1
|
Oulehle F, Kolář T, Rybníček M, Hruška J, Büntgen U, Trnka M. Complex imprint of air pollution in the basal area increments of three European tree species. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 951:175858. [PMID: 39209174 DOI: 10.1016/j.scitotenv.2024.175858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 08/16/2024] [Accepted: 08/26/2024] [Indexed: 09/04/2024]
Abstract
The impact of atmospheric pollution on the growth of European forest tree species, particularly European beech, Silver fir and Norway spruce, is examined in five mesic forests in the Czech Republic. Analyzing of basal area increment (BAI) patterns using linear mixed effect models reveals a complex interplay between atmospheric nitrogen (N) and sulphur (S) deposition, climatic variables and changing CO2 concentrations. Beech BAI responds positively to N deposition (in tandem with air CO2 concentration), with soil phosphorus (P) availability emerging as a significant factor influencing overall growth rates. Fir BAI, on the other hand, was particularly negatively influenced by S deposition, although recent growth acceleration suggests growth resilience in post-pollution period. This fir growth surge likely coincides with stimulation of P acquisition following the decline of acidic pollution. The consequence is the current highest productivity among the studied tree species. The growth dynamics of both conifers were closely linked to the stoichiometric imbalance of phosphorus in needles, indicating the possible sensitivity of exogenous controls on nutrient uptake. Furthermore, spruce BAI was positively linked to calcium availability across sites. Despite enhanced water-use efficiency under elevated CO2, spruce growth is constrained by precipitation deficit and demonstrates weakening resilience to increasing growing season air temperatures. Overall, these findings underscore the intricate relationships between atmospheric pollution, nutrient availability, and climatic factors in shaping the growth dynamics of European forest ecosystems. Thus, incorporating biogeochemical context of nutrient availability is essential for realistic modelling of tree growth in a changing climate.
Collapse
Affiliation(s)
- Filip Oulehle
- Global Change Research Institute of the Czech Academy of Sciences, Bělidla 986/4a, 603 00 Brno, Czech Republic; Czech Geological Survey, Klárov 3, 118 21 Prague, Czech Republic.
| | - Tomáš Kolář
- Global Change Research Institute of the Czech Academy of Sciences, Bělidla 986/4a, 603 00 Brno, Czech Republic; Department of Wood Science and Technology, Faculty of Forestry and Wood Technology, Mendel University in Brno, 613 00 Brno, Czech Republic
| | - Michal Rybníček
- Global Change Research Institute of the Czech Academy of Sciences, Bělidla 986/4a, 603 00 Brno, Czech Republic; Department of Wood Science and Technology, Faculty of Forestry and Wood Technology, Mendel University in Brno, 613 00 Brno, Czech Republic
| | - Jakub Hruška
- Global Change Research Institute of the Czech Academy of Sciences, Bělidla 986/4a, 603 00 Brno, Czech Republic; Czech Geological Survey, Klárov 3, 118 21 Prague, Czech Republic
| | - Ulf Büntgen
- Global Change Research Institute of the Czech Academy of Sciences, Bělidla 986/4a, 603 00 Brno, Czech Republic
| | - Miroslav Trnka
- Global Change Research Institute of the Czech Academy of Sciences, Bělidla 986/4a, 603 00 Brno, Czech Republic
| |
Collapse
|
2
|
Liu C, Peltoniemi M, Alekseychik P, Mäkelä A, Hölttä T. A Coupled Model of Hydraulic Eco-Physiology and Cambial Growth - Accounting for Biophysical Limitations and Phenology Improves Stem Diameter Prediction at High Temporal Resolution. PLANT, CELL & ENVIRONMENT 2024. [PMID: 39449245 DOI: 10.1111/pce.15239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 10/09/2024] [Accepted: 10/11/2024] [Indexed: 10/26/2024]
Abstract
Traditional photosynthesis-driven growth models have considerable uncertainties in predicting tree growth under changing climates, partially because sink activities are directly affected by the environment but not adequately addressed in growth modelling. Therefore, we developed a semi-mechanistic model coupling stomatal optimality, temperature control of enzymatic activities and phenology of cambial growth. Parameterized using Bayesian inference and measured data on Picea abies and Pinus sylvestris in peatland and mineral soils in Finland, the coupled model simulates transpiration and assimilation rates and stem radial dimension (SRD) simultaneously at 30 min resolution. The results suggest that both the sink and phenological formulations with environmental effects are indispensable for capturing SRD dynamics across hourly to seasonal scales. Simulated using the model, growth was more sensitive than assimilation to temperature and soil water, suggesting carbon gain is not driving growth at the current temporal scale. Also, leaf-specific production was occasionally positively correlated with growth duration but not with growth onset timing or annual cambial area increment. Thus, as it is hardly explained by carbon gain, phenology itself should be included in sink-driven growth models of the trees in the boreal zone and possibly other environments where sink activities and photosynthesis are both restrained by harsh conditions.
Collapse
Affiliation(s)
- Che Liu
- Department of Forest Sciences, Faculty of Agriculture and Forestry, University of Helsinki, Helsinki, Finland
- Institute for Atmospheric and Earth System Research (INAR), University of Helsinki, Helsinki, Finland
| | | | | | - Annikki Mäkelä
- Department of Forest Sciences, Faculty of Agriculture and Forestry, University of Helsinki, Helsinki, Finland
- Institute for Atmospheric and Earth System Research (INAR), University of Helsinki, Helsinki, Finland
| | - Teemu Hölttä
- Department of Forest Sciences, Faculty of Agriculture and Forestry, University of Helsinki, Helsinki, Finland
- Institute for Atmospheric and Earth System Research (INAR), University of Helsinki, Helsinki, Finland
| |
Collapse
|
3
|
Massonnet C, Chuste PA, Zeller B, Tillard P, Gerard B, Cheraft L, Breda N, Maillard P. Does long-term drought or repeated defoliation affect seasonal leaf N cycling in young beech trees? TREE PHYSIOLOGY 2024; 44:tpae054. [PMID: 38769932 DOI: 10.1093/treephys/tpae054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 05/14/2024] [Accepted: 05/17/2024] [Indexed: 05/22/2024]
Abstract
Forest trees adopt effective strategies to optimize nitrogen (N) use through internal N recycling. In the context of more recurrent environmental stresses due to climate change, the question remains of whether increased frequency of drought or defoliation threatens this internal N recycling strategy. We submitted 8-year-old beech trees to 2 years of either severe drought (Dro) or manual defoliation (Def) to create a state of N starvation. At the end of the second year before leaf senescence, we labeled the foliage of the Dro and Def trees, as well as that of control (Co) trees, with 15N-urea. Leaf N resorption, winter tree N storage (total N, 15N, amino acids, soluble proteins) and N remobilization in spring were evaluated for the three treatments. Defoliation and drought did not significantly impact foliar N resorption or N concentrations in organs in winter. Total N amounts in Def tree remained close to those in Co tree, but winter N was stored more in the branches than in the trunk and roots. Total N amount in Dro trees was drastically reduced (-55%), especially at the trunk level, but soluble protein concentrations increased in the trunk and fine roots compared with Co trees. During spring, 15N was mobilized from the trunk, branches and twigs of both Co and Def trees to support leaf growth. It was only provided through twig 15N remobilization in the Dro trees, thus resulting in extremely reduced Dro leaf N amounts. Our results suggest that stress-induced changes occur in N metabolism but with varying severity depending on the constraints: within-tree 15N transport and storage strategy changed in response to defoliation, whereas a soil water deficit induced a drastic reduction of the N amounts in all the tree organs. Consequently, N dysfunction could be involved in drought-induced beech tree mortality under the future climate.
Collapse
Affiliation(s)
- Catherine Massonnet
- Université de Lorraine, AgroParisTech, INRAE, Silva, route d'Amance, 54280 Champenoux, France
| | - Pierre-Antoine Chuste
- Université de Lorraine, AgroParisTech, INRAE, Silva, route d'Amance, 54280 Champenoux, France
| | | | - Pascal Tillard
- UMR 5004, Biochimie et Physiologie Moléculaire des Plantes, INRAE/CNRS/Montpellier SupAgro/Université Montpellier, Place Viala, 34060 Montpellier, Cedex 2, France
| | - Bastien Gerard
- Université de Lorraine, AgroParisTech, INRAE, Silva, route d'Amance, 54280 Champenoux, France
| | - Loucif Cheraft
- Université de Lorraine, AgroParisTech, INRAE, Silva, route d'Amance, 54280 Champenoux, France
| | - Nathalie Breda
- Université de Lorraine, AgroParisTech, INRAE, Silva, route d'Amance, 54280 Champenoux, France
| | - Pascale Maillard
- Université de Lorraine, AgroParisTech, INRAE, Silva, route d'Amance, 54280 Champenoux, France
| |
Collapse
|
4
|
Zhou X, Ouyang S, Saurer M, Feng M, Bose AK, Duan H, Tie L, Shen W, Gessler A. Species-specific responses of C and N allocation to N addition: evidence from dual 13C and 15N labeling in three tree species. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 927:172164. [PMID: 38580112 DOI: 10.1016/j.scitotenv.2024.172164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 03/29/2024] [Accepted: 03/31/2024] [Indexed: 04/07/2024]
Abstract
Soil nitrogen (N) availability affects plant carbon (C) utilization. However, it is unclear how various tree functional types respond to N addition in terms of C assimilation, allocation, and storage. Here, a microcosm experiment with dual 13C and 15N labeling was conducted to study the effects of N addition (i.e., control, 0 g N kg-1; moderate N addition, 1.68 g N kg-1; and high N addition, 3.36 g N kg-1 soil) on morphological traits, on changes in nonstructural carbohydrates (NSC) in different organs, as well as on C and N uptake and allocation in three European temperate forest tree species (i.e., Acer pseudoplatanus, Picea abies and Abies alba). Our results demonstrated that root N uptake rates of the three tree species increased by N addition. In A. pseudoplatanus, N uptake by roots, N allocation to aboveground organs, and aboveground biomass allocation significantly improved by moderate and high N addition. In A. alba, only the high N addition treatment considerably raised aboveground N and C allocation. In contrast, biomass as well as C and N allocation between above and belowground tissues were not altered by N addition in P. abies. Meanwhile, NSC content as well as C and N coupling (represented by the ratio of relative 13C and 15N allocation rates in organs) were affected by N addition in A. pseudoplantanus and P. abies but not in A. alba. Overall, A. pseudoplatanus displayed the highest sensitivity to N addition and the highest N requirement among the three species, while P. abies had a lower N demand than A. alba. Our findings highlight that the responses of C and N allocation to soil N availability are species-specific and vary with the amount of N addition.
Collapse
Affiliation(s)
- Xiaoqian Zhou
- Institute for Forest Resources and Environment of Guizhou, Key Laboratory of Forest Cultivation in Plateau Mountain of Guizhou Province, College of Forestry, Guizhou University, Guiyang 550025, China
| | - Shengnan Ouyang
- Institute for Forest Resources and Environment of Guizhou, Key Laboratory of Forest Cultivation in Plateau Mountain of Guizhou Province, College of Forestry, Guizhou University, Guiyang 550025, China; Swiss Federal Institute for Forest, Snow and Landscape Research, Birmensdorf 8903, Switzerland.
| | - Matthias Saurer
- Swiss Federal Institute for Forest, Snow and Landscape Research, Birmensdorf 8903, Switzerland
| | - Mei Feng
- Institute for Forest Resources and Environment of Guizhou, Key Laboratory of Forest Cultivation in Plateau Mountain of Guizhou Province, College of Forestry, Guizhou University, Guiyang 550025, China
| | - Arun K Bose
- Swiss Federal Institute for Forest, Snow and Landscape Research, Birmensdorf 8903, Switzerland; Forestry and Wood Technology Discipline, Khulna University, Khulna 9208, Bangladesh
| | - Honglang Duan
- Institute for Forest Resources and Environment of Guizhou, Key Laboratory of Forest Cultivation in Plateau Mountain of Guizhou Province, College of Forestry, Guizhou University, Guiyang 550025, China
| | - Liehua Tie
- Institute for Forest Resources and Environment of Guizhou, Key Laboratory of Forest Cultivation in Plateau Mountain of Guizhou Province, College of Forestry, Guizhou University, Guiyang 550025, China
| | - Weijun Shen
- Guangxi Key Laboratory of Forest Ecology and Conservation, State Key Laboratory for Conservation and Utilization of Agro-bioresources, College of Forestry, Guangxi University, Nanning, Guangxi 530004, China
| | - Arthur Gessler
- Swiss Federal Institute for Forest, Snow and Landscape Research, Birmensdorf 8903, Switzerland; Institute of Terrestrial Ecosystems, ETH Zurich, Zurich 8902, Switzerland
| |
Collapse
|
5
|
Zhao N, Zhao J, Li S, Li B, Lv J, Gao X, Xu X, Lu S. The Response of Endogenous ABA and Soluble Sugars of Platycladus orientalis to Drought and Post-Drought Rehydration. BIOLOGY 2024; 13:194. [PMID: 38534463 DOI: 10.3390/biology13030194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2024] [Revised: 03/13/2024] [Accepted: 03/15/2024] [Indexed: 03/28/2024]
Abstract
To uncover the internal mechanisms of various drought stress intensities affecting the soluble sugar content in organs and its regulation by endogenous abscisic acid (ABA), we selected the saplings of Platycladus orientalis, a typical tree species in the Beijing area, as our research subject. We investigated the correlation between tree soluble sugars and endogenous ABA in the organs (comprised of leaf, branch, stem, coarse root, and fine root) under two water treatments. One water treatment was defined as T1, which stopped watering until the potted soil volumetric water content (SWC) reached the wilting coefficient and then rewatered the sapling. The other water treatment, named T2, replenished 95% of the total water loss of one potted sapling every day and irrigated the above-mentioned sapling after its SWC reached the wilt coefficients. The results revealed that (1) the photosynthetic physiological parameters of P. orientalis were significantly reduced (p < 0.05) under fast and slow drought processes. The photosynthetic physiological parameters of P. orientalis in the fast drought-rehydration treatment group recovered faster relative to the slow drought-rehydration treatment group. (2) The fast and slow drought treatments significantly (p < 0.05) increased the ABA and soluble sugar contents in all organs. The roots of the P. orientalis exhibited higher sensitivity in ABA and soluble sugar content to changes in soil moisture dynamics compared to other organs. (3) ABA and soluble sugar content of P. orientalis showed a significant positive correlation (p < 0.05) under fast and slow drought conditions. During the rehydration stage, the two were significantly correlated in the T2 treatment (p < 0.05). In summary, soil drought rhythms significantly affected the photosynthetic parameters, organ ABA, and soluble sugar content of P. orientalis. This study elucidates the adaptive mechanisms of P. orientalis plants to drought and rehydration under the above-mentioned two water drought treatments, offering theoretical insights for selecting and cultivating drought-tolerant tree species.
Collapse
Affiliation(s)
- Na Zhao
- Institute of Forestry and Pomology, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100093, China
- Beijing Yanshan Forest Ecosystem Research Station, National Forest and Grassland Administration, Beijing 100093, China
| | - Jiahui Zhao
- Institute of Forestry and Pomology, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100093, China
- Beijing Yanshan Forest Ecosystem Research Station, National Forest and Grassland Administration, Beijing 100093, China
- College of Forestry, Shenyang Agricultural University, Shenyang 110866, China
| | - Shaoning Li
- Institute of Forestry and Pomology, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100093, China
- Beijing Yanshan Forest Ecosystem Research Station, National Forest and Grassland Administration, Beijing 100093, China
- College of Forestry, Shenyang Agricultural University, Shenyang 110866, China
| | - Bin Li
- Institute of Forestry and Pomology, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100093, China
- Beijing Yanshan Forest Ecosystem Research Station, National Forest and Grassland Administration, Beijing 100093, China
| | - Jiankui Lv
- Institute of Forestry and Pomology, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100093, China
- Beijing Yanshan Forest Ecosystem Research Station, National Forest and Grassland Administration, Beijing 100093, China
- College of Forestry, Shenyang Agricultural University, Shenyang 110866, China
| | - Xin Gao
- Institute of Forestry and Pomology, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100093, China
- Beijing Yanshan Forest Ecosystem Research Station, National Forest and Grassland Administration, Beijing 100093, China
- College of Forestry, Shenyang Agricultural University, Shenyang 110866, China
| | - Xiaotian Xu
- Institute of Forestry and Pomology, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100093, China
- Beijing Yanshan Forest Ecosystem Research Station, National Forest and Grassland Administration, Beijing 100093, China
| | - Shaowei Lu
- Institute of Forestry and Pomology, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100093, China
- Beijing Yanshan Forest Ecosystem Research Station, National Forest and Grassland Administration, Beijing 100093, China
- College of Forestry, Shenyang Agricultural University, Shenyang 110866, China
| |
Collapse
|
6
|
Xiong H, Luo Y, Zhao H, Wang J, Hu B, Yan C, Yao T, Zhang Y, Shi X, Rennenberg H. Integrated proteome and physiological traits reveal interactive mechanisms of new leaf growth and storage protein degradation with mature leaves of evergreen citrus trees. TREE PHYSIOLOGY 2024; 44:tpae001. [PMID: 38195893 DOI: 10.1093/treephys/tpae001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Accepted: 12/29/2023] [Indexed: 01/11/2024]
Abstract
The growth of fruit trees depends on the nitrogen (N) remobilization in mature tissues and N acquisition from the soil. However, in evergreen mature citrus (Citrus reticulata Blanco) leaves, proteins with N storage functions and hub molecules involved in driving N remobilization remain largely unknown. Here, we combined proteome and physiological analyses to characterize the spatiotemporal mechanisms of growth of new leaves and storage protein degradation in mature leaves of citrus trees exposed to low-N and high-N fertilization in the field. Results show that the growth of new leaves is driven by remobilization of stored reserves, rather than N uptake by the roots. In this context, proline and arginine in mature leaves acted as N sources supporting the growth of new leaves in spring. Time-series analyses with gel electrophoresis and proteome analysis indicated that the mature autumn shoot leaves are probably the sites of storage protein synthesis, while the aspartic endopeptidase protein is related to the degradation of storage proteins in mature citrus leaves. Furthermore, bioinformatic analysis based on protein-protein interactions indicated that glutamate synthetase and ATP-citrate synthetase are hub proteins in N remobilization from mature citrus leaves. These results provide strong physiological data for seasonal optimization of N fertilizer application in citrus orchards.
Collapse
Affiliation(s)
- Huaye Xiong
- Center of Molecular Ecophysiology (CMEP), College of Resources and Environment, Southwest University, No. 2, Tiansheng Road, Beibei District, 400715 Chongqing, P.R. China
| | - Yayin Luo
- Center of Molecular Ecophysiology (CMEP), College of Resources and Environment, Southwest University, No. 2, Tiansheng Road, Beibei District, 400715 Chongqing, P.R. China
| | - Huanyu Zhao
- Interdisciplinary Research Center for Agriculture Green Development in Yangtze River Basin, College of Resources and Environment, Southwest University, No. 2, Tiansheng Road, Beibei District, 400715 Chongqing, P.R. China
| | - Jie Wang
- Interdisciplinary Research Center for Agriculture Green Development in Yangtze River Basin, College of Resources and Environment, Southwest University, No. 2, Tiansheng Road, Beibei District, 400715 Chongqing, P.R. China
| | - Bin Hu
- Center of Molecular Ecophysiology (CMEP), College of Resources and Environment, Southwest University, No. 2, Tiansheng Road, Beibei District, 400715 Chongqing, P.R. China
| | - Chengquan Yan
- Citrus Research Institute, Southwest University, Xiema, Beibei District, 400712 Chongqing, P.R. China
| | - Tingshan Yao
- Citrus Research Institute, Southwest University, Xiema, Beibei District, 400712 Chongqing, P.R. China
| | - Yueqiang Zhang
- Interdisciplinary Research Center for Agriculture Green Development in Yangtze River Basin, College of Resources and Environment, Southwest University, No. 2, Tiansheng Road, Beibei District, 400715 Chongqing, P.R. China
| | - Xiaojun Shi
- Interdisciplinary Research Center for Agriculture Green Development in Yangtze River Basin, College of Resources and Environment, Southwest University, No. 2, Tiansheng Road, Beibei District, 400715 Chongqing, P.R. China
| | - Heinz Rennenberg
- Center of Molecular Ecophysiology (CMEP), College of Resources and Environment, Southwest University, No. 2, Tiansheng Road, Beibei District, 400715 Chongqing, P.R. China
- Chair of Tree Physiology, Institute of Forest Sciences, Albert-Ludwigs-Universität Freiburg, Georges-Köhler-Allee 53/54, 79110 Freiburg, Germany
| |
Collapse
|
7
|
Rog I, Hilman B, Fox H, Yalin D, Qubaja R, Klein T. Increased belowground tree carbon allocation in a mature mixed forest in a dry versus a wet year. GLOBAL CHANGE BIOLOGY 2024; 30:e17172. [PMID: 38343030 DOI: 10.1111/gcb.17172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2023] [Revised: 01/07/2024] [Accepted: 01/08/2024] [Indexed: 02/15/2024]
Abstract
Tree species differ in their carbon (C) allocation strategies during environmental change. Disentangling species-specific strategies and contribution to the C balance of mixed forests requires observations at the individual tree level. We measured a complete set of C pools and fluxes at the tree level in five tree species, conifers and broadleaves, co-existing in a mature evergreen mixed Mediterranean forest. Our study period included a drought year followed by an above-average wet year, offering an opportunity to test the effect of water availability on tree C allocation. We found that in comparison to the wet year, C uptake was lower in the dry year, C use was the same, and allocation to belowground sinks was higher. Among the five major C sinks, respiration was the largest (ca. 60%), while root exudation (ca. 10%) and reproduction (ca. 2%) were those that increased the most in the dry year. Most trees relied on stored starch for maintaining a stable soluble sugars balance, but no significant differences were detected in aboveground storage between dry and wet years. The detailed tree-level analysis of nonstructural carbohydrates and δ13 C dynamics suggest interspecific differences in C allocation among fluxes and tissues, specifically in response to the varying water availability. Overall, our findings shed light on mixed forest physiological responses to drought, an increasing phenomenon under the ongoing climate change.
Collapse
Affiliation(s)
- Ido Rog
- Department of Plant & Environmental Sciences, Weizmann Institute of Science, Rehovot, Israel
| | - Boaz Hilman
- Department of Biogeochemical Processes, Max-Planck Institute for Biogeochemistry, Jena, Germany
- The Institute of Earth Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Hagar Fox
- Department of Plant & Environmental Sciences, Weizmann Institute of Science, Rehovot, Israel
| | - David Yalin
- Department of Earth and Planetary Sciences, Weizmann Institute of Science, Rehovot, Israel
| | - Rafat Qubaja
- Department of Earth and Planetary Sciences, Weizmann Institute of Science, Rehovot, Israel
| | - Tamir Klein
- Department of Plant & Environmental Sciences, Weizmann Institute of Science, Rehovot, Israel
| |
Collapse
|
8
|
Signori-Müller C, Galbraith D, Tavares JV, Reis SM, Diniz FC, Gilpin M, Marimon BS, van der Heijden GMF, Borges C, Cintra BBL, Mião S, Morandi PS, Nina A, Salas Yupayccana CA, Marca Zevallos MJ, Cosio EG, Junior BHM, Mendoza AM, Phillips O, Salinas N, Vasquez R, Mencuccini M, Oliveira RS. Tropical forest lianas have greater non-structural carbohydrate concentrations in the stem xylem than trees. TREE PHYSIOLOGY 2023:tpad096. [PMID: 37584458 DOI: 10.1093/treephys/tpad096] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 07/17/2023] [Accepted: 08/11/2023] [Indexed: 08/17/2023]
Abstract
Lianas (woody vines) are important components of tropical forests and are known to compete with host trees for resources, decrease tree growth and increase tree mortality. Given the observed increases in liana abundance in some forests and their impacts on forest function, an integrated understanding of carbon dynamics of lianas and liana-infested host trees is critical for improved prediction of tropical forest responses to climate change. Non-structural carbohydrates (NSC) are the main substrate for plant metabolism (e.g., growth, respiration), and have been implicated in enabling tree survival under environmental stress, but little is known of how they vary among life-forms or of how liana infestation impacts host tree NSC. We quantified stem total NSC (NSC) concentrations and its fractions (starch and soluble sugars) in trees without liana infestation, trees with more than 50% of the canopy covered by lianas, and the lianas infesting those trees. We hypothesized that i) liana infestation depletes NSC storage in host trees by reducing carbon assimilation due to competition for resources; ii) trees and lianas, which greatly differ in functional traits related to water transport and carbon uptake, would also have large differences in NSC storage, and that As water availability has a significant role in NSC dynamics of Amazonian tree species, we tested these hypotheses within a moist site in western Amazonia and a drier forest site in southern Amazonia. We did not find any difference in NSC, starch or soluble sugar concentrations between infested and non-infested trees, in either site. This result suggests that negative liana impact on trees may be mediated through mechanisms other than depletion of host tree NSC concentrations. We found lianas have higher stem NSC and starch than trees in both sites. The consistent differences in starch concentrations, a long term NSC reserve, between life forms across sites reflect differences in carbon gain and use of lianas and trees. Soluble sugar concentrations were higher in lianas than in trees in the moist site but indistinguishable between life forms in the dry site. The lack of difference in soluble sugars between trees and lianas in the dry site emphasize the importance of this NSC fraction for plant metabolism of plants occurring in water limited environments. Abstract in Portuguese and Spanish are available in the supplementary material.
Collapse
Affiliation(s)
- Caroline Signori-Müller
- College of Life and Environmental Sciences, University of Exeter, Exeter, UK
- Department of Plant Biology, Institute of Biology, Programa de Pós Graduação em Biologia Vegetal, University of Campinas, Campinas, Brazil
- School of Geography, University of Leeds, Leeds, UK
| | | | - Julia Valentim Tavares
- School of Geography, University of Leeds, Leeds, UK
- Department of Ecology and Genetics, Uppsala University, Sweden
| | - Simone Matias Reis
- Programa de Pós-Graduação da Rede de Biodiversidade e Biotecnologia da Amazônia Legal (BIONORTE), UFAM-UNEMAT, Nova Xavantina, Brazil
- Laboratório de Ecologia Vegetal, Universidade do Estado de Mato Grosso, Nova Xavantina, Brazil
- School of Geography and the Environment, Environmental Change Institute, University of Oxford, Oxford, UK
| | | | | | - Beatriz Schwantes Marimon
- Programa de Pós-Graduação da Rede de Biodiversidade e Biotecnologia da Amazônia Legal (BIONORTE), UFAM-UNEMAT, Nova Xavantina, Brazil
- Laboratório de Ecologia Vegetal, Universidade do Estado de Mato Grosso, Nova Xavantina, Brazil
| | | | - Camila Borges
- Programa de Pós-Graduação da Rede de Biodiversidade e Biotecnologia da Amazônia Legal (BIONORTE), UFAM-UNEMAT, Nova Xavantina, Brazil
- Laboratório de Ecologia Vegetal, Universidade do Estado de Mato Grosso, Nova Xavantina, Brazil
| | - Bruno Barçante Ladvocat Cintra
- School of Geography, University of Leeds, Leeds, UK
- School of Geography, Earth and Environmental Sciences, University of Birmingham
| | - Sarah Mião
- Department of Plant Biology, Institute of Biology, Programa de Pós Graduação em Biologia Vegetal, University of Campinas, Campinas, Brazil
| | - Paulo S Morandi
- Programa de Pós-Graduação da Rede de Biodiversidade e Biotecnologia da Amazônia Legal (BIONORTE), UFAM-UNEMAT, Nova Xavantina, Brazil
- Laboratório de Ecologia Vegetal, Universidade do Estado de Mato Grosso, Nova Xavantina, Brazil
| | - Alex Nina
- Pontificia Universidad Católica del Perú, Lima, Peru
| | | | - Manuel J Marca Zevallos
- Pontificia Universidad Católica del Perú, Lima, Peru
- Universidad Nacional de San Antonio Abad del Cusco, Cusco, Peru
| | - Eric G Cosio
- Pontificia Universidad Católica del Perú, Lima, Peru
| | - Ben Hur Marimon Junior
- Programa de Pós-Graduação da Rede de Biodiversidade e Biotecnologia da Amazônia Legal (BIONORTE), UFAM-UNEMAT, Nova Xavantina, Brazil
- Laboratório de Ecologia Vegetal, Universidade do Estado de Mato Grosso, Nova Xavantina, Brazil
| | - Abel Monteagudo Mendoza
- Universidad Nacional de San Antonio Abad del Cusco, Cusco, Peru
- Jardín Botánico de Missouri, Cusco, Peru
| | | | - Norma Salinas
- School of Geography and the Environment, Environmental Change Institute, University of Oxford, Oxford, UK
- Pontificia Universidad Católica del Perú, Lima, Peru
| | | | | | - Rafael S Oliveira
- Department of Plant Biology, Institute of Biology, University of Campinas, Campinas, Brazil
| |
Collapse
|
9
|
Zhang X, Qin H, Zhang Y, Niu J, Wang Y, Shi L. Driving factors of community-level leaf stoichiometry patterns in a typical temperate mountain meadow ecosystem of northern China. FRONTIERS IN PLANT SCIENCE 2023; 14:1141765. [PMID: 37600167 PMCID: PMC10435321 DOI: 10.3389/fpls.2023.1141765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Accepted: 07/06/2023] [Indexed: 08/22/2023]
Abstract
In ecological stoichiometry, the stoichiometry and spatial distribution of leaf carbon, nitrogen, and phosphorus are important research topics. Various studies have assessed leaf stoichiometry and its relationships with environmental factors at different scales. However, how the leaf carbon, nitrogen and phosphorus stoichiometric characteristics of the same vegetation type at the community level vary with environmental factors along a continuous altitudinal gradient remains poorly understood. In this paper, 13 sampling sites along an altitudinal gradient of 1,800-3,011 m in a typical temperate mountain meadow ecosystem on the southern slope of the Wutai Mountain in North China were sampled to explore the response of leaf carbon, nitrogen and phosphorus stoichiometric characteristics to altitude change using correlation analysis, and then quantified the contribution of driving factors using canonical correspondence analysis (CCA) and variation partitioning. We found that the community-level leaf stoichiometry of mountain meadows differed significantly at different altitudes, and an increase in altitude significantly decreased community-level leaf total nitrogen (LTN) and leaf total phosphorus (LTP); however, the leaf total carbon (LTC), C∶N, C∶P, and N∶P increased with an increase in altitude. Additionally, with increasing altitude, soil properties showed significant trends. Soil organic carbon (SOC), soil total nitrogen (STN), soil total phosphorus (STP), soil water content and soil electrical conductivity increased significantly, but soil temperature, soil bulk density and soil pH exhibited the opposite trend. Our results suggested that altitude, soil electrical conductivity and soil bulk density significantly influenced the changes in the leaf stoichiometric characteristics, explaining 75.5% of the total variation, and altitude had the greatest influence (36.6%). In the temperate mountains, altitude played a decisive role in affecting patterns of meadow plant nutrients and stoichiometry and was more important than soil in explaining leaf C∶N∶P stoichiometry variations. Our findings provide important references to understand the responses of plant stoichiometry to altitudinal gradients.
Collapse
Affiliation(s)
- Xiaolong Zhang
- School of Resources and Environment, Shanxi University of Finance and Economics, Taiyuan, China
| | - Hao Qin
- School of Statistics, Shanxi University of Finance and Economics, Taiyuan, China
| | - Yinbo Zhang
- School of Resources and Environment, Shanxi University of Finance and Economics, Taiyuan, China
| | - Junjie Niu
- Research Center for Science Development in Fenhe River Valley, Taiyuan Normal University, Taiyuan, China
| | - Yongji Wang
- School of Life Science, Shanxi Normal University, Taiyuan, China
| | - Lijiang Shi
- School of Resources and Environment, Shanxi University of Finance and Economics, Taiyuan, China
| |
Collapse
|
10
|
Ofori-Amanfo KK, Klem K, Veselá B, Holub P, Agyei T, Juráň S, Grace J, Marek MV, Urban O. The effect of elevated CO2 on photosynthesis is modulated by nitrogen supply and reduced water availability in Picea abies. TREE PHYSIOLOGY 2023; 43:925-937. [PMID: 36864576 DOI: 10.1093/treephys/tpad024] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Accepted: 02/22/2023] [Indexed: 06/11/2023]
Abstract
It is assumed that the stimulatory effects of elevated CO2 concentration ([CO2]) on photosynthesis and growth may be substantially reduced by co-occurring environmental factors and the length of CO2 treatment. Here, we present the study exploring the interactive effects of three manipulated factors ([CO2], nitrogen supply and water availability) on physiological (gas-exchange and chlorophyll fluorescence), morphological and stoichiometric traits of Norway spruce (Picea abies) saplings after 2 and 3 years of the treatment under natural field conditions. Such multifactorial studies, going beyond two-way interactions, have received only limited attention until now. Our findings imply a significant reduction of [CO2]-enhanced rate of CO2 assimilation under reduced water availability which deepens with the severity of water depletion. Similarly, insufficient nitrogen availability leads to a down-regulation of photosynthesis under elevated [CO2] being particularly associated with reduced carboxylation efficiency of the Rubisco enzyme. Such adjustments in the photosynthesis machinery result in the stimulation of water-use efficiency under elevated [CO2] only when it is combined with a high nitrogen supply and reduced water availability. These findings indicate limited effects of elevated [CO2] on carbon uptake in temperate coniferous forests when combined with naturally low nitrogen availability and intensifying droughts during the summer periods. Such interactions have to be incorporated into the mechanistic models predicting changes in terrestrial carbon sequestration and forest growth in the future.
Collapse
Affiliation(s)
- Kojo Kwakye Ofori-Amanfo
- Global Change Research Institute, Czech Academy of Sciences, Bělidla 986/4a, 603 00 Brno, Czech Republic
- Department of Agrosystems and Bioclimatology, Faculty of AgriSciences, Mendel University in Brno, Zemědělská 1665/1, 613 00 Brno, Czech Republic
| | - Karel Klem
- Global Change Research Institute, Czech Academy of Sciences, Bělidla 986/4a, 603 00 Brno, Czech Republic
- Department of Agrosystems and Bioclimatology, Faculty of AgriSciences, Mendel University in Brno, Zemědělská 1665/1, 613 00 Brno, Czech Republic
| | - Barbora Veselá
- Global Change Research Institute, Czech Academy of Sciences, Bělidla 986/4a, 603 00 Brno, Czech Republic
| | - Petr Holub
- Global Change Research Institute, Czech Academy of Sciences, Bělidla 986/4a, 603 00 Brno, Czech Republic
| | - Thomas Agyei
- Global Change Research Institute, Czech Academy of Sciences, Bělidla 986/4a, 603 00 Brno, Czech Republic
- Department of Agrosystems and Bioclimatology, Faculty of AgriSciences, Mendel University in Brno, Zemědělská 1665/1, 613 00 Brno, Czech Republic
- Department of Biological Science, School of Sciences, University of Energy and Natural Resources, Post Office Box 214, Sunyani, Ghana
| | - Stanislav Juráň
- Global Change Research Institute, Czech Academy of Sciences, Bělidla 986/4a, 603 00 Brno, Czech Republic
| | - John Grace
- Global Change Research Institute, Czech Academy of Sciences, Bělidla 986/4a, 603 00 Brno, Czech Republic
- School of GeoSciences, University of Edinburgh, Crew Bldg, Kings Bldgs, Alexander Crum Brown Rd, Edinburgh EH9 3FF, UK
| | - Michal V Marek
- Global Change Research Institute, Czech Academy of Sciences, Bělidla 986/4a, 603 00 Brno, Czech Republic
- Institute of Management, Slovak Technical University Bratislava, Vazovova 5, 812 43 Bratislava, Slovakia
| | - Otmar Urban
- Global Change Research Institute, Czech Academy of Sciences, Bělidla 986/4a, 603 00 Brno, Czech Republic
| |
Collapse
|
11
|
Lin X, Wu B, Wang J, Wang G, Chen Z, Liang Y, Liu J, Wang H. Effects of Geographical and Climatic Factors on the Intrinsic Water Use Efficiency of Tropical Plants: Evidence from Leaf 13C. PLANTS (BASEL, SWITZERLAND) 2023; 12:951. [PMID: 36840299 PMCID: PMC9962877 DOI: 10.3390/plants12040951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 02/11/2023] [Accepted: 02/13/2023] [Indexed: 06/18/2023]
Abstract
Understanding the water use efficiency (WUE) and adaptation strategies of plants in high-temperature and rainy areas is essential under global climate change. The leaf carbon content (LCC) and intrinsic WUE of 424 plant samples (from 312 plant species) on Hainan Island were measured to examine their relationship with geographical and climatic factors in herbs, trees, vines and ferns. The LCC ranged from 306.30 to 559.20 mg g-1, with an average of 418.85 mg g-1, and decreased with increasing mean annual temperature (MAT). The range of intrinsic WUE was 8.61 to 123.39 μmol mol-1 with an average value of 60.66 μmol mol-1. The intrinsic WUE decreased with increasing altitude and relative humidity (RH) and wind speed (WS), but increased with increasing latitude, MAT and rainy season temperature (RST), indicating that geographical and climatic factors affect the intrinsic WUE. Stepwise regression suggested that in tropical regions with high temperature and humidity, the change in plant intrinsic WUE was mainly driven by WS. In addition, the main factors affecting the intrinsic WUE of different plant functional types of plants are unique, implying that plants of different plant functional types have distinctive adaptive strategies to environmental change. The present study may provide an insight in water management in tropical rainforest.
Collapse
Affiliation(s)
- Xiaoyan Lin
- School of Forestry, Hainan University, Haikou 570228, China
- Rubber Research Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China
- Opening Project Fund of Key Laboratory of Biology and Genetic Resources of Rubber Tree/State Key Laboratory Breeding Base of Cultivation and Physiology for Tropical Crops/Danzhou Investigation and Experiment Station of Tropical Crops, Ministry of Agriculture and Rural Affairs, Danzhou 571700, China
| | - Bingsun Wu
- Rubber Research Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China
- Opening Project Fund of Key Laboratory of Biology and Genetic Resources of Rubber Tree/State Key Laboratory Breeding Base of Cultivation and Physiology for Tropical Crops/Danzhou Investigation and Experiment Station of Tropical Crops, Ministry of Agriculture and Rural Affairs, Danzhou 571700, China
| | - Jingjing Wang
- School of Forestry, Hainan University, Haikou 570228, China
- Opening Project Fund of Key Laboratory of Biology and Genetic Resources of Rubber Tree/State Key Laboratory Breeding Base of Cultivation and Physiology for Tropical Crops/Danzhou Investigation and Experiment Station of Tropical Crops, Ministry of Agriculture and Rural Affairs, Danzhou 571700, China
| | - Guoan Wang
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, Department of Environmental Sciences and Engineering, College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China
| | - Zixun Chen
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, Department of Environmental Sciences and Engineering, College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China
| | - Yongyi Liang
- School of Forestry, Hainan University, Haikou 570228, China
- Rubber Research Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China
| | - Jiexi Liu
- School of Forestry, Hainan University, Haikou 570228, China
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institutes of Plant Physiology and Ecology, Shanghai 200032, China
| | - Hao Wang
- School of Forestry, Hainan University, Haikou 570228, China
- College of International Studies, Yangzhou University, Yangzhou 225009, China
| |
Collapse
|
12
|
Wu X, Cao Y, Jiang Y, Chen M, Zhang H, Wu P, Ma X. Dynamics of Non-Structural Carbohydrates Release in Chinese Fir Topsoil and Canopy Litter at Different Altitudes. PLANTS (BASEL, SWITZERLAND) 2023; 12:729. [PMID: 36840077 PMCID: PMC9962769 DOI: 10.3390/plants12040729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 02/03/2023] [Accepted: 02/03/2023] [Indexed: 06/18/2023]
Abstract
Non-structural carbohydrates (NSCs) are labile components in forest litter that can be released quickly at the early stage of litter decomposition and accelerate the metabolic turnover of soil microorganisms, which is essential for the formation of forest soil organic matter. Therefore, understanding the NSCs response mechanisms to forest litter at different altitudes is critical for understanding nutrient cycling in the forest soil under climate change conditions. In this study, we used the net bag decomposition method to observe the dynamics of NSCs release in Chinese fir topsoil and canopy litter at four altitudes for 360 days based on the climatic zone characteristics distributed vertically along the elevation of Wuyi Mountain. The release of NSCs in Chinese fir litter rise gradually with height increases during the decomposition. The difference of the cumulative release percentage of soluble sugar between different altitudes is more significant than that of starch. The response of the NSC content in different treatment groups at four altitudes are different. The release of NSCs in the leaf canopy litter is higher than that in the leaf topsoil litter. On the contrary, the release of NSCs in the mixture of leaf and twig topsoil litter is higher than that in the mixture of leaf and twig canopy litter. Taken together, this study is of great significance for a comprehensive understanding of the effect of climate change on NSCs during the decomposition of Chinese fir litter.
Collapse
Affiliation(s)
- Xiaojian Wu
- College of Forestry, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Yue Cao
- College of Forestry, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Yu Jiang
- College of Forestry, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Mingxu Chen
- College of Forestry, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Huiguang Zhang
- Wuyishan National Park Scientific Research Monitoring Center, Wuyishan 354300, China
| | - Pengfei Wu
- College of Forestry, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Xiangqing Ma
- College of Forestry, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| |
Collapse
|
13
|
Jia N, Niklas KJ, Yao B, Wang Z. Altitude patterns of seed C, N, and P concentrations and their stoichiometry in an alpine meadow on the eastern Tibetan Plateau. Front Ecol Evol 2022. [DOI: 10.3389/fevo.2022.1093474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Understanding the altitudinal patterns of plant stoichiometry in seeds is critical for characterizing important germination and dormancy strategies, soil seed bank composition, seed predation probability, efficiency of seed dispersal and seedling performance, and to predict how biodiversity might be influenced by climate change. However, our understanding of the altitudinal patterns of seed stoichiometry is extremely limited. In this study, we measured the concentrations of carbon (C), nitrogen (N) and phosphorus (P) in the seeds of 253 herbaceous species along an altitudinal transect (2,000–4,200 m) on the eastern Tibetan Plateau, China, and further to characterize seed C:N:P stoichiometry. The geometric means of C, N, and P concentrations were 569.75 mg/g, 34.76 mg/g, and 5.03 mg/g, respectively. The C:N, C:P, and N:P ratios were 16.39, 113.31, and 6.91, respectively. The seed C, N, and P concentrations and C:N:P ratios varied widely among major plant groups and showed significant altitudinal trends. In general, C, N, and P concentrations increased, whereas seed C:N:P ratios decreased with elevation. These results inform our understanding of the altitudinal patterns of seed stoichiometry and how to model ecosystem nutrient cycling.
Collapse
|
14
|
Li M, Guo X, Liu L, Liu J, Du N, Guo W. Responses to defoliation of Robinia pseudoacacia L. and Sophora japonica L. are soil water condition dependent. ANNALS OF FOREST SCIENCE 2022; 79:18. [DOI: 10.1186/s13595-022-01136-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Accepted: 03/03/2022] [Indexed: 06/14/2024]
Abstract
Abstract
Key message
Defoliation significantly affected biomass allocation of Robinia pseudoacacia L. and Sophora japonica L., but leaf physiology readjusted to control levels at the end of the experiment. Considering carbon or sink limitation and relative height growth rate, defoliated R. pseudoacacia grew faster than S. japonica under well-watered conditions, while defoliated S. japonica and R. pseudoacacia had similar performance under drought conditions.
Context
Climate change may result in increases of both drought intensity and insect survival, thereby affecting both exotic and native trees in warm temperate forests.
Aims
In this study, we examined the interaction effects of defoliation and drought on an exotic species Robinia pseudoacacia and a native species Sophora japonica in a warm temperate area, to provide a theoretical basis for predicting the distribution and dynamics of the two species under future climate change.
Methods
In a greenhouse, both species were exposed to three soil moisture (75%, 55%, and 35% of field capacity) and three defoliation treatments (no defoliation, 50% defoliation, and 100% defoliation). Leaf physiology, biomass, and non-structural carbohydrate were determined.
Results
Leaf physiology of defoliated trees did not differ from controls trees, but defoliated seedlings allocated relatively more resources to the leaves at the end of the experiment. In well-watered conditions, defoliated R. pseudoacacia was not carbon or sink limited and defoliated S. japonica was carbon limited, while defoliated individuals of the two species were sink limited under drought. Defoliated R. pseudoacacia grow more rapidly than S. japonica in well-watered conditions. Defoliated R. pseudoacacia had a similar growth rate to S. japonica in drought.
Conclusions
Defoliation clearly affects biomass allocation of the two species, but not leaf physiology. Considering the carbon or sink limitation, the growth of S. japonica and R. pseudoacacia may be limited by future global climate change scenarios.
Collapse
|
15
|
Qin H, Jiao L, Zhou Y, Wu J, Che X. Elevation affects the ecological stoichiometry of Qinghai spruce in the Qilian Mountains of northwest China. FRONTIERS IN PLANT SCIENCE 2022; 13:917755. [PMID: 36186057 PMCID: PMC9515584 DOI: 10.3389/fpls.2022.917755] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Accepted: 08/15/2022] [Indexed: 06/16/2023]
Abstract
Environmental heterogeneity in temperature, moisture, and soil fertility caused by elevation gradients can affect the trade-offs in the survival strategies of tree species. There is uncertainty about the allocation of resources to different tissues of trees in response to the elevation gradient with respect to carbon (C), nitrogen (N), and phosphorus (P). Here, the C, N, and P content of leaves, branches, trunks, and thick and fine roots of Picea crassifolia (Qinghai spruce) and their stoichiometric changes across three different elevations were investigated in the Qilian Mountains. We found that N:P of Qinghai spruce was <14 in all tissues at most elevations, indicating that Qinghai spruce was more susceptible to N limitation. Meanwhile, the N content and N:P of Qinghai spruce each were significantly negatively correlated with temperature (p < 0.05), and its P content was lower at high elevation. The contribution of soil-climate interactions on the elevation gradient to each tissue type was 34.02% (leaves), 16.84% (branches), 67.78% (trunks), 34.74% (thick roots), and 49.84% (fine roots), indicating that interacting climate and soil factors on the elevation gradient predominately drove the C, N, and P content and stoichiometry variation in each tissue type of Qinghai spruce trees. The results of this study clarify that the elevation gradient regulates the elemental content and resource allocation in Qinghai spruce, providing basic data and an important timely reference for future forest management in the regions where coniferous trees grows. These findings also help improve our understanding of elevational patterns of forest ecosystem stoichiometry in arid and semiarid regions.
Collapse
Affiliation(s)
- Huijun Qin
- College of Geography and Environment Science, Northwest Normal University, Lanzhou, China
- Key Laboratory of Resource Environment and Sustainable Development of Oasis, Gansu Province, Lanzhou, China
| | - Liang Jiao
- College of Geography and Environment Science, Northwest Normal University, Lanzhou, China
- Key Laboratory of Resource Environment and Sustainable Development of Oasis, Gansu Province, Lanzhou, China
| | - Yi Zhou
- College of Geography and Environment Science, Northwest Normal University, Lanzhou, China
- Key Laboratory of Resource Environment and Sustainable Development of Oasis, Gansu Province, Lanzhou, China
| | - Jingjing Wu
- College of Geography and Environment Science, Northwest Normal University, Lanzhou, China
- Key Laboratory of Resource Environment and Sustainable Development of Oasis, Gansu Province, Lanzhou, China
| | - Xichen Che
- College of Geography and Environment Science, Northwest Normal University, Lanzhou, China
- Key Laboratory of Resource Environment and Sustainable Development of Oasis, Gansu Province, Lanzhou, China
| |
Collapse
|
16
|
N addition alters growth, non-structural carbohydrates, and C:N:P stoichiometry of Reaumuria soongorica seedlings in Northwest China. Sci Rep 2022; 12:15390. [PMID: 36100614 PMCID: PMC9470663 DOI: 10.1038/s41598-022-19280-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Accepted: 08/26/2022] [Indexed: 11/26/2022] Open
Abstract
Reaumuria soongorica is an important biological barrier for ecological protection in the Gobi Desert in northwestern China, where soil nitrogen availability is low. N deposition has recently increased significantly in Gobi Desert, and the responses of R. soongorica to N enrichment may become a problem for ecological restoration and protection. However, little is known about the effects of N addition on the biomass, non-structural carbohydrates (NSC), and carbon:nitrogen:phosphorus (C:N:P) stoichiometry of R. soongorica in this region. Here, we examined changes in biomass, NSC and C:N:P ratios of different organs of R. soongorica seedlings in four N addition treatments: 0 (N0), 4.6 (N1), 9.2 (N2), and 13.8 (N3) g m−2 year−1. N addition up to 9.2 g m−2 year−1 significantly increased the biomass of different organs, simultaneously increasing the belowground: aboveground ratio of R. soongorica seedlings. Root NSC concentrations significantly increased under all N addition treatments, but leaf and stem NSC concentrations only increased under the N1 and N2 addition treatments. Nitrogen addition enhanced the soluble sugar concentrations (SSC) of leaves and roots, and reduced starch concentrations (SC) of all organs. Stem and root N concentrations significantly increased under the N2 and N3 treatments, and leaf N concentrations only increased under the N3 treatment, but N addition had no significant effect on plant C and P concentrations. Leaf and stem C:N ratios decreased significantly under the N2 and N3 treatments, but root C:N decreased significantly in all N addition treatments. The N3 treatment significantly increased the N:P ratio of all organs. N addition significantly enhanced available N (AN), available P (AP) and total phosphorus (TP) in rhizosphere soil. Our results suggest that N addition alters the biomass, NSC, N concentrations, C:N and N:P ratios of all plant organs, but roots responded more strongly than stems or leaves to N addition, potentially allowing the plants to absorb more water from the arid soil in this region ensuring the survival of R. soongorica seedlings. Rhizosphere soil AP, AN and TP concentrations were important factors affecting the NSC concentrations and stoichiometric characteristics of R. soongorica.
Collapse
|
17
|
Piper FI, Moreno‐Meynard P, Fajardo A. Non‐structural carbohydrates predict survival in saplings of temperate trees under carbon stress. Funct Ecol 2022. [DOI: 10.1111/1365-2435.14158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Frida I. Piper
- Instituto de Ciencias Biológicas (ICB), Universidad de Talca, Campus Lircay 3460000 Talca Chile
- Institute of Ecology and Biodiversity (IEB), Barrio Universitario S/N Concepción Chile
| | - Paulo Moreno‐Meynard
- Centro de Investigación en Ecosistemas de la Patagonia (CIEP), Moraleda 16 Coyhaique Chile
| | - Alex Fajardo
- Institute of Ecology and Biodiversity (IEB), Barrio Universitario S/N Concepción Chile
- Instituto de Investigación Interdisciplinaria (I3), Universidad de Talca Chile
| |
Collapse
|
18
|
Effects of Warming and Precipitation on Soil CO2 Flux and Its Stable Carbon Isotope Composition in the Temperate Desert Steppe. SUSTAINABILITY 2022. [DOI: 10.3390/su14063351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The stable carbon (C) isotope of soil CO2 efflux (δ13CO2e) is closely associated with soil C dynamics, which have a complex feedback relationship with climate. Three levels of warming (T0: ambient temperature (15.7 °C); T1: T0 + 2 °C; T2: T0 + 4 °C) were combined with three levels of increased precipitation (W0: ambient precipitation (245.2 mm); W1: W0 + 25%; W2: W0 + 50%) in order to quantify soil CO2 flux and its δ13CO2e values under nine treatment conditions (T0W0, T0W1, T0W2, T1W0, T1W1, T1W2, T2W0, T2W1, and T2W2) in desert steppe in an experimental beginning in 2015. A non-steady state chamber system relying on Keeling plots was used to estimate δ13CO2e. The temperature (ST) and moisture (SM) of soil as well as soil organic carbon content (SOC) and δ13C values (δ13Csoil) were tested in order to interpret variations in soil CO2 efflux and δ13CO2e. Sampling was carried out during the growing season in 2018 and 2019. During the experiment, the ST and SM correspondingly increased due to warming and increased precipitation. CO2 flux ranged from 37 to 1103 mg m−2·h−1, and emissions peaked in early August in the desert steppe. Warming of 2 °C to 4 °C stimulated a 14% to 30.9% increase in soil CO2 efflux and a 0.4‰ to 1.8‰ enrichment in δ13CO2e, respectively. Increased precipitation raised soil CO2 efflux by 14% to 19.3%, and decreased δ13CO2e by 0.5‰ to 0.9‰. There was a positive correlation between soil CO2 efflux and ST and SOC indicating that ST affected soil CO2 efflux by changing SOC content. Although the δ13CO2e was positively correlated with ST, it was negatively correlated to SM. The decline of δ13CO2e with soil moisture was predominantly due to intensified and increased diffusive fractionation. The mean δ13CO2e value (−20.2‰) was higher than that of the soil carbon isotope signature at 0–20 cm (δ13Csoil = −22.7‰). The difference between δ13CO2e and δ13Csoil (Δe-s) could be used to evaluate the likelihood of substrate utilization. 13C enriched stable C pools were more likely to be utilized below 20 cm under warming of 2 °C in the desert steppe. Moreover, the interaction of T × W neither altered the CO2 emitted by soil nor the δ13CO2e or Δe-s, indicating that warming combined with precipitation may alleviate the SOC oxidation of soil enriched in 13C in the desert steppe.
Collapse
|
19
|
Potkay A, Hölttä T, Trugman AT, Fan Y. Turgor-limited predictions of tree growth, height and metabolic scaling over tree lifespans. TREE PHYSIOLOGY 2022; 42:229-252. [PMID: 34296275 DOI: 10.1093/treephys/tpab094] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Accepted: 07/18/2021] [Indexed: 06/13/2023]
Abstract
Increasing evidence suggests that tree growth is sink-limited by environmental and internal controls rather than by carbon availability. However, the mechanisms underlying sink-limitations are not fully understood and thus not represented in large-scale vegetation models. We develop a simple, analytically solved, mechanistic, turgor-driven growth model (TDGM) and a phloem transport model (PTM) to explore the mechanics of phloem transport and evaluate three hypotheses. First, phloem transport must be explicitly considered to accurately predict turgor distributions and thus growth. Second, turgor-limitations can explain growth-scaling with size (metabolic scaling). Third, turgor can explain realistic growth rates and increments. We show that mechanistic, sink-limited growth schemes based on plant turgor limitations are feasible for large-scale model implementations with minimal computational demands. Our PTM predicted nearly uniform sugar concentrations along the phloem transport path regardless of phloem conductance, stem water potential gradients and the strength of sink-demands contrary to our first hypothesis, suggesting that phloem transport is not limited generally by phloem transport capacity per se but rather by carbon demand for growth and respiration. These results enabled TDGM implementation without explicit coupling to the PTM, further simplifying computation. We test the TDGM by comparing predictions of whole-tree growth rate to well-established observations (site indices) and allometric theory. Our simple TDGM predicts realistic tree heights, growth rates and metabolic scaling over decadal to centurial timescales, suggesting that tree growth is generally sink and turgor limited. Like observed trees, our TDGM captures tree-size- and resource-based deviations from the classical ¾ power-law metabolic scaling for which turgor is responsible.
Collapse
Affiliation(s)
- Aaron Potkay
- Department of Earth and Planetary Sciences, Rutgers University, New Brunswick, NJ 08854, USA
| | - Teemu Hölttä
- Institute for Atmospheric and Earth System Research/Forest Sciences, University of Helsinki, Helsinki FI-00014, Finland
| | - Anna T Trugman
- Department of Geography, University of California at Santa Barbara, Santa Barbara, CA 93106, USA
| | - Ying Fan
- Department of Earth and Planetary Sciences, Rutgers University, New Brunswick, NJ 08854, USA
| |
Collapse
|
20
|
Below-Ground Growth of Alpine Plants, Not Above-Ground Growth, Is Linked to the Extent of Its Carbon Storage. PLANTS 2021; 10:plants10122680. [PMID: 34961151 PMCID: PMC8705842 DOI: 10.3390/plants10122680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/25/2021] [Revised: 11/20/2021] [Accepted: 12/03/2021] [Indexed: 11/16/2022]
Abstract
Understanding carbon allocation in plants is essential for explaining their growth strategies during environmental adaptation. However, the role of mobile carbon in plant growth and its response to habitat conditions is still disputed. In degraded meadow (alpine sandy grassland) and non-degraded meadow (typical alpine meadow and swamp meadow) on the Qinghai–Tibetan Plateau, we measured the monthly averages of above-ground biomass (AGB) and below-ground biomass (BGB) of the investigated species in each meadow and the average concentration of non-structural carbohydrates (NSCs), an indicator of carbon storage. Below-ground organs had higher concentrations and showed more seasonal variation in NSCs than above-ground organs. BGB had a positive correlation with below-ground NSCs levels. However, AGB had no clear relationship with above-ground NSCs levels. Plants in sandy grasslands had higher total NSC, soluble sugars, fructose, and sucrose concentrations and lower starch concentrations in below-ground organs than plants in alpine or swamp meadows. Overall, NSCs storage, particularly soluble sugars, is a major process underlying the pattern of below-ground growth, but not above-ground growth, in the meadow ecosystem of the Qinghai–Tibetan Plateau, and degraded meadow strengthens this process. These results suggest that the extent of carbon storage in non-photosynthetic organs of alpine herbs impacts their growth and habitat adaptation.
Collapse
|
21
|
Fermaniuk C, Fleurial KG, Wiley E, Landhäusser SM. Large seasonal fluctuations in whole-tree carbohydrate reserves: is storage more dynamic in boreal ecosystems? ANNALS OF BOTANY 2021; 128:943-957. [PMID: 34293090 PMCID: PMC8577199 DOI: 10.1093/aob/mcab099] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Accepted: 07/21/2021] [Indexed: 06/13/2023]
Abstract
BACKGROUND AND AIMS Carbon reserves are a critical source of energy and substrates that allow trees to cope with periods of minimal carbon gain and/or high carbon demands, conditions which are prevalent in high-latitude forests. However, we have a poor understanding of carbon reserve dynamics at the whole-tree level in mature boreal trees. We therefore sought to quantify the seasonal changes in whole-tree and organ-level carbon reserve pools in mature boreal Betula papyrifera. METHODS Non-structural carbohydrate (NSC; soluble sugars and starch) tissue concentrations were measured at key phenological stages throughout a calendar year in the roots, stem (inner bark and xylem), branches and leaves, and scaled up to estimate changes in organ and whole-tree NSC pool sizes. Fine root and stem growth were also measured to compare the timing of growth processes with changes in NSC pools. KEY RESULTS The whole-tree NSC pool increased from its spring minimum to its maximum at bud set, producing an average seasonal fluctuation of 0.96 kg per tree. This fluctuation represents a 72 % change in the whole-tree NSC pool, which greatly exceeds the relative change reported for more temperate conspecifics. At the organ level, branches accounted for roughly 48-60 % of the whole-tree NSC pool throughout the year, and their seasonal fluctuation was four to eight times greater than that observed in the stemwood, coarse roots and inner bark. CONCLUSIONS Branches in boreal B. papyrifera were the largest and most dynamic storage pool, suggesting that storage changes at the branch level largely drive whole-tree storage dynamics in these trees. The greater whole-tree seasonal NSC fluctuation in boreal vs. temperate B. papyrifera may result from (1) higher soluble sugar concentration requirements in branches for frost protection, and/or (2) a larger reliance on reserves to fuel new leaf and shoot growth in the spring.
Collapse
Affiliation(s)
- C Fermaniuk
- Department of Renewable Resources, University of Alberta, Edmonton, AB, Canada
| | - K G Fleurial
- Department of Renewable Resources, University of Alberta, Edmonton, AB, Canada
| | - E Wiley
- Department of Biology, University of Central Arkansas, Conway, AR, USA
| | - S M Landhäusser
- Department of Renewable Resources, University of Alberta, Edmonton, AB, Canada
| |
Collapse
|
22
|
Weigelt A, Mommer L, Andraczek K, Iversen CM, Bergmann J, Bruelheide H, Fan Y, Freschet GT, Guerrero-Ramírez NR, Kattge J, Kuyper TW, Laughlin DC, Meier IC, van der Plas F, Poorter H, Roumet C, van Ruijven J, Sabatini FM, Semchenko M, Sweeney CJ, Valverde-Barrantes OJ, York LM, McCormack ML. An integrated framework of plant form and function: the belowground perspective. THE NEW PHYTOLOGIST 2021; 232:42-59. [PMID: 34197626 DOI: 10.1111/nph.17590] [Citation(s) in RCA: 98] [Impact Index Per Article: 32.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Accepted: 06/13/2021] [Indexed: 06/13/2023]
Abstract
Plant trait variation drives plant function, community composition and ecosystem processes. However, our current understanding of trait variation disproportionately relies on aboveground observations. Here we integrate root traits into the global framework of plant form and function. We developed and tested an overarching conceptual framework that integrates two recently identified root trait gradients with a well-established aboveground plant trait framework. We confronted our novel framework with published relationships between above- and belowground trait analogues and with multivariate analyses of above- and belowground traits of 2510 species. Our traits represent the leaf and root conservation gradients (specific leaf area, leaf and root nitrogen concentration, and root tissue density), the root collaboration gradient (root diameter and specific root length) and the plant size gradient (plant height and rooting depth). We found that an integrated, whole-plant trait space required as much as four axes. The two main axes represented the fast-slow 'conservation' gradient on which leaf and fine-root traits were well aligned, and the 'collaboration' gradient in roots. The two additional axes were separate, orthogonal plant size axes for height and rooting depth. This perspective on the multidimensional nature of plant trait variation better encompasses plant function and influence on the surrounding environment.
Collapse
Affiliation(s)
- Alexandra Weigelt
- Systematic Botany and Functional Biodiversity, Institute of Biology, Leipzig University, Leipzig, 04103, Germany
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, 04103, Germany
| | - Liesje Mommer
- Plant Ecology and Nature Conservation Group, Department of Environmental Sciences, Wageningen University, PO Box 47, Wageningen, 6700 AA, the Netherlands
| | - Karl Andraczek
- Systematic Botany and Functional Biodiversity, Institute of Biology, Leipzig University, Leipzig, 04103, Germany
| | - Colleen M Iversen
- Oak Ridge National Laboratory, Climate Change Science Institute and Environmental Sciences Division, Oak Ridge, TN, 37831, USA
| | - Joana Bergmann
- Sustainable Grassland Systems, Leibniz Centre for Agricultural Landscape Research (ZALF), Paulinenaue, 14641, Germany
| | - Helge Bruelheide
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, 04103, Germany
- Institute of Biology/Geobotany and Botanical Garden, Martin Luther University Halle-Wittenberg, Halle, 06108, Germany
| | - Ying Fan
- Department of Earth and Planetary Sciences, Rutgers University, New Brunswick, NJ, 08854, USA
| | - Grégoire T Freschet
- Theoretical and Experimental Ecology Station (SETE), National Center for Scientific Research (CNRS), Moulis, 09200, France
| | - Nathaly R Guerrero-Ramírez
- Biodiversity, Macroecology & Biogeography, Faculty of Forest Sciences and Forest Ecology, University of Goettingen, Göttingen, 37077, Germany
| | - Jens Kattge
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, 04103, Germany
- Functional Biogeography, Max Planck Institute for Biogeochemistry, Jena, 07745, Germany
| | - Thom W Kuyper
- Soil Biology Group, Department of Environmental Sciences, Wageningen University, PO Box 47, Wageningen, 6700 AA, the Netherlands
| | - Daniel C Laughlin
- Department of Botany, University of Wyoming, Laramie, WY, 82071, USA
| | - Ina C Meier
- Functional Forest Ecology, Department of Biology, Universität Hamburg, Barsbüttel-Willinghusen, 22885, Germany
| | - Fons van der Plas
- Systematic Botany and Functional Biodiversity, Institute of Biology, Leipzig University, Leipzig, 04103, Germany
- Plant Ecology and Nature Conservation Group, Department of Environmental Sciences, Wageningen University, PO Box 47, Wageningen, 6700 AA, the Netherlands
| | - Hendrik Poorter
- Plant Sciences (IBG-2), Forschungszentrum Jülich GmbH, Jülich, 52425, Germany
- Department of Biological Sciences, Macquarie University, North Ryde, NSW, 2109, Australia
| | - Catherine Roumet
- CEFE, CNRS, EPHE, IRD, University Montpellier, Montpellier, 34293, France
| | - Jasper van Ruijven
- Plant Ecology and Nature Conservation Group, Department of Environmental Sciences, Wageningen University, PO Box 47, Wageningen, 6700 AA, the Netherlands
| | - Francesco Maria Sabatini
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, 04103, Germany
- Institute of Biology/Geobotany and Botanical Garden, Martin Luther University Halle-Wittenberg, Halle, 06108, Germany
| | - Marina Semchenko
- Department of Earth and Environmental Sciences, The University of Manchester, Manchester, M13 9PL, UK
- Institute of Ecology and Earth Sciences, University of Tartu, Tartu, 51005, Estonia
| | - Christopher J Sweeney
- Department of Earth and Environmental Sciences, The University of Manchester, Manchester, M13 9PL, UK
| | - Oscar J Valverde-Barrantes
- Institute of Environment, Department of Biological Sciences, Florida International University, Miami, FL, 33199, USA
| | - Larry M York
- Noble Research Institute, LLC, Ardmore, OK, 73401, USA
| | - M Luke McCormack
- The Root Lab, Center for Tree Science, The Morton Arboretum, Lisle, IL, 60515, USA
| |
Collapse
|
23
|
Zhou Q, Shi H, He R, Liu H, Zhu W, Yu D, Zhang Q, Dang H. Prioritized carbon allocation to storage of different functional types of species at the upper range limits is driven by different environmental drivers. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 773:145581. [PMID: 33582346 DOI: 10.1016/j.scitotenv.2021.145581] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Revised: 01/28/2021] [Accepted: 01/28/2021] [Indexed: 06/12/2023]
Abstract
The upper elevational range limit of tree species (including treeline and non-treeline species) is generally considered to result from either carbon limitation or sink limitation. Some evidence also suggests that tree line might reflect preferential carbon allocation to NSC storage at the expense of growth. How might the importance of these potential mechanisms be determined? We used an elevational gradient to examine light-saturated photosynthesis (Asat) and NSC concentrations in plant tissues of three different functional types of tree species. We also examined the effects of consecutive 4 years of in situ defoliation on growth and NSCs at the upper elevational range limit. Declining temperature with increasing elevation did not reduce Asat in any of the species. We found NSC increased with elevation in major storage tissues (e.g., roots and twigs) but not in leaves. The defoliation showed that C storage took priority over growth. Such preferential carbon allocation, directly caused by growth decline, always existed in the deciduous tree species. In the evergreen tree species, however, growth decline resulted from preferential carbon allocation to storage was only detected in 2017 and then disappeared as the intensity of defoliation increased. Our results showed that trees prioritized sustaining stores of C more highly than allocation of growth, regardless of the trees' C or sink limitations. At the cold range limits, the prioritized carbon allocation to storage in deciduous tree species was in response to low temperature stress, while in evergreen tree species, the prioritization of carbon allocation was only a transient physiological response to defoliation disturbances.
Collapse
Affiliation(s)
- Quan Zhou
- Key Laboratory of Aquatic Botany and Watershed Ecology, Wuhan Botanical Garden of the Chinese Academy of Sciences, Wuhan 430074, PR China; Center for Plant Ecology, Core Botanical Gardens, Chinese Academy of Sciences, Wuhan 430074, PR China; The University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Hang Shi
- Key Laboratory of Aquatic Botany and Watershed Ecology, Wuhan Botanical Garden of the Chinese Academy of Sciences, Wuhan 430074, PR China; Center for Plant Ecology, Core Botanical Gardens, Chinese Academy of Sciences, Wuhan 430074, PR China; The University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Rui He
- Key Laboratory of Aquatic Botany and Watershed Ecology, Wuhan Botanical Garden of the Chinese Academy of Sciences, Wuhan 430074, PR China; Center for Plant Ecology, Core Botanical Gardens, Chinese Academy of Sciences, Wuhan 430074, PR China; The University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Haikun Liu
- Key Laboratory of Aquatic Botany and Watershed Ecology, Wuhan Botanical Garden of the Chinese Academy of Sciences, Wuhan 430074, PR China; Center for Plant Ecology, Core Botanical Gardens, Chinese Academy of Sciences, Wuhan 430074, PR China; The University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Wenting Zhu
- Key Laboratory of Aquatic Botany and Watershed Ecology, Wuhan Botanical Garden of the Chinese Academy of Sciences, Wuhan 430074, PR China; Center for Plant Ecology, Core Botanical Gardens, Chinese Academy of Sciences, Wuhan 430074, PR China; College of Science, Tibet University, Lhasa 850000, PR China
| | - Dongyue Yu
- Key Laboratory of Aquatic Botany and Watershed Ecology, Wuhan Botanical Garden of the Chinese Academy of Sciences, Wuhan 430074, PR China; Center for Plant Ecology, Core Botanical Gardens, Chinese Academy of Sciences, Wuhan 430074, PR China; The University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Quanfa Zhang
- Key Laboratory of Aquatic Botany and Watershed Ecology, Wuhan Botanical Garden of the Chinese Academy of Sciences, Wuhan 430074, PR China; Center for Plant Ecology, Core Botanical Gardens, Chinese Academy of Sciences, Wuhan 430074, PR China
| | - Haishan Dang
- Key Laboratory of Aquatic Botany and Watershed Ecology, Wuhan Botanical Garden of the Chinese Academy of Sciences, Wuhan 430074, PR China; Center for Plant Ecology, Core Botanical Gardens, Chinese Academy of Sciences, Wuhan 430074, PR China.
| |
Collapse
|
24
|
Zhang P, McDowell NG, Zhou X, Wang W, Leff RT, Pivovaroff AL, Zhang H, Chow PS, Ward ND, Indivero J, Yabusaki SB, Waichler S, Bailey VL. Declining carbohydrate content of Sitka-spruce treesdying from seawater exposure. PLANT PHYSIOLOGY 2021; 185:1682-1696. [PMID: 33893814 PMCID: PMC8133543 DOI: 10.1093/plphys/kiab002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Accepted: 12/09/2020] [Indexed: 05/13/2023]
Abstract
Increasing sea levels associated with climate change threaten the survival of coastal forests, yet the mechanisms by which seawater exposure causes tree death remain poorly understood. Despite the potentially crucial role of nonstructural carbohydrate (NSC) reserves in tree survival, their dynamics in the process of death under seawater exposure are unknown. Here we monitored progressive tree mortality and associated NSC storage in Sitka-spruce (Picea sitchensis) trees dying under ecosystem-scale increases in seawater exposure in western Washington, USA. All trees exposed to seawater, because of monthly tidal intrusion, experienced declining crown foliage during the sampling period, and individuals with a lower percentage of live foliated crown (PLFC) died faster. Tree PLFC was strongly correlated with subsurface salinity and needle ion contents. Total NSC concentrations in trees declined remarkably with crown decline, and reached extremely low levels at tree death (2.4% and 1.6% in leaves and branches, respectively, and 0.4% in stems and roots). Starch in all tissues was almost completely consumed, while sugars remained at a homeostatic level in foliage. The decreasing NSC with closer proximity to death and near zero starch at death are evidences that carbon starvation occurred during Sitka-spruce mortality during seawater exposure. Our results highlight the importance of carbon storage as an indicator of tree mortality risks under seawater exposure.
Collapse
Affiliation(s)
- Peipei Zhang
- Center for Global Change and Ecological Forecasting, Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, China
- Atmospheric Sciences & Global Change, Pacific Northwest National Laboratory, Richland, Washington 99354, USA
| | - Nate G McDowell
- Atmospheric Sciences & Global Change, Pacific Northwest National Laboratory, Richland, Washington 99354, USA
- School of Biological Sciences, Washington State University, Pullman, Washington 99164-4236, USA
| | - Xuhui Zhou
- Center for Global Change and Ecological Forecasting, Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, China
- Author for communication:
| | - Wenzhi Wang
- Atmospheric Sciences & Global Change, Pacific Northwest National Laboratory, Richland, Washington 99354, USA
| | - Riley T Leff
- Atmospheric Sciences & Global Change, Pacific Northwest National Laboratory, Richland, Washington 99354, USA
| | - Alexandria L Pivovaroff
- Atmospheric Sciences & Global Change, Pacific Northwest National Laboratory, Richland, Washington 99354, USA
| | - Hongxia Zhang
- Atmospheric Sciences & Global Change, Pacific Northwest National Laboratory, Richland, Washington 99354, USA
| | - Pak S Chow
- Department of Renewable Resources, University of Alberta, Edmonton, Alberta, Canada T6G 2R3
| | - Nicholas D Ward
- Marine Sciences Laboratory, Pacific Northwest National Laboratory, Sequim, Washington 98382, USA
- School of Oceanography, University of Washington, Seattle, Washington 98195, USA
| | - Julia Indivero
- Marine Sciences Laboratory, Pacific Northwest National Laboratory, Sequim, Washington 98382, USA
| | - Steven B Yabusaki
- Earth Systems Science, Pacific Northwest National Laboratory, Richland, Washington 99354, USA
| | - Scott Waichler
- Earth Systems Science, Pacific Northwest National Laboratory, Richland, Washington 99354, USA
| | - Vanessa L Bailey
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, Washington 99354, USA
| |
Collapse
|
25
|
Cun Z, Zhang JY, Wu HM, Zhang L, Chen JW. High nitrogen inhibits photosynthetic performance in a shade-tolerant and N-sensitive species Panax notoginseng. PHOTOSYNTHESIS RESEARCH 2021; 147:283-300. [PMID: 33587246 DOI: 10.1007/s11120-021-00823-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Accepted: 01/18/2021] [Indexed: 05/27/2023]
Abstract
Nitrogen (N) is a primary factor limiting leaf photosynthesis. However, the mechanism of high-N-driven inhibition on photosynthetic efficiency and photoprotection is still unclear in the shade-tolerant and N-sensitive species such as Panax notoginseng. Leaf chlorophyll (Chl) content, Ribulose-1,5-bisphosphate carboxylase oxygenase (Rubisco) activity and content, N allocation in the photosynthetic apparatus, photosynthetic performance and Chl fluorescence were comparatively analyzed in a shade-tolerant and N-sensitive species P. notoginseng grown under the levels of moderate nitrogen (MN) and high nitrogen (HN). The results showed that Rubisco content, Chl content and specific leaf nitrogen (SLN) were greater in the HN individuals. Rubisco activity, net photosynthetic rate (Anet), photosynthetic N use efficiency (PNUE), maximum carboxylation rate (Vcmax) and maximum electron transport rate (Jmax) were lower when plants were exposed to HN as compared with ones to MN. A large proportion of leaf N was allocated to the carboxylation component under the levels of MN. More N was only served as a form of N storage and not contributed to photosynthesis in HN individuals. Compared with the MN plants, the maximum quantum yield of photosystem II (Fv/Fm), non-photochemical quenching of PSII (NPQ), effective quantum yield and electron transport rate were obviously reduced in the HN plants. Cycle electron flow (CEF) was considerably enhanced in the MN individuals. There was not a significant difference in maximum photo-oxidation P700+ (Pm) between the HN and MN individuals. Most importantly, the HN individuals showed higher K phase in the fast chlorophyll fluorescence induction kinetic curve (OJIP kinetic curve) than the MN ones. The results obtained suggest that photosynthetic capacity might be primarily inhibited by the inactivated Rubisco in the HN individuals, and HN-induced depression of photoprotection might be caused by the photodamage to the donor side of PSII oxygen-evolving complex.
Collapse
Affiliation(s)
- Zhu Cun
- College of Agronomy & Biotechnology, Yunnan Agricultural University, Kunming, 650201, China
- Key Laboratory of Medicinal Plant Biology of Yunnan Province, Yunnan Agricultural University, Kunming, 650201, China
- National & Local Joint Engineering Research Center On Germplasm Innovation & Utilization of Chinese Medicinal Materials in Southwestern China, Yunnan Agricultural University, Kunming, 650201, China
| | - Jin-Yan Zhang
- College of Agronomy & Biotechnology, Yunnan Agricultural University, Kunming, 650201, China
- Key Laboratory of Medicinal Plant Biology of Yunnan Province, Yunnan Agricultural University, Kunming, 650201, China
- National & Local Joint Engineering Research Center On Germplasm Innovation & Utilization of Chinese Medicinal Materials in Southwestern China, Yunnan Agricultural University, Kunming, 650201, China
| | - Hong-Min Wu
- College of Agronomy & Biotechnology, Yunnan Agricultural University, Kunming, 650201, China
- Key Laboratory of Medicinal Plant Biology of Yunnan Province, Yunnan Agricultural University, Kunming, 650201, China
- National & Local Joint Engineering Research Center On Germplasm Innovation & Utilization of Chinese Medicinal Materials in Southwestern China, Yunnan Agricultural University, Kunming, 650201, China
| | - Ling Zhang
- College of Agronomy & Biotechnology, Yunnan Agricultural University, Kunming, 650201, China
- Key Laboratory of Medicinal Plant Biology of Yunnan Province, Yunnan Agricultural University, Kunming, 650201, China
- National & Local Joint Engineering Research Center On Germplasm Innovation & Utilization of Chinese Medicinal Materials in Southwestern China, Yunnan Agricultural University, Kunming, 650201, China
| | - Jun-Wen Chen
- College of Agronomy & Biotechnology, Yunnan Agricultural University, Kunming, 650201, China.
- Key Laboratory of Medicinal Plant Biology of Yunnan Province, Yunnan Agricultural University, Kunming, 650201, China.
- National & Local Joint Engineering Research Center On Germplasm Innovation & Utilization of Chinese Medicinal Materials in Southwestern China, Yunnan Agricultural University, Kunming, 650201, China.
| |
Collapse
|
26
|
Kong D, Wang J, Valverde-Barrantes OJ, Kardol P. A framework to assess the carbon supply-consumption balance in plant roots. THE NEW PHYTOLOGIST 2021; 229:659-664. [PMID: 32654148 DOI: 10.1111/nph.16807] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2020] [Accepted: 07/06/2020] [Indexed: 06/11/2023]
Affiliation(s)
- Deliang Kong
- College of Forestry, Henan Agricultural University, Zhengzhou, 450002, China
- Liaoning Key Laboratory for Biological Invasions and Global Change, Shenyang Agricultural University, Shenyang, Liaoning, 110866, China
| | - Junjian Wang
- Guangdong Provincial Key Laboratory of Soil and Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen, Guangdong, 518055, China
| | | | - Paul Kardol
- Department of Forest Ecology and Management, Swedish University of Agricultural Sciences, Umeå, 90183, Sweden
| |
Collapse
|
27
|
Marçal DMS, Avila RT, Quiroga-Rojas LF, de Souza RPB, Gomes Junior CC, Ponte LR, Barbosa ML, Oliveira LA, Martins SCV, Ramalho JDC, DaMatta FM. Elevated [CO 2] benefits coffee growth and photosynthetic performance regardless of light availability. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2021; 158:524-535. [PMID: 33293205 DOI: 10.1016/j.plaphy.2020.11.042] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Accepted: 11/24/2020] [Indexed: 06/12/2023]
Abstract
Despite being evolved in shaded environments, most coffee (Coffea arabica L.) is cultivated worldwide under sparse shade or at full sunlight. Coffee is ranked as greatly responsive to climate change (CC), and shading has been considered an important management strategy for mitigating the harmful CC outcomes on the crop. However, there is no information on the effects of enhanced [CO2] (eCa) on coffee performance in response to light availability. Here, we examined how carbon assimilation and use are affected by eCa in combination with contrasting light levels. For that, greenhouse-grown plants were submitted to varying light levels (16 or 7.5 mol photons m-2 day-1) and [CO2] (ca. 380 or 740 μmol mol-1 air) over six months. We demonstrated that both high light and eCa improved growth and photosynthetic performance, independently. Despite marginal alterations in biomass partitioning, some allometric changes, such as higher root biomass-to-total leaf area and lower leaf area ratio under the combination of eCa and high light were found. Stimulation of photosynthetic rates by eCa occurred with no direct effect on stomatal and mesophyll conductances, and no signs of photosynthetic down-regulation were found irrespective of treatments. Particularly at high light, eCa led to decreases in both photorespiration rates and oxidative pressure. Overall, our novel findings suggest that eCa could tandemly act with shading to mitigate the harmful CC effects on coffee sustainability.
Collapse
Affiliation(s)
- Dinorah M S Marçal
- Departamento de Biologia Vegetal, Universidade Federal de Viçosa, 36570-900, Viçosa, MG, Brazil.
| | - Rodrigo T Avila
- Departamento de Biologia Vegetal, Universidade Federal de Viçosa, 36570-900, Viçosa, MG, Brazil.
| | | | - Raylla P B de Souza
- Departamento de Biologia Vegetal, Universidade Federal de Viçosa, 36570-900, Viçosa, MG, Brazil.
| | - Carlos C Gomes Junior
- Departamento de Biologia Vegetal, Universidade Federal de Viçosa, 36570-900, Viçosa, MG, Brazil.
| | - Lucas R Ponte
- Departamento de Biologia Vegetal, Universidade Federal de Viçosa, 36570-900, Viçosa, MG, Brazil.
| | - Marcela L Barbosa
- Departamento de Biologia Vegetal, Universidade Federal de Viçosa, 36570-900, Viçosa, MG, Brazil.
| | - Leonardo A Oliveira
- Departamento de Biologia Vegetal, Universidade Federal de Viçosa, 36570-900, Viçosa, MG, Brazil.
| | - Samuel C V Martins
- Departamento de Biologia Vegetal, Universidade Federal de Viçosa, 36570-900, Viçosa, MG, Brazil.
| | - José D C Ramalho
- PlantStress & Biodiversity Lab, Centro de Estudos Florestais (CEF), Dept. Recursos Naturais, Ambiente e Território (DRAT), Instituto Superior de Agronomia (ISA), Universidade de Lisboa (ULisboa), Quinta do Marquês, Av. da República, 2784-505, Oeiras, Portugal; Unidade de Geobiociências, Geoengenharias e Geotecnologias (GeoBioTec), Faculdade de Ciências e Tecnologia (FCT), Universidade NOVA de Lisboa (UNL), Monte de Caparica, 2829-516, Caparica, Portugal.
| | - Fábio M DaMatta
- Departamento de Biologia Vegetal, Universidade Federal de Viçosa, 36570-900, Viçosa, MG, Brazil.
| |
Collapse
|
28
|
Fang J, Lutz JA, Wang L, Shugart HH, Yan X. Using climate-driven leaf phenology and growth to improve predictions of gross primary productivity in North American forests. GLOBAL CHANGE BIOLOGY 2020; 26:6974-6988. [PMID: 32926493 DOI: 10.1111/gcb.15349] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Accepted: 08/25/2020] [Indexed: 06/11/2023]
Abstract
Forest ecosystems are an important sink for terrestrial carbon sequestration. Hence, accurate modeling of the intra- and interannual variability of forest photosynthetic productivity remains a key objective in global biology. Applying climate-driven leaf phenology and growth in models may improve predictions of the forest gross primary productivity (GPP). We used a dynamic non-structural carbohydrates (NSC) model (FORCCHN2) that couples leaf development and phenology to investigate the relationships among photosynthesis and environmental factors. FORCCHN2 simulates spring and autumn phenological events from heat and chilling, respectively. Leaf area index data from satellites along with climate data estimated localized phenological parameters. NSC limitation, immediate temperature, accumulated heat, and growth potential comprised a daily leaf-growth model. Functionally, leaf growth was decoupled from photosynthesis. Leaf biomass determined overall photosynthetic production. We compared this model with outputs of the other six terrestrial biospheric models and with observations from the North American Carbon Program Site Interim Synthesis in 18 forest sites. This model improved the predicted performance of yearly GPP with a 57%-210% increase in correlation (median) and up to a 102% reduction in biases (median), compared to three prognostic models and three prescribed models. At the North America continental scale, the model predicted the average annual GPP of 7.38 Pg C/year from forest ecosystems during 1985-2016. The results showed an increasing trend of GPP in North America (1.0 Pg C/decade). The inclusion of climate-driven phenology and growth has a significant potential for improving dynamic vegetation models, and promotes a further understanding of the complex relationship between environment and photosynthesis.
Collapse
Affiliation(s)
- Jing Fang
- State Key Laboratory of Earth Surface Processes and Resource Ecology, Faculty of Geographical Science, Beijing Normal University, Beijing, China
| | - James A Lutz
- Department of Wildland Resources, Utah State University, Logan, UT, USA
| | - Leibin Wang
- College of Resources and Environment Science, Hebei Normal University, Shijiazhuang, China
- Hebei Key Laboratory of Environmental Change and Ecological Construction, Shijiazhuang, China
| | - Herman H Shugart
- Department of Environmental Sciences, University of Virginia, Charlottesville, VA, USA
| | - Xiaodong Yan
- State Key Laboratory of Earth Surface Processes and Resource Ecology, Faculty of Geographical Science, Beijing Normal University, Beijing, China
| |
Collapse
|
29
|
Furze ME, Huggett BA, Chamberlain CJ, Wieringa MM, Aubrecht DM, Carbone MS, Walker JC, Xu X, Czimczik CI, Richardson AD. Seasonal fluctuation of nonstructural carbohydrates reveals the metabolic availability of stemwood reserves in temperate trees with contrasting wood anatomy. TREE PHYSIOLOGY 2020; 40:1355-1365. [PMID: 32578851 DOI: 10.1093/treephys/tpaa080] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Accepted: 06/16/2020] [Indexed: 06/11/2023]
Abstract
Nonstructural carbohydrates (NSCs) play a critical role in plant physiology and metabolism, yet we know little about their distribution within individual organs such as the stem. This leaves many open questions about whether reserves deep in the stem are metabolically active and available to support functional processes. To gain insight into the availability of reserves, we measured radial patterns of NSCs over the course of a year in the stemwood of temperate trees with contrasting wood anatomy (ring porous vs diffuse porous). In a subset of trees, we estimated the mean age of soluble sugars within and between different organs using the radiocarbon (14C) bomb spike approach. First, we found that NSC concentrations were the highest and most seasonally dynamic in the outermost stemwood segments for both ring-porous and diffuse-porous trees. However, while the seasonal fluctuation of NSCs was dampened in deeper stemwood segments for ring-porous trees, it remained high for diffuse-porous trees. These NSC dynamics align with differences in the proportion of functional sapwood and the arrangement of vessels between ring-porous and diffuse-porous trees. Second, radial patterns of 14C in the stemwood showed that sugars became older when moving toward the pith. The same pattern was found in the coarse roots. Finally, when taken together, our results highlight how the radial distribution and age of NSCs relate to wood anatomy and suggest that while deeper, and likely older, reserves in the stemwood fluctuated across the seasons, the deepest reserves at the center of the stem were not used to support tree metabolism under usual environmental conditions.
Collapse
Affiliation(s)
- Morgan E Furze
- Department of Organismic and Evolutionary Biology, Harvard University, 26 Oxford St, Cambridge, MA 02138, USA
- School of the Environment, Yale University, 195 Prospect St, New Haven, CT 06511, USA
| | - Brett A Huggett
- Department of Biology, Bates College, 44 Campus Ave, Lewiston, ME, 04240, USA
| | - Catherine J Chamberlain
- Department of Organismic and Evolutionary Biology, Harvard University, 26 Oxford St, Cambridge, MA 02138, USA
| | - Molly M Wieringa
- Department of Organismic and Evolutionary Biology, Harvard University, 26 Oxford St, Cambridge, MA 02138, USA
| | - Donald M Aubrecht
- Department of Organismic and Evolutionary Biology, Harvard University, 26 Oxford St, Cambridge, MA 02138, USA
| | - Mariah S Carbone
- Department of Biological Sciences, Northern Arizona University, PO Box 5640, Flagstaff, AZ, 86011, USA
- Center for Ecosystem Science and Society, Northern Arizona University, PO Box 5620, Flagstaff, AZ, 86011, USA
| | - Jennifer C Walker
- Department of Earth System Science, University of California, Irvine, 3200 Croul Hall, Irvine, CA, 92697, USA
| | - Xiaomei Xu
- Department of Earth System Science, University of California, Irvine, 3200 Croul Hall, Irvine, CA, 92697, USA
| | - Claudia I Czimczik
- Department of Earth System Science, University of California, Irvine, 3200 Croul Hall, Irvine, CA, 92697, USA
| | - Andrew D Richardson
- Center for Ecosystem Science and Society, Northern Arizona University, PO Box 5620, Flagstaff, AZ, 86011, USA
- School of Informatics, Computing, and Cyber Systems, Northern Arizona University, PO Box 5693, Flagstaff, AZ, 86011, USA
| |
Collapse
|
30
|
Prescott CE, Grayston SJ, Helmisaari HS, Kaštovská E, Körner C, Lambers H, Meier IC, Millard P, Ostonen I. Surplus Carbon Drives Allocation and Plant-Soil Interactions. Trends Ecol Evol 2020; 35:1110-1118. [PMID: 32928565 DOI: 10.1016/j.tree.2020.08.007] [Citation(s) in RCA: 87] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Revised: 08/11/2020] [Accepted: 08/18/2020] [Indexed: 11/18/2022]
Abstract
Plant growth is usually constrained by the availability of nutrients, water, or temperature, rather than photosynthetic carbon (C) fixation. Under these conditions leaf growth is curtailed more than C fixation, and the surplus photosynthates are exported from the leaf. In plants limited by nitrogen (N) or phosphorus (P), photosynthates are converted into sugars and secondary metabolites. Some surplus C is translocated to roots and released as root exudates or transferred to root-associated microorganisms. Surplus C is also produced under low moisture availability, low temperature, and high atmospheric CO2 concentrations, with similar below-ground effects. Many interactions among above- and below-ground ecosystem components can be parsimoniously explained by the production, distribution, and release of surplus C under conditions that limit plant growth.
Collapse
Affiliation(s)
- Cindy E Prescott
- Department of Forest and Conservation Sciences, University of British Columbia, 2424 Main Mall, Vancouver, BC, Canada V6T1Z4.
| | - Sue J Grayston
- Department of Forest and Conservation Sciences, University of British Columbia, 2424 Main Mall, Vancouver, BC, Canada V6T1Z4
| | - Heljä-Sisko Helmisaari
- Department of Forest Sciences, University of Helsinki, P.O. Box 27, FI-00014 Helsinki, Finland
| | - Eva Kaštovská
- Department of Ecosystem Biology, University of South Bohemia, Branisovska 1760, Ceske Budejovice 37005, Czech Republic
| | - Christian Körner
- Institute of Botany, University of Basel, Schönbeinstr. 6, CH-4056 Basel, Switzerland
| | - Hans Lambers
- School of Biological Sciences, The University of Western Australia, Crawley (Perth), WA 6009, Australia
| | - Ina C Meier
- Plant Ecology, Albrecht-von-Haller Institute for Plant Sciences, University of Goettingen, 37073 Göttingen, Germany
| | - Peter Millard
- Manaaki Whenua - Landcare Research, Lincoln 7640, New Zealand
| | - Ivika Ostonen
- Institute of Ecology and Earth Sciences, University of Tartu, Vanemuise 46, 51014, Tartu, Estonia
| |
Collapse
|
31
|
Urrutia-Jalabert R, Lara A, Barichivich J, Vergara N, Rodriguez CG, Piper FI. Low Growth Sensitivity and Fast Replenishment of Non-structural Carbohydrates in a Long-Lived Endangered Conifer After Drought. FRONTIERS IN PLANT SCIENCE 2020; 11:905. [PMID: 32733500 PMCID: PMC7357304 DOI: 10.3389/fpls.2020.00905] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Accepted: 06/02/2020] [Indexed: 06/11/2023]
Abstract
There is an ongoing debate on whether a drought induced carbohydrate limitation (source limitation) or a direct effect of water shortage (sink limitation) limit growth under drought. In this study, we investigated the effects of the two driest summers recorded in southern Chile in the last seven decades, on the growth and non-structural carbohydrates (NSC) concentrations of the slow-growing conifer Fitzroya cupressoides. Specifically, we studied the seasonal variation of NSC in saplings and adults one and two years after the occurrence of a 2 year-summer drought at two sites of contrasting precipitation and productivity (mesic-productive vs. rainy-less productive). We also evaluated radial growth before, during and after the drought, and predicted that drought could have reduced growth. If drought caused C source limitation, we expected that NSCs will be lower during the first than the second year after drought. Conversely, similar NSC concentrations between years or higher NSC concentrations in the first year would be supportive of sink limitation. Also, due to the lower biomass of saplings compared with adults, we expected that saplings should experience stronger seasonal NSC remobilization than adults. We confirmed this last expectation. Moreover, we found no significant growth reduction during drought in the rainy site and a slightly significant growth reduction at the mesic site for both saplings and adults. Across organs and in both sites and age classes, NSC, starch, and sugar concentrations were generally higher in the first than in the second year following drought, while NSC seasonal remobilization was generally lower. Higher NSC concentrations along with lower seasonal NSC remobilization during the first post-drought year are supportive of sink limitation. However, as these results were found at both sites while growth decreased slightly and just at the mesic site, limited growth only is unlikely to have caused NSC accumulation. Rather, these results suggest that the post-drought dynamics of carbohydrate storage are partly decoupled from the growth dynamics, and that the rebuild of C reserves after drought may be a priority in this species.
Collapse
Affiliation(s)
- Rocío Urrutia-Jalabert
- Instituto Forestal INFOR, Valdivia, Chile
- Laboratorio de Dendrocronología y Cambio Global, Facultad de Ciencias Forestales y Recursos Naturales, Instituto de Conservación, Biodiversidad y Territorio, Universidad Austral de Chile, Valdivia, Chile
- Centro de Ciencia del Clima y la Resiliencia, CR2, Santiago, Chile
| | - Antonio Lara
- Laboratorio de Dendrocronología y Cambio Global, Facultad de Ciencias Forestales y Recursos Naturales, Instituto de Conservación, Biodiversidad y Territorio, Universidad Austral de Chile, Valdivia, Chile
- Centro de Ciencia del Clima y la Resiliencia, CR2, Santiago, Chile
- Fundación Centro de los Bosques Nativos FORECOS, Valdivia, Chile
| | - Jonathan Barichivich
- Laboratorio de Dendrocronología y Cambio Global, Facultad de Ciencias Forestales y Recursos Naturales, Instituto de Conservación, Biodiversidad y Territorio, Universidad Austral de Chile, Valdivia, Chile
- Laboratoire des Sciences du Climat et de l’Environnement, IPSL, CRNS/CEA/UVSQ, Paris, France
| | - Nicolás Vergara
- Centro de Ciencia del Clima y la Resiliencia, CR2, Santiago, Chile
| | - Carmen Gloria Rodriguez
- Laboratorio de Dendrocronología y Cambio Global, Facultad de Ciencias Forestales y Recursos Naturales, Instituto de Conservación, Biodiversidad y Territorio, Universidad Austral de Chile, Valdivia, Chile
| | - Frida I. Piper
- Centro de Investigación en Ecosistemas de la Patagonia, Coyhaique, Chile
| |
Collapse
|
32
|
Mund M, Herbst M, Knohl A, Matthäus B, Schumacher J, Schall P, Siebicke L, Tamrakar R, Ammer C. It is not just a 'trade-off': indications for sink- and source-limitation to vegetative and regenerative growth in an old-growth beech forest. THE NEW PHYTOLOGIST 2020; 226:111-125. [PMID: 31901219 DOI: 10.1111/nph.16408] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2018] [Accepted: 11/10/2019] [Indexed: 06/10/2023]
Abstract
Controls on tree growth are key issues in plant physiology. The hypothesis of our study was that the interannual variability of wood and fruit production are primarily controlled directly by weather conditions (sink limitation), while carbon assimilation (source limitation) plays a secondary role. We analyzed the interannual variability of weather conditions, gross primary productivity (GPP) and net primary productivity (NPP) of wood and fruits of an old-growth, unmanaged Fagus sylvatica forest over 14 yr, including six mast years. In a multiple linear regression model, c. 71% of the annual variation in wood-NPP could be explained by mean air temperature in May, precipitation from April to May (positive influence) and fruit-NPP (negative influence). GPP of June to July solely explained c. 42% of the variation in wood-NPP. Fruit-NPP was positively related to summer precipitation 2 yr before (R2 = 0.85), and negatively to precipitation in May (R2 = 0.83) in the fruit years. GPP had no influence on fruit-NPP. Our results suggest a complex system of sink and source limitations to tree growth driven by weather conditions and going beyond a simple carbon-mediated 'trade-off' between regenerative and vegetative growth.
Collapse
Affiliation(s)
- Martina Mund
- Silviculture and Forest Ecology of the Temperate Zones, University of Göttingen, Büsgenweg 1, D-37077, Göttingen, Germany
| | - Mathias Herbst
- German Meteorological Service, Centre for Agrometeorological Research, Bundesallee 33, D-38116, Braunschweig, Germany
| | - Alexander Knohl
- Bioclimatology, University of Göttingen, Büsgenweg 2, D-37077, Göttingen, Germany
- Centre of Biodiversity and Sustainable Land Use (CBL), University of Göttingen, Büsgenweg 1, D-37073, Göttingen, Germany
| | - Bertrand Matthäus
- Max Rubner-Institute, Federal Research Institute of Nutrition and Food, Schützenberg 12, D-32756, Detmold, Germany
| | - Jens Schumacher
- Institute of Mathematics, University of Jena, Ernst-Abbe-Platz 2, D-07743, Jena, Germany
| | - Peter Schall
- Silviculture and Forest Ecology of the Temperate Zones, University of Göttingen, Büsgenweg 1, D-37077, Göttingen, Germany
| | - Lukas Siebicke
- Bioclimatology, University of Göttingen, Büsgenweg 2, D-37077, Göttingen, Germany
| | - Rijan Tamrakar
- Bioclimatology, University of Göttingen, Büsgenweg 2, D-37077, Göttingen, Germany
- School of Natural Sciences, Bangor University, Bangor, LL57 2UW, UK
| | - Christian Ammer
- Silviculture and Forest Ecology of the Temperate Zones, University of Göttingen, Büsgenweg 1, D-37077, Göttingen, Germany
- Centre of Biodiversity and Sustainable Land Use (CBL), University of Göttingen, Büsgenweg 1, D-37073, Göttingen, Germany
| |
Collapse
|
33
|
Piper FI. Decoupling between growth rate and storage remobilization in broadleaf temperate tree species. Funct Ecol 2020. [DOI: 10.1111/1365-2435.13552] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Affiliation(s)
- Frida I. Piper
- Centro de Investigación en Ecosistemas de la Patagonia (CIEP) Coyhaique Chile
| |
Collapse
|
34
|
Teste FP, Jones MD, Dickie IA. Dual-mycorrhizal plants: their ecology and relevance. THE NEW PHYTOLOGIST 2020; 225:1835-1851. [PMID: 31514244 DOI: 10.1111/nph.16190] [Citation(s) in RCA: 61] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Accepted: 08/17/2019] [Indexed: 06/10/2023]
Abstract
Dual-mycorrhizal plants are capable of associating with fungi that form characteristic arbuscular mycorrhizal (AM) and ectomycorrhizal (EM) structures. Here, we address the following questions: (1) How many dual-mycorrhizal plant species are there? (2) What are the advantages for a plant to host two, rather than one, mycorrhizal types? (3) Which factors can provoke shifts in mycorrhizal dominance (i.e. mycorrhizal switching)? We identify a large number (89 genera within 32 families) of confirmed dual-mycorrhizal plants based on observing arbuscules or coils for AM status and Hartig net or similar structures for EM status within the same plant species. We then review the possible nutritional benefits and discuss the possible mechanisms leading to net costs and benefits. Cost and benefits of dual-mycorrhizal status appear to be context dependent, particularly with respect to the life stage of the host plant. Mycorrhizal switching occurs under a wide range of abiotic and biotic factors, including soil moisture and nutrient status. The relevance of dual-mycorrhizal plants in the ecological restoration of adverse sites where plants are not carbon limited is discussed. We conclude that dual-mycorrhizal plants are underutilized in ecophysiological-based experiments, yet are powerful model plant-fungal systems to better understand mycorrhizal symbioses without confounding host effects.
Collapse
Affiliation(s)
- François P Teste
- Grupo de Estudios Ambientales, IMASL-CONICET & Universidad Nacional de San Luis, Av. Ejercito de los Andes 950 (5700), San Luis, Argentina
- School of Biological Sciences, The University of Western Australia, 35 Stirling Highway, Crawley (Perth), WA, 6009, Australia
| | - Melanie D Jones
- Department of Biology, University of British Columbia, Okanagan Campus, Kelowna, BC, V1V 1V7, Canada
| | - Ian A Dickie
- Bio-Protection Research Centre, School of Biological Sciences, University of Canterbury, Christchurch, 8140, New Zealand
| |
Collapse
|
35
|
Wiley E, King CM, Landhäusser SM. Identifying the relevant carbohydrate storage pools available for remobilization in aspen roots. TREE PHYSIOLOGY 2019; 39:1109-1120. [PMID: 31094427 DOI: 10.1093/treephys/tpz051] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2018] [Revised: 02/27/2019] [Accepted: 04/23/2019] [Indexed: 05/17/2023]
Abstract
Nonstructural carbohydrate (NSC) remobilization remains poorly understood in trees. In particular, it remains unclear (i) which tissues (e.g., living bark or xylem) and compounds (sugars or starch) in woody plants are the main sources of remobilized carbon, (ii) to what extent these NSC pools can be depleted and (iii) whether initial NSC mass or concentration is a better predictor of regrowth potential following disturbance. To address these questions, we collected root segments from a large mature trembling aspen stand; we then allowed them to resprout (sucker) in the dark and remobilize NSC until all sprouts had died. We found that initial starch mass, not concentration, was the best predictor of subsequent sprout mass. In total, more NSC mass (~4×) was remobilized from the living inner bark than the xylem of the roots. After resprouting, root starch was generally depleted to <0.6% w/w in both tissues. In contrast, a large portion of sugars appear unavailable for remobilization: sugar concentrations were only reduced to 12% w/w in the bark and 2% in the xylem. These findings suggest that in order to test whether plant processes like resprouting are limited by storage we need to (i) measure storage in the living bark, not just the xylem, (ii) consider storage pool size-not just concentration-and (iii) carefully determine which compounds are actually components of the storage pool.
Collapse
Affiliation(s)
- Erin Wiley
- Department of Renewable Resources, University of Alberta, Edmonton, Canada
| | - Carolyn M King
- Department of Renewable Resources, University of Alberta, Edmonton, Canada
| | | |
Collapse
|
36
|
Michelot-Antalik A, Granda E, Fresneau C, Damesin C. Evidence of a seasonal trade-off between growth and starch storage in declining beeches: assessment through stem radial increment, non-structural carbohydrates and intra-ring δ13C. TREE PHYSIOLOGY 2019; 39:831-844. [PMID: 30824921 DOI: 10.1093/treephys/tpz008] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2018] [Revised: 01/08/2019] [Indexed: 06/09/2023]
Abstract
Forest decline is reported in recent decades all over the world. However, developing a clear vision of the associated tree dysfunctioning is still a challenge for plant physiologists. In this study, our aim was to examine the seasonal carbon adjustments of beech trees in the case of a long-term drought-induced decline. We compared healthy and declining trees in terms of stem radial growth, phloem sugar content and δ13C, together with xylem carbohydrates and intra-ring δ13C patterns. The radial growth of declining trees was clearly reduced by lower growth rates and shorter growing season length (44 days compared with healthy trees). The soluble sugar content was higher in the xylem of declining trees compared with the healthy ones, but similar in the phloem except at the end of their growth. Declining trees increased their levels of xylem starch content from budburst until the date of maximal growth rate. These reserve dynamics revealed an early trade-off between radial growth and starch storage that might be the result of an active or passive process. For declining trees, the slight decrease of intra-ring cellulose δ13C pattern during the early growing season was attributed to the synthesis of 13C enriched starch. For healthy trees, δ13C patterns were characterized by a progressive 13C increase along the ring, attributed to increased water-use efficiency (WUE) in response to decreased water availability. Individual variations of the crown area were negatively correlated to the intra-ring δ13C amplitude, which was ascribed to variations in canopy WUE and resource competition for healthy trees and partly to variations in the amount of reserves accumulated during spring for declining ones. Our study highlights the carbon physiological adjustment of declining trees towards reducing spring growth while storing starch, which can be reflected in the individual intra-ring cellulose δ13C patterns.
Collapse
Affiliation(s)
- Alice Michelot-Antalik
- Université de Lorraine, Inra, LAE, Nancy, France
- Laboratoire Ecologie Systématique et Evolution, UMR 8079, Université Paris-Sud, CNRS, AgroParisTech, Orsay, France
| | - Elena Granda
- Laboratoire Ecologie Systématique et Evolution, UMR 8079, Université Paris-Sud, CNRS, AgroParisTech, Orsay, France
- Department of Crop and Forest Sciences - AGROTECNIO Center, Universitat de Lleida, Lleida, Spain
| | - Chantal Fresneau
- Laboratoire Ecologie Systématique et Evolution, UMR 8079, Université Paris-Sud, CNRS, AgroParisTech, Orsay, France
| | - Claire Damesin
- Laboratoire Ecologie Systématique et Evolution, UMR 8079, Université Paris-Sud, CNRS, AgroParisTech, Orsay, France
| |
Collapse
|
37
|
Lõhmus K, Rosenvald K, Ostonen I, Kukumägi M, Uri V, Tullus A, Aosaar J, Varik M, Kupper P, Torga R, Maddison M, Soosaar K, Sõber J, Mander Ü, Kaasik A, Sõber A. Elevated atmospheric humidity shapes the carbon cycle of a silver birch forest ecosystem: A FAHM study. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 661:441-448. [PMID: 30677689 DOI: 10.1016/j.scitotenv.2019.01.160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2018] [Revised: 01/07/2019] [Accepted: 01/13/2019] [Indexed: 06/09/2023]
Abstract
Processes determining the carbon (C) balance of a forest ecosystem are influenced by a number of climatic and environmental factors. In Northern Europe, a rise in atmospheric humidity and precipitation is predicted. The study aims to ascertain the effect of elevated atmospheric humidity on the components of the C budget and on the C-sequestration capacity of a young birch forest. Biomass production, soil respiration, and other C fluxes were measured in young silver birch (Betula pendula Roth) stands growing on the Free Air Humidity Manipulation (FAHM) experimental site, located in South-East Estonia. The C input fluxes: C sequestration in trees and understory, litter input into soil, and methane oxidation, as well as C output fluxes: soil heterotrophic respiration and C leaching were estimated. Humidified birch stands stored C from the atmosphere, but control stands can be considered as C neutral. Two years of elevated air humidity increased C sequestration in the understory but decreased it in trees. Humidification treatment increased remarkably the C input to the soil. The main reason for such an increase was the higher root litter input into the soil, brought about by the more than two-fold increase of belowground biomass production of the understory in the humidification treatment. Elevated atmospheric humidity increased C sequestration in young silver birch stands, mitigating increasing CO2 concentration in the atmosphere. However, the effect of elevated atmospheric humidity is expected to decrease over time, as plants and soil organisms acclimate, and new communities emerge.
Collapse
Affiliation(s)
- K Lõhmus
- Institute of Ecology and Earth Sciences, University of Tartu, Lai 40, Tartu 51005, Estonia
| | - K Rosenvald
- Institute of Ecology and Earth Sciences, University of Tartu, Lai 40, Tartu 51005, Estonia.
| | - I Ostonen
- Institute of Ecology and Earth Sciences, University of Tartu, Lai 40, Tartu 51005, Estonia
| | - M Kukumägi
- Institute of Ecology and Earth Sciences, University of Tartu, Lai 40, Tartu 51005, Estonia
| | - V Uri
- Institute of Forestry and Rural Engineering, Estonian University of Life Sciences, Kreutzwaldi 5, Tartu 51014, Estonia
| | - A Tullus
- Institute of Ecology and Earth Sciences, University of Tartu, Lai 40, Tartu 51005, Estonia
| | - J Aosaar
- Institute of Forestry and Rural Engineering, Estonian University of Life Sciences, Kreutzwaldi 5, Tartu 51014, Estonia
| | - M Varik
- Institute of Forestry and Rural Engineering, Estonian University of Life Sciences, Kreutzwaldi 5, Tartu 51014, Estonia
| | - P Kupper
- Institute of Ecology and Earth Sciences, University of Tartu, Lai 40, Tartu 51005, Estonia
| | - R Torga
- Institute of Ecology and Earth Sciences, University of Tartu, Lai 40, Tartu 51005, Estonia
| | - M Maddison
- Institute of Ecology and Earth Sciences, University of Tartu, Lai 40, Tartu 51005, Estonia
| | - K Soosaar
- Institute of Ecology and Earth Sciences, University of Tartu, Lai 40, Tartu 51005, Estonia
| | - J Sõber
- Institute of Ecology and Earth Sciences, University of Tartu, Lai 40, Tartu 51005, Estonia
| | - Ü Mander
- Institute of Ecology and Earth Sciences, University of Tartu, Lai 40, Tartu 51005, Estonia
| | - A Kaasik
- Institute of Ecology and Earth Sciences, University of Tartu, Lai 40, Tartu 51005, Estonia
| | - A Sõber
- Institute of Ecology and Earth Sciences, University of Tartu, Lai 40, Tartu 51005, Estonia
| |
Collapse
|
38
|
Deslauriers A, Fournier MP, Cartenì F, Mackay J. Phenological shifts in conifer species stressed by spruce budworm defoliation. TREE PHYSIOLOGY 2019; 39:590-605. [PMID: 30597102 DOI: 10.1093/treephys/tpy135] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2018] [Revised: 10/31/2018] [Accepted: 11/20/2018] [Indexed: 06/09/2023]
Abstract
Synchrony between host budburst and insect emergence greatly influences the time window for insect development and survival. A few alterations of bud phenology have been reported under defoliation without clear consensus regarding the direction of effects, i.e., advance or delay. Here, we compared budburst phenology between conifers in defoliation and control treatments, and measured carbon allocation as a potential mechanistic explanation of changes in phenology. In a 2-year greenhouse experiment, saplings of balsam fir, black spruce and white spruce of two different provenances (north and south) were subjected to either control (no larvae) or natural defoliation treatment (larvae added) by spruce budworm. Bud and instar phenology, primary and secondary growth, defoliation and non-structural carbohydrates were studied during the growing season. No differences were observed in bud phenology during the first year of defoliation. After 1 year of defoliation, bud phenology advanced by 6-7 days in black spruce and balsam fir and by 3.5 days in white spruce compared with the control. Because of this earlier bud break, apical and shoot growth exceeded 50% of its final length before mature instar defoliation occurred, which decreased the overall level of damage. A sugar-mediated response, via earlier starch breakdown, and higher sugar availability to buds explains the advanced budburst in defoliated saplings. The advanced phenological response to defoliation was consistent across the conifer species and provenances except for one species × provenance combination. Allocation of carbon to buds and shoots growth at the expense of wood growth in the stem and reserve accumulation represents a shift in the physiological resources priorities to ensure tree survival. This advancement in bud phenology could be considered as a physiological response to defoliation based on carbohydrate needs for primary growth, rather than a resistance trait to spruce budworm.
Collapse
Affiliation(s)
- Annie Deslauriers
- Département des Sciences Fondamentales, Université du Québec à Chicoutimi, 555 Boulevard de l'Université, Chicoutimi, QC, Canada
| | - Marie-Pier Fournier
- Département des Sciences Fondamentales, Université du Québec à Chicoutimi, 555 Boulevard de l'Université, Chicoutimi, QC, Canada
| | - Fabrizio Cartenì
- Department of Agricultural Sciences, University of Naples Federico II, Via Università 100, Portici (NA), Italy
| | - John Mackay
- Centre d'Étude de la Forêt, Département des Sciences du Bois et de la Forêt, Université Laval, Québec, QC, Canada
- Institut de Biologie Intégrative et des Systèmes, Université Laval, Québec, QC, Canada
- Department of Plant Sciences, University of Oxford, Oxford, UK
| |
Collapse
|
39
|
Decreased Temperature with Increasing Elevation Decreases the End-Season Leaf-to-Wood Reallocation of Resources in Deciduous Betula ermanii Cham. Trees. FORESTS 2019. [DOI: 10.3390/f10020166] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Global air temperature has increased and continues to increase, especially in high latitude and high altitude areas, which may affect plant resource physiology and thus plant growth and productivity. The resource remobilization efficiency of plants in response to global warming is, however, still poorly understood. We thus assessed end-season resource remobilization from leaves to woody tissues in deciduous Betula ermanii Cham. trees grown along an elevational gradient ranging from 1700 m to 2187 m a.s.l. on Changbai Mountain, northeastern China. We hypothesized that end-season resource remobilization efficiency from leaves to storage tissues increases with increasing elevation or decreasing temperature. To test this hypothesis, concentrations of non-structural carbohydrates (NSCs), nitrogen (N), phosphorus (P), and potassium (K) during peak shoot growth (July) were compared with those at the end of growing season (September on Changbai Mt.) for each tissue type. To avoid leaf phenological effects on parameters, fallen leaves were collected at the end-season. Except for July-shoot NSC and July-leaf K, tissue concentrations of NSC, N, P, and K did not decrease with increasing elevation for both July and September. We found that the end-season leaf-to-wood reallocation efficiency decreased with increasing elevation. This lower reallocation efficiency may result in resource limitation in high-elevation trees. Future warming may promote leaf-to-wood resource reallocation, leading to upward shift of forests to higher elevations. The NSC, N, P, and K accumulated in stems and roots but not in shoots, especially in trees grown close to or at their upper limit, indicating that stems and roots of deciduous trees are the most important storage tissues over winter. Our results contribute to better understand the resource-related ecophysiological mechanisms for treeline formation, and vice versa, to better predict forest dynamics at high elevations in response to global warming. Our study provides resource-related ecophysiological knowledge for developing management strategies for high elevation forests in a rapidly warming world.
Collapse
|
40
|
Furze ME, Huggett BA, Aubrecht DM, Stolz CD, Carbone MS, Richardson AD. Whole-tree nonstructural carbohydrate storage and seasonal dynamics in five temperate species. THE NEW PHYTOLOGIST 2019; 221:1466-1477. [PMID: 30368825 PMCID: PMC6587558 DOI: 10.1111/nph.15462] [Citation(s) in RCA: 84] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2018] [Accepted: 08/25/2018] [Indexed: 05/17/2023]
Abstract
Despite the importance of nonstructural carbohydrates (NSC) for growth and survival in woody plants, we know little about whole-tree NSC storage. The conventional theory suggests that NSC reserves will increase over the growing season and decrease over the dormant season. Here, we compare storage in five temperate tree species to determine the size and seasonal fluctuation of whole-tree total NSC pools as well as the contribution of individual organs. NSC concentrations in the branches, stemwood, and roots of 24 trees were measured across 12 months. We then scaled up concentrations to the whole-tree and ecosystem levels using allometric equations and forest stand inventory data. While whole-tree total NSC pools followed the conventional theory, sugar pools peaked in the dormant season and starch pools in the growing season. Seasonal depletion of total NSCs was minimal at the whole-tree level, but substantial at the organ level, particularly in branches. Surprisingly, roots were not the major storage organ as branches stored comparable amounts of starch throughout the year, and root reserves were not used to support springtime growth. Scaling up NSC concentrations to the ecosystem level, we find that commonly used, process-based ecosystem and land surface models all overpredict NSC storage.
Collapse
Affiliation(s)
- Morgan E. Furze
- Department of Organismic and Evolutionary BiologyHarvard University26 Oxford StCambridgeMA02138USA
| | | | - Donald M. Aubrecht
- Department of Organismic and Evolutionary BiologyHarvard University26 Oxford StCambridgeMA02138USA
| | - Claire D. Stolz
- Department of Organismic and Evolutionary BiologyHarvard University26 Oxford StCambridgeMA02138USA
| | - Mariah S. Carbone
- Center for Ecosystem Science and SocietyNorthern Arizona UniversityFlagstaffAZ86011USA
- Department of Biological SciencesNorthern Arizona UniversityFlagstaffAZ86011USA
| | - Andrew D. Richardson
- Center for Ecosystem Science and SocietyNorthern Arizona UniversityFlagstaffAZ86011USA
- School of Informatics, Computing, and Cyber SystemsNorthern Arizona UniversityFlagstaffAZ86011USA
| |
Collapse
|
41
|
Fatichi S, Pappas C, Zscheischler J, Leuzinger S. Modelling carbon sources and sinks in terrestrial vegetation. THE NEW PHYTOLOGIST 2019; 221:652-668. [PMID: 30339280 DOI: 10.1111/nph.15451] [Citation(s) in RCA: 70] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2018] [Accepted: 08/12/2018] [Indexed: 05/06/2023]
Abstract
Contents Summary 652 I. Introduction 652 II. Discrepancy in predicting the effects of rising [CO2 ] on the terrestrial C sink 655 III. Carbon and nutrient storage in plants and its modelling 656 IV. Modelling the source and the sink: a plant perspective 657 V. Plant-scale water and Carbon flux models 660 VI. Challenges for the future 662 Acknowledgements 663 Authors contributions 663 References 663 SUMMARY: The increase in atmospheric CO2 in the future is one of the most certain projections in environmental sciences. Understanding whether vegetation carbon assimilation, growth, and changes in vegetation carbon stocks are affected by higher atmospheric CO2 and translating this understanding in mechanistic vegetation models is of utmost importance. This is highlighted by inconsistencies between global-scale studies that attribute terrestrial carbon sinks to CO2 stimulation of gross and net primary production on the one hand, and forest inventories, tree-scale studies, and plant physiological evidence showing a much less pronounced CO2 fertilization effect on the other hand. Here, we review how plant carbon sources and sinks are currently described in terrestrial biosphere models. We highlight an uneven representation of complexity between the modelling of photosynthesis and other processes, such as plant respiration, direct carbon sinks, and carbon allocation, largely driven by available observations. Despite a general lack of data on carbon sink dynamics to drive model improvements, ways forward toward a mechanistic representation of plant carbon sinks are discussed, leveraging on results obtained from plant-scale models and on observations geared toward model developments.
Collapse
Affiliation(s)
- Simone Fatichi
- Institute of Environmental Engineering, ETH Zurich, Stefano Franscini Platz 5, 8093, Zurich, Switzerland
| | - Christoforos Pappas
- Département de géographie and Centre d'études nordiques, Université de Montréal, Montreal, QC, H2V 2B8, Canada
| | - Jakob Zscheischler
- Institute for Atmospheric and Climate Science, ETH Zurich, Universitätstrasse 16, 8092, Zurich, Switzerland
| | - Sebastian Leuzinger
- Institute for Applied Ecology New Zealand, School of Science, Auckland University of Technology, Wakefield Street 46, 1142, Auckland, New Zealand
| |
Collapse
|
42
|
Nitrogen Nutrition of European Beech Is Maintained at Sufficient Water Supply in Mixed Beech-Fir Stands. FORESTS 2018. [DOI: 10.3390/f9120733] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Research highlights: Interaction effects of coniferous on deciduous species have been investigated before the background of climate change. Background and objectives: The cultivation of European beech (Fagus sylvatica L.) in mixed stands has currently received attention, since the future performance of beech in mid-European forest monocultures in a changing climate is under debate. We investigated water relations and nitrogen (N) nutrition of beech in monocultures and mixed with silver-fir (Abies alba Mill.) in the Black Forest at different environmental conditions, and in the Croatian Velebit at the southern distribution limit of beech, over a seasonal course at sufficient water availability. Material and methods: Water relations were analyzed via δ13C signatures, as integrative measures of water supply assuming that photosynthesis processes were not impaired. N nutrition was characterized by N partitioning between soluble N fractions and structural N. Results: In the relatively wet year 2016, water relations of beech leaves, fir needles and roots differed by season, but generally not between beech monocultures and mixed cultivation. At all sites, previous and current year fir needles revealed significantly lower total N contents over the entire season than beech leaves. Fir fine roots exhibited higher or similar amounts of total N compared to needles. Correlation analysis revealed a strong relationship of leaf and root δ13C signatures with soil parameters at the mixed beech stands, but not at pure beech stands. While glutamine (Gln) uptake capacity of beech roots was strongly related to soil N in the monoculture beech stands, arginine (Arg) uptake capacities of beech roots were strongly related to soil N in mixed stands. Conclusions: Leaf N contents indicated a facilitative effect of silver-fir on beech on sites where soil total N concentrations where low, but an indication of competition effect where it was high. This improvement could be partially attributed to protein contents, but not to differences in uptake capacity of an individual N source. From these results it is concluded that despite similar performance of beech trees at the three field sites investigated, the association with silver-fir mediated interactive effects between species association, climate and soil parameters even at sufficient water supply.
Collapse
|
43
|
Li W, Hartmann H, Adams HD, Zhang H, Jin C, Zhao C, Guan D, Wang A, Yuan F, Wu J. The sweet side of global change-dynamic responses of non-structural carbohydrates to drought, elevated CO2 and nitrogen fertilization in tree species. TREE PHYSIOLOGY 2018; 38:1706-1723. [PMID: 29897549 DOI: 10.1093/treephys/tpy059] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2018] [Accepted: 05/02/2018] [Indexed: 06/08/2023]
Abstract
Non-structural carbohydrates (NSC) play a central role in plant functioning as energy carriers and building blocks for primary and secondary metabolism. Many studies have investigated how environmental and anthropogenic changes, like increasingly frequent and severe drought episodes, elevated CO2 and atmospheric nitrogen (N) deposition, influence NSC concentrations in individual trees. However, this wealth of data has not been analyzed yet to identify general trends using a common statistical framework. A thorough understanding of tree responses to global change is required for making realistic predictions of vegetation dynamics. Here we compiled data from 57 experimental studies on 71 tree species and conducted a meta-analysis to evaluate general responses of stored soluble sugars, starch and total NSC (soluble sugars + starch) concentrations in different tree organs (foliage, above-ground wood and roots) to drought, elevated CO2 and N deposition. We found that drought significantly decreased total NSC in roots (-17.3%), but not in foliage and above-ground woody tissues (bole, branch, stem and/or twig). Elevated CO2 significantly increased total NSC in foliage (+26.2%) and roots (+12.8%), but not in above-ground wood. By contrast, total NSC significantly decreased in roots (-17.9%), increased in above-ground wood (+6.1%), but was unaffected in foliage from N fertilization. In addition, the response of NSC to three global change drivers was strongly affected by tree taxonomic type, leaf habit, tree age and treatment intensity. Our results pave the way for a better understanding of general tree function responses to drought, elevated CO2 and N fertilization. The existing data also reveal that more long-term studies on mature trees that allow testing interactions between these factors are urgently needed to provide a basis for forecasting tree responses to environmental change at the global scale.
Collapse
Affiliation(s)
- Weibin Li
- State Key Laboratory of Grassland and Agro-ecosystems, Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, China
| | - Henrik Hartmann
- Max-Planck Institute for Biogeochemistry, Hans Knöll Str. 10, Jena, Germany
| | - Henry D Adams
- Department of Plant Biology, Ecology and Evolution, Oklahoma State University, Stillwater, OK, USA
| | - Hongxia Zhang
- Key Laboratory of Forest Ecology and Management, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Changjie Jin
- Key Laboratory of Forest Ecology and Management, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, China
| | - Chuanyan Zhao
- State Key Laboratory of Grassland and Agro-ecosystems, Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, China
| | - Dexin Guan
- Key Laboratory of Forest Ecology and Management, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, China
| | - Anzhi Wang
- Key Laboratory of Forest Ecology and Management, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, China
| | - Fenghui Yuan
- Key Laboratory of Forest Ecology and Management, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, China
| | - Jiabing Wu
- Key Laboratory of Forest Ecology and Management, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, China
| |
Collapse
|
44
|
Non-Structural Carbohydrate Dynamics in Leaves and Branches of Pinus massoniana (Lamb.) Following 3-Year Rainfall Exclusion. FORESTS 2018. [DOI: 10.3390/f9060315] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
45
|
Stinziano JR, Way DA, Bauerle WL. Improving models of photosynthetic thermal acclimation: Which parameters are most important and how many should be modified? GLOBAL CHANGE BIOLOGY 2018; 24:1580-1598. [PMID: 28991405 DOI: 10.1111/gcb.13924] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2017] [Accepted: 09/22/2017] [Indexed: 06/07/2023]
Abstract
Photosynthetic temperature acclimation could strongly affect coupled vegetation-atmosphere feedbacks in the global carbon cycle, especially as the climate warms. Thermal acclimation of photosynthesis can be modelled as changes in the parameters describing the direct effect of temperature on photosynthetic capacity (i.e., activation energy, Ea ; deactivation energy, Hd ; entropy parameter, ΔS) or the basal value of photosynthetic capacity (i.e., photosynthetic capacity measured at 25°C). However, the impact of acclimating these parameters (individually or in combination) on vegetative carbon gain is relatively unexplored. Here we compare the ability of 66 photosynthetic temperature acclimation scenarios to improve the ability of a spatially explicit canopy carbon flux model, MAESTRA, to predict eddy covariance data from a loblolly pine forest. We show that: (1) incorporating seasonal temperature acclimation of basal photosynthetic capacity improves the model's ability to capture seasonal changes in carbon fluxes and outperforms acclimation of other single factors (i.e., Ea or ΔS alone); (2) multifactor scenarios of photosynthetic temperature acclimation provide minimal (if any) improvement in model performance over single factor acclimation scenarios; (3) acclimation of Ea should be restricted to the temperature ranges of the data from which the equations are derived; and (4) model performance is strongly affected by the Hd parameter. We suggest that a renewed effort be made into understanding whether basal photosynthetic capacity, Ea , Hd and ΔS co-acclimate across broad temperature ranges to determine whether and how multifactor thermal acclimation of photosynthesis occurs.
Collapse
Affiliation(s)
- Joseph R Stinziano
- Department of Biology, The University of Western Ontario, London, ON, Canada
- Department of Horticulture and Landscape Architecture, Colorado State University, Fort Collins, CO, USA
| | - Danielle A Way
- Department of Biology, The University of Western Ontario, London, ON, Canada
- Nicholas School of the Environment, Duke University, Durham, NC, USA
| | - William L Bauerle
- Department of Horticulture and Landscape Architecture, Colorado State University, Fort Collins, CO, USA
| |
Collapse
|
46
|
Weber R, Schwendener A, Schmid S, Lambert S, Wiley E, Landhäusser SM, Hartmann H, Hoch G. Living on next to nothing: tree seedlings can survive weeks with very low carbohydrate concentrations. THE NEW PHYTOLOGIST 2018; 218:107-118. [PMID: 29424009 DOI: 10.1111/nph.14987] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2017] [Accepted: 12/07/2017] [Indexed: 06/08/2023]
Abstract
The usage of nonstructural carbohydrates (NSCs) to indicate carbon (C) limitation in trees requires knowledge of the minimum tissue NSC concentrations at lethal C starvation, and the NSC dynamics during and after severe C limitation. We completely darkened and subsequently released seedlings of two deciduous and two evergreen temperate tree species for varying periods. NSCs were measured in all major organs, allowing assessment of whole-seedling NSC balances. NSCs decreased fast in darkness, but seedlings survived species-specific whole-seedling starch concentrations as low as 0.4-0.8% per dry matter (DM), and sugar (sucrose, glucose and fructose) concentrations as low as 0.5-2.0% DM. After re-illumination, the refilling of NSC pools began within 3 wk, while the resumption of growth was delayed or restricted. All seedlings had died after 12 wk of darkness, and starch and sugar concentrations in most tissues were lower than 1% DM. We conclude that under the applied conditions, tree seedlings can survive several weeks with very low NSC reserves probably also using alternative C sources like lipids, proteins or hemicelluloses; lethal C starvation cannot be assumed, if NSC concentrations are higher than the minimum concentrations found in surviving seedlings; and NSC reformation after re-illumination occurs preferentially over growth.
Collapse
Affiliation(s)
- Raphael Weber
- Department of Environmental Sciences - Botany, University of Basel, Schönbeinstrasse 6, Basel, 4056, Switzerland
| | - Andrea Schwendener
- Department of Environmental Sciences - Botany, University of Basel, Schönbeinstrasse 6, Basel, 4056, Switzerland
| | - Sandra Schmid
- Department of Environmental Sciences - Botany, University of Basel, Schönbeinstrasse 6, Basel, 4056, Switzerland
| | - Savoyane Lambert
- Max-Planck Institute for Biogeochemistry, Hans Knöll Strasse 10, Jena, 07745, Germany
| | - Erin Wiley
- Department of Renewable Resources, University of Alberta, 442 Earth Sciences Building, Edmonton, AB, T6G 2E3, Canada
| | - Simon M Landhäusser
- Department of Renewable Resources, University of Alberta, 442 Earth Sciences Building, Edmonton, AB, T6G 2E3, Canada
| | - Henrik Hartmann
- Max-Planck Institute for Biogeochemistry, Hans Knöll Strasse 10, Jena, 07745, Germany
| | - Günter Hoch
- Department of Environmental Sciences - Botany, University of Basel, Schönbeinstrasse 6, Basel, 4056, Switzerland
| |
Collapse
|
47
|
Rainer-Lethaus G, Oberhuber W. Phloem Girdling of Norway Spruce Alters Quantity and Quality of Wood Formation in Roots Particularly Under Drought. FRONTIERS IN PLANT SCIENCE 2018; 9:392. [PMID: 29636766 PMCID: PMC5881222 DOI: 10.3389/fpls.2018.00392] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2018] [Accepted: 03/12/2018] [Indexed: 05/31/2023]
Abstract
Carbon (C) availability plays an essential role in tree growth and wood formation. We evaluated the hypothesis that a decrease in C availability (i) triggers mobilization of C reserves in the coarse roots of Picea abies to maintain growth and (ii) causes modification of wood structure notably under drought. The 6-year-old saplings were subjected to two levels of soil moisture (watered versus drought conditions) and root C status was manipulated by physically blocking phloem transport in the stem at three girdling dates (GDs). Stem girdling was done before the onset of bud break [day of the year (doy) 77], during vigorous aboveground shoot and radial stem growth (GD doy 138), and after cessation of shoot growth (GD doy 190). The effect of blockage of C transport on root growth, root phenology, and wood anatomical traits [cell lumen diameter (CLD) and cell wall thickness (CWT)] in earlywood (EW) and latewood (LW) was determined. To evaluate changes in belowground C status caused by girdling, non-structural carbohydrates (soluble sugars and starch) in coarse roots were determined at the time of girdling and after the growing season. Although fine root mass significantly decreased in response to blockage of phloem C transport, the phenology of root elongation growth was not affected. Surprisingly, radial root growth and CLD of EW tracheids in coarse roots were strikingly increased in drought-stressed trees, when girdling occurred before bud break or during aboveground stem growth. In watered trees, the growth response to girdling was less distinct, but the CWT of EW significantly increased. Starch reserves in the roots of girdled trees significantly decreased in both soil moisture treatments and at all GDs. We conclude that (i) radial growth and wood development in coarse roots of P. abies saplings are not only dependent on current photosynthates, and (ii) blockage of phloem transport induces physiological changes that outweigh drought effects imposed on root cambial activity and cell differentiation.
Collapse
Affiliation(s)
| | - Walter Oberhuber
- Department of Botany, University of Innsbruck, Innsbruck, Austria
| |
Collapse
|
48
|
Wiley E, Hoch G, Landhäusser SM. Dying piece by piece: carbohydrate dynamics in aspen (Populus tremuloides) seedlings under severe carbon stress. JOURNAL OF EXPERIMENTAL BOTANY 2017; 68:5221-5232. [PMID: 29036658 PMCID: PMC5853906 DOI: 10.1093/jxb/erx342] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2017] [Accepted: 09/14/2017] [Indexed: 05/17/2023]
Abstract
Carbon starvation as a mechanism of tree mortality is poorly understood. We exposed seedlings of aspen (Populus tremuloides) to complete darkness at 20 or 28 °C to identify minimum non-structural carbohydrate (NSC) concentrations at which trees die and to see if these levels vary between organs or with environmental conditions. We also first grew seedlings under different shade levels to determine if size affects survival time under darkness due to changes in initial NSC concentration and pool size and/or respiration rates. Darkness treatments caused a gradual dieback of tissues. Even after half the stem had died, substantial starch reserves were still present in the roots (1.3-3% dry weight), indicating limitations to carbohydrate remobilization and/or transport during starvation in the absence of water stress. Survival time decreased with increased temperature and with increasing initial shade level, which was associated with smaller biomass, higher respiration rates, and initially smaller NSC pool size. Dead tissues generally contained no starch, but sugar concentrations were substantially above zero and differed between organs (~2% in stems up to ~7.5% in leaves) and, at times, between temperature treatments and initial, pre-darkness shade treatments. Minimum root NSC concentrations were difficult to determine because dead roots quickly began to decompose, but we identify 5-6% sugar as a potential threshold for living roots. This variability may complicate efforts to identify critical NSC thresholds below which trees starve.
Collapse
Affiliation(s)
- Erin Wiley
- Department of Renewable Resources, University of Alberta, Edmonton, Canada
- Correspondence:
| | - Günter Hoch
- Department of Environmental Sciences - Botany, University of Basel, Basel, Switzerland
| | | |
Collapse
|
49
|
Sánchez-Carrillo S, Álvarez-Cobelas M, Angeler DG, Serrano-Grijalva L, Sánchez-Andrés R, Cirujano S, Schmid T. Elevated Atmospheric CO2 Increases Root Exudation of Carbon in Wetlands: Results from the First Free-Air CO2 Enrichment Facility (FACE) in a Marshland. Ecosystems 2017. [DOI: 10.1007/s10021-017-0189-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
50
|
Jhariya MK. Vegetation ecology and carbon sequestration potential of shrubs in tropics of Chhattisgarh, India. ENVIRONMENTAL MONITORING AND ASSESSMENT 2017; 189:518. [PMID: 28948417 DOI: 10.1007/s10661-017-6246-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2017] [Accepted: 09/20/2017] [Indexed: 06/07/2023]
Abstract
Tropical forests are well known to have great species diversity and contribute substantial share in terrestrial carbon (C) stocks worldwide. Shrubs are long-neglected life form in the forest ecosystem, playing many roles in the forest and human life. Shrub has great impact on vegetation attributes which in turn modify the C storage and capture. In the present investigation, an attempt has been made to explore the dynamics of shrub species in four fire regimes, viz. high, medium, low, and no fire zones of Bhoramdeo Wildlife Sanctuary of Kawardha forest division (Chhattisgarh), India. The variations in structure, diversity, biomass, productivity, and C sequestration potential in all the sites were quantified. The density and basal area of shrub varied from 1250 to 3750 individuals ha-1 and 2.79 to 4.92 m2 ha-1, respectively. The diversity indices showed that the value of Shannon index was highest in medium fire zone (3.77) followed by high, low, and no fire zones as 3.25, 3.12, and 2.32, respectively. The value of Simpson's index or concentration of dominance (Cd) ranged from 0.08 to 0.20, species richness from 0.56 to 1.58, equitability from 1.41 to 1.44, and beta diversity from 1.50 to 4.20, respectively. The total biomass and C storage ranged from 6.82 to 15.71 and from 2.93 to 6.76 t ha-1, respectively. The shrub density, importance value index (IVI), and abundance to frequency ratio (A/F) significantly correlated between high fire and medium fire zone. The basal area was found to be significantly positively correlated between high fire and medium fire, and low and no fire zones, respectively. Two-way cluster analysis reflected various patterns of clustering due to influence of the forest fire which showed that some species have distant clustering while some have smaller cluster. Principal component analysis (PCA) reflects variable scenario with respect to shrub layer. Ventilago calyculata and Zizyphus rotundifolia showed higher correlation between themselves in terms of basal area (BA). The total shrub production was 1.59-3.53 t ha-1 year-1 while the C sequestration potential of 0.71-1.57 t ha-1 year-1 under different fire regimes. Shrub community in the medium fire zone reflected higher productivity and higher C sequestration in comparison to other fire zone. Among the different plant parts, the biomass accumulation ratio was highest in the root of shrub community among various fire regimes. Screening of species for restoration and different land-use pattern on the basis of biomass accumulation and carbon sequestering potential would be an effective strategy for decision-making in sustainable forest management.
Collapse
Affiliation(s)
- Manoj Kumar Jhariya
- Department of Farm Forestry, Sarguja University, Ambikapur, CG, 497001, India.
| |
Collapse
|