1
|
Gardiki V, Pavlou P, Siamidi A, Papageorgiou S, Papadopoulos A, Iakovou K, Varvaresou A. Plant Stem Cells in Cosmetic Industry. PLANTS (BASEL, SWITZERLAND) 2025; 14:433. [PMID: 39942995 PMCID: PMC11820651 DOI: 10.3390/plants14030433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/10/2025] [Revised: 01/28/2025] [Accepted: 01/31/2025] [Indexed: 02/16/2025]
Abstract
It is interesting to note that some of the most lucrative commercial products available today are derived from plant cell cultures. Apple, grape, ginger, rice, and other plant stem cells have been successfully and extensively utilized in cosmetic preparations all over the world. The advantages of plant cell suspensions over field-grown complete plants, which exhibit developmental stages of growth, plant age, and organ-specific differences, include sustainability, lack of pesticide residues, and independence from climate fluctuations. The procedure of extracting and purifying physiologically active compounds from plant cell cultures is significantly streamlined because of the possibility that these chemicals may be released into the intercellular gaps or wasted media through the cell walls and membrane. Upon downstream processing from the cells, the released chemicals exhibit minimal losses and a high degree of purity. Overall, the practical interest is in creating high-quality, sustainable, and innovative skincare solutions that meet both consumer needs and environmental concerns while driving the cosmetic industry toward more advanced biotechnological approaches. Our review intends to show the advantages of plant stem cells in cosmetic preparations.
Collapse
Affiliation(s)
- Vassiliki Gardiki
- Section of Aesthetics and Cosmetic Science, Department of Biomedical Sciences, School of Health and Care Sciences, University of West Attica, 28 Ag. Spyridonos Str., Panepistimioupolis Egaleo Park, GR-12243 Athens, Greece; (V.G.); (P.P.); (S.P.); (A.P.)
| | - Panagoula Pavlou
- Section of Aesthetics and Cosmetic Science, Department of Biomedical Sciences, School of Health and Care Sciences, University of West Attica, 28 Ag. Spyridonos Str., Panepistimioupolis Egaleo Park, GR-12243 Athens, Greece; (V.G.); (P.P.); (S.P.); (A.P.)
- Laboratory of Chemistry-Biochemistry-Cosmetic Science, Department of Biomedical Sciences, School of Health and Care Sciences, University of West Attica, 28 Ag. Spyridonos Str., Panepistimioupolis Egaleo Park, GR-12243 Athens, Greece
| | - Angeliki Siamidi
- Section of Pharmaceutical Technology, Department of Pharmacy, School of Health Sciences, National and Kapodistrian University of Athens, GR-15784 Athens, Greece;
| | - Spyridon Papageorgiou
- Section of Aesthetics and Cosmetic Science, Department of Biomedical Sciences, School of Health and Care Sciences, University of West Attica, 28 Ag. Spyridonos Str., Panepistimioupolis Egaleo Park, GR-12243 Athens, Greece; (V.G.); (P.P.); (S.P.); (A.P.)
- Laboratory of Chemistry-Biochemistry-Cosmetic Science, Department of Biomedical Sciences, School of Health and Care Sciences, University of West Attica, 28 Ag. Spyridonos Str., Panepistimioupolis Egaleo Park, GR-12243 Athens, Greece
| | - Apostolos Papadopoulos
- Section of Aesthetics and Cosmetic Science, Department of Biomedical Sciences, School of Health and Care Sciences, University of West Attica, 28 Ag. Spyridonos Str., Panepistimioupolis Egaleo Park, GR-12243 Athens, Greece; (V.G.); (P.P.); (S.P.); (A.P.)
- Laboratory of Chemistry-Biochemistry-Cosmetic Science, Department of Biomedical Sciences, School of Health and Care Sciences, University of West Attica, 28 Ag. Spyridonos Str., Panepistimioupolis Egaleo Park, GR-12243 Athens, Greece
| | - Kriton Iakovou
- Ministry of Health, 17 Aristotelous Str., GR-10433 Athens, Greece;
| | - Athanasia Varvaresou
- Section of Aesthetics and Cosmetic Science, Department of Biomedical Sciences, School of Health and Care Sciences, University of West Attica, 28 Ag. Spyridonos Str., Panepistimioupolis Egaleo Park, GR-12243 Athens, Greece; (V.G.); (P.P.); (S.P.); (A.P.)
- Laboratory of Chemistry-Biochemistry-Cosmetic Science, Department of Biomedical Sciences, School of Health and Care Sciences, University of West Attica, 28 Ag. Spyridonos Str., Panepistimioupolis Egaleo Park, GR-12243 Athens, Greece
| |
Collapse
|
2
|
Echavarría JAC, El Hajj S, Irankunda R, Selmeczi K, Paris C, Udenigwe CC, Canabady-Rochelle L. Screening, separation and identification of metal-chelating peptides for nutritional, cosmetics and pharmaceutical applications. Food Funct 2024; 15:3300-3326. [PMID: 38488016 DOI: 10.1039/d3fo05765h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
Metal-chelating peptides, which form metal-peptide coordination complexes with various metal ions, can be used as biofunctional ingredients notably to enhance human health and prevent diseases. This review aims to discuss recent insights into food-derived metal-chelating peptides, the strategies set up for their discovery, their study, and identification. After understanding the overall properties of metal-chelating peptides, their production from food-derived protein sources and their potential applications will be discussed, particularly in nutritional, cosmetics and pharmaceutical fields. In addition, the review provides an overview of the last decades of progress in discovering food-derived metal-chelating peptides, addressing several screening, separation and identification methodologies. Furthermore, it emphasizes the methods used to assess peptide-metal interaction, allowing for better understanding of chemical and thermodynamic parameters associated with the formation of peptide-metal coordination complexes, as well as the specific amino acid residues that play important roles in the metal ion coordination.
Collapse
Affiliation(s)
| | - Sarah El Hajj
- Université de Lorraine, CNRS, LRGP, F-54000 Nancy, France.
| | | | | | - Cédric Paris
- Université de Lorraine, LIBIO, F-54000 Nancy, France
| | - Chibuike C Udenigwe
- School of Nutrition Science, University of Ottawa, Ottawa, Ontario, K1H 8M5, Canada
| | | |
Collapse
|
3
|
Marchev AS, Stoykova ID, Georgiev MI. Large-Scale Production of Specialized Metabolites In Vitro Cultures. Methods Mol Biol 2024; 2827:303-322. [PMID: 38985279 DOI: 10.1007/978-1-0716-3954-2_21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/11/2024]
Abstract
For centuries plants have been intensively utilized as reliable sources of food, flavoring, and pharmaceutical ingredients. However, plant natural habitats are being rapidly lost due to the climate change and agriculture. Plant biotechnology offers a sustainable approach for the bioproduction of specialized plant metabolites. The unique structural features of plant-derived specialized metabolites, such as their safety profile and multi-target spectrum, have led to the establishment of many plant-derived drugs. However, there are still many challenges to overcome regarding the production of these metabolites from plant in vitro systems and establish a sustainable large-scale biotechnological process. These challenges are due to the peculiarities of plant cell metabolism, the complexity of plant specialized metabolite pathways, and the correct selection of bioreactor systems and bioprocess optimization. In this book chapter, we attempted to focus on the advantages of plant in vitro systems and in particular plant cell suspensions for their cultivation as a source of plant-derived specialized metabolites. A state-of-the-art technological platform for plant cell suspension cultivation from callus induction to lab-scale cultivation, extraction, and purification is presented. Possibilities for bioreactor cultivation of plant cell suspensions in benchtop and large-scale volumes are highlighted, including several examples and patents for industrial production of specialized metabolites.
Collapse
Affiliation(s)
- Andrey S Marchev
- Laboratory Metabolomics, Department of Biotechnology, The Stephan Angeloff Institute of Microbiology, Bulgarian Academy of Sciences, Plovdiv, Bulgaria
| | - Iva D Stoykova
- Laboratory Metabolomics, Department of Biotechnology, The Stephan Angeloff Institute of Microbiology, Bulgarian Academy of Sciences, Plovdiv, Bulgaria
- Department Plant Cell Biotechnology, Center of Plant Systems Biology and Biotechnology, Plovdiv, Bulgaria
| | - Milen I Georgiev
- Laboratory Metabolomics, Department of Biotechnology, The Stephan Angeloff Institute of Microbiology, Bulgarian Academy of Sciences, Plovdiv, Bulgaria.
- Department Plant Cell Biotechnology, Center of Plant Systems Biology and Biotechnology, Plovdiv, Bulgaria.
| |
Collapse
|
4
|
Chien WY, Huang HM, Kang YN, Chen KH, Chen C. Stem cell-derived conditioned medium for alopecia: A systematic review and meta-analysis. J Plast Reconstr Aesthet Surg 2024; 88:182-192. [PMID: 37983981 DOI: 10.1016/j.bjps.2023.10.060] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 09/06/2023] [Accepted: 10/07/2023] [Indexed: 11/22/2023]
Abstract
BACKGROUND Alopecia is a common and distressing medical condition that has been related to psychiatric disorders. Stem cell-derived conditioned medium (CM), a novel therapy for hair regeneration, has shown effectiveness in several trials. METHODS This meta-analysis aims to explore the effectiveness of stem cell-derived CM in improving hair growth for patients of alopecia. We prospectively registered this systematic review and meta-analysis in PROSPERO (CRD42023410249). Clinical trials that the enrolled participants suffering from alopecia applied stem cell-derived CM were included. We calculated the mean and standard deviation for the hair density and thickness. RESULTS Ten clinical trials were included in our analysis. On the basis of eight clinical trials (n = 221), our pooled results indicate that stem cell-derived CM is effective in increasing hair density (mean difference [MD]: 14.93, confidence interval [95% CI]: 10.20-19.67, p < 0.0001) and thickness (MD: 18.67, 95% CI: 2.75-34.59, p < 0.0001) (μm) in patients with alopecia. Moreover, our findings suggest that longer treatment duration is associated with significantly greater improvement than shorter treatment duration (p = 0.02). Three of the included studies were randomized controlled trials (RCTs), and when we specifically analyzed these RCTs; statistical significance could also be observed in terms of hair density (MD: 9.23, 95% CI: 1.79-16.68, p < 0.00001). KEY MESSAGES Stem cell-derived conditioned medium can effectively increase hair density and thickness for alopecia, and there is no difference between each method (topical application, microneedling, or injection).
Collapse
Affiliation(s)
- Wei-Ying Chien
- School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Hui-Min Huang
- School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Yi-No Kang
- Research Center of Big Data and Meta-analysis, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan; Institute of Health Policy and Management, College of Public Health, National Taiwan University, Taipei, Taiwan; Cochrane Taiwan, Taipei Medical University, Taipei, Taiwan; Evidence-Based Medicine Center, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan
| | - Kee-Hsin Chen
- Cochrane Taiwan, Taipei Medical University, Taipei, Taiwan; Post-Baccalaureate Program in Nursing, College of Nursing, Taipei Medical University, Taipei City 11031, Taiwan; Department of Nursing, Wan Fang Hospital, Taipei Medical University, Taipei City 11696, Taiwan; Research Center in Nursing Clinical Practice, Wan Fang Hospital, Taipei Medical University, Taipei 11696, Taiwan; Evidence-Based Knowledge Translation Center, Wan Fang Hospital, Taipei Medical University, Taipei City 11696, Taiwan; School of Medicine, Faculty of Health and Medical Sciences, Taylor's University, Selangor 47500, Malaysia
| | - Chiehfeng Chen
- Cochrane Taiwan, Taipei Medical University, Taipei, Taiwan; Evidence-Based Medicine Center, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan; Division of Plastic Surgery, Department of Surgery, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan; Department of Public Health, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan.
| |
Collapse
|
5
|
Wang RT, Yen JH, Liao YC, Li YZ, Wang WP. Extract of Bletilla formosana callus elevates cellular antioxidative activity via Nrf2/HO-1 signaling pathway and inhibits melanogenesis in zebrafish. J Genet Eng Biotechnol 2023; 21:26. [PMID: 36877322 PMCID: PMC9989080 DOI: 10.1186/s43141-023-00482-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Accepted: 02/18/2023] [Indexed: 03/07/2023]
Abstract
BACKGROUND Bletilla species are endangered terrestrial orchids used in natural skin care formulas in Asia for a long history. In order to explore the bioactivity potential of Bletilla species as a cosmetic ingredient in a sustainable resource manner, the callus of Bletilla formosana (Hayata) Schltr. was established and extracted by an eco-friendly supercritical fluid CO2 extraction (SFE-CO2) method. The intracellular reactive oxygen species (ROS) scavenging activity and antioxidation-related gene expression of the callus extract were evaluated in both Hs68 fibroblast cells and HaCaT keratinocytes. The melanogenesis-inhibitory effect was investigated in B16F10 melanoma cells and in an in vivo zebrafish model. RESULTS The calli of B. formosana were propagated for 10-15 generations with a consistent yellow friable appearance and then subjected to SFE-CO2 extraction to obtain a yellow pasty extract. Obvious intracellular ROS scavenging activity of the extract was detected in both Hs68 and HaCaT cells with 64.30 ± 8.27% and 32.50 ± 4.05% reduction at the concentration of 250 μg/mL. Moreover, marked expression levels of heme oxygenase-1 (HO-1) and (NAD(P)H) quinone oxidoreductase-1 (NQO1) genes were detected after 6-h and 24-h treatments. These results indicate the cellular antioxidative activity of B. formosana callus extract was probably activated via the nuclear factor erythroid 2-related factor 2 (Nrf2)/HO-1 signaling pathway. Melanogenesis-inhibitory effect of the extract was observed in α-MSH stimuli-inducing B16F10 cells with 28.46% inhibition of intracellular melanin content at the concentration of 50 μg/ml. The effect was confirmed with in vivo zebrafish embryos that showed a relative pigmentation density of 80.27 ± 7.98% at the concentration of 100 μg/mL without toxicity. CONCLUSION Our results shed light on a sustainable utilization of Bletilla species as a potential ingredient for skin.
Collapse
Affiliation(s)
- Ruei-Ting Wang
- CHLITINA Research and Development Center, CHLITINA Holding Ltd., Taipei, 110050, Taiwan.
| | - Jui-Hung Yen
- Biomedical Technology and Device Research Laboratories, Industrial Technology Research Institute, Hsinchu, 310401, Taiwan.,Graduate Institute of Biotechnology, National Chung-Hsing University, Taichung, 402202, Taiwan
| | - Yi-Chi Liao
- CHLITINA Research and Development Center, CHLITINA Holding Ltd., Taipei, 110050, Taiwan
| | - Yi-Zhen Li
- CHLITINA Research and Development Center, CHLITINA Holding Ltd., Taipei, 110050, Taiwan
| | - Wei-Ping Wang
- CHLITINA Research and Development Center, CHLITINA Holding Ltd., Taipei, 110050, Taiwan
| |
Collapse
|
6
|
Bouzroud S, El Maaiden E, Sobeh M, Merghoub N, Boukcim H, Kouisni L, El Kharrassi Y. Biotechnological Approaches to Producing Natural Antioxidants: Anti-Ageing and Skin Longevity Prospects. Int J Mol Sci 2023; 24:ijms24021397. [PMID: 36674916 PMCID: PMC9867058 DOI: 10.3390/ijms24021397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 12/14/2022] [Accepted: 12/16/2022] [Indexed: 01/12/2023] Open
Abstract
Plants are the main source of bioactive compounds that can be used for the formulation of cosmetic products. Plant extracts have numerous proven health benefits, among which are anti-ageing and skin-care properties. However, with the increased demand for plant-derived cosmetic products, there is a crucial prerequisite for establishing alternative approaches to conventional methods to ensure sufficient biomass for sustainable production. Plant tissue culture techniques, such as in vitro root cultures, micropropagation, or callogenesis, offer the possibility to produce considerable amounts of bioactive compounds independent of external factors that may influence their production. This production can also be significantly increased with the implementation of other biotechnological approaches such as elicitation, metabolic engineering, precursor and/or nutrient feeding, immobilization, and permeabilization. This work aimed to evaluate the potential of biotechnological tools for producing bioactive compounds, with a focus on bioactive compounds with anti-ageing properties, which can be used for the development of green-label cosmeceutical products. In addition, some examples demonstrating the use of plant tissue culture techniques to produce high-value bioactive ingredients for cosmeceutical applications are also addressed, showing the importance of these tools and approaches for the sustainable production of plant-derived cosmetic products.
Collapse
Affiliation(s)
- Sarah Bouzroud
- African Sustainable Agriculture Research Institute (ASARI), Mohammed VI Polytechnic University (UM6P), Laâyoune 70000, Morocco
| | - Ezzouhra El Maaiden
- African Sustainable Agriculture Research Institute (ASARI), Mohammed VI Polytechnic University (UM6P), Laâyoune 70000, Morocco
| | - Mansour Sobeh
- AgroBioSciences Department (AgBS), Mohammed VI Polytechnic University (UM6P), Benguerir 43150, Morocco
| | - Nawal Merghoub
- AgroBioSciences Department (AgBS), Mohammed VI Polytechnic University (UM6P), Benguerir 43150, Morocco
- Green Biotechnology Center, Moroccan Foundation for Advanced Science, Innovation & Research (MAScIR), Rabat 10100, Morocco
| | - Hassan Boukcim
- African Sustainable Agriculture Research Institute (ASARI), Mohammed VI Polytechnic University (UM6P), Laâyoune 70000, Morocco
| | - Lamfeddal Kouisni
- African Sustainable Agriculture Research Institute (ASARI), Mohammed VI Polytechnic University (UM6P), Laâyoune 70000, Morocco
| | - Youssef El Kharrassi
- African Sustainable Agriculture Research Institute (ASARI), Mohammed VI Polytechnic University (UM6P), Laâyoune 70000, Morocco
- Correspondence:
| |
Collapse
|
7
|
Hasnain A, Naqvi SAH, Ayesha SI, Khalid F, Ellahi M, Iqbal S, Hassan MZ, Abbas A, Adamski R, Markowska D, Baazeem A, Mustafa G, Moustafa M, Hasan ME, Abdelhamid MMA. Plants in vitro propagation with its applications in food, pharmaceuticals and cosmetic industries; current scenario and future approaches. FRONTIERS IN PLANT SCIENCE 2022; 13:1009395. [PMID: 36311115 PMCID: PMC9606719 DOI: 10.3389/fpls.2022.1009395] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Accepted: 09/16/2022] [Indexed: 05/03/2023]
Abstract
Plant tissue culture technique employed for the identification and isolation of bioactive phytocompounds has numerous industrial applications. It provides potential benefits for different industries which include food, pharmaceutical and cosmetics. Various agronomic crops i.e., cereals, fruits, vegetables, ornamental plants and forest trees are currently being used for in vitro propagation. Plant tissue culture coupled with biotechnological approaches leads towards sustainable agricultural development providing solutions to major food security issues. Plants are the rich source of phytochemicals with medicinal properties rendering them useful for the industrial production of pharmaceuticals and nutraceuticals. Furthermore, there are numerous plant compounds with application in the cosmetics industry. In addition to having moisturizing, anti-ageing, anti-wrinkle effects; plant-derived compounds also possess pharmacological properties such as antiviral, antimicrobial, antifungal, anticancer, antioxidant, anti-inflammatory, and anti-allergy characteristics. The in vitro propagation of industrially significant flora is gaining attention because of its several advantages over conventional plant propagation methods. One of the major advantages of this technique is the quick availability of food throughout the year, irrespective of the growing season, thus opening new opportunities to the producers and farmers. The sterile or endangered flora can also be conserved by plant micro propagation methods. Hence, plant tissue culture is an extremely efficient and cost-effective technique for biosynthetic studies and bio-production, biotransformation, or bioconversion of plant-derived compounds. However, there are certain limitations of in-vitro plant regeneration system including difficulties with continuous operation, product removal, and aseptic conditions. For sustainable industrial applications of in-vitro regenerated plants on a large scale, these constraints need to be addressed in future studies.
Collapse
Affiliation(s)
- Ammarah Hasnain
- Institute of Molecular Biology and Biotechnology, The University of Lahore, Lahore, Pakistan
| | - Syed Atif Hasan Naqvi
- Department of Plant Pathology, Faculty of Agricultural Sciences and Technology (FAST), Bahauddin Zakariya University, Multan, Pakistan
| | - Syeda Iqra Ayesha
- Institute of Molecular Biology and Biotechnology, The University of Lahore, Lahore, Pakistan
| | - Fatima Khalid
- Institute of Molecular Biology and Biotechnology, The University of Lahore, Lahore, Pakistan
| | - Manahil Ellahi
- Institute of Molecular Biology and Biotechnology, The University of Lahore, Lahore, Pakistan
| | - Shehzad Iqbal
- College of Plant Sciences and Technology, Huazhong Agricultural University, Wuhan, China
| | - Muhammad Zeeshan Hassan
- Department of Plant Pathology, Faculty of Agricultural Sciences and Technology (FAST), Bahauddin Zakariya University, Multan, Pakistan
| | - Aqleem Abbas
- State Key Laboratory of Agricultural Microbiology and Provincial Key Lab of Plant Pathology, Huazhong Agricultural University, Wuhan, China
| | - Robert Adamski
- Faculty of Process and Environmental Engineering, Lodz University of Technology, Lodz, Poland
| | - Dorota Markowska
- Faculty of Process and Environmental Engineering, Lodz University of Technology, Lodz, Poland
| | - Alaa Baazeem
- Department of Biology, College of Science, Taif University, Taif, Saudi Arabia
| | - Ghulam Mustafa
- Department of Agriculture (Extension and Adoptive Research), Agriculture Extension Department of Government of Punjab, Lahore, Pakistan
| | - Mahmoud Moustafa
- Department of Biology, Faculty of Science, King Khalid University, Abha, Saudi Arabia
- Department of Botany and Microbiology, Faculty of Science, South Valley University, Qena, Egypt
| | - Mohamed E. Hasan
- Bioinformatics Department, Genetic Engineering and Biotechnology Research Institute, University of Sadat City, Sadat City, Egypt
| | - Mohamed M. A. Abdelhamid
- Agricultural Botany Department, Faculty of Agriculture (Saba Basha), Alexandria University, Alexandria, Egypt
| |
Collapse
|
8
|
Tyler SEB, Tyler LDK. Therapeutic roles of plants for 15 hypothesised causal bases of Alzheimer's disease. NATURAL PRODUCTS AND BIOPROSPECTING 2022; 12:34. [PMID: 35996065 PMCID: PMC9395556 DOI: 10.1007/s13659-022-00354-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2022] [Accepted: 06/15/2022] [Indexed: 05/26/2023]
Abstract
Alzheimer's disease (AD) is progressive and ultimately fatal, with current drugs failing to reverse and cure it. This study aimed to find plant species which may provide therapeutic bioactivities targeted to causal agents proposed to be driving AD. A novel toolkit methodology was employed, whereby clinical symptoms were translated into categories recognized in ethnomedicine. These categories were applied to find plant species with therapeutic effects, mined from ethnomedical surveys. Survey locations were mapped to assess how this data is at risk. Bioactivities were found of therapeutic relevance to 15 hypothesised causal bases for AD. 107 species with an ethnological report of memory improvement demonstrated therapeutic activity for all these 15 causal bases. The majority of the surveys were found to reside within biodiversity hotspots (centres of high biodiversity under threat), with loss of traditional knowledge the most common threat. Our findings suggest that the documented plants provide a large resource of AD therapeutic potential. In demonstrating bioactivities targeted to these causal bases, such plants may have the capacity to reduce or reverse AD, with promise as drug leads to target multiple AD hallmarks. However, there is a need to preserve ethnomedical knowledge, and the habitats on which this knowledge depends.
Collapse
Affiliation(s)
| | - Luke D K Tyler
- School of Natural Sciences, Bangor University, Gwynedd, UK
| |
Collapse
|
9
|
Abstract
The aims of this study were to induce calli from the seeds of three rice varieties (Hommali 105, Munpu, and Niawdum) and investigate their anti-aging potential. First, rice seeds were cultured on a Murashige and Skoog medium (MS medium) supplemented with 2 mg/L of 2,4-Dichlorophenoxyacetic acid (2,4-D), 1 mg/L of 1-Naphthalene acetic acid (NAA), and 1 mg/L of 6-Benzylaminopurine (BAP). After three weeks, the calli were extracted with ethanol. Then, their phenolic contents were determined by spectrophotometer and the amino acids were identified by ultra-performance liquid chromatography (UPLC). Their cytotoxicity, anti-oxidant (potassium ferricyanide reducing power assay (PFRAP), DPPH radical scavenging assay (DPPH), lipid peroxidation inhibition (LPO), and superoxide dismutase activity (SOD)), and anti-aging (keratinocyte proliferation, anti-collagenase, anti-inflammation, and anti-tyrosinase) activities were also investigated. Munpu callus (385%) was obtained with a higher yield than Hommali (322%) and Niawdum (297%) calli. The results revealed that the phenolic and amino acid contents were enhanced in the calli. Moreover, the calli were rich in glutamic acid, alanine, and gamma aminobutyric acid (GABA). The callus extracts showed no cytotoxic effects at a concentration of equal to or lower than 0.25 mg/mL. The highest anti-oxidant activities (PFRAP (0.81 mg AAE/mL), DPPH (68.22%), LPO (52.21%), and SOD (67.16%)) was found in Munpu callus extract. This extract also had the highest keratinocyte proliferation (43.32%), anti-collagenase (53.83%), anti-inflammation (85.40%), and anti-tyrosinase (64.77%) activities. The experimental results suggest that the amounts of bioactive compounds and anti-aging activities of rice seeds can be enhanced by the induction of callus formation.
Collapse
|
10
|
Kaňuková Š, Gubišová M, Klčová L, Mihálik D, Kraic J. Establishment of Stem Cell-like Cells of Sida hermaphrodita (L.) Rusby from Explants Containing Cambial Meristems. Int J Mol Sci 2022; 23:ijms23147644. [PMID: 35886991 PMCID: PMC9320681 DOI: 10.3390/ijms23147644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 06/30/2022] [Accepted: 07/09/2022] [Indexed: 12/10/2022] Open
Abstract
The in vitro cultures of plant stem cells and stem cell-like cells can be established from tissues containing meristematic cells. Chemical compounds—as well as their production potential—is among the emerging topics of plant biotechnology. We induced the callus cell biomass growth and characterized the parameters indicating the presence of stem cells or stem cell-like cells. Four types of explants (stem, petiole, leaf, root) from Sida hermaphrodita (L.) Rusby and various combinations of auxins and cytokinins were tested for initiation of callus, growth of sub-cultivated callus biomass, and establishment of stem cells or stem cell-like cells. Induction of callus and its growth parameters were significantly affected both by the explant type and the combination of used plant growth hormones and regulators. The responsibility for callus initiation and growth was the highest in stem-derived explants containing cambial meristematic cells. Growth parameters of callus biomass and specific characteristics of vacuoles confirmed the presence of stem cells or stem cell-like cells in sub-cultivated callus cell biomass. Establishment of in vitro stem cell or stem cell-like cell cultures in S. hermaphrodita can lead to the development of various applications of in vitro cultivation systems as well as alternative applications of this crop.
Collapse
Affiliation(s)
- Šarlota Kaňuková
- Department of Biotechnology, Faculty of Natural Sciences, University of Ss. Cyril and Methodius, Námestie J. Herdu 2, 91701 Trnava, Slovakia; (Š.K.); (D.M.)
| | - Marcela Gubišová
- Research Institute of Plant Production, National Agricultural and Food Centre, Bratislavská cesta 122, 92168 Piešťany, Slovakia; (M.G.); (L.K.)
| | - Lenka Klčová
- Research Institute of Plant Production, National Agricultural and Food Centre, Bratislavská cesta 122, 92168 Piešťany, Slovakia; (M.G.); (L.K.)
| | - Daniel Mihálik
- Department of Biotechnology, Faculty of Natural Sciences, University of Ss. Cyril and Methodius, Námestie J. Herdu 2, 91701 Trnava, Slovakia; (Š.K.); (D.M.)
- Research Institute of Plant Production, National Agricultural and Food Centre, Bratislavská cesta 122, 92168 Piešťany, Slovakia; (M.G.); (L.K.)
| | - Ján Kraic
- Department of Biotechnology, Faculty of Natural Sciences, University of Ss. Cyril and Methodius, Námestie J. Herdu 2, 91701 Trnava, Slovakia; (Š.K.); (D.M.)
- Research Institute of Plant Production, National Agricultural and Food Centre, Bratislavská cesta 122, 92168 Piešťany, Slovakia; (M.G.); (L.K.)
- Correspondence: or ; Tel.: +421-337-947-168
| |
Collapse
|
11
|
Tomatoes: An Extensive Review of the Associated Health Impacts of Tomatoes and Factors That Can Affect Their Cultivation. BIOLOGY 2022; 11:biology11020239. [PMID: 35205105 PMCID: PMC8869745 DOI: 10.3390/biology11020239] [Citation(s) in RCA: 54] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Revised: 01/31/2022] [Accepted: 02/01/2022] [Indexed: 02/01/2023]
Abstract
Simple Summary The research outlined in this review paper discusses potential health benefits associated with a diet enriched with tomatoes and tomato products. This includes details of previous studies investigating the anticancer properties of tomatoes, protection against cardiovascular and neurodegenerative diseases and diabetes, maintenance of a healthy gut microbiome, and improved skin health, fertility, immune response, and exercise recovery. The specific parts of a tomato fruit that contribute these health benefits are also outlined. The potential disadvantages to a tomato-rich diet are detailed, especially the consumption of supplements that contain compounds found in tomatoes, such as lycopene. This review also discusses how the cultivation of tomato plants can affect the nutritional value of the fruit harvested. Different environmental growing conditions such as light intensity, growing media, and temperature are explained in terms of the impact they have on the quality of fruit, its nutrient content, and hence the potential health benefits acquired from eating the fruit. Abstract This review outlines the health benefits associated with the regular consumption of tomatoes and tomato products. The first section provides a detailed account of the horticultural techniques that can impact the quality of the fruit and its nutritional properties, including water availability, light intensity, temperature, and growing media. The next section provides information on the components of tomato that are likely to contribute to its health effects. The review then details some of the health benefits associated with tomato consumption, including anticancer properties, cardiovascular and neurodegenerative diseases and skin health. This review also discusses the impact tomatoes can have on the gut microbiome and associated health benefits, including reducing the risk of inflammatory bowel diseases. Other health benefits of eating tomatoes are also discussed in relation to effects on diabetes, the immune response, exercise recovery, and fertility. Finally, this review also addresses the negative effects that can occur as a result of overconsumption of tomato products and lycopene supplements.
Collapse
|
12
|
Semsarzadeh N, Khetarpal S. Rise of stem cell therapies in aesthetics. Clin Dermatol 2022; 40:49-56. [DOI: 10.1016/j.clindermatol.2021.08.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
13
|
Csekes E, Račková L. Skin Aging, Cellular Senescence and Natural Polyphenols. Int J Mol Sci 2021; 22:12641. [PMID: 34884444 PMCID: PMC8657738 DOI: 10.3390/ijms222312641] [Citation(s) in RCA: 135] [Impact Index Per Article: 33.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 11/13/2021] [Accepted: 11/18/2021] [Indexed: 01/10/2023] Open
Abstract
The skin, being the barrier organ of the body, is constitutively exposed to various stimuli impacting its morphology and function. Senescent cells have been found to accumulate with age and may contribute to age-related skin changes and pathologies. Natural polyphenols exert many health benefits, including ameliorative effects on skin aging. By affecting molecular pathways of senescence, polyphenols are able to prevent or delay the senescence formation and, consequently, avoid or ameliorate aging and age-associated pathologies of the skin. This review aims to provide an overview of the current state of knowledge in skin aging and cellular senescence, and to summarize the recent in vitro studies related to the anti-senescent mechanisms of natural polyphenols carried out on keratinocytes, melanocytes and fibroblasts. Aged skin in the context of the COVID-19 pandemic will be also discussed.
Collapse
Affiliation(s)
- Erika Csekes
- Centre of Experimental Medicine, Institute of Experimental Pharmacology and Toxicology, Slovak Academy of Sciences, Dúbravská Cesta 9, 841 04 Bratislava, Slovakia
| | - Lucia Račková
- Centre of Experimental Medicine, Institute of Experimental Pharmacology and Toxicology, Slovak Academy of Sciences, Dúbravská Cesta 9, 841 04 Bratislava, Slovakia
| |
Collapse
|
14
|
Al-Sowayan BS, Al-Shareeda AT. Stem cells and the pursuit of youth, a tale of limitless possibilities and commercial fraud. World J Biol Chem 2021; 12:52-56. [PMID: 34354805 PMCID: PMC8316836 DOI: 10.4331/wjbc.v12.i4.52] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/21/2021] [Revised: 05/17/2021] [Accepted: 07/07/2021] [Indexed: 02/06/2023] Open
Abstract
This article examines the hype generated around the term “stem cell”, and the capitalization of the stem cell craze by the cosmetic industry. It started by introducing product lines containing active ingredients derived from plant stem cells. Then, evolved to using own cells for skin regeneration and hair loss treatment, and allogenic cells for the manufacturing of stem cell-derived products. This article also discusses the missing links for safe and reliable stem cell applications in cosmetics, and why local regulatory bodies, members of the industry and consumers must all work together to stop the illegitimate use of the “stem cell” good name in unsafe or fraudulent commercial practices.
Collapse
Affiliation(s)
- Batla S Al-Sowayan
- Department of Cell Therapy and Cancer Research, King Abdullah International Medical Research Center, King Saud Bin Abdulaziz University for Health Sciences, Ministry of National Guard Health Affairs, Riyadh 11632, Saudi Arabia
| | - Alaa T Al-Shareeda
- Department of Cell Therapy and Cancer Research and Departmebt of the Saudi Biobank, King Abdullah International Medical Research Center, King Saud Bin Abdulaziz University for Health Sciences, Ministry of National Guard Health Affairs, Riyadh 11481, Saudi Arabia
| |
Collapse
|
15
|
Sadgrove NJ, Simmonds MSJ. Topical and nutricosmetic products for healthy hair and dermal antiaging using "dual-acting" (2 for 1) plant-based peptides, hormones, and cannabinoids. FASEB Bioadv 2021; 3:601-610. [PMID: 34377956 PMCID: PMC8332470 DOI: 10.1096/fba.2021-00022] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2021] [Revised: 05/10/2021] [Accepted: 05/11/2021] [Indexed: 12/12/2022] Open
Abstract
One of the side effects of oral antiaging retinoids is increased hair shedding. Retinoids promote the expression of TGF-β2 from fibroblasts, which stimulate collagen expression but silences keratinocytes. Since keratinocytes normally influence differentiation of dermal papilla cells at the base of the hair follicle, retinoids feasibly inhibit hair growth via the increased expression of TGF-β2, which inhibits Wnt/β-catenin signaling. Fortunately, the plant kingdom provides an array of alternatives as dual-acting nutricosmetics and topicals that work independently of TGF-β2 to confer dermal antiaging and hair health effects. These alternatives include "plant hormones" such as cytokinins and phytoestrogens. Many cytokinins are agonists of the G-coupled adenosine receptors. Partial agonism of adenosine receptors promotes collagen synthesis independently of TGF-β2 signaling. Adenosine expression is potentially also the mechanism of minoxidil in promotion of scalp hair growth. Because of crosstalk between adenosine and cannabinoid receptors it makes sense to try combinations of specific CB2 agonists and cytokinins (or phytoestrogens). However, dual-acting cosmetics including peptides with high numbers of positively charged amino acids, such as lysine or arginine, offer real potential as they can be processed from multiple botanical candidates, including almond, fenugreek, pea sprouts, soy, and seaweeds. The current review summarizes much of what is known about retinoid alternatives in the plant kingdom and identifies potentially fruitful new areas of research.
Collapse
|
16
|
Aggarwal S, Sardana C, Ozturk M, Sarwat M. Plant stem cells and their applications: special emphasis on their marketed products. 3 Biotech 2020; 10:291. [PMID: 32550110 PMCID: PMC7275108 DOI: 10.1007/s13205-020-02247-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Accepted: 05/05/2020] [Indexed: 01/26/2023] Open
Abstract
Stem cells are becoming increasingly popular in public lexicon owing to their prospective applications in the biomedical and therapeutic domains. Extensive research has found various independent stem cell systems fulfilling specific needs of plant development. Plant stem cells are innately undifferentiated cells present in the plant's meristematic tissues. Such cells have various commercial uses, wherein cosmetic manufacture involving stem cell derivatives is the most promising field at present. Scientific evidence suggests anti-oxidant and anti-inflammatory properties possessed by various plants such as grapes (Vitis vinifera), lilacs (Syringa vulgaris), Swiss apples (Uttwiler spatlauber) etc. are of great importance in terms of cosmetic applications of plant stem cells. There are widespread uses of plant stem cells and their extracts. The products so formulated have a varied range of applications which included skin whitening, de-tanning, moisturizing, cleansing etc. Despite all the promising developments, the domain of plant stem cells remains hugely unexplored. This article presents an overview of the current scenario of plant stem cells and their applications in humans.
Collapse
Affiliation(s)
- Srishti Aggarwal
- Amity Institute of Pharmacy, Amity University, Noida, Uttar Pradesh 201313 India
| | - Chandni Sardana
- Amity Institute of Pharmacy, Amity University, Noida, Uttar Pradesh 201313 India
| | - Munir Ozturk
- Department of Botany, Ege University, Izmir, Turkey
| | - Maryam Sarwat
- Amity Institute of Pharmacy, Amity University, Noida, Uttar Pradesh 201313 India
| |
Collapse
|
17
|
Abstract
Biotechnology uses microorganisms and/or enzymes to obtain specific products through fermentative processes and/or genetic engineering techniques. Examples of these products are active ingredients, such as hyaluronic acid, kojic acid, resveratrol, and some enzymes, which are used in skin anti-aging products. In addition, certain growth factors, algae, stem cells, and peptides have been included in cosmetics and aesthetic medicines. Thus, biotechnology, cosmetics and aesthetic medicines are now closely linked, through the production of high-quality active ingredients, which are more effective and safer. This work describes the most used active ingredients that are produced from biotechnological processes. Although there are a vast number of active ingredients, the number of biotechnological active ingredients reported in the literature is not significantly high.
Collapse
|
18
|
Marchev AS, Georgiev MI. Plant In Vitro Systems as a Sustainable Source of Active Ingredients for Cosmeceutical Application. Molecules 2020; 25:molecules25092006. [PMID: 32344812 PMCID: PMC7248771 DOI: 10.3390/molecules25092006] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Revised: 04/16/2020] [Accepted: 04/22/2020] [Indexed: 11/19/2022] Open
Abstract
Cosmeceuticals are hybrids between cosmetics and pharmaceuticals which are being designed for a dual purpose: (1) To provide desired esthetical effects and (2) simultaneously treat dermatological conditions. The increased demand for natural remedies and the trends to use natural and safe ingredients resulted in intensive cultivation of medicinal plants. However, in many cases the whole process of plant cultivation, complex extraction procedure, and purification of the targeted molecules are not economically feasible. Therefore, the desired production of natural cosmetic products in sustainable and controllable fashion in the last years led to the intensive utilization of plant cell culture technology. The present review aims to highlight examples of biosynthesis of active ingredients derived through plant in vitro systems with potential cosmeceutical application. The exploitation of different type of extracts used in a possible cosmeceutical formulation, as well as, their activity tested in in vitro/in vivo models is thoroughly discussed. Furthermore, opportunities to manipulate the biosynthetic pathway, hence engineering the biosynthesis of some secondary metabolites, such as anthocyanins, have been highlighted.
Collapse
|
19
|
Marmelo I, Barbosa V, Maulvault AL, Duarte MP, Marques A. Does the addition of ingredients affect mercury and cadmium bioaccessibility in seafood-based meals? Food Chem Toxicol 2019; 136:110978. [PMID: 31747620 DOI: 10.1016/j.fct.2019.110978] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Revised: 10/31/2019] [Accepted: 11/14/2019] [Indexed: 10/25/2022]
Abstract
Despite the bioaccessibility of nutrients and contaminants present in individual seafood products has been thoroughly studied, information is extremely limited in what concerns complete seafood-based meals, where interactions between ingredients may occur. Hence, this study aimed to evaluate the effect of different ingredients and cooking processes in mercury (Hg) and cadmium (Cd) bioaccessibility in complete meals of tuna (Thunnus spp.) and edible crab (Cancer pagurus), respectively. The addition of ingredients/side dishes decreased Hg levels in cooked tuna meals, but increased Hg bioaccessibility (up to 31% of bioaccessible Hg in complete meals, against 13.5% in stewed tuna alone). Cd levels in edible crab meals were significantly decreased by the addition of ingredients (~36% and ~65% decrease in boiled crab and paté, respectively), but its' bioaccessibility was not significantly affected (>94% in all cases). Results showed that the weekly consumption of 2 complete tuna meals does not exceed MeHg tolerable weekly intake (TWI), whereas Cd's TWI is largely surpassed with the consumption of 50 g/week of edible crab meals. This highlights the importance of determining contaminant levels and bioaccessibility in a whole seafood-based meal context, as such approach enables a more realistic assessment of the risks that seafood can pose to consumers.
Collapse
Affiliation(s)
- Isa Marmelo
- Division of Aquaculture and Seafood Upgrading, Portuguese Institute for the Sea and Atmosphere, I.P. (IPMA), Avenida Doutor Alfredo Magalhães Ramalho, 6, 1495-165, Algés, Portugal; MARE - Marine and Environmental Sciences Centre, Laboratório Marítimo da Guia, Faculdade de Ciências da Universidade de Lisboa, Av. Nossa Senhora Do Cabo, 939, 2750-374, Cascais, Portugal.
| | - Vera Barbosa
- Division of Aquaculture and Seafood Upgrading, Portuguese Institute for the Sea and Atmosphere, I.P. (IPMA), Avenida Doutor Alfredo Magalhães Ramalho, 6, 1495-165, Algés, Portugal; Interdisciplinary Centre of Marine and Environmental Research (CIIMAR), Universidade Do Porto, Terminal de Cruzeiros Do Porto de Leixões, Avenida General Norton de Matos S/N, 4450-208, Matosinhos, Portugal.
| | - Ana Luísa Maulvault
- MARE - Marine and Environmental Sciences Centre, Laboratório Marítimo da Guia, Faculdade de Ciências da Universidade de Lisboa, Av. Nossa Senhora Do Cabo, 939, 2750-374, Cascais, Portugal; Interdisciplinary Centre of Marine and Environmental Research (CIIMAR), Universidade Do Porto, Terminal de Cruzeiros Do Porto de Leixões, Avenida General Norton de Matos S/N, 4450-208, Matosinhos, Portugal; UCIBIO-REQUIMTE, Department of Chemistry, Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa, 2829-516, Caparica, Portugal.
| | - Maria Paula Duarte
- MEtRICs/DCTB, Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa, 2829-516, Caparica, Portugal.
| | - António Marques
- Division of Aquaculture and Seafood Upgrading, Portuguese Institute for the Sea and Atmosphere, I.P. (IPMA), Avenida Doutor Alfredo Magalhães Ramalho, 6, 1495-165, Algés, Portugal; Interdisciplinary Centre of Marine and Environmental Research (CIIMAR), Universidade Do Porto, Terminal de Cruzeiros Do Porto de Leixões, Avenida General Norton de Matos S/N, 4450-208, Matosinhos, Portugal.
| |
Collapse
|
20
|
Carvajal F, Duran C, Aquea F. Effect of alerce (Fitzroya cupressoides) cell culture extract on wound healing repair in a human keratinocyte cell line. J Cosmet Dermatol 2019; 19:1254-1259. [PMID: 31486569 DOI: 10.1111/jocd.13137] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2019] [Accepted: 08/14/2019] [Indexed: 01/04/2023]
Abstract
BACKGROUND Fitzroya cupressoides, commonly known as alerce, is an endemic conifer unique to southern South America. Alerce wood is renowned for its durability and resistance to biological degradation due to the presence of a particular class of secondary metabolite. Alerce extracts have been used in traditional medicine for different skin lesion treatments. AIMS To develop a cell culture system to produce alerce extract and evaluate its cytotoxicity and effects on in vitro wound healing. METHODS Cell cultures and aqueous extracts were prepared from alerce needles. Cytotoxicity was evaluated in keratinocytes (HaCaT line) and melanocites (C32 line) using the XTT assay. Wound healing was assayed with the scratch test in HaCaT cells, using mitomycin C to evaluate the role of cell division in the wound closure. RESULTS Alerce cell culture extract has a significant effect on wound healing at different concentrations. No positive effects on the viability of normal and cancerous skin cells were observed. These results suggest that alerce extracts stimulate cell division in human skin epidermal cells in the context of wound repair. CONCLUSIONS Bioactive compounds extracted from alerce cell cultures show promise as ingredients in dermocosmetic formulations, but further clinical studies are required to support these findings at the tissue level.
Collapse
Affiliation(s)
| | | | - Felipe Aquea
- Rubisco Biotechnology, Santiago, Chile.,Laboratorio de Bioingeniería, Facultad de Ingeniería y Ciencias, Universidad Adolfo Ibáñez, Santiago, Chile.,Center of Applied Ecology and Sustainability (CAPES), Santiago, Chile
| |
Collapse
|
21
|
Palmieri G, Arciello S, Bimonte M, Carola A, Tito A, Gogliettino M, Cocca E, Fusco C, Balestrieri M, Colucci MG, Apone F. The extraordinary resistance to UV radiations of a manganese superoxide dismutase of Deinococcus radiodurans offers promising potentialities in skin care applications. J Biotechnol 2019; 302:101-111. [DOI: 10.1016/j.jbiotec.2019.07.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Accepted: 07/02/2019] [Indexed: 11/25/2022]
|
22
|
Amadi CN, Offor SJ, Frazzoli C, Orisakwe OE. Natural antidotes and management of metal toxicity. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2019; 26:18032-18052. [PMID: 31079302 DOI: 10.1007/s11356-019-05104-2] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2019] [Accepted: 04/04/2019] [Indexed: 06/09/2023]
Abstract
The global burden of heavy metal especially mercury, arsenic, lead, and cadmium toxicities remains a significant public health challenge. Developing nations are particularly at high risk and carry the highest burden of this hazard. Chelation therapy has been the mainstay for treatment of heavy metal poisoning where the chelating agent binds metal ions to form complex ring-like structures called "chelates" to enhance their elimination from the body. Metal chelators have some drawbacks such as redistribution of some heavy metals from other tissues to the brain thereby increasing its neurotoxicity, causing loss of essential metals such as copper and zinc as well as some serious adverse effects, e.g., hepatotoxicity. The use of natural antidotes, which are easily available, affordable, and with little or no side effects compared to the classic metal chelators, is the focus of this review and suggested as cheaper options for developing nations in the treatment of heavy metal poisoning.
Collapse
Affiliation(s)
- Cecilia Nwadiuto Amadi
- Department of Experimental Pharmacology & Toxicology, Faculty of Pharmacy, University of Port-Harcourt, Port-Harcourt, Rivers State, Nigeria
| | - Samuel James Offor
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, University of Uyo, Uyo, Akwa Ibom State, Nigeria
| | - Chiara Frazzoli
- Department of Cardiovascular and Endocrine-Metabolic Diseases, and Ageing, Istituto Superiore di Sanità (Italian National Institute of Health), Rome, Italy
| | - Orish Ebere Orisakwe
- Department of Experimental Pharmacology & Toxicology, Faculty of Pharmacy, University of Port-Harcourt, Port-Harcourt, Rivers State, Nigeria.
| |
Collapse
|
23
|
Lamaoui M, Chakhchar A, Benlaouane R, El Kharrassi Y, Farissi M, Wahbi S, El Modafar C. Uprising the antioxidant power of Argania spinosa L. callus through abiotic elicitation. C R Biol 2019; 342:7-17. [PMID: 30595494 DOI: 10.1016/j.crvi.2018.11.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2018] [Revised: 11/14/2018] [Accepted: 11/14/2018] [Indexed: 01/17/2023]
Abstract
This study was carried out in order to investigate the ability of tissues of Argania spinosa (L.) to undergo unlimited cell divisions by triggering their proliferative potential via callogenesis. Axenic cultures were efficiently established using axillary buds cultured on half-strength Murashige and Skoog (MS) medium after 20min of surface sterilization with sodium hypochlorite 6% (v/v). The highest callus rate was achieved with 1.0mgL-1 of naphthaleneacetic acid (NAA) and 1.0mgL-1 of 2,4-dichlorophenoxyacetic acid (2,4D) or similarly with 0.01mgL-1 of 6-benzylaminopurine (BAP) and 1.0mgL-1 of 2,4D at pH of 5.8, under dark conditions. The results of this study show also a significant increase in the callus's antioxidant power under abiotic pressure induced by NaCl. Catalase (CAT), peroxidase (PO), and superoxide dismutase (SOD) activities were significantly triggered, which protected the cells from the stimulated oxidative stress, under hydrogen peroxide (H2O2) significant release. This reaction favors subsequently the tissue recover process linked to the low abundance of polyphenol oxidase (PPO) activity and malondialdehyde (MDA) content. This work proves the efficiency of salt stress in boosting the argan cell's antioxidant status, which could be commercially applied in the field of cells regenerative therapy.
Collapse
Affiliation(s)
- Mouna Lamaoui
- Laboratoire de biotechnologie et bio-ingénierie moléculaire, Faculté des sciences et techniques, Université Cadi Ayad, Guéliz, 40000 Marrakech, Morocco; AgroBioSciences Program Université Mohammed VI Polytechnique (UM6P), lot 660-Hay Moulay Rachid, 43150 Ben Guerir, Morocco.
| | - Abdelghani Chakhchar
- Laboratoire de biotechnologie et bio-ingénierie moléculaire, Faculté des sciences et techniques, Université Cadi Ayad, Guéliz, 40000 Marrakech, Morocco
| | - Raja Benlaouane
- Laboratoire de biotechnologie et bio-ingénierie moléculaire, Faculté des sciences et techniques, Université Cadi Ayad, Guéliz, 40000 Marrakech, Morocco
| | - Youssef El Kharrassi
- AgroBioSciences Program Université Mohammed VI Polytechnique (UM6P), lot 660-Hay Moulay Rachid, 43150 Ben Guerir, Morocco
| | - Mohamed Farissi
- Laboratoire de biotechnologie et développement durable des ressources naturelles, Faculté polydisciplinaire, 23000 Beni-Mellal, Morocco
| | - Said Wahbi
- Laboratoire de biotechnologie et physiologie des plantes, Faculté des sciences Semlalia, Université Cadi Ayad, 40000 Marrakech, Morocco
| | - Cherkaoui El Modafar
- Laboratoire de biotechnologie et bio-ingénierie moléculaire, Faculté des sciences et techniques, Université Cadi Ayad, Guéliz, 40000 Marrakech, Morocco
| |
Collapse
|
24
|
Abstract
Skin aging is a complex process which involves all the layers of the epidermis and dermis. In order to slow skin aging, methods are researched which would strengthen and protect skin stem cells. Science is in search of the right method to stimulate the proliferation of epidermal stem cells. Plant stem cells show outstanding anti-aging properties, as they can, among other activities, stimulate fibroblasts to synthesise collagen, which, in turn, stimulates skin regeneration. One of the most important agents which give anti-aging properties to plant stem cell extracts is kinetin (6-furfuryladenine). This compound belongs to a cytokine group and is considered to be a strong antioxidant which protects protein and nucleic acids from oxidation and glycoxidation processes. It enables cells to remove the excess of free radicals to protect them from oxidative stress.
Collapse
|
25
|
Plant cell culture technology in the cosmetics and food industries: current state and future trends. Appl Microbiol Biotechnol 2018; 102:8661-8675. [PMID: 30099571 PMCID: PMC6153648 DOI: 10.1007/s00253-018-9279-8] [Citation(s) in RCA: 85] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Revised: 07/27/2018] [Accepted: 07/28/2018] [Indexed: 12/02/2022]
Abstract
The production of drugs, cosmetics, and food which are derived from plant cell and tissue cultures has a long tradition. The emerging trend of manufacturing cosmetics and food products in a natural and sustainable manner has brought a new wave in plant cell culture technology over the past 10 years. More than 50 products based on extracts from plant cell cultures have made their way into the cosmetics industry during this time, whereby the majority is produced with plant cell suspension cultures. In addition, the first plant cell culture-based food supplement ingredients, such as Echigena Plus and Teoside 10, are now produced at production scale. In this mini review, we discuss the reasons for and the characteristics as well as the challenges of plant cell culture-based productions for the cosmetics and food industries. It focuses on the current state of the art in this field. In addition, two examples of the latest developments in plant cell culture-based food production are presented, that is, superfood which boosts health and food that can be produced in the lab or at home.
Collapse
|
26
|
Trends in patented chromones for skin diseases. Pharm Pat Anal 2018; 7:107-109. [PMID: 29629817 DOI: 10.4155/ppa-2018-0004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
27
|
Sena LM, Zappelli C, Apone F, Barbulova A, Tito A, Leone A, Oliviero T, Ferracane R, Fogliano V, Colucci G. Brassica rapa hairy root extracts promote skin depigmentation by modulating melanin production and distribution. J Cosmet Dermatol 2018; 17:246-257. [PMID: 28670794 DOI: 10.1111/jocd.12368] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/30/2017] [Indexed: 12/16/2022]
Abstract
BACKGROUND Skin whitening products, used for ages by Asian people for cultural and esthetic purposes, are very popular nowadays in Western countries as well, where the need to inhibit skin spots after sun exposure has become not only a cosmetic but also a health-related issue. Thus, the development of effective and safe depigmenting agents derived from natural products gets continuous attention by cosmetic brands and consumers. OBJECTIVES The aim of this study was to determine the effects of two preparations, obtained from the hairy root cultures of the species Brassica rapa, on melanogenesis and the expression of the extracellular matrix proteins involved in a correct pigment distribution. METHODS The two preparations, obtained by water-ethanol extraction and by digestion of cell-wall glycoproteins of the root cells, were chemically characterized and tested on skin cell cultures and on human skin explants to investigate on their dermatological activities. RESULTS Both the extracts were able to decrease melanin synthesis pathway in melanocytes and modulate the expression of genes involved in melanin distribution. One of the extracts was also effective in inducing the expression of laminin-5 and collagen IV, involved into the maintenance of tissue integrity. The two extracts, when tested together on human skin explants, demonstrated a good synergic hypopigmenting activity. CONCLUSIONS Taken together, the results indicate that the extracts from B. rapa root cultures can be employed as cosmetic active ingredients in skin whitening products and as potential therapeutic agents for treating pigmentation disorders.
Collapse
Affiliation(s)
| | | | - Fabio Apone
- Arterra Bioscience srl, Napoli, Italy
- Vitalab srl, Napoli, Italy
| | | | | | - Antonella Leone
- Department of Pharmacy, University of Salerno, Fisciano, Italy
| | - Teresa Oliviero
- Food Quality & Design Group, Wageningen University, Wageningen, The Netherlands
| | - Rosalia Ferracane
- Department of Agricultural Sciences, University of Naples Federico II, Portici, Italy
| | - Vincenzo Fogliano
- Food Quality & Design Group, Wageningen University, Wageningen, The Netherlands
| | | |
Collapse
|
28
|
Squillaci G, Apone F, Sena LM, Carola A, Tito A, Bimonte M, Lucia AD, Colucci G, Cara FL, Morana A. Chestnut ( Castanea sativa Mill.) industrial wastes as a valued bioresource for the production of active ingredients. Process Biochem 2018. [DOI: 10.1016/j.procbio.2017.09.017] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
29
|
Spatial, Temporal, and Dietary Variables Associated with Elevated Mercury Exposure in Peruvian Riverine Communities Upstream and Downstream of Artisanal and Small-Scale Gold Mining. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2017; 14:ijerph14121582. [PMID: 29244775 PMCID: PMC5751000 DOI: 10.3390/ijerph14121582] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/02/2017] [Revised: 12/12/2017] [Accepted: 12/12/2017] [Indexed: 01/21/2023]
Abstract
Artisanal and small-scale gold mining (ASGM) is a primary contributor to global mercury and its rapid expansion raises concern for human exposure. Non-occupational exposure risks are presumed to be strongly tied to environmental contamination; however, the relationship between environmental and human mercury exposure, how exposure has changed over time, and risk factors beyond fish consumption are not well understood in ASGM settings. In Peruvian riverine communities (n = 12), where ASGM has increased 4–6 fold over the past decade, we provide a large-scale assessment of the connection between environmental and human mercury exposure by comparing total mercury contents in human hair (2-cm segment, n = 231) to locally caught fish tissue, analyzing temporal exposure in women of child bearing age (WCBA, 15–49 years, n = 46) over one year, and evaluating general mercury exposure risks including fish and non-fish dietary items through household surveys and linear mixed models. Calculations of an individual’s oral reference dose using the total mercury content in locally-sourced fish underestimated the observed mercury exposure for individuals in many communities. This discrepancy was particularly evident in communities upstream of ASGM, where mercury levels in river fish, water, and sediment measurements from a previous study were low, yet hair mercury was chronically elevated. Hair from 86% of individuals and 77% of children exceeded a USEPA (U.S. Environmental Protection Agency) provisional level (1.2 µg/g) that could result in child developmental impairment. Chronically elevated mercury exposure was observed in the temporal analysis in WCBA. If the most recent exposure exceeded the USEPA level, there was a 97% probability that the individual exceeded that level 8–10 months of the previous year. Frequent household consumption of some fruits (tomato, banana) and grains (quinoa) was significantly associated with 29–75% reductions in hair mercury. Collectively, these data demonstrate that communities located hundreds of kilometers from ASGM are vulnerable to chronically elevated mercury exposure. Furthermore, unexpected associations with fish mercury contents and non-fish dietary intake highlight the need for more in-depth analyses of exposure regimes to identify the most vulnerable populations and to establish potential interventions.
Collapse
|
30
|
di Martino O, Tito A, De Lucia A, Cimmino A, Cicotti F, Apone F, Colucci G, Calabrò V. Hibiscus syriacus Extract from an Established Cell Culture Stimulates Skin Wound Healing. BIOMED RESEARCH INTERNATIONAL 2017; 2017:7932019. [PMID: 29333453 PMCID: PMC5733167 DOI: 10.1155/2017/7932019] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/16/2017] [Accepted: 10/08/2017] [Indexed: 01/01/2023]
Abstract
Higher plants are the source of a wide array of bioactive compounds that support skin integrity and health. Hibiscus syriacus, family Malvaceae, is a plant of Chinese origin known for its antipyretic, anthelmintic, and antifungal properties. The aim of this study was to assess the healing and hydration properties of H. syriacus ethanolic extract (HSEE). We established a cell culture from Hibiscus syriacus leaves and obtained an ethanol soluble extract from cultured cells. The properties of the extract were tested by gene expression and functional analyses on human fibroblast, keratinocytes, and skin explants. HSEE treatment increased the healing potential of fibroblasts and keratinocytes. Specifically, HSEE significantly stimulated fibronectin and collagen synthesis by 16 and 60%, respectively, while fibroblasts contractility was enhanced by 30%. These results were confirmed on skin explants, where HSEE accelerated the wound healing activity in terms of epithelium formation and fibronectin production. Moreover, HSEE increased the expression of genes involved in skin hydration and homeostasis. Specifically, aquaporin 3 and filaggrin genes were enhanced by 20 and 58%, respectively. Our data show that HSEE contains compounds capable of stimulating expression of biomarkers relevant to skin regeneration and hydration thereby counteracting molecular pathways leading to skin damage and aging.
Collapse
Affiliation(s)
- O. di Martino
- Dipartimento di Biologia, Università di Napoli Federico II, Complesso Universitario di Monte Sant'Angelo, Via Cintia 4, 80126 Napoli, Italy
| | - A. Tito
- Arterra Bioscience, Via Brin 69, 80142 Napoli, Italy
| | - A. De Lucia
- Arterra Bioscience, Via Brin 69, 80142 Napoli, Italy
| | - A. Cimmino
- Dipartimento di Scienze Chimiche, Università di Napoli Federico II, Complesso Universitario di Monte Sant'Angelo, Via Cintia 4, 80126 Napoli, Italy
| | - F. Cicotti
- Vitalab srl, Via Brin 69, 80142 Napoli, Italy
| | - F. Apone
- Arterra Bioscience, Via Brin 69, 80142 Napoli, Italy
- Dipartimento di Scienze Chimiche, Università di Napoli Federico II, Complesso Universitario di Monte Sant'Angelo, Via Cintia 4, 80126 Napoli, Italy
- Vitalab srl, Via Brin 69, 80142 Napoli, Italy
| | - G. Colucci
- Arterra Bioscience, Via Brin 69, 80142 Napoli, Italy
- Dipartimento di Scienze Chimiche, Università di Napoli Federico II, Complesso Universitario di Monte Sant'Angelo, Via Cintia 4, 80126 Napoli, Italy
- Vitalab srl, Via Brin 69, 80142 Napoli, Italy
| | - V. Calabrò
- Dipartimento di Biologia, Università di Napoli Federico II, Complesso Universitario di Monte Sant'Angelo, Via Cintia 4, 80126 Napoli, Italy
| |
Collapse
|
31
|
Plant stem cells in cosmetics: current trends and future directions. Future Sci OA 2017; 3:FSO226. [PMID: 29134115 PMCID: PMC5674215 DOI: 10.4155/fsoa-2017-0026] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2016] [Accepted: 06/01/2017] [Indexed: 12/19/2022] Open
Abstract
Plant regeneration at the cellular and tissue level is a unique process. Similar to animals, the stem cells in plants have properties that help stimulate and regenerate plants after injury. The unique properties of plant stem cells have been a recent area of interest and focus both in developing new cosmetics and studying how these extracts/phytohormones will influence animal skin. This special report focuses on the current evidence-based trends in plant stem cell-based cosmetics and sheds light on the challenges that we need to overcome in order to see meaningful changes in human skin using topical cosmetics derived from plant stem cells. A new wave of cosmetic ingredients containing plant stem cells and their extracts has made its way into the industry. What role do these ingredients play in affecting the aging skin? Several ancient practices such as Ayurveda have used plants as a mainstay of treatment for thousands of years. Plant stem cells could hold an interesting role if we can harness these benefits in cosmetics to create safe and effective organic topical skin care.
Collapse
|
32
|
Téllez-López MÁ, Mora-Tovar G, Ceniceros-Méndez IM, García-Lujan C, Puente-Valenzuela CO, Vega-Menchaca MDC, Serrano-Gallardo LB, Garza RG, Morán-Martínez J. EVALUATION OF THE CHELATING EFFECT OF METHANOLIC EXTRACT OF CORIANDRUM SATIVUM AND ITS FRACTIONS ON WISTAR RATS POISONED WITH LEAD ACETATE. AFRICAN JOURNAL OF TRADITIONAL, COMPLEMENTARY, AND ALTERNATIVE MEDICINES 2017; 14:92-102. [PMID: 28573226 PMCID: PMC5446471 DOI: 10.21010/ajtcam.v14i2.11] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Background: The rate of lead poisoning has decreased in recent years due to increased health control in industries that use this metal. However, it is still a public health problem worldwide. The use of various plants with chelating properties has been a topic of research today. In traditional medicine, it is said that Coriandrum sativum has chelating properties, but there is no scientific evidence to support this fact. The purpose of this research is to evaluate the chelating effect of methanol extract of coriander and its fractions on Wistar rats intoxicated with lead. Materials and Methods: In this research, male Wistar rats were poisoned with 50 mg/kg of lead acetate and treated with 50 mg/kg of methanol extract and its fractions. The extract and its fractions were administered to four treatment groups. Positive and negative controls were established. Hemoglobin, hematocrit and lead concentrations were analyzed; liver was evaluated histologically in control and treatment groups. Results: The methanol extract of coriander presented a LD50 >1000 mg/dL. The group administered with the methanol extract showed significant difference in the levels of hemoglobin and hematocrit compared to the negative control group. Lead concentration in treatment groups showed a decrease compared to the positive control. Histological evaluation of tissue showed less damage in groups administered with methanolic extract and its fractions compared to the positive control which presented structural alterations. Conclusion: Coriander extracts protect liver and lower lead concentration in rats intoxicated with lead in contrast to the positive control group.
Collapse
Affiliation(s)
- Miguel Ángel Téllez-López
- Facultad de Ciencias Químicas, Universidad Juárez del Estado de Durango. Articulo 123 S/N Fraccionamiento Filadelfia. Gómez Palacio Durango, C.P. 35010, México
| | - Gabriela Mora-Tovar
- Facultad de Ciencias Químicas, Universidad Juárez del Estado de Durango. Articulo 123 S/N Fraccionamiento Filadelfia. Gómez Palacio Durango, C.P. 35010, México
| | - Iromi Marlen Ceniceros-Méndez
- Facultad de Ciencias Químicas, Universidad Juárez del Estado de Durango. Articulo 123 S/N Fraccionamiento Filadelfia. Gómez Palacio Durango, C.P. 35010, México
| | - Concepción García-Lujan
- Facultad de Ciencias Químicas, Universidad Juárez del Estado de Durango. Articulo 123 S/N Fraccionamiento Filadelfia. Gómez Palacio Durango, C.P. 35010, México
| | - Cristo Omar Puente-Valenzuela
- Facultad de Ciencias Biológicas, Universidad Juárez del Estado de Durango. Artículo 123 S/N Fraccionamiento Filadelfia. Gómez Palacio Durango, C.P. 35010, México
| | - María Del Carmen Vega-Menchaca
- Facultad de Ciencias Químicas, Universidad Juárez del Estado de Durango. Articulo 123 S/N Fraccionamiento Filadelfia. Gómez Palacio Durango, C.P. 35010, México
| | - Luis Benjamín Serrano-Gallardo
- Facultad de Ciencias Químicas, Universidad Juárez del Estado de Durango. Articulo 123 S/N Fraccionamiento Filadelfia. Gómez Palacio Durango, C.P. 35010, México.,Departamento de Bioquímica y Farmacología, Centro de Investigación Biomédica, Facultad de Medicina, Universidad Autónoma de Coahuila, Unidad Torreón. Gregorio A. García 198 Sur, Torreón, Coahuila, C.P. 27000, México
| | - Rubén García Garza
- Departamento de Histología, Facultad de Medicina, Universidad Autónoma de Coahuila, Unidad Torreón. Morelos No. 900 Ote. Torreón, Coahuila. México. C.P. 27000, México
| | - Javier Morán-Martínez
- Departamento de Biología Celular y Ultra estructura, Centro de Investigación Biomédica, Facultad de Medicina, Universidad Autónoma de Coahuila, Unidad Torreón. Gregorio A. García 198 Sur, Torreón, Coahuila. México. C.P. 27000, México
| |
Collapse
|
33
|
Sheng Y, Yang X, Lian Y, Zhang B, He X, Xu W, Huang K. Characterization of a cadmium resistance Lactococcus lactis subsp. lactis strain by antioxidant assays and proteome profiles methods. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2016; 46:286-291. [PMID: 27522548 DOI: 10.1016/j.etap.2016.08.008] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2016] [Revised: 08/03/2016] [Accepted: 08/04/2016] [Indexed: 05/28/2023]
Abstract
Heavy metal contamination poses a major threat to the environment and human health for their potential toxicity and non-biodegradable properties. At present, some probiotics bacteria are reported to have great potential to eliminate heavy metals from food and water. In this study, resistance properties of a newly isolated Lactococcus lactis subsp. lactis for cadmium were studied by antioxidant assays and proteomics analysis. Antioxidant capacity of this strain was significantly activated under cadmium stress indicated by Fenton reaction, DPPH assay, SOD assay and GSH assay. Intracellular antioxidant enzyme systems, such as superoxide dismutase, glutathione reductase and catalase were suggested to play vital roles in the activated antioxidant capacity. The up-regulated cadA was associated with the activated P-type ATPases that plays an important role in cadmium resistance. Proteomics analysis identified 12 over-expressed proteins under 50mg/L cadmium stress and these proteins are abundant in oxidative stress response and energy metabolism regulation, which were considered as consequences as cadmium resistance of the strain. Thus, the probiotics Lactococcus lactis subsp. lactis may resist cadmium stress through antioxidant approach and enhanced energy metabolism. The food grade lactis strain may be applied in metal decontamination in environment and food/feed.
Collapse
Affiliation(s)
- Yao Sheng
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Xuan Yang
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Yuanyuan Lian
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Boyang Zhang
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Xiaoyun He
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; The Supervision, Inspection and Testing Center of Genetically Modified Organisms, Ministry of Agriculture, Beijing 100083, China
| | - Wentao Xu
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; The Supervision, Inspection and Testing Center of Genetically Modified Organisms, Ministry of Agriculture, Beijing 100083, China
| | - Kunlun Huang
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; The Supervision, Inspection and Testing Center of Genetically Modified Organisms, Ministry of Agriculture, Beijing 100083, China.
| |
Collapse
|
34
|
Gupta VK, Singh S, Agrawal A, Siddiqi NJ, Sharma B. Phytochemicals Mediated Remediation of Neurotoxicity Induced by Heavy Metals. Biochem Res Int 2015; 2015:534769. [PMID: 26618004 PMCID: PMC4651672 DOI: 10.1155/2015/534769] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2015] [Accepted: 10/15/2015] [Indexed: 01/16/2023] Open
Abstract
Almost all the environmental components including both the abiotic and biotic factors have been consistently threatened by excessive contamination of heavy metals continuously released from various sources. Different heavy metals have been reported to generate adverse effects in many ways. Heavy metals induced neurotoxicity and impairment in signalling cascade leading to cell death (apoptosis) has been indicated by several workers. On one hand, these metals are required by the cellular systems to regulate various biological functions of normal cells, while on the other their biomagnification in the cellular systems produces adverse effects. The mechanism by which the heavy metals induce neurotoxicity follows free radicals production pathway(s) specially the generation of reactive oxygen species and reactive nitrogen species. These free radicals produced in excess have been shown to create an imbalance between the oxidative and antioxidative systems leading to emergence of oxidative stress, which may cause necrosis, DNA damage, and many neurodegenerative disorders. This mini review summarizes the current knowledge available on the protective role of varied natural products isolated from different herbs/plants in imparting protection against heavy metals (cadmium, lead, arsenic, and mercury) mediated neurotoxicity.
Collapse
Affiliation(s)
- Vivek Kumar Gupta
- Department of Biochemistry, University of Allahabad, Allahabad 211002, India
| | - Shweta Singh
- Department of Biochemistry, University of Allahabad, Allahabad 211002, India
| | - Anju Agrawal
- Department of Zoology, SNBVPG College, CSJM University, Kanpur 208001, India
| | - Nikhat Jamal Siddiqi
- Department of Biochemistry, College of Science, P.O. Box 22452, King Saud University, Riyadh 11495, Saudi Arabia
| | - Bechan Sharma
- Department of Biochemistry, University of Allahabad, Allahabad 211002, India
| |
Collapse
|
35
|
Tito A, Bimonte M, Carola A, De Lucia A, Barbulova A, Tortora A, Colucci G, Apone F. An oil-soluble extract ofRubus idaeuscells enhances hydration and water homeostasis in skin cells. Int J Cosmet Sci 2015; 37:588-94. [DOI: 10.1111/ics.12236] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2015] [Accepted: 04/13/2015] [Indexed: 01/24/2023]
Affiliation(s)
- A. Tito
- Arterra Bioscience srl; via B. Brin 69 Napoli Italy
| | - M. Bimonte
- Arterra Bioscience srl; via B. Brin 69 Napoli Italy
| | - A. Carola
- Arterra Bioscience srl; via B. Brin 69 Napoli Italy
| | - A. De Lucia
- Arterra Bioscience srl; via B. Brin 69 Napoli Italy
| | - A. Barbulova
- Arterra Bioscience srl; via B. Brin 69 Napoli Italy
| | - A. Tortora
- Arterra Bioscience srl; via B. Brin 69 Napoli Italy
| | - G. Colucci
- Arterra Bioscience srl; via B. Brin 69 Napoli Italy
- VitaLab srl; via B. Brin 69 Napoli Italy
| | - F. Apone
- Arterra Bioscience srl; via B. Brin 69 Napoli Italy
- VitaLab srl; via B. Brin 69 Napoli Italy
| |
Collapse
|
36
|
Zhai Q, Narbad A, Chen W. Dietary strategies for the treatment of cadmium and lead toxicity. Nutrients 2015; 7:552-71. [PMID: 25594439 PMCID: PMC4303853 DOI: 10.3390/nu7010552] [Citation(s) in RCA: 174] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2014] [Accepted: 01/04/2015] [Indexed: 12/13/2022] Open
Abstract
Cadmium (Cd) and lead (Pb) are toxic heavy metals that cause adverse health effects in humans and animals. Chelation therapy, the conventional treatment for heavy metal toxicity, is reported to have a number of safety and efficacy issues. Recent studies have shown that dietary supplements play important roles in protecting against Cd and Pb toxicity. This paper reviews the evidence for protective effects of essential metals, vitamins, edible plants, phytochemicals, probiotics and other dietary supplements against Cd and Pb toxicity and describes the proposed possible mechanisms. Based on these findings, dietary strategies are recommended for people at risk of Cd and Pb exposure. The application of these strategies is advantageous for both the prevention and alleviation of Cd and Pb toxicity, as such supplements can be added easily and affordably to the daily diet and are expected to have very few side effects compared to the chelation therapy.
Collapse
Affiliation(s)
- Qixiao Zhai
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, 1800 LiHu Road, Wuxi 214122, China.
| | - Arjan Narbad
- Gut Health and Food Safety Programme, Institute of Food Research, Norwich NR4 7UA, UK.
| | - Wei Chen
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, 1800 LiHu Road, Wuxi 214122, China.
| |
Collapse
|
37
|
Nwokocha C, Younger-Coleman N, Nwokocha M, Owu D, Iwuala M. A comparative study of the effect of some nutritional medicinal plants effect on lead accumulation in the liver following different modes of administration. Pharmacognosy Res 2014; 6:306-11. [PMID: 25276068 PMCID: PMC4166819 DOI: 10.4103/0974-8490.138278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2014] [Revised: 03/11/2014] [Accepted: 08/06/2014] [Indexed: 11/07/2022] Open
Abstract
Context and Objectives: Lead (Pb) toxicity leads to cell damage in many organs of the body. Using different treatment interventions and modes of administration we comparatively examined the protective ability of some medicinal plants on liver Pb accumulation. Materials and Methods: Rats were fed on either 7% w/w Zingiber officinale, 7% w/w Allium sativum, 10% w/w Lycopersicon esculentum, 5%, w/w Garcinia kola (all in rat chow), while Pb (100 ppm) was given in drinking water. The additives were administered together with (mode 1), a week after exposure to (mode 2) or a week before metal exposure to (mode 3) the metal for a period of 6 weeks. The metal accumulations in the liver were determined using atomic absorption spectrometry and compared using analysis of variance. Results: Some additives significantly (P < 0.05) reduced, while others enhanced Pb accumulation. Mode 2 yielded the highest mean % protection and mode 3 the lowest, no significant interaction between modes of administration and time of measurement in their relationships to percentage protection, but there was statistically significant (P < 0.05) interaction between modes of administration and additive used in their relationships to percentage protection. Conclusion: Protective effects of medicinal plants are varied and depend on the nature of lead exposure.
Collapse
Affiliation(s)
- Chukwuemeka Nwokocha
- Department of Basic Medical Sciences, The University of The West Indies Mona Campus, Kingston, Jamaica
| | - Novie Younger-Coleman
- Tropical Medicine Research Institute, The University of The West Indies Mona Campus, Kingston, Jamaica
| | - Magdalene Nwokocha
- Department of Haematology, The University of The West Indies Mona Campus, Kingston, Jamaica
| | - Daniel Owu
- Department of Physiology, University of Calabar, Calabar, Nigeria
| | - Moses Iwuala
- Federal University of Technology, Owerri, Nigeria
| |
Collapse
|
38
|
Nwokocha CR, Younger-Coleman N, Nwokocha M, Owu DU, Iwuala M. Investigation of effects of time of measurement and modes of administration on cadmium accumulation in rat liver under some medicinal plants food supplemented diet. Pharmacognosy Res 2014; 6:240-5. [PMID: 25002805 PMCID: PMC4080505 DOI: 10.4103/0974-8490.132604] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2013] [Revised: 01/05/2014] [Accepted: 05/16/2014] [Indexed: 11/30/2022] Open
Abstract
Context and Objectives: Cadmium (Cd) toxicity leads to cell and organ damage, we comparatively examined the protection ability of different medicinal plants on Cd liver accumulation following different treatment interventions and modes of administration. Materials and Methods: Rats were fed either 7% w/w Zingiber officinale, 7% w/w Allium Sativum, 10% w/w Lycopersicon esculentum, 5%, w/w Garcinia kola (all in rat chow), while Cd (200 ppm) was given in drinking water. Additives were administered together with (mode 1), a week after (mode 2) or a week before metal exposure (mode 3) for a period of six weeks. Cd liver was determined using AAS and compared using analysis of variance (ANOVA). Results: All additives significantly (P <0.5) reduced the accumulation of Cd in the liver. After adjusting for time and mode of administration, mean %protection for week 4 was significantly lower by 14.1% (P=0.02) from that for week 2 but the means did not differ with respect to additive used or mode of administration, no statistically significant interaction between modes of administration and either of additives used or time of administration in their respective relationships to percentage protection from Cd. Conclusion: Additives significantly reduced Cd accumulation through a reduction in absorption and enhancement of metal excretion.
Collapse
Affiliation(s)
- Chukwuemeka R Nwokocha
- Tropical Metabolism Research Institute, The University of the West Indies, Mona Campus, Kingston 7, Jamaica, West Indies
| | - Novie Younger-Coleman
- Tropical Metabolism Research Institute, The University of the West Indies, Mona Campus, Kingston 7, Jamaica, West Indies
| | - Magdalene Nwokocha
- Department of Basic Medical Sciences, The University of the West Indies, Mona Campus, Kingston 7, Jamaica, West Indies
| | - Daniel U Owu
- Department of Physiology, University of Calabar, Calabar, Cross River State, Nigeria
| | - Moses Iwuala
- Department of Biotechnology, Federal University of Technology, Owerri, Nigeria
| |
Collapse
|
39
|
|
40
|
Botta A, Martínez V, Mitjans M, Balboa E, Conde E, Vinardell MP. Erythrocytes and cell line-based assays to evaluate the cytoprotective activity of antioxidant components obtained from natural sources. Toxicol In Vitro 2014; 28:120-4. [PMID: 24134852 DOI: 10.1016/j.tiv.2013.10.004] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2012] [Revised: 07/30/2013] [Accepted: 10/07/2013] [Indexed: 11/20/2022]
Abstract
Oxidative stress can damage cellular components including DNA, proteins or lipids, and may cause several skin diseases. To protect from this damage and addressing consumer's appeal to natural products, antioxidants obtained from algal and vegetal extracts are being proposed as antioxidants to be incorporated into formulations. Thus, the development of reliable, quick and economic in vitro methods to study the cytoactivity of these products is a meaningful requirement. A combination of erythrocyte and cell line-based assays was performed on two extracts from Sargassum muticum, one from Ulva lactuca, and one from Castanea sativa. Antioxidant properties were assessed in erythrocytes by the TBARS and AAPH assays, and cytotoxicity and antioxidant cytoprotection were assessed in HaCaT and 3T3 cells by the MTT assay. The extracts showed no antioxidant activity on the TBARS assay, whereas their antioxidant capacity in the AAPH assay was demonstrated. On the cytotoxicity assays, extracts showed low toxicity, with IC50 values higher than 200μg/mL. C. sativa extract showed the most favourable antioxidant properties on the antioxidant cytoprotection assays; while S. muticum and U. lactuca extracts showed a slight antioxidant activity. This battery of methods was useful to characterise the biological antioxidant properties of these natural extracts.
Collapse
Affiliation(s)
- Albert Botta
- Departament de Fisiologia, Facultat de Farmàcia, Universitat de Barcelona, Av. Joan XXIII s/n, 08028 Barcelona, Spain.
| | | | | | | | | | | |
Collapse
|
41
|
San Miguel SM, Opperman LA, Allen EP, Zielinski JE, Svoboda KK. Antioxidant combinations protect oral fibroblasts against metal-induced toxicity. Arch Oral Biol 2013; 58:299-310. [DOI: 10.1016/j.archoralbio.2012.05.013] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2012] [Revised: 05/18/2012] [Accepted: 05/29/2012] [Indexed: 10/28/2022]
|
42
|
Nwokocha CR, Nwokocha MI, Owu DU, Obi J, Olatunde B, Ebe C, Nwangwu O, Iwuala MO. Comparative analysis on the effect of palm oil (Elaeis guineensis) in reducing cadmium and lead accumulation in liver of Wistar rats. Pharmacognosy Res 2012; 4:214-8. [PMID: 23225965 PMCID: PMC3510874 DOI: 10.4103/0974-8490.102266] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2011] [Revised: 02/03/2012] [Accepted: 10/11/2012] [Indexed: 11/29/2022] Open
Abstract
Context: Palm oil from Elaeis guineensis is an edible nutrient substance with anti-inflammatory and antioxidant properties. We examined its protective effect against lead (Pb) and cadmium (Cd) accumulation in the liver. Materials and Methods: 12% w/w of palm oil (PO) in rat chow concentrate was fed to rats exposed to Cd (200ppm) and Pb (100ppm) in drinking water at different feeding regimens. PO was administered either at the same time with the metals (group 2), post-treatment after exposure (group 3) or pre-treatment before exposure (group 4) for six weeks. The heavy metal accumulations in the liver were determined using AAS. Results: Weight losses induced by these metals were significantly (P<0.05) reversed by PO administration. Analysis among the groups showed that post-treatment group had a significant (P<0.05) higher percentage protection to Cd, but same time treatment for Pb (P<0.05) when compared with other groups. The protective ability to PO was only significantly (P<0.05) increased for Pb at week 2, but showed a time-dependent significant (P<0.05) increase for Cd across all treatment regimens. Conclusion: PO is beneficial in reducing metal accumulation in the liver and has a higher hepatoprotective effect to Cd compared to Pb at the selected doses by possibly affecting the processes of uptake, assimilation and elimination of these metals.
Collapse
Affiliation(s)
- Chukwuemeka R Nwokocha
- Department of Basic Medical Sciences, University of the West Indies, Mona Campus, Kingston 7, Jamaica, Nigeria
| | | | | | | | | | | | | | | |
Collapse
|
43
|
Biological activities of dermatological interest by the water extract of the microalga Botryococcus braunii. Arch Dermatol Res 2012; 304:755-64. [PMID: 22684780 DOI: 10.1007/s00403-012-1250-4] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2012] [Revised: 05/14/2012] [Accepted: 05/18/2012] [Indexed: 10/27/2022]
Abstract
The use of microalgae in the skin care market is already established although the scientific rationale for their benefit was not clearly defined. In this work, the biological activities of dermatologic interest of the water extract from the microalga Botryococcus braunii (BBWE) were evaluated by a battery of in vitro assays. At concentrations ranging from 0.1 to 0.001 % (w/v) BBWE promoted adipocytes differentiation by inhibiting hormone-sensitive lipase, thus promoting triglyceride accumulation in the cells. BBWE also induced gene expression of proteins involved in the maintenance of skin cells water balance such as aquaporin-3 (AQP3), filaggrin (FLG) and involucrin (INV). 0.1 % BBWE increased the gene expression of AQP3 of 2.6-folds, that of FLG and INV of 1.5- and 1.9-folds, respectively. Moreover, it induced the biosynthesis of collagen I and collagen III by 80 and 40 %, respectively, compared to the untreated control. BBWE antioxidant activity, evaluated by oxygen radical absorbance capacity (ORAC) assay, was of 43.5 μmol Trolox per gram of extract: a quite high value among those found for other microalgae extracts. BBWE inhibited the inducible nitric oxide synthase (iNOS) gene expression and the consequent nitrite oxide (NO) production under oxidative stress. At a concentration of 0.02 % BBWE reduced by 50 % the expression of iNOS and by about 75 % the NO production. Taken together, the results demonstrated that B. braunii water extract exerted an array of biological activities concurring with the skin health maintenance; therefore, it is a potential bioactive ingredient to be included in cosmetic products.
Collapse
|
44
|
Correlations between Different Heavy Metals in Diverse Body Fluids: Studies of Human Semen Quality. Adv Urol 2012; 2012:420893. [PMID: 22312326 PMCID: PMC3270542 DOI: 10.1155/2012/420893] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2011] [Accepted: 10/09/2011] [Indexed: 11/21/2022] Open
Abstract
It has been hypothesized that exposure to heavy metals may impair male reproduction. To measure the effect produced by low doses of heavy metals on semen parameters, it is necessary to clarify in which body fluids those measurements must be performed. Sixty-one men attending infertility clinics participated in our study. Concentrations of lead, cadmium, and mercury were measured in whole blood, blood plasma, and seminal plasma using spectroanalytical and electrochemical methods. Semen analyses were performed according to World Health Organization criteria. For statistical analysis, Spearman's rank correlations, mean comparison tests, and discriminant analysis were calculated. Significant correlations between the measured concentrations of the three heavy metals in the same biological fluids were observed. However, no similar relationship was seen when comparing the concentrations in different body fluids of the same metal. According to our results and previous publications, seminal plasma might be the best body fluid for assessing impairment of human semen parameters.
Collapse
|