1
|
Li LY, Xie X, Jiang HX, Yu J. Improving Memory Through Better Sleep in Community-Dwelling Older Adults: A Tai Chi Intervention Study. J Gerontol B Psychol Sci Soc Sci 2024; 79:gbae156. [PMID: 39269015 DOI: 10.1093/geronb/gbae156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Indexed: 09/15/2024] Open
Abstract
OBJECTIVES The relationship between sleep and memory has been well documented. However, it remains unclear whether a mind-body exercise, that is, Tai Chi exercise, can improve memory performance in older adults by improving their subjective and objective sleep. METHODS A randomized controlled trial was conducted with participants (M = 67.36, 56-79 years) randomly assigned to Tai Chi and control groups. The primary outcomes were sleep, both subjectively reported and objectively assessed by actigraphy, and memory performance, as well as the mediating role of sleep in memory improvement with Tai Chi practice. RESULTS Tai Chi exercise led to improvements in subjective sleep, as indicated by Insomnia Severity Index (ISI) (p < .001, Cohen's d = 0.62) and daytime dysfunction of the Pittsburgh sleep quality index (PSQI) (p = .02, Cohen's d = 0.80), and in actigraphy-assessed sleep onset latency (p < .01, Cohen's d = 0.61), as well as improved memory performance on digit span forward (p < .001, Cohen's d = 1.20) and visual spatial memory tasks (p < .01, Cohen's d = 0.83) compared to the control group. Importantly, Tai Chi practice improved digit span forward memory performance through parallel mediation of both subjective sleep (i.e., daytime dysfunction of the PSQI) and objective sleep (i.e., sleep onset latency; b = 0.29, p < .01). DISCUSSION Our findings uncovered the potential benefits of Tai Chi exercise in relation to both subjective and objective sleep in older adults, in turn, how sleep changes played a role in the link between Tai Chi exercise and memory changes in older adults.
Collapse
Affiliation(s)
- Li-Yuan Li
- Faculty of Psychology, Southwest University, Chongqing, China
| | - Xin Xie
- Faculty of Psychology, Southwest University, Chongqing, China
| | - Hai-Xin Jiang
- Faculty of Psychology, Southwest University, Chongqing, China
| | - Jing Yu
- Faculty of Psychology, Southwest University, Chongqing, China
| |
Collapse
|
2
|
Arlandis S, Fry C, Wyndaele M, Apostolidis A, Finazzi-Agró E, Tyagi P, Winder M, Hashitani H, Mosiello G, Averbeck MA, Wein A, Abrams P. Think Tank 2: How Do We Precisely Define the "High Risk Bladder" and What Are the Interrelationships Between Inflammation, Blood Flow, Fibrosis, and Loss of Bladder Compliance? Neurourol Urodyn 2024. [PMID: 39473282 DOI: 10.1002/nau.25604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2024] [Accepted: 10/02/2024] [Indexed: 11/03/2024]
Abstract
INTRODUCTION Defining "high-risk bladder" or "high-pressure bladder" involves recognizing the potential for an unsafe lower urinary tract, where dysfunction in storage and micturition can threaten upper urinary tract health, leading to unfavorable outcomes like dialysis, recurrent infections, systemic impact, or mortality. METHODS ICI-RS was held in Bristol in June 2024, and Think Tank 2 aimed to define research priorities including identifying clinical predictors and developing prevention and monitoring strategies. RESULTS Risk factors encompass both congenital and neurogenic lower urinary tract dysfunction, bladder outlet obstruction, vascular diseases, and inflammatory disorders, but a validated stratification risk is lacking. Reduced compliance and detrusor overactivity lead to high filling pressures and raised detrusor leak point pressure, playing urodynamic studies a crucial role in risk assessment, though further research is needed for different neurogenic populations. Congenital conditions such as spina bifida, posterior urethral valves, and bladder exstrophy also contribute to a high-risk bladder through fibrosis and reduced compliance. Inflammation and ischemia are key factors, with inflammation leading to fibrosis and impaired bladder storage and voiding function. Novel treatments, including sGC activators, PDE5 inhibitors, and regenerative therapies like stem cell injections and extracorporeal shock wave treatment, show promise in mitigating fibrosis and improving bladder compliance. CONCLUSIONS Identifying and validating clinical risk stratification models, precise biomarkers and therapeutic windows remains essential for effective management and reversal of bladder fibrosis and dysfunction.
Collapse
Affiliation(s)
- Salvador Arlandis
- Urology Department, La Fe University and Polytechnic Hospital, Valencia, Spain
| | - Christopher Fry
- School of Physiology, Pharmacology and Neuroscience, University of Bristol, Bristol, UK
| | - Michel Wyndaele
- Department of Urology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Apostolos Apostolidis
- 2nd Department of Urology, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | | | - Pradeep Tyagi
- Department of Urology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Michael Winder
- Department of Pharmacology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Hikaru Hashitani
- Department of Cell Physiology, Nagoya City University, Nagoya, Japan
| | - Giovanni Mosiello
- Department of Nephrology and Urology, Bambino Gesù Children's Hospital and Research Institute, Rome, Italy
| | - Marcio Augusto Averbeck
- Urology Department, Moinhos de Vento Hospital, São Lucas Hospital, PUCRS, Porto Alegre, Brazil
| | - Alan Wein
- Desai-Seth Institute of Urology, University of Miami, Miami, Florida, USA
| | - Paul Abrams
- Department of Urology, University of Bristol, Bristol, UK
| |
Collapse
|
3
|
Tyus D, Leslie JL, Naz F, Uddin MJ, Thompson B, Petri WA. The sympathetic nervous system drives hyperinflammatory responses to Clostridioides difficile infection. Cell Rep Med 2024; 5:101771. [PMID: 39368481 PMCID: PMC11513855 DOI: 10.1016/j.xcrm.2024.101771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 07/30/2024] [Accepted: 09/13/2024] [Indexed: 10/07/2024]
Abstract
Clostridioides difficile infection (CDI) is a leading cause of hospital-acquired infections in the United States, known for triggering severe disease by hyperactivation of the host response. In this study, we determine the impact of the sympathetic nervous system (SNS) on CDI disease severity. Mouse models of CDI are administered inhibitors of SNS activity prior to CDI. Chemical sympathectomy or pharmacological inhibition of norepinephrine synthesis greatly reduces mortality and disease severity in the CDI model. Pharmacological blockade or genetic ablation of the alpha 2 adrenergic receptor ameliorates intestinal inflammation, disease severity, and mortality rate. These results underscore the role of the SNS and the alpha 2 adrenergic receptor in CDI pathogenesis and suggest that targeting neural systems could be a promising approach to therapy in severe disease.
Collapse
Affiliation(s)
- David Tyus
- Neuroscience Graduate Program, University of Virginia Health System, Charlottesville, VA 22908, USA
| | - Jhansi L Leslie
- Division of Infectious Disease and International Health, University of Virginia School of Medicine, Charlottesville, VA 22908, USA
| | - Farha Naz
- Division of Infectious Disease and International Health, University of Virginia School of Medicine, Charlottesville, VA 22908, USA
| | - Md Jashim Uddin
- Division of Infectious Disease and International Health, University of Virginia School of Medicine, Charlottesville, VA 22908, USA
| | - Brandon Thompson
- Departments of Medicine, Pathology, Microbiology, Immunology and Cancer Biology, University of Virginia Health System, Charlottesville, VA 22908, USA; Division of Infectious Disease and International Health, University of Virginia School of Medicine, Charlottesville, VA 22908, USA
| | - William A Petri
- Neuroscience Graduate Program, University of Virginia Health System, Charlottesville, VA 22908, USA; Departments of Medicine, Pathology, Microbiology, Immunology and Cancer Biology, University of Virginia Health System, Charlottesville, VA 22908, USA; Division of Infectious Disease and International Health, University of Virginia School of Medicine, Charlottesville, VA 22908, USA.
| |
Collapse
|
4
|
Dorogovtsev V, Yankevich D, Martyushev-Poklad A, Borisov I, Grechko AV. The Importance of Orthostatic Increase in Pulse Wave Velocity in the Diagnosis of Early Vascular Aging. J Clin Med 2024; 13:5713. [PMID: 39407773 PMCID: PMC11476871 DOI: 10.3390/jcm13195713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Revised: 09/08/2024] [Accepted: 09/24/2024] [Indexed: 10/20/2024] Open
Abstract
Background/Objectives: Vascular aging can be assessed by arterial stiffness measured through pulse wave velocity (PWV). Increased PWV predicts arterial hypertension, cardiovascular events and all-cause mortality. Detection of early signs of vascular aging remains an unmet problem. To search for the most sensitive markers for the early increase in vascular stiffness in a healthy population. Methods: One-hundred and twenty healthy subjects were divided in three equal age groups: <30 years, 30-45 years and >45 years. Head-up tilt test (HUTT) protocol was applied, providing a standardized hydrostatic column height. PWV at the brachial-ankle artery site (baPWV) was measured using a multichannel sphygmomanometer ABI System 100 PWV in three positions: in the baseline horizontal (supine) position-baPWVb; during the head tilt-up with an individual angle of inclination-baPWVt; and when returning to supine. Results: The most sensitive marker of early stiffness increase in a healthy population is the relative orthostatic increase in baPWV, ΔbaPWV/baPWVb, where ΔbaPWV = baPWVt - baPWVb. The significance of differences in this parameter between the young and elderly groups reached p = 0.000075 and p = 0.000006, respectively. Conclusions: The proposed index ΔbaPWV/baPWVb can be considered as a promising sensitive early biomarker of vascular aging and as a potential effective indicator in cardiovascular prevention. A longitudinal cohort study is needed to confirm this assumption.
Collapse
Affiliation(s)
- Victor Dorogovtsev
- Federal Research and Clinical Center of Intensive Care Medicine and Rehabilitology, 107031 Moscow, Russia; (D.Y.); (A.M.-P.); (I.B.); (A.V.G.)
| | | | | | | | | |
Collapse
|
5
|
Blackwood SJ, Tischer D, van de Ven MPF, Pontén M, Edman S, Horwath O, Apró W, Röja J, Ekblom MM, Moberg M, Katz A. Elevated heart rate and decreased muscle endothelial nitric oxide synthase in early development of insulin resistance. Am J Physiol Endocrinol Metab 2024; 327:E172-E182. [PMID: 38836779 DOI: 10.1152/ajpendo.00148.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 05/29/2024] [Accepted: 05/30/2024] [Indexed: 06/06/2024]
Abstract
Insulin resistance (IR) is a risk factor for the development of several major metabolic diseases. Muscle fiber composition is established early in life and is associated with insulin sensitivity. Hence, muscle fiber composition was used to identify early defects in the development of IR in healthy young individuals in the absence of clinical manifestations. Biopsies were obtained from the thigh muscle, followed by an intravenous glucose tolerance test. Indices of insulin action were calculated and cardiovascular measurements, analyses of blood and muscle were performed. Whole body insulin sensitivity (SIgalvin) was positively related to expression of type I muscle fibers (r = 0.49; P < 0.001) and negatively related to resting heart rate (HR, r = -0.39; P < 0.001), which was also negatively related to expression of type I muscle fibers (r = -0.41; P < 0.001). Muscle protein expression of endothelial nitric oxide synthase (eNOS), whose activation results in vasodilation, was measured in two subsets of subjects expressing a high percentage of type I fibers (59 ± 6%; HR = 57 ± 9 beats/min; SIgalvin = 1.8 ± 0.7 units) or low percentage of type I fibers (30 ± 6%; HR = 71 ± 11; SIgalvin = 0.8 ± 0.3 units; P < 0.001 for all variables vs. first group). eNOS expression was 1) higher in subjects with high type I expression; 2) almost twofold higher in pools of type I versus II fibers; 3) only detected in capillaries surrounding muscle fibers; and 4) linearly associated with SIgalvin. These data demonstrate that an altered function of the autonomic nervous system and a compromised capacity for vasodilation in the microvasculature occur early in the development of IR.NEW & NOTEWORTHY Insulin resistance (IR) is a risk factor for the development of several metabolic diseases. In healthy young individuals, an elevated heart rate (HR) correlates with low insulin sensitivity and high expression of type II skeletal muscle fibers, which express low levels of endothelial nitric oxide synthase (eNOS) and, hence, a limited capacity to induce vasodilation in response to insulin. Early targeting of the autonomic nervous system and microvasculature may attenuate development of diseases stemming from insulin resistance.
Collapse
Affiliation(s)
- Sarah J Blackwood
- Åstrand Laboratory, Department of Physiology, Nutrition and Biomechanics, The Swedish School of Sport and Health Sciences, Stockholm, Sweden
| | - Dominik Tischer
- Åstrand Laboratory, Department of Physiology, Nutrition and Biomechanics, The Swedish School of Sport and Health Sciences, Stockholm, Sweden
| | - Myrthe P F van de Ven
- Åstrand Laboratory, Department of Physiology, Nutrition and Biomechanics, The Swedish School of Sport and Health Sciences, Stockholm, Sweden
| | - Marjan Pontén
- Åstrand Laboratory, Department of Physiology, Nutrition and Biomechanics, The Swedish School of Sport and Health Sciences, Stockholm, Sweden
| | - Sebastian Edman
- Åstrand Laboratory, Department of Physiology, Nutrition and Biomechanics, The Swedish School of Sport and Health Sciences, Stockholm, Sweden
| | - Oscar Horwath
- Åstrand Laboratory, Department of Physiology, Nutrition and Biomechanics, The Swedish School of Sport and Health Sciences, Stockholm, Sweden
| | - William Apró
- Åstrand Laboratory, Department of Physiology, Nutrition and Biomechanics, The Swedish School of Sport and Health Sciences, Stockholm, Sweden
- Department of Clinical Science, Intervention and Technology, Karolinska Institutet, Stockholm, Sweden
| | - Julia Röja
- Åstrand Laboratory, Department of Physiology, Nutrition and Biomechanics, The Swedish School of Sport and Health Sciences, Stockholm, Sweden
| | - Maria M Ekblom
- Department of Physical Activity and Health, The Swedish School of Sport and Health Sciences, Stockholm, Sweden
- Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Marcus Moberg
- Åstrand Laboratory, Department of Physiology, Nutrition and Biomechanics, The Swedish School of Sport and Health Sciences, Stockholm, Sweden
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | - Abram Katz
- Åstrand Laboratory, Department of Physiology, Nutrition and Biomechanics, The Swedish School of Sport and Health Sciences, Stockholm, Sweden
| |
Collapse
|
6
|
Satué K, Fazio E, Velasco-Martínez MG, Fauci DL, Cravana C, Medica P. Effect of age on amplitude of circulating catecholamine's change of healthy cyclic mares. Vet Res Commun 2024; 48:2863-2868. [PMID: 38913240 DOI: 10.1007/s11259-024-10443-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Accepted: 06/18/2024] [Indexed: 06/25/2024]
Abstract
Catecholamines (CATs) are neurotransmitters and allostatic hormones whose plasma concentrations are physiologically modified in various species such as human, rats, mice and donkeys, with advancing age. However, currently these mechanisms are less well elucidated in horses and more specifically in mares. The hypothesis of this study was that, as in afore mentioned species, the CATs could experience physiological changes with advancing age. The objective of this study was to evaluate the concentrations of adrenaline (A), noradrenaline (NA), dopamine (DA), and serotonin (5-HT) in mares of different ages. Blood samples were drawn from 56 non-pregnant Spanish Purebred mares belonging to four different age groups: 6 to 9 years, 10 to 12 years, 13 to 16 years and > 16 years. The concentrations of A, NA, DA, and 5-HT were determined by competition EIA-Technical 3-CAt EIA, specifically validated for horses. Mares aged > 16 years showed lower A, DA, and 5-HT but higher NA concentrations than 6-9, 10-12, and 13-16 years (p < 0.05). Mares of 13-16 years showed lower A and higher NA than 6-9 and 10-12 years (p < 0.05). A and NA (r=-0.72; p < 0.05), and NA and 5-HT (r=-0.67; p < 0.05) were negatively correlated, and A and 5-HT (r = 0.74; p < 0.05) were positively correlated. Advanced age leads to a predominance of sympathetic nervous activity and lower serotonergic activity in non-pregnant mares.
Collapse
Affiliation(s)
- Katiuska Satué
- Department of Animal Medicine and Surgery, Faculty of Veterinary Medicine, CEU-Cardenal Herrera University, Tirant lo Blanc, 7, Alfara del Patriarca, Valencia, 46115, Spain.
| | - Esterina Fazio
- Department of Veterinary Sciences, Veterinary Physiology Unit, Polo Universitario Annunziata, Via Palatucci 13, Messina, 98168, Italy
| | - María Gemma Velasco-Martínez
- Department of Animal Medicine and Surgery, Faculty of Veterinary Medicine, CEU-Cardenal Herrera University, Tirant lo Blanc, 7, Alfara del Patriarca, Valencia, 46115, Spain
| | - Deborah La Fauci
- Department of Veterinary Sciences, Veterinary Physiology Unit, Polo Universitario Annunziata, Via Palatucci 13, Messina, 98168, Italy
| | - Cristina Cravana
- Department of Veterinary Sciences, Veterinary Physiology Unit, Polo Universitario Annunziata, Via Palatucci 13, Messina, 98168, Italy
| | - Pietro Medica
- Department of Veterinary Sciences, Veterinary Physiology Unit, Polo Universitario Annunziata, Via Palatucci 13, Messina, 98168, Italy
| |
Collapse
|
7
|
Chakrabarty B, Winder M, Kanai AJ, Hashitani H, Drake M, Abrams P, Fry CH. Nitric oxide signaling pathways in the normal and pathological bladder: Do they provide new pharmacological pathways?-ICI-RS 2023. Neurourol Urodyn 2024; 43:1344-1352. [PMID: 37902298 DOI: 10.1002/nau.25321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Accepted: 10/22/2023] [Indexed: 10/31/2023]
Abstract
AIMS The nitric oxide (NO•)/soluble guanylate cyclase/cyclic-GMP (cGMP) signaling pathway is ubiquitous and regulates several functions in physiological systems as diverse as the vascular, nervous, and renal systems. However, its roles in determining normal and abnormal lower urinary tract functions are unclear. The aim was to identify potential therapeutic targets associated with this pathway to manage lower urinary tract functional disorders. METHODS This review summarizes a workshop held under the auspices of ICI-RS with a view to address these questions. RESULTS Four areas were addressed: NO• signaling to regulate neurotransmitter release to detrusor smooth muscle; its potential dual roles in alleviating and exacerbating inflammatory pathways; its ability to act as an antifibrotic mediator; and the control by nitrergic nerves of lower urinary tract vascular dynamics and the contractile performance of muscular regions of the bladder wall. Central to much of the discussion was the role of the NO• receptor, soluble guanylate cyclase (sGC) in regulating the generation of the enzyme product, the second messenger cGMP. The redox state of sGC is crucial in determining its enzymic activity and the role of a class of novel agents, sGC activators, to optimize activity and to potentially alleviate the consequences of lower urinary tract disorders was highlighted. In addition, the consequences of a functional relationship between nitrergic and sympathetic nerves to regulate vascular dynamics was discussed. CONCLUSIONS Several potential NO•-dependent drug targets in the lower urinary tract were identified that provide the basis for future research and translation to clinical trials.
Collapse
Affiliation(s)
- Basu Chakrabarty
- School of Physiology, Pharmacology & Neuroscience, University of Bristol, Bristol, UK
| | - Michael Winder
- Department of Pharmacology, University of Gothenburg, Gothenburg, Sweden
| | - Anthony J Kanai
- Departments of Medicine and Pharmacology & Chemical Biology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Hikaru Hashitani
- Department of Cell Physiology, Nagoya City University, Nagoya, Japan
| | - Marcus Drake
- Department of Surgery and Cancer, Hammersmith Hospital, London, UK
| | - Paul Abrams
- Bristol Urological Institute, North Bristol NHS Trust, Bristol, UK
| | - Christopher H Fry
- School of Physiology, Pharmacology & Neuroscience, University of Bristol, Bristol, UK
| |
Collapse
|
8
|
Kopp W. Aging and "Age-Related" Diseases - What Is the Relation? Aging Dis 2024:AD.2024.0570. [PMID: 39012663 DOI: 10.14336/ad.2024.0570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Accepted: 06/28/2024] [Indexed: 07/17/2024] Open
Abstract
The study explores the intricate relationship between aging and the development of noncommunicable diseases [NCDs], focusing on whether these diseases are inevitable consequences of aging or primarily driven by lifestyle factors. By examining epidemiological data, particularly from hunter-gatherer societies, the study highlights that many NCDs prevalent in modern populations are rare in these societies, suggesting a significant influence of lifestyle choices. It delves into the mechanisms through which poor diet, smoking, and other lifestyle factors contribute to systemic physiological imbalances, characterized by oxidative stress, insulin resistance and hyperinsulinemia, and dysregulation of the sympathetic nervous system, the renin-angiotensin-aldosterone system, and the immune system. The interplay between this pattern and individual factors such as genetic susceptibility, biological variability, epigenetic changes and the microbiome is proposed to play a crucial role in the development of a range of age-related NCDs. Modified biomolecules such as oxysterols and advanced glycation end products also contribute to their development. Specific diseases such as benign prostatic hyperplasia, Parkinson's disease, glaucoma and osteoarthritis are analyzed to illustrate these mechanisms. The study concludes that while aging contributes to the risk of NCDs, lifestyle factors play a crucial role, offering potential avenues for prevention and intervention through healthier living practices. One possible approach could be to try to restore the physiological balance, e.g. through dietary measures [e.g. Mediterranean diet, Okinawan diet or Paleolithic diet] in conjunction with [a combination of] pharmacological interventions and other lifestyle changes.
Collapse
|
9
|
Edwards JJ, Coleman DA, Ritti-Dias RM, Farah BQ, Stensel DJ, Lucas SJE, Millar PJ, Gordon BDH, Cornelissen V, Smart NA, Carlson DJ, McGowan C, Swaine I, Pescatello LS, Howden R, Bruce-Low S, Farmer CKT, Leeson P, Sharma R, O'Driscoll JM. Isometric Exercise Training and Arterial Hypertension: An Updated Review. Sports Med 2024; 54:1459-1497. [PMID: 38762832 PMCID: PMC11239608 DOI: 10.1007/s40279-024-02036-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/08/2024] [Indexed: 05/20/2024]
Abstract
Hypertension is recognised as a leading attributable risk factor for cardiovascular disease and premature mortality. Global initiatives towards the prevention and treatment of arterial hypertension are centred around non-pharmacological lifestyle modification. Exercise recommendations differ between professional and scientific organisations, but are generally unanimous on the primary role of traditional aerobic and dynamic resistance exercise. In recent years, isometric exercise training (IET) has emerged as an effective novel exercise intervention with consistent evidence of reductions in blood pressure (BP) superior to that reported from traditional guideline-recommended exercise modes. Despite a wealth of emerging new data and endorsement by select governing bodies, IET remains underutilised and is not widely prescribed in clinical practice. This expert-informed review critically examines the role of IET as a potential adjuvant tool in the future clinical management of BP. We explore the efficacy, prescription protocols, evidence quality and certainty, acute cardiovascular stimulus, and physiological mechanisms underpinning its anti-hypertensive effects. We end the review with take-home suggestions regarding the direction of future IET research.
Collapse
Affiliation(s)
- Jamie J Edwards
- School of Psychology and Life Sciences, Canterbury Christ Church University, Kent, CT1 1QU, UK
| | - Damian A Coleman
- School of Psychology and Life Sciences, Canterbury Christ Church University, Kent, CT1 1QU, UK
| | - Raphael M Ritti-Dias
- Graduate Program in Rehabilitation Sciences, University Nove de Julho, São Paulo, Brazil
| | - Breno Q Farah
- Department of Physical Education, Universidade Federal Rural de Pernambuco, Recife, Brazil
| | - David J Stensel
- National Centre for Sport and Exercise Medicine, School of Sport, Exercise and Health Sciences, Loughborough University, Loughborough, UK
- NIHR Leicester Biomedical Research Centre, University Hospitals of Leicester NHS Trust and the University of Leicester, Leicester, UK
- Faculty of Sport Sciences, Waseda University, Tokyo, Japan
- Department of Sports Science and Physical Education, The Chinese University of Hong Kong, Hong Kong, China
| | - Sam J E Lucas
- School of Sport, Exercise and Rehabilitation Sciences, University of Birmingham, Birmingham, UK
| | - Philip J Millar
- Human Cardiovascular Physiology Laboratory, Department of Human Health and Nutritional Sciences, College of Biological Sciences, University of Guelph, Guelph, ON, Canada
| | - Ben D H Gordon
- Department of Health and Human Development, University of Pittsburgh, Pittsburgh, PA, USA
| | | | - Neil A Smart
- School of Science and Technology, University of New England, Armidale, NSW, Australia
| | - Debra J Carlson
- School of Health, Medical and Applied Sciences, CQ University, North Rockhampton, QLD, Australia
| | - Cheri McGowan
- Department of Kinesiology, University of Windsor, Windsor, ON, Canada
| | - Ian Swaine
- Sport Science, University of Greenwich, London, UK
| | - Linda S Pescatello
- Department of Kinesiology, University of Connecticut, Storrs, CT, 06269, USA
| | - Reuben Howden
- Department of Applied Physiology, Health and Clinical Sciences, UNC Charlotte, Charlotte, NC, 28223, USA
| | - Stewart Bruce-Low
- Department of Applied Sport and Exercise Science, University of East London, London, UK
| | | | - Paul Leeson
- Oxford Clinical Cardiovascular Research Facility, Department of Cardiovascular Medicine, University of Oxford, Oxford, UK
| | - Rajan Sharma
- Department of Cardiology, St George's University Hospitals NHS Foundation Trust, Blackshaw Road, Tooting, London, SW17 0QT, UK
| | - Jamie M O'Driscoll
- School of Psychology and Life Sciences, Canterbury Christ Church University, Kent, CT1 1QU, UK.
- Department of Cardiology, St George's University Hospitals NHS Foundation Trust, Blackshaw Road, Tooting, London, SW17 0QT, UK.
| |
Collapse
|
10
|
Fennell CRJ, Mauger AR, Hopker JG. Inter-day reliability of heart rate complexity and variability metrics in healthy highly active younger and older adults. Eur J Appl Physiol 2024; 124:1409-1424. [PMID: 38054978 PMCID: PMC11055755 DOI: 10.1007/s00421-023-05373-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Accepted: 11/11/2023] [Indexed: 12/07/2023]
Abstract
PURPOSE To investigate the inter-day reliability of time-domain, frequency-domain, and nonlinear HRV metrics in healthy highly active younger and older adults. The study also assessed the effect of age on the HRV metrics. METHODS Forty-four older adults (34 M, 10F; 59 ± 5 years;V ˙ O 2peak = 40.9 ± 7.6 ml kg-1 min-1) and twenty-two younger adults (16 M, 6F; 22 ± 4 years;V ˙ O 2peak = 47.2 ± 12.8 ml kg-1 min-1) attended the laboratory. Visit one assessed aerobic fitness through an exercise test. In visits two and three, participants completed a 30-min supine RR interval measurement to derive the HRV metrics. RESULTS The younger group (YG) and older group (OG) demonstrated poor to good day-to-day relative and absolute reliability for all HRV metrics (OG, ICCs = 0.33 to 0.69 and between day CVs = 3.8 to 29.2%; YG, ICCs = 0.37 to 0.93 and between day CVs = 3.5 to 36.5%). There was a significant reduction in ApEn (P < 0.001), SampEn (P = 0.031), RMSSD (P < 0.001), SDNN (P < 0.001), LF power (P < 0.001) and HF power (P < 0.001), HRV metrics with ageing. There was no significant effect of age the complexity metrics DFA α1 (P = 0.107), α2 (P = 0.147) and CI-8 (P = 0.493). CONCLUSION HRV metrics are reproducible between days in both healthy highly active younger and older adults. There is a decline in linear and nonlinear HRV metrics with age, albeit there being no age-related change in the nonlinear metrics, DFA α1, α2 and CI-8.
Collapse
Affiliation(s)
- Christopher R J Fennell
- School of Sport and Exercise Sciences, University of Kent, Chipperfield Building, Canterbury, Kent, CT2 7PE, UK.
| | - Alexis R Mauger
- School of Sport and Exercise Sciences, University of Kent, Chipperfield Building, Canterbury, Kent, CT2 7PE, UK
| | - James G Hopker
- School of Sport and Exercise Sciences, University of Kent, Chipperfield Building, Canterbury, Kent, CT2 7PE, UK
| |
Collapse
|
11
|
Hashitani H, Mitsui R, Hirai Y, Tanaka H, Miwa-Nishimura K. Nitrergic inhibition of sympathetic arteriolar constrictions in the female rodent urethra. J Physiol 2024; 602:2199-2226. [PMID: 38656747 DOI: 10.1113/jp285583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Accepted: 04/08/2024] [Indexed: 04/26/2024] Open
Abstract
During the urine storage phase, tonically contracting urethral musculature would have a higher energy consumption than bladder muscle that develops phasic contractions. However, ischaemic dysfunction is less prevalent in the urethra than in the bladder, suggesting that urethral vasculature has intrinsic properties ensuring an adequate blood supply. Diameter changes in rat or mouse urethral arterioles were measured using a video-tracking system. Intercellular Ca2+ dynamics in arteriolar smooth muscle (SMCs) and endothelial cells were visualised using NG2- and parvalbumin-GCaMP6 mice, respectively. Fluorescence immunohistochemistry was used to visualise the perivascular innervation. In rat urethral arterioles, sympathetic vasoconstrictions were predominantly suppressed by α,β-methylene ATP (10 μM) but not prazosin (1 μM). Tadalafil (100 nM), a PDE5 inhibitor, diminished the vasoconstrictions in a manner reversed by N-ω-propyl-l-arginine hydrochloride (l-NPA, 1 μM), a neuronal NO synthesis (nNOS) inhibitor. Vesicular acetylcholine transporter immunoreactive perivascular nerve fibres co-expressing nNOS were intertwined with tyrosine hydroxylase immunoreactive sympathetic nerve fibres. In phenylephrine (1 μM) pre-constricted rat or mouse urethral arterioles, nerve-evoked vasodilatations or transient SMC Ca2+ reductions were largely diminished by l-nitroarginine (l-NA, 10 μM), a broad-spectrum NOS inhibitor, but not by l-NPA. The CGRP receptor antagonist BIBN-4096 (1 μM) shortened the vasodilatory responses, while atropine (1 μM) abolished the l-NA-resistant transient vasodilatory responses. Nerve-evoked endothelial Ca2+ transients were abolished by atropine plus guanethidine (10 μM), indicating its neurotransmitter origin and absence of non-adrenergic non-cholinergic endothelial NO release. In urethral arterioles, NO released from parasympathetic nerves counteracts sympathetic vasoconstrictions pre- and post-synaptically to restrict arteriolar contractility. KEY POINTS: Despite a higher energy consumption of the urethral musculature than the bladder detrusor muscle, ischaemic dysfunction of the urethra is less prevalent than that of the bladder. In the urethral arterioles, sympathetic vasoconstrictions are predominately mediated by ATP, not noradrenaline. NO released from parasympathetic nerves counteracts sympathetic vasoconstrictions by its pre-synaptic inhibition of sympathetic transmission as well as post-synaptic arteriolar smooth muscle relaxation. Acetylcholine released from parasympathetic nerves contributes to endothelium-dependent, transient vasodilatations, while CGRP released from sensory nerves prolongs NO-mediated vasodilatations. PDE5 inhibitors could be beneficial to maintain and/or improve urethral blood supply and in turn the volume and contractility of urethral musculature.
Collapse
Affiliation(s)
- Hikaru Hashitani
- Department of Cell Physiology, Graduate School of Medical Sciences, Nagoya City University, Nagoya, Japan
| | - Retsu Mitsui
- Department of Cell Physiology, Graduate School of Medical Sciences, Nagoya City University, Nagoya, Japan
| | - Yuuna Hirai
- Department of Cell Physiology, Graduate School of Medical Sciences, Nagoya City University, Nagoya, Japan
| | - Hidekazu Tanaka
- Department of Cell Physiology, Graduate School of Medical Sciences, Nagoya City University, Nagoya, Japan
| | - Kyoko Miwa-Nishimura
- Department of Cell Physiology, Graduate School of Medical Sciences, Nagoya City University, Nagoya, Japan
| |
Collapse
|
12
|
Giunta S, Xia S, Pelliccioni G, Olivieri F. Autonomic nervous system imbalance during aging contributes to impair endogenous anti-inflammaging strategies. GeroScience 2024; 46:113-127. [PMID: 37821752 PMCID: PMC10828245 DOI: 10.1007/s11357-023-00947-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Accepted: 09/13/2023] [Indexed: 10/13/2023] Open
Abstract
Inflammaging refers to the age-related low grade, sterile, chronic, systemic, and long-lasting subclinical, proinflammatory status, currently recognized as the main risk factor for development and progression of the most common age-related diseases (ARDs). Extensive investigations were focused on a plethora of proinflammatory stimuli that can fuel inflammaging, underestimating and partly neglecting important endogenous anti-inflammaging mechanisms that could play a crucial role in such age-related proinflammatory state. Studies on autonomic nervous system (ANS) functions during aging highlighted an imbalance toward an overactive sympathetic nervous system (SNS) tone, promoting proinflammatory conditions, and a diminished parasympathetic nervous system (PNS) activity, playing anti-inflammatory effects mediated by the so called cholinergic anti-inflammatory pathway (CAP). At the molecular level, CAP is characterized by signals communicated via the vagus nerve (with the possible involvement of the splenic nerves) through acetylcholine release to downregulate the inflammatory actions of macrophages, key players of inflammaging. Notably, decreased vagal function and increased burden of activated/senescent macrophages (macrophaging) probably precede the development of several age-related risk factors and diseases, while increased vagal function and reduced macrophaging could be associated with relevant reduction of risk profiles. Hypothalamic-pituitary-adrenal axis (HPA axis) is another pathway related to ANS promoting some anti-inflammatory response mainly through increased cortisol levels. In this perspective review, we highlighted that CAP and HPA, representing broadly "anti-inflammaging" mechanisms, have a reduced efficacy and lose effectiveness in aged people, a phenomenon that could contribute to fuel inflammaging. In this framework, strategies aimed to re-balance PNS/SNS activities could be explored to modulate systemic inflammaging especially at an early subclinical stage, thus increasing the chances to reach the extreme limit of human lifespan in healthy status.
Collapse
Affiliation(s)
- Sergio Giunta
- Casa Di Cura Prof. Nobili (Gruppo Garofalo (GHC)), Castiglione Dei Pepoli, Bologna, Italy
| | - Shijin Xia
- Department of Geriatrics, Shanghai Institute of Geriatrics, Huadong Hospital, Fudan University, Shanghai, China
| | | | - Fabiola Olivieri
- Department of Clinical and Molecular Sciences, DISCLIMO, Università Politecnica Delle Marche, Via Tronto 10/A, 60126, Ancona, Italy.
- Clinical Laboratory and Molecular Diagnostic, IRCCS INRCA, Ancona, Italy.
| |
Collapse
|
13
|
Giri S, Mehta R, Mallick BN. REM Sleep Loss-Induced Elevated Noradrenaline Plays a Significant Role in Neurodegeneration: Synthesis of Findings to Propose a Possible Mechanism of Action from Molecule to Patho-Physiological Changes. Brain Sci 2023; 14:8. [PMID: 38275513 PMCID: PMC10813190 DOI: 10.3390/brainsci14010008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Accepted: 12/17/2023] [Indexed: 01/27/2024] Open
Abstract
Wear and tear are natural processes for all living and non-living bodies. All living cells and organisms are metabolically active to generate energy for their routine needs, including for survival. In the process, the cells are exposed to oxidative load, metabolic waste, and bye-products. In an organ, the living non-neuronal cells divide and replenish the lost or damaged cells; however, as neuronal cells normally do not divide, they need special feature(s) for their protection, survival, and sustenance for normal functioning of the brain. The neurons grow and branch as axons and dendrites, which contribute to the formation of synapses with near and far neurons, the basic scaffold for complex brain functions. It is necessary that one or more basic and instinct physiological process(es) (functions) is likely to contribute to the protection of the neurons and maintenance of the synapses. It is known that rapid eye movement sleep (REMS), an autonomic instinct behavior, maintains brain functioning including learning and memory and its loss causes dysfunctions. In this review we correlate the role of REMS and its loss in synaptogenesis, memory consolidation, and neuronal degeneration. Further, as a mechanism of action, we will show that REMS maintains noradrenaline (NA) at a low level, which protects neurons from oxidative damage and maintains neuronal growth and synaptogenesis. However, upon REMS loss, the level of NA increases, which withdraws protection and causes apoptosis and loss of synapses and neurons. We propose that the latter possibly causes REMS loss associated neurodegenerative diseases and associated symptoms.
Collapse
Affiliation(s)
- Shatrunjai Giri
- Department of Biosciences, Manipal University Jaipur, Jaipur 303007, India;
| | - Rachna Mehta
- Amity Institute of Neuropsychology & Neurosciences, Amity University, Noida 201301, India;
| | - Birendra Nath Mallick
- Amity Institute of Neuropsychology & Neurosciences, Amity University, Noida 201301, India;
| |
Collapse
|
14
|
Berendzen KM, Bales KL, Manoli DS. Attachment across the lifespan: Examining the intersection of pair bonding neurobiology and healthy aging. Neurosci Biobehav Rev 2023; 153:105339. [PMID: 37536581 PMCID: PMC11073483 DOI: 10.1016/j.neubiorev.2023.105339] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 07/17/2023] [Accepted: 07/30/2023] [Indexed: 08/05/2023]
Abstract
Increasing evidence suggests that intact social bonds are protective against age-related morbidity, while bond disruption and social isolation increase the risk for multiple age-related diseases. Social attachments, the enduring, selective bonds formed between individuals, are thus essential to human health. Socially monogamous species like the prairie vole (M. ochrogaster) form long-term pair bonds, allowing us to investigate the mechanisms underlying attachment and the poorly understood connection between social bonds and health. In this review, we explore several potential areas of focus emerging from data in humans and other species associating attachment and healthy aging, and evidence from prairie voles that may clarify this link. We examine gaps in our understanding of social cognition and pair bond behavior. Finally, we discuss physiologic pathways related to pair bonding that promote resilience to the processes of aging and age-related disease. Advances in the development of molecular genetic tools in monogamous species will allow us to bridge the mechanistic gaps presented and identify conserved research and therapeutic targets relevant to human health and aging.
Collapse
Affiliation(s)
- Kristen M. Berendzen
- Department of Psychiatry and Behavioral Sciences, University of California, San Francisco; San Francisco, CA 95158, USA
- Center for Integrative Neuroscience, University of California, San Francisco; San Francisco, CA 95158, USA
- Weill Institute for Neurosciences, University of California, San Francisco; San Francisco, CA 95158, USA
- Kavli Institute for Fundamental Neuroscience, University of California, San Francisco; San Francisco, CA 95158, USA
| | - Karen L. Bales
- Department of Psychology, University of California, Davis; Davis, CA 95616, USA
- Department of Neurobiology, Physiology, and Behavior, University of California, Davis; Davis, CA 95616, USA
| | - Devanand S. Manoli
- Department of Psychiatry and Behavioral Sciences, University of California, San Francisco; San Francisco, CA 95158, USA
- Center for Integrative Neuroscience, University of California, San Francisco; San Francisco, CA 95158, USA
- Weill Institute for Neurosciences, University of California, San Francisco; San Francisco, CA 95158, USA
- Kavli Institute for Fundamental Neuroscience, University of California, San Francisco; San Francisco, CA 95158, USA
- Neurosciences Graduate Program, University of California, San Francisco; San Francisco, CA 95158, USA
| |
Collapse
|
15
|
Matiș L, Alexandru BA, Ghitea TC. Catecholamine Variations in Pediatric Gastrointestinal Disorders and Their Neuropsychiatric Expression. Biomedicines 2023; 11:2600. [PMID: 37892974 PMCID: PMC10604142 DOI: 10.3390/biomedicines11102600] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2023] [Revised: 09/14/2023] [Accepted: 09/21/2023] [Indexed: 10/29/2023] Open
Abstract
The interplay between the central nervous system and the intestinal environment hinges on neural, hormonal, immune, and metabolic reactions. Over decades, significant effort has gone into exploring the link between the digestive system and the brain. The primary objective of this study is to assess catecholamine levels in children with neuropsychiatric disorders. We aim to examine how these levels impact the mental and physical wellbeing of these children, with a specific focus on psychoemotional symptoms and cognitive performance. Our research seeks to identify the significance of modifying neurotransmitter levels in pediatric medical interventions, ultimately striving to reduce mental health risks and enhance children's future development. A total of 135 individuals were chosen to partake, and they engaged in regular monthly consultations according to established study protocols. Clinical evaluations were conducted in a medical environment, encompassing the observation of constipation, diarrhea, and additional gastrointestinal anomalies not confined to constipation or diarrhea. This entailed the assessment of neurotransmitter imbalances, with a specific focus on dopamine, adrenaline, noradrenaline, and the noradrenaline/adrenaline ratio. Gastrointestinal disorders are indicative of imbalances in catecholamines, with lower gastrointestinal problems being correlated with such imbalances. In subjects with psychiatric disorders, a more pronounced dopamine and noradrenaline/adrenaline ratio was observed, while elevated adrenaline levels were associated with psychoanxiety disorders.
Collapse
|
16
|
Grassi G. Response to the Letter regarding article "Heart rate threshold for cardiovascular risk and sympathetic activation in metabolic syndrome". Acta Diabetol 2023; 60:1115-1116. [PMID: 37209166 DOI: 10.1007/s00592-023-02106-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Accepted: 04/21/2023] [Indexed: 05/22/2023]
Affiliation(s)
- Guido Grassi
- Department of Medicine and Surgery, Clinica Medica, University Milano-Biocca, Via Pergolesi 33, 20052, Monza, Milan, Italy.
| |
Collapse
|
17
|
Nirengi S, Stanford K. Brown adipose tissue and aging: A potential role for exercise. Exp Gerontol 2023; 178:112218. [PMID: 37224933 DOI: 10.1016/j.exger.2023.112218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 05/05/2023] [Accepted: 05/21/2023] [Indexed: 05/26/2023]
Abstract
Aging is one of the primary risk factors for the development of type 2 diabetes and cardiovascular disease, and regular physical activity can help to delay, prevent, or manage the onset and development of many chronic diseases present in older adults. Brown adipose tissue (BAT) is thermogenic tissue that protects against age-related disease, but BAT activity decreases with age. In this review, we discuss how aging contributes to impaired BAT function by inducing a 'whitening' of the BAT and altering beta 3 adrenergic receptor (β3AR) signaling, uncoupling protein 1 (UCP1) gene expression, and mitochondria respiration, and potential mechanisms for exercise to counteract the effects of aging on BAT.
Collapse
Affiliation(s)
- Shinsuke Nirengi
- Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA; Department of Physiology and Cell Biology, The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA; Division of Preventive Medicine, Clinical Research Institute, National Hospital Organization Kyoto Medical Center, Kyoto 612-8555, Japan
| | - Kristin Stanford
- Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA; Department of Physiology and Cell Biology, The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA.
| |
Collapse
|
18
|
Min J, Rouanet J, Martini AC, Nashiro K, Yoo HJ, Porat S, Cho C, Wan J, Cole SW, Head E, Nation DA, Thayer JF, Mather M. Modulating heart rate oscillation affects plasma amyloid beta and tau levels in younger and older adults. Sci Rep 2023; 13:3967. [PMID: 36894565 PMCID: PMC9998394 DOI: 10.1038/s41598-023-30167-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Accepted: 02/16/2023] [Indexed: 03/11/2023] Open
Abstract
Slow paced breathing via heart rate variability (HRV) biofeedback stimulates vagus-nerve pathways that counter noradrenergic stress and arousal pathways that can influence production and clearance of Alzheimer's disease (AD)-related proteins. Thus, we examined whether HRV biofeedback intervention affects plasma Αβ40, Αβ42, total tau (tTau), and phosphorylated tau-181 (pTau-181) levels. We randomized healthy adults (N = 108) to use slow-paced breathing with HRV biofeedback to increase heart rate oscillations (Osc+) or to use personalized strategies with HRV biofeedback to decrease heart rate oscillations (Osc-). They practiced 20-40 min daily. Four weeks of practicing the Osc+ and Osc- conditions produced large effect size differences in change in plasma Aβ40 and Aβ42 levels. The Osc+ condition decreased plasma Αβ while the Osc- condition increased Αβ. Decreases in Αβ were associated with decreases in gene transcription indicators of β-adrenergic signaling, linking effects to the noradrenergic system. There were also opposing effects of the Osc+ and Osc- interventions on tTau for younger adults and pTau-181 for older adults. These results provide novel data supporting a causal role of autonomic activity in modulating plasma AD-related biomarkers.Trial registration: NCT03458910 (ClinicalTrials.gov); first posted on 03/08/2018.
Collapse
Affiliation(s)
- Jungwon Min
- University of Southern California, Los Angeles, CA, USA
| | | | | | - Kaoru Nashiro
- University of Southern California, Los Angeles, CA, USA
| | - Hyun Joo Yoo
- University of Southern California, Los Angeles, CA, USA
| | - Shai Porat
- University of Southern California, Los Angeles, CA, USA
| | - Christine Cho
- University of Southern California, Los Angeles, CA, USA
| | - Junxiang Wan
- University of Southern California, Los Angeles, CA, USA
| | - Steve W Cole
- University of California, Los Angeles, Los Angeles, CA, USA
| | | | | | | | - Mara Mather
- University of Southern California, Los Angeles, CA, USA.
| |
Collapse
|
19
|
Stamou MI, Colling C, Dichtel LE. Adrenal aging and its effects on the stress response and immunosenescence. Maturitas 2023; 168:13-19. [PMID: 36370489 PMCID: PMC10426230 DOI: 10.1016/j.maturitas.2022.10.006] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 10/14/2022] [Accepted: 10/20/2022] [Indexed: 11/06/2022]
Abstract
Normal aging is linked to various endocrine gland changes, including changes in the adrenal glands. Aging is linked to alterations of the hypothalamic-pituitary-adrenal (HPA) axis, including an increase in cortisol levels, a disruption of the negative cortisol feedback, and attenuation of cortisol's diurnal pattern. In addition, secretion of aldosterone and adrenal androgens [dehydroepiandrosterone (DHEA) and DHEA sulfate (DHEAS)] from the adrenal cortex decreases with aging. In this review, we describe normal adrenal function, the adrenal response to stress and immunomodulation in aging individuals as well as the effects of adrenal aging on body composition, metabolic profile, bone health and cognition.
Collapse
Affiliation(s)
- Maria I Stamou
- Endocrine Division, Massachusetts General Hospital, Boston, MA, USA.
| | - Caitlin Colling
- Endocrine Division, Massachusetts General Hospital, Boston, MA, USA
| | - Laura E Dichtel
- Endocrine Division, Massachusetts General Hospital, Boston, MA, USA
| |
Collapse
|
20
|
Etiological Diagnosis and Personalized Therapy for Hypertension: A Hypothesis of the REASOH Classification. J Pers Med 2023; 13:jpm13020261. [PMID: 36836495 PMCID: PMC9960440 DOI: 10.3390/jpm13020261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 01/08/2023] [Accepted: 01/28/2023] [Indexed: 01/31/2023] Open
Abstract
With the epidemic of risk factors such as unhealthy lifestyle, obesity and mental stress, the prevalence of hypertension continues to rise across the world. Although standardized treatment protocols simplify the selection of antihypertensive drugs and ensure therapeutic efficacy, the pathophysiological state of some patients remains, which may also lead to the development of other cardiovascular diseases. Thus, there is an urgent need to consider the pathogenesis and selection of antihypertensive drug for different type of hypertensive patients in the era of precision medicine. We proposed the REASOH classification, based on the etiology of hypertension, including renin-dependent hypertension, elderly-arteriosclerosis-based hypertension, sympathetic-active hypertension, secondary hypertension, salt-sensitive hypertension and hyperhomocysteinemia hypertension. The aim of this paper is to propose a hypothesis and provide a brief reference for the personalized treatment of hypertensive patients.
Collapse
|
21
|
Takla M, Saadeh K, Tse G, Huang CLH, Jeevaratnam K. Ageing and the Autonomic Nervous System. Subcell Biochem 2023; 103:201-252. [PMID: 37120470 DOI: 10.1007/978-3-031-26576-1_10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/01/2023]
Abstract
The vertebrate nervous system is divided into central (CNS) and peripheral (PNS) components. In turn, the PNS is divided into the autonomic (ANS) and enteric (ENS) nervous systems. Ageing implicates time-related changes to anatomy and physiology in reducing organismal fitness. In the case of the CNS, there exists substantial experimental evidence of the effects of age on individual neuronal and glial function. Although many such changes have yet to be experimentally observed in the PNS, there is considerable evidence of the role of ageing in the decline of ANS function over time. As such, this chapter will argue that the ANS constitutes a paradigm for the physiological consequences of ageing, as well as for their clinical implications.
Collapse
Affiliation(s)
| | | | - Gary Tse
- Kent and Medway Medical School, Canterbury, UK
- University of Surrey, Guildford, UK
| | | | | |
Collapse
|
22
|
E. Worton L, Srinivasan S, Threet D, Ausk BJ, Huber P, Y. Kwon R, Bain SD, Gross TS, M. Gardiner E. Beta 2 Adrenergic Receptor Selective Antagonist Enhances Mechanically Stimulated Bone Anabolism in Aged Mice. JBMR Plus 2022; 7:e10712. [PMID: 36751418 PMCID: PMC9893264 DOI: 10.1002/jbm4.10712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 10/25/2022] [Accepted: 11/06/2022] [Indexed: 12/14/2022] Open
Abstract
The anabolic response of aged bone to skeletal loading is typically poor. Efforts to improve mechanotransduction in aged bone have met with limited success. This study investigated whether the bone response to direct skeletal loading is improved by reducing sympathetic suppression of osteoblastic bone formation via β2AR. To test this possibility, we treated aged wild-type C57BL/6 mice with a selective β2AR antagonist, butaxamine (Butax), before each of nine bouts of cantilever bending of the right tibia. Midshaft periosteal bone formation was assessed by dynamic histomorphometry of loaded and contralateral tibias. Butax treatment did not alter osteoblast activity of contralateral tibias. Loading alone induced a modest but significant osteogenic response. However, when loading was combined with Butax pretreatment, the anabolic response was significantly elevated compared with loading preceded by saline injection. Subsequent studies in osteoblastic cultures revealed complex negative interactions between adrenergic and mechanically induced intracellular signaling. Activation of β2AR by treatment with the β1, β2-agonist isoproterenol (ISO) before fluid flow exposure diminished mechanically stimulated ERK1/2 phosphorylation in primary bone cell outgrowth cultures and AKT phosphorylation in MC3T3-E1 pre-osteoblast cultures. Expression of mechanosensitive Fos and Ptgs2 genes was enhanced with ISO treatment and reduced with flow in both MC3T3-E1 and primary cultures. Finally, co-treatment of MC3T3-E1 cells with Butax reversed these ISO effects, confirming a critical role for β2AR in these responses. In combination, these results demonstrate that selective inhibition of β2AR is sufficient to enhance the anabolic response of the aged skeleton to loading, potentially via direct effects upon osteoblasts. © 2022 The Authors. JBMR Plus published by Wiley Periodicals LLC on behalf of American Society for Bone and Mineral Research.
Collapse
Affiliation(s)
- Leah E. Worton
- Department of Orthopaedics & Sports MedicineUniversity of WashingtonSeattleWAUSA
| | - Sundar Srinivasan
- Department of Orthopaedics & Sports MedicineUniversity of WashingtonSeattleWAUSA
| | - DeWayne Threet
- Department of Orthopaedics & Sports MedicineUniversity of WashingtonSeattleWAUSA
| | - Brandon J. Ausk
- Department of Orthopaedics & Sports MedicineUniversity of WashingtonSeattleWAUSA
| | - Phillipe Huber
- Department of Orthopaedics & Sports MedicineUniversity of WashingtonSeattleWAUSA
| | - Ronald Y. Kwon
- Department of Orthopaedics & Sports MedicineUniversity of WashingtonSeattleWAUSA
| | - Steven D. Bain
- Department of Orthopaedics & Sports MedicineUniversity of WashingtonSeattleWAUSA
| | - Ted S. Gross
- Department of Orthopaedics & Sports MedicineUniversity of WashingtonSeattleWAUSA
| | - Edith M. Gardiner
- Department of Orthopaedics & Sports MedicineUniversity of WashingtonSeattleWAUSA
| |
Collapse
|
23
|
Bachman SL, Nashiro K, Yoo H, Wang D, Thayer JF, Mather M. Associations between locus coeruleus MRI contrast and physiological responses to acute stress in younger and older adults. Brain Res 2022; 1796:148070. [PMID: 36088961 PMCID: PMC9805382 DOI: 10.1016/j.brainres.2022.148070] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 08/26/2022] [Accepted: 08/29/2022] [Indexed: 01/03/2023]
Abstract
Acute stress activates the brain's locus coeruleus (LC)-noradrenaline system. Recent studies indicate that a magnetic resonance imaging (MRI)-based measure of LC structure is associated with better cognitive outcomes in later life. Yet despite the LC's documented role in promoting physiological arousal during acute stress, no studies have examined whether MRI-assessed LC structure is related to arousal responses to acute stress. In this study, 102 younger and 51 older adults completed an acute stress induction task while we assessed multiple measures of physiological arousal (heart rate, breathing rate, systolic and diastolic blood pressure, sympathetic tone, and heart rate variability, HRV). We used turbo spin echo MRI scans to quantify LC MRI contrast as a measure of LC structure. We applied univariate and multivariate approaches to assess how LC MRI contrast was associated with arousal at rest and during acute stress reactivity and recovery. In older participants, having higher caudal LC MRI contrast was associated with greater stress-related increases in systolic blood pressure and decreases in HRV, as well as lower HRV during recovery from acute stress. These results suggest that having higher caudal LC MRI contrast in older adulthood is associated with more pronounced physiological responses to acute stress. Further work is needed to confirm these patterns in larger samples of older adults.
Collapse
|
24
|
Rim D, Henderson LA, Macefield VG. Brain and cardiovascular-related changes are associated with aging, hypertension, and atrial fibrillation. Clin Auton Res 2022; 32:409-422. [PMID: 36409380 DOI: 10.1007/s10286-022-00907-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Accepted: 10/31/2022] [Indexed: 11/22/2022]
Abstract
PURPOSE The neural pathways in which the brain regulates the cardiovascular system is via sympathetic and parasympathetic control of the heart and sympathetic control of the systemic vasculature. Various cortical and sub-cortical sites are involved, but how these critical brain regions for cardiovascular control are altered in healthy aging and other risk conditions that may contribute to cardiovascular disease is uncertain. METHODS Here we review the functional and structural brain changes in healthy aging, hypertension, and atrial fibrillation - noting their potential influence on the autonomic nervous system and hence on cardiovascular control. RESULTS Evidence suggests that aging, hypertension, and atrial fibrillation are each associated with functional and structural changes in specific areas of the central nervous system involved in autonomic control. Increased muscle sympathetic nerve activity (MSNA) and significant alterations in the brain regions involved in the default mode network are commonly reported in aging, hypertension, and atrial fibrillation. CONCLUSIONS Further studies using functional and structural magnetic resonance imaging (MRI) coupled with autonomic nerve activity in healthy aging, hypertension, and atrial fibrillation promise to reveal the underlying brain circuitry modulating the abnormal sympathetic nerve activity in these conditions. This understanding will guide future therapies to rectify dysregulation of autonomic and cardiovascular control by the brain.
Collapse
Affiliation(s)
- Donggyu Rim
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, VIC, 3004, Australia.,Baker Heart and Diabetes Institute, 75 Commercial Rd, Melbourne, VIC, 3004, Australia
| | - Luke A Henderson
- School of Medical Sciences (Neuroscience), Brain and Mind Centre, University of Sydney, Camperdown, NSW, 2050, Australia
| | - Vaughan G Macefield
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, VIC, 3004, Australia. .,Baker Heart and Diabetes Institute, 75 Commercial Rd, Melbourne, VIC, 3004, Australia. .,Department of Anatomy and Physiology, University of Melbourne, Melbourne, VIC, 3010, Australia.
| |
Collapse
|
25
|
Prasad K. Involvement of AGE and Its Receptors in the Pathogenesis of Hypertension in Elderly People and Its Treatment. Int J Angiol 2022; 31:213-221. [PMID: 36588874 PMCID: PMC9803554 DOI: 10.1055/s-0042-1756175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Both systolic and diastolic blood pressures increase with age up to 50 to 60 years of age. After 60 years of age systolic pressure rises to 84 years of age but diastolic pressure remains stable or even decreases. In the oldest age group (85-99 years), the systolic blood pressure (SBP) is high and diastolic pressure (DBP) is the lowest. Seventy percent of people older than 65 years are hypertensive. This paper deals with the role of advanced glycation end products (AGE) and its cell receptor (RAGE) and soluble receptor (sRAGE) in the development of hypertension in the elderly population. Plasma/serum levels of AGE are higher in older people as compared with younger people. Serum levels of AGE are positively correlated with age, arterial stiffness, and hypertension. Low serum levels of sRAGE are associated with arterial stiffness and hypertension. Levels of sRAGE are negatively correlated with age and blood pressure. Levels of sRAGE are lower in patients with arterial stiffness and hypertension than patients with high levels of sRAGE. AGE could induce hypertension through numerous mechanisms including, cross-linking with collagen, reduction of nitric oxide, increased expression of endothelin-1, and transforming growth factor-β (TGF-β). Interaction of AGE with RAGE could produce hypertension through the generation of reactive oxygen species, increased sympathetic activity, activation of nuclear factor-kB, and increased expression of cytokines, cell adhesion molecules, and TGF- β. In conclusion, the AGE-RAGE axis could be involved in hypertension in elderly people. Treatment for hypertension in elderly people should be targeted at reduction of AGE levels in the body, prevention of AGE formation, degradation of AGE in vivo, downregulation of RAGE expression, blockade of AGE-RAGE interaction, upregulation of sRAGE expression, and use of antioxidants.
Collapse
Affiliation(s)
- Kailash Prasad
- Department of Physiology (APP), College of Medicine, University of Saskatchewan, Saskatoon, SK, Canada
| |
Collapse
|
26
|
Behrendt T, Altorjay AC, Bielitzki R, Behrens M, Glazachev OS, Schega L. Influence of acute and chronic intermittent hypoxic-hyperoxic exposure prior to aerobic exercise on cardiovascular risk factors in geriatric patients-a randomized controlled trial. Front Physiol 2022; 13:1043536. [PMID: 36388103 PMCID: PMC9650443 DOI: 10.3389/fphys.2022.1043536] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Accepted: 10/11/2022] [Indexed: 04/08/2024] Open
Abstract
Background: Intermittent hypoxic-hyperoxic exposure (IHHE) and aerobic training have been proposed as non-pharmacological interventions to reduce age-related risk factors. However, no study has yet examined the effects of IHHE before aerobic exercise on cardiovascular risk factors in the elderly. Therefore, the aim of this study was to investigate the acute and chronic effects of IHHE prior to aerobic cycling exercise on blood lipid and lipoprotein concentrations as well as blood pressure in geriatric patients. Methods: In a randomized, controlled, and single-blinded trial, thirty geriatric patients (72-94 years) were assigned to two groups: intervention (IG; n = 16) and sham control group (CG; n = 14). Both groups completed 6 weeks of aerobic cycling training, 3 times a week for 20 min per day. The IG and CG were additionally exposed to IHHE or sham IHHE (i.e., normoxia) for 30 min prior to aerobic cycling. Blood samples were taken on three occasions: immediately before the first, ∼10 min after the first, and immediately before the last session. Blood samples were analyzed for total (tCh), high-density (HDL-C), and low-density lipoprotein cholesterol (LDL-C), and triglyceride (Tgl) serum concentration. Resting systolic (SBP) and diastolic blood pressure (DBP) was assessed within 1 week before, during (i.e., at week two and four), and after the interventions. Results: The baseline-adjusted ANCOVA revealed a higher LDL-C concentration in the IG compared to the CG after the first intervention session (ηp 2 = 0.12). For tCh, HDL-C, Tgl, and tCh/HDL-C ratio there were no differences in acute changes between the IG and the CG (ηp 2 ≤ 0.01). With regard to the chronic effects on lipids and lipoproteins, data analysis indicated no differences between groups (ηp 2 ≤ 0.03). The repeated measures ANOVA revealed an interaction effect for SBP (ηp 2 = 0.06) but not for DBP (ηp 2 ≤ 0.01). Within-group post-hoc analysis for the IG indicated a reduction in SBP at post-test (d = 0.05). Conclusion: Applying IHHE prior to aerobic cycling seems to be effective to reduce SBP in geriatric patients after 6 weeks of training. The present study suggests that IHHE prior to aerobic cycling can influence the acute exercise-related responses in LDL-C concentration but did not induce chronic changes in basal lipid or lipoprotein concentrations.
Collapse
Affiliation(s)
- Tom Behrendt
- Department for Sport Science, Chair for Health and Physical Activity, Otto-von-Guericke University Magdeburg, Magdeburg, Germany
| | - Ann-Christin Altorjay
- Department of Internal Medicine, Division of Cardiology and Angiology, University Hospital Magdeburg, Magdeburg, Germany
| | - Robert Bielitzki
- Department for Sport Science, Chair for Health and Physical Activity, Otto-von-Guericke University Magdeburg, Magdeburg, Germany
| | - Martin Behrens
- Department for Sport Science, Chair for Health and Physical Activity, Otto-von-Guericke University Magdeburg, Magdeburg, Germany
- Department of Orthopedics, University Medicine Rostock, Rostock, Germany
| | - Oleg S. Glazachev
- Departement Human Physiology, Institute of Clinical Medicine, I.M. Sechenov First Moscow State Medical University, Moscow, Russia
| | - Lutz Schega
- Department for Sport Science, Chair for Health and Physical Activity, Otto-von-Guericke University Magdeburg, Magdeburg, Germany
| |
Collapse
|
27
|
Hedge ET, Patterson CA, Mastrandrea CJ, Sonjak V, Hajj-Boutros G, Faust A, Morais JA, Hughson RL. Implementation of exercise countermeasures during spaceflight and microgravity analogue studies: Developing countermeasure protocols for bedrest in older adults (BROA). Front Physiol 2022; 13:928313. [PMID: 36017336 PMCID: PMC9395735 DOI: 10.3389/fphys.2022.928313] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Accepted: 06/27/2022] [Indexed: 12/18/2022] Open
Abstract
Significant progress has been made in the development of countermeasures to attenuate the negative consequences of prolonged exposure to microgravity on astronauts’ bodies. Deconditioning of several organ systems during flight includes losses to cardiorespiratory fitness, muscle mass, bone density and strength. Similar deconditioning also occurs during prolonged bedrest; any protracted time immobile or inactive, especially for unwell older adults (e.g., confined to hospital beds), can lead to similar detrimental health consequences. Due to limitations in physiological research in space, the six-degree head-down tilt bedrest protocol was developed as ground-based analogue to spaceflight. A variety of exercise countermeasures have been tested as interventions to limit detrimental changes and physiological deconditioning of the musculoskeletal and cardiovascular systems. The Canadian Institutes of Health Research and the Canadian Space Agency recently provided funding for research focused on Understanding the Health Impact of Inactivity to study the efficacy of exercise countermeasures in a 14-day randomized clinical trial of six-degree head-down tilt bedrest study in older adults aged 55–65 years old (BROA). Here we will describe the development of a multi-modality countermeasure protocol for the BROA campaign that includes upper- and lower-body resistance exercise and head-down tilt cycle ergometry (high-intensity interval and continuous aerobic exercise training). We provide reasoning for the choice of these modalities following review of the latest available information on exercise as a countermeasure for inactivity and spaceflight-related deconditioning. In summary, this paper sets out to review up-to-date exercise countermeasure research from spaceflight and head-down bedrest studies, whilst providing support for the proposed research countermeasure protocols developed for the bedrest study in older adults.
Collapse
Affiliation(s)
- Eric T. Hedge
- Schlegel-University of Waterloo Research Institute for Aging, Waterloo, ON, Canada
- Department of Kinesiology and Health Sciences, University of Waterloo, Waterloo, ON, Canada
| | | | | | - Vita Sonjak
- Research Institute of McGill University Health Centre, McGill University, Montréal, QC, Canada
| | - Guy Hajj-Boutros
- Research Institute of McGill University Health Centre, McGill University, Montréal, QC, Canada
| | - Andréa Faust
- Research Institute of McGill University Health Centre, McGill University, Montréal, QC, Canada
| | - José A. Morais
- Research Institute of McGill University Health Centre, McGill University, Montréal, QC, Canada
- Division of Geriatric Medicine, McGill University Health Centre, McGill University, Montréal, QC, Canada
| | - Richard L. Hughson
- Schlegel-University of Waterloo Research Institute for Aging, Waterloo, ON, Canada
- *Correspondence: Richard L. Hughson,
| |
Collapse
|
28
|
D'Souza AW, Klassen SA, Badrov MB, Lalande S, Shoemaker JK. Aging is associated with enhanced central, but impaired peripheral arms of the sympathetic baroreflex arc. J Appl Physiol (1985) 2022; 133:349-360. [PMID: 35736951 DOI: 10.1152/japplphysiol.00045.2022] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
We tested the hypothesis that the baroreflex control of action potential (AP) subpopulations would be blunted in older compared to young adults. Integrated muscle sympathetic nerve activity (MSNA) and the underlying sympathetic APs were obtained using microneurography and a continuous wavelet analysis approach, respectively, during 5 minutes of supine rest in 13 older (45-75 years, 6 females) and 14 young (21-30 years, 7 females) adults. Baroreflex threshold relationships were quantified as the slope of the linear regression between MSNA burst probability (%) and diastolic blood pressure (mmHg), or AP cluster firing probability (%) and diastolic blood pressure (mmHg). Integrated MSNA baroreflex threshold gain was greater in older compared to young adults (older: -7.6±3.6 %/mmHg vs. Young: -3.5±1.5 %/mmHg, P<0.001). Similarly, the baroreflex threshold gain of AP clusters was modified by aging (group-by-cluster effect: P<0.001) such that older adults demonstrated greater baroreflex threshold gains of medium-sized AP clusters (e.g., Cluster 4, older: -8.2±3.2 %/mmHg vs. Young: -3.6±1.9 %/mmHg, P=0.003) but not for the smallest- (Cluster 1, older: -1.6±1.9 %/mmHg vs. Young: -1.0±1.7 %/mmHg, P>0.999) and largest-sized (Cluster 10, older: -0.5±0.5 %/mmHg vs. Young: -0.2±0.1 %/mmHg, P=0.819) AP clusters compared to young adults. In contrast, the peak change in mean arterial pressure (MAP) following a spontaneous MSNA burst (i.e., sympathetic transduction) was impaired with aging (older: -0.7±0.3 mmHg vs. Young: 1.8±1.2 mmHg, P<0.001). We conclude that aging is associated with elevated baroreflex control over high-probability AP content of sympathetic bursts that may compensate for impaired sympathetic neurovascular transduction.
Collapse
Affiliation(s)
- Andrew W D'Souza
- Neurovascular research laboratory, School of Kinesiology, Western University, London, Ontario, Canada
| | - Stephen A Klassen
- Neurovascular research laboratory, School of Kinesiology, Western University, London, Ontario, Canada.,Department of Kinesiology, Brock University, St. Catharines, Ontario, Canada
| | - Mark B Badrov
- Neurovascular research laboratory, School of Kinesiology, Western University, London, Ontario, Canada.,University Health Network and Sinai Health System Division of Cardiology, Department of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Sophie Lalande
- Neurovascular research laboratory, School of Kinesiology, Western University, London, Ontario, Canada.,Department of Kinesiology and Health Education, The University of Texas at Austin, Austin, TX, United States
| | - J Kevin Shoemaker
- Neurovascular research laboratory, School of Kinesiology, Western University, London, Ontario, Canada.,Department of Physiology and Pharmacology, Western University, London, Ontario, Canada
| |
Collapse
|
29
|
Miller AJ, Arnold AC. The renin-angiotensin system and cardiovascular autonomic control in aging. Peptides 2022; 150:170733. [PMID: 34973286 PMCID: PMC8923940 DOI: 10.1016/j.peptides.2021.170733] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 12/26/2021] [Accepted: 12/27/2021] [Indexed: 12/20/2022]
Abstract
Aging is the greatest independent risk factor for developing hypertension and cardiovascular-related diseases including systolic hypertension, vascular disease, ischemic events, arrhythmias, and heart failure. Age-related cardiovascular risk is associated with dysfunction of peripheral organ systems, such as the heart and vasculature, as well as an imbalance in the autonomic nervous system characterized by increased sympathetic and decreased parasympathetic neurotransmission. Given the increasing prevalence of aged individuals worldwide, it is critical to better understand mechanisms contributing to impaired cardiovascular autonomic control in this population. In this regard, the renin-angiotensin system has emerged as an important hormonal modulator of cardiovascular function in aging, in part through modulation of autonomic pathways controlling sympathetic and parasympathetic outflow to cardiovascular end organs. This review will summarize the role of the RAS in cardiovascular autonomic control during aging, with a focus on current knowledge of angiotensin II versus angiotensin-(1-7) pathways in both rodent models and humans, pharmacological treatment strategies targeting the renin-angiotensin system, and unanswered questions for future research.
Collapse
Affiliation(s)
- Amanda J Miller
- Department of Neural and Behavioral Sciences, Pennsylvania State University College of Medicine, Hershey, PA, USA
| | - Amy C Arnold
- Department of Neural and Behavioral Sciences, Pennsylvania State University College of Medicine, Hershey, PA, USA.
| |
Collapse
|
30
|
Carving the senescent phenotype by the chemical reactivity of catecholamines: An integrative review. Ageing Res Rev 2022; 75:101570. [PMID: 35051644 DOI: 10.1016/j.arr.2022.101570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 01/11/2022] [Accepted: 01/15/2022] [Indexed: 11/21/2022]
Abstract
Macromolecules damaged by covalent modifications produced by chemically reactive metabolites accumulate in the slowly renewable components of living bodies and compromise their functions. Among such metabolites, catecholamines (CA) are unique, compared with the ubiquitous oxygen, ROS, glucose and methylglyoxal, in that their high chemical reactivity is confined to a limited set of cell types, including the dopaminergic and noradrenergic neurons and their direct targets, which suffer from CA propensities for autoxidation yielding toxic quinones, and for Pictet-Spengler reactions with carbonyl-containing compounds, which yield mitochondrial toxins. The functions progressively compromised because of that include motor performance, cognition, reward-driven behaviors, emotional tuning, and the neuroendocrine control of reproduction. The phenotypic manifestations of the resulting disorders culminate in such conditions as Parkinson's and Alzheimer's diseases, hypertension, sarcopenia, and menopause. The reasons to suspect that CA play some special role in aging accumulated since early 1970-ies. Published reviews address the role of CA hazardousness in the development of specific aging-associated diseases. The present integrative review explores how the bizarre discrepancy between CA hazardousness and biological importance could have emerged in evolution, how much does the chemical reactivity of CA contribute to the senescent phenotype in mammals, and what can be done with it.
Collapse
|
31
|
Chen JT, Zhang P, Kong XY, Ge YJ, Li XY, Yang S, He S, Chen GH. Changed Serum Levels of CD62E+, Angiotensin II and Copeptin in Patients with Chronic Insomnia Disorder: A Link Between Insomnia and Stroke? Sleep Med 2022; 91:96-104. [DOI: 10.1016/j.sleep.2022.02.017] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 02/15/2022] [Accepted: 02/19/2022] [Indexed: 12/16/2022]
|
32
|
Mather M. Noradrenaline in the aging brain: Promoting cognitive reserve or accelerating Alzheimer's disease? Semin Cell Dev Biol 2021; 116:108-124. [PMID: 34099360 PMCID: PMC8292227 DOI: 10.1016/j.semcdb.2021.05.013] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Revised: 05/04/2021] [Accepted: 05/05/2021] [Indexed: 12/19/2022]
Abstract
Many believe that engaging in novel and mentally challenging activities promotes brain health and prevents Alzheimer's disease in later life. However, mental stimulation may also have risks as well as benefits. As neurons release neurotransmitters, they often also release amyloid peptides and tau proteins into the extracellular space. These by-products of neural activity can aggregate into the tau tangle and amyloid plaque signatures of Alzheimer's disease. Over time, more active brain regions accumulate more pathology. Thus, increasing brain activity can have a cost. But the neuromodulator noradrenaline, released during novel and mentally stimulating events, may have some protective effects-as well as some negative effects. Via its inhibitory and excitatory effects on neurons and microglia, noradrenaline sometimes prevents and sometimes accelerates the production and accumulation of amyloid-β and tau in various brain regions. Both α2A- and β-adrenergic receptors influence amyloid-β production and tau hyperphosphorylation. Adrenergic activity also influences clearance of amyloid-β and tau. Furthermore, some findings suggest that Alzheimer's disease increases noradrenergic activity, at least in its early phases. Because older brains clear the by-products of synaptic activity less effectively, increased synaptic activity in the older brain risks accelerating the accumulation of Alzheimer's pathology more than it does in the younger brain.
Collapse
Affiliation(s)
- Mara Mather
- Leonard Davis School of Gerontology, Department of Psychology, & Department of Biomedical Engineering, University of Southern California, 3715 McClintock Ave, Los Angeles, CA 90089, United States.
| |
Collapse
|
33
|
Koenig J, Abler B, Agartz I, Åkerstedt T, Andreassen OA, Anthony M, Bär KJ, Bertsch K, Brown RC, Brunner R, Carnevali L, Critchley HD, Cullen KR, de Geus EJC, de la Cruz F, Dziobek I, Ferger MD, Fischer H, Flor H, Gaebler M, Gianaros PJ, Giummarra MJ, Greening SG, Guendelman S, Heathers JAJ, Herpertz SC, Hu MX, Jentschke S, Kaess M, Kaufmann T, Klimes-Dougan B, Koelsch S, Krauch M, Kumral D, Lamers F, Lee TH, Lekander M, Lin F, Lotze M, Makovac E, Mancini M, Mancke F, Månsson KNT, Manuck SB, Mather M, Meeten F, Min J, Mueller B, Muench V, Nees F, Nga L, Nilsonne G, Ordonez Acuna D, Osnes B, Ottaviani C, Penninx BWJH, Ponzio A, Poudel GR, Reinelt J, Ren P, Sakaki M, Schumann A, Sørensen L, Specht K, Straub J, Tamm S, Thai M, Thayer JF, Ubani B, van der Mee DJ, van Velzen LS, Ventura-Bort C, Villringer A, Watson DR, Wei L, Wendt J, Schreiner MW, Westlye LT, Weymar M, Winkelmann T, Wu GR, Yoo HJ, Quintana DS. Cortical thickness and resting-state cardiac function across the lifespan: A cross-sectional pooled mega-analysis. Psychophysiology 2021; 58:e13688. [PMID: 33037836 DOI: 10.1111/psyp.13688] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Revised: 07/27/2020] [Accepted: 07/27/2020] [Indexed: 12/27/2022]
Abstract
Understanding the association between autonomic nervous system [ANS] function and brain morphology across the lifespan provides important insights into neurovisceral mechanisms underlying health and disease. Resting-state ANS activity, indexed by measures of heart rate [HR] and its variability [HRV] has been associated with brain morphology, particularly cortical thickness [CT]. While findings have been mixed regarding the anatomical distribution and direction of the associations, these inconsistencies may be due to sex and age differences in HR/HRV and CT. Previous studies have been limited by small sample sizes, which impede the assessment of sex differences and aging effects on the association between ANS function and CT. To overcome these limitations, 20 groups worldwide contributed data collected under similar protocols of CT assessment and HR/HRV recording to be pooled in a mega-analysis (N = 1,218 (50.5% female), mean age 36.7 years (range: 12-87)). Findings suggest a decline in HRV as well as CT with increasing age. CT, particularly in the orbitofrontal cortex, explained additional variance in HRV, beyond the effects of aging. This pattern of results may suggest that the decline in HRV with increasing age is related to a decline in orbitofrontal CT. These effects were independent of sex and specific to HRV; with no significant association between CT and HR. Greater CT across the adult lifespan may be vital for the maintenance of healthy cardiac regulation via the ANS-or greater cardiac vagal activity as indirectly reflected in HRV may slow brain atrophy. Findings reveal an important association between CT and cardiac parasympathetic activity with implications for healthy aging and longevity that should be studied further in longitudinal research.
Collapse
Affiliation(s)
- Julian Koenig
- University Hospital of Child and Adolescent Psychiatry and Psychotherapy, University of Bern, Bern, Switzerland
- Section for Experimental Child and Adolescent Psychiatry, Department of Child and Adolescent Psychiatry, Centre for Psychosocial Medicine, University of Heidelberg, Heidelberg, Germany
| | - Birgit Abler
- Department of Psychiatry and Psychotherapy III, Ulm University, Ulm, Germany
| | - Ingrid Agartz
- Norwegian Centre for Mental Disorders Research (NORMENT), Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- Department of Psychiatry, Diakonhjemmet Hospital, Oslo, Norway
- Department of Clinical Neuroscience, Centre for Psychiatric Research, Karolinska Institutet, Stockholm, Sweden
| | - Torbjörn Åkerstedt
- Stress Research Institute, Stockholm University, Stockholm, Sweden
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Ole A Andreassen
- Norwegian Centre for Mental Disorders Research (NORMENT), Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- Division of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway
| | - Mia Anthony
- University of Rochester Medical Center, Rochester, NY, USA
| | - Karl-Jürgen Bär
- Department of Psychosomatic Medicine, University Hospital Jena, Jena, Germany
| | - Katja Bertsch
- Department of General Psychiatry, Center for Psychosocial Medicine, University of Heidelberg, Heidelberg, Germany
| | - Rebecca C Brown
- Department of Child and Adolescent Psychiatry and Psychotherapy, Ulm University, Ulm, Germany
| | - Romuald Brunner
- Clinic and Polyclinic for Child and Adolescent Psychiatry, Psychosomatic and Psychotherapy, University of Regensburg, Regensburg, Germany
| | - Luca Carnevali
- Stress Physiology Lab, Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parma, Italy
| | - Hugo D Critchley
- Psychiatry, BSMS Department of Neuroscience, Brighton and Sussex Medical School (BSMS), University of Sussex, Falmer, UK
| | - Kathryn R Cullen
- Department of Psychiatry and Behavioral Sciences, University of Minnesota, Medical School, Minneapolis, MN, USA
| | - Eco J C de Geus
- Department of Biological Psychology, Amsterdam Public Health Research Institute, VU University, Amsterdam, The Netherlands
| | | | - Isabel Dziobek
- Department of Psychology, Berlin School of Mind and Brain, Humboldt Universität, Berlin, Germany
| | - Marc D Ferger
- Department of Psychiatry and Psychotherapy III, Ulm University, Ulm, Germany
| | - Håkan Fischer
- Department of Psychology, Stockholm University, Stockholm, Sweden
| | - Herta Flor
- Department of Cognitive and Clinical Neuroscience, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Michael Gaebler
- Department of Neurology, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
- MindBrainBody Institute, Berlin School of Mind and Brain, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Peter J Gianaros
- Department of Psychology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Melita J Giummarra
- School of Public Health and Preventive Medicine, Monash University, Melbourne, VIC, Australia
- Caulfield Pain Management and Research Centre, Caulfield, VIC, Australia
| | - Steven G Greening
- Department of Psychology, Cognitive and Brain Sciences, Louisiana State University, Baton Rouge, LA, USA
| | - Simon Guendelman
- Berlin School of Mind and Brain, Humboldt Universität, Berlin, Germany
| | | | - Sabine C Herpertz
- Department of General Psychiatry, Center for Psychosocial Medicine, University of Heidelberg, Heidelberg, Germany
| | - Mandy X Hu
- Department of Psychiatry, Amsterdam Public Health Research Institute, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Sebastian Jentschke
- Cluster "Languages of Emotion", Freie Universität Berlin, Berlin, Germany
- Department of Psychosocial Science, University of Bergen, Bergen, Norway
| | - Michael Kaess
- University Hospital of Child and Adolescent Psychiatry and Psychotherapy, University of Bern, Bern, Switzerland
- Section for Translational Psychobiology in Child and Adolescent Psychiatry, Department of Child and Adolescent Psychiatry, Centre for Psychosocial Medicine, University of Heidelberg, Heidelberg, Germany
| | - Tobias Kaufmann
- Norwegian Centre for Mental Disorders Research (NORMENT), Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- Division of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway
| | - Bonnie Klimes-Dougan
- Department of Psychology, University of Minnesota, College of Liberal Arts, Minneapolis, MN, USA
| | - Stefan Koelsch
- Cluster "Languages of Emotion", Freie Universität Berlin, Berlin, Germany
- Department of Biological and Medical Psychology, University of Bergen, Bergen, Norway
| | - Marlene Krauch
- Department of General Psychiatry, Center for Psychosocial Medicine, University of Heidelberg, Heidelberg, Germany
| | - Deniz Kumral
- Department of Neurology, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
- MindBrainBody Institute, Berlin School of Mind and Brain, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Femke Lamers
- Department of Psychiatry, Amsterdam Public Health Research Institute, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Tae-Ho Lee
- Department of Psychology, Virginia Tech, Blacksburg, VA, USA
| | - Mats Lekander
- Stress Research Institute, Stockholm University, Stockholm, Sweden
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Feng Lin
- University of Rochester Medical Center, Rochester, NY, USA
| | - Martin Lotze
- Functional Imaging Unit, Center of Diagnostic Radiology and Neuroradiology, University of Greifswald, Greifswald, Germany
| | - Elena Makovac
- Centre for Neuroimaging Science, King's College London, London, UK
- Neuroimaging Laboratory, IRCCS Santa Lucia Foundation, Rome, Italy
| | - Matteo Mancini
- Clinical Imaging Sciences Centre, Brighton and Sussex Medical School, Brighton, UK
- Centre for Medical Image Computing, Department of Medical Physics and Biomedical Engineering, University College London, London, UK
| | - Falk Mancke
- Department of General Psychiatry, Center for Psychosocial Medicine, University of Heidelberg, Heidelberg, Germany
| | - Kristoffer N T Månsson
- Department of Psychology, Stockholm University, Stockholm, Sweden
- Centre for Psychiatry Research, Department of Clinical Neuroscience, Karolinska Institutet, Stockholm Health Care Services, Stockholm County Council, Stockholm, Sweden
| | - Stephen B Manuck
- Department of Psychology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Mara Mather
- Leonard Davis School of Gerontology, Department of Psychology, University of Southern California, Los Angeles, CA, USA
| | - Frances Meeten
- School of Psychology, University of Sussex, Brighton, UK
| | - Jungwon Min
- Emotion and Cognition Lab, University of Southern California, Los Angeles, CA, USA
| | - Bryon Mueller
- Department of Psychiatry and Behavioral Sciences, University of Minnesota, Medical School, Minneapolis, MN, USA
| | - Vera Muench
- Department of Child and Adolescent Psychiatry and Psychotherapy, Ulm University, Ulm, Germany
| | - Frauke Nees
- Department of Cognitive and Clinical Neuroscience, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
- Institute of Medical Psychology and Medical Sociology, University Medical Center Schleswig-Holstein, Kiel University, Kiel, Germany
| | - Lin Nga
- Emotion and Cognition Lab, University of Southern California, Los Angeles, CA, USA
| | - Gustav Nilsonne
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
- Department of Psychology, Stockholm University, Stockholm, Sweden
| | | | - Berge Osnes
- Department of Biological and Medical Psychology, University of Bergen, Bergen, Norway
- Bjorgvin District Psychiatric Centre, Haukeland University Hospital, Bergen, Norway
| | - Cristina Ottaviani
- Neuroimaging Laboratory, IRCCS Santa Lucia Foundation, Rome, Italy
- Department of Psychology, Sapienza University of Rome, Rome, Italy
| | - Brenda W J H Penninx
- Department of Psychiatry, Amsterdam Public Health Research Institute, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Allison Ponzio
- Emotion and Cognition Lab, University of Southern California, Los Angeles, CA, USA
| | - Govinda R Poudel
- Behaviour Environment and Cognition Research Program, Mary MacKillop Institute for Health Research, Melbourne, VIC, Australia
| | - Janis Reinelt
- Department of Neurology, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| | - Ping Ren
- University of Rochester Medical Center, Rochester, NY, USA
| | - Michiko Sakaki
- School of Psychology and Clinical Language Sciences, University of Reading, Reading, UK
- Research Institute, Kochi University of Technology, Kami, Japan
| | - Andy Schumann
- Department of Psychosomatic Medicine, University Hospital Jena, Jena, Germany
| | - Lin Sørensen
- Department of Biological and Medical Psychology, University of Bergen, Bergen, Norway
| | - Karsten Specht
- Department of Biological and Medical Psychology, University of Bergen, Bergen, Norway
- Department of Education, UiT/The Arctic University of Norway, Tromsø, Norway
| | - Joana Straub
- Department of Child and Adolescent Psychiatry and Psychotherapy, Ulm University, Ulm, Germany
| | - Sandra Tamm
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
- Department of Psychology, Stockholm University, Stockholm, Sweden
- Department of Psychiatry, Oxford University, Oxford, UK
| | - Michelle Thai
- Department of Psychiatry and Behavioral Sciences, University of Minnesota, Medical School, Minneapolis, MN, USA
| | - Julian F Thayer
- Department of Psychological Science, The University of California, Irvine, CA, USA
| | - Benjamin Ubani
- Boston University, School of Public Health, Boston, MA, USA
| | - Denise J van der Mee
- Department of Biological Psychology, Amsterdam Public Health Research Institute, VU University, Amsterdam, The Netherlands
| | - Laura S van Velzen
- Department of Psychiatry, Neuroscience Campus Amsterdam, VU University, Medical Center and GGZ inGeest, Amsterdam, the Netherlands
- Orygen, The National Centre of Excellence in Youth Mental Health, Parkville, VIC, Australia
- Centre for Youth Mental Health, The University of Melbourne, Melbourne, VIC, Australia
| | - Carlos Ventura-Bort
- Department of Biological Psychology and Affective Science, Faculty of Human Sciences, University of Potsdam, Potsdam, Germany
| | - Arno Villringer
- Department of Neurology, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
- MindBrainBody Institute, Berlin School of Mind and Brain, Humboldt-Universität zu Berlin, Berlin, Germany
| | - David R Watson
- Clinical Imaging Sciences Centre, Brighton and Sussex Medical School, University of Sussex, Falmer, UK
| | - Luqing Wei
- Key Laboratory of Cognition and Personality, Faculty of Psychology, Southwest University, Chongqing, China
| | - Julia Wendt
- Department of Biological Psychology and Affective Science, Faculty of Human Sciences, University of Potsdam, Potsdam, Germany
| | | | - Lars T Westlye
- Norwegian Centre for Mental Disorders Research (NORMENT), Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- Division of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway
- Department of Psychology, University of Oslo, Oslo, Norway
| | - Mathias Weymar
- Department of Biological Psychology and Affective Science, Faculty of Human Sciences, University of Potsdam, Potsdam, Germany
- Faculty of Health Sciences Brandenburg, University of Potsdam, Potsdam, Germany
| | - Tobias Winkelmann
- Department of Cognitive and Clinical Neuroscience, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Guo-Rong Wu
- Key Laboratory of Cognition and Personality, Faculty of Psychology, Southwest University, Chongqing, China
| | - Hyun Joo Yoo
- Emotion and Cognition Lab, University of Southern California, Los Angeles, CA, USA
| | - Daniel S Quintana
- Norwegian Centre for Mental Disorders Research (NORMENT), Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- Division of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway
| |
Collapse
|
34
|
Grimaldi D, Reid KJ, Papalambros NA, Braun RI, Malkani RG, Abbott SM, Ong JC, Zee PC. Autonomic dysregulation and sleep homeostasis in insomnia. Sleep 2021; 44:6029088. [PMID: 33295989 DOI: 10.1093/sleep/zsaa274] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Revised: 11/24/2020] [Indexed: 11/12/2022] Open
Abstract
STUDY OBJECTIVES Insomnia is common in older adults, and is associated with poor health, including cognitive impairment and cardio-metabolic disease. Although the mechanisms linking insomnia with these comorbidities remain unclear, age-related changes in sleep and autonomic nervous system (ANS) regulation might represent a shared mechanistic pathway. In this study, we assessed the relationship between ANS activity with indices of objective and subjective sleep quality in older adults with insomnia. METHODS Forty-three adults with chronic insomnia and 16 age-matched healthy sleeper controls were studied. Subjective sleep quality was assessed using the Pittsburgh Sleep Quality Index (PSQI), objective sleep quality by electroencephalogram spectral components derived from polysomnography, and ANS activity by measuring 24-h plasma cortisol and norepinephrine (NE). RESULTS Sleep cycle analysis displayed lower slow oscillatory (SO: 0.5-1.25 Hz) activity in the first cycle in insomnia compared to controls. In insomnia, 24-h cortisol levels were higher and 24-h NE levels were lower than controls. In controls, but not in insomnia, there was a significant interaction between NE level during wake and SO activity levels across the sleep cycles, such that in controls but not in insomnia, NE level during wake was positively associated with the amount of SO activity in the first cycle. In insomnia, lower 24-h NE level and SO activity in the first sleep cycle were associated with poorer subjective sleep quality. CONCLUSION Dysregulation of autonomic activity may be an underlying mechanism that links objective and subjective measures of sleep quality in older adults with insomnia, and potentially contribute to adverse health outcomes.
Collapse
Affiliation(s)
- Daniela Grimaldi
- Center for Circadian and Sleep Medicine, Department of Neurology, Northwestern University, Feinberg School of Medicine, Chicago, IL, USA
| | - Kathryn J Reid
- Center for Circadian and Sleep Medicine, Department of Neurology, Northwestern University, Feinberg School of Medicine, Chicago, IL, USA
| | - Nelly A Papalambros
- Center for Circadian and Sleep Medicine, Department of Neurology, Northwestern University, Feinberg School of Medicine, Chicago, IL, USA
| | - Rosemary I Braun
- Biostatistics Division, Department of Preventive Medicine, Northwestern University, Feinberg School of Medicine, Chicago, IL, USA.,Department of Engineering Sciences and Applied Mathematics, Northwestern University, Evanston, IL, USA.,Department of Physics and Astronomy, Northwestern University, Evanston, IL, USA
| | - Roneil G Malkani
- Center for Circadian and Sleep Medicine, Department of Neurology, Northwestern University, Feinberg School of Medicine, Chicago, IL, USA
| | - Sabra M Abbott
- Center for Circadian and Sleep Medicine, Department of Neurology, Northwestern University, Feinberg School of Medicine, Chicago, IL, USA
| | - Jason C Ong
- Center for Circadian and Sleep Medicine, Department of Neurology, Northwestern University, Feinberg School of Medicine, Chicago, IL, USA
| | - Phyllis C Zee
- Center for Circadian and Sleep Medicine, Department of Neurology, Northwestern University, Feinberg School of Medicine, Chicago, IL, USA
| |
Collapse
|
35
|
Santin Y, Resta J, Parini A, Mialet-Perez J. Monoamine oxidases in age-associated diseases: New perspectives for old enzymes. Ageing Res Rev 2021; 66:101256. [PMID: 33434685 DOI: 10.1016/j.arr.2021.101256] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Revised: 12/04/2020] [Accepted: 01/05/2021] [Indexed: 12/19/2022]
Abstract
Population aging is one of the most significant social changes of the twenty-first century. This increase in longevity is associated with a higher prevalence of chronic diseases, further rising healthcare costs. At the molecular level, cellular senescence has been identified as a major process in age-associated diseases, as accumulation of senescent cells with aging leads to progressive organ dysfunction. Of particular importance, mitochondrial oxidative stress and consequent organelle alterations have been pointed out as key players in the aging process, by both inducing and maintaining cellular senescence. Monoamine oxidases (MAOs), a class of enzymes that catalyze the degradation of catecholamines and biogenic amines, have been increasingly recognized as major producers of mitochondrial ROS. Although well-known in the brain, evidence showing that MAOs are also expressed in a variety of peripheral organs stimulated a growing interest in the extra-cerebral roles of these enzymes. Besides, the fact that MAO-A and/or MAO-B are frequently upregulated in aged or dysfunctional organs has uncovered new perspectives on their roles in pathological aging. In this review, we will give an overview of the major results on the regulation and function of MAOs in aging and age-related diseases, paying a special attention to the mechanisms linked to the increased degradation of MAO substrates or related to MAO-dependent ROS formation.
Collapse
Affiliation(s)
- Yohan Santin
- Institute of Metabolic and Cardiovascular Diseases (I2MC), INSERM, Université de Toulouse, Toulouse, France
| | - Jessica Resta
- Institute of Metabolic and Cardiovascular Diseases (I2MC), INSERM, Université de Toulouse, Toulouse, France
| | - Angelo Parini
- Institute of Metabolic and Cardiovascular Diseases (I2MC), INSERM, Université de Toulouse, Toulouse, France
| | - Jeanne Mialet-Perez
- Institute of Metabolic and Cardiovascular Diseases (I2MC), INSERM, Université de Toulouse, Toulouse, France.
| |
Collapse
|
36
|
Pamphlett R, Kum Jew S, Doble PA, Bishop DP. Mercury in the human adrenal medulla could contribute to increased plasma noradrenaline in aging. Sci Rep 2021; 11:2961. [PMID: 33536525 PMCID: PMC7858609 DOI: 10.1038/s41598-021-82483-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Accepted: 01/18/2021] [Indexed: 02/07/2023] Open
Abstract
Plasma noradrenaline levels increase with aging, and this could contribute to the sympathetic overactivity that is associated with essential hypertension and the metabolic syndrome. The underlying cause of this rise in noradrenaline is unknown, but a clue may be that mercury increases noradrenaline output from the adrenal medulla of experimental animals. We therefore determined the proportion of people from 2 to 104 years of age who had mercury in their adrenal medulla. Mercury was detected in paraffin sections of autopsied adrenal glands using two methods of elemental bioimaging, autometallography and laser ablation-inductively coupled plasma-mass spectrometry. Mercury first appeared in cells of the adrenal medulla in the 21–40 years group, where it was present in 52% of samples, and increased progressively in frequency in older age groups, until it was detected in 90% of samples from people aged over 80 years. In conclusion, the proportion of people having mercury in their adrenal medulla increases with aging. Mercury could alter the metabolism of catecholamines in the adrenal medulla that leads to the raised levels of plasma noradrenaline in aging. This retrospective autopsy study was not able to provide a definitive link between adrenal mercury, noradrenaline levels and hypertension, but future functional human and experimental studies could provide further evidence for these associations.
Collapse
Affiliation(s)
- Roger Pamphlett
- Discipline of Pathology, Sydney Medical School, Brain and Mind Centre, The University of Sydney, Sydney, NSW, Australia. .,Department of Neuropathology, Royal Prince Alfred Hospital, Sydney, NSW, Australia.
| | - Stephen Kum Jew
- Discipline of Pathology, Sydney Medical School, Brain and Mind Centre, The University of Sydney, Sydney, NSW, Australia
| | - Philip A Doble
- Elemental Bio-Imaging Facility, School of Mathematical and Physical Sciences, University of Technology Sydney, Sydney, NSW, Australia
| | - David P Bishop
- Elemental Bio-Imaging Facility, School of Mathematical and Physical Sciences, University of Technology Sydney, Sydney, NSW, Australia
| |
Collapse
|
37
|
Dietrich P, Wormser L, Fritz V, Seitz T, De Maria M, Schambony A, Kremer AE, Günther C, Itzel T, Thasler WE, Teufel A, Trebicka J, Hartmann A, Neurath MF, von Hörsten S, Bosserhoff AK, Hellerbrand C. Molecular crosstalk between Y5 receptor and neuropeptide Y drives liver cancer. J Clin Invest 2021; 130:2509-2526. [PMID: 31999643 DOI: 10.1172/jci131919] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Accepted: 01/23/2020] [Indexed: 12/30/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is clearly age-related and represents one of the deadliest cancer types worldwide. As a result of globally increasing risk factors including metabolic disorders, the incidence rates of HCC are still rising. However, the molecular hallmarks of HCC remain poorly understood. Neuropeptide Y (NPY) and NPY receptors represent a highly conserved, stress-activated system involved in diverse cancer-related hallmarks including aging and metabolic alterations, but its impact on liver cancer had been unclear. Here, we observed increased expression of NPY5 receptor (Y5R) in HCC, which correlated with tumor growth and survival. Furthermore, we found that its ligand NPY was secreted by peritumorous hepatocytes. Hepatocyte-derived NPY promoted HCC progression by Y5R activation. TGF-β1 was identified as a regulator of NPY in hepatocytes and induced Y5R in invasive cancer cells. Moreover, NPY conversion by dipeptidylpeptidase 4 (DPP4) augmented Y5R activation and function in liver cancer. The TGF-β/NPY/Y5R axis and DPP4 represent attractive therapeutic targets for controlling liver cancer progression.
Collapse
Affiliation(s)
- Peter Dietrich
- Institute of Biochemistry, Emil-Fischer-Zentrum.,Department of Medicine 1, University Hospital Erlangen, and
| | | | | | | | - Monica De Maria
- Biology Department, Developmental Biology, Friedrich-Alexander University Erlangen-Nürnberg, Erlangen, Germany
| | - Alexandra Schambony
- Biology Department, Developmental Biology, Friedrich-Alexander University Erlangen-Nürnberg, Erlangen, Germany
| | | | | | - Timo Itzel
- Department of Internal Medicine II, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | | | - Andreas Teufel
- Department of Internal Medicine II, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Jonel Trebicka
- Department of Medicine I, University Hospital Bonn, Bonn, Germany
| | - Arndt Hartmann
- Institute of Pathology, Friedrich-Alexander University Erlangen-Nürnberg, Erlangen, Germany.,Comprehensive Cancer Center Erlangen-European Metropolitan Region of Nuremberg, Erlangen, Germany
| | - Markus F Neurath
- Department of Medicine 1, University Hospital Erlangen, and.,Comprehensive Cancer Center Erlangen-European Metropolitan Region of Nuremberg, Erlangen, Germany
| | - Stephan von Hörsten
- Department of Experimental Therapy, Franz Penzoldt Center, Friedrich-Alexander University Erlangen-Nürnberg, Erlangen, Germany
| | - Anja K Bosserhoff
- Institute of Biochemistry, Emil-Fischer-Zentrum.,Comprehensive Cancer Center Erlangen-European Metropolitan Region of Nuremberg, Erlangen, Germany
| | - Claus Hellerbrand
- Institute of Biochemistry, Emil-Fischer-Zentrum.,Comprehensive Cancer Center Erlangen-European Metropolitan Region of Nuremberg, Erlangen, Germany
| |
Collapse
|
38
|
Omari Z, Kazunori S, Sabti M, Bejaoui M, Hafidi A, Gadhi C, Isoda H. Dietary administration of cumin-derived cuminaldehyde induce neuroprotective and learning and memory enhancement effects to aging mice. Aging (Albany NY) 2021; 13:1671-1685. [PMID: 33471781 PMCID: PMC7880363 DOI: 10.18632/aging.202516] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2019] [Accepted: 12/25/2020] [Indexed: 12/01/2022]
Abstract
Cuminaldehyde (CA) is one of the major compounds of the essential oil of Cuminum cyminum. The aim of this study was to evaluate the effects of CA on aging, specifically on spatial learning and memory. To achieve our objective, an in vitro study on SH-SY5Y cells was performed to analyze the neuroprotective effect of CA against dexamethasone using the MTT assay. An in vivo study was performed for evaluation of the spatial learning and memory using Morris water maze (MWM). RT-PCR was performed to quantify the expression of specific genes (Bdnf, Icam and ApoE) in the mice brain. The results obtained showed a neuroprotective effect of CA against dexamethasone-induced neuronal toxicity. The escape latency of CA-treated aged mice was significantly decreased as compared to the water-treated aged mice after 4 days of training in MWM. Moreover, CA treatment up-regulated the gene expression of Bdnf, Icam and ApoE, while it down-regulated the gene expression of IL-6. These findings suggest that CA has a neuroprotective effect, as well as a spatial learning and memory enhancement potential through the modulation of genes coding for neurotrophic factors and/or those implicated in the imbalance of neural circuitry and impairment of synaptic plasticity. Cuminaldehyde (CA) is one of the major compound of the essential oil of Cuminum cyminum. The aim of this study was to evaluate the effects of CA on aging, specifically on spatial learning and memory. To achieve our objective, an in vitro study on SH-SY5Y cells was performed to analyze the neuroprotective effect of CA against dexamethasone using the MTT assay. An in vivo study was performed for evaluation of the spatial learning and memory using Morris water maze (MWM). RT-PCR was performed to quantify the expression of specific genes (Bdnf, Icam and ApoE) in the mice brain. The results obtained showed a neuroprotective effect of CA against dexamethasone-induced neuronal toxicity. The escape latency of CA-treated aged mice was significantly decreased as compared to the water-treated aged mice after 4 days of training in MWM. Moreover, CA treatment up-regulated the gene expression of Bdnf, Icam and ApoE, while it down-regulated the gene expression of IL-6. These findings suggest that CA has a neuroprotective effect, as well as a spatial learning and memory enhancement potential through the modulation of genes coding for neurotrophic factors and/or those implicated in the imbalance of neural circuitry and impairment of synaptic plasticity.
Collapse
Affiliation(s)
- Zineb Omari
- Alliance for Research on the Mediterranean and North Africa (ARENA), University of Tsukuba, Tsukuba, Ibaraki 305-8572, Japan.,Faculty of Sciences Semlalia, Cadi Ayyad University, Marrakesh 40000, Morocco
| | - Sasaki Kazunori
- Alliance for Research on the Mediterranean and North Africa (ARENA), University of Tsukuba, Tsukuba, Ibaraki 305-8572, Japan.,Open Innovation Laboratory for Food and Medicinal Resource Engineering, National Institute of Advanced Industrial Science and Technology (AIST) and University of Tsukuba, Tsukuba, Ibaraki 305-8572, Japan.,Faculty of Pure and Applied Sciences, University of Tsukuba, Tsukuba, Ibaraki 305-8571, Japan
| | - Mouad Sabti
- Alliance for Research on the Mediterranean and North Africa (ARENA), University of Tsukuba, Tsukuba, Ibaraki 305-8572, Japan.,Tsukuba Life Science Innovation Program (T-LSI), University of Tsukuba, Tsukuba, Ibaraki 305-8577, Japan
| | - Meriem Bejaoui
- Alliance for Research on the Mediterranean and North Africa (ARENA), University of Tsukuba, Tsukuba, Ibaraki 305-8572, Japan.,Tsukuba Life Science Innovation Program (T-LSI), University of Tsukuba, Tsukuba, Ibaraki 305-8577, Japan
| | - Abdellatif Hafidi
- Faculty of Sciences Semlalia, Cadi Ayyad University, Marrakesh 40000, Morocco
| | - Chemseddoha Gadhi
- Alliance for Research on the Mediterranean and North Africa (ARENA), University of Tsukuba, Tsukuba, Ibaraki 305-8572, Japan.,Faculty of Sciences Semlalia, Cadi Ayyad University, Marrakesh 40000, Morocco
| | - Hiroko Isoda
- Alliance for Research on the Mediterranean and North Africa (ARENA), University of Tsukuba, Tsukuba, Ibaraki 305-8572, Japan.,Open Innovation Laboratory for Food and Medicinal Resource Engineering, National Institute of Advanced Industrial Science and Technology (AIST) and University of Tsukuba, Tsukuba, Ibaraki 305-8572, Japan.,Faculty of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Ibaraki 305-8587, Japan
| |
Collapse
|
39
|
Balmain BN, Sabapathy S, Yamada A, Shiino K, Chan J, Haseler LJ, Kavanagh JJ, Morris NR, Stewart GM. Cardiac perturbations after high-intensity exercise are attenuated in middle-aged compared with young endurance athletes: diminished stress or depleted stimuli? Am J Physiol Heart Circ Physiol 2020; 320:H159-H168. [PMID: 33124881 DOI: 10.1152/ajpheart.00427.2020] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Strenuous exercise elicits transient functional and biochemical cardiac imbalances. Yet, the extent to which these responses are altered owing to aging is unclear. Accordingly, echocardiograph-derived left ventricular (LV) and right ventricular (RV) global longitudinal strain (GLS) and high-sensitivity cardiac troponin I (hs-cTnI) were assessed before (pre) and after (post) a 60-min high-intensity cycling race intervention (CRIT60) in 11 young (18-30 yr) and 11 middle-aged (40-65 yr) highly trained male cyclists, matched for cardiorespiratory fitness. LV and RV GLS were measured at rest and during a semirecumbent exercise challenge performed at the same intensity (young: 93 ± 10; middle-aged: 85 ± 11 W, P = 0.60) pre- and post-CRIT60. Augmentation (change from rest-to-exercise challenge) of LV GLS (pre: -2.97 ± 0.65; post: -0.82 ± 0.48%, P = 0.02) and RV GLS (pre: -2.08 ± 1.28; post: 3.08 ± 2.02%, P = 0.01) was attenuated and completely abolished, in the young following CRIT60, while augmentation of LV GLS (pre: -3.21 ± 0.41; post: -3.99 ± 0.55%, P = 0.22) and RV GLS (pre: -3.47 ± 1.44; post: -1.26 ± 1.00%, P = 0.27) was preserved in middle-aged following CRIT60. While serum hs-cTnI concentration increased followingCRIT60 in the young (pre: 7.3 ± 1.6; post: 17.7 ± 1.6 ng/L, P < 0.01) and middle-aged (pre: 4.5 ± 0.6; post: 10.7 ± 2.0 ng/L, P < 0.01), serum hs-cTnI concentration increased to a greater extent in the young than in the middle-aged following CRIT60 (P < 0.01). These findings suggest that functional and biochemical cardiac perturbations induced by high-intensity exercise are attenuated in middle-aged relative to young individuals. Further study is warranted to determine whether acute exercise-induced cardiac perturbations alter the adaptive myocardial remodeling response.NEW & NOTEWORTHY High-intensity endurance exercise elicits acute cardiac imbalances that may be an important stimulus for adaptive cardiac remodeling. This study highlights that following a bout of high-intensity exercise that is typical of routine day-to-day cycling training, exercise-induced autonomic, biochemical, and functional cardiac imbalances are attenuated in middle-aged relative to young well-trained cyclists. These findings suggest that aging may alter exercise-induced stress stimulus response that initiates cardiac remodeling in athlete's heart.
Collapse
Affiliation(s)
- Bryce N Balmain
- Institute for Exercise and Environmental Medicine, Texas Health Presbyterian Hospital Dallas and University of Texas Southwestern Medical Center, Dallas, Texas.,Menzies Health Institute Queensland, Gold Coast, Queensland, Australia
| | | | - Akira Yamada
- Department of Cardiology, Fujita Health University, Nagoya, Japan
| | - Kenji Shiino
- Department of Cardiology, Fujita Health University, Nagoya, Japan
| | - Jonathan Chan
- Menzies Health Institute Queensland, Gold Coast, Queensland, Australia.,Cardiology Division, The Prince Charles Hospital, Brisbane, Queensland, Australia
| | - Luke J Haseler
- School of Physiotherapy and Exercise Science, Curtin University, Perth, Western Australia, Australia
| | - Justin J Kavanagh
- Menzies Health Institute Queensland, Gold Coast, Queensland, Australia
| | - Norman R Morris
- Menzies Health Institute Queensland, Gold Coast, Queensland, Australia.,Allied Health Research Collaborative, The Prince Charles Hospital, Brisbane, Queensland, Australia
| | - Glenn M Stewart
- Menzies Health Institute Queensland, Gold Coast, Queensland, Australia.,Division of Cardiovascular Diseases, Mayo Clinic, Rochester, Minnesota
| |
Collapse
|
40
|
Angiotensin-(1-7) Improves Integrated Cardiometabolic Function in Aged Mice. Int J Mol Sci 2020; 21:ijms21145131. [PMID: 32698498 PMCID: PMC7403973 DOI: 10.3390/ijms21145131] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Revised: 07/14/2020] [Accepted: 07/18/2020] [Indexed: 01/07/2023] Open
Abstract
Angiotensin (Ang)-(1-7) is a beneficial renin–angiotensin system (RAS) hormone that elicits protective cardiometabolic effects in young animal models of hypertension, obesity, and metabolic syndrome. The impact of Ang-(1-7) on cardiovascular and metabolic outcomes during aging, however, remains unexplored. This study tested the hypothesis that Ang-(1-7) attenuates age-related elevations in blood pressure and insulin resistance in mice. Young adult (two-month-old) and aged (16-month-old) male C57BL/6J mice received Ang-(1-7) (400 ng/kg/min) or saline for six-weeks via a subcutaneous osmotic mini-pump. Arterial blood pressure and metabolic function indices (body composition, insulin sensitivity, and glucose tolerance) were measured at the end of treatment. Adipose and cardiac tissue masses and cardiac RAS, sympathetic and inflammatory marker gene expression were also measured. We found that chronic Ang-(1-7) treatment decreased systolic and mean blood pressure, with a similar trend for diastolic blood pressure. Ang-(1-7) also improved insulin sensitivity in aged mice to levels in young mice, without effects on glucose tolerance or body composition. The blood pressure–lowering effects of Ang-(1-7) in aged mice were associated with reduced sympathetic outflow to the heart. These findings suggest Ang-(1-7) may provide a novel pharmacological target to improve age-related cardiometabolic risk.
Collapse
|
41
|
Kuzmenko NV, Pliss MG, Galagudza MM, Tsyrlin VA. Effects of Hyper- and Hypothermia on Hemodynamic Parameters in People of Different Age Groups: Meta-Analysis. ADVANCES IN GERONTOLOGY 2020. [DOI: 10.1134/s2079057020020095] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
|
42
|
Sabbatini AR, Kararigas G. Estrogen-related mechanisms in sex differences of hypertension and target organ damage. Biol Sex Differ 2020; 11:31. [PMID: 32487164 PMCID: PMC7268741 DOI: 10.1186/s13293-020-00306-7] [Citation(s) in RCA: 66] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Accepted: 05/04/2020] [Indexed: 12/13/2022] Open
Abstract
Hypertension (HTN) is a primary risk factor for cardiovascular (CV) events, target organ damage (TOD), premature death and disability worldwide. The pathophysiology of HTN is complex and influenced by many factors including biological sex. Studies show that the prevalence of HTN is higher among adults aged 60 and over, highlighting the increase of HTN after menopause in women. Estrogen (E2) plays an important role in the development of systemic HTN and TOD, exerting several modulatory effects. The influence of E2 leads to alterations in mechanisms regulating the sympathetic nervous system, renin-angiotensin-aldosterone system, body mass, oxidative stress, endothelial function and salt sensitivity; all associated with a crucial inflammatory state and influenced by genetic factors, ultimately resulting in cardiac, vascular and renal damage in HTN. In the present article, we discuss the role of E2 in mechanisms accounting for the development of HTN and TOD in a sex-specific manner. The identification of targets with therapeutic potential would contribute to the development of more efficient treatments according to individual needs.
Collapse
Affiliation(s)
| | - Georgios Kararigas
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany.
- DZHK (German Centre for Cardiovascular Research), partner site Berlin, Berlin, Germany.
| |
Collapse
|
43
|
The cardiovascular risk profile of middle age women previously diagnosed with premature ovarian insufficiency: A case-control study. PLoS One 2020; 15:e0229576. [PMID: 32134933 PMCID: PMC7058320 DOI: 10.1371/journal.pone.0229576] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Accepted: 02/10/2020] [Indexed: 11/19/2022] Open
Abstract
Background Cardiovascular disease (CVD) is the leading cause of death in women worldwide. The cardiovascular risk profile deteriorates after women enter menopause. By definition, women diagnosed with premature ovarian insufficiency (POI) experience menopause before 40 years of age, which may render these women even more susceptible to develop CVD later in life. However, prospective long-term follow up data of well phenotyped women with POI are scarce. In the current study we compare the CVD profile and risk of middle aged women previously diagnosed with POI, to a population based reference group matched for age and BMI. Methods and findings We compared 123 women (age 49.0 (± 4.3) years) and diagnosed with POI 8.1 (IQR: 6.8–9.6) years earlier, with 123 population controls (age 49.4 (± 3.9) years). All women underwent an extensive standardized cardiovascular screening. We assessed CVD risk factors including waist circumference, BMI, blood pressure, lipid profile, pulse wave velocity (PWV), and the prevalence of diabetes mellitus, metabolic syndrome (MetS) and carotid intima media thickness (cIMT), in both women with POI and controls. We calculated the 10-year CVD Framingham Risk Score (FRS) and the American Heart Association’s suggested cardiovascular health score (CHS). Waist circumference (90.0 (IQR: 83.0–98.0) versus 80.7 (IQR: 75.1–86.8), p < 0.01), waist-to-hip ratio (0.90 (IQR: 0.85–0.93) versus 0.79 (IQR: 0.75–0.83), p < 0.01), systolic blood pressure (124 (IQR 112–135) versus 120 (IQR109-131), p < 0.04) and diastolic blood pressure (81 (IQR: 76–89) versus 78 (IQR: 71–86), p < 0.01), prevalence of hypertension (45 (37%) versus 21 (17%), p < 0.01) and MetS (19 (16%) versus 4 (3%), p < 0.01) were all significantly increased in women with POI compared to healthy controls. Other risk factors, however, such as lipids, glucose levels and prevalence of diabetes were similar comparing women with POI versus controls. The arterial stiffness assessed by PWV was also similar in both populations (8.1 (IQR: 7.1–9.4) versus 7.9 (IQR: 7.1–8.4), p = 0.21). In addition, cIMT was lower in women with POI compared to controls (550 μm (500–615) versus 684 μm (618–737), p < 0.01). The calculated 10-year CVD risk was 5.9% (IQR: 3.7–10.6) versus 6.0% (IQR: 3.9–9.0) (p = 0.31) and current CHS was 6.1 (1.9) versus 6.5 (1.6) (p = 0.07), respectively in POI versus controls. Conclusions Middle age women with POI presented with more unfavorable cardiovascular risk factors (increased waist circumference and a higher prevalence of hypertension and MetS) compared to age and BMI matched population controls. In contrast, the current study reveals a lower cIMT and similar 10-year cardiovascular disease risk and cardiovascular health score. In summary, neither signs of premature atherosclerosis nor a worse cardiovascular disease risk or health score were observed among middle age women with POI compared to population controls. Longer-term follow-up studies of women of more advanced age are warranted to establish whether women with POI are truly at increased risk of developing CVD events later in life. Trial registration ClinicalTrials.gov Identifier: NCT02616510.
Collapse
|
44
|
Soder HE, Berumen AM, Gomez KE, Green CE, Suchting R, Wardle MC, Vincent J, Teixeira AL, Schmitz JM, Lane SD. Elevated Neutrophil to Lymphocyte Ratio in Older Adults with Cocaine Use Disorder as a Marker of Chronic Inflammation. CLINICAL PSYCHOPHARMACOLOGY AND NEUROSCIENCE 2020; 18:32-40. [PMID: 31958903 PMCID: PMC7006975 DOI: 10.9758/cpn.2020.18.1.32] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Revised: 10/22/2019] [Accepted: 10/23/2019] [Indexed: 01/23/2023]
Abstract
Objective The neutrophil to lymphocyte ratio (NLR) is a non-specific, easy-to-obtain marker of inflammation associated with morbidity and mortality in systemic, psychiatric, and age-related inflammatory conditions. Given the growing trend of substance use disorder (SUD) in older adults, and the relationship between inflammation and SUD elevated NLR may serve as a useful inflammatory biomarker of the combined burden of aging and SUD. The present study focused on cocaine use disorder (CUD) to examine if cocaine adds further inflammatory burden among older adults, by comparing NLR values between older adults with CUD and a non-cocaine using, aged-matched, nationally representative sample. Methods The dataset included 107 (86% male) participants (aged 50-65 years) with cocaine use disorder. NLR was derived from complete blood count tests by dividing the absolute value of peripheral neutrophil concentration by lymphocyte concentration. For comparison, we extracted data from age-matched adults without CUD using the National Health and Nutrition Examination Survey. Individuals with immunocompromising conditions were excluded (e.g., rheumatoid arthritis and sexually transmitted infections such as HIV). A doubly-robust inverse probability-weighted regression adjustment (IPWRA) propensity score method was used to estimate group differences on NLR while controlling for potential confounding variables (age, gender, race, income, nicotine, marijuana and alcohol use). Results The IPWRA model revealed that the CUD sample had significantly elevated NLR in comparison to non-cocaine users, with a moderate effect size (β weight = 0.67). Conclusion Although non-specific, NLR represents a readily obtainable inflammatory marker for SUD research. CUD may add further inflammatory burden to aging cocaine users.
Collapse
Affiliation(s)
- Heather E Soder
- Faillace Department of Psychiatry and Behavioral Sciences, TX, USA
| | - Amber M Berumen
- Faillace Department of Psychiatry and Behavioral Sciences, TX, USA
| | - Kira E Gomez
- Faillace Department of Psychiatry and Behavioral Sciences, TX, USA
| | - Charles E Green
- Faillace Department of Psychiatry and Behavioral Sciences, TX, USA.,epartment of Pediatrics, University of Texas Health Science Center at Houston, Houston,TX, USA
| | - Robert Suchting
- Faillace Department of Psychiatry and Behavioral Sciences, TX, USA
| | - Margaret C Wardle
- Faillace Department of Psychiatry and Behavioral Sciences, TX, USA.,Department of Psychology, University of Illinois at Chicago, Chicago, IL, USA
| | - Jessica Vincent
- Faillace Department of Psychiatry and Behavioral Sciences, TX, USA
| | | | - Joy M Schmitz
- Faillace Department of Psychiatry and Behavioral Sciences, TX, USA
| | - Scott D Lane
- Faillace Department of Psychiatry and Behavioral Sciences, TX, USA
| |
Collapse
|
45
|
Kruk J, Kotarska K, Aboul-Enein BH. Physical exercise and catecholamines response: benefits and health risk: possible mechanisms. Free Radic Res 2020; 54:105-125. [PMID: 32020819 DOI: 10.1080/10715762.2020.1726343] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Beneficial effect of regular moderate physical exercise (PE) and negative effect of severe exercise and/or overtraining as an activator of the sympathetic nervous system (SNS) have been shown in numerous aspects of human health, including reduced risk of cardiovascular disease, neurological disease, depression, and some types of cancer. Moderate-to-vigorous PE stimulates the SNS activation, releasing catecholamines (CATs) adrenaline, noradrenaline, dopamine that play an important regulatory and modulatory actions by affecting metabolic processes and the immune system. Summary of the dispersed literature in this area and explanation of the biological mechanisms operating between PE-CATs and the immune system would lead to a better understanding of the beneficial and negative effects of PE on health. This overview aimed to: demonstrate representative literature findings on the exercise released CATs levels, major functions performed by these hormones, their interactions with the immune system and their effects on carbohydrate and lipid metabolism. Also, mechanisms of cytotoxic free radicals and reactive oxygen species (ROS) generation during CATs oxidation, and molecular mechanisms of CATs response to exercise are discussed to demonstrate positive and negative on human health effects. Owing to the large body of the subject literature, we present a representative cross-section of the published studies in this area. The results show a significant role of CATs in carbohydrate and lipid metabolism, immunity and as generators of ROS, depending on PE intensity and duration. Further investigation of the PE-CATs relationship should validate CATs levels to optimize safe intensity and duration of exercise and individualize their prescription, considering CATs to be applied as markers for a dose of exercise. Also, a better understanding of the biological mechanisms is also needed.
Collapse
Affiliation(s)
- Joanna Kruk
- Faculty of Physical Culture and Health, University of Szczecin, Szczecin, Poland
| | - Katarzyna Kotarska
- Faculty of Physical Culture and Health, University of Szczecin, Szczecin, Poland
| | - Basil H Aboul-Enein
- Faculty of Public Health & Policy, London School of Hygiene & Tropical Medicine, London, UK
| |
Collapse
|
46
|
Laucius O, Jucevičiūtė N, Vaitkus A, Balnytė R, Rastenytė D, Petrikonis K. Evaluating the functional and structural changes in the vagus nerve: Should the vagus nerve be tested in patients with atrial fibrillation? Med Hypotheses 2020; 138:109608. [PMID: 32044542 DOI: 10.1016/j.mehy.2020.109608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Revised: 01/25/2020] [Accepted: 01/30/2020] [Indexed: 10/25/2022]
Abstract
One of the multiple factors believed to contribute to the initiation and maintenance of atrial fibrillation (AF) is altered activity of the autonomic nervous system. Debate continues about the role of the vagus nerve (CNX) in AF since its effect depends on the level of its activation as well as on simultaneous sympathetic activation. Surplus either vagal or sympathetic activity may rarely induce the development of AF; however, typically loss of balance between the both systems mediates the induction and maintenance of AF. Vagal stimulation has been proposed as a novel treatment approach for AF because the anti-arrhythmic effects of low-level vagus nerve stimulation have been shown both in patients and animal models. We hypothesize that in typical cases of AF without any clear trigger by either autonomic nervous system, significant changes in vagus somatosensory evoked potentials and a smaller cross-sectional area of CNX could be detected, representing functional and structural changes in CNX, respectively.
Collapse
Affiliation(s)
- Ovidijus Laucius
- Department of Neurology, Lithuanian University of Health Sciences, Kaunas, Lithuania.
| | - Neringa Jucevičiūtė
- Faculty of Medicine, Medical Academy, Lithuanian University of Health Sciences, Kaunas, Lithuania.
| | - Antanas Vaitkus
- Department of Neurology, Lithuanian University of Health Sciences, Kaunas, Lithuania.
| | - Renata Balnytė
- Department of Neurology, Lithuanian University of Health Sciences, Kaunas, Lithuania.
| | - Daiva Rastenytė
- Department of Neurology, Lithuanian University of Health Sciences, Kaunas, Lithuania.
| | - Kęstutis Petrikonis
- Department of Neurology, Lithuanian University of Health Sciences, Kaunas, Lithuania.
| |
Collapse
|
47
|
Bokuda K, Yatabe M, Seki Y, Ichihara A. Clinical factors affecting spot urine fractionated metanephrines in patients suspected pheochromocytoma/paraganglioma. Hypertens Res 2020; 43:543-549. [PMID: 32020083 DOI: 10.1038/s41440-020-0406-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Revised: 12/02/2019] [Accepted: 12/26/2019] [Indexed: 11/09/2022]
Abstract
Urinary measurement of fractionated metanephrines is one of the best available biochemical tests for the diagnosis of pheochromocytoma and paraganglioma; however, false-positive results remain an issue. In addition, despite their convenience, there is no evidence to suggest that spot urine samples should replace the standard 24-h urine collection method. The objective of this study is to elucidate clinical variables that may influence the levels of spot urine fractionated metanephrines and to examine their instability. The study is a retrospective review of prospectively collected data from 949 patients whose spot urine fractionated metanephrines were measured under suspicion of pheochromocytoma or paraganglioma at our institution from January 2011 to June 2017. The effects of clinical factors such as age, sex, renal function, and medications on the level of spot urine fractionated metanephrines were evaluated. Urinary fractionated metanephrines were significantly higher in female subjects. They correlated with age but not with estimated glomerular filtration rate (eGFR). A multivariate regression model for urinary fractionated metanephrine levels revealed that age, female sex, eGFR, and the presence of α1-blocker medication were significantly positively correlated with urinary metanephrine (M) levels. Age, female sex, eGFR, and presence of α1-blockers and antidepressant and antipsychotic medications positively correlated with urinary normetanephrine (NM). In addition, age, female sex, eGFR, and presence of α1-blockers and antidepressant and antipsychotic medications were positively correlated with urinary M + NM. In conclusion, sex, age, eGFR, and treatment with α1-blockers, antidepressants, and antipsychotics may affect the levels of urinary fractionated metanephrines. When assessing urinary fractionated metanephrines in patients with suspected PPGLs, we must consider these factors.
Collapse
Affiliation(s)
- Kanako Bokuda
- Department of Endocrinology and Hypertension, Tokyo Women's Medical University, Tokyo, Japan
| | - Midori Yatabe
- Department of Endocrinology and Hypertension, Tokyo Women's Medical University, Tokyo, Japan.
| | - Yasufumi Seki
- Department of Endocrinology and Hypertension, Tokyo Women's Medical University, Tokyo, Japan
| | - Atsuhiro Ichihara
- Department of Endocrinology and Hypertension, Tokyo Women's Medical University, Tokyo, Japan
| |
Collapse
|
48
|
Jafarnejad S, Salek M, Clark CCT. Cocoa Consumption and Blood Pressure in Middle-Aged and Elderly Subjects: a Meta-Analysis. Curr Hypertens Rep 2020; 22:1. [DOI: 10.1007/s11906-019-1005-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
49
|
Sakai S, Inoue-Sato M, Amemiya R, Murakami M, Inagaki K, Sakairi Y. The influence of autogenic training on the physical properties of skin and cardiac autonomic activity in postmenopausal women: an exploratory study. Int J Dermatol 2020; 59:103-109. [PMID: 31294461 DOI: 10.1111/ijd.14582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/05/2018] [Revised: 05/08/2019] [Accepted: 06/14/2019] [Indexed: 01/24/2023]
Abstract
BACKGROUND Autogenic training (AT) is a major relaxation training technique whose clinical efficacy has been verified in dermatology. Many reports demonstrate ameliorated skin conditions in AT-treated subjects with reduced psychological stress. However, no studies have examined the effects of AT on the skin of postmenopausal women. OBJECTIVES We examine the influences of AT on the physical properties of skin and cardiac autonomic activity in postmenopausal women. METHODS Postmenopausal women were classed into an AT group and a control one. The women in the AT group were mentored by a professional to practice AT twice a day for 7 weeks. The women in the control group were instructed to close their eyes for 3 minutes instead of AT. Hydration of the stratum corneum (SC), transepidermal water loss (TEWL), skin elasticity and heart-rate variability (HRV) were measured before and after the study period to examine how they changed. RESULTS SC hydration and skin elasticity of the cheek, increased in both groups, and the increase was significantly higher in the AT group (n = 14) than in the control group (n = 12) (P < 0.05, Cohen's d = 1.03; P < 0.05, Cohen's d = 0.99; respectively). TEWL did not change in either group. LF/HF was lower in the AT group than in the control group (P < 0.05, Cohen's d = 0.91). CONCLUSION AT increased SC hydration and skin elasticity with changes in the balance of autonomic nervous system activity in postmenopausal women, implying that AT may have improvement effects on aged skin by menopause.
Collapse
Affiliation(s)
- Shingo Sakai
- Skincare Products Research, Kao Corporation, Odawara, Kanagawa, Japan
| | - Mayumi Inoue-Sato
- Skincare Products Research, Kao Corporation, Odawara, Kanagawa, Japan
| | - Rei Amemiya
- Faculty of Health and Sports Sciences, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Motoko Murakami
- Skincare Products Research, Kao Corporation, Odawara, Kanagawa, Japan
| | - Kazuki Inagaki
- Faculty of Health and Sports Sciences, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Yosuke Sakairi
- Faculty of Health and Sports Sciences, University of Tsukuba, Tsukuba, Ibaraki, Japan
| |
Collapse
|
50
|
Grassi G, Quarti-Trevano F, Esler MD. Sympathetic activation in congestive heart failure: an updated overview. Heart Fail Rev 2019; 26:173-182. [PMID: 31832833 DOI: 10.1007/s10741-019-09901-2] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Conclusive evidence demonstrates that the sympathetic nervous system activation is a hallmark of congestive heart failure. This has been shown via a variety of biochemical, neurophysiological, and neuroimaging approaches for studying human sympathetic neural function. The sympathetic activation appears to be an early phenomenon in the clinical course of the disease, closely related to its severity and potentiated by the concomitant presence of other comorbidities, such as obesity, diabetes mellitus, metabolic syndrome, hypertension, and renal failure. The adrenergic overdrive in heart failure is associated with other sympathetic abnormalities, such as the downregulation of beta-adrenergic adrenoreceptors at cardiac level, and exerts unfavorable consequences on the cardiovascular system. These include the endothelial dysfunction, the development of left ventricular hypertrophy, the atherosclerosis development, as well as the generation of atrial and ventricular arrhythmias, and, at very extreme levels of sympathetic activation, the occurrence of microscopic myocardial necrosis. Given the close direct independent relationships detected in heart failure between sympathetic activation and mortality, the adrenergic overdrive has become a target of neuromodulatory therapeutic interventions, which include non-pharmacological, pharmacological, and device-based interventions. For some of these approaches (specifically bilateral renal nerves ablation and carotid baroreceptor stimulation), additional studies are needed to better define their impact on the clinical course of the disease.
Collapse
Affiliation(s)
- Guido Grassi
- Clinica Medica, Department of Medicine and Surgery, University of Milano-Bicocca, Via Pergolesi 33, 20052, Monza, Italy.
| | - Fosca Quarti-Trevano
- Clinica Medica, Department of Medicine and Surgery, University of Milano-Bicocca, Via Pergolesi 33, 20052, Monza, Italy
| | - Murray D Esler
- Baker IDI Heart and Diabetes Institute, Melbourne, Australia
| |
Collapse
|