1
|
Sekiguchi Y, Adams WM, Hosokawa Y, Benjamin CL, Stearns RL, Huggins RA, Casa DJ. Customizing individual heat mitigation strategies to optimize performance in elite athletes. Front Physiol 2025; 16:1380645. [PMID: 40308571 PMCID: PMC12040879 DOI: 10.3389/fphys.2025.1380645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Accepted: 03/24/2025] [Indexed: 05/02/2025] Open
Abstract
The aim of this review is twofold: 1) provide a brief discussion surrounding the interindividual variability that has been observed within the context of heat acclimation/acclimatization, body cooling, and hydration strategies, and 2) provide the reader with a practitioner-focused approach for creating individualized heat mitigation strategies. Considering individual variability for heat acclimation and heat acclimatization, various body cooling strategies, and hydration assessment/fluid replacement is important to maximize effects of these strategies, which lead to better performance and health outcomes. There are many factors to consider, and comprehensive approaches are required. The evidenced-informed decision is critical when making an individual approach, and data will help to make decisions effectively. It is important to keep adjusting the approach based on observed data as data is useful information to check if the approach is effective. Specific considerations to individualize the plan are discussed in this review.
Collapse
Affiliation(s)
- Yasuki Sekiguchi
- Sports Performance Laboratory, Department of Kinesiology and Sport Management, Texas Tech University, Lubbock, TX, United States
| | - William M. Adams
- Department of Sports Medicine, United States Olympic and Paralympic Committee, Colorado Springs, CO, United States
- United States Coalition for the Prevention of Illness and Injury in Sport, Colorado Springs, CO, United States
- Department of Kinesiology, University of North Carolina at Greensboro, Greensboro, NC, United States
- School of Sport, Exercise and Health Sciences, Loughborough University, Leicestershire, United Kingdom
| | - Yuri Hosokawa
- Faculty of Sport Sciences, Waseda University, Tokorozawa, Japan
| | | | - Rebecca L. Stearns
- Korey Stringer Institute, Department of Kinesiology, University of Connecticut, Storrs, CT, United States
| | - Robert A. Huggins
- Korey Stringer Institute, Department of Kinesiology, University of Connecticut, Storrs, CT, United States
| | - Douglas J. Casa
- Korey Stringer Institute, Department of Kinesiology, University of Connecticut, Storrs, CT, United States
| |
Collapse
|
2
|
Weston ME, Barker AR, Tomlinson OW, Coombes JS, Bailey TG, Bond B. Middle cerebral artery blood velocity and end-tidal carbon dioxide responses to moderate intensity cycling in children, adolescents, and adults. J Appl Physiol (1985) 2024; 137:1117-1129. [PMID: 39262338 PMCID: PMC11573276 DOI: 10.1152/japplphysiol.00688.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 09/04/2024] [Accepted: 09/04/2024] [Indexed: 09/13/2024] Open
Abstract
This study investigated the middle cerebral artery blood velocity (MCAv) response to constant work-rate moderate-intensity cycling exercise in 21 children (9.3 ± 0.8 yr), 17 adolescents (12.3 ± 0.4 yr), and 20 young adults (23.6 ± 2.4 yr). Participants completed an incremental ramp test to exhaustion on a cycle ergometer to determine maximal oxygen uptake and gas exchange threshold (GET) before completing three 6-min transitions at a moderate intensity (90% GET) on separate visits. On each visit, bilateral MCAv was measured by transcranial Doppler ultrasonography and breath-by-breath end-tidal carbon dioxide ([Formula: see text]) via a metabolic cart. Data were ensemble-averaged for each participant and analyzed using a monoexponential model. Absolute MCAv was significantly higher throughout exercise in children and adolescents compared with adults (P < 0.001). Children had a significantly lower relative increase in MCAv from baseline (∼12%) compared with adolescents (∼20%) and adults (∼18%, P < 0.040). All adolescents and adults had a monoexponential rise in MCAv and [Formula: see text], but this was observed in only eight children. Children and adolescents had a significantly faster MCAv time constant (τ, 12 ± 6 and 14 ± 8 s, respectively) compared with adults (27 ± 9 s, P < 0.001). MCAv τ was positively associated with faster [Formula: see text] τ in adolescents (r = 0.70, P = 0.002) but not in children (r = -0.20, P = 0.640). Time- and amplitude-based response parameters of MCAv kinetics were significantly associated with [Formula: see text] kinetics in adults (r = 0.50-0.74, P ≤ 0.025), but not in children (r = -0.19 to -0.48, P > 0.227). These findings suggest that the transition from childhood to adulthood impacts the MCAv response to exercise and the relationships between [Formula: see text] and MCAv kinetics during exercise.NEW & NOTEWORTHY This is the first study to find that children have smaller increases in Δ%MCAv (∼12%) during moderate-intensity exercise compared with adolescents and adults (∼18%-20%). Furthermore, MCAv kinetics were significantly faster in children and adolescents, compared with adults. MCAv kinetic responses were significantly and positively associated with [Formula: see text] kinetics in adults, but not in children. These novel data also suggest that the regulatory role of [Formula: see text] on MCAv during exercise begins to strengthen during adolescence.
Collapse
Affiliation(s)
- Max E Weston
- Faculty of Health and Life Sciences, Public Health and Sports Sciences, Children's Health and Exercise Research Centre, University of Exeter, Exeter, United Kingdom
- Physiology and Ultrasound Laboratory in Science and Exercise, School of Human Movement and Nutrition Sciences, The University of Queensland, Brisbane, Australia
| | - Alan R Barker
- Faculty of Health and Life Sciences, Public Health and Sports Sciences, Children's Health and Exercise Research Centre, University of Exeter, Exeter, United Kingdom
| | - Owen W Tomlinson
- Faculty of Health and Life Sciences, Public Health and Sports Sciences, Children's Health and Exercise Research Centre, University of Exeter, Exeter, United Kingdom
| | - Jeff S Coombes
- Physiology and Ultrasound Laboratory in Science and Exercise, School of Human Movement and Nutrition Sciences, The University of Queensland, Brisbane, Australia
| | - Tom G Bailey
- Physiology and Ultrasound Laboratory in Science and Exercise, School of Human Movement and Nutrition Sciences, The University of Queensland, Brisbane, Australia
- School of Nursing Midwifery and Social Work, The University of Queensland, Brisbane, Australia
| | - Bert Bond
- Faculty of Health and Life Sciences, Public Health and Sports Sciences, Children's Health and Exercise Research Centre, University of Exeter, Exeter, United Kingdom
| |
Collapse
|
3
|
Coehoorn CJ, St Martin P, Teran J, Cowart H, Waite L, Newman S. Firefighter uncompensable heat stress results in excessive upper body temperatures measured by infrared thermography: Implications for cooling strategies. APPLIED ERGONOMICS 2024; 120:104342. [PMID: 38959633 DOI: 10.1016/j.apergo.2024.104342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 06/26/2024] [Accepted: 06/28/2024] [Indexed: 07/05/2024]
Abstract
This research sought to evaluate the thermal zones of the upper body and firefighter personal protective equipment (PPE) immediately following uncompensable heat stress (0.03 °C increase/min). We hypothesized that the frontal portion of the head and the inside of the firefighter helmet would be the hottest as measured by infrared thermography. This hypothesis was due to previous research demonstrating that the head accounts for ∼8-10% of the body surface area, but it accounts for ∼20% of the overall body heat dissipation during moderate exercise. Twenty participants performed a 21-min graded treadmill exercise protocol (Altered Modified Naughton) in an environmental chamber (35 °C, 50 % humidity) in firefighter PPE. The body areas analyzed were the frontal area of the head, chest, abdomen, arm, neck, upper back, and lower back. The areas of the PPE that were analyzed were the inside of the helmet and the jacket. The hottest areas of the body post-exercise were the frontal area of the head (mean: 37.3 ± 0.4 °C), chest (mean: 37.5 ± 0.3 °C), and upper back (mean: 37.3 ± 0.4 °C). The coldest area of the upper body was the abdomen (mean: 36.1 ± 0.4 °C). The peak temperature of the inside of the helmet increased (p < 0.001) by 9.8 °C from 27.7 ± 1.6 °C to 37.4 ± 0.7 °C, and the inside of the jacket increased (p < 0.001) by 7.3 °C from 29.2 ± 1.7 °C to 36.5 ± 0.4 °C. The results of this study are relevant for cooling strategies for firefighters.
Collapse
Affiliation(s)
| | | | | | | | - Landon Waite
- Louisiana State University Health Shreveport, USA
| | | |
Collapse
|
4
|
White AR. The firestorm within: A narrative review of extreme heat and wildfire smoke effects on brain health. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 922:171239. [PMID: 38417511 DOI: 10.1016/j.scitotenv.2024.171239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 02/21/2024] [Accepted: 02/22/2024] [Indexed: 03/01/2024]
Abstract
Climate change is generating increased heatwaves and wildfires across much of the world. With these escalating environmental changes comes greater impacts on human health leading to increased numbers of people suffering from heat- and wildfire smoke-associated respiratory and cardiovascular impairment. One area of health impact of climate change that has received far less attention is the effects of extreme heat and wildfire smoke exposure on human brain health. As elevated temperatures, and wildfire-associated smoke, are increasingly experienced simultaneously over summer periods, understanding this combined impact is critical to management of human health especially in the elderly, and people with dementia, and other neurological disorders. Both extreme heat and wildfire smoke air pollution (especially particulate matter, PM) induce neuroinflammatory and cerebrovascular effects, oxidative stress, and cognitive impairment, however the combined effect of these impacts are not well understood. In this narrative review, a comprehensive examination of extreme heat and wildfire smoke impact on human brain health is presented, with a focus on how these factors contribute to cognitive impairment, and dementia, one of the leading health issues today. Also discussed is the potential impact of combined heat and wildfire smoke on brain health, and where future efforts should be applied to help advance knowledge in this rapidly growing and critical field of health research.
Collapse
Affiliation(s)
- Anthony R White
- Mental Health and Neuroscience Program, QIMR Berghofer Medical Research Institute, Herston, Queensland 4006, Australia; A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Neulaniementie 2, 70211 Kuopio, Finland; School of Biomedical Sciences, Faculty of Medicine, The University of Queensland, Brisbane, QLD, Australia; School of Biomedical Sciences, Faculty of Health, Queensland University of Technology, QLD, Australia.
| |
Collapse
|
5
|
Tan XR, Stephenson MC, Alhadad SB, Loh KWZ, Soong TW, Lee JKW, Low ICC. Elevated brain temperature under severe heat exposure impairs cortical motor activity and executive function. JOURNAL OF SPORT AND HEALTH SCIENCE 2024; 13:233-244. [PMID: 37678507 PMCID: PMC10980903 DOI: 10.1016/j.jshs.2023.09.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 05/27/2023] [Accepted: 07/20/2023] [Indexed: 09/09/2023]
Abstract
BACKGROUND Excessive heat exposure can lead to hyperthermia in humans, which impairs physical performance and disrupts cognitive function. While heat is a known physiological stressor, it is unclear how severe heat stress affects brain physiology and function. METHODS Eleven healthy participants were subjected to heat stress from prolonged exercise or warm water immersion until their rectal temperatures (Tre) attained 39.5°C, inducing exertional or passive hyperthermia, respectively. In a separate trial, blended ice was ingested before and during exercise as a cooling strategy. Data were compared to a control condition with seated rest (normothermic). Brain temperature (Tbr), cerebral perfusion, and task-based brain activity were assessed using magnetic resonance imaging techniques. RESULTS Tbr in motor cortex was found to be tightly regulated at rest (37.3°C ± 0.4°C (mean ± SD)) despite fluctuations in Tre. With the development of hyperthermia, Tbr increases and dovetails with the rising Tre. Bilateral motor cortical activity was suppressed during high-intensity plantarflexion tasks, implying a reduced central motor drive in hyperthermic participants (Tre = 38.5°C ± 0.1°C). Global gray matter perfusion and regional perfusion in sensorimotor cortex were reduced with passive hyperthermia. Executive function was poorer under a passive hyperthermic state, and this could relate to compromised visual processing as indicated by the reduced activation of left lateral-occipital cortex. Conversely, ingestion of blended ice before and during exercise alleviated the rise in both Tre and Tbr and mitigated heat-related neural perturbations. CONCLUSION Severe heat exposure elevates Tbr, disrupts motor cortical activity and executive function, and this can lead to impairment of physical and cognitive performance.
Collapse
Affiliation(s)
- Xiang Ren Tan
- Health and Social Sciences, Singapore Institute of Technology, Singapore 138683, Singapore; Human Potential Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597, Singapore
| | - Mary C Stephenson
- Centre for Translational Magnetic Resonance Research, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117549, Singapore
| | - Sharifah Badriyah Alhadad
- Human Potential Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597, Singapore; Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117593, Singapore
| | - Kelvin W Z Loh
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117593, Singapore
| | - Tuck Wah Soong
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117593, Singapore
| | - Jason K W Lee
- Human Potential Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597, Singapore; Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117593, Singapore; Heat Resilience and Performance Centre, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117510, Singapore; N.1 Institute for Health, National University of Singapore, Singapore 117456, Singapore; Campus for Research Excellence and Technological Enterprise (CREATE), Singapore 138602, Singapore.
| | - Ivan C C Low
- Human Potential Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597, Singapore; Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117593, Singapore.
| |
Collapse
|
6
|
Carter HH, Pienaar O, Coleman A, Cheng JL, MacDonald MJ, Naylor LH, Green DJ. The effects of water temperature on cerebral blood flow during aquatic exercise. Eur J Appl Physiol 2024; 124:219-225. [PMID: 37419991 PMCID: PMC10786737 DOI: 10.1007/s00421-023-05264-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Accepted: 06/20/2023] [Indexed: 07/09/2023]
Abstract
PURPOSE Recent studies suggest that episodic increases in cerebral blood flow (CBF) may contribute to the improvement in brain health associated with exercise training. Optimising CBF during exercise may enhance this benefit. Water immersion in ~ 30-32 °C augments CBF at rest and during exercise; however, the impact of water temperature on the CBF response has not been investigated. We hypothesised that cycle ergometry in water would increase CBF compared to land-based exercise, and that warm water would attenuate the CBF benefits. METHODS Eleven young heathy participants (nine males; 23.8 ± 3.1 yrs) completed 30 min of resistance-matched cycle exercise in three separate conditions; non-immersion (Land), 32 °C and 38 °C water immersion up to the level of the waist. Middle cerebral artery velocity (MCAv), blood pressure, and respiratory measures were assessed throughout the exercise bouts. RESULTS Core temperature was significantly higher in the 38 °C immersion than 32 °C (+ 0.84 ± 0.24 vs + 0.04 ± 0.16, P < 0.001), whilst mean arterial pressure was lower during 38 °C exercise compared to Land (84 ± 8 vs 100 ± 14 mmHg, P < 0.001) and 32 °C (92 ± 9, P = 0.03). MCAv was higher in 32 °C immersion compared to the Land and 38 °C conditions throughout the exercise bout (68 ± 10 vs 64 ± 11 vs 62 ± 12 cm/s, P = 0.03 and P = 0.02, respectively). CONCLUSION Our findings suggest that cycle exercise in warm water attenuates the beneficial impact of water immersion on CBF velocity due to redistribution of blood flow to subserve thermoregulatory demand. Our findings suggest that, whilst water-based exercise can have beneficial effects on cerebrovascular function, water temperature is a key determinant of this benefit.
Collapse
Affiliation(s)
- Howard H Carter
- School of Sport Science, Exercise and Health, The University of Western Australia, Crawley, WA, 6009, Canada
| | - Oliver Pienaar
- School of Sport Science, Exercise and Health, The University of Western Australia, Crawley, WA, 6009, Canada
| | - Alexander Coleman
- School of Sport Science, Exercise and Health, The University of Western Australia, Crawley, WA, 6009, Canada
| | - Jem L Cheng
- Department of Kinesiology, McMaster University, Hamilton, ON, Canada
| | | | - Louise H Naylor
- School of Sport Science, Exercise and Health, The University of Western Australia, Crawley, WA, 6009, Canada
| | - Daniel J Green
- School of Sport Science, Exercise and Health, The University of Western Australia, Crawley, WA, 6009, Canada.
- School of Humans Sciences (M408), 35 Stirling Highway, Crawley, Perth, WA, 6009, Canada.
| |
Collapse
|
7
|
Sugawara J, Hashimoto T, Tsukamoto H, Secher NH, Ogoh S. Attenuated pulsatile transition to the cerebral vasculature during high-intensity interval exercise in young healthy men. Exp Physiol 2023; 108:1057-1065. [PMID: 37309084 PMCID: PMC10988493 DOI: 10.1113/ep091119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Accepted: 05/15/2023] [Indexed: 06/14/2023]
Abstract
NEW FINDINGS What is the central question of this study? High-intensity interval exercise (HIIE) is recommended for its favourable haemodynamic stimulation, but excessive haemodynamic fluctuations may stress the brain: is the cerebral vasculature protected against exaggerated systemic blood flow fluctuation during HIIE? What is the main finding and its importance? Time- and frequency-domain indices of aortic-cerebral pulsatile transition were lowered during HIIE. The findings suggest that the arterial system to the cerebral vasculature may attenuate pulsatile transition during HIIE as a defence mechanism against pulsatile fluctuation for the cerebral vasculature. ABSTRACT High-intensity interval exercise (HIIE) is recommended because it provides favourable haemodynamic stimulation, but excessive haemodynamic fluctuations may be an adverse impact on the brain. We tested whether the cerebral vasculature is protected against systemic blood flow fluctuation during HIIE. Fourteen healthy men (age 24 ± 2 years) underwent four 4-min exercises at 80-90% of maximal workload (Wmax ) interspaced by 3-min active rest at 50-60% Wmax . Transcranial Doppler measured middle cerebral artery blood velocity (CBV). Systemic haemodynamics (Modelflow) and aortic pressure (AoP, general transfer function) were estimated from an invasively recorded brachial arterial pressure waveform. Using transfer function analysis, gain and phase between AoP and CBV (0.39-10.0 Hz) were calculated. Stroke volume, aortic pulse pressure and pulsatile CBV increased during exercise (time effect: P < 0.0001 for all), but a time-domain index of aortic-cerebral pulsatile transition (pulsatile CBV/pulsatile AoP) decreased throughout the exercise bouts (time effect: P < 0.0001). Furthermore, transfer function gain reduced, and phase increased throughout the exercise bouts (time effect: P < 0.0001 for both), suggesting the attenuation and delay of pulsatile transition. The cerebral vascular conductance index (mean CBV/mean arterial pressure; time effect: P = 0.296), an inverse index of cerebral vascular tone, did not change even though systemic vascular conductance increased during exercise (time effect: P < 0.0001). The arterial system to the cerebral vasculature may attenuate pulsatile transition during HIIE as a defence mechanism against pulsatile fluctuation for the cerebral vasculature.
Collapse
Affiliation(s)
- Jun Sugawara
- Human Informatics and Interaction Research InstituteNational Institute of Advanced Industrial Science and TechnologyTsukubaJapan
| | - Takeshi Hashimoto
- Graduate School of Sport and Health ScienceRitsumeikan UniversityShigaJapan
| | | | - Niels H. Secher
- Department of Anesthesia, Rigshospitalet, Institute for Clinical MedicineUniversity of CopenhagenDenmark
| | - Shigehiko Ogoh
- Graduate School of EngineeringToyo UniversitySaitamaJapan
| |
Collapse
|
8
|
González‐Alonso J, Calbet JAL, Mora‐Rodríguez R, Kippelen P. Pulmonary ventilation and gas exchange during prolonged exercise in humans: Influence of dehydration, hyperthermia and sympathoadrenal activity. Exp Physiol 2023; 108:188-206. [PMID: 36622358 PMCID: PMC10103888 DOI: 10.1113/ep090909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Accepted: 11/30/2022] [Indexed: 01/10/2023]
Abstract
NEW FINDINGS What is the central question of the study? Ventilation increases during prolonged intense exercise, but the impact of dehydration and hyperthermia, with associated blunting of pulmonary circulation, and independent influences of dehydration, hyperthermia and sympathoadrenal discharge on ventilatory and pulmonary gas exchange responses remain unclear. What is the main finding and its importance? Dehydration and hyperthermia led to hyperventilation and compensatory adjustments in pulmonary CO2 and O2 exchange, such that CO2 output increased and O2 uptake remained unchanged despite the blunted circulation. Isolated hyperthermia and adrenaline infusion, but not isolated dehydration, increased ventilation to levels similar to combined dehydration and hyperthermia. Hyperthermia is the main stimulus increasing ventilation during prolonged intense exercise, partly via sympathoadrenal activation. ABSTRACT The mechanisms driving hyperthermic hyperventilation during exercise are unclear. In a series of retrospective analyses, we evaluated the impact of combined versus isolated dehydration and hyperthermia and the effects of sympathoadrenal discharge on ventilation and pulmonary gas exchange during prolonged intense exercise. In the first study, endurance-trained males performed two submaximal cycling exercise trials in the heat. On day 1, participants cycled until volitional exhaustion (135 ± 11 min) while experiencing progressive dehydration and hyperthermia. On day 2, participants maintained euhydration and core temperature (Tc ) during a time-matched exercise (control). At rest and during the first 20 min of exercise, pulmonary ventilation (V ̇ E ${\skew2\dot V_{\rm{E}}}$ ), arterial blood gases, CO2 output and O2 uptake were similar in both trials. At 135 ± 11 min, however,V ̇ E ${\skew2\dot V_{\rm{E}}}$ was elevated with dehydration and hyperthermia, and this was accompanied by lower arterial partial pressure of CO2 , higher breathing frequency, arterial partial pressure of O2 , arteriovenous CO2 and O2 differences, and elevated CO2 output and unchanged O2 uptake despite a reduced pulmonary circulation. The increasedV ̇ E ${\skew2\dot V_{\rm{E}}}$ was closely related to the rise in Tc and circulating catecholamines (R2 ≥ 0.818, P ≤ 0.034). In three additional studies in different participants, hyperthermia independently increasedV ̇ E ${\skew2\dot V_{\rm{E}}}$ to an extent similar to combined dehydration and hyperthermia, whereas prevention of hyperthermia in dehydrated individuals restoredV ̇ E ${\skew2\dot V_{\rm{E}}}$ to control levels. Furthermore, adrenaline infusion during exercise elevated both Tc andV ̇ E ${\skew2\dot V_{\rm{E}}}$ . These findings indicate that: (1) adjustments in pulmonary gas exchange limit homeostatic disturbances in the face of a blunted pulmonary circulation; (2) hyperthermia is the main stimulus increasing ventilation during prolonged intense exercise; and (3) sympathoadrenal activation might partly mediate the hyperthermic hyperventilation.
Collapse
Affiliation(s)
- José González‐Alonso
- Division of SportHealth and Exercise SciencesDepartment of Life SciencesBrunel University LondonUxbridgeUK
| | - José A. L. Calbet
- Department of Physical Education & Research Institute for Biomedical and Health Sciences (IUIBS)University of Las Palmas de Gran CanariaGran CanariaSpain
- Department of Physical PerformanceNorwegian School of Sport SciencesOsloNorway
| | - Ricardo Mora‐Rodríguez
- Department of Physical Activity and Sport SciencesUniversity of Castilla‐La ManchaToledoSpain
| | - Pascale Kippelen
- Division of SportHealth and Exercise SciencesDepartment of Life SciencesBrunel University LondonUxbridgeUK
| |
Collapse
|
9
|
Profile of precipitating factors and its implication in 160 Indian patients with Moyamoya angiopathy. J Neurol 2023; 270:1654-1661. [PMID: 36477636 PMCID: PMC9734856 DOI: 10.1007/s00415-022-11499-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2022] [Revised: 11/20/2022] [Accepted: 11/21/2022] [Indexed: 12/12/2022]
Abstract
INTRODUCTION Moyamoya angiopathy (MMA) has been known to manifest with myriad of neurological manifestations, often in association with various precipitating factors. This is the first study to systematically analyze the precipitating triggers to neurological symptoms done on the largest cohort of MMA in India. METHODS A single-centered, cross-sectional observational study, recruiting 160 patients with consecutive angiographically proven MMA over a period of 5 years (2016-2021), was undertaken to evaluate the profile of immediate precipitating factors in temporal association to the neurological symptoms, along with their clinical and radiological characteristics. SPSS 25 was used for statistical analysis. RESULTS Among the 160 patients (Adult-85, children-75), precipitating factors were seen in 41.3%, significantly higher in children (52%) than adults (31.8%) (p value: 0.011). The commonest triggers included fever (18.8%), emotional stress (8.1%), heavy exercise and diarrhea (6.3% each). Cold bath triggered MMA symptoms in 1.3%. Fever (p value: 0.008) and persistent crying (p value: 0.010) triggered neurological symptoms more commonly in children than in adults. Amongst MMA patients with precipitating factors, the commonest MMA presentation included cerebral infarction type (37.9%) and TIA (31.8%). The majority of precipitating factors that preceded an ischemic event were BP-lowing ones (54.7%). CONCLUSION Neurological symptoms of MMA are commonly associated with several precipitating factors, including the lesser known triggers like cold bath. The frequency and profile precipitating factors varies with the age of presentation and type of MMA. It can serve as an early clue to the diagnosis of MMA and its careful avoidance can be largely beneficial in limiting the distressing transient neurological symptoms.
Collapse
|
10
|
Biomarkers for warfighter safety and performance in hot and cold environments. J Sci Med Sport 2022:S1440-2440(22)00503-5. [PMID: 36623995 DOI: 10.1016/j.jsams.2022.12.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2022] [Revised: 12/06/2022] [Accepted: 12/19/2022] [Indexed: 12/24/2022]
Abstract
Exposure to extreme environmental heat or cold during military activities can impose severe thermal strain, leading to impairments in task performance and increasing the risk of exertional heat (including heat stroke) and cold injuries that can be life-threatening. Substantial individual variability in physiological tolerance to thermal stress necessitates an individualized approach to mitigate the deleterious effects of thermal stress, such as physiological monitoring of individual thermal strain. During heat exposure, measurements of deep-body (Tc) and skin temperatures and heart rate can provide some indication of thermal strain. Combining these physiological variables with biomechanical markers of gait (in)stability may provide further insight on central nervous system dysfunction - the key criterion of exertional heat stroke (EHS). Thermal strain in cold environments can be monitored with skin temperature (peripheral and proximal), shivering thermogenesis and Tc. Non-invasive methods for real-time estimation of Tc have been developed and some appear to be promising but require further validation. Decision-support tools provide useful information for planning activities and biomarkers can be used to improve their predictions, thus maximizing safety and performance during hot- and cold-weather operations. With better understanding on the etiology and pathophysiology of EHS, the microbiome and markers of the inflammatory responses have been identified as novel biomarkers of heat intolerance. This review aims to (i) discuss selected physiological and biomechanical markers of heat or cold strain, (ii) how biomarkers may be used to ensure operational readiness in hot and cold environments, and (iii) present novel molecular biomarkers (e.g., microbiome, inflammatory cytokines) for preventing EHS.
Collapse
|
11
|
Chmura P, Liu H, Andrzejewski M, Tessitore A, Sadowski J, Chmura J, Rokita A, Tański W, Cicirko L, Konefał M. Responses of soccer players performing repeated maximal efforts in simulated conditions of the FIFA World Cup Qatar 2022: A holistic approach. PLoS One 2022; 17:e0276314. [PMID: 36490259 PMCID: PMC9733889 DOI: 10.1371/journal.pone.0276314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Accepted: 10/05/2022] [Indexed: 12/13/2022] Open
Abstract
This study aimed to assess the capacity for repeated maximal effort (RME) of soccer players in the thermo-natural conditions (NC) and in simulated conditions for the 2022 FIFA World Cup in Qatar (QSC). Twenty-four semi-professional soccer players participated in the study. The exercise test consisted of ten 6-second maximal efforts on a cycloergometer. A 90-second passive rest interval was used. The test was performed in a Weiss Technik WK-26 climate test chamber in two different conditions: 1) thermo-neutral conditions (NC-20.5°C; 58.7% humidity); and 2) simulated conditions for the 2022 World Cup in Qatar (QSC-28.5 ± 1.92°C; 58.7 ± 8.64% humidity). Power-related, physiological, psychomotor, blood, and electrolyte variables were recorded. Results showed that (1) players achieved higher peak power (max 1607,46 ± 192,70 [W] - 3rd rep), needed less time to peak power (min 0,95 ± 0,27 [s] - 3rd rep), and had a higher fatigue slope (max 218,67 ± 59,64 [W/sek] - 7th rep) in QSC than in NC (in each repetition of study protocol); (2) between the 1st repetition and subsequent repetitions a number of significants in among physiological, blood-related, and electrolyte variables were noted, but their direction was similar in both simulated conditions (e.g. V'O2/kg 37,59 ± 3,96 vs 37,95 ± 3,17 [ml/min/kg] - 3rd rep, LAC 13,16 ± 2,61 vs 14,18 ± 3,13 [mg/dl] - 10th rep or K 4,54 ± 0,29 vs 4,79 ± 0,36 [mmol/l] - 2nd rep when compare QCS and NC respectively); (3) an 8°C of temperature difference between the climatic conditions did not significantly affect the soccer players' physical and physiological responses in RME. The study results can be used in the design of training programs aimed to increase players' physiological adaptations by simulating soccer-specific conditions of play in terms of anaerobic capacity, in particular, repetitive maximal efforts. These findings will be useful during the upcoming 2022 World Cup in Qatar and in locations where high ambient temperatures are customary.
Collapse
Affiliation(s)
- Paweł Chmura
- Department of Team Games, Wrocław University of Health and Sport Sciences, Wrocław, Poland
| | - Hongyou Liu
- School of Physical Education & Sports Science, Guangzhou Higher Education Mega Centre, South China Normal University, Guangzhou, China
| | - Marcin Andrzejewski
- Department of Methodology of Recreation, Poznań University of Physical Education, Poznań, Poland
- * E-mail:
| | - Antonio Tessitore
- Department of Movement, Human and Health Sciences, University of Rome “Foro Italico”, Rome, Italy
| | - Jerzy Sadowski
- Department of Sport Science, Faculty of Physical Education and Health, Józef Piłsudski University of Physical Education in Warsaw, Warsaw, Poland
| | - Jan Chmura
- Department of Human Motor Skills, Wrocław University of Health and Sport Sciences, Wrocław, Poland
| | - Andrzej Rokita
- Department of Team Games, Wrocław University of Health and Sport Sciences, Wrocław, Poland
| | - Wojciech Tański
- 4th Military Teaching Hospital with Clinic, Independent Public Health Care Centre in Wrocław, Wrocław, Poland
| | - Leszek Cicirko
- Department of Physical Education and Sport, Faculty of Physical Education and Health in Biała Podlaska, Józef Piłsudski University of Physical Education in Warsaw, Warsaw, Poland
| | - Marek Konefał
- Department of Human Motor Skills, Wrocław University of Health and Sport Sciences, Wrocław, Poland
| |
Collapse
|
12
|
Gibbons TD, Dempsey JA, Thomas KN, Ainslie PN, Wilson LC, Stothers TAM, Campbell HA, Cotter JD. Carotid body hyperexcitability underlies heat-induced hyperventilation in exercising humans. J Appl Physiol (1985) 2022; 133:1394-1406. [PMID: 36302157 DOI: 10.1152/japplphysiol.00435.2022] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Physical activity is the most common source of heat strain for humans. The thermal strain of physical activity causes overbreathing (hyperventilation) and this has adverse physiological repercussions. The mechanisms underlying heat-induced hyperventilation during exercise are unknown, but recent evidence supports a primary role of carotid body hyperexcitability (increased tonic activity and sensitivity) underpinning hyperventilation in passively heated humans. In a repeated-measures crossover design, 12 healthy participants (6 female) completed two low-intensity cycling exercise conditions (25% maximal aerobic power) in randomized order, one with core temperature (TC) kept relatively stable near thermoneutrality, and the other with progressive heat strain to +2°C TC. To provide a complete examination of carotid body function under graded heat strain, carotid body tonic activity was assessed indirectly by transient hyperoxia, and its sensitivity estimated by responses to both isocapnic and poikilocapnic hypoxia. Carotid body tonic activity was increased by 220 ± 110% during cycling alone, and by 400 ± 290% with supplemental thermal strain to +1°C TC, and 600 ± 290% at +2°C TC (interaction, P = 0.0031). During exercise with heat stress at both +1°C and +2°C TC, carotid body suppression by hyperoxia decreased ventilation below the rates observed during exercise without heat stress (P < 0.0147). Carotid body sensitivity was increased by up to 230 ± 190% with exercise alone, and by 290 ± 250% with supplemental heating to +1°C TC and 510 ± 470% at +2°C TC (interaction, P = 0.0012). These data indicate that the carotid body is further activated and sensitized by heat strain during exercise and this largely explains the added drive to breathe.NEW & NOTEWORTHY Physical activity is the most common way humans increase their core temperature, and excess breathing in the heat can limit heat tolerance and performance, and may increase the risk of heat-related injury. Dose-dependent increases in carotid body tonic activity and sensitivity with core heating provide compelling evidence that carotid body hyperexcitability is the primary cause of heat-induced hyperventilation during exercise.
Collapse
Affiliation(s)
- Travis D Gibbons
- Centre for Heart, Lung and Vascular Health, University of British Columbia-Okanagan, School of Health and Exercise Science, Kelowna, British Columbia, Canada
| | - Jerome A Dempsey
- John Rankin Laboratory for Pulmonary Medicine, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin
| | - Kate N Thomas
- Department of Surgical Sciences, University of Otago, Dunedin, New Zealand
| | - Philip N Ainslie
- Centre for Heart, Lung and Vascular Health, University of British Columbia-Okanagan, School of Health and Exercise Science, Kelowna, British Columbia, Canada
| | - Luke C Wilson
- Department of Medicine, University of Otago, Dunedin, New Zealand
| | - Tiarna A M Stothers
- School of Physical Education, Sport & Exercise Sciences, University of Otago, Dunedin, New Zealand
| | - Holly A Campbell
- Department of Surgical Sciences, University of Otago, Dunedin, New Zealand
| | - James D Cotter
- School of Physical Education, Sport & Exercise Sciences, University of Otago, Dunedin, New Zealand
| |
Collapse
|
13
|
Coehoorn CJ, Patrick Neary J, Krigolson OE, Stuart-Hill LA. Firefighter Pre-Frontal Cortex and Hemodynamics during Rapid Heat Stress. Brain Res 2022; 1798:148156. [DOI: 10.1016/j.brainres.2022.148156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 10/31/2022] [Accepted: 11/01/2022] [Indexed: 11/06/2022]
|
14
|
Gibbons TD, Dempsey JA, Thomas KN, Campbell HA, Stothers TAM, Wilson LC, Ainslie PN, Cotter JD. Contribution of the carotid body to thermally mediated hyperventilation in humans. J Physiol 2022; 600:3603-3624. [PMID: 35731687 DOI: 10.1113/jp282918] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Accepted: 06/15/2022] [Indexed: 01/05/2023] Open
Abstract
Humans hyperventilate under heat and cold strain. This hyperventilatory response has detrimental consequences including acid-base dysregulation, dyspnoea, decreased cerebral blood flow and accelerated brain heating. The ventilatory response to hypoxia is exaggerated under whole-body heating and cooling, indicating that altered carotid body function might contribute to thermally mediated hyperventilation. To address whether the carotid body might contribute to heat- and cold-induced hyperventilation, we indirectly measured carotid body tonic activity via hyperoxia, and carotid body sensitivity via hypoxia, under graded heat and cold strain in 13 healthy participants in a repeated-measures design. We hypothesised that carotid body tonic activity and sensitivity would be elevated in a dose-dependent manner under graded heat and cold strain, thereby supporting its role in driving thermally mediated hyperventilation. Carotid body tonic activity was increased in a dose-dependent manner with heating, reaching 175% above baseline (P < 0.0005), and carotid body suppression with hyperoxia removed all of the heat-induced increase in ventilation (P = 0.9297). Core cooling increased carotid body activity by up to 250% (P < 0.0001), but maximal values were reached with mild cooling and thereafter plateaued. Carotid body sensitivity to hypoxia was profoundly increased by up to 180% with heat stress (P = 0.0097), whereas cooling had no detectable effect on hypoxic sensitivity. In summary, cold stress increased carotid body tonic activity and this effect was saturated with mild cooling, whereas heating had clear dose-dependent effects on carotid body tonic activity and sensitivity. These dose-dependent effects with heat strain indicate that the carotid body probably plays a primary role in driving heat-induced hyperventilation. KEY POINTS: Humans over-breathe (hyperventilate) when under heat and cold stress, and though this has detrimental physiological repercussions, the mechanisms underlying this response are unknown. The carotid body, a small organ that is responsible for driving hyperventilation in hypoxia, was assessed under incremental heat and cold strain. The carotid body drive to breathe, as indirectly assessed by transient hyperoxia, increased in a dose-dependent manner with heating, reaching 175% above baseline; cold stress similarly increased the carotid body drive to breathe, but did not show dose-dependency. Carotid body sensitivity, as indirectly assessed by hypoxic ventilatory responses, was profoundly increased by 70-180% with mild and severe heat strain, whereas cooling had no detectable effect. Carotid body hyperactivity and hypersensitivity are two interrelated mechanisms that probably underlie the increased drive to breathe with heat strain, whereas carotid body hyperactivity during mild cooling may play a subsidiary role in cold-induced hyperventilation.
Collapse
Affiliation(s)
- Travis D Gibbons
- School of Physical Education, Sport & Exercise Science, University of Otago, Dunedin, Otago, New Zealand.,Centre for Heart, Lung and Vascular Health, School of Health and Exercise Science, University of British Columbia-Okanagan, Kelowna, British Columbia, Canada
| | - Jerome A Dempsey
- John Rankin Laboratory for Pulmonary Medicine, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, USA
| | - Kate N Thomas
- Department of Surgical Sciences, University of Otago, Dunedin, Otago, New Zealand
| | - Holly A Campbell
- Department of Surgical Sciences, University of Otago, Dunedin, Otago, New Zealand
| | - Tiarna A M Stothers
- School of Physical Education, Sport & Exercise Science, University of Otago, Dunedin, Otago, New Zealand
| | - Luke C Wilson
- Department of Medicine, University of Otago, Dunedin, Otago, New Zealand
| | - Philip N Ainslie
- Centre for Heart, Lung and Vascular Health, School of Health and Exercise Science, University of British Columbia-Okanagan, Kelowna, British Columbia, Canada
| | - James D Cotter
- School of Physical Education, Sport & Exercise Science, University of Otago, Dunedin, Otago, New Zealand
| |
Collapse
|
15
|
Amin SB, Hansen AB, Mugele H, Simpson LL, Marume K, Moore JP, Cornwell WK, Lawley JS. High intensity exercise and passive hot water immersion cause similar post intervention changes in peripheral and cerebral shear. J Appl Physiol (1985) 2022; 133:390-402. [PMID: 35708700 DOI: 10.1152/japplphysiol.00780.2021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Passive hot water immersion (PHWI) provides a peripheral vasculature shear stimulus comparable to low intensity exercise within the active skeletal muscle, whereas moderate and high intensity exercise elicit substantially greater shear rates in the peripheral vasculature, likely conferring greater vascular benefits. Few studies have compared post intervention shear rates in the peripheral and cerebral vasculature following high intensity exercise and PHWI, especially considering that the post intervention recovery period represents a key window in which adaptation occurs. Therefore, we aimed to compare shear rates in the internal carotid artery (ICA), vertebral artery (VA) and common femoral artery (CFA) between high intensity exercise and PHWI for up to 80 minutes post intervention. Fifteen healthy (27 ± 4 years), moderately trained individuals underwent three-time matched interventions in a randomised order which included 30 minutes of whole-body immersion in a 42°C hot bath, 30 minutes of treadmill running and 5x4 minute high intensity intervals (HIIE). There were no differences in ICA (P= 0.4643) and VA (P=0.1940) shear rates between PHWI and exercise (both continuous and HIIE) post intervention. All three interventions elicited comparable increases in CFA shear rate post intervention (P=0.0671), however, CFA shear rate was slightly higher 40 minutes post threshold running (P=0.0464) and, slightly higher, although not statically for HIIE (P=0.0565) compared with PHWI. Our results suggest that time and core temperature matched high intensity exercise and PHWI elicit limited changes in cerebral shear and comparable increases in peripheral vasculature shear rates when measured for up to 80 minutes post intervention.
Collapse
Affiliation(s)
- Sachin B Amin
- University Innsbruck, Department Sport Science, Innsbruck, Austria
| | | | - Hendrik Mugele
- University Innsbruck, Department Sport Science, Innsbruck, Austria
| | - Lydia L Simpson
- University Innsbruck, Department Sport Science, Innsbruck, Austria
| | - Kyohei Marume
- University Innsbruck, Department Sport Science, Innsbruck, Austria
| | - Jonathan P Moore
- School of Sport, Health and Exercise Science, Bangor University, Bangor, United Kingdom
| | - William K Cornwell
- Department of Medicine - Cardiology, University of Colorado Anschutz Medical Campus, Aurora CO, United States.,Clinical and Translational Research Center, University of Colorado Anschutz Medical Campus, Aurora CO, United States
| | - Justin S Lawley
- University Innsbruck, Department Sport Science, Innsbruck, Austria
| |
Collapse
|
16
|
Travers G, Kippelen P, Trangmar SJ, González-Alonso J. Physiological Function during Exercise and Environmental Stress in Humans-An Integrative View of Body Systems and Homeostasis. Cells 2022; 11:383. [PMID: 35159193 PMCID: PMC8833916 DOI: 10.3390/cells11030383] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Revised: 01/18/2022] [Accepted: 01/19/2022] [Indexed: 11/26/2022] Open
Abstract
Claude Bernard's milieu intérieur (internal environment) and the associated concept of homeostasis are fundamental to the understanding of the physiological responses to exercise and environmental stress. Maintenance of cellular homeostasis is thought to happen during exercise through the precise matching of cellular energetic demand and supply, and the production and clearance of metabolic by-products. The mind-boggling number of molecular and cellular pathways and the host of tissues and organ systems involved in the processes sustaining locomotion, however, necessitate an integrative examination of the body's physiological systems. This integrative approach can be used to identify whether function and cellular homeostasis are maintained or compromised during exercise. In this review, we discuss the responses of the human brain, the lungs, the heart, and the skeletal muscles to the varying physiological demands of exercise and environmental stress. Multiple alterations in physiological function and differential homeostatic adjustments occur when people undertake strenuous exercise with and without thermal stress. These adjustments can include: hyperthermia; hyperventilation; cardiovascular strain with restrictions in brain, muscle, skin and visceral organs blood flow; greater reliance on muscle glycogen and cellular metabolism; alterations in neural activity; and, in some conditions, compromised muscle metabolism and aerobic capacity. Oxygen supply to the human brain is also blunted during intense exercise, but global cerebral metabolism and central neural drive are preserved or enhanced. In contrast to the strain seen during severe exercise and environmental stress, a steady state is maintained when humans exercise at intensities and in environmental conditions that require a small fraction of the functional capacity. The impact of exercise and environmental stress upon whole-body functions and homeostasis therefore depends on the functional needs and differs across organ systems.
Collapse
Affiliation(s)
- Gavin Travers
- The European Astronaut Centre, The European Space Agency, Linder Höhe, 51147 Cologne, Germany;
| | - Pascale Kippelen
- Centre for Human Performance, Exercise and Rehabilitation, Brunel University London, Uxbridge UB8 3PH, UK;
- Division of Sport, Health and Exercise Sciences, Department of Life Sciences, Brunel University London, Uxbridge UB8 3PH, UK
| | - Steven J. Trangmar
- School of Life and Health Sciences, University of Roehampton, London SW15 4JD, UK;
| | - José González-Alonso
- Centre for Human Performance, Exercise and Rehabilitation, Brunel University London, Uxbridge UB8 3PH, UK;
- Division of Sport, Health and Exercise Sciences, Department of Life Sciences, Brunel University London, Uxbridge UB8 3PH, UK
| |
Collapse
|
17
|
Wei C, Zhao S, Zhang Y, Gu W, Kumar Sarker S, Liu S, Li B, Wang X, Li Y, Wang X. Effect of Multiple-Nutrient Supplement on Muscle Damage, Liver, and Kidney Function After Exercising Under Heat: Based on a Pilot Study and a Randomised Controlled Trial. Front Nutr 2022; 8:740741. [PMID: 35004797 PMCID: PMC8733564 DOI: 10.3389/fnut.2021.740741] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Accepted: 11/22/2021] [Indexed: 01/04/2023] Open
Abstract
Objective: This study explored the effect of multiple-nutrient supplementation on muscle damage and liver and kidney function after vigorous exercise under heat. Methods: After an initial pilot trial comprising 89 male participants, 85 participants were recruited and assigned into three groups: a multiple-nutrient (M) group, a glucose (G) group, and a water (W) group. Multiple-nutrient supplements contain glucose, fructose, maltose, sodium, potassium, vitamin B1, vitamin B2, vitamin C, vitamin K, and taurine. Participants were organised to take a 3-km running test (wet-bulb globe temperature 32°C) after a short-term (7 days) supplement. Blood samples were obtained to detect biochemical parameters [glucose (GLU), aspartate aminotransferase (AST), alanine aminotransferase (ALT), blood urea nitrogen (BUN), uric acid (UA), creatinine (Cr), creatine kinase (CK), lactate dehydrogenase (LDH), and lactic acid], inflammation factors [interleukin-6 (IL-6) and tumour necrosis factor-α (TNF-α)], and oxidative stress biomarkers [superoxide dismutase (SOD) and 8-iso-prostaglandin F (2alpha) (8-iso-PGF2α)]. Results: In the pilot trial, BUN decreased significantly in the M and G groups immediately after the running test. AST, Cr, and UA were significantly reduced 24 h after the running test with single-shot multiple-nutrient supplementation. In the short-term trial, multiple nutrients further prevented the elevation of CK (p = 0.045) and LDH (p = 0.033) levels 24 h after strenuous exercise. Moreover, we found that multiple nutrients significantly reduced IL-6 (p = 0.001) and TNF-α (p = 0.015) elevation immediately after exercise. Simultaneously, SOD elevation was significantly higher in the M group immediately after exercising than in the other two groups (p = 0.033). 8-iso-PGF2α was reduced in the M group 24 h after exercise (p = 0.036). Conclusions: This study found that multiple-nutrient supplementation promoted the recovery of muscle damage and decreased liver and kidney function caused by strenuous exercise in a hot environment, probably through the inhibition of secondary damage induced by increased inflammatory reactions and oxidative stress. In this respect, the current study has important implications for the strategy of nutritional support to accelerate recovery and potentially prevent heat-related illness. This study was prospectively registered on clinicaltrials.gov on June 21, 2019 (ID: ChiCTR1900023988).
Collapse
Affiliation(s)
- Chunbo Wei
- National Key Discipline, Department of Nutrition and Food Hygiene, School of Public Health, Harbin Medical University, Harbin, China
| | - Shengnan Zhao
- National Key Discipline, Department of Nutrition and Food Hygiene, School of Public Health, Harbin Medical University, Harbin, China
| | - Yuntao Zhang
- National Key Discipline, Department of Nutrition and Food Hygiene, School of Public Health, Harbin Medical University, Harbin, China
| | - Wenbo Gu
- National Key Discipline, Department of Nutrition and Food Hygiene, School of Public Health, Harbin Medical University, Harbin, China
| | - Shuvan Kumar Sarker
- National Key Discipline, Department of Nutrition and Food Hygiene, School of Public Health, Harbin Medical University, Harbin, China
| | - Shuande Liu
- Department of Neurosurgery, The 962nd Hospital of the PLA Joint Logistic Support Force, Harbin, China
| | - Benzhang Li
- Department of Neurosurgery, The 962nd Hospital of the PLA Joint Logistic Support Force, Harbin, China
| | - Xuanyang Wang
- National Key Discipline, Department of Nutrition and Food Hygiene, School of Public Health, Harbin Medical University, Harbin, China
| | - Ying Li
- National Key Discipline, Department of Nutrition and Food Hygiene, School of Public Health, Harbin Medical University, Harbin, China
| | - Xu Wang
- Department of Neurosurgery, The 962nd Hospital of the PLA Joint Logistic Support Force, Harbin, China
| |
Collapse
|
18
|
Shevelev O, Petrova M, Smolensky A, Osmonov B, Toimatov S, Kharybina T, Karbainov S, Ovchinnikov L, Vesnin S, Tarakanov A, Goryanin I. Using medical microwave radiometry for brain temperature measurements. Drug Discov Today 2021; 27:881-889. [PMID: 34767961 DOI: 10.1016/j.drudis.2021.11.004] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2021] [Revised: 09/29/2021] [Accepted: 11/02/2021] [Indexed: 11/30/2022]
Abstract
Brain temperature (BT) is a crucial physiological parameter used to monitor cerebral status. Physical activities and traumatic brain injuries (TBI) can affect BT; therefore, non-invasive BT monitoring is an important way to gain insight into TBI, stroke, and wellbeing. The effects of BT on physical performance have been studied at length. When humans are under extreme conditions, most of the energy consumed is used to maintain the BT. In addition, measuring the BT is useful for early brain diagnostics. Passive microwave radiometry (MWR) measures the intrinsic radiation of tissues in the 1-4 GHz range. It was shown that non-invasive passive MWR technology can successfully measure BT and identify even small TBIs. Here, we review the potential applications of MWR for assessing BT.
Collapse
Affiliation(s)
- Oleg Shevelev
- People' Friendship University of Russia, Moscow, Russia; Federal Research and Clinical Centre for Resuscitation and Rehabilitation, Moscow, Russia
| | - Marina Petrova
- People' Friendship University of Russia, Moscow, Russia; Federal Research and Clinical Centre for Resuscitation and Rehabilitation, Moscow, Russia
| | - Andrey Smolensky
- Russian State University of Physical Culture, Sports, Youth and Tourism, Moscow, Russia
| | - Batyr Osmonov
- Educational - Scientifc Medical Center of Kyrgyz Medical Sate University, Bishkek, Kyrgyz Republic
| | | | - Tatyana Kharybina
- Library for Natural Sciences of the Russian Academy of Sciences, Moscow, Russia
| | | | | | - Sergey Vesnin
- Medical Microwave Radiometry Ltd, Edinburgh, UK; RTM Diagnostic LLC, Moscow, Russia; Bauman Moscow State Technical University, Moscow, Russia
| | | | - Igor Goryanin
- School of Informatics, University of Edinburgh, Edinburgh, UK; Institute Theoretical and Experimental Biophysics, Pushchino, Russia; Okinawa Institute Science and Technology, Okinawa, Japan.
| |
Collapse
|
19
|
Katagiri A, Kitadai Y, Miura A, Fukuba Y, Fujii N, Nishiyasu T, Tsuji B. Sodium bicarbonate ingestion mitigates the heat-induced hyperventilation and reduction in cerebral blood velocity during exercise in the heat. J Appl Physiol (1985) 2021; 131:1617-1628. [PMID: 34590911 DOI: 10.1152/japplphysiol.00261.2021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Hyperthermia during exercise in the heat causes minute ventilation ([Formula: see text]) to increase, which leads to reductions in arterial CO2 partial pressure ([Formula: see text]) and cerebral blood flow. On the other hand, sodium bicarbonate ingestion reportedly results in metabolic alkalosis, leading to decreased [Formula: see text] and increased [Formula: see text] during prolonged exercise in a thermoneutral environment. Here, we investigated whether sodium bicarbonate ingestion suppresses heat-induced hyperventilation and the resultant hypocapnia and cerebral hypoperfusion during prolonged exercise in the heat. Eleven healthy men ingested a solution of sodium bicarbonate (0.3 g/kg body wt) (NaHCO3 trial) or sodium chloride (0.208 g/kg) (NaCl trial). Ninety minutes after the ingestion, the subjects performed a cycle exercise for 60 min at 50% of peak oxygen uptake in the heat (35°C and 40% relative humidity). Esophageal temperature did not differ between the trials throughout (P = 0.56, main effect of trial). [Formula: see text] gradually increased with exercise duration in the NaCl trial, but the increases in [Formula: see text] were attenuated in the NaHCO3 trial (P = 0.01, main effect of trial). Correspondingly, estimated [Formula: see text] and middle cerebral artery blood velocity (an index of anterior cerebral blood flow) were higher in the NaHCO3 than the NaCl trial (P = 0.002 and 0.04, main effects of trial). Ratings of perceived exertion were lower in the NaHCO3 than the NaCl trial (P = 0.02, main effect of trial). These results indicate that sodium bicarbonate ingestion mitigates heat-induced hyperventilation and reductions in [Formula: see text] and cerebral blood velocity during prolonged exercise in the heat.NEW & NOTEWORTHY Hyperthermia causes hyperventilation and concomitant hypocapnia and cerebral hypoperfusion. The cerebral hypoperfusion may underlie central fatigue. We demonstrate that sodium bicarbonate ingestion reduces heat-induced hyperventilation and attenuates hypocapnia-related cerebral hypoperfusion during prolonged exercise in the heat. In addition, we show that sodium bicarbonate ingestion reduces ratings of perceived exertion during the exercise. This study provides new insight into the development of effective strategies for preventing central fatigue during exercise in the heat.
Collapse
Affiliation(s)
- Akira Katagiri
- Department of Health Sciences, Prefectural University of Hiroshima, Hiroshima, Japan.,Faculty of Health and Sport Sciences, University of Tsukuba, Tsukuba City, Japan
| | - Yasuhiko Kitadai
- Department of Health Sciences, Prefectural University of Hiroshima, Hiroshima, Japan
| | - Akira Miura
- Department of Health Sciences, Prefectural University of Hiroshima, Hiroshima, Japan
| | - Yoshiyuki Fukuba
- Department of Health Sciences, Prefectural University of Hiroshima, Hiroshima, Japan
| | - Naoto Fujii
- Faculty of Health and Sport Sciences, University of Tsukuba, Tsukuba City, Japan
| | - Takeshi Nishiyasu
- Faculty of Health and Sport Sciences, University of Tsukuba, Tsukuba City, Japan
| | - Bun Tsuji
- Department of Health Sciences, Prefectural University of Hiroshima, Hiroshima, Japan
| |
Collapse
|
20
|
Gordon RJ, Tyler CJ, Castelli F, Diss CE, Tillin NA. Progressive hyperthermia elicits distinct responses in maximum and rapid torque production. J Sci Med Sport 2021; 24:811-817. [DOI: 10.1016/j.jsams.2021.03.007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Revised: 01/18/2021] [Accepted: 03/09/2021] [Indexed: 11/30/2022]
|
21
|
Sakamoto R, Katayose M, Yamada Y, Neki T, Kamoda T, Tamai K, Yamazaki K, Iwamoto E. High-but not moderate-intensity exercise acutely attenuates hypercapnia-induced vasodilation of the internal carotid artery in young men. Eur J Appl Physiol 2021; 121:2471-2485. [PMID: 34028613 DOI: 10.1007/s00421-021-04721-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Accepted: 05/15/2021] [Indexed: 10/21/2022]
Abstract
PURPOSE Exercise-induced increases in shear rate (SR) across different exercise intensities may differentially affect hypercapnia-induced vasodilation of the internal carotid artery (ICA), a potential index of cerebrovascular function. We aimed to elucidate the effects of exercise intensity on ICA SR during exercise and post-exercise hypercapnia-induced vasodilation of the ICA in young men. METHODS Twelve healthy men completed 30 min of cycling at moderate [MIE; 65 ± 5% of age-predicted maximal heart rate (HRmax)] and high (HIE; 85 ± 5% HRmax) intensities. Hypercapnia-induced vasodilation was induced by 3 min of hypercapnia (target end-tidal partial pressure of CO2 + 10 mmHg) and was assessed at pre-exercise, 5 min and 60 min after exercise. Doppler ultrasound was used to measure ICA diameter and blood velocity during exercise and hypercapnia tests. RESULTS SR was not altered during either exercise (interaction and main effects of time; both P > 0.05). ICA conductance decreased during HIE from resting values (5.1 ± 1.3 to 3.2 ± 1.0 mL·min-1·mmHg-1; P < 0.01) but not during MIE (5.0 ± 1.3 to 4.0 ± 0.8 mL·min-1·mmHg-1; P = 0.11). Consequently, hypercapnia-induced vasodilation declined immediately after HIE (6.9 ± 1.7% to 4.0 ± 1.4%; P < 0.01), but not after MIE (7.2 ± 2.1% to 7.3 ± 1.8%; P > 0.05). Sixty minutes after exercise, hypercapnia-induced vasodilation returned to baseline values in both trials (MIE 8.0 ± 3.1%; HIE 6.4 ± 2.9%; both P > 0.05). CONCLUSION The present study showed blunted hypercapnia-induced vasodilation of the ICA immediately after high-intensity exercise, but not a moderate-intensity exercise in young men. Given that the acute response is partly linked to the adaptive response in the peripheral endothelial function, the effects of aerobic training on cerebrovascular health may vary depending on exercise intensity.
Collapse
Affiliation(s)
- Rintaro Sakamoto
- Department of Physical Therapy, Graduate School of Health Sciences, Sapporo Medical University, Sapporo, Japan
| | - Masaki Katayose
- School of Health Science, Sapporo Medical University, Sapporo, Japan
| | - Yutaka Yamada
- Department of Physical Therapy, Graduate School of Health Sciences, Sapporo Medical University, Sapporo, Japan
| | - Toru Neki
- School of Health Science, Sapporo Medical University, Sapporo, Japan
| | - Tatsuki Kamoda
- School of Health Science, Sapporo Medical University, Sapporo, Japan
| | - Katsuyuki Tamai
- School of Health Science, Sapporo Medical University, Sapporo, Japan
| | - Kotomi Yamazaki
- School of Health Science, Sapporo Medical University, Sapporo, Japan
| | - Erika Iwamoto
- School of Health Science, Sapporo Medical University, Sapporo, Japan.
| |
Collapse
|
22
|
Périard JD, Eijsvogels TMH, Daanen HAM. Exercise under heat stress: thermoregulation, hydration, performance implications, and mitigation strategies. Physiol Rev 2021; 101:1873-1979. [PMID: 33829868 DOI: 10.1152/physrev.00038.2020] [Citation(s) in RCA: 195] [Impact Index Per Article: 48.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
A rise in body core temperature and loss of body water via sweating are natural consequences of prolonged exercise in the heat. This review provides a comprehensive and integrative overview of how the human body responds to exercise under heat stress and the countermeasures that can be adopted to enhance aerobic performance under such environmental conditions. The fundamental concepts and physiological processes associated with thermoregulation and fluid balance are initially described, followed by a summary of methods to determine thermal strain and hydration status. An outline is provided on how exercise-heat stress disrupts these homeostatic processes, leading to hyperthermia, hypohydration, sodium disturbances, and in some cases exertional heat illness. The impact of heat stress on human performance is also examined, including the underlying physiological mechanisms that mediate the impairment of exercise performance. Similarly, the influence of hydration status on performance in the heat and how systemic and peripheral hemodynamic adjustments contribute to fatigue development is elucidated. This review also discusses strategies to mitigate the effects of hyperthermia and hypohydration on exercise performance in the heat by examining the benefits of heat acclimation, cooling strategies, and hyperhydration. Finally, contemporary controversies are summarized and future research directions are provided.
Collapse
Affiliation(s)
- Julien D Périard
- University of Canberra Research Institute for Sport and Exercise, Bruce, Australia
| | - Thijs M H Eijsvogels
- Department of Physiology, Radboud Institute for Health Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Hein A M Daanen
- Department of Human Movement Sciences, Faculty of Behavioural and Movement Sciences, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| |
Collapse
|
23
|
Gibbons TD, Ainslie PN, Thomas KN, Wilson LC, Akerman AP, Donnelly J, Campbell HA, Cotter JD. Influence of the mode of heating on cerebral blood flow, non-invasive intracranial pressure and thermal tolerance in humans. J Physiol 2021; 599:1977-1996. [PMID: 33586133 DOI: 10.1113/jp280970] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Accepted: 02/01/2021] [Indexed: 12/22/2022] Open
Abstract
KEY POINTS The human brain is particularly vulnerable to heat stress; this manifests as impaired cognition, orthostatic tolerance, work capacity and eventually, brain death. The brain's limitation in the heat is often ascribed to inadequate cerebral blood flow (CBF), but elevated intracranial pressure is commonly observed in mammalian models of heat stroke and can on its own cause functional impairment. The CBF response to incremental heat strain was dependent on the mode of heating, decreasing by 30% when exposed passively to hot, humid air (sauna), while remaining unchanged or increasing with passive hot-water immersion (spa) and exercising in a hot environment. Non-invasive intracranial pressure estimates (nICP) were increased universally by 18% at volitional thermal tolerance across all modes of heat stress, and therefore may play a contributing role in eliciting thermal tolerance. The sauna, more so than the spa or exercise, poses a greater challenge to the brain under mild to severe heating due to lower blood flow but similarly increased nICP. ABSTRACT The human brain is particularly vulnerable to heat stress; this manifests as impaired cognitive function, orthostatic tolerance, work capacity, and eventually, brain death. This vulnerability is often ascribed to inadequate cerebral blood flow (CBF); however, elevated intracranial pressure (ICP) is also observed in mammalian models of heat stroke. We investigated the changes in CBF with incremental heat strain under three fundamentally different modes of heating, and assessed whether heating per se increased ICP. Fourteen fit participants (seven female) were heated to thermal tolerance or 40°C core temperature (Tc ; oesophageal) via passive hot-water immersion (spa), passive hot, humid air exposure (sauna), cycling exercise, and cycling exercise with CO2 inhalation to prevent heat-induced hypocapnia. CBF was measured with duplex ultrasound at each 0.5°C increment in Tc and ICP was estimated non-invasively (nICP) from optic nerve sheath diameter at thermal tolerance. At thermal tolerance, CBF was decreased by 30% in the sauna (P < 0.001), but was unchanged in the spa or with exercise (P ≥ 0.140). CBF increased by 17% when end-tidal P C O 2 was clamped at eupnoeic pressure (P < 0.001). On the contrary, nICP increased universally by 18% with all modes of heating (P < 0.001). The maximum Tc was achieved with passive heating, and preventing hypocapnia during exercise did not improve exercise or thermal tolerance (P ≥ 0.146). Therefore, the regulation of CBF is dramatically different depending on the mode and dose of heating, whereas nICP responses are not. The sauna, more so than the spa or exercise, poses a greater challenge to the brain under equivalent heat strain.
Collapse
Affiliation(s)
- Travis D Gibbons
- University of Otago, 55/47 Union St. W, Dunedin, Otago, 9016, New Zealand
| | - Philip N Ainslie
- University of British Columbia, Okangan Campus, Kelowna, BC, V1V 1V7, Canada
| | - Kate N Thomas
- University of Otago, 55/47 Union St. W, Dunedin, Otago, 9016, New Zealand
| | - Luke C Wilson
- University of Otago, 55/47 Union St. W, Dunedin, Otago, 9016, New Zealand
| | | | | | - Holly A Campbell
- University of Otago, 55/47 Union St. W, Dunedin, Otago, 9016, New Zealand
| | - Jim D Cotter
- University of Otago, 55/47 Union St. W, Dunedin, Otago, 9016, New Zealand
| |
Collapse
|
24
|
Park S, Hong H, Kim RY, Ma J, Lee S, Ha E, Yoon S, Kim J. Firefighters Have Cerebral Blood Flow Reductions in the Orbitofrontal and Insular Cortices That are Associated with Poor Sleep Quality. Nat Sci Sleep 2021; 13:1507-1517. [PMID: 34531693 PMCID: PMC8439978 DOI: 10.2147/nss.s312671] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Accepted: 08/20/2021] [Indexed: 01/01/2023] Open
Abstract
PURPOSE To investigate the cerebral blood flow (CBF) alterations associated with poor sleep quality and memory performance in firefighters. PARTICIPANTS AND METHODS Thirty-seven firefighters (the FF group) and 37 non-firefighter controls (the control group) with sleep complaints were enrolled in this study. We performed brain arterial spin labeling perfusion magnetic resonance imaging (MRI) and compared the CBF between the two groups using whole-brain voxel-wise analyses. Self-reported sleep problems and actigraphy-measured sleep parameters, including the sleep efficiency, wake after sleep onset (WASO), total sleep time, and sleep latency, were assessed. Spatial working memory and learning performances were evaluated on the day of the MRI scan. RESULTS The FF group, relative to the control group, had lower CBF in the right hemispheric regions: Middle temporal/lateral occipital, orbitofrontal, and insular cortices. Lower CBF in the right orbitofrontal cortex was linearly associated with poor sleep quality, as indicated by lower sleep efficiency and longer WASO. The CBF of the right insular cortex was also associated with longer WASO. Despite comparable degrees of self-reported sleep problems between the two groups, the FF group had lower sleep efficiency and longer WASO in the actigraphy, and lower spatial working memory and learning performance, relative to the control group. Poor sleep efficiency was linearly associated with lower spatial working memory performance. CONCLUSION These results demonstrated an association of poor sleep quality with decreased brain perfusion in the right orbitofrontal and insular cortices, as well as with reduced working memory performance.
Collapse
Affiliation(s)
- Shinwon Park
- Ewha Brain Institute, Ewha Womans University, Seoul, South Korea
| | - Haejin Hong
- Ewha Brain Institute, Ewha Womans University, Seoul, South Korea.,Department of Brain and Cognitive Sciences, Ewha Womans University, Seoul, South Korea
| | - Rye Young Kim
- Ewha Brain Institute, Ewha Womans University, Seoul, South Korea.,Graduate School of Pharmaceutical Sciences, Ewha Womans University, Seoul, South Korea
| | - Jiyoung Ma
- Ewha Brain Institute, Ewha Womans University, Seoul, South Korea
| | - Suji Lee
- Ewha Brain Institute, Ewha Womans University, Seoul, South Korea
| | - Eunji Ha
- Ewha Brain Institute, Ewha Womans University, Seoul, South Korea.,Department of Brain and Cognitive Sciences, Ewha Womans University, Seoul, South Korea
| | - Sujung Yoon
- Ewha Brain Institute, Ewha Womans University, Seoul, South Korea.,Department of Brain and Cognitive Sciences, Ewha Womans University, Seoul, South Korea
| | - Jungyoon Kim
- Ewha Brain Institute, Ewha Womans University, Seoul, South Korea.,Department of Brain and Cognitive Sciences, Ewha Womans University, Seoul, South Korea
| |
Collapse
|
25
|
Rivas E, Allie KN, Salvador PM, Schoech L, Martinez M. Sex difference in cerebral blood flow velocity during exercise hyperthermia. J Therm Biol 2020; 94:102741. [PMID: 33292982 DOI: 10.1016/j.jtherbio.2020.102741] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Revised: 09/18/2020] [Accepted: 09/21/2020] [Indexed: 10/23/2022]
Abstract
INTRODUCTION Cerebral blood flow and thermal perception during physical exercise under hyperthermia conditions in females are poorly understood. Because sex differences exist for blood pressure control, resting middle cerebral artery velocity (MCAVmean), and pain, we tested the hypothesis that females would have greater reductions in MCAvmean and increased thermal perceptual strain during exercise hyperthermia compared to males. METHODS Twenty-two healthy active males and females completed 60 min of matched exercise metabolic heat production in a 1) control cool (24.0 ± 0.0 °C; 14.4 ± 3.4% Rh) and 2) hot (42.3 ± 0.3 °C; 28.4 ± 5.2% Rh) conditions in random order, separated by at least 3 days while MCAvmean, thermal comfort, and preference was obtained during the exercise. RESULTS Compared to 36 °C mean body temperature (Mbt), as hyperthermia increased to 39 °C Mbt, females had a greater reduction in absolute (MCAvmean), and relative change (%Δ MCAvmean) and conductance (%Δ MCAvmean conductance) in MCAVmean compared to males (Interaction: Temperature x Sex, P ≤ 0.002). During exercise in cool conditions, absolute and conductance MCAvmean was maintained from rest through exercise; however, females had greater MCAVmean compared to males (Main effect: Sex, P < 0.0008). We also found disparities in females' perceptual thermal comfort and thermal preference. These differences may be associated with a greater reduction in partial pressure of end-tidal CO2, and different cardiovascular and blood pressure control to exercise under hyperthermia. CONCLUSIONS In summary, females exercise cerebral blood flow velocity is reduced to a greater extent (25% vs 15%) and the initial reduction occurs at lower hyperthermia mean body temperatures (~38 °C vs ~39 °C) and are under greater thermal perceptual strain compared to males.
Collapse
Affiliation(s)
- Eric Rivas
- Exercise & Thermal Integrative Physiology Laboratory, Texas Tech University, Lubbock, TX, USA; Department of Kinesiology & Sport Management, Texas Tech University, Lubbock, TX, USA; KBR, Human Physiology, Performance, Protection & Operations Laboratory, NASA Johnson Space Center, Houston, TX, USA.
| | - Kyleigh N Allie
- Exercise & Thermal Integrative Physiology Laboratory, Texas Tech University, Lubbock, TX, USA; Department of Kinesiology & Sport Management, Texas Tech University, Lubbock, TX, USA
| | - Paolo M Salvador
- Exercise & Thermal Integrative Physiology Laboratory, Texas Tech University, Lubbock, TX, USA
| | - Lauren Schoech
- Exercise & Thermal Integrative Physiology Laboratory, Texas Tech University, Lubbock, TX, USA
| | - Mauricio Martinez
- Exercise & Thermal Integrative Physiology Laboratory, Texas Tech University, Lubbock, TX, USA; Department of Kinesiology & Sport Management, Texas Tech University, Lubbock, TX, USA
| |
Collapse
|
26
|
Ashworth ET, Cotter JD, Kilding AE. Methods for improving thermal tolerance in military personnel prior to deployment. Mil Med Res 2020; 7:58. [PMID: 33248459 PMCID: PMC7700709 DOI: 10.1186/s40779-020-00287-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Accepted: 11/10/2020] [Indexed: 12/16/2022] Open
Abstract
Acute exposure to heat, such as that experienced by people arriving into a hotter or more humid environment, can compromise physical and cognitive performance as well as health. In military contexts heat stress is exacerbated by the combination of protective clothing, carried loads, and unique activity profiles, making them susceptible to heat illnesses. As the operational environment is dynamic and unpredictable, strategies to minimize the effects of heat should be planned and conducted prior to deployment. This review explores how heat acclimation (HA) prior to deployment may attenuate the effects of heat by initiating physiological and behavioural adaptations to more efficiently and effectively protect thermal homeostasis, thereby improving performance and reducing heat illness risk. HA usually requires access to heat chamber facilities and takes weeks to conduct, which can often make it impractical and infeasible, especially if there are other training requirements and expectations. Recent research in athletic populations has produced protocols that are more feasible and accessible by reducing the time taken to induce adaptations, as well as exploring new methods such as passive HA. These protocols use shorter HA periods or minimise additional training requirements respectively, while still invoking key physiological adaptations, such as lowered core temperature, reduced heart rate and increased sweat rate at a given intensity. For deployments of special units at short notice (< 1 day) it might be optimal to use heat re-acclimation to maintain an elevated baseline of heat tolerance for long periods in anticipation of such an event. Methods practical for military groups are yet to be fully understood, therefore further investigation into the effectiveness of HA methods is required to establish the most effective and feasible approach to implement them within military groups.
Collapse
Affiliation(s)
- Edward Tom Ashworth
- Sports Performance Research Institute New Zealand (SPRINZ), Auckland University of Technology, 17 Antares Place, Rosedale, Auckland, 0632 New Zealand
| | - James David Cotter
- School of Physical Education, Sport and Exercise Sciences, University of Otago, Dunedin, Otago 9016 New Zealand
| | - Andrew Edward Kilding
- Sports Performance Research Institute New Zealand (SPRINZ), Auckland University of Technology, 17 Antares Place, Rosedale, Auckland, 0632 New Zealand
| |
Collapse
|
27
|
Gordon RJFH, Tillin NA, Tyler CJ. The effect of head and neck per-cooling on neuromuscular fatigue following exercise in the heat. Appl Physiol Nutr Metab 2020; 45:1238-1246. [DOI: 10.1139/apnm-2020-0079] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
The effect of localised head and neck per-cooling on central and peripheral fatigue during high thermal strain was investigated. Fourteen participants cycled for 60 min at 50% peak oxygen uptake on 3 occasions: thermoneutral control (CON; 18 °C), hot (HOT; 35 °C), and HOT with head and neck cooling (HOTcooling). Maximal voluntary force (MVF) and central activation ratio (CAR) of the knee extensors were measured every 30 s during a sustained maximal voluntary contraction (MVC). Triplet peak force was measured following cycling, before and after the MVC. Rectal temperatures were higher in HOTcooling (39.2 ± 0.6 °C) and HOT (39.3 ± 0.5 °C) than CON (38.1 ± 0.3 °C; P < 0.05). Head and neck thermal sensation was similar in HOTcooling (4.2 ± 1.4) and CON (4.4 ± 0.9; P > 0.05) but lower than HOT (5.9 ± 1.5; P < 0.05). MVF and CAR were lower in HOT than CON throughout the MVC (P < 0.05). MVF and CAR were also lower in HOTcooling than CON at 5, 60, and 120 s, but similar at 30 and 90 s into the MVC (P > 0.05). Furthermore, they were greater in HOTcooling than HOT at 30 s, whilst triplet peak force was preserved in HOT after MVC. These results provide evidence that central fatigue following exercise in the heat is partially attenuated with head and neck cooling, which may be at the expense of greater peripheral fatigue. Novelty Central fatigue was greatest during hyperthermia. Head and neck cooling partially attenuated the greater central fatigue in the heat. Per-cooling led to more voluntary force production and more peripheral fatigue.
Collapse
Affiliation(s)
- Ralph Joseph Frederick Hills Gordon
- University of Roehampton, Department of Life Sciences, Holybourne Avenue, London, SW15 4JD, UK
- University of Roehampton, Department of Life Sciences, Holybourne Avenue, London, SW15 4JD, UK
| | - Neale Anthony Tillin
- University of Roehampton, Department of Life Sciences, Holybourne Avenue, London, SW15 4JD, UK
- University of Roehampton, Department of Life Sciences, Holybourne Avenue, London, SW15 4JD, UK
| | - Christopher James Tyler
- University of Roehampton, Department of Life Sciences, Holybourne Avenue, London, SW15 4JD, UK
- University of Roehampton, Department of Life Sciences, Holybourne Avenue, London, SW15 4JD, UK
| |
Collapse
|
28
|
Dubey S, Ghosh R, Chatterjee S, Dubey MJ, Ray BK, DAS S, Chatterjee A, Lahiri D, Kraemer M. Spicy foods triggering clinical symptoms in Moyamoya angiopathy. J Neurosurg Sci 2020; 65:85-88. [PMID: 32550609 DOI: 10.23736/s0390-5616.20.05030-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Souvik Dubey
- Department of Neuromedicine, Bangur Institute of Neurosciences, Institute of Postgraduate Medical Education and Research, SSKM Hospital, Kolkata, India
| | - Ritwik Ghosh
- Department of General Medicine, Burdwan Medical College and Hospital, Burdwan, India
| | - Subhankar Chatterjee
- Department of General Medicine, Rajendra Institute of Medical Sciences, Ranchi, Jharkhand, India
| | - Mahua J Dubey
- Department of Psychiatry, Behrampore Mental Hospital, Behrampore, India
| | - Biman K Ray
- Department of Neuromedicine, Bangur Institute of Neurosciences, Institute of Postgraduate Medical Education and Research, SSKM Hospital, Kolkata, India -
| | - Shambaditya DAS
- Department of Neuromedicine, Bangur Institute of Neurosciences, Institute of Postgraduate Medical Education and Research, SSKM Hospital, Kolkata, India
| | | | - Durjoy Lahiri
- Department of Neuromedicine, Bangur Institute of Neurosciences, Institute of Postgraduate Medical Education and Research, SSKM Hospital, Kolkata, India
| | - Markus Kraemer
- Department of Neurology, Alfried Krupp Von Bohlen Und Halbach Hospital, Essen, Germany.,Department of Neurology, Faculty of Medicine, Heinrich Heine University, Duesseldorf, Germany
| |
Collapse
|
29
|
Abstract
People undertaking prolonged vigorous exercise experience substantial bodily fluid losses due to thermoregulatory sweating. If these fluid losses are not replaced, endurance capacity may be impaired in association with a myriad of alterations in physiological function, including hyperthermia, hyperventilation, cardiovascular strain with reductions in brain, skeletal muscle and skin blood perfusion, greater reliance on muscle glycogen and cellular metabolism, alterations in neural activity and, in some conditions, compromised muscle metabolism and aerobic capacity. The physiological strain accompanying progressive exercise-induced dehydration to a level of ~ 4% of body mass loss can be attenuated or even prevented by: (1) ingesting fluids during exercise, (2) exercising in cold environments, and/or (3) working at intensities that require a small fraction of the overall body functional capacity. The impact of dehydration upon physiological function therefore depends on the functional demand evoked by exercise and environmental stress, as cardiac output, limb blood perfusion and muscle metabolism are stable or increase during small muscle mass exercise or resting conditions, but are impaired during whole-body moderate to intense exercise. Progressive dehydration is also associated with an accelerated drop in perfusion and oxygen supply to the human brain during submaximal and maximal endurance exercise. Yet their consequences on aerobic metabolism are greater in the exercising muscles because of the much smaller functional oxygen extraction reserve. This review describes how dehydration differentially impacts physiological function during exercise requiring low compared to high functional demand, with an emphasis on the responses of the human brain, heart and skeletal muscles.
Collapse
|
30
|
Gibbons TD, Tymko MM, Thomas KN, Wilson LC, Stembridge M, Caldwell HG, Howe CA, Hoiland RL, Akerman AP, Dawkins TG, Patrician A, Coombs GB, Gasho C, Stacey BS, Ainslie PN, Cotter JD. Global REACH 2018: The influence of acute and chronic hypoxia on cerebral haemodynamics and related functional outcomes during cold and heat stress. J Physiol 2020; 598:265-284. [PMID: 31696936 DOI: 10.1113/jp278917] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2019] [Accepted: 10/28/2019] [Indexed: 11/08/2022] Open
Abstract
KEY POINTS Thermal and hypoxic stress commonly coexist in environmental, occupational and clinical settings, yet how the brain tolerates these multi-stressor environments is unknown Core cooling by 1.0°C reduced cerebral blood flow (CBF) by 20-30% and cerebral oxygen delivery (CDO2 ) by 12-19% at sea level and high altitude, whereas core heating by 1.5°C did not reliably reduce CBF or CDO2 Oxygen content in arterial blood was fully restored with acclimatisation to 4330 m, but concurrent cold stress reduced CBF and CDO2 Gross indices of cognition were not impaired by any combination of thermal and hypoxic stress despite large reductions in CDO2 Chronic hypoxia renders the brain susceptible to large reductions in oxygen delivery with concurrent cold stress, which might make monitoring core temperature more important in this context ABSTRACT: Real-world settings are composed of multiple environmental stressors, yet the majority of research in environmental physiology investigates these stressors in isolation. The brain is central in both behavioural and physiological responses to threatening stimuli and, given its tight metabolic and haemodynamic requirements, is particularly susceptible to environmental stress. We measured cerebral blood flow (CBF, duplex ultrasound), cerebral oxygen delivery (CDO2 ), oesophageal temperature, and arterial blood gases during exposure to three commonly experienced environmental stressors - heat, cold and hypoxia - in isolation, and in combination. Twelve healthy male subjects (27 ± 11 years) underwent core cooling by 1.0°C and core heating by 1.5°C in randomised order at sea level; acute hypoxia ( P ET , O 2 = 50 mm Hg) was imposed at baseline and at each thermal extreme. Core cooling and heating protocols were repeated after 16 ± 4 days residing at 4330 m to investigate any interactions with high altitude acclimatisation. Cold stress decreased CBF by 20-30% and CDO2 by 12-19% (both P < 0.01) irrespective of altitude, whereas heating did not reliably change either CBF or CDO2 (both P > 0.08). The increases in CBF with acute hypoxia during thermal stress were appropriate to maintain CDO2 at normothermic, normoxic values. Reaction time was faster and slower by 6-9% with heating and cooling, respectively (both P < 0.01), but central (brain) processes were not impaired by any combination of environmental stressors. These findings highlight the powerful influence of core cooling in reducing CDO2 . Despite these large reductions in CDO2 with cold stress, gross indices of cognition remained stable.
Collapse
Affiliation(s)
- T D Gibbons
- School of Physical Education, Sport & Exercise Science, University of Otago, 55/47 Union St W, Dunedin, 9016, New Zealand
| | - M M Tymko
- Centre for Heart, Lung and Vascular Health, University of British Columbia-Okanagan Campus, School of Health and Exercise Sciences, 3333 University Way, Kelowna, British Columbia, Canada, V1V 1V7
| | - K N Thomas
- Department of Surgical Sciences, University of Otago, 201 Great King St, Dunedin, 9016, New Zealand
| | - L C Wilson
- Department of Medicine, University of Otago, 201 Great King St, Dunedin, 9016, New Zealand
| | - M Stembridge
- Cardiff Centre for Exercise and Health, Cardiff Metropolitan University, Cyncoed Road, Cardiff, CF23 6XD, UK
| | - H G Caldwell
- Centre for Heart, Lung and Vascular Health, University of British Columbia-Okanagan Campus, School of Health and Exercise Sciences, 3333 University Way, Kelowna, British Columbia, Canada, V1V 1V7
| | - C A Howe
- Centre for Heart, Lung and Vascular Health, University of British Columbia-Okanagan Campus, School of Health and Exercise Sciences, 3333 University Way, Kelowna, British Columbia, Canada, V1V 1V7
| | - R L Hoiland
- Centre for Heart, Lung and Vascular Health, University of British Columbia-Okanagan Campus, School of Health and Exercise Sciences, 3333 University Way, Kelowna, British Columbia, Canada, V1V 1V7
| | - A P Akerman
- Faculty of Health Sciences, University of Ottawa, 125 University St, Ottawa, Ontario, Canada, K1N 6N5
| | - T G Dawkins
- Cardiff Centre for Exercise and Health, Cardiff Metropolitan University, Cyncoed Road, Cardiff, CF23 6XD, UK
| | - A Patrician
- Centre for Heart, Lung and Vascular Health, University of British Columbia-Okanagan Campus, School of Health and Exercise Sciences, 3333 University Way, Kelowna, British Columbia, Canada, V1V 1V7
| | - G B Coombs
- Centre for Heart, Lung and Vascular Health, University of British Columbia-Okanagan Campus, School of Health and Exercise Sciences, 3333 University Way, Kelowna, British Columbia, Canada, V1V 1V7
| | - C Gasho
- Division of Pulmonary, Critical Care, Hyperbaric and Sleep Medicine, Loma Linda University School of Medicine, Loma Linda, CA, USA
| | - B S Stacey
- Neurovascular Research Laboratory, Faculty of Life Sciences and Education, University of South Wales, UK
| | - P N Ainslie
- Centre for Heart, Lung and Vascular Health, University of British Columbia-Okanagan Campus, School of Health and Exercise Sciences, 3333 University Way, Kelowna, British Columbia, Canada, V1V 1V7
| | - J D Cotter
- School of Physical Education, Sport & Exercise Science, University of Otago, 55/47 Union St W, Dunedin, 9016, New Zealand
| |
Collapse
|
31
|
Behairy MA, ElSadek A, Sadek M, El Shaarawy A. Cerebral hemodynamics among non-diabetic hemodialysis patients. THE EGYPTIAN JOURNAL OF NEUROLOGY, PSYCHIATRY AND NEUROSURGERY 2019. [DOI: 10.1186/s41983-019-0126-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Abstract
Background
Cerebrovascular accidents and cognitive impairment is a frequent complication of end-stage renal disease (ESRD) on regular hemodialysis (HD).
Objective
To evaluate cerebral circulation hemodynamics in non-diabetic prevalent hemodialysis patients by transcranial Doppler (TCD).
Patients and methods
The cross-sectional study included 50 ESRD patients on regular hemodialysis > 6 months in Ain Shams University Hospitals, Cairo, Egypt. Diabetic patients; chronic liver disease patients Child-Pugh class B or C; smokers; history of evident of cardiac, peripheral, or cerebrovascular insult; uncontrolled hypertension; anemia; collagen disease; and active infection were excluded from the study. An assessment of cerebral circulation hemodynamics by TCD in non-dialysis day to examine mean flow velocity (MFV) in the middle cerebral artery (MCA) and posterior cerebral artery (PCA).
Results
An assessment of cerebral circulation hemodynamics revealed that 16 (32%) of the patients showed decrease MFV in MCA and 30 (60%) were normal. Regarding MFVs in PCA, 13 (26%) of the patients showed decrease MFVs, 33 (66%) were normal, and 4 (8%) of the patients failed due to poor bone window, significant reduction of MCV and PCA velocities in HD with urea reduction ratio < 65%, and a significantly negative correlation of MFV, PCA, and hemoglobin level (P < 0.05).
Conclusion
There is a high frequency rate of decreased MCA and PCA MFV (32%, 28%), respectively, among non-diabetic prevalent hemodialysis patients with significant correlation to hemodialysis adequacy.
Collapse
|
32
|
Rivas E, Allie KN, Salvador PM. Progressive dry to humid hyperthermia alters exercise cerebral blood flow. J Therm Biol 2019; 84:398-406. [PMID: 31466779 DOI: 10.1016/j.jtherbio.2019.07.036] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Revised: 07/27/2019] [Accepted: 07/29/2019] [Indexed: 11/27/2022]
Abstract
INTRODUCTION Exercising in hot conditions may increase the risk for exertional heat-related illness due to reduction in cerebral blood flow (CBF); however, the acute effect of exercise-induced changes on CBF during compensable and uncompensable heat stress remain unclear. We tested the hypothesis that exercising in hot dry and humid conditions would have different CBF responses. METHODS Nine healthy active males completed a 30 min baseline rest then 60 min of low intensity self-paced exercise (12 rating of perceived exertion) in a 1) control compensable neutral dry (CN; 23.7 ± 0.7 °C; 10.7 ± 0.8%Rh) and 2) compensable hot dry (CH; 42.3 ± 0.3 °C; 10.7 ± 1.8%Rh) that progressively increased to an uncompensable hot humid (UCH; 42.3 ± 0.3 °C; 55.2 ± 7.7%Rh) environment in random order separated by at least 4 days. RESULTS We observed that during CN environments from rest through 60 min of exercise, middle cerebral velocity (MCAvmean) and conductance (MCAvmean CVC) remained unchanged. In contrast, during CH, MCAvmean, MCAvmean CVC, and cardiac output (Q) increased and systemic vascular resistance (SVR) decreased. However, under UCH, MCAvmean, MCAvmean CVC, and Q was reduced. No difference in mean arterial pressure or ventilation was observed during any condition. Only during UCH, end-tidal PO2 increased and PCO2 decreased. The redistribution of blood to the skin for thermoregulation (heart rate, skin blood flow and sweat rate) remained higher during exercise in UCH environments. CONCLUSIONS Collectively, exercise cerebral blood flow is altered by an integrative physiological manner that differs in CN, CH, and UCH environments. The control of CBF may be secondary to thermoregulatory control which may provide an explanation for the cause of exertional heat illness.
Collapse
Affiliation(s)
- Eric Rivas
- Exercise & Thermal Integrative Physiology Laboratory, Texas Tech University, Lubbock, TX, USA; Department of Kinesiology & Sport Management, Texas Tech University, Lubbock, TX, USA.
| | - Kyleigh N Allie
- Exercise & Thermal Integrative Physiology Laboratory, Texas Tech University, Lubbock, TX, USA; Department of Kinesiology & Sport Management, Texas Tech University, Lubbock, TX, USA
| | - Paolo M Salvador
- Exercise & Thermal Integrative Physiology Laboratory, Texas Tech University, Lubbock, TX, USA; Department of Kinesiology & Sport Management, Texas Tech University, Lubbock, TX, USA
| |
Collapse
|
33
|
Tan XR, Low ICC, Stephenson MC, Kok T, Nolte HW, Soong TW, Lee JKW. Altered brain structure with preserved cortical motor activity after exertional hypohydration: a MRI study. J Appl Physiol (1985) 2019; 127:157-167. [DOI: 10.1152/japplphysiol.00081.2019] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Hypohydration exceeding 2% body mass can impair endurance capacity. It is postulated that the brain could be perturbed by hypohydration, leading to impaired motor performance. We investigated the neural effects of hypohydration with magnetic resonance imaging (MRI). Ten men were dehydrated to approximately −3% body mass by running on a treadmill at 65% maximal oxygen consumption (V̇o2max) before drinking to replace either 100% [euhydration (EU)] or 0% [hypohydration (HH)] of fluid losses. MRI was performed before start of trial (baseline) and after rehydration phase (post) to evaluate brain structure, cerebral perfusion, and functional activity. Endurance capacity assessed with a time-to-exhaustion run at 75% V̇o2max was reduced with hypohydration (EU: 45.2 ± 9.3 min, HH: 38.4 ± 10.7 min; P = 0.033). Mean heart rates were comparable between trials (EU: 162 ± 5 beats/min, HH: 162 ± 4 beats/min; P = 0.605), but the rate of rise in rectal temperature was higher in HH trials (EU: 0.06 ± 0.01°C/min, HH: 0.07 ± 0.02°C/min; P < 0.01). In HH trials, a reduction in total brain volume (EU: +0.7 ± 0.6%, HH: −0.7 ± 0.9%) with expansion of ventricles (EU: −2.7 ± 1.6%, HH: +3.7 ± 3.3%) was observed, and vice versa in EU trials. Global and regional cerebral perfusion remained unchanged between conditions. Functional activation in the primary motor cortex in left hemisphere during a plantar-flexion task was similar between conditions (EU: +0.10 ± 1.30%, HH: −0.11 ± 0.31%; P = 0.637). Our findings demonstrate that with exertional hypohydration, brain volumes were altered but the motor-related functional activity was unperturbed. NEW & NOTEWORTHY Dehydration occurs rapidly during prolonged or intensive physical activity, leading to hypohydration if fluid replenishment is insufficient to replace sweat losses. Altered hydration status poses an osmotic challenge for the brain, leading to transient fluctuations in brain tissue and ventricle volumes. Therefore, the amount of fluid ingestion during exercise plays a critical role in preserving the integrity of brain architecture. These structural changes, however, did not translate directly to motor functional deficits in a simple motor task.
Collapse
Affiliation(s)
- X. R. Tan
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- National University of Singapore Graduate School for Integrative Sciences and Engineering, Singapore, Singapore
| | - I. C. C. Low
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - M. C. Stephenson
- Clinical Imaging Research Centre, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - T. Kok
- Clinical Imaging Research Centre, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - H. W. Nolte
- Movement Physiology Research Laboratory, School of Physiology, Faculty of Health Sciences, University of the Witwatersrand Medical School, Johannesburg, South Africa
| | - T. W. Soong
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- National University of Singapore Graduate School for Integrative Sciences and Engineering, Singapore, Singapore
| | - J. K. W. Lee
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Department of Orthopaedic Surgery, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Global Asia Institute, National University of Singapore, Singapore, Singapore
- N.1 Institute for Health, National University of Singapore, Singapore, Singapore
| |
Collapse
|
34
|
Tsuji B, Hoshi Y, Honda Y, Fujii N, Sasaki Y, Cheung SS, Kondo N, Nishiyasu T. Respiratory mechanics and cerebral blood flow during heat-induced hyperventilation and its voluntary suppression in passively heated humans. Physiol Rep 2019; 7:e13967. [PMID: 30637992 PMCID: PMC6330649 DOI: 10.14814/phy2.13967] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Accepted: 11/15/2018] [Indexed: 02/01/2023] Open
Abstract
We investigated whether heat-induced hyperventilation can be voluntarily prevented, and, if so, how this modulates respiratory mechanics and cerebral blood flow in resting heated humans. In two separate trials, 10 healthy men were passively heated using lower body hot-water immersion and a water-perfused garment covering their upper body (both 41°C) until esophageal temperature (Tes ) reached 39°C or volitional termination. In each trial, participants breathed normally (normal-breathing) or voluntarily controlled minute ventilation (VE ) at a level equivalent to that observed after 5 min of heating (controlled-breathing). Respiratory gases, middle cerebral artery blood velocity (MCAV), work of breathing, and end-expiratory and inspiratory lung volumes were measured. During normal-breathing, VE increased as Tes rose above 38.0 ± 0.3°C, whereas controlled-breathing diminished the increase in VE (VE at Tes = 38.6°C: 25.6 ± 5.9 and 11.9 ± 1.3 L min-1 during normal- and controlled-breathing, respectively, P < 0.001). During normal-breathing, end-tidal CO2 pressure and MCAV decreased with rising Tes , but controlled-breathing diminished these reductions (at Tes = 38.6°C, 24.7 ± 5.0 vs. 39.5 ± 2.8 mmHg; 44.9 ± 5.9 vs. 60.2 ± 6.3 cm sec-1 , both P < 0.001). The work of breathing correlated positively with changes in VE (P < 0.001) and was lower during controlled- than normal-breathing (16.1 ± 12.6 and 59.4 ± 49.5 J min-1 , respectively, at heating termination, P = 0.013). End-expiratory and inspiratory lung volumes did not differ between trials (P = 0.25 and 0.71, respectively). These results suggest that during passive heating at rest, heat-induced hyperventilation increases the work of breathing without affecting end-expiratory lung volume, and that voluntary control of breathing can nearly abolish this hyperventilation, thereby diminishing hypocapnia, cerebral hypoperfusion, and increased work of breathing.
Collapse
Affiliation(s)
- Bun Tsuji
- Department of Health SciencesPrefectural University of HiroshimaHiroshimaJapan
- Faculty of Health and Sport SciencesUniversity of TsukubaTsukuba CityIbarakiJapan
| | - Yuta Hoshi
- Faculty of Health and Sport SciencesUniversity of TsukubaTsukuba CityIbarakiJapan
| | - Yasushi Honda
- Faculty of Health and Sport SciencesUniversity of TsukubaTsukuba CityIbarakiJapan
| | - Naoto Fujii
- Faculty of Health and Sport SciencesUniversity of TsukubaTsukuba CityIbarakiJapan
| | - Yosuke Sasaki
- Faculty of Health and Sport SciencesUniversity of TsukubaTsukuba CityIbarakiJapan
| | | | - Narihiko Kondo
- Graduate School of Human Development and EnvironmentKobe UniversityKobeJapan
| | - Takeshi Nishiyasu
- Faculty of Health and Sport SciencesUniversity of TsukubaTsukuba CityIbarakiJapan
| |
Collapse
|
35
|
The influence of thermal inputs on brain regulation of exercise: An evolutionary perspective. PROGRESS IN BRAIN RESEARCH 2018. [PMID: 30390835 DOI: 10.1016/bs.pbr.2018.07.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register]
Abstract
The relationship between performance, heat load and the ability to withstand serious thermal insult is a key factor in understanding how endurance is regulated. The capacity to withstand high thermal loads is not unique to humans and is typical to all mammals. Thermoregulation is an evolutionary adaptation which is species specific and should be regarded as a survival strategy rather than purely a physiological response. The fact that mammals have selected ~37°C as a set point could be a key factor in understanding our endurance capabilities and strategy. Endurance presents a significant challenge to bodily homeostasis while our thermoregulatory strategy is able to cope exquisitely under the most unfavorable conditions. The ability of the CNS to regulate this strategy is key in athletic performance since the thermoregulatory center is located within the brain and receives input from multiple systems and deploys effector responses as needed. This chapter will discuss the evolution of thermoregulation in humans and propose that the brain is more than sufficiently capable of maintaining thermal-homeostasis because of its evolutionary path. As such, this is connected to our ability to modulate efferent drive during heat strain and in so doing provides us with the capability to pace during endurance events in the heat.
Collapse
|
36
|
Horiuchi M, Handa Y, Fukuoka Y. Impact of ambient temperature on energy cost and economical speed during level walking in healthy young males. Biol Open 2018; 7:bio.035121. [PMID: 29970478 PMCID: PMC6078347 DOI: 10.1242/bio.035121] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
We measured oxygen consumption and carbon dioxide output during walking [per unit distance (Cw) values] for 14 healthy young human males at seven speeds from 0.67 to 1.67 m s−1 (4 min per stage) in thermoneutral (23°C), cool (13°C), and hot (33°C) environments. The Cw at faster gait speeds in the 33°C trial was slightly higher compared to those in the 23°C and 13°C trials. We found the speed at which the young males walked had a significant effect on the Cw values (P<0.05), but the different environmental temperatures showed no significant effect (P>0.05). Economical speed (ES) which can minimize the Cw in each individual was calculated from a U-shaped relationship. We found a significantly slower ES at 33°C [1.265 (0.060) m s−1 mean (s.d.)] compared to 23°C [1.349 (0.077) m s−1] and 13°C [1.356 (0.078) m s−1, P<0.05, respectively] with no differences between 23°C and 13°C (P>0.05). Heart rate and mean skin temperature responses in the 33°C condition increased throughout the walking trial compared to 23°C and 13°C (all P<0.05). These results suggest that an acutely hot environment slowed the ES by ∼7%, but an acutely cool environment did not affect the Cw and ES. Summary: Energy cost of walking in a hot environment was greater than in a comfortable environment. Thus, to prevent heat related injury, walking speed should be reduced in a hot environment.
Collapse
Affiliation(s)
- Masahiro Horiuchi
- Division of Human Environmental Science, Mt. Fuji Research Institute, Kamiyoshida, 5597-1 Fuji yoshida City, Yamanashi 4030005, Japan
| | - Yoko Handa
- Division of Human Environmental Science, Mt. Fuji Research Institute, Kamiyoshida, 5597-1 Fuji yoshida City, Yamanashi 4030005, Japan
| | - Yoshiyuki Fukuoka
- Faculty of Health and Sports Science, Doshisha University, Tatara 1-3, Kyotanabe, Kyoto 6100394, Japan
| |
Collapse
|
37
|
Pires W, Veneroso CE, Wanner SP, Pacheco DAS, Vaz GC, Amorim FT, Tonoli C, Soares DD, Coimbra CC. Association Between Exercise-Induced Hyperthermia and Intestinal Permeability: A Systematic Review. Sports Med 2018; 47:1389-1403. [PMID: 27943148 DOI: 10.1007/s40279-016-0654-2] [Citation(s) in RCA: 93] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
BACKGROUND Prolonged and strenuous physical exercise increases intestinal permeability, allowing luminal endotoxins to translocate through the intestinal barrier and reach the bloodstream. When recognized by the immune system, these endotoxins trigger a systemic inflammatory response that may affect physical performance and, in severe cases, induce heat stroke. However, it remains to be elucidated whether there is a relationship between the magnitude of exercise-induced hyperthermia and changes in intestinal permeability. OBJECTIVE In this systematic review, we evaluated whether an exercise-induced increase in core body temperature (T Core) is associated with an exercise-induced increase in intestinal permeability. METHODS The present systematic review screened the MEDLINE/PubMed and Web of Science databases in September 2016, without any date restrictions. Sixteen studies that were performed in healthy participants, presented original data, and measured both the exercise-induced changes in T Core and intestinal permeability were selected. These studies assessed intestinal permeability through the measurement of sugar levels in the urine and measurement of intestinal fatty acid binding protein or lipopolysaccharide levels in the blood. RESULTS Exercise increased both T Core and intestinal permeability in most of the 16 studies. In addition, a positive and strong correlation was observed between the two parameters (r = 0.793; p < 0.001), and a T Core exceeding 39 °C was always associated with augmented permeability. CONCLUSION The magnitude of exercise-induced hyperthermia is directly associated with the increase in intestinal permeability.
Collapse
Affiliation(s)
- Washington Pires
- Department of Physiology and Biophysics, Institute of Biological Sciences, Universidade Federal de Minas Gerais, 6627 Avenida Antônio Carlos, Belo Horizonte, Minas Gerais, 31270-901, Brazil.,Department of Physical Education, Institute of Life Sciences, Universidade Federal de Juiz de Fora, Governador Valadares, Minas Gerais, Brazil
| | - Christiano E Veneroso
- Graduate Program in Sport Sciences, School of Physical Education, Physiotherapy and Occupational Therapy, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Samuel P Wanner
- Graduate Program in Sport Sciences, School of Physical Education, Physiotherapy and Occupational Therapy, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Diogo A S Pacheco
- Graduate Program in Sport Sciences, School of Physical Education, Physiotherapy and Occupational Therapy, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Gisele C Vaz
- Department of Physiology and Biophysics, Institute of Biological Sciences, Universidade Federal de Minas Gerais, 6627 Avenida Antônio Carlos, Belo Horizonte, Minas Gerais, 31270-901, Brazil
| | - Fabiano T Amorim
- Department of Physical Education, Universidade Federal dos Vales do Jequitinhonha e Mucuri, Diamantina, Minas Gerais, Brazil.,Department of Health, Exercise Science and Sport, University of New Mexico, Albuquerque, New Mexico, USA
| | - Cajsa Tonoli
- Department of Human Physiology and Sports Medicine, Faculty of Physical Education and Physical Therapy, Vrije Universiteit Brussel, Brussels, Belgium
| | - Danusa D Soares
- Graduate Program in Sport Sciences, School of Physical Education, Physiotherapy and Occupational Therapy, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Cândido C Coimbra
- Department of Physiology and Biophysics, Institute of Biological Sciences, Universidade Federal de Minas Gerais, 6627 Avenida Antônio Carlos, Belo Horizonte, Minas Gerais, 31270-901, Brazil. .,Graduate Program in Sport Sciences, School of Physical Education, Physiotherapy and Occupational Therapy, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil.
| |
Collapse
|
38
|
Otani H, Kaya M, Tamaki A, Goto H, Goto T, Shirato M. Diurnal effects of prior heat stress exposure on sprint and endurance exercise capacity in the heat. Chronobiol Int 2018; 35:982-995. [PMID: 29561175 DOI: 10.1080/07420528.2018.1448855] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
Active individuals often perform exercises in the heat following heat stress exposure (HSE) regardless of the time-of-day and its variation in body temperature. However, there is no information concerning the diurnal effects of a rise in body temperature after HSE on subsequent exercise performance in a hot environnment. This study therefore investigated the diurnal effects of prior HSE on both sprint and endurance exercise capacity in the heat. Eight male volunteers completed four trials which included sprint and endurance cycling tests at 30 °C and 50% relative humidity. At first, volunteers completed a 30-min pre-exercise routine (30-PR): a seated rest in a temperate environment in AM (AmR) or PM (PmR) (Rest trials); and a warm water immersion at 40 °C to induce a 1 °C increase in core temperature in AM (AmW) or PM (PmW) (HSE trials). Volunteers subsequently commenced exercise at 0800 h in AmR/AmW and at 1700 h in PmR/PmW. The sprint test determined a 10-sec maximal sprint power at 5 kp. Then, the endurance test was conducted to measure time to exhaustion at 60% peak oxygen uptake. Maximal sprint power was similar between trials (p = 0.787). Time to exhaustion in AmW (mean±SD; 15 ± 8 min) was less than AmR (38 ± 16 min; p < 0.01) and PmR (43 ± 24 min; p < 0.01) but similar with PmW (24 ± 9 min). Core temperature was higher from post 30-PR to 6 min into the endurance test in AmW and PmW than AmR and PmR (p < 0.05) and at post 30-PR and the start of the endurance test in PmR than AmR (p < 0.05). The rate of rise in core temperature during the endurance test was greater in AmR than AmW and PmW (p < 0.05). Mean skin temperature was higher from post 30-PR to 6 min into the endurance test in HSE trials than Rest trials (p < 0.05). Mean body temperature was higher from post 30-PR to 6 min into the endurance test in AmW and PmW than AmR and PmR (p < 0.05) and the start to 6 min into the endurance test in PmR than AmR (p < 0.05). Convective, radiant, dry and evaporative heat losses were greater on HSE trials than on Rest trials (p < 0.001). Heart rate and cutaneous vascular conductance were higher at post 30-PR in HSE trials than Rest trials (p < 0.05). Thermal sensation was higher from post 30-PR to the start of the endurance test in AmW and PmW than AmR and PmR (p < 0.05). Perceived exertion from the start to 6 min into the endurance test was higher in HSE trials than Rest trials (p < 0.05). This study demonstrates that an approximately 1 °C increase in core temperature by prior HSE has the diurnal effects on endurance exercise capacity but not on sprint exercise capacity in the heat. Moreover, prior HSE reduces endurance exercise capacity in AM, but not in PM. This reduction is associated with a large difference in pre-exercise core temperature between AM trials which is caused by a relatively lower body temperature in the morning due to the time-of-day variation and contributes to lengthening the attainment of high core temperature during exercise in AmR.
Collapse
Affiliation(s)
- Hidenori Otani
- a Faculty of Health Care Sciences , Himeji Dokkyo University , Himeji , Hyogo , Japan
| | - Mitsuharu Kaya
- b Hyogo University of Health Sciences , Kobe , Hyogo , Japan
| | - Akira Tamaki
- b Hyogo University of Health Sciences , Kobe , Hyogo , Japan
| | - Heita Goto
- c Kyushu Kyoritsu University , Kitakyushu , Fukuoka , Japan
| | - Takayuki Goto
- d National Institute of Technology, Akashi College , Akashi , Hyogo , Japan
| | | |
Collapse
|
39
|
Ikemura T, Suzuki K, Nakamura N, Yada K, Hayashi N. Fluid intake restores retinal blood flow early after exhaustive exercise in healthy subjects. Eur J Appl Physiol 2018. [PMID: 29520564 DOI: 10.1007/s00421-018-3839-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
PURPOSE It remains unclear whether rehydration restores retinal blood flow reduced by exhaustive exercise. We investigated the effect of fluid intake on retinal blood flow after exhaustive exercise. METHODS Blood flow in the inferior (ITRA) and superior temporal retinal arterioles (STRA) was measured before and after incremental cycling exercise until exhaustion in 13 healthy males. After the exercise, the subjects rested without drinking (control condition: CON) or with drinking an electrolyte containing water (rehydrate condition: REH) and were followed up for a period of 120 min. To assess the hydration state, the body mass was measured, and venous blood samples were collected and plasma volume (PV) was calculated. RESULTS Body mass decreased in CON after the trial [- 1.1 ± 0.1% (mean ± SE), p < 0.05]. PV was lower in CON than in REH during recovery. The ITRA and STRA blood flows decreased immediately after exercise from the resting baseline (ITRA; - 23 ± 4% in REH and - 30 ± 4% in CON, p < 0.05). The ITRA blood flow recovered baseline level at 15 min of recovery in REH (- 9 ± 3%, p = 0.5), but it remained reduced in CON (-14 ± 3%, p < 0.05). The STRA blood flow was higher in REH than in CON at 15 min (2 ± 3 vs. - 5 ± 3%, p < 0.05). CONCLUSIONS The results of this study suggest that the reduction in retinal blood flow induced by exhaustive exercise can be recovered early by rehydration.
Collapse
Affiliation(s)
- Tsukasa Ikemura
- Faculty of Commerce, Yokohama College of Commerce, Higashiterao, Tsurumi-ku, Yokohama, Kanagawa, Japan
| | - Katsuhiko Suzuki
- Faculty of Sport Sciences, Waseda University, Tokorozawa, Saitama, Japan
| | - Nobuhiro Nakamura
- Graduate School of Sport Sciences, Waseda University, Tokorozawa, Saitama, Japan
| | - Koichi Yada
- Faculty of Sport Sciences, Waseda University, Tokorozawa, Saitama, Japan
| | - Naoyuki Hayashi
- Institute for Liberal Arts, Tokyo Institute of Technology, Ookayama 2-12-1, Meguro-ku, Tokyo, 152-8552, Japan.
| |
Collapse
|
40
|
Otani H, Kaya M, Tamaki A, Watson P, Maughan RJ. Air velocity influences thermoregulation and endurance exercise capacity in the heat. Appl Physiol Nutr Metab 2018; 43:131-138. [DOI: 10.1139/apnm-2017-0448] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
This study examined the effects of variations in air velocity on time to exhaustion and thermoregulatory and perceptual responses to exercise in a hot environment. Eight male volunteers completed stationary cycle exercise trials at 70% peak oxygen uptake until exhaustion in an environmental chamber maintained at 30 °C and 50% relative humidity. Four air velocity conditions, 30, 20, 10, and 0 km/h, were tested, and the headwind was directed at the frontal aspect of the subject by 2 industrial fans, with blade diameters of 1 m and 0.5 m, set in series and positioned 3 m from the subject’s chest. Mean ± SD time to exhaustion was 90 ± 17, 73 ± 16, 58 ± 13, and 41 ± 10 min in 30-, 20-, 10-, and 0-km/h trials, respectively, and was different between all trials (P < 0.05). There were progressive elevations in the rate of core temperature rise, mean skin temperature, and perceived thermal sensation as airflow decreases (P < 0.05). Core temperature, heart rate, cutaneous vascular conductance, and perceived exertion were higher and evaporative heat loss was lower without airflow than at any given airflow (P < 0.05). Dry heat loss and plasma volume were similar between trials (P > 0.05). The present study demonstrated a progressive reduction in time to exhaustion as air velocity decreases. This response is associated with a faster rate of core temperature rise and a higher skin temperature and perceived thermal stress with decreasing airflow. Moreover, airflow greater than 10 km/h (2.8 m/s) might contribute to enhancing endurance exercise capacity and reducing thermoregulatory, cardiovascular, and perceptual strain during exercise in a hot environment.
Collapse
Affiliation(s)
- Hidenori Otani
- Faculty of Health Care Sciences, Himeji Dokkyo University, 7-2-1 Kamiono, Himeji, Hyogo 670-8524, Japan
| | - Mitsuharu Kaya
- Hyogo University of Health Sciences, 1-3-6 Minatojima, Chuo-ku, Kobe, Hyogo 650-8530, Japan
| | - Akira Tamaki
- Hyogo University of Health Sciences, 1-3-6 Minatojima, Chuo-ku, Kobe, Hyogo 650-8530, Japan
| | - Phillip Watson
- Department of Human Physiology, Vrije Universiteit Brussel, Pleinlaan 2, B-1050 Brussels, Belgium
| | - Ronald J. Maughan
- School of Medicine, University of St Andrews, St Andrews KY16 9AJ, UK
| |
Collapse
|
41
|
Pikoula M, Tessier MB, Woods RJ, Ventikos Y. Oligosaccharide model of the vascular endothelial glycocalyx in physiological flow. MICROFLUIDICS AND NANOFLUIDICS 2018; 22:21. [PMID: 29568255 PMCID: PMC5847235 DOI: 10.1007/s10404-018-2037-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2017] [Accepted: 01/15/2018] [Indexed: 05/28/2023]
Abstract
Experiments have consistently revealed the pivotal role of the endothelial glycocalyx layer in vasoregulation and the layer's contribution to mechanotransduction pathways. However, the exact mechanism by which the glycocalyx mediates fluid shear stress remains elusive. This study employs atomic-scale molecular simulations with the aim of investigating the conformational and orientation properties of highly flexible oligosaccharide components of the glycocalyx and their suitability as transduction molecules under hydrodynamic loading. Fluid flow was shown to have nearly no effect on the conformation populations explored by the oligosaccharide, in comparison with static (diffusion) conditions. However, the glycan exhibited a significant orientation change, when compared to simple diffusion, aligning itself with the flow direction. It is the tethered end of the glycan, an asparagine amino acid, which experienced conformational changes as a result of this flow-induced bias. Our results suggest that shear flow through the layer can have an impact on the conformational properties of saccharide-decorated transmembrane proteins, thus acting as a mechanosensor.
Collapse
Affiliation(s)
- Maria Pikoula
- Department of Engineering Science, Institute of Biomedical Engineering, University of Oxford, Oxford, OX1 3PJ UK
- Farr Institute, UCL Institute of Health Informatics, 222 Euston Road, London, NW1 2DA UK
| | - Matthew B. Tessier
- Complex Carbohydrate Research Center, University of Georgia, 315 Riverbend Road, Athens, GA 30602 USA
- Department of Chemistry, University of Georgia, 140 Cedar St, Athens, GA 30602 USA
| | - Robert J. Woods
- Complex Carbohydrate Research Center, University of Georgia, 315 Riverbend Road, Athens, GA 30602 USA
| | - Yiannis Ventikos
- Department of Mechanical Engineering, University College London, Torrington Place, London, WC1E 7JE UK
| |
Collapse
|
42
|
Abstract
The human autonomic nervous system participates in the control of thermoregulatory responses that are employed to regulate core temperature following deviations of skin temperature and/or core temperature from their respective resting values. This permits a regulation of the core temperature (TC) at 37.0 ± 1°C with superimposed circadian variations in both sexes and menstrual cycle-associated variations in premenopausal women. When rendered hyperthermic, passively by heat exposure while at rest or actively during exercise, humans engage heat loss or thermolytic responses, including eccrine sweating and cutaneous vasodilatation. A third, less studied, human thermolytic response is thermal panting, and this response is the focus of this review. Human thermal panting was first described over a century ago. It has since been shown to be a reproducible response showing some similar patterns of breathing in species that employ panting as their sole thermolytic heat loss response. The contribution of human panting as a thermolytic response, however, remains controversial. This review highlights both past and recent evidence supporting that hyperthermic humans have a panting pattern of breathing that plays an important role in human thermoregulation.
Collapse
Affiliation(s)
- Matthew D White
- Laboratory for Exercise and Environmental Physiology, Department of Biomedical Physiology and Kinesiology, Simon Fraser University, Burnaby, British Columbia, Canada.
| |
Collapse
|
43
|
Kiyatkin EA. Brain temperature: from physiology and pharmacology to neuropathology. HANDBOOK OF CLINICAL NEUROLOGY 2018; 157:483-504. [DOI: 10.1016/b978-0-444-64074-1.00030-6] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
|
44
|
|
45
|
Tsuji B, Filingeri D, Honda Y, Eguchi T, Fujii N, Kondo N, Nishiyasu T. Effect of hypocapnia on the sensitivity of hyperthermic hyperventilation and the cerebrovascular response in resting heated humans. J Appl Physiol (1985) 2018; 124:225-233. [DOI: 10.1152/japplphysiol.00232.2017] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Elevating core temperature at rest causes increases in minute ventilation (V̇e), which lead to reductions in both arterial CO2 partial pressure (hypocapnia) and cerebral blood flow. We tested the hypothesis that in resting heated humans this hypocapnia diminishes the ventilatory sensitivity to rising core temperature but does not explain a large portion of the decrease in cerebral blood flow. Fourteen healthy men were passively heated using hot-water immersion (41°C) combined with a water-perfused suit, which caused esophageal temperature (Tes) to reach 39°C. During heating in two separate trials, end-tidal CO2 partial pressure decreased from the level before heating (39.4 ± 2.0 mmHg) to the end of heating (30.5 ± 6.3 mmHg) ( P = 0.005) in the Control trial. This decrease was prevented by breathing CO2-enriched air throughout the heating such that end-tidal CO2 partial pressure did not differ between the beginning (39.8 ± 1.5 mmHg) and end (40.9 ± 2.7 mmHg) of heating ( P = 1.00). The sensitivity to rising Tes (i.e., slope of the Tes − V̇E relation) did not differ between the Control and CO2-breathing trials (37.1 ± 43.1 vs. 16.5 ± 11.1 l·min−1·°C−1, P = 0.31). In both trials, middle cerebral artery blood velocity (MCAV) decreased early during heating (all P < 0.01), despite the absence of hyperventilation-induced hypocapnia. CO2 breathing increased MCAV relative to Control at the end of heating ( P = 0.005) and explained 36.6% of the heat-induced reduction in MCAV. These results indicate that during passive heating at rest ventilatory sensitivity to rising core temperature is not suppressed by hypocapnia and that most of the decrease in cerebral blood flow occurs independently of hypocapnia. NEW & NOTEWORTHY Hyperthermia causes hyperventilation and concomitant hypocapnia and cerebral hypoperfusion. The last may underlie central fatigue. We are the first to demonstrate that hyperthermia-induced hyperventilation is not suppressed by the resultant hypocapnia and that hypocapnia explains only 36% of cerebral hypoperfusion elicited by hyperthermia. These new findings advance our understanding of the mechanisms controlling ventilation and cerebral blood flow during heat stress, which may be useful for developing interventions aimed at preventing central fatigue during hyperthermia.
Collapse
Affiliation(s)
- Bun Tsuji
- Faculty of Health and Sport Sciences, University of Tsukuba, Tsukuba City, Ibaraki, Japan
- Department of Health Sciences, Prefectural University of Hiroshima, Hiroshima, Japan
| | - Davide Filingeri
- Environmental Ergonomics Research Centre, Loughborough Design School, Loughborough University, Loughborough, United Kingdom
| | - Yasushi Honda
- Faculty of Health and Sport Sciences, University of Tsukuba, Tsukuba City, Ibaraki, Japan
| | - Tsubasa Eguchi
- Faculty of Health and Sport Sciences, University of Tsukuba, Tsukuba City, Ibaraki, Japan
| | - Naoto Fujii
- Faculty of Health and Sport Sciences, University of Tsukuba, Tsukuba City, Ibaraki, Japan
| | - Narihiko Kondo
- Faculty of Human Development, Kobe University, Kobe, Japan
| | - Takeshi Nishiyasu
- Faculty of Health and Sport Sciences, University of Tsukuba, Tsukuba City, Ibaraki, Japan
| |
Collapse
|
46
|
Mueller PJ, Clifford PS, Crandall CG, Smith SA, Fadel PJ. Integration of Central and Peripheral Regulation of the Circulation during Exercise: Acute and Chronic Adaptations. Compr Physiol 2017; 8:103-151. [DOI: 10.1002/cphy.c160040] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
47
|
Tan XR, Low ICC, Stephenson MC, Soong TW, Lee JKW. Neural basis of exertional fatigue in the heat: A review of magnetic resonance imaging methods. Scand J Med Sci Sports 2017; 28:807-818. [PMID: 29136305 DOI: 10.1111/sms.13015] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/08/2017] [Indexed: 12/19/2022]
Abstract
The central nervous system, specifically the brain, is implicated in the development of exertional fatigue under a hot environment. Diverse neuroimaging techniques have been used to visualize the brain activity during or after exercise. Notably, the use of magnetic resonance imaging (MRI) has become prevalent due to its excellent spatial resolution and versatility. This review evaluates the significance and limitations of various brain MRI techniques in exercise studies-brain volumetric analysis, functional MRI, functional connectivity MRI, and arterial spin labeling. The review aims to provide a summary on the neural basis of exertional fatigue and proposes future directions for brain MRI studies. A systematic literature search was performed where a total of thirty-seven brain MRI studies associated with exercise, fatigue, or related physiological factors were reviewed. The findings suggest that with moderate dehydration, there is a decrease in total brain volume accompanied with expansion of ventricular volume. With exercise fatigue, there is increased activation of sensorimotor and cognitive brain areas, increased thalamo-insular activation and decreased interhemispheric connectivity in motor cortex. Under passive hyperthermia, there are regional changes in cerebral perfusion, a reduction in local connectivity in functional brain networks and an impairment to executive function. Current literature suggests that the brain structure and function are influenced by exercise, fatigue, and related physiological perturbations. However, there is still a dearth of knowledge and it is hoped that through understanding of MRI advantages and limitations, future studies will shed light on the central origin of exertional fatigue in the heat.
Collapse
Affiliation(s)
- X R Tan
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.,NUS Graduate School for Integrative Sciences and Engineering, National University of Singapore, Singapore, Singapore
| | - I C C Low
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - M C Stephenson
- Clinical Imaging Research Centre, Agency for Science, Technology and Research - National University of Singapore (A*STAR-NUS), Singapore, Singapore.,Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - T W Soong
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.,NUS Graduate School for Integrative Sciences and Engineering, National University of Singapore, Singapore, Singapore
| | - J K W Lee
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.,Defence Medical & Environmental Research Institute, DSO National Laboratories, Singapore, Singapore
| |
Collapse
|
48
|
Piil JF, Lundbye-Jensen J, Trangmar SJ, Nybo L. Performance in complex motor tasks deteriorates in hyperthermic humans. Temperature (Austin) 2017; 4:420-428. [PMID: 29435481 PMCID: PMC5800368 DOI: 10.1080/23328940.2017.1368877] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2017] [Revised: 08/11/2017] [Accepted: 08/11/2017] [Indexed: 10/25/2022] Open
Abstract
Heat stress, leading to elevations in whole-body temperature, has a marked impact on both physical performance and cognition in ecological settings. Lab experiments confirm this for physically demanding activities, whereas observations are inconsistent for tasks involving cognitive processing of information or decision-making prior to responding. We hypothesized that divergences could relate to task complexity and developed a protocol consisting of 1) simple motor task [TARGET_pinch], 2) complex motor task [Visuo-motor tracking], 3) simple math task [MATH_type], 4) combined motor-math task [MATH_pinch]. Furthermore, visuo-motor tracking performance was assessed both in a separate- and a multipart protocol (complex motor tasks alternating with the three other tasks). Following familiarization, each of the 10 male subjects completed separate and multipart protocols in randomized order in the heat (40°C) or control condition (20°C) with testing at baseline (seated rest) and similar seated position, following exercise-induced hyperthermia (core temperature ∼ 39.5°C in the heat and 38.2°C in control condition). All task scores were unaffected by control exercise or passive heat exposure, but visuo-motor tracking performance was reduced by 10.7 ± 6.5% following exercise-induced hyperthermia when integrated in the multipart protocol and 4.4 ± 5.7% when tested separately (both P < 0.05). TARGET_pinch precision declined by 2.6 ± 1.3% (P < 0.05), while no significant changes were observed for the math tasks. These results indicate that heat per se has little impact on simple motor or cognitive test performance, but complex motor performance is impaired by hyperthermia and especially so when multiple tasks are combined.
Collapse
Affiliation(s)
- Jacob F Piil
- Department of Nutrition, Exercise and Sports, August Krogh Building, University of Copenhagen, Copenhagen, Denmark
| | - Jesper Lundbye-Jensen
- Department of Nutrition, Exercise and Sports, August Krogh Building, University of Copenhagen, Copenhagen, Denmark
| | - Steven J Trangmar
- Department of Life Sciences, University of Roehampton, London, United Kingdom
| | - Lars Nybo
- Department of Nutrition, Exercise and Sports, August Krogh Building, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
49
|
Saini R, Srivastava K, Agrawal S, Das RC. Cognitive deficits due to thermal stress: An exploratory study on soldiers in deserts. Med J Armed Forces India 2017; 73:370-374. [PMID: 29386712 DOI: 10.1016/j.mjafi.2017.07.011] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2016] [Accepted: 07/28/2017] [Indexed: 11/26/2022] Open
Abstract
Background It is well known that environmental factors play an important role in human performance. High temperature and humidity particularly impair mental performance by altering brain neurochemistry and electrolyte disturbance which in turn affect one's overall efficiency. While the physiological responses to environmental heat have been well established, it is less clear about its impact on cognition. Study aims to investigate the impact of thermal strain on cognition. Methods One hundred (100) healthy soldiers aged between 20 and 30 years who had spent minimum of one year in desert conditions prior to their induction in the study formed sample of the study. The subjects were evaluated on memory and on cognitive functions twice i.e. in the month of February and June. The data so generated was analyzed by appropriate statistical methods. Results The mean age of the subjects were 25.8 yrs. There was a significant decline in cognitive performance in hot climate as compared to normal weather on Post graduate Institute (PGI) memory scale (P < 0.05). The effect was more marked for tests requiring sustained attention, concentration, psychomotor performance, verbal memory and tests of executive function. Conclusion The present study is the first study to be conducted in actual desert conditions. Findings revealed a detrimental impact of thermal stress on the cognitive performance of soldiers in deserts.
Collapse
Affiliation(s)
- Rajiv Saini
- Associate Professor, Department of Psychiatry, Armed Forces Medical College, Pune 411040, India
| | - Kalpana Srivastava
- Scientist 'G', Dept of Psychiatry, Armed Forces Medical College, Pune 411040, India
| | - Sunil Agrawal
- DMS (Health) & Senior Adviser (Community Medicine), Air HQ, Office of DGMS (Air), New Delhi, India
| | - R C Das
- Principal Medical Officer, Eastern Air Command, C/O 99 APO, India
| |
Collapse
|
50
|
Racinais S, Cocking S, Périard JD. Sports and environmental temperature: From warming-up to heating-up. Temperature (Austin) 2017; 4:227-257. [PMID: 28944269 DOI: 10.1080/23328940.2017.1356427] [Citation(s) in RCA: 74] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2017] [Revised: 07/09/2017] [Accepted: 07/09/2017] [Indexed: 01/22/2023] Open
Abstract
Most professional and recreational athletes perform pre-conditioning exercises, often collectively termed a 'warm-up' to prepare for a competitive task. The main objective of warming-up is to induce both temperature and non-temperature related responses to optimize performance. These responses include increasing muscle temperature, initiating metabolic and circulatory adjustments, and preparing psychologically for the upcoming task. However, warming-up in hot and/or humid ambient conditions increases thermal and circulatory strain. As a result, this may precipitate neuromuscular and cardiovascular impairments limiting endurance capacity. Preparations for competing in the heat should include an acclimatization regimen. Athletes should also consider cooling interventions to curtail heat gain during the warm-up and minimize dehydration. Indeed, although it forms an important part of the pre-competition preparation in all environmental conditions, the rise in whole-body temperature should be limited in hot environments. This review provides recommendations on how to build an effective warm-up following a 3 stage RAMP model (Raise, Activate and Mobilize, Potentiate), including general and context specific exercises, along with dynamic flexibility work. In addition, this review provides suggestion to manipulate the warm-up to suit the demands of competition in hot environments, along with other strategies to avoid heating-up.
Collapse
Affiliation(s)
- Sébastien Racinais
- Aspetar Orthopaedic and Sports Medicine Hospital, Athlete Health and Performance Research Centre, Doha, Qatar.,French Institute of Sport (INSEP), Laboratory Sport, Expertise and Performance (EA 7370), Paris, France
| | - Scott Cocking
- Aspetar Orthopaedic and Sports Medicine Hospital, Athlete Health and Performance Research Centre, Doha, Qatar.,Research Institute for Sport and Exercise Science, Liverpool John Moores University, United Kingdom
| | - Julien D Périard
- Aspetar Orthopaedic and Sports Medicine Hospital, Athlete Health and Performance Research Centre, Doha, Qatar.,University of Canberra, Research Institute for Sport and Exercise, Canberra, Australia
| |
Collapse
|