that guide our food choice and meal size, irrespective of wider context. One such idea is that taste characteristics provide a signal for dietary composition (e.g., sweet taste signals carbohydrate). Others have suggested that behaviour is guided by learning and is based on associations that form between the flavour of a food and its post-ingestive effects. Despite a large body of research, evidence supporting both processes is equivocal, leading some to conclude that humans are largely indifferent to food composition. Here, we argue that human abilities to gauge the nutritional composition or value of food have been underestimated, and that they can be exposed by embracing alternative methods, including cross-cultural comparisons, large nutrition surveys, and the use of virtual portion-selection tools. Our group has focused on assessments of food choice and expected satiety, and how comparisons across everyday foods can reveal non-linear relationships with food energy density, and even the potential for sensitivity to micronutrient composition. We suggest that these abilities might reflect a complex form of social learning, in which flavour-nutrient associations are not only formed but communicated and amplified across individuals in the form of a cuisine. Thus, rather than disregarding sociocultural influences as extraneous, we might reimagine their role as central to a process that creates and imbues a 'collective dietary wisdom.' In turn, this raises questions about whether rapid dietary, technological, and cultural change disrupts a fundamental process, such that it no longer guarantees a 'nutritional intelligence' that confers benefits for health.
Collapse
Affiliation(s)
- Jeffrey M Brunstrom
- Nutrition and Behaviour Unit, School of Psychological Science, University of Bristol, Bristol, United Kingdom; NIHR Bristol Biomedical Research Centre, University Hospitals Bristol and Weston, NHS Foundation Trust and University of Bristol, United Kingdom.
| | - Annika N Flynn
- Nutrition and Behaviour Unit, School of Psychological Science, University of Bristol, Bristol, United Kingdom
| | - Peter J Rogers
- Nutrition and Behaviour Unit, School of Psychological Science, University of Bristol, Bristol, United Kingdom
| | - Yujia Zhai
- Nutrition and Behaviour Unit, School of Psychological Science, University of Bristol, Bristol, United Kingdom
| | - Mark Schatzker
- Modern Diet and Physiology Research Center, Affiliated with Yale School of Medicine, Yale University, United States
| |
Collapse
|
35
|
Barrientos-Gutiérrez T, Illescas-Zárte D, Batis C, Singh G, Mozaffarian D, Ramirez I, Barraza-Villarreal A, Romieu I. Association between consumption of nonessential energy-dense food and body mass index among Mexican school-aged children: A prospective cohort study. RESEARCH SQUARE 2023:rs.3.rs-2833950. [PMID: 37162898 PMCID: PMC10168455 DOI: 10.21203/rs.3.rs-2833950/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
BACKGROUND/OBJECTIVES Obesity prevalence in Mexican children has increased rapidly and is among the highest in the world. We aimed to estimate the longitudinal association between nonessential energy-dense food (NEDF) consumption and body mass index (BMI) in school-aged children 5 to 11 years, using a cohort study with 6 years of follow-up. SUBJECTS/METHODS We studied the offspring of women in the Prenatal omega-3 fatty acid supplementation, child growth, and development (POSGRAD) cohort study. NEDF were classified into four main groups: chips and popcorn, sweet bakery products, non-cereal based sweets, and ready-to-eat cereals. We fitted fixed effects models to assess the association between change in 418.6 kJ (100 kcal) of NEDF consumption and changes in BMI. RESULTS Between 5 and 11 years, children increased their consumption of NEDF by 225 kJ/day (53.9 kcal/day). In fully adjusted models, we found that change in total NEDF was not associated with change in children's BMI (0.033 kg/m2, [p=0.246]). However, BMI increased 0.078 kg/m2 for every 418.6 kJ/day (100 kcal/day) of sweet bakery products (p=0.035) in fully adjusted models. For chips and popcorn, BMI increased 0.208 kg/m2 (p=0.035), yet, the association was attenuated after adjustment (p=0.303). CONCLUSIONS Changes in total NEDF consumption were not associated with changes in BMI in children. However, increases in the consumption of sweet bakery products were associated with BMI gain. NEDF are widely recognized as providing poor nutrition yet, their impact in Mexican children BMI seems to be heterogeneous.
Collapse
|
36
|
Allman-Farinelli M, Boljevac B, Vuong T, Hekler E. Nutrition-Related N-of-1 Studies Warrant Further Research to Provide Evidence for Dietitians to Practice Personalized (Precision) Medical Nutrition Therapy: A Systematic Review. Nutrients 2023; 15:nu15071756. [PMID: 37049595 PMCID: PMC10097352 DOI: 10.3390/nu15071756] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2023] [Revised: 03/28/2023] [Accepted: 03/31/2023] [Indexed: 04/14/2023] Open
Abstract
N-of-1 trials provide a higher level of evidence than randomized controlled trials for determining which treatment works best for an individual, and the design readily accommodates testing of personalized nutrition. The aim of this systematic review was to synthesize nutrition-related studies using an N-of-1 design. The inclusion criterion was adult participants; the intervention/exposure was any nutrient, food, beverage, or dietary pattern; the comparators were baseline values, a control condition untreated or placebo, or an alternate treatment, alongside any outcomes such as changes in diet, body weight, biochemical outcomes, symptoms, quality of life, or a disease outcome resulting from differences in nutritional conditions. The information sources used were Medline, Embase, Scopus, Cochrane Central, and PsychInfo. The quality of study reporting was assessed using the Consort Extension for N-of-1 trials (CENT) statement or the STrengthening Reporting of OBservational Studies in Epidemiology (STROBE) guidelines, as appropriate. From 211 articles screened, a total of 7 studies were included and were conducted in 5 countries with a total of 83 participants. The conditions studied included prediabetes, diabetes, irritable bowel syndrome, weight management, and investigation of the effect of diet in healthy people. The quality of reporting was mostly adequate, and dietary assessment quality varied from poor to good. The evidence base is small, but served to illustrate the main characteristics of N-of-1 study designs and considerations for moving research forward in the era of personalized medical nutrition therapy.
Collapse
Affiliation(s)
- Margaret Allman-Farinelli
- Discipline of Nutrition and Dietetics, Susan Wakil School of Nursing and Midwifery, Faculty of Medicine and Health, The University of Sydney, Camperdown, NSW 2006, Australia
- The Charles Perkins Centre, The University of Sydney, Camperdown, NSW 2006, Australia
| | - Brianna Boljevac
- Discipline of Nutrition and Dietetics, Susan Wakil School of Nursing and Midwifery, Faculty of Medicine and Health, The University of Sydney, Camperdown, NSW 2006, Australia
| | - Tiffany Vuong
- Discipline of Nutrition and Dietetics, Susan Wakil School of Nursing and Midwifery, Faculty of Medicine and Health, The University of Sydney, Camperdown, NSW 2006, Australia
| | - Eric Hekler
- The Design Lab, University of California San Diego, San Diego, CA 92093, USA
- Herbert Wertheim School of Public Health and Human Longevity Science, University of California San Diego, San Diego, CA 92093, USA
| |
Collapse
|
37
|
Green GB, Williams MB, Chehade SB, Flowers JT, Morrow CD, Lawrence AL, Bej AK, Watts SA. Body Metrics and the Gut Microbiome in Response to Macronutrient Limitation in the Zebrafish Danio rerio. Curr Dev Nutr 2023; 7:100065. [PMID: 37304849 PMCID: PMC10257228 DOI: 10.1016/j.cdnut.2023.100065] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 02/28/2023] [Accepted: 03/04/2023] [Indexed: 03/12/2023] Open
Abstract
Background Healthy and predictable physiologic homeostasis is paramount in animal models for biomedical research. Proper macronutrient intake is an essential and controllable environmental factor for maintaining animal health and promoting experimental reproducibility. Objective and Methods Evaluate reductions in dietary macronutrient composition on body weight metrics, composition, and gut microbiome in Danio rerio. Methods D. rerio were fed reference diets deficient in either protein or lipid content for 14 weeks. Results Diets of reduced-protein or reduced-fat resulted in lower weight gain than the standard reference diet in male and female D. rerio. Females fed the reduced-protein diet had increased total body lipid, suggesting increased adiposity compared with females fed the standard reference diet. In contrast, females fed the reduced-fat diet had decreased total body lipid compared with females fed the standard reference diet. The microbial community in male and female D. rerio fed the standard reference diet displayed high abundances of Aeromonas, Rhodobacteraceae, and Vibrio. In contrast, Vibrio spp. were dominant in male and female D. rerio fed a reduced-protein diet, whereas Pseudomonas displayed heightened abundance when fed the reduced-fat diet. Predicted functional metagenomics of microbial communities (PICRUSt2) revealed a 3- to 4-fold increase in the KEGG (Kyoto Encyclopedia of Genes and Genomes) functional category of steroid hormone biosynthesis in both male and female D. rerio fed a reduced-protein diet. In contrast, an upregulation of secondary bile acid biosynthesis and synthesis and degradation of ketone bodies was concomitant with a downregulation in steroid hormone biosynthesis in females fed a reduced-fat diet. Conclusions These study outcomes provide insight into future investigations to understand nutrient requirements to optimize growth, reproductive, and health demographics to microbial populations and metabolism in the D. rerio gut ecosystem. These evaluations are critical in understanding the maintenance of steady-state physiologic and metabolic homeostasis in D. rerio. Curr Dev Nutr 20xx;x:xx.
Collapse
Affiliation(s)
- George B.H. Green
- Department of Biology, The University of Alabama at Birmingham, Birmingham, AL, United States
| | - Michael B. Williams
- Department of Biology, The University of Alabama at Birmingham, Birmingham, AL, United States
| | - Sophie B. Chehade
- Department of Biology, The University of Alabama at Birmingham, Birmingham, AL, United States
| | - Jonathan T. Flowers
- Department of Biology, The University of Alabama at Birmingham, Birmingham, AL, United States
| | - Casey D. Morrow
- Department of Cell, Developmental and Integrative Biology, The University of Alabama at Birmingham, Birmingham, AL, United States
| | - Addison L. Lawrence
- Texas A&M AgriLife Extension Agriculture and Life Sciences, College Station, TX, United States
| | - Asim K. Bej
- Department of Biology, The University of Alabama at Birmingham, Birmingham, AL, United States
- J. Frank Barefield, Jr. Department of Criminal Justice, The University of Alabama at Birmingham, Birmingham, AL, United States
| | - Stephen A. Watts
- Department of Biology, The University of Alabama at Birmingham, Birmingham, AL, United States
| |
Collapse
|
38
|
Munoz M, Zamudio A, McCann M, Gil V, Xu P, Liew CW. Activation of brown adipose tissue by a low-protein diet ameliorates hyperglycemia in a diabetic lipodystrophy mouse model. RESEARCH SQUARE 2023:rs.3.rs-2701883. [PMID: 37034803 PMCID: PMC10081364 DOI: 10.21203/rs.3.rs-2701883/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/30/2023]
Abstract
Long-term ad libitum dietary restrictions, such as low-protein diets (LPDs), improve metabolic health and extend the life span of mice and humans. However, most studies conducted thus far have focused on the preventive effects of LPDs on metabolic syndromes. To test the therapeutic potential of LPD, we treated a lipodystrophy mouse model IR FKO (adipose-specific insulin receptor knockout) in this study. We have previously shown that IR FKO mice have profound insulin resistance, hyperglycemia, and whitenng of interscapular brown adipose tissue (BAT), closely mimicking the phenotypes in lipoatrophic diabetic patients. Here, we demonstrate that 14-day of LPD (5.1% kcal from protein) feeding is sufficient to reduce postprandial blood glucose, improve insulin resistance, and normalize glucose tolerance in the IR FKO mice. This profound metabolic improvement is associated with BAT activation and increase in whole body energy expenditure. To confirm, we showed that surgical denervation of BAT attenuated the beneficial metabolic effects of LPD feeding in IR FKO mice, including the 'browning' effects on BAT and the glucose-ameliorating results. However, BAT denervation failed to affect the body weight-lowering effects of LPD. Together, our results imply a therapeutic potential to use LPD for the treatment of lipoatrophic diabetes.
Collapse
|
39
|
Saner C, Senior AM, Zhang H, Eloranta AM, Magnussen CG, Sabin MA, Juonala M, Janner M, Burgner DP, Schwab U, Haapala EA, Heitmann BL, Simpson SJ, Raubenheimer D, Lakka TA. Evidence for protein leverage in a general population sample of children and adolescents. Eur J Clin Nutr 2023:10.1038/s41430-023-01276-w. [PMID: 36797489 DOI: 10.1038/s41430-023-01276-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 01/28/2023] [Accepted: 02/02/2023] [Indexed: 02/18/2023]
Abstract
BACKGROUND/OBJECTIVES The strong regulation of protein intake can lead to overconsumption of total energy on diets with a low proportion of energy from protein, a process referred to as protein leverage. The protein leverage hypothesis posits that protein leverage explains variation in energy intake and potentially obesity in ecological settings. Here, we tested for protein leverage and the protein leverage hypothesis in children and adolescents. SUBJECTS/METHODS A population sample of children, mean (SD) age 7.6 (0.4) years (n = 422), followed up at age 9.8 (0.4) years (n = 387) and at age 15.8 (0.4) years (n = 229), participating for the Physical Activity and Nutrition in Children (PANIC) study. EXPOSURES 4-day food records-related proportional energy intake of proteins, fats, and carbohydrates. OUTCOMES energy intake, body mass index (BMI) z-score and dual-energy X-ray absorptiometry-related energy expenditure. RESULTS Proportional energy intake of proteins was inversely associated with energy intake following power functions at all 3 ages (mean [95%CI] strength of leverage of L = -0.36 [-0.47 to -0.25]; L = -0.26 [-0.37 to -0.15]; L = -0.25 [-0.38 to -0.13]; all P < 0.001). Mixture analysis indicated that variance in energy intake was associated primarily with the proportional intake of energy from proteins, not with either fats or carbohydrates. At all 3 ages, energy intake was not associated with BMI z-score but positively associated with energy expenditure (all P < 0.001). CONCLUSIONS This study provides evidence consistent with protein leverage in a population sample of children and adolescents. Increased energy intake on diets with lower protein content was counterbalanced by increased energy expenditure and therefore did not translate into increased adiposity.
Collapse
Affiliation(s)
- Christoph Saner
- Division of Pediatric Endocrinology, Diabetology and Metabolism, Department of Pediatrics, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland. .,Department of Biomedical Research, University of Bern, Bern, Switzerland. .,Murdoch Children's Research Institute, The Royal Children's Hospital, Parkville, Victoria, Australia.
| | - Alistair M Senior
- Charles Perkins Centre and School of Life & Environmental Science, University of Sydney, Sydney, New South Wales, Australia
| | - Hanyue Zhang
- Research Unit for Dietary Studies at the Parker Institute, Bispebjerg and Frederiksberg Hospital, The Capital Region, Frederiksberg, Denmark.,Department of Public Health, Section for General Practice, University of Copenhagen, Copenhagen, Denmark
| | - Aino-Maija Eloranta
- Institute of Public Health and Clinical Nutrition, School of Medicine, University of Eastern Finland, Kuopio, Finland.,Institute of Biomedicine, School of Medicine, University of Eastern Finland, Kuopio, Finland.,Department of Medicine, Endocrinology and Clinical Nutrition, Kuopio University Hospital, Kuopio, Finland
| | - Costan G Magnussen
- Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia.,Research Centre of Applied and Preventive Cardiovascular Medicine, University of Turku, Turku, Finland.,Centre for Population Health Research, University of Turku and Turku University Hospital, Turku, Finland
| | - Matthew A Sabin
- Murdoch Children's Research Institute, The Royal Children's Hospital, Parkville, Victoria, Australia.,Department of Endocrinology, The Royal Children's Hospital, Parkville, Victoria, Australia
| | - Markus Juonala
- Department of Medicine, University of Turku, Turku, Finland.,Division of Medicine, Turku University Hospital, Turku, Finland
| | - Marco Janner
- Division of Pediatric Endocrinology, Diabetology and Metabolism, Department of Pediatrics, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - David P Burgner
- Murdoch Children's Research Institute, The Royal Children's Hospital, Parkville, Victoria, Australia
| | - Ursula Schwab
- Institute of Public Health and Clinical Nutrition, School of Medicine, University of Eastern Finland, Kuopio, Finland.,Department of Medicine, Endocrinology and Clinical Nutrition, Kuopio University Hospital, Kuopio, Finland
| | - Eero A Haapala
- Institute of Biomedicine, School of Medicine, University of Eastern Finland, Kuopio, Finland.,Faculty of Sport and Health Sciences, University of Jyväskylä, Jyväskylä, Finland
| | - Berit L Heitmann
- Charles Perkins Centre and School of Life & Environmental Science, University of Sydney, Sydney, New South Wales, Australia.,Research Unit for Dietary Studies at the Parker Institute, Bispebjerg and Frederiksberg Hospital, The Capital Region, Frederiksberg, Denmark.,Department of Public Health, Section for General Practice, University of Copenhagen, Copenhagen, Denmark
| | - Stephen J Simpson
- Charles Perkins Centre and School of Life & Environmental Science, University of Sydney, Sydney, New South Wales, Australia
| | - David Raubenheimer
- Charles Perkins Centre and School of Life & Environmental Science, University of Sydney, Sydney, New South Wales, Australia
| | - Timo A Lakka
- Institute of Biomedicine, School of Medicine, University of Eastern Finland, Kuopio, Finland.,Department of Clinical Physiology and Nuclear Medicine, Kuopio University Hospital, University of Eastern Finland, Kuopio, Finland.,Foundation for Research in Health Exercise and Nutrition, Kuopio Research Institute of Exercise Medicine, Kuopio, Finland
| |
Collapse
|
40
|
Konyole SO, Omollo SA, Kinyuru JN, Owuor BO, Estambale BB, Ritz C, Michaelsen KF, Filteau SM, Wells JC, Roos N, Friis H, Owino VO, Grenov B. Associations between Stunting, Wasting and Body Composition: A Longitudinal Study in 6- to 15-Month-Old Kenyan Children. J Nutr 2023; 153:970-978. [PMID: 36796480 DOI: 10.1016/j.tjnut.2023.02.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2022] [Revised: 12/23/2022] [Accepted: 02/08/2023] [Indexed: 02/16/2023] Open
Abstract
BACKGROUND Early growth and body composition may influence the risk of obesity and health in adulthood. Few studies have examined how undernutrition is associated with body composition in early life. OBJECTIVES We assessed stunting and wasting as correlates of body composition in young Kenyan children. METHODS Nested in a randomized controlled nutrition trial, this longitudinal study assessed fat and fat-free mass (FM, FFM) using deuterium dilution technique among children at age 6 and 15 months. This trial was registered at http://controlled-trials.com/ (ISRCTN30012997). Cross-sectional and longitudinal associations between z-score categories of length-for-age (LAZ) or weight-for-length (WLZ) and FM, FFM, fat mass index (FMI), fat-free mass index (FFMI), triceps, and subscapular skinfolds were analyzed by linear mixed models. RESULTS Among the 499 children enrolled, breastfeeding declined from 99% to 87%, stunting increased from 13% to 32%, and wasting remained at 2% to 3% between 6 and 15 mo. Compared with LAZ >0, stunted children had a 1.12 kg (95% CI: 0.88, 1.36; P < 0.001) lower FFM at 6 mo and increased to 1.59 kg (95% CI: 1.25, 1.94; P < 0.001) at 15 mo, corresponding to differences of 18% and 17%, respectively. When analyzing FFMI, the deficit in FFM tended to be less than proportional to children's height at 6 mo (P ≤ 0.060) but not at 15 mo (P > 0.40). Stunting was associated with 0.28 kg (95% CI: 0.09, 0.47; P = 0.004) lower FM at 6 mo. However, this association was not significant at 15 mo, and stunting was not associated with FMI at any time point. A lower WLZ was generally associated with lower FM, FFM, FMI, and FFMI at 6 and 15 mo. Differences in FFM, but not FM, increased with time, whereas FFMI differences did not change, and FMI differences generally decreased with time. CONCLUSIONS Overall, low LAZ and WLZ among young Kenyan children were associated with reduced lean tissue, which may have long-term health consequences.
Collapse
Affiliation(s)
- Silvenus O Konyole
- Department of Nutritional Sciences, Masinde Muliro University of Science and Technology, Kakamega, Kenya.
| | - Selina A Omollo
- Institute of Tropical and Infectious Diseases, University of Nairobi, Nairobi, Kenya
| | - John N Kinyuru
- Department of Food Science and Technology, Jomo Kenyatta University of Agriculture and Technology, Juja, Kenya
| | | | - Benson B Estambale
- Division of Research, Innovations and Outreach, Jaramogi Oginga Odinga University of Science and Technology, Bondo, Kenya
| | - Christian Ritz
- National Institute of Public Health, University of Southern Denmark, Copenhagen, Denmark
| | - Kim F Michaelsen
- Department of Nutrition, Exercise and Sports, University of Copenhagen, Copenhagen, Denmark
| | - Suzanne M Filteau
- Faculty of Epidemiology and Population Health, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Jonathan C Wells
- Childhood Nutrition Research Centre, Population, Policy and Practice Research and Teaching Department, University College London (UCL) Great Ormond Street Institute of Child Health, London, United Kingdom
| | - Nanna Roos
- Department of Nutrition, Exercise and Sports, University of Copenhagen, Copenhagen, Denmark
| | - Henrik Friis
- Department of Nutrition, Exercise and Sports, University of Copenhagen, Copenhagen, Denmark
| | - Victor O Owino
- Nutritional and Health-Related Environmental Studies Section, Division of Human Health, International Atomic Energy Agency, Vienna, Austria
| | - Benedikte Grenov
- Department of Nutrition, Exercise and Sports, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
41
|
Nutrient-sensitive approach for sustainability assessment of Australian macronutrient dietary recommendations. Am J Clin Nutr 2023; 117:298-307. [PMID: 36863826 DOI: 10.1016/j.ajcnut.2022.11.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 11/02/2022] [Accepted: 11/04/2022] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND Dietary guidelines that form the basis for food and nutrition policies in most countries are focused mainly on the social dimensions of health. Efforts are needed to incorporate environmental and economic sustainability. As the dietary guidelines are formulated based on nutrition principles, understanding the sustainability of dietary guidelines in relation to nutrients could support the better incorporation of environmental and economic sustainability aspects into dietary guidelines. OBJECTIVES This study examines and demonstrates the potential of integrating an input-output analysis with nutritional geometry to assess the sustainability of the Australian macronutrient dietary guidelines (AMDR) relating to macronutrients. METHODS We used daily dietary intake data of 5345 Australian adults from the most recent Australian Nutrient and Physical Activity Survey 2011-2012 and an input-output database for the Australian economy to quantify the environmental and economic impacts associated with dietary intake. Then, we examined the associations between environmental and economic impacts and dietary macronutrient composition using a multidimensional nutritional geometry representation. Thereafter, we assessed the sustainability of the AMDR regarding its alignment with key environmental and economic outcomes. RESULTS We found that diets adhering to the AMDR were associated with moderately high greenhouse gas emissions, water use, cost of dietary energy, and the contribution to wages and salaries of Australians. However, only about 20.42% of respondents adhered to the AMDR. Furthermore, high-plant protein diets adhering to the lower limit of recommended protein intake in the AMDR were associated with low environmental impacts and high incomes. CONCLUSIONS We conclude that encouraging consumers to adhere to the lower limit of the recommended intake of proteins and meeting the protein requirement through protein-dense plant sources could improve dietary environmental and economic sustainability in Australia. Our findings provide a means of understanding the sustainability of dietary recommendations concerning macronutrients for any country where input-output databases are available.
Collapse
|
42
|
Simpson SJ, Raubenheimer D, Black KI, Conigrave AD. Weight gain during the menopause transition: Evidence for a mechanism dependent on protein leverage. BJOG 2023; 130:4-10. [PMID: 36073244 PMCID: PMC10952331 DOI: 10.1111/1471-0528.17290] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Revised: 08/29/2022] [Accepted: 09/05/2022] [Indexed: 11/29/2022]
Affiliation(s)
- Stephen J. Simpson
- Charles Perkins Centre (D17), School of Life and Environmental SciencesUniversity of SydneySydneyNew South WalesAustralia
| | - David Raubenheimer
- Charles Perkins Centre (D17), School of Life and Environmental SciencesUniversity of SydneySydneyNew South WalesAustralia
| | - Kirsten I. Black
- Speciality of Obstetrics, Gynaecology and Neonatology, Central Clinical School, Faculty of Medicine and HealthUniversity of SydneySydneyNew South WalesAustralia
- Menopause ClinicConcord Repatriation General HospitalConcordNew South WalesAustralia
| | - Arthur D. Conigrave
- Charles Perkins Centre (D17), School of Life and Environmental SciencesUniversity of SydneySydneyNew South WalesAustralia
- Department of EndocrinologyRoyal Prince Alfred HospitalCamperdownNew South WalesAustralia
| |
Collapse
|
43
|
Rushby HJ, Andrews ZB, Piper MD, Mirth CK. Ageing impairs protein leveraging in a sex-specific manner in Drosophila melanogaster. Anim Behav 2023. [DOI: 10.1016/j.anbehav.2022.10.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
44
|
Famished Frugivores or Choosy Consumers: A Generalist Frugivore (Wild Bornean Orangutans, Pongo pygmaeus wurmbii) Leaves Available Fruit for Nonfruit Foods. INT J PRIMATOL 2022. [DOI: 10.1007/s10764-022-00347-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
45
|
Grech A, Sui Z, Rangan A, Simpson SJ, Coogan SCP, Raubenheimer D. Macronutrient (im)balance drives energy intake in an obesogenic food environment: An ecological analysis. Obesity (Silver Spring) 2022; 30:2156-2166. [PMID: 36321270 PMCID: PMC9828743 DOI: 10.1002/oby.23578] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 05/18/2022] [Accepted: 05/19/2022] [Indexed: 11/05/2022]
Abstract
OBJECTIVE The protein leverage hypothesis (PLH) postulates that strong regulation of protein intake drives energy overconsumption and obesity when human diets are diluted by fat and carbohydrates. The two predictions of the PLH are that humans (i) regulate intake to maintain protein within a narrow range and that (ii) energy intake is an inverse function of percentage energy from protein because absolute protein intake is maintained within narrow limits. METHODS Multidimensional nutritional geometry was used to test the predictions of the PLH using dietary data from the Australian National Nutrition and Physical Activity Survey. RESULTS Both predictions of the PLH were confirmed in a population setting: the mean protein intake was 18.4%, and energy intake decreased with increasing energy from protein (L = -0.18, p < 0.0001). It was demonstrated that highly processed discretionary foods are a significant diluent of protein and associated with increased energy but not increased protein intake. CONCLUSIONS These results support an integrated ecological and mechanistic explanation for obesity, in which low-protein highly processed foods lead to higher energy intake because of the biological response to macronutrient imbalance driven by a dominant appetite for protein. This study supports a central role for protein in the obesity epidemic, with significant implications for global health.
Collapse
Affiliation(s)
- Amanda Grech
- Charles Perkins CentreUniversity of SydneySydneyNew South WalesAustralia
- School of Life and Environmental ScienceUniversity of SydneySydneyNew South WalesAustralia
| | - Zhixian Sui
- Charles Perkins CentreUniversity of SydneySydneyNew South WalesAustralia
- School of Life and Environmental ScienceUniversity of SydneySydneyNew South WalesAustralia
| | - Anna Rangan
- Charles Perkins CentreUniversity of SydneySydneyNew South WalesAustralia
- School of Life and Environmental ScienceUniversity of SydneySydneyNew South WalesAustralia
| | - Stephen J. Simpson
- Charles Perkins CentreUniversity of SydneySydneyNew South WalesAustralia
- School of Life and Environmental ScienceUniversity of SydneySydneyNew South WalesAustralia
| | - Sean C. P. Coogan
- Charles Perkins CentreUniversity of SydneySydneyNew South WalesAustralia
- School of Life and Environmental ScienceUniversity of SydneySydneyNew South WalesAustralia
| | - David Raubenheimer
- Charles Perkins CentreUniversity of SydneySydneyNew South WalesAustralia
- School of Life and Environmental ScienceUniversity of SydneySydneyNew South WalesAustralia
| |
Collapse
|
46
|
Romero-Gómez M, Aller R, Martín-Bermudo F. Dietary Recommendations for the Management of Non-alcoholic Fatty Liver Disease (NAFLD): A Nutritional Geometry Perspective. Semin Liver Dis 2022; 42:434-445. [PMID: 36307105 DOI: 10.1055/s-0042-1757711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Diet could be both culprit and solution of NAFLD. Dietary modifications have been associated with histological features improvement in NAFLD. The Western diet was related to a greater risk of disease progression while the Mediterranean diet (MD) could promote regression of histological lesions. Modifications in the nutrient composition seems to have lesser impact on NAFLD than dietary modifications. An intrinsic interaction between nutrients in the diet support a specific effect not seen when added separately. Dietary modifications should focus on promoting weight loss but also look for patterns that are able to promote histological improvement. Although several micronutrients' deficit has been related to NAFLD progression, prescribing these micronutrients' supplementation did not reach a positive impact. However, an enriching diet with specific nutrients could be useful, like olive oil supplemented in MD. Geometry of nutrition defines a framework to better understand the interaction between nutrients, foods, and dietetic pattern in the model of diseases and how we could approach taking into consideration the interaction between meals and disease features. After analyzing baseline diet and histological lesions, we could calculate the distance to optimal diet and to promote changes in lifestyle to reach all these goals. A standard MD menu would be recommended.
Collapse
Affiliation(s)
- Manuel Romero-Gómez
- Digestive Diseases Unit, Department of Medicine, SeLiver Group, Institute of Biomedicine of Sevilla (HUVR/CSIC/US), University of Seville, Hospital Universitario Virgen del Rocío, Seville, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD), Madrid, Spain
| | - Rocío Aller
- Gastroenterology Department, Centro de Investigación de Endocrinología y Nutrición, Centro de Investigación Biomédoca en Red de Enfermedades Infecciosas (CIBERINF), Facultad de Medicina, University of Valladolid, Hospital Clínico de Valladolid, Valladolid, Spain
| | - Franz Martín-Bermudo
- Centro Andaluz de Biología Molecular y Medicina Regenerativa-CABIMER, Universidad Pablo de Olavide, Universidad de Sevilla, Consejo Superior de Investigaciones Científicas (CSIC), Sevilla, Spain.,Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Madrid, Spain
| |
Collapse
|
47
|
Morimoto J, Conceição P, Smoczyk K. Nutrigonometry III: curvature, area and differences between performance landscapes. ROYAL SOCIETY OPEN SCIENCE 2022; 9:221326. [PMID: 36465681 PMCID: PMC9709515 DOI: 10.1098/rsos.221326] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Accepted: 11/04/2022] [Indexed: 05/25/2023]
Abstract
Nutrition is one of the underlying factors necessary for the expression of life-histories and fitness across the tree of life. In recent decades, the geometric framework (GF) has become a powerful framework to obtain biological insights through the construction of multidimensional performance landscapes. However, to date, many properties of these multidimensional landscapes have remained inaccessible due to our lack of mathematical and statistical frameworks for GF analysis. This has limited our ability to understand, describe and estimate parameters which may contain useful biological information from GF multidimensional performance landscapes. Here, we propose a new model to investigate the curvature of GF multidimensional landscapes by calculating the parameters from differential geometry known as Gaussian and mean curvatures. We also estimate the surface area of multidimensional performance landscapes as a way to measure landscape deviations from flat. We applied the models to a landmark dataset in the field, where we also validate the assumptions required for the calculations of curvature. In particular, we showed that linear models perform as well as other models used in GF data, enabling landscapes to be approximated by quadratic polynomials. We then introduced the Hausdorff distance as a metric to compare the similarity of multidimensional landscapes.
Collapse
Affiliation(s)
- Juliano Morimoto
- Institute of Mathematics, University of Aberdeen, King’s College, Aberdeen AB24 3FX, UK
- School of Biological Sciences, University of Aberdeen, Zoology Building, Tillydrone Avenue, Aberdeen AB24 2TZ, UK
- Programa de Pós-graduação em Ecologia e Conservação, Universidade Federal do Paraná, Curitiba 82590-300, Brazil
- Institute of Differential Geometry, Riemann Centre for Geometry and Physics, Welfengarten 1, Hannover 30167, Germany
| | - Pedro Conceição
- Institute of Mathematics, University of Aberdeen, King’s College, Aberdeen AB24 3FX, UK
| | - Knut Smoczyk
- Institute of Differential Geometry, Riemann Centre for Geometry and Physics, Welfengarten 1, Hannover 30167, Germany
| |
Collapse
|
48
|
Grech A, Rangan A, Allman-Farinelli M, Simpson SJ, Gill T, Raubenheimer D. A Comparison of the Australian Dietary Guidelines to the NOVA Classification System in Classifying Foods to Predict Energy Intakes and Body Mass Index. Nutrients 2022; 14:nu14193942. [PMID: 36235595 PMCID: PMC9571644 DOI: 10.3390/nu14193942] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 09/16/2022] [Accepted: 09/19/2022] [Indexed: 11/16/2022] Open
Abstract
NOVA classification distinguishes foods by level of processing, with evidence suggesting that a high intake of ultra-processed foods (UPFs, NOVA category 4) leads to obesity. The Australian Dietary Guidelines, in contrast, discourage excess consumption of “discretionary foods” (DFs), defined according to their composition. Here, we (i) compare the classification of Australian foods under the two systems, (ii) evaluate their performance in predicting energy intakes and body mass index (BMI) in free-living Australians, and (iii) relate these outcomes to the protein leverage hypothesis of obesity. Secondary analysis of the Australian National Nutrition and Physical Activity Survey was conducted. Non-protein energy intake increased by 2.1 MJ (p < 0.001) between lowest and highest tertiles of DF intake, which was significantly higher than UPF (0.6 MJ, p < 0.001). This demonstrates that, for Australia, the DF classification better distinguishes foods associated with high energy intakes than does the NOVA system. BMI was positively associated with both DFs (−1. 0, p = 0.0001) and UPFs (−1.1, p = 0.0001) consumption, with no difference in strength of association. For both classifications, macronutrient and energy intakes conformed closely to the predictions of protein leverage. We account for the similarities and differences in performance of the two systems in an analysis of Australian foods.
Collapse
Affiliation(s)
- Amanda Grech
- Charles Perkins Centre, University of Sydney, Sydney, NSW 2006, Australia
- School of Life and Environmental Science, Faculty of Science, University of Sydney, Sydney, NSW 2006, Australia
- Correspondence: (A.G.); (D.R.)
| | - Anna Rangan
- Charles Perkins Centre, University of Sydney, Sydney, NSW 2006, Australia
- School of Nursing, Faculty of Medicine and Health, University of Sydney, Sydney, NSW 2006, Australia
| | - Margaret Allman-Farinelli
- Charles Perkins Centre, University of Sydney, Sydney, NSW 2006, Australia
- School of Nursing, Faculty of Medicine and Health, University of Sydney, Sydney, NSW 2006, Australia
| | - Stephen J. Simpson
- Charles Perkins Centre, University of Sydney, Sydney, NSW 2006, Australia
- School of Life and Environmental Science, Faculty of Science, University of Sydney, Sydney, NSW 2006, Australia
| | - Tim Gill
- Charles Perkins Centre, University of Sydney, Sydney, NSW 2006, Australia
- School of Nursing, Faculty of Medicine and Health, University of Sydney, Sydney, NSW 2006, Australia
| | - David Raubenheimer
- Charles Perkins Centre, University of Sydney, Sydney, NSW 2006, Australia
- School of Life and Environmental Science, Faculty of Science, University of Sydney, Sydney, NSW 2006, Australia
- Correspondence: (A.G.); (D.R.)
| |
Collapse
|
49
|
Wang J, Beecher K, Chehrehasa F, Moody H. The limitations of investigating appetite through circuit manipulations: are we biting off more than we can chew? Rev Neurosci 2022; 34:295-311. [PMID: 36054842 DOI: 10.1515/revneuro-2022-0072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Accepted: 07/09/2022] [Indexed: 11/15/2022]
Abstract
Disordered eating can underpin a number of debilitating and prevalent chronic diseases, such as obesity. Broader advances in psychopharmacology and biology have motivated some neuroscientists to address diet-induced obesity through reductionist, pre-clinical eating investigations on the rodent brain. Specifically, chemogenetic and optogenetic methods developed in the 21st century allow neuroscientists to perform in vivo, region-specific/projection-specific/promoter-specific circuit manipulations and immediately assess the impact of these manipulations on rodent feeding. These studies are able to rigorously conclude whether a specific neuronal population regulates feeding behaviour in the hope of eventually developing a mechanistic neuroanatomical map of appetite regulation. However, an artificially stimulated/inhibited rodent neuronal population that changes feeding behaviour does not necessarily represent a pharmacological target for treating eating disorders in humans. Chemogenetic/optogenetic findings must therefore be triangulated with the array of theories that contribute to our understanding of appetite. The objective of this review is to provide a wide-ranging discussion of the limitations of chemogenetic/optogenetic circuit manipulation experiments in rodents that are used to investigate appetite. Stepping into and outside of medical science epistemologies, this paper draws on philosophy of science, nutrition, addiction biology and neurophilosophy to prompt more integrative, transdisciplinary interpretations of chemogenetic/optogenetic appetite data. Through discussing the various technical and epistemological limitations of these data, we provide both an overview of chemogenetics and optogenetics accessible to non-neuroscientist obesity researchers, as well as a resource for neuroscientists to expand the number of lenses through which they interpret their circuit manipulation findings.
Collapse
Affiliation(s)
- Joshua Wang
- School of Clinical Sciences, Faculty of Health, Queensland University of Technology, 2 George Street, Brisbane 4000, QLD, Australia
| | - Kate Beecher
- UQ Centre for Clinical Research, Faculty of Medicine, University of Queensland, Building 71/918 Royal Brisbane and Women's Hospital Campus, Herston 4029, QLD, Australia
| | - Fatemeh Chehrehasa
- School of Biomedical Sciences, Faculty of Health, Queensland University of Technology, 2 George Street, Brisbane 4000, QLD, Australia
| | - Hayley Moody
- Queensland University of Technology, 2 George Street, Brisbane 4000, QLD, Australia
| |
Collapse
|
50
|
Senior AM, Raubenheimer D, Simpson SJ. Testing the protein-leverage hypothesis using population surveillance data. ROYAL SOCIETY OPEN SCIENCE 2022; 9:220756. [PMID: 36177194 PMCID: PMC9515627 DOI: 10.1098/rsos.220756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Accepted: 09/05/2022] [Indexed: 06/16/2023]
Abstract
It is hypothesized that humans exhibit 'protein leverage' (PL), whereby regulation of absolute protein intake results in the over-consumption of non-protein food on low percentage protein diets. Testing for PL using dietary surveillance data involves seeking evidence for a negative association between total energy intake and percentage energy from protein. However, it is unclear whether such an association might emerge without PL due to the structure of intake data (protein and non-protein intakes have different means and variances and covary). We derive a set of models that describe the association between the expected estimate of PL and the distributions of protein and non-protein intake. Models were validated via simulation. Patterns consistent with PL will not emerge simply because protein intake has a lower mean and/or variance than non-protein. Rather, evidence of PL is observed where protein has a lower index of dispersion (variance/mean) than non-protein intake. Reciprocally, the stronger PL is the lower the index of dispersion for protein intake becomes. Disentangling causality is ultimately beyond the power of observational data alone. However, we show that one can correct for confounders (e.g. age) in generating signals of PL, and describe independent measures that can anchor inferences around the role of PL.
Collapse
Affiliation(s)
- Alistair M. Senior
- Charles Perkins Centre, The University of Sydney, Camperdown, NSW 2006, Australia
- School of Life and Environmental Sciences, The University of Sydney, Camperdown, NSW 2006, Australia
- School of Mathematics and Statistics, The University of Sydney, Camperdown, NSW 2006, Australia
| | - David Raubenheimer
- Charles Perkins Centre, The University of Sydney, Camperdown, NSW 2006, Australia
- School of Life and Environmental Sciences, The University of Sydney, Camperdown, NSW 2006, Australia
| | - Stephen J. Simpson
- Charles Perkins Centre, The University of Sydney, Camperdown, NSW 2006, Australia
- School of Life and Environmental Sciences, The University of Sydney, Camperdown, NSW 2006, Australia
| |
Collapse
|