1
|
John A, Keller I, Ebel KW, Neuhaus HE. Two critical membranes: how does the chloroplast envelope affect plant acclimation properties? JOURNAL OF EXPERIMENTAL BOTANY 2025; 76:214-227. [PMID: 39441968 DOI: 10.1093/jxb/erae436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Accepted: 10/22/2024] [Indexed: 10/25/2024]
Abstract
Chloroplasts play a pivotal role in the metabolism of leaf mesophyll cells, functioning as a cellular hub that orchestrates molecular reactions in response to environmental stimuli. These organelles contain complex protein machinery for energy conversion and are indispensable for essential metabolic pathways. Proteins located within the chloroplast envelope membranes facilitate bidirectional communication with the cell and connect essential pathways, thereby influencing acclimation processes to challenging environmental conditions such as temperature fluctuations and light intensity changes. Despite their importance, a comprehensive overview of the impact of envelope-located proteins during acclimation to environmental changes is lacking. Understanding the role of these proteins in acclimation processes could provide insights into enhancing stress tolerance under increasingly challenging environments. This review highlights the significance of envelope-located proteins in plant acclimation.
Collapse
Affiliation(s)
- Annalisa John
- University of Kaiserslautern, Plant Physiology, Paul-Ehrlich-Str., D-67663 Kaiserslautern, Germany
| | - Isabel Keller
- University of Kaiserslautern, Plant Physiology, Paul-Ehrlich-Str., D-67663 Kaiserslautern, Germany
| | - Katharina W Ebel
- University of Kaiserslautern, Plant Physiology, Paul-Ehrlich-Str., D-67663 Kaiserslautern, Germany
| | - H Ekkehard Neuhaus
- University of Kaiserslautern, Plant Physiology, Paul-Ehrlich-Str., D-67663 Kaiserslautern, Germany
| |
Collapse
|
2
|
Ahmad D, Ying Y, Bao J. Understanding starch biosynthesis in potatoes for metabolic engineering to improve starch quality: A detailed review. Carbohydr Polym 2024; 346:122592. [PMID: 39245484 DOI: 10.1016/j.carbpol.2024.122592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2024] [Revised: 07/27/2024] [Accepted: 08/06/2024] [Indexed: 09/10/2024]
Abstract
Potato tubers accumulate substantial quantities of starch, which serves as their primary energy reserve. As the predominant component of potato tubers, starch strongly influences tuber yield, processing quality, and nutritional attributes. Potato starch is distinguished from other food starches by its unique granule morphology and compositional attributes. It possesses large, oval granules with amylose content ranging from 20 to 33 % and high phosphorus levels, which collectively determine the unique physicochemical characteristics. These physicochemical properties direct the utility of potato starch across diverse food and industrial applications. This review synthesizes current knowledge on the molecular factors controlling potato starch biosynthesis and structure-function relationships. Key topics covered are starch granule morphology, the roles and regulation of major biosynthetic enzymes, transcriptional and hormonal control, genetic engineering strategies, and opportunities to tailor starch functionality. Elucidating the contributions of different enzymes in starch biosynthesis has enabled targeted modification of potato starch composition and properties. However, realizing the full potential of this knowledge faces challenges in optimizing starch quality without compromising plant vigor and yield. Overall, integrating multi-omics datasets with advanced genetic and metabolic engineering tools can facilitate the development of elite cultivars with enhanced starch yield and tailored functionalities.
Collapse
Affiliation(s)
- Daraz Ahmad
- Institute of Nuclear Agricultural Sciences, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Yining Ying
- Institute of Nuclear Agricultural Sciences, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Jinsong Bao
- Institute of Nuclear Agricultural Sciences, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China; Hainan Institute, Zhejiang University, Yazhou Bay Science and Technology City, Yazhou District, Sanya 572025, China.
| |
Collapse
|
3
|
Niu L, Wu X, Liu H, Hu X, Wang W. Leaf starch degradation by β-amylase ZmBAM8 influences drought tolerance in maize. Carbohydr Polym 2024; 345:122555. [PMID: 39227118 DOI: 10.1016/j.carbpol.2024.122555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2024] [Revised: 07/20/2024] [Accepted: 07/29/2024] [Indexed: 09/05/2024]
Abstract
As a typical C4 plant and important crop worldwide, maize is susceptible to drought. In maize, transitory starch (TS) turnover occurs in the vascular bundle sheath of leaves, differing from that in Arabidopsis (a C3 plant). This process, particularly its role in drought tolerance and the key starch-hydrolyzing enzymes involved, is not fully understood. We discovered that the expression of the β-amylase (BAM) gene ZmBAM8 is highly upregulated in the drought-tolerant inbred line Chang7-2t. Inspired by this finding, we systematically investigated TS degradation in maize lines, including Chang7-2t, Chang7-2, B104, and ZmBAM8 overexpression (OE) and knockout (KO) lines. We found that ZmBAM8 was significantly induced in the vascular bundle sheath by drought, osmotic stress, and abscisic acid. The stress-induced gene expression and chloroplast localization of ZmBAM8 align with the tissue and subcellular sites where TS turnover occurs. The recombinant ZmBAM8 was capable of effectively hydrolyzing leaf starch. Under drought conditions, the leaf starch in ZmBAM8-OE plants substantially decreased under light, while that in ZmBAM8-KO plants did not decrease. Compared with ZmBAM8-KO plants, ZmBAM8-OE plants exhibited increased drought tolerance. Our study provides insights into the significance of leaf starch degradation in C4 crops and contributes to the development of drought-resistant maize.
Collapse
Affiliation(s)
- Liangjie Niu
- National Key Laboratory of Wheat and Maize Crop Science, College of Life Sciences, Henan Agricultural University, Zhengzhou 450046, China
| | - Xiaolin Wu
- National Key Laboratory of Wheat and Maize Crop Science, College of Life Sciences, Henan Agricultural University, Zhengzhou 450046, China
| | - Hui Liu
- National Key Laboratory of Wheat and Maize Crop Science, College of Life Sciences, Henan Agricultural University, Zhengzhou 450046, China.
| | - Xiuli Hu
- National Key Laboratory of Wheat and Maize Crop Science, College of Life Sciences, Henan Agricultural University, Zhengzhou 450046, China
| | - Wei Wang
- National Key Laboratory of Wheat and Maize Crop Science, College of Life Sciences, Henan Agricultural University, Zhengzhou 450046, China.
| |
Collapse
|
4
|
Guo H, Guan Z, Liu Y, Chao K, Zhu Q, Zhou Y, Wu H, Pi E, Chen H, Zeng H. Comprehensive identification and expression analyses of sugar transporter genes reveal the role of GmSTP22 in salt stress resistance in soybean. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 216:109095. [PMID: 39255613 DOI: 10.1016/j.plaphy.2024.109095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 08/02/2024] [Accepted: 09/03/2024] [Indexed: 09/12/2024]
Abstract
The transport, compartmentation and allocation of sugar are critical for plant growth and development, as well as for stress resistance, but sugar transporter genes have not been comprehensively characterized in soybean. Here, we performed a genome-wide identification and expression analyses of sugar transporter genes in soybean in order to reveal their putative functions. A total of 122 genes encoding sucrose transporters (SUTs) and monosaccharide transporters (MSTs) were identified in soybean. They were classified into 8 subfamilies according to their phylogenetic relationships and their conserved motifs. Comparative genomics analysis indicated that whole genome duplication/segmental duplication and tandem duplication contributed to the expansion of sugar transporter genes in soybean. Expression analysis by retrieving transcriptome datasets suggested that most of these sugar transporter genes were expressed in various tissues, and a number of genes exhibited tissue-specific expression patterns. Several genes including GmSTP21, GmSFP8, and GmPLT5/6/7/8/9 were predominantly expressed in nodules, and GmPLT8 was significantly induced by rhizobia inoculation in root hairs. Transcript profiling and qRT-PCR analyses suggested that half of these sugar transporter genes were significantly induced or repressed under stresses like salt, drought, and cold. In addition, GmSTP22 was found to be localized in the plasma membrane, and its overexpression promoted plant growth and salt tolerance in transgenic Arabidopsis under the supplement with glucose or sucrose. This study provides insights into the evolutionary expansion, expression pattern and functional divergence of sugar transporter gene family, and will enable further understanding of their biological functions in the regulation of growth, yield formation and stress resistance of soybean.
Collapse
Affiliation(s)
- Hang Guo
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, 311121, China
| | - Zhengxing Guan
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, 311121, China
| | - Yuanyuan Liu
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, 311121, China
| | - Kexin Chao
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, 311121, China
| | - Qiuqing Zhu
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, 311121, China
| | - Yi Zhou
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, 311121, China
| | - Haicheng Wu
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, 311121, China
| | - Erxu Pi
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, 311121, China
| | - Huatao Chen
- Institute of Industrial Crops, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, China
| | - Houqing Zeng
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, 311121, China.
| |
Collapse
|
5
|
Aubry E, Clément G, Gilbault E, Dinant S, Le Hir R. Changes in SWEET-mediated sugar partitioning affect photosynthesis performance and plant response to drought. PHYSIOLOGIA PLANTARUM 2024; 176:e14623. [PMID: 39535317 DOI: 10.1111/ppl.14623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 10/24/2024] [Accepted: 10/29/2024] [Indexed: 11/16/2024]
Abstract
Sugars, produced through photosynthesis, are at the core of all organic compounds synthesized and used for plant growth and their response to environmental changes. Their production, transport, and utilization are highly regulated and integrated throughout the plant life cycle. The maintenance of sugar partitioning between the different subcellular compartments and between cells is important in adjusting the photosynthesis performance and response to abiotic constraints. We investigated the consequences of the disruption of four genes coding for SWEET sugar transporters in Arabidopsis (SWEET11, SWEET12, SWEET16, and SWEET17) on plant photosynthesis and the response to drought. Our results show that mutations in both SWEET11 and SWEET12 genes lead to an increase of cytosolic sugars in mesophyll cells and phloem parenchyma cells, which impacts several photosynthesis-related parameters. Further, our results suggest that in the swt11swt12 double mutant, the sucrose-induced feedback mechanism on stomatal closure is poorly efficient. On the other hand, changes in fructose partitioning in mesophyll and vascular cells, measured in the swt16swt17 double mutant, positively impact gas exchanges, probably through an increased starch synthesis together with higher vacuolar sugar storage. Finally, we propose that the impaired sugar partitioning, rather than the total amount of sugars observed in the quadruple mutant, is responsible for the enhanced sensitivity upon drought. This work highlights the importance of considering SWEET-mediated sugar partitioning rather than global sugar content in photosynthesis performance and plant response to drought. Such knowledge will pave the way to design new strategies to maintain plant productivity in a challenging environment.
Collapse
Affiliation(s)
- Emilie Aubry
- INRAE, AgroParisTech, Institut Jean-Pierre Bourgin (IJPB), Université Paris-Saclay, Versailles, France
| | - Gilles Clément
- INRAE, AgroParisTech, Institut Jean-Pierre Bourgin (IJPB), Université Paris-Saclay, Versailles, France
| | - Elodie Gilbault
- INRAE, AgroParisTech, Institut Jean-Pierre Bourgin (IJPB), Université Paris-Saclay, Versailles, France
| | - Sylvie Dinant
- INRAE, AgroParisTech, Institut Jean-Pierre Bourgin (IJPB), Université Paris-Saclay, Versailles, France
| | - Rozenn Le Hir
- INRAE, AgroParisTech, Institut Jean-Pierre Bourgin (IJPB), Université Paris-Saclay, Versailles, France
| |
Collapse
|
6
|
Dong X, Yang H, Chai Y, Han B, Liu J, Tian L, Cui S, Xiong S, Zhong M, Fu B, Qu LQ. Simultaneous knockout of cytosolic and plastidial disproportionating enzymes disrupts grain setting and filling in rice. PLANT PHYSIOLOGY 2024; 196:1391-1406. [PMID: 39056538 DOI: 10.1093/plphys/kiae398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 06/26/2024] [Accepted: 07/04/2024] [Indexed: 07/28/2024]
Abstract
Rice (Oryza sativa) plants contain plastidial and cytosolic disproportionating enzymes (DPE1 and DPE2). Our previous studies showed that DPE2 acts on maltose, the major product of starch degradation in pollens, releasing one glucose to fuel pollen tube growth and fertilization, whereas DPE1 participates in endosperm starch synthesis by transferring maltooligosyl groups from amylose to amylopectin, and removing excess short maltooligosaccharides. However, little is known about their integrated function. Here, we report that the coordinated actions of DPE1 and DPE2 contribute to grain setting and filling in rice. The dpe1dpe2 mutants could not be isolated from the progeny of heterozygous parental plants but were obtained via anther culture. Unlike that reported in Arabidopsis (Arabidopsis thaliana) and potato (Solanum tuberosum), the dpe1dpe2 rice plants grew normally but only yielded a small number of empty, unfilled seeds. In the dpe1dpe2 seeds, nutrient accumulation was substantially reduced, and dorsal vascular bundles were also severely malnourished. Zymogram analyses showed that changes in the activities of the major starch-synthesizing enzymes matched well with various endosperm phenotypes of mutant seeds. Mechanistically, DPE1 deficiency allowed normal starch mobilization in leaves and pollens but affected starch synthesis in endosperm, while DPE2 deficiency blocked starch degradation, resulting in substantially decreased levels of the sugars available for pollen tube growth and grain filling. Overall, our results demonstrate the great potential of DPE1-DPE2 as an important regulatory module to realize higher crop yields and present a promising target for regulating nutrient accumulation in cereal crop endosperm.
Collapse
Affiliation(s)
- Xiangbai Dong
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
| | - Huifang Yang
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yaru Chai
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Bin Han
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
| | - Jinxin Liu
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
| | - Lihong Tian
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
| | - Shuai Cui
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shuo Xiong
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
| | - Manfang Zhong
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Bo Fu
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Le Qing Qu
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
7
|
Rüscher D, Vasina VV, Knoblauch J, Bellin L, Pommerrenig B, Alseekh S, Fernie AR, Neuhaus HE, Knoblauch M, Sonnewald U, Zierer W. Symplasmic phloem loading and subcellular transport in storage roots are key factors for carbon allocation in cassava. PLANT PHYSIOLOGY 2024; 196:1322-1339. [PMID: 38775728 PMCID: PMC11483629 DOI: 10.1093/plphys/kiae298] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Accepted: 05/05/2024] [Indexed: 10/03/2024]
Abstract
Cassava (Manihot esculenta) is a deciduous woody perennial shrub that stores large amounts of carbon and water in its storage roots. Previous studies have shown that assimilating unloading into storage roots happens symplasmically once secondary anatomy is established. However, mechanisms controlling phloem loading and overall carbon partitioning to different cassava tissues remain unclear. Here, we used a combination of histological, transcriptional, and biochemical analyses on different cassava tissues and at different timepoints to better understand source-sink carbon allocation. We found that cassava likely utilizes a predominantly passive symplasmic phloem loading strategy, indicated by the lack of expression of genes coding for key players of sucrose transport, the existence of branched plasmodesmata in the companion cell/bundle sheath interface of minor leaf veins, and very high leaf sucrose concentrations. Furthermore, we showed that tissue-specific changes in anatomy and non-structural carbohydrate contents are associated with tissue-specific modification in gene expression for sucrose cleavage/synthesis, as well as subcellular compartmentalization of sugars. Overall, our data suggest that carbon allocation during storage root filling is mostly facilitated symplasmically and is likely mostly regulated by local tissue demand and subcellular compartmentalization.
Collapse
Affiliation(s)
- David Rüscher
- Division of Biochemistry, Department of Biology, Friedrich-Alexander-University Erlangen-Nuremberg, Staudtstrasse 5, 91058 Erlangen, Germany
| | - Viktoriya V Vasina
- School of Biological Sciences, Washington State University, Pullman, WA 99163, USA
| | - Jan Knoblauch
- School of Biological Sciences, Washington State University, Pullman, WA 99163, USA
| | - Leo Bellin
- Division of Plant Physiology, Department of Biology, University of Kaiserslautern-Landau (RPTU), Erwin-Schrödinger-Str. 22, 67663 Kaiserslautern, Germany
| | - Benjamin Pommerrenig
- Division of Plant Physiology, Department of Biology, University of Kaiserslautern-Landau (RPTU), Erwin-Schrödinger-Str. 22, 67663 Kaiserslautern, Germany
| | - Saleh Alseekh
- Division of Central Metabolism, Max-Planck-Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476 Potsdam, Germany
| | - Alisdair R Fernie
- Division of Central Metabolism, Max-Planck-Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476 Potsdam, Germany
| | - H Ekkehard Neuhaus
- Division of Plant Physiology, Department of Biology, University of Kaiserslautern-Landau (RPTU), Erwin-Schrödinger-Str. 22, 67663 Kaiserslautern, Germany
| | - Michael Knoblauch
- School of Biological Sciences, Washington State University, Pullman, WA 99163, USA
| | - Uwe Sonnewald
- Division of Biochemistry, Department of Biology, Friedrich-Alexander-University Erlangen-Nuremberg, Staudtstrasse 5, 91058 Erlangen, Germany
| | - Wolfgang Zierer
- Division of Biochemistry, Department of Biology, Friedrich-Alexander-University Erlangen-Nuremberg, Staudtstrasse 5, 91058 Erlangen, Germany
| |
Collapse
|
8
|
Singh J, James D, Das S, Patel MK, Sutar RR, Achary VMM, Goel N, Gupta KJ, Reddy MK, Jha G, Sonti RV, Foyer CH, Thakur JK, Tripathy BC. Co-overexpression of SWEET sucrose transporters modulates sucrose synthesis and defence responses to enhance immunity against bacterial blight in rice. PLANT, CELL & ENVIRONMENT 2024; 47:2578-2596. [PMID: 38533652 DOI: 10.1111/pce.14901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 02/21/2024] [Accepted: 03/14/2024] [Indexed: 03/28/2024]
Abstract
Enhancing carbohydrate export from source to sink tissues is considered to be a realistic approach for improving photosynthetic efficiency and crop yield. The rice sucrose transporters OsSUT1, OsSWEET11a and OsSWEET14 contribute to sucrose phloem loading and seed filling. Crucially, Xanthomonas oryzae pv. oryzae (Xoo) infection in rice enhances the expression of OsSWEET11a and OsSWEET14 genes, and causes leaf blight. Here we show that co-overexpression of OsSUT1, OsSWEET11a and OsSWEET14 in rice reduced sucrose synthesis and transport leading to lower growth and yield but reduced susceptibility to Xoo relative to controls. The immunity-related hypersensitive response (HR) was enhanced in the transformed lines as indicated by the increased expression of defence genes, higher salicylic acid content and presence of HR lesions on the leaves. The results suggest that the increased expression of OsSWEET11a and OsSWEET14 in rice is perceived as a pathogen (Xoo) attack that triggers HR and results in constitutive activation of plant defences that are related to the signalling pathways of pathogen starvation. These findings provide a mechanistic basis for the trade-off between plant growth and immunity because decreased susceptibility against Xoo compromised plant growth and yield.
Collapse
Affiliation(s)
- Jitender Singh
- National Institute of Plant Genome Research, New Delhi, India
- International Centre for Genetic Engineering and Biotechnology, New Delhi, India
| | - Donald James
- Forest Biotechnology Department, Kerala Forest Research Institute, Thrissur, Kerala, India
| | - Shubhashis Das
- National Institute of Plant Genome Research, New Delhi, India
| | - Manish Kumar Patel
- Department of Postharvest Science of Fresh Produce, Agricultural Research Organization (ARO), Volcani Institute, Rishon LeZion, Israel
| | | | | | - Naveen Goel
- National Institute of Plant Genome Research, New Delhi, India
| | | | - Malireddy K Reddy
- International Centre for Genetic Engineering and Biotechnology, New Delhi, India
| | - Gopaljee Jha
- National Institute of Plant Genome Research, New Delhi, India
| | - Ramesh V Sonti
- International Centre for Genetic Engineering and Biotechnology, New Delhi, India
| | | | - Jitendra Kumar Thakur
- National Institute of Plant Genome Research, New Delhi, India
- International Centre for Genetic Engineering and Biotechnology, New Delhi, India
| | - Baishnab C Tripathy
- Department of Biotechnology, Sharda University, Greater Noida, Uttar Pradesh, India
| |
Collapse
|
9
|
Zhu J, Li T, Ma J, Li W, Zhang H, Nadezhda T, Zhu Y, Dong X, Li C, Fan J. Genome-wide identification and investigation of monosaccharide transporter gene family based on their evolution and expression analysis under abiotic stress and hormone treatments in maize (Zea mays L.). BMC PLANT BIOLOGY 2024; 24:496. [PMID: 38831278 PMCID: PMC11149190 DOI: 10.1186/s12870-024-05186-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Accepted: 05/22/2024] [Indexed: 06/05/2024]
Abstract
BACKGROUND Monosaccharide transporter (MST) family, as a carrier for monosaccharide transport, plays an important role in carbon partitioning and widely involves in plant growth and development, stress response, and signaling transduction. However, little information on the MST family genes is reported in maize (Zea mays), especially in response to abiotic stresses. In this study, the genome-wide identification of MST family genes was performed in maize. RESULT A total of sixty-six putative members of MST gene family were identified and divided into seven subfamilies (including SPT, PMT, VGT, INT, pGlcT, TMT, and ERD) using bioinformatics approaches, and gene information, phylogenetic tree, chromosomal location, gene structure, motif composition, and cis-acting elements were investigated. Eight tandem and twelve segmental duplication events were identified, which played an important role in the expansion of the ZmMST family. Synteny analysis revealed the evolutionary features of MST genes in three gramineous crop species. The expression analysis indicated that most of the PMT, VGT, and ERD subfamilies members responded to osmotic and cadmium stresses, and some of them were regulated by ABA signaling, while only a few members of other subfamilies responded to stresses. In addition, only five genes were induced by NaCl stress in MST family. CONCLUSION These results serve to understand the evolutionary relationships of the ZmMST family genes and supply some insight into the processes of monosaccharide transport and carbon partitioning on the balance between plant growth and development and stress response in maize.
Collapse
Affiliation(s)
- Jialun Zhu
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang, Liaoning, 110866, China
| | - Tianfeng Li
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang, Liaoning, 110866, China
| | - Jing Ma
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang, Liaoning, 110866, China
| | - Wenyu Li
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang, Liaoning, 110866, China
| | - Hanyu Zhang
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang, Liaoning, 110866, China
| | - Tsyganova Nadezhda
- Saint-Petersburg State Agrarian University, Peterburgskoe shosse, Pushkin, St. Petersburg, 196601, Russia
| | - Yanshu Zhu
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang, Liaoning, 110866, China
| | - Xiaomei Dong
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang, Liaoning, 110866, China
| | - Cong Li
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang, Liaoning, 110866, China.
- Shenyang City Key Laboratory of Maize Genomic Selection Breeding, Shenyang, Liaoning, 110866, China.
| | - Jinjuan Fan
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang, Liaoning, 110866, China.
| |
Collapse
|
10
|
Jia L, Zhang X, Zhang Z, Luo W, Nambeesan SU, Li Q, Qiao X, Yang B, Wang L, Zhang S. PbrbZIP15 promotes sugar accumulation in pear via activating the transcription of the glucose isomerase gene PbrXylA1. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 117:1392-1412. [PMID: 38044792 DOI: 10.1111/tpj.16569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 11/01/2023] [Accepted: 11/20/2023] [Indexed: 12/05/2023]
Abstract
The composition and abundance of soluble sugars in mature pear (Pyrus) fruit are important for its acceptance by consumers. However, our understanding of the genes responsible for soluble sugar accumulation remains limited. In this study, a S1-group member of bZIP gene family, PbrbZIP15, was characterized from pear genome through the combined analyses of metabolite and transcriptome data followed by experimental validation. PbrbZIP15, located in nucleus, was found to function in fructose, sucrose, and total soluble sugar accumulation in pear fruit and calli. After analyzing the expression profiles of sugar-metabolism-related genes and the distribution of cis-acting elements in their promoters, the glucose isomerase 1 gene (PbrXylA1), whose corresponding protein catalyzed the isomerization of glucose and fructose in vitro, was identified as a downstream target gene of PbrbZIP15. PbrbZIP15 could directly bind to the G-box element in PbrXylA1 promoter and activate its transcription, as evidenced by chromatin immunoprecipitation-quantitative PCR, yeast one-hybrid, electrophoretic mobility shift assay, and dual-luciferase assay. PbrXylA1, featuring a leucine-rich signal peptide in its N-terminal, was localized to the endoplasmic reticulum. It was validated to play a significant role in fructose, sucrose, and total soluble sugar accumulation in pear fruit and calli, which was associated with the upregulated fructose/glucose ratio. Further studies revealed a positive correlation between the sucrose content and the expression levels of several sucrose-biosynthesis-related genes (PbrFRK3/8, PbrSPS1/3/4/8, and PbrSPP1) in PbrbZIP15-/PbrXylA1-transgenic fruit/calli. In conclusion, our results suggest that PbrbZIP15-induced soluble sugar accumulation during pear development is at least partly attributed to the activation of PbrXylA1 transcription.
Collapse
Affiliation(s)
- Luting Jia
- National Key Laboratory of Crop Genetics and Germplasm Enhancement and Utilization, Sanya Institute of Nanjing Agricultural University, College of Horticulture, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, China
| | - Xu Zhang
- National Key Laboratory of Crop Genetics and Germplasm Enhancement and Utilization, Sanya Institute of Nanjing Agricultural University, College of Horticulture, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, China
| | - Zan Zhang
- National Key Laboratory of Crop Genetics and Germplasm Enhancement and Utilization, Sanya Institute of Nanjing Agricultural University, College of Horticulture, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, China
| | - Weiqi Luo
- U.S. Horticultural Research Laboratory, ARS-USDA, Ft. Pierce, Florida, 34945, USA
- CIPM, NC State University, Raleigh, North Carolina, 27606, USA
| | | | - Qionghou Li
- National Key Laboratory of Crop Genetics and Germplasm Enhancement and Utilization, Sanya Institute of Nanjing Agricultural University, College of Horticulture, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, China
| | - Xin Qiao
- National Key Laboratory of Crop Genetics and Germplasm Enhancement and Utilization, Sanya Institute of Nanjing Agricultural University, College of Horticulture, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, China
| | - Bing Yang
- National Key Laboratory of Crop Genetics and Germplasm Enhancement and Utilization, Sanya Institute of Nanjing Agricultural University, College of Horticulture, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, China
| | - Libin Wang
- National Key Laboratory of Crop Genetics and Germplasm Enhancement and Utilization, Sanya Institute of Nanjing Agricultural University, College of Horticulture, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, China
| | - Shaoling Zhang
- National Key Laboratory of Crop Genetics and Germplasm Enhancement and Utilization, Sanya Institute of Nanjing Agricultural University, College of Horticulture, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, China
| |
Collapse
|
11
|
Montazerinezhad S, Solouki M, Emamjomeh A, Kavousi K, Taheri A, Shiri Y. Transcriptomic analysis of alternative splicing events for different stages of growth and development in Sistan Yaghooti grape clusters. Gene 2024; 896:148030. [PMID: 38008270 DOI: 10.1016/j.gene.2023.148030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 10/31/2023] [Accepted: 11/22/2023] [Indexed: 11/28/2023]
Abstract
Sistan Yaghooti grape variety, despite characteristics such as early ripening, is vulnerable to cluster rot due to small berries and dense clusters. In this regard, AS may serve as a regulatory mechanism during developmental processes and in response to environmental signals. RNA-Seq analysis was performed to measure gene expression and the extent of AS events in the cluster growth and development stages of Sistan Yaghooti grape. The number of AS events increased during stages, suggesting that it contributes to the grapevine's adaptability to various stresses. In addition, DEG and DAS genes showed little overlap in cluster growth stages. Functional analysis of 19,194 DAS -gene sets showed that VIT_06s0004g06670 gene is involved in the activation of calcium channels (Ca2+) through the activation of 5 PLC biosynthetic pathways. Among the 27,229 DEG -sets, VIT_07s0005g05320 gene showed higher expression. Interestingly, this gene is involved in the synthesis of an EF -hand domain-containing protein capable of binding to Ca2+ by activating 4 biochemical pathways. These genes increase cytosolic Ca2+ concentration, enhancing plant stress tolerance and resistance to cracking. These results show that AS can respond independently to different types of stress. Among the other DAS genes, the GA2ox gene (VvGA2ox) showed an increase in AS events during cluster development. This gene is critical for initiating the degradation process of GA and plays a crucial role in different stages of seed development. Therefore, it is very likely that this gene is one of the main factors responsible for the density and seedlessness of Sistan Yaghooti grape.
Collapse
Affiliation(s)
- Somayeh Montazerinezhad
- Department of Plant Breeding and Biotechnology (PBB), Faculty of Agriculture, University of Zabol, Zabol, Iran
| | - Mahmood Solouki
- Department of Plant Breeding and Biotechnology (PBB), Faculty of Agriculture, University of Zabol, Zabol, Iran
| | - Abbasali Emamjomeh
- Department of Plant Breeding and Biotechnology (PBB), Faculty of Agriculture, University of Zabol, Zabol, Iran; Laboratory of Computational Biotechnology and Bioinformatics (CBB), Department of Bioinformatics, Faculty of Basic Sciences, University of Zabol, Zabol, Iran.
| | - Kaveh Kavousi
- Institute of Biochemistry and Biophysics (IBB), Department of Bioinformatics, Laboratory of Complex Biological Systems and Bioinformatics (CBB), University of Tehran, Tehran, Iran
| | - Ali Taheri
- Department of Agricultural and Environmental Sciences, College of Agriculture, Tennessee State University, Nashville, Tenn, United States
| | - Yasoub Shiri
- Agronomy and Plant Breeding Department, Agriculture Research Center, Zabol Research Institute, Zabol, Iran; Department of Horticulture, Faculty of Agriculture and Natural Resources, Mohaghegh Ardabili University, Ardabil, Iran
| |
Collapse
|
12
|
Sun N, Liu Y, Xu T, Zhou X, Xu H, Zhang H, Zhan R, Wang L. Genome-wide analysis of sugar transporter genes in maize ( Zea mays L.): identification, characterization and their expression profiles during kernel development. PeerJ 2023; 11:e16423. [PMID: 38025667 PMCID: PMC10658905 DOI: 10.7717/peerj.16423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Accepted: 10/18/2023] [Indexed: 12/01/2023] Open
Abstract
Sugar transporters (STs) play a crucial role in the development of maize kernels. However, very limited information about STs in maize is known. In this study, sixty-eight ZmST genes were identified from the maize genome and classified into eight major groups based on phylogenetic relationship. Gene structure analysis revealed that members within the same group shared similar exon numbers. Synteny analysis indicated that ZmSTs underwent 15 segmental duplication events under purifying selection. Three-dimensional structure of ZmSTs demonstrated the formation of a compact helix bundle composed of 8-13 trans-membrane domains. Various development-related cis-acting elements, enriched in promoter regions, were correlated with the transcriptional response of ZmSTs during kernel development. Transcriptional expression profiles exhibited expression diversity of various ZmST genes in roots, stems, leaves, tassels, cobs, embryos, endosperms and seeds tissues. During kernel development, the expression of 24 ZmST genes was significantly upregulated in the early stage of grain filling. This upregulation coincided with the sharply increased grain-filling rate observed in the early stage. Overall, our findings shed light on the characteristics of ZmST genes in maize and provide a foundation for further functional studies.
Collapse
Affiliation(s)
- Nan Sun
- The Engineering Research Institute of Agriculture and Forestry, Ludong University, Yantai, Shandong, China
- Zhaoyuan Shenghui Agricultural Technology Development Co., Ltd., Zhaoyuan, Shandong, China
| | - Yanfeng Liu
- The Engineering Research Institute of Agriculture and Forestry, Ludong University, Yantai, Shandong, China
- Zhaoyuan Shenghui Agricultural Technology Development Co., Ltd., Zhaoyuan, Shandong, China
| | - Tao Xu
- The Engineering Research Institute of Agriculture and Forestry, Ludong University, Yantai, Shandong, China
- College of Agriculture, Ludong University, Yantai, Shandong, China
| | - Xiaoyan Zhou
- The Engineering Research Institute of Agriculture and Forestry, Ludong University, Yantai, Shandong, China
- College of Agriculture, Ludong University, Yantai, Shandong, China
| | - Heyang Xu
- The Engineering Research Institute of Agriculture and Forestry, Ludong University, Yantai, Shandong, China
- College of Agriculture, Ludong University, Yantai, Shandong, China
| | - Hongxia Zhang
- The Engineering Research Institute of Agriculture and Forestry, Ludong University, Yantai, Shandong, China
- Zhaoyuan Shenghui Agricultural Technology Development Co., Ltd., Zhaoyuan, Shandong, China
| | - Renhui Zhan
- School of Pharmacy, Shandong Technology Innovation Center of Molecular Targeting and Intelligent Diagnosis and Treatment, Binzhou Medical University, Yantai, Shandong, China
| | - Limin Wang
- The Engineering Research Institute of Agriculture and Forestry, Ludong University, Yantai, Shandong, China
- Zhaoyuan Shenghui Agricultural Technology Development Co., Ltd., Zhaoyuan, Shandong, China
| |
Collapse
|
13
|
Robson JK, Ferguson JN, McAusland L, Atkinson JA, Tranchant-Dubreuil C, Cubry P, Sabot F, Wells DM, Price AH, Wilson ZA, Murchie EH. Chlorophyll fluorescence-based high-throughput phenotyping facilitates the genetic dissection of photosynthetic heat tolerance in African (Oryza glaberrima) and Asian (Oryza sativa) rice. JOURNAL OF EXPERIMENTAL BOTANY 2023; 74:5181-5197. [PMID: 37347829 PMCID: PMC10498015 DOI: 10.1093/jxb/erad239] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Accepted: 06/20/2023] [Indexed: 06/24/2023]
Abstract
Rising temperatures and extreme heat events threaten rice production. Half of the global population relies on rice for basic nutrition, and therefore developing heat-tolerant rice is essential. During vegetative development, reduced photosynthetic rates can limit growth and the capacity to store soluble carbohydrates. The photosystem II (PSII) complex is a particularly heat-labile component of photosynthesis. We have developed a high-throughput chlorophyll fluorescence-based screen for photosynthetic heat tolerance capable of screening hundreds of plants daily. Through measuring the response of maximum PSII efficiency to increasing temperature, this platform generates data for modelling the PSII-temperature relationship in large populations in a small amount of time. Coefficients from these models (photosynthetic heat tolerance traits) demonstrated high heritabilities across African (Oryza glaberrima) and Asian (Oryza sativa, Bengal Assam Aus Panel) rice diversity sets, highlighting valuable genetic variation accessible for breeding. Genome-wide association studies were performed across both species for these traits, representing the first documented attempt to characterize the genetic basis of photosynthetic heat tolerance in any species to date. A total of 133 candidate genes were highlighted. These were significantly enriched with genes whose predicted roles suggested influence on PSII activity and the response to stress. We discuss the most promising candidates for improving photosynthetic heat tolerance in rice.
Collapse
Affiliation(s)
- Jordan K Robson
- School of Biosciences, University of Nottingham, Sutton Bonington Campus, Loughborough, UK
| | - John N Ferguson
- School of Biosciences, University of Nottingham, Sutton Bonington Campus, Loughborough, UK
- Department of Plant Sciences, University of Cambridge, Cambridge, UK
- School of Life Sciences, University of Essex, Colchester, UK
| | - Lorna McAusland
- School of Biosciences, University of Nottingham, Sutton Bonington Campus, Loughborough, UK
| | - Jonathan A Atkinson
- School of Biosciences, University of Nottingham, Sutton Bonington Campus, Loughborough, UK
| | | | - Phillipe Cubry
- Institut de Recherche pour le Developpement, 911 Av. Agropolis, 34394 Montpellier, France
| | - François Sabot
- Institut de Recherche pour le Developpement, 911 Av. Agropolis, 34394 Montpellier, France
| | - Darren M Wells
- School of Biosciences, University of Nottingham, Sutton Bonington Campus, Loughborough, UK
| | - Adam H Price
- Institut de Recherche pour le Developpement, 911 Av. Agropolis, 34394 Montpellier, France
| | - Zoe A Wilson
- School of Biosciences, University of Nottingham, Sutton Bonington Campus, Loughborough, UK
| | - Erik H Murchie
- School of Biosciences, University of Nottingham, Sutton Bonington Campus, Loughborough, UK
- School of Biological Sciences, University of Aberdeen, Aberdeen, UK
| |
Collapse
|
14
|
Westgeest AJ, Dauzat M, Simonneau T, Pantin F. Leaf starch metabolism sets the phase of stomatal rhythm. THE PLANT CELL 2023; 35:3444-3469. [PMID: 37260348 PMCID: PMC10473205 DOI: 10.1093/plcell/koad158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 04/25/2023] [Accepted: 05/15/2023] [Indexed: 06/02/2023]
Abstract
In leaves of C3 and C4 plants, stomata open during the day to favor CO2 entry for photosynthesis and close at night to prevent inefficient transpiration of water vapor. The circadian clock paces rhythmic stomatal movements throughout the diel (24-h) cycle. Leaf transitory starch is also thought to regulate the diel stomatal movements, yet the underlying mechanisms across time (key moments) and space (relevant leaf tissues) remain elusive. Here, we developed PhenoLeaks, a pipeline to analyze the diel dynamics of transpiration, and used it to screen a series of Arabidopsis (Arabidopsis thaliana) mutants impaired in starch metabolism. We detected a sinusoidal, endogenous rhythm of transpiration that overarches days and nights. We determined that a number of severe mutations in starch metabolism affect the endogenous rhythm through a phase shift, resulting in delayed stomatal movements throughout the daytime and diminished stomatal preopening during the night. Nevertheless, analysis of tissue-specific mutations revealed that neither guard-cell nor mesophyll-cell starch metabolisms are strictly required for normal diel patterns of transpiration. We propose that leaf starch influences the timing of transpiration rhythm through an interplay between the circadian clock and sugars across tissues, while the energetic effect of starch-derived sugars is usually nonlimiting for endogenous stomatal movements.
Collapse
Affiliation(s)
| | - Myriam Dauzat
- LEPSE, Univ Montpellier, INRAE, Institut Agro, Montpellier, France
| | | | - Florent Pantin
- LEPSE, Univ Montpellier, INRAE, Institut Agro, Montpellier, France
- Univ Angers, Institut Agro, INRAE, IRHS, SFR QUASAV, Angers F-49000, France
| |
Collapse
|
15
|
Chen J, Watson-Lazowski A, Kamble NU, Vickers M, Seung D. Gene expression profile of the developing endosperm in durum wheat provides insight into starch biosynthesis. BMC PLANT BIOLOGY 2023; 23:363. [PMID: 37460981 DOI: 10.1186/s12870-023-04369-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Accepted: 07/11/2023] [Indexed: 07/20/2023]
Abstract
BACKGROUND Durum wheat (Triticum turgidum subsp. durum) is widely grown for pasta production, and more recently, is gaining additional interest due to its resilience to warm, dry climates and its use as an experimental model for wheat research. Like in bread wheat, the starch and protein accumulated in the endosperm during grain development are the primary contributors to the calorific value of durum grains. RESULTS To enable further research into endosperm development and storage reserve synthesis, we generated a high-quality transcriptomics dataset from developing endosperms of variety Kronos, to complement the extensive mutant resources available for this variety. Endosperms were dissected from grains harvested at eight timepoints during grain development (6 to 30 days post anthesis (dpa)), then RNA sequencing was used to profile the transcriptome at each stage. The largest changes in gene expression profile were observed between the earlier timepoints, prior to 15 dpa. We detected a total of 29,925 genes that were significantly differentially expressed between at least two timepoints, and clustering analysis revealed nine distinct expression patterns. We demonstrate the potential of our dataset to provide new insights into key processes that occur during endosperm development, using starch metabolism as an example. CONCLUSION We provide a valuable resource for studying endosperm development in this increasingly important crop species.
Collapse
Affiliation(s)
- Jiawen Chen
- John Innes Centre, Norwich Research Park, Norwich, NR4 7UH, UK
| | - Alexander Watson-Lazowski
- John Innes Centre, Norwich Research Park, Norwich, NR4 7UH, UK
- Harper Adams University, Newport, Shropshire, TF10 8NB, UK
| | | | - Martin Vickers
- John Innes Centre, Norwich Research Park, Norwich, NR4 7UH, UK
| | - David Seung
- John Innes Centre, Norwich Research Park, Norwich, NR4 7UH, UK.
| |
Collapse
|
16
|
Valifard M, Fernie AR, Kitashova A, Nägele T, Schröder R, Meinert M, Pommerrenig B, Mehner-Breitfeld D, Witte CP, Brüser T, Keller I, Neuhaus HE. The novel chloroplast glucose transporter pGlcT2 affects adaptation to extended light periods. J Biol Chem 2023; 299:104741. [PMID: 37088133 DOI: 10.1016/j.jbc.2023.104741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 04/03/2023] [Accepted: 04/18/2023] [Indexed: 04/25/2023] Open
Abstract
Intracellular sugar compartmentation is critical in plant development and acclimation to challenging environmental conditions. Sugar transport proteins are present in plasma membranes and in membranes of organelles such as vacuoles, the Golgi apparatus, and plastids. However, there may exist other transport proteins with uncharacterized roles in sugar compartmentation. Here we report one such, a novel transporter of the Monosaccharide Transporter Family (MSF), the closest phylogenetic homolog of which is the chloroplast-localized glucose transporter pGlcT and that we therefore term plastidic glucose transporter 2 (pGlcT2). We show, using gene-complemented glucose uptake deficiency of an Escherichia coli ptsG/manXYZ mutant strain and biochemical characterization, that this protein specifically facilitates glucose transport, whereas other sugars do not serve as substrates. In addition, we demonstrate pGlcT2-GFP localized to the chloroplast envelope, and that pGlcT2 is mainly produced in seedlings and in the rosette center of mature Arabidopsis plants. Therefore, in conjunction with molecular and metabolic data, we propose pGlcT2 acts as a glucose importer that can limit cytosolic glucose availability in developing pGlcT2-overexpressing seedlings. Finally, we show both overexpression and deletion of pGlcT2 resulted in impaired growth efficiency under long day and continuous light conditions, suggesting pGlcT2 contributes to a release of glucose derived from starch mobilization late in the light phase. Together, these data indicate the facilitator pGlcT2 changes the direction in which it transports glucose during plant development and suggest the activity of pGlcT2 must be controlled spatially and temporarily in order to prevent developmental defects during adaptation to periods of extended light.
Collapse
Affiliation(s)
- Marzieh Valifard
- Plant Physiology, University of Kaiserslautern, Erwin-Schrödinger-Str., 67653 Kaiserslautern, Germany
| | - Alisdair R Fernie
- Max Planck Institute for Molecular Plant Physiology, Am Mühlenberg 1, 14476 Potsdam, Germany
| | - Anastasia Kitashova
- Ludwig Maximilians University Munich, Faculty of Biology, Plant Evolutionary Cell Biology, Großhadernerstr. 2-4, 82152 Planegg-Martinsried, Germany
| | - Thomas Nägele
- Ludwig Maximilians University Munich, Faculty of Biology, Plant Evolutionary Cell Biology, Großhadernerstr. 2-4, 82152 Planegg-Martinsried, Germany
| | - Rebekka Schröder
- Leibniz University Hannover, Molecular Nutrition and Biochemistry of Plants, Herrenhäuser Str. 2, 30419 Hannover, Germany
| | - Melissa Meinert
- Plant Physiology, University of Kaiserslautern, Erwin-Schrödinger-Str., 67653 Kaiserslautern, Germany
| | - Benjamin Pommerrenig
- Plant Physiology, University of Kaiserslautern, Erwin-Schrödinger-Str., 67653 Kaiserslautern, Germany
| | - Denise Mehner-Breitfeld
- Leibniz University Hanover, Institute of Microbiology, Herrenhäuser Str. 2, 30419 Hannover, Germany
| | - Claus-Peter Witte
- Leibniz University Hannover, Molecular Nutrition and Biochemistry of Plants, Herrenhäuser Str. 2, 30419 Hannover, Germany
| | - Thomas Brüser
- Leibniz University Hanover, Institute of Microbiology, Herrenhäuser Str. 2, 30419 Hannover, Germany
| | - Isabel Keller
- Plant Physiology, University of Kaiserslautern, Erwin-Schrödinger-Str., 67653 Kaiserslautern, Germany
| | - H Ekkehard Neuhaus
- Plant Physiology, University of Kaiserslautern, Erwin-Schrödinger-Str., 67653 Kaiserslautern, Germany.
| |
Collapse
|
17
|
Huang W, Krishnan A, Plett A, Meagher M, Linka N, Wang Y, Ren B, Findinier J, Redekop P, Fakhimi N, Kim RG, Karns DA, Boyle N, Posewitz MC, Grossman AR. Chlamydomonas mutants lacking chloroplast TRIOSE PHOSPHATE TRANSPORTER3 are metabolically compromised and light-sensitive. THE PLANT CELL 2023:koad095. [PMID: 36970811 DOI: 10.1093/plcell/koad095] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 03/08/2023] [Accepted: 03/23/2023] [Indexed: 06/18/2023]
Abstract
Modulation of photoassimilate export from the chloroplast is essential for controlling the distribution of fixed carbon in the cell and maintaining optimum photosynthetic rates. In this study we identified chloroplast TRIOSE PHOSPHATE/PHOSPHATE TRANSLOCATOR2 (CreTPT2) and CreTPT3 in the green alga Chlamydomonas (Chlamydomonas reinhardtii), which exhibit similar substrate specificities but whose encoding genes are differentially expressed over the diurnal cycle. We focused mostly on CreTPT3 because of its high level of expression and the severe phenotype exhibited by tpt3 relative to tpt2 mutants. Null mutants for CreTPT3 had a pleiotropic phenotype that affected growth, photosynthetic activities, metabolite profiles, carbon partitioning, and organelle-specific accumulation of H2O2. These analyses demonstrated that CreTPT3 is a dominant conduit on the chloroplast envelope for the transport of photoassimilates. In addition, CreTPT3 can serve as a safety valve that moves excess reductant out of the chloroplast and appears to be essential for preventing cells from experiencing oxidative stress and accumulating reactive oxygen species, even under low/moderate light intensities. Finally, our studies indicate subfunctionalization of the CreTPT transporters and suggest that there are differences in managing the export of photoassimilates from the chloroplasts of Chlamydomonas and vascular plants.
Collapse
Affiliation(s)
- Weichao Huang
- Department of Plant Biology, Carnegie Institution for Science, Stanford, CA 94305, USA
| | - Anagha Krishnan
- Department of Chemistry, Colorado School of Mines, Golden, CO 80401, USA
| | - Anastasija Plett
- Institute of Plant Biochemistry, Heinrich-Heine University Düsseldorf, 40225 Düsseldorf, Germany
| | - Michelle Meagher
- Department of Chemical and Biological Engineering, Colorado School of Mines, Golden, CO 80401, USA
| | - Nicole Linka
- Institute of Plant Biochemistry, Heinrich-Heine University Düsseldorf, 40225 Düsseldorf, Germany
| | - Yongsheng Wang
- Department of Plant Biology, Carnegie Institution for Science, Stanford, CA 94305, USA
- School of Life Sciences, Tsinghua University, 100084 Beijing, China
| | - Bijie Ren
- Department of Plant Biology, Carnegie Institution for Science, Stanford, CA 94305, USA
| | - Justin Findinier
- Department of Plant Biology, Carnegie Institution for Science, Stanford, CA 94305, USA
| | - Petra Redekop
- Department of Plant Biology, Carnegie Institution for Science, Stanford, CA 94305, USA
| | - Neda Fakhimi
- Department of Plant Biology, Carnegie Institution for Science, Stanford, CA 94305, USA
| | - Rick G Kim
- Department of Plant Biology, Carnegie Institution for Science, Stanford, CA 94305, USA
| | - Devin A Karns
- Department of Chemistry, Colorado School of Mines, Golden, CO 80401, USA
| | - Nanette Boyle
- Department of Chemical and Biological Engineering, Colorado School of Mines, Golden, CO 80401, USA
| | - Matthew C Posewitz
- Department of Chemistry, Colorado School of Mines, Golden, CO 80401, USA
| | - Arthur R Grossman
- Department of Plant Biology, Carnegie Institution for Science, Stanford, CA 94305, USA
| |
Collapse
|
18
|
Khan D, Cai N, Zhu W, Li L, Guan M, Pu X, Chen Q. The role of phytomelatonin receptor 1-mediated signaling in plant growth and stress response. FRONTIERS IN PLANT SCIENCE 2023; 14:1142753. [PMID: 36968396 PMCID: PMC10036441 DOI: 10.3389/fpls.2023.1142753] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Accepted: 02/17/2023] [Indexed: 06/18/2023]
Abstract
Phytomelatonin is a pleiotropic signaling molecule that regulates plant growth, development, and stress response. In plant cells, phytomelatonin is synthesized from tryptophan via several consecutive steps that are catalyzed by tryptophan decarboxylase (TDC), tryptamine 5-hydroxylase (T5H), serotonin N-acyltransferase (SNAT), and N-acetylserotonin methyltransferase (ASMT) and/or caffeic acid-3-O-methyltransferase (COMT). Recently, the identification of the phytomelatonin receptor PMTR1 in Arabidopsis has been considered a turning point in plant research, with the function and signal of phytomelatonin emerging as a receptor-based regulatory strategy. In addition, PMTR1 homologs have been identified in several plant species and have been found to regulate seed germination and seedling growth, stomatal closure, leaf senescence, and several stress responses. In this article, we review the recent evidence in our understanding of the PMTR1-mediated regulatory pathways in phytomelatonin signaling under environmental stimuli. Based on structural comparison of the melatonin receptor 1 (MT1) in human and PMTR1 homologs, we propose that the similarity in the three-dimensional structure of the melatonin receptors probably represents a convergent evolution of melatonin recognition in different species.
Collapse
Affiliation(s)
| | | | | | | | | | - Xiaojun Pu
- *Correspondence: Xiaojun Pu, ; ; Qi Chen, ;
| | - Qi Chen
- *Correspondence: Xiaojun Pu, ; ; Qi Chen, ;
| |
Collapse
|
19
|
Liu T, Kawochar MA, Liu S, Cheng Y, Begum S, Wang E, Zhou T, Liu T, Cai X, Song B. Suppression of the tonoplast sugar transporter, StTST3.1, affects transitory starch turnover and plant growth in potato. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2023; 113:342-356. [PMID: 36444716 DOI: 10.1111/tpj.16050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2022] [Revised: 10/25/2022] [Accepted: 11/27/2022] [Indexed: 06/16/2023]
Abstract
Transitory starch and vacuolar sugars function as highly dynamic pools of instantly accessible metabolites in plant leaf cells. Their metabolic regulation is critical for plant survival. The tonoplast sugar transporters (TSTs), responsible for sugar uptake into vacuoles, regulate cellular sugar partitioning and vacuolar sugar accumulation. However, whether TSTs are involved in leaf transient starch turnover and plant growth is unclear. Here, we found that suppressing StTST3.1 resulted in growth retardation and pale green leaves in potato plants. StTST3.1-silenced plants displayed abnormal chloroplasts and impaired photosynthetic performance. The subcellular localization assay and the oscillation expression patterns revealed that StTST3.1 encoded a tonoplast-localized protein and responded to photoperiod. Moreover, RNA-seq analyses identified that starch synthase (SS2 and SS6) and glucan water, dikinase (GWD), were downregulated in StTST3.1-silenced lines. Correspondingly, the capacity for starch synthesis and degradation was decreased in StTST3.1-silenced lines. Surprisingly, StTST3.1-silenced leaves accumulated exceptionally high levels of maltose but low levels of sucrose and hexose. Additionally, chlorophyll content was reduced in StTST3.1-silenced leaves. Analysis of chlorophyll metabolic pathways found that Non-Yellow Coloring 1 (NYC1)-like (NOL), encoding a chloroplast-localized key enzyme that catalyzes the initial step of chlorophyll b degradation, was upregulated in StTST3.1-silenced leaves. Transient overexpression of StNOL accelerated chlorophyll b degradation in tobacco leaves. Our results indicated that StTST3.1 is involved in transitory starch turnover and chlorophyll metabolism, thereby playing a critical role in normal potato plant growth.
Collapse
Affiliation(s)
- Tengfei Liu
- Key Laboratory of Horticultural Plant Biology, Key Laboratory of Potato Biology and Biotechnology, Ministry of Education, Ministry of Agriculture and Rural Affairs, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
| | - Md Abu Kawochar
- Key Laboratory of Horticultural Plant Biology, Key Laboratory of Potato Biology and Biotechnology, Ministry of Education, Ministry of Agriculture and Rural Affairs, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
- Bangladesh Agricultural Research Institute, Joydebpur, Gazipur, 1701, Bangladesh
| | - Shengxuan Liu
- Key Laboratory of Horticultural Plant Biology, Key Laboratory of Potato Biology and Biotechnology, Ministry of Education, Ministry of Agriculture and Rural Affairs, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
| | - Yunxia Cheng
- College of Plant Science, Tarim University, Alar, Xinjiang, 843300, People's Republic of China
| | - Shahnewaz Begum
- Key Laboratory of Horticultural Plant Biology, Key Laboratory of Potato Biology and Biotechnology, Ministry of Education, Ministry of Agriculture and Rural Affairs, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
- Bangladesh Agricultural Research Institute, Joydebpur, Gazipur, 1701, Bangladesh
| | - Enshuang Wang
- Key Laboratory of Horticultural Plant Biology, Key Laboratory of Potato Biology and Biotechnology, Ministry of Education, Ministry of Agriculture and Rural Affairs, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
| | - Tingting Zhou
- Key Laboratory of Horticultural Plant Biology, Key Laboratory of Potato Biology and Biotechnology, Ministry of Education, Ministry of Agriculture and Rural Affairs, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
| | - Tiantian Liu
- Key Laboratory of Horticultural Plant Biology, Key Laboratory of Potato Biology and Biotechnology, Ministry of Education, Ministry of Agriculture and Rural Affairs, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
| | - Xingkui Cai
- Key Laboratory of Horticultural Plant Biology, Key Laboratory of Potato Biology and Biotechnology, Ministry of Education, Ministry of Agriculture and Rural Affairs, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
| | - Botao Song
- Key Laboratory of Horticultural Plant Biology, Key Laboratory of Potato Biology and Biotechnology, Ministry of Education, Ministry of Agriculture and Rural Affairs, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
| |
Collapse
|
20
|
Gámez-Arcas S, Muñoz FJ, Ricarte-Bermejo A, Sánchez-López ÁM, Baslam M, Baroja-Fernández E, Bahaji A, Almagro G, De Diego N, Doležal K, Novák O, Leal-López J, León Morcillo RJ, Castillo AG, Pozueta-Romero J. Glucose-6-P/phosphate translocator2 mediates the phosphoglucose-isomerase1-independent response to microbial volatiles. PLANT PHYSIOLOGY 2022; 190:2137-2154. [PMID: 36111879 PMCID: PMC9706466 DOI: 10.1093/plphys/kiac433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Accepted: 08/26/2022] [Indexed: 06/15/2023]
Abstract
In Arabidopsis (Arabidopsis thaliana), the plastidial isoform of phosphoglucose isomerase (PGI1) mediates photosynthesis, metabolism, and development, probably due to its involvement in the synthesis of isoprenoid-derived signals in vascular tissues. Microbial volatile compounds (VCs) with molecular masses of <45 Da promote photosynthesis, growth, and starch overaccumulation in leaves through PGI1-independent mechanisms. Exposure to these compounds in leaves enhances the levels of GLUCOSE-6-PHOSPHATE/PHOSPHATE TRANSLOCATOR2 (GPT2) transcripts. We hypothesized that the PGI1-independent response to microbial volatile emissions involves GPT2 action. To test this hypothesis, we characterized the responses of wild-type (WT), GPT2-null gpt2-1, PGI1-null pgi1-2, and pgi1-2gpt2-1 plants to small fungal VCs. In addition, we characterized the responses of pgi1-2gpt2-1 plants expressing GPT2 under the control of a vascular tissue- and root tip-specific promoter to small fungal VCs. Fungal VCs promoted increases in growth, starch content, and photosynthesis in WT and gpt2-1 plants. These changes were substantially weaker in VC-exposed pgi1-2gpt2-1 plants but reverted to WT levels with vascular and root tip-specific GPT2 expression. Proteomic analyses did not detect enhanced levels of GPT2 protein in VC-exposed leaves and showed that knocking out GPT2 reduced the expression of photosynthesis-related proteins in pgi1-2 plants. Histochemical analyses of GUS activity in plants expressing GPT2-GUS under the control of the GPT2 promoter showed that GPT2 is mainly expressed in root tips and vascular tissues around hydathodes. Overall, the data indicated that the PGI1-independent response to microbial VCs involves resetting of the photosynthesis-related proteome in leaves through long-distance GPT2 action.
Collapse
Affiliation(s)
- Samuel Gámez-Arcas
- Instituto de Agrobiotecnología (IdAB), CSIC-Gobierno de Navarra, Iruñako etorbidea 123, 31192 Mutiloabeti, Nafarroa, Spain
| | | | - Adriana Ricarte-Bermejo
- Instituto de Agrobiotecnología (IdAB), CSIC-Gobierno de Navarra, Iruñako etorbidea 123, 31192 Mutiloabeti, Nafarroa, Spain
| | - Ángela María Sánchez-López
- Instituto de Agrobiotecnología (IdAB), CSIC-Gobierno de Navarra, Iruñako etorbidea 123, 31192 Mutiloabeti, Nafarroa, Spain
| | - Marouane Baslam
- Instituto de Agrobiotecnología (IdAB), CSIC-Gobierno de Navarra, Iruñako etorbidea 123, 31192 Mutiloabeti, Nafarroa, Spain
- Laboratory of Biochemistry, Faculty of Agriculture, Niigata University, Niigata 950-2181, Japan
| | - Edurne Baroja-Fernández
- Instituto de Agrobiotecnología (IdAB), CSIC-Gobierno de Navarra, Iruñako etorbidea 123, 31192 Mutiloabeti, Nafarroa, Spain
| | - Abdellatif Bahaji
- Instituto de Agrobiotecnología (IdAB), CSIC-Gobierno de Navarra, Iruñako etorbidea 123, 31192 Mutiloabeti, Nafarroa, Spain
| | - Goizeder Almagro
- Instituto de Agrobiotecnología (IdAB), CSIC-Gobierno de Navarra, Iruñako etorbidea 123, 31192 Mutiloabeti, Nafarroa, Spain
| | - Nuria De Diego
- Centre of Region Haná for Biotechnological and Agricultural Research, Czech Advanced Technology and Research Institute, Olomouc, Czech Republic
| | - Karel Doležal
- Department of Chemical Biology, Faculty of Science, Palacký University, Olomouc CZ-78371, Czech Republic
- Laboratory of Growth Regulators, Faculty of Science of Palacký University and Institute of Experimental Botany of the Czech Academy of Sciences, Olomouc CZ-78371, Czech Republic
| | - Ondřej Novák
- Laboratory of Growth Regulators, Faculty of Science of Palacký University and Institute of Experimental Botany of the Czech Academy of Sciences, Olomouc CZ-78371, Czech Republic
| | - Jesús Leal-López
- Institute for Mediterranean and Subtropical Horticulture “La Mayora” (IHSM), CSIC-UMA, 29010 Málaga, Spain
| | - Rafael Jorge León Morcillo
- Institute for Mediterranean and Subtropical Horticulture “La Mayora” (IHSM), CSIC-UMA, 29010 Málaga, Spain
| | - Araceli G Castillo
- Institute for Mediterranean and Subtropical Horticulture “La Mayora” (IHSM), CSIC-UMA, 29010 Málaga, Spain
| | | |
Collapse
|
21
|
Xiao Y, Li Y, Ouyang L, Yin A, Xu B, Zhang L, Chen J, Liu J. A banana transcriptional repressor MaAP2a participates in fruit starch degradation during postharvest ripening. FRONTIERS IN PLANT SCIENCE 2022; 13:1036719. [PMID: 36438126 PMCID: PMC9691770 DOI: 10.3389/fpls.2022.1036719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Accepted: 10/17/2022] [Indexed: 06/16/2023]
Abstract
Fruit postharvest ripening is a crucial course for many fruits with significant conversion of biosubstance, which forms an intricate regulatory network. Ethylene facilitates the ripening process in banana with a remarkable change of fruit starch, but the mechanism adjusting the expression of starch degradation-related enzyme genes is incompletely discovered. Here, we describe a banana APETALA2 transcription factor (MaAP2a) identified as a transcriptional repressor with its powerful transcriptional inhibitory activity. The transcriptional level of MaAP2a gradually decreased with the transition of banana fruit ripening, suggesting a passive role of MaAP2a in banana fruit ripening. Moreover, MaAP2a is a classic nucleoprotein and encompasses transcriptional repressor domain (EAR, LxLxLx). More specifically, protein-DNA interaction assays found that MaAP2a repressed the expression of 15 starch degradation-related genes comprising MaGWD1, MaPWD1, MaSEX4, MaLSF1, MaBAM1-MaBAM3, MaAMY2B/2C/3A/3C, MaMEX1/2, and MapGlcT2-1/2-2 via binding to the GCC-box or AT-rich motif of their promoters. Overall, these results reveal an original MaAP2a-mediated negative regulatory network involved in banana postharvest starch breakdown, which advances our cognition on banana fruit ripening and offers additional reference values for banana varietal improvement.
Collapse
Affiliation(s)
- Yunyi Xiao
- College of Biological and Food Engineering, Guangdong University of Petrochemical Technology, Maoming, China
| | - Ying Li
- College of Biological and Food Engineering, Guangdong University of Petrochemical Technology, Maoming, China
| | - Lejun Ouyang
- College of Biological and Food Engineering, Guangdong University of Petrochemical Technology, Maoming, China
| | - Aiguo Yin
- College of Biological and Food Engineering, Guangdong University of Petrochemical Technology, Maoming, China
| | - Bo Xu
- College of Biological and Food Engineering, Guangdong University of Petrochemical Technology, Maoming, China
| | - Ling Zhang
- College of Biological and Food Engineering, Guangdong University of Petrochemical Technology, Maoming, China
| | - Jianye Chen
- College of Horticultural Science, South China Agricultural University, Guangzhou, China
| | - Jinfeng Liu
- College of Biological and Food Engineering, Guangdong University of Petrochemical Technology, Maoming, China
| |
Collapse
|
22
|
Bernal L, Luján‐Soto E, Fajardo‐Hernández CA, Coello P, Figueroa M, Martínez‐Barajas E. Starch degradation in the bean fruit pericarp is characterized by an increase in maltose metabolism. PHYSIOLOGIA PLANTARUM 2022; 174:e13836. [PMID: 36453084 PMCID: PMC10107891 DOI: 10.1111/ppl.13836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 11/23/2022] [Accepted: 11/28/2022] [Indexed: 06/17/2023]
Abstract
The bean fruit pericarp accumulates a significant amount of starch, which starts to be degraded 20 days after anthesis (DAA) when seed growth becomes exponential. This period is also characterized by the progressive senescence of the fruit pericarp. However, the chloroplasts maintained their integrity, indicating that starch degradation is a compartmentalized process. The process coincided with a transient increase in maltose and sucrose levels, suggesting that β-amylase is responsible for starch degradation. Starch degradation in the bean fruit pericarp is also characterized by a large increase in starch phosphorylation, as well as in the activities of cytosolic disproportionating enzyme 2 (DPE2, EC 2.4.1.25) and glucan phosphorylase (PHO2, EC 2.4.1.1). This suggests that the rate of starch degradation in the bean fruit pericarp 20 DAA is dependent on the transformation of starch to a better substrate for β-amylase and the increase in the rate of cytosolic metabolism of maltose.
Collapse
Affiliation(s)
- Lilia Bernal
- Departamento de Bioquímica, Facultad de QuímicaUniversidad Nacional Autónoma de MéxicoCiudad de MéxicoMexico
| | - Eduardo Luján‐Soto
- Departamento de Bioquímica, Facultad de QuímicaUniversidad Nacional Autónoma de MéxicoCiudad de MéxicoMexico
| | | | - Patricia Coello
- Departamento de Bioquímica, Facultad de QuímicaUniversidad Nacional Autónoma de MéxicoCiudad de MéxicoMexico
| | - Mario Figueroa
- Departamento de Farmacia, Facultad de QuímicaUniversidad Nacional Autónoma de MéxicoCiudad de MéxicoMexico
| | - Eleazar Martínez‐Barajas
- Departamento de Bioquímica, Facultad de QuímicaUniversidad Nacional Autónoma de MéxicoCiudad de MéxicoMexico
| |
Collapse
|
23
|
Wang N, Xing C, Qu G, Zhuo J, Wang X, Li Y, Yan Y, Li X. New insight into the sucrose biosynthesis pathway from genome-wide identification, gene expression analysis, and subcellular localization in hexaploid wheat (Triticum aestivum L.). JOURNAL OF PLANT PHYSIOLOGY 2022; 276:153770. [PMID: 35932649 DOI: 10.1016/j.jplph.2022.153770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 07/12/2022] [Accepted: 07/12/2022] [Indexed: 06/15/2023]
Abstract
Sucrose, the main synthesized product and transported form of photoassimilates, moves from leaves to support plant growth and storage substance biosynthesis occurring in the heterotrophic sink organs. Enhancing sucrose biosynthesis efficiency is a top priority for crop yield breeding programs. However, the molecular mechanism of sucrose biosynthesis is still elusive, especially in wheat. We performed transcriptome sequencing, subcellular localization, and bioinformatics analysis to identify key isoforms and metabolic branches associated with sucrose biosynthesis in wheat. Our analysis identified 45 genes from 13 families that exhibited high expression in young leaves with an evident diurnal change. The carbon flux from photoassimilates to sucrose was divided into two pathways. In the cytoplasm, assimilates initiating at phosphotrioses (TPs) exported by TaTPT1 from chloroplasts flowed along the TP-Sucrose branch formed by TaALD6, TaFBP5, TacPGI, TacPGM, TaUGP1, TaSPS5, and TaSPP1. Intermediates either from the Calvin cycle or TP-Sucrose branch were converted into ADPGlc to synthesize the simple starch, which was transiently degraded by a series of enzymes, including TaBAM4 and TaSEX4 in the chloroplast. Similar to the starch-biosynthesis branch in endosperms, the TP-Sucrose branch is the most prominent in leaves because each reaction can be catalyzed by at least one highly expressed isoform with expected cytosolic localization. The key isoforms and major branches highlighted in the wheat sucrose biosynthesis pathway expand our molecular understanding of crop sucrose biosynthesis and provide clues to increase wheat yield by enhancing the sucrose synthesis efficiency of leaves.
Collapse
Affiliation(s)
- Ning Wang
- Key Laboratory of Genetics and Biotechnology, College of Life Science, Capital Normal University, Beijing, 100048, China
| | - Caihong Xing
- Key Laboratory of Genetics and Biotechnology, College of Life Science, Capital Normal University, Beijing, 100048, China
| | - Ge Qu
- Key Laboratory of Genetics and Biotechnology, College of Life Science, Capital Normal University, Beijing, 100048, China
| | - Jiahui Zhuo
- Key Laboratory of Genetics and Biotechnology, College of Life Science, Capital Normal University, Beijing, 100048, China
| | - Xinyu Wang
- Key Laboratory of Genetics and Biotechnology, College of Life Science, Capital Normal University, Beijing, 100048, China
| | - Yaxuan Li
- Key Laboratory of Genetics and Biotechnology, College of Life Science, Capital Normal University, Beijing, 100048, China
| | - Yueming Yan
- Key Laboratory of Genetics and Biotechnology, College of Life Science, Capital Normal University, Beijing, 100048, China
| | - Xiaohui Li
- Key Laboratory of Genetics and Biotechnology, College of Life Science, Capital Normal University, Beijing, 100048, China.
| |
Collapse
|
24
|
Kuczynski C, McCorkle S, Keereetaweep J, Shanklin J, Schwender J. An expanded role for the transcription factor WRINKLED1 in the biosynthesis of triacylglycerols during seed development. FRONTIERS IN PLANT SCIENCE 2022; 13:955589. [PMID: 35991420 PMCID: PMC9389262 DOI: 10.3389/fpls.2022.955589] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2022] [Accepted: 06/28/2022] [Indexed: 06/12/2023]
Abstract
The transcription factor WRINKLED1 (WRI1) is known as a master regulator of fatty acid synthesis in developing oilseeds of Arabidopsis thaliana and other species. WRI1 is known to directly stimulate the expression of many fatty acid biosynthetic enzymes and a few targets in the lower part of the glycolytic pathway. However, it remains unclear to what extent and how the conversion of sugars into fatty acid biosynthetic precursors is controlled by WRI1. To shortlist possible gene targets for future in-planta experimental validation, here we present a strategy that combines phylogenetic foot printing of cis-regulatory elements with additional layers of evidence. Upstream regions of protein-encoding genes in A. thaliana were searched for the previously described DNA-binding consensus for WRI1, the ASML1/WRI1 (AW)-box. For about 900 genes, AW-box sites were found to be conserved across orthologous upstream regions in 11 related species of the crucifer family. For 145 select potential target genes identified this way, affinity of upstream AW-box sequences to WRI1 was assayed by Microscale Thermophoresis. This allowed definition of a refined WRI1 DNA-binding consensus. We find that known WRI1 gene targets are predictable with good confidence when upstream AW-sites are phylogenetically conserved, specifically binding WRI1 in the in vitro assay, positioned in proximity to the transcriptional start site, and if the gene is co-expressed with WRI1 during seed development. When targets predicted in this way are mapped to central metabolism, a conserved regulatory blueprint emerges that infers concerted control of contiguous pathway sections in glycolysis and fatty acid biosynthesis by WRI1. Several of the newly predicted targets are in the upper glycolysis pathway and the pentose phosphate pathway. Of these, plastidic isoforms of fructokinase (FRK3) and of phosphoglucose isomerase (PGI1) are particularly corroborated by previously reported seed phenotypes of respective null mutations.
Collapse
|
25
|
Li J, Kim YJ, Zhang D. Source-To-Sink Transport of Sugar and Its Role in Male Reproductive Development. Genes (Basel) 2022; 13:1323. [PMID: 35893060 PMCID: PMC9329892 DOI: 10.3390/genes13081323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2022] [Revised: 06/30/2022] [Accepted: 07/07/2022] [Indexed: 02/01/2023] Open
Abstract
Sucrose is produced in leaf mesophyll cells via photosynthesis and exported to non-photosynthetic sink tissues through the phloem. The molecular basis of source-to-sink long-distance transport in cereal crop plants is of importance due to its direct influence on grain yield-pollen grains, essential for male fertility, are filled with sugary starch, and rely on long-distance sugar transport from source leaves. Here, we overview sugar partitioning via phloem transport in rice, especially where relevant for male reproductive development. Phloem loading and unloading in source leaves and sink tissues uses a combination of the symplastic, apoplastic, and/or polymer trapping pathways. The symplastic and polymer trapping pathways are passive processes, correlated with source activity and sugar gradients. In contrast, apoplastic phloem loading/unloading involves active processes and several proteins, including SUcrose Transporters (SUTs), Sugars Will Eventually be Exported Transporters (SWEETs), Invertases (INVs), and MonoSaccharide Transporters (MSTs). Numerous transcription factors combine to create a complex network, such as DNA binding with One Finger 11 (DOF11), Carbon Starved Anther (CSA), and CSA2, which regulates sugar metabolism in normal male reproductive development and in response to changes in environmental signals, such as photoperiod.
Collapse
Affiliation(s)
- Jingbin Li
- Joint International Research Laboratory of Metabolic and Developmental Sciences, State Key Laboratory of Hybrid Rice, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China;
| | - Yu-Jin Kim
- Department of Life Science and Environmental Biochemistry, Pusan National University, Miryang 50463, Korea;
| | - Dabing Zhang
- Joint International Research Laboratory of Metabolic and Developmental Sciences, State Key Laboratory of Hybrid Rice, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China;
- School of Agriculture, Food and Wine, University of Adelaide, Urrbrae, SA 5064, Australia
| |
Collapse
|
26
|
Dissecting the Chloroplast Proteome of the Potato (Solanum Tuberosum L.) and Its Comparison with the Tuber Amyloplast Proteome. PLANTS 2022; 11:plants11151915. [PMID: 35893618 PMCID: PMC9332351 DOI: 10.3390/plants11151915] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 07/02/2022] [Accepted: 07/20/2022] [Indexed: 11/17/2022]
Abstract
The chloroplast, the energy organelle unique to plants and green algae, performs many functions, including photosynthesis and biosynthesis of metabolites. However, as the most critical tuber crop worldwide, the chloroplast proteome of potato (Solanum tuberosum) has not been explored. Here, we use Percoll density gradient centrifugation to isolate intact chloroplasts from leaves of potato cultivar E3 and establish a reference proteome map of potato chloroplast by bottom-up proteomics. A total of 1834 non-redundant proteins were identified in the chloroplast proteome, including 51 proteins encoded by the chloroplast genome. Extensive sequence-based localization prediction revealed over 62% of proteins to be chloroplast resident by at least one algorithm. Sixteen proteins were selected to evaluate the prediction result by transient fluorescence assay, which confirmed that 14 were distributed in distinct internal compartments of the chloroplast. In addition, we identified 136 phosphorylation sites in 61 proteins encoded by chloroplast proteome. Furthermore, we reconstruct the snapshots along starch metabolic pathways in the two different types of plastids by a comparative analysis between chloroplast and previously reported amyloplast proteomes. Altogether, our results establish a comprehensive proteome map with post-translationally modified sites of potato chloroplast, which would provide the theoretical principle for the research of the photosynthesis pathway and starch metabolism.
Collapse
|
27
|
Sergeeva EM, Larichev KT, Salina EA, Kochetov AV. Starch metabolism in potato <i>Solanum tuberosum</i> L. Vavilovskii Zhurnal Genet Selektsii 2022; 26:250-263. [PMID: 35774362 PMCID: PMC9168746 DOI: 10.18699/vjgb-22-32] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 12/20/2021] [Accepted: 12/20/2021] [Indexed: 11/19/2022] Open
Abstract
Starch is a major storage carbohydrate in plants. It is an important source of calories in the human and animal diet. Also, it is widely used in various industries. Native starch consists of water-insoluble semicrystalline granules formed by natural glucose polymers amylose and amylopectin. The physicochemical properties of starch are determined by the amylose:amylopectin ratio in the granule and degrees of their polymerization and phosphorylation. Potato Solanum tuberosum L. is one of the main starch-producing crops. Growing industrial needs necessitate the breeding of plant varieties with increased starch content and specified starch properties. This task demands detailed information on starch metabolism in the producing plant. It is a complex process, requiring the orchestrated work of many enzymes, transporter and targeting proteins, transcription factors, and other regulators. Two types of starch are recognized with regard to their biological functions. Transitory starch is synthesized in chloroplasts of photosynthetic organs and degraded in the absence of light, providing carbohydrates for cell needs. Storage starch is synthesized and stored in amyloplasts of storage organs: grains and tubers. The main enzymatic reactions of starch biosynthesis and degradation, as well as carbohydrate transport and metabolism, are well known in the case of transitory starch of the model plant Arabidopsis thaliana. Less is known about features of starch metabolism in storage organs, in particular, potato tubers. Several issues remain obscure: the roles of enzyme isoforms and different regulatory factors in tissues at various plant developmental stages and under different environmental conditions; alternative enzymatic processes; targeting and transport proteins. In this review, the key enzymatic reactions of plant carbohydrate metabolism, transitory and storage starch biosynthesis,
and starch degradation are discussed, and features specific for potato are outlined. Attention is also paid to the
known regulatory factors affecting starch metabolism
Collapse
Affiliation(s)
- E. M. Sergeeva
- Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences
| | - K. T. Larichev
- Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences
| | - E. A. Salina
- Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences
| | - A. V. Kochetov
- Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences
| |
Collapse
|
28
|
Flütsch S, Horrer D, Santelia D. Starch biosynthesis in guard cells has features of both autotrophic and heterotrophic tissues. PLANT PHYSIOLOGY 2022; 189:541-556. [PMID: 35238373 PMCID: PMC9157084 DOI: 10.1093/plphys/kiac087] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Accepted: 01/31/2022] [Indexed: 06/01/2023]
Abstract
The pathway of starch synthesis in guard cells (GCs), despite the crucial role starch plays in stomatal movements, is not well understood. Here, we characterized starch dynamics in GCs of Arabidopsis (Arabidopsis thaliana) mutants lacking enzymes of the phosphoglucose isomerase-phosphoglucose mutase-ADP-glucose pyrophosphorylase starch synthesis pathway in leaf mesophyll chloroplasts or sugar transporters at the plastid membrane, such as glucose-6-phosphate/phosphate translocators, which are active in heterotrophic tissues. We demonstrate that GCs have metabolic features of both photoautotrophic and heterotrophic cells. GCs make starch using different carbon precursors depending on the time of day, which can originate both from GC photosynthesis and/or sugars imported from the leaf mesophyll. Furthermore, we unravel the major enzymes involved in GC starch synthesis and demonstrate that they act in a temporal manner according to the fluctuations of stomatal aperture, which is unique for GCs. Our work substantially enhances our knowledge on GC starch metabolism and uncovers targets for manipulating GC starch dynamics to improve stomatal behavior, directly affecting plant productivity.
Collapse
Affiliation(s)
- Sabrina Flütsch
- Institute of Integrative Biology, ETH Zürich, 8092 Zürich, Switzerland
- Department of Plant and Microbial Biology, University of Zürich, 8008 Zürich, Switzerland
| | - Daniel Horrer
- Department of Plant and Microbial Biology, University of Zürich, 8008 Zürich, Switzerland
| | - Diana Santelia
- Institute of Integrative Biology, ETH Zürich, 8092 Zürich, Switzerland
- Department of Plant and Microbial Biology, University of Zürich, 8008 Zürich, Switzerland
| |
Collapse
|
29
|
Salmeron-Santiago IA, Martínez-Trujillo M, Valdez-Alarcón JJ, Pedraza-Santos ME, Santoyo G, Pozo MJ, Chávez-Bárcenas AT. An Updated Review on the Modulation of Carbon Partitioning and Allocation in Arbuscular Mycorrhizal Plants. Microorganisms 2021; 10:75. [PMID: 35056524 PMCID: PMC8781679 DOI: 10.3390/microorganisms10010075] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Revised: 12/24/2021] [Accepted: 12/27/2021] [Indexed: 12/29/2022] Open
Abstract
Arbuscular mycorrhizal fungi (AMF) are obligate biotrophs that supply mineral nutrients to the host plant in exchange for carbon derived from photosynthesis. Sucrose is the end-product of photosynthesis and the main compound used by plants to translocate photosynthates to non-photosynthetic tissues. AMF alter carbon distribution in plants by modifying the expression and activity of key enzymes of sucrose biosynthesis, transport, and/or catabolism. Since sucrose is essential for the maintenance of all metabolic and physiological processes, the modifications addressed by AMF can significantly affect plant development and stress responses. AMF also modulate plant lipid biosynthesis to acquire storage reserves, generate biomass, and fulfill its life cycle. In this review we address the most relevant aspects of the influence of AMF on sucrose and lipid metabolism in plants, including its effects on sucrose biosynthesis both in photosynthetic and heterotrophic tissues, and the influence of sucrose on lipid biosynthesis in the context of the symbiosis. We present a hypothetical model of carbon partitioning between plants and AMF in which the coordinated action of sucrose biosynthesis, transport, and catabolism plays a role in the generation of hexose gradients to supply carbon to AMF, and to control the amount of carbon assigned to the fungus.
Collapse
Affiliation(s)
| | | | - Juan J. Valdez-Alarcón
- Centro Multidisciplinario de Estudios en Biotecnología, Universidad Michoacana de San Nicolás de Hidalgo, Morelia 58880, Mexico;
| | - Martha E. Pedraza-Santos
- Facultad de Agrobiología “Presidente Juárez”, Universidad Michoacana de San Nicolás de Hidalgo, Uruapan 60170, Mexico;
| | - Gustavo Santoyo
- Instituto de Investigaciones Químico Biológicas, Universidad Michoacana de San Nicolás de Hidalgo, Morelia 58030, Mexico;
| | - María J. Pozo
- Departamento de Microbiología del Suelo y Sistemas Simbióticos, Estación Experimental del Zaidín, CSIC, 18008 Granada, Spain
| | - Ana T. Chávez-Bárcenas
- Facultad de Agrobiología “Presidente Juárez”, Universidad Michoacana de San Nicolás de Hidalgo, Uruapan 60170, Mexico;
| |
Collapse
|
30
|
Li A, Chen J, Lin Q, Zhao Y, Duan Y, Wai SC, Song C, Bi J. Transcription Factor MdWRKY32 Participates in Starch-Sugar Metabolism by Binding to the MdBam5 Promoter in Apples During Postharvest Storage. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:14906-14914. [PMID: 34851114 DOI: 10.1021/acs.jafc.1c03343] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Starch degradation with fruit ripening is closely related to the aging process and flavor formation in apples. In this study, ethylene, 1-methylcyclopropene (1-MCP), and apples treated at different temperatures were used to determine the key genes of starch-sugar metabolism during storage. Compared with 4 °C storage, 20 °C storage promoted starch degradation and sugar accumulation in apples. In addition, ethylene treatment promoted starch degradation and sugar accumulation in apples, while 1-MCP treatment showed the opposite effects. The expression of MdBams indicated the crucial role of MdBam5 in starch-sugar conversion. Transient overexpression of MdBam5 significantly reduced the starch content in apples. Furthermore, MdWRKY32 directly combined the MdBam5 promoter and activated the MdBam5 expression, which may promote the starch degradation in apples. Therefore, it was concluded that MdWRKY32 may be involved in the regulation of starch-sugar metabolism in postharvest apples by activating the MdBam5 expression.
Collapse
Affiliation(s)
- Ang Li
- Key Laboratory of Agro-products Quality and Safety Control in Storage and Transport Process, Ministry of Agriculture and Rural Affairs/Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, People's Republic of China
| | - Jing Chen
- Key Laboratory of Agro-products Quality and Safety Control in Storage and Transport Process, Ministry of Agriculture and Rural Affairs/Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, People's Republic of China
| | - Qiong Lin
- Key Laboratory of Agro-products Quality and Safety Control in Storage and Transport Process, Ministry of Agriculture and Rural Affairs/Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, People's Republic of China
| | - Yaoyao Zhao
- Key Laboratory of Agro-products Quality and Safety Control in Storage and Transport Process, Ministry of Agriculture and Rural Affairs/Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, People's Republic of China
| | - Yuquan Duan
- Key Laboratory of Agro-products Quality and Safety Control in Storage and Transport Process, Ministry of Agriculture and Rural Affairs/Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, People's Republic of China
| | - Su Chit Wai
- Key Laboratory of Agro-products Quality and Safety Control in Storage and Transport Process, Ministry of Agriculture and Rural Affairs/Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, People's Republic of China
| | - Congcong Song
- Key Laboratory of Agro-products Quality and Safety Control in Storage and Transport Process, Ministry of Agriculture and Rural Affairs/Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, People's Republic of China
| | - Jinfeng Bi
- Key Laboratory of Agro-products Quality and Safety Control in Storage and Transport Process, Ministry of Agriculture and Rural Affairs/Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, People's Republic of China
| |
Collapse
|
31
|
Mérida A, Fettke J. Starch granule initiation in Arabidopsis thaliana chloroplasts. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2021; 107:688-697. [PMID: 34051021 DOI: 10.1111/tpj.15359] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 05/14/2021] [Accepted: 05/22/2021] [Indexed: 06/12/2023]
Abstract
The initiation of starch granule formation and the mechanism controlling the number of granules per plastid have been some of the most elusive aspects of starch metabolism. This review covers the advances made in the study of these processes. The analyses presented herein depict a scenario in which starch synthase isoform 4 (SS4) provides the elongating activity necessary for the initiation of starch granule formation. However, this protein does not act alone; other polypeptides are required for the initiation of an appropriate number of starch granules per chloroplast. The functions of this group of polypeptides include providing suitable substrates (maltooligosaccharides) to SS4, the localization of the starch initiation machinery to the thylakoid membranes, and facilitating the correct folding of SS4. The number of starch granules per chloroplast is tightly regulated and depends on the developmental stage of the leaves and their metabolic status. Plastidial phosphorylase (PHS1) and other enzymes play an essential role in this process since they are necessary for the synthesis of the substrates used by the initiation machinery. The mechanism of starch granule formation initiation in Arabidopsis seems to be generalizable to other plants and also to the synthesis of long-term storage starch. The latter, however, shows specific features due to the presence of more isoforms, the absence of constantly recurring starch synthesis and degradation, and the metabolic characteristics of the storage sink organs.
Collapse
Affiliation(s)
- Angel Mérida
- Institute of Plant Biochemistry and Photosynthesis (IBVF), Consejo Superior de Investigaciones Científicas (CSIC), Universidad de Sevilla (US), Avda Américo Vespucio, 49, Sevilla, 41092, Spain
| | - Joerg Fettke
- Biopolymer Analytics, Institute of Biochemistry and Biology, University of Potsdam, Karl-Liebknecht-Str. 24-25, Building 20, Potsdam-Golm, 14476, Germany
| |
Collapse
|
32
|
Ceusters N, Ceusters J, Hurtado-Castano N, Dever LV, Boxall SF, Kneřová J, Waller JL, Rodick R, Van den Ende W, Hartwell J, Borland AM. Phosphorolytic degradation of leaf starch via plastidic α-glucan phosphorylase leads to optimized plant growth and water use efficiency over the diel phases of Crassulacean acid metabolism. JOURNAL OF EXPERIMENTAL BOTANY 2021; 72:4419-4434. [PMID: 33754643 PMCID: PMC8266541 DOI: 10.1093/jxb/erab132] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Accepted: 03/19/2021] [Indexed: 05/27/2023]
Abstract
In plants with Crassulacean acid metabolism (CAM), it has been proposed that the requirement for nocturnal provision of phosphoenolpyruvate as a substrate for CO2 uptake has resulted in a re-routing of chloroplastic starch degradation from the amylolytic route to the phosphorolytic route. To test this hypothesis, we generated and characterized four independent RNAi lines of the obligate CAM species Kalanchoë fedtschenkoi with a >10-fold reduction in transcript abundance of plastidic α-glucan phosphorylase (PHS1). The rPHS1 lines showed diminished nocturnal starch degradation, reduced dark CO2 uptake, a reduction in diel water use efficiency (WUE), and an overall reduction in growth. A re-routing of starch degradation via the hydrolytic/amylolytic pathway was indicated by hyperaccumulation of maltose in all rPHS1 lines. Further examination indicated that whilst operation of the core circadian clock was not compromised, plasticity in modulating net dark CO2 uptake in response to changing photoperiods was curtailed. The data show that phosphorolytic starch degradation is critical for efficient operation of the CAM cycle and for optimizing WUE. This finding has clear relevance for ongoing efforts to engineer CAM into non-CAM species as a means of boosting crop WUE for a warmer, drier future.
Collapse
Affiliation(s)
- Nathalie Ceusters
- Faculty of Engineering Technology, Department of Biosystems, Division of Crop Biotechnics, Campus Geel, KU Leuven, Kleinhoefstraat 4, 2440 Geel, Belgium
| | - Johan Ceusters
- Faculty of Engineering Technology, Department of Biosystems, Division of Crop Biotechnics, Campus Geel, KU Leuven, Kleinhoefstraat 4, 2440 Geel, Belgium
- UHasselt, Centre for Environmental Sciences, Environmental Biology, Campus Diepenbeek, Agoralaan Building D, 3590 Diepenbeek, Belgium
| | - Natalia Hurtado-Castano
- School of Natural and Environmental Sciences, Newcastle University, Newcastle upon Tyne, UK
- Department of Molecular Biology and Biotechnology, University of Sheffield, Sheffield, UK
| | - Louisa V Dever
- Department of Biochemistry and Systems Biology, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, UK
| | - Susanna F Boxall
- Department of Biochemistry and Systems Biology, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, UK
| | - Jana Kneřová
- Department of Biochemistry and Systems Biology, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, UK
| | - Jade L Waller
- Department of Biochemistry and Systems Biology, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, UK
| | - Rebecca Rodick
- Department of Biochemistry and Systems Biology, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, UK
| | - Wim Van den Ende
- Faculty of Science, Department of Biology, Laboratory of Molecular Plant Biology, KU Leuven, Kasteelpark Arenberg 31, B-3001 Heverlee, Belgium
| | - James Hartwell
- Department of Biochemistry and Systems Biology, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, UK
| | - Anne M Borland
- School of Natural and Environmental Sciences, Newcastle University, Newcastle upon Tyne, UK
| |
Collapse
|
33
|
Cvetkovic J, Haferkamp I, Rode R, Keller I, Pommerrenig B, Trentmann O, Altensell J, Fischer-Stettler M, Eicke S, Zeeman SC, Neuhaus HE. Ectopic maltase alleviates dwarf phenotype and improves plant frost tolerance of maltose transporter mutants. PLANT PHYSIOLOGY 2021; 186:315-329. [PMID: 33650638 PMCID: PMC8154053 DOI: 10.1093/plphys/kiab082] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Accepted: 02/25/2021] [Indexed: 05/06/2023]
Abstract
Maltose, the major product of starch breakdown in Arabidopsis (Arabidopsis thaliana) leaves, exits the chloroplast via the maltose exporter1 MEX1. Consequently, mex1 loss-of-function plants exhibit substantial maltose accumulation, a starch-excess phenotype and a specific chlorotic phenotype during leaf development. Here, we investigated whether the introduction of an alternative metabolic route could suppress the marked developmental defects typical for mex1 loss-of-function mutants. To this end, we ectopically expressed in mex1 chloroplasts a functional maltase (MAL) from baker's yeast (Saccharomyces cerevisiae, chloroplastidial MAL [cpMAL] mutants). Remarkably, the stromal MAL activity substantially alleviates most phenotypic peculiarities typical for mex1 plants. However, the cpMAL lines contained only slightly less maltose than parental mex1 plants and their starch levels were, surprisingly, even higher. These findings point to a threshold level of maltose responsible for the marked developmental defects in mex1. While growth and flowering time were only slightly retarded, cpMAL lines exhibited a substantially improved frost tolerance, when compared to wild-types. In summary, these results demonstrate the possibility to bypass the MEX1 transporter, allow us to differentiate between possible starch-excess and maltose-excess responses, and demonstrate that stromal maltose accumulation prevents frost defects. The latter insight may be instrumental for the development of crop plants with improved frost tolerance.
Collapse
Affiliation(s)
- Jelena Cvetkovic
- Plant Physiology, University of Kaiserslautern, Erwin-Schrödinger-Str., D-67653 Kaiserslautern, Germany
| | - Ilka Haferkamp
- Plant Physiology, University of Kaiserslautern, Erwin-Schrödinger-Str., D-67653 Kaiserslautern, Germany
| | - Regina Rode
- Plant Physiology, University of Kaiserslautern, Erwin-Schrödinger-Str., D-67653 Kaiserslautern, Germany
| | - Isabel Keller
- Plant Physiology, University of Kaiserslautern, Erwin-Schrödinger-Str., D-67653 Kaiserslautern, Germany
| | - Benjamin Pommerrenig
- Plant Physiology, University of Kaiserslautern, Erwin-Schrödinger-Str., D-67653 Kaiserslautern, Germany
| | - Oliver Trentmann
- Plant Physiology, University of Kaiserslautern, Erwin-Schrödinger-Str., D-67653 Kaiserslautern, Germany
| | - Jacqueline Altensell
- Plant Physiology, University of Kaiserslautern, Erwin-Schrödinger-Str., D-67653 Kaiserslautern, Germany
| | | | - Simona Eicke
- Institute of Molecular Plant Biology, ETH Zürich, Universitätsstr. 2, 8092 Zurich, Switzerland
| | - Samuel C Zeeman
- Institute of Molecular Plant Biology, ETH Zürich, Universitätsstr. 2, 8092 Zurich, Switzerland
| | - H Ekkehard Neuhaus
- Plant Physiology, University of Kaiserslautern, Erwin-Schrödinger-Str., D-67653 Kaiserslautern, Germany
- Author for communication:
| |
Collapse
|
34
|
Saddhe AA, Manuka R, Penna S. Plant sugars: Homeostasis and transport under abiotic stress in plants. PHYSIOLOGIA PLANTARUM 2021; 171:739-755. [PMID: 33215734 DOI: 10.1111/ppl.13283] [Citation(s) in RCA: 121] [Impact Index Per Article: 30.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Revised: 09/10/2020] [Accepted: 11/16/2020] [Indexed: 05/21/2023]
Abstract
The sessile nature of plants' life is endowed with a highly evolved defense system to adapt and survive under environmental extremes. To combat such stresses, plants have developed complex and well-coordinated molecular and metabolic networks encompassing genes, metabolites, and acclimation responses. These modulate growth, photosynthesis, osmotic maintenance, and carbohydrate homeostasis. Under a given stress condition, sugars act as key players in stress perception, signaling, and are a regulatory hub for stress-mediated gene expression ensuring responses of osmotic adjustment, scavenging of reactive oxygen species, and maintaining the cellular energy status through carbon partitioning. Several sugar transporters are known to regulate carbohydrate partitioning and key signal transduction steps involved in the perception of biotic and abiotic stresses. Sugar transporters such as SUGARS WILL EVENTUALLY BE EXPORTED TRANSPORTER (SWEETs), SUCROSE TRANSPORTERS (SUTs), and MONOSACCHARIDE TRANSPORTERS (MSTs) are involved in sugar loading and unloading as well as long-distance transport (source to sink) besides orchestrating oxidative and osmotic stress tolerance. It is thus necessary to understand the structure-function relationship of these sugar transporters to fine-tune the abiotic stress-modulated responses. Advances in genomics have unraveled many sugars signaling components playing a key role in cross-talk in abiotic stress pathways. An integrated omics approach may aid in the identification and characterization of sugar transporters that could become targets for developing stress tolerance plants to mitigate climate change effects and improve crop yield. In this review, we have presented an up-to-date analysis of the sugar homeostasis under abiotic stresses as well as describe the structure and functions of sugar transporters under abiotic stresses.
Collapse
Affiliation(s)
- Ankush A Saddhe
- Department of Biological Sciences, Birla Institute of Technology and Science, Pilani - K. K. Birla Goa Campus, Zuarinagar Goa, India
| | - Rakesh Manuka
- Nuclear Agriculture and Biotechnology Division, Bhabha Atomic Research Centre, Mumbai, India
| | - Suprasanna Penna
- Nuclear Agriculture and Biotechnology Division, Bhabha Atomic Research Centre, Mumbai, India
| |
Collapse
|
35
|
Wu P, Zhang Y, Zhao S, Li L. Comprehensive Analysis of Evolutionary Characterization and Expression for Monosaccharide Transporter Family Genes in Nelumbo nucifera. Front Ecol Evol 2021. [DOI: 10.3389/fevo.2021.537398] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Sugar transporters, an important class of transporters for sugar function, regulate many processes associated with growth, maturation, and senescence processes in plants. In this study, a total of 35 NuMSTs were identified in the Nelumbo nucifera genome and grouped by conserved domains and phylogenetic analysis. Additionally, we identified 316 MST genes in 10 other representative plants and performed a comparative analysis with Nelumbo nucifera genes, including evolutionary trajectory, gene duplication, and expression pattern. A large number of analyses across plants and algae indicated that the MST family could have originated from STP and Glct, expanding to form STP and SFP by dispersed duplication. Finally, a quantitative real-time polymerase chain reaction and cis-element analysis showed that some of them may be regulated by plant hormones (e.g., abscisic acid), biotic stress factors, and abiotic factors (e.g., drought, excessive cold, and light). We found that under the four abiotic stress conditions, only NuSTP5 expression was upregulated, generating a stress response, and ARBE and LTR were present in NuSTP5. In summary, our findings are significant for understanding and exploring the molecular evolution and mechanisms of NuMSTs in plants.
Collapse
|
36
|
Gao ZF, Shen Z, Chao Q, Yan Z, Ge XL, Lu T, Zheng H, Qian CR, Wang BC. Large-scale Proteomic and Phosphoproteomic Analyses of Maize Seedling Leaves During De-etiolation. GENOMICS PROTEOMICS & BIOINFORMATICS 2020; 18:397-414. [PMID: 33385613 PMCID: PMC8242269 DOI: 10.1016/j.gpb.2020.12.004] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Revised: 07/16/2019] [Accepted: 05/12/2020] [Indexed: 12/20/2022]
Abstract
De-etiolation consists of a series of developmental and physiological changes that a plant undergoes in response to light. During this process light, an important environmental signal, triggers the inhibition of mesocotyl elongation and the production of photosynthetically active chloroplasts, and etiolated leaves transition from the "sink" stage to the "source" stage. De-etiolation has been extensively studied in maize (Zea mays L.). However, little is known about how this transition is regulated. In this study, we described a quantitative proteomic and phosphoproteomic atlas of the de-etiolation process in maize. We identified 16,420 proteins in proteome, among which 14,168 proteins were quantified. In addition, 8746 phosphorylation sites within 3110 proteins were identified. From the combined proteomic and phosphoproteomic data, we identified a total of 17,436 proteins. Only 7.0% (998/14,168) of proteins significantly changed in abundance during de-etiolation. In contrast, 26.6% of phosphorylated proteins exhibited significant changes in phosphorylation level; these included proteins involved in gene expression and homeostatic pathways and rate-limiting enzymes involved in photosynthetic light and carbon reactions. Based on phosphoproteomic analysis, 34.0% (1057/3110) of phosphorylated proteins identified in this study contained more than 2 phosphorylation sites, and 37 proteins contained more than 16 phosphorylation sites, indicating that multi-phosphorylation is ubiquitous during the de-etiolation process. Our results suggest that plants might preferentially regulate the level of posttranslational modifications (PTMs) rather than protein abundance for adapting to changing environments. The study of PTMs could thus better reveal the regulation of de-etiolation.
Collapse
Affiliation(s)
- Zhi-Fang Gao
- Key Laboratory of Photobiology, CAS, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhuo Shen
- Vegetable Research Institute, Guangdong Academy of Agricultural Sciences, Guangdong Key Laboratory for New Technology Research of Vegetables, Guangzhou 510640, China
| | - Qing Chao
- Key Laboratory of Photobiology, CAS, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
| | - Zhen Yan
- Key Laboratory of Photobiology, CAS, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xuan-Liang Ge
- Institute of Crop Cultivation and Farming, Heilongjiang Academy of Agricultural Sciences, Harbin 150086, China
| | - Tiancong Lu
- Beijing ProteinWorld Biotech, Beijing 100012, China
| | - Haiyan Zheng
- Center for Advanced Biotechnology and Medicine, Biological Mass Spectrometry Facility, Rutgers University, Piscataway, NJ 08855, USA
| | - Chun-Rong Qian
- Institute of Crop Cultivation and Farming, Heilongjiang Academy of Agricultural Sciences, Harbin 150086, China.
| | - Bai-Chen Wang
- Key Laboratory of Photobiology, CAS, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
37
|
Walker RP, Battistelli A, Bonghi C, Drincovich MF, Falchi R, Lara MV, Moscatello S, Vizzotto G, Famiani F. Non-structural Carbohydrate Metabolism in the Flesh of Stone Fruits of the Genus Prunus (Rosaceae) - A Review. FRONTIERS IN PLANT SCIENCE 2020; 11:549921. [PMID: 33240291 PMCID: PMC7683422 DOI: 10.3389/fpls.2020.549921] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Accepted: 09/24/2020] [Indexed: 05/13/2023]
Abstract
Non-structural carbohydrates are abundant constituents of the ripe flesh of all stone fruits. The bulk of their content comprises sucrose, glucose, fructose and sorbitol. However, the abundance of each of these carbohydrates in the flesh differs between species, and also with its stage of development. In this article the import, subcellular compartmentation, contents, metabolism and functions of non-structural carbohydrates in the flesh of commercially cultivated stone fruits of the family Rosaceae are reviewed.
Collapse
Affiliation(s)
- Robert P. Walker
- Dipartimento di Scienze Agrarie, Alimentari e Ambientali, Università degli Studi di Perugia, Perugia, Italy
| | - Alberto Battistelli
- Istituto di Ricerca sugli Ecosistemi Terrestri, Consiglio Nazionale delle Ricerche, Porano, Italy
| | - Claudio Bonghi
- Department of Agronomy, Food, Natural Resources, Animals and Environment, University of Padova Agripolis, Legnaro, Italy
| | - María F. Drincovich
- Facultad de Ciencias Bioquímicas y Farmacéuticas, Centro de Estudios Fotosintéticos y Bioquímicos, Consejo Nacional de Investigaciones Científicas y Técnicas, Universidad Nacional de Rosario, Rosario, Argentina
| | - Rachele Falchi
- Department of Agricultural, Food, Environmental and Animal Sciences, University of Udine, Udine, Italy
| | - María V. Lara
- Facultad de Ciencias Bioquímicas y Farmacéuticas, Centro de Estudios Fotosintéticos y Bioquímicos, Consejo Nacional de Investigaciones Científicas y Técnicas, Universidad Nacional de Rosario, Rosario, Argentina
| | - Stefano Moscatello
- Istituto di Ricerca sugli Ecosistemi Terrestri, Consiglio Nazionale delle Ricerche, Porano, Italy
| | - Giannina Vizzotto
- Department of Agricultural, Food, Environmental and Animal Sciences, University of Udine, Udine, Italy
| | - Franco Famiani
- Dipartimento di Scienze Agrarie, Alimentari e Ambientali, Università degli Studi di Perugia, Perugia, Italy
| |
Collapse
|
38
|
Chen G, Chen H, Shi K, Raza MA, Bawa G, Sun X, Pu T, Yong T, Liu W, Liu J, Du J, Yang F, Yang W, Wang X. Heterogeneous Light Conditions Reduce the Assimilate Translocation Towards Maize Ears. PLANTS 2020; 9:plants9080987. [PMID: 32759776 PMCID: PMC7465644 DOI: 10.3390/plants9080987] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 07/27/2020] [Accepted: 07/29/2020] [Indexed: 11/16/2022]
Abstract
The border row crop in strip intercropped maize is often exposed to heterogeneous light conditions, resulting in increased photosynthesis and yield decreased. Previous studies have focused on photosynthetic productivity, whereas carbon allocation could also be one of the major causes of decreased yield. However, carbon distribution remains unclear in partially shaded conditions. In the present study, we applied heterogeneous light conditions (T), and one side of plants was shaded (T-30%), keeping the other side fully exposed to light (T-100%), as compared to control plants that were exposed entirely to full-light (CK). Dry weight, carbon assimilation, 13C abundance, and transport tissue structure were analyzed to clarify the carbon distribution in partial shading of plants. T caused a marked decline in dry weight and harvest index (HI), whereas dry weight in unshaded and shaded leaves did not differ. Net photosynthesis rate (Pn), the activity of sucrose phosphate synthase enzymes (SPS), and sucrose concentration increased in unshaded leaves. Appropriately, 5.7% of the 13C from unshaded leaves was transferred to shaded leaves. Furthermore, plasmodesma density in the unshaded (T-100%) and shaded (T-30%) leaves in T was not significantly different but was lower than that of CK. Similarly, the vascular bundle total area of T was decreased. 13C transfer from unshaded leaves to ear in T was decreased by 18.0% compared with that in CK. Moreover, 13C and sucrose concentration of stem in T were higher than those in CK. Our results suggested that, under heterogeneous light, shaded leaves as a sink imported the carbohydrates from the unshaded leaves. Ear and shaded leaf competed for carbohydrates, and were not conducive to tissue structure of sucrose transport, resulting in a decrease in the carbon proportion in the ear, harvest index, and ear weight.
Collapse
Affiliation(s)
- Guopeng Chen
- College of Agronomy, Sichuan Agricultural University, Chengdu 611130, China; (G.C.); (H.C.); (K.S.); (M.A.R.); (G.B.); (X.S.); (T.P.); (T.Y.); (W.L.); (J.L.); (J.D.); (F.Y.); (W.Y.)
- Sichuan Engineering Research Center for Crop Strip Intercropping System, Key Laboratory of Crop Ecophysiology and Farming System in Southwest China (Ministry of Agriculture), Chengdu 611130, China
| | - Hong Chen
- College of Agronomy, Sichuan Agricultural University, Chengdu 611130, China; (G.C.); (H.C.); (K.S.); (M.A.R.); (G.B.); (X.S.); (T.P.); (T.Y.); (W.L.); (J.L.); (J.D.); (F.Y.); (W.Y.)
- Sichuan Engineering Research Center for Crop Strip Intercropping System, Key Laboratory of Crop Ecophysiology and Farming System in Southwest China (Ministry of Agriculture), Chengdu 611130, China
| | - Kai Shi
- College of Agronomy, Sichuan Agricultural University, Chengdu 611130, China; (G.C.); (H.C.); (K.S.); (M.A.R.); (G.B.); (X.S.); (T.P.); (T.Y.); (W.L.); (J.L.); (J.D.); (F.Y.); (W.Y.)
- Sichuan Engineering Research Center for Crop Strip Intercropping System, Key Laboratory of Crop Ecophysiology and Farming System in Southwest China (Ministry of Agriculture), Chengdu 611130, China
| | - Muhammad Ali Raza
- College of Agronomy, Sichuan Agricultural University, Chengdu 611130, China; (G.C.); (H.C.); (K.S.); (M.A.R.); (G.B.); (X.S.); (T.P.); (T.Y.); (W.L.); (J.L.); (J.D.); (F.Y.); (W.Y.)
- Sichuan Engineering Research Center for Crop Strip Intercropping System, Key Laboratory of Crop Ecophysiology and Farming System in Southwest China (Ministry of Agriculture), Chengdu 611130, China
| | - George Bawa
- College of Agronomy, Sichuan Agricultural University, Chengdu 611130, China; (G.C.); (H.C.); (K.S.); (M.A.R.); (G.B.); (X.S.); (T.P.); (T.Y.); (W.L.); (J.L.); (J.D.); (F.Y.); (W.Y.)
- Sichuan Engineering Research Center for Crop Strip Intercropping System, Key Laboratory of Crop Ecophysiology and Farming System in Southwest China (Ministry of Agriculture), Chengdu 611130, China
| | - Xin Sun
- College of Agronomy, Sichuan Agricultural University, Chengdu 611130, China; (G.C.); (H.C.); (K.S.); (M.A.R.); (G.B.); (X.S.); (T.P.); (T.Y.); (W.L.); (J.L.); (J.D.); (F.Y.); (W.Y.)
- Sichuan Engineering Research Center for Crop Strip Intercropping System, Key Laboratory of Crop Ecophysiology and Farming System in Southwest China (Ministry of Agriculture), Chengdu 611130, China
| | - Tian Pu
- College of Agronomy, Sichuan Agricultural University, Chengdu 611130, China; (G.C.); (H.C.); (K.S.); (M.A.R.); (G.B.); (X.S.); (T.P.); (T.Y.); (W.L.); (J.L.); (J.D.); (F.Y.); (W.Y.)
- Sichuan Engineering Research Center for Crop Strip Intercropping System, Key Laboratory of Crop Ecophysiology and Farming System in Southwest China (Ministry of Agriculture), Chengdu 611130, China
| | - Taiwen Yong
- College of Agronomy, Sichuan Agricultural University, Chengdu 611130, China; (G.C.); (H.C.); (K.S.); (M.A.R.); (G.B.); (X.S.); (T.P.); (T.Y.); (W.L.); (J.L.); (J.D.); (F.Y.); (W.Y.)
- Sichuan Engineering Research Center for Crop Strip Intercropping System, Key Laboratory of Crop Ecophysiology and Farming System in Southwest China (Ministry of Agriculture), Chengdu 611130, China
| | - Weiguo Liu
- College of Agronomy, Sichuan Agricultural University, Chengdu 611130, China; (G.C.); (H.C.); (K.S.); (M.A.R.); (G.B.); (X.S.); (T.P.); (T.Y.); (W.L.); (J.L.); (J.D.); (F.Y.); (W.Y.)
- Sichuan Engineering Research Center for Crop Strip Intercropping System, Key Laboratory of Crop Ecophysiology and Farming System in Southwest China (Ministry of Agriculture), Chengdu 611130, China
| | - Jiang Liu
- College of Agronomy, Sichuan Agricultural University, Chengdu 611130, China; (G.C.); (H.C.); (K.S.); (M.A.R.); (G.B.); (X.S.); (T.P.); (T.Y.); (W.L.); (J.L.); (J.D.); (F.Y.); (W.Y.)
- Sichuan Engineering Research Center for Crop Strip Intercropping System, Key Laboratory of Crop Ecophysiology and Farming System in Southwest China (Ministry of Agriculture), Chengdu 611130, China
| | - Junbo Du
- College of Agronomy, Sichuan Agricultural University, Chengdu 611130, China; (G.C.); (H.C.); (K.S.); (M.A.R.); (G.B.); (X.S.); (T.P.); (T.Y.); (W.L.); (J.L.); (J.D.); (F.Y.); (W.Y.)
- Sichuan Engineering Research Center for Crop Strip Intercropping System, Key Laboratory of Crop Ecophysiology and Farming System in Southwest China (Ministry of Agriculture), Chengdu 611130, China
| | - Feng Yang
- College of Agronomy, Sichuan Agricultural University, Chengdu 611130, China; (G.C.); (H.C.); (K.S.); (M.A.R.); (G.B.); (X.S.); (T.P.); (T.Y.); (W.L.); (J.L.); (J.D.); (F.Y.); (W.Y.)
- Sichuan Engineering Research Center for Crop Strip Intercropping System, Key Laboratory of Crop Ecophysiology and Farming System in Southwest China (Ministry of Agriculture), Chengdu 611130, China
| | - Wenyu Yang
- College of Agronomy, Sichuan Agricultural University, Chengdu 611130, China; (G.C.); (H.C.); (K.S.); (M.A.R.); (G.B.); (X.S.); (T.P.); (T.Y.); (W.L.); (J.L.); (J.D.); (F.Y.); (W.Y.)
- Sichuan Engineering Research Center for Crop Strip Intercropping System, Key Laboratory of Crop Ecophysiology and Farming System in Southwest China (Ministry of Agriculture), Chengdu 611130, China
| | - Xiaochun Wang
- College of Agronomy, Sichuan Agricultural University, Chengdu 611130, China; (G.C.); (H.C.); (K.S.); (M.A.R.); (G.B.); (X.S.); (T.P.); (T.Y.); (W.L.); (J.L.); (J.D.); (F.Y.); (W.Y.)
- Sichuan Engineering Research Center for Crop Strip Intercropping System, Key Laboratory of Crop Ecophysiology and Farming System in Southwest China (Ministry of Agriculture), Chengdu 611130, China
- Correspondence: ; Tel.: +86-028-8629-0906
| |
Collapse
|
39
|
Liu HT, Ji Y, Liu Y, Tian SH, Gao QH, Zou XH, Yang J, Dong C, Tan JH, Ni DA, Duan K. The sugar transporter system of strawberry: genome-wide identification and expression correlation with fruit soluble sugar-related traits in a Fragaria × ananassa germplasm collection. HORTICULTURE RESEARCH 2020; 7:132. [PMID: 32793356 PMCID: PMC7385174 DOI: 10.1038/s41438-020-00359-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Revised: 06/04/2020] [Accepted: 06/06/2020] [Indexed: 05/24/2023]
Abstract
Sugar from plant photosynthesis is a basic requirement for life activities. Sugar transporters are the proteins that mediate sugar allocation among or within source/sink organs. The transporters of the major facilitator superfamily (MFS) targeting carbohydrates represent the largest family of sugar transporters in many plants. Strawberry (Fragaria × ananassa Duchesne) is an important crop appreciated worldwide for its unique fruit flavor. The involvement of MFS sugar transporters (STs) in cultivated strawberry fruit sugar accumulation is largely unknown. In this work, we characterized the genetic variation associated with fruit soluble sugars in a collection including 154 varieties. Then, a total of 67 ST genes were identified in the v4.0 genome integrated with the v4.0.a2 protein database of F. vesca, the dominant subgenome provider for modern cultivated strawberry. Phylogenetic analysis updated the nomenclature of strawberry ST homoeologs. Both the chromosomal distribution and structural characteristics of the ST family were improved. Semi-RT-PCR analysis in nine tissues from cv. Benihoppe screened 34 highly expressed ST genes in fruits. In three varieties with dramatically differing fruit sugar levels, qPCR integrated with correlation analysis between ST transcript abundance and sugar content identified 13 sugar-correlated genes. The correlations were re-evaluated across 19 varieties, including major commercial cultivars grown in China. Finally, a model of the contribution of the sugar transporter system to subcellular sugar allocation in strawberry fruits was proposed. Our work highlights the involvement of STs in controlling strawberry fruit soluble sugars and provides candidates for the future functional study of STs in strawberry development and responses and a new approach for strawberry genetic engineering and molecular breeding.
Collapse
Affiliation(s)
- Hai-Ting Liu
- Shanghai Key Laboratory of Protected Horticultural Technology, Forestry and Fruit Tree Research Institute, Shanghai Academy of Agricultural Sciences (SAAS), Shanghai, 201403 China
- Ecological Technique and Engineering College, Shanghai Institute of Technology, Shanghai, 201418 China
| | - Ying Ji
- Shanghai Key Laboratory of Protected Horticultural Technology, Forestry and Fruit Tree Research Institute, Shanghai Academy of Agricultural Sciences (SAAS), Shanghai, 201403 China
- Ecological Technique and Engineering College, Shanghai Institute of Technology, Shanghai, 201418 China
| | - Ya Liu
- Shanghai Key Laboratory of Protected Horticultural Technology, Forestry and Fruit Tree Research Institute, Shanghai Academy of Agricultural Sciences (SAAS), Shanghai, 201403 China
| | - Shu-Hua Tian
- Shanghai Key Laboratory of Protected Horticultural Technology, Forestry and Fruit Tree Research Institute, Shanghai Academy of Agricultural Sciences (SAAS), Shanghai, 201403 China
| | - Qing-Hua Gao
- Shanghai Key Laboratory of Protected Horticultural Technology, Forestry and Fruit Tree Research Institute, Shanghai Academy of Agricultural Sciences (SAAS), Shanghai, 201403 China
- Ecological Technique and Engineering College, Shanghai Institute of Technology, Shanghai, 201418 China
| | - Xiao-Hua Zou
- Shanghai Key Laboratory of Protected Horticultural Technology, Forestry and Fruit Tree Research Institute, Shanghai Academy of Agricultural Sciences (SAAS), Shanghai, 201403 China
| | - Jing Yang
- Shanghai Key Laboratory of Protected Horticultural Technology, Forestry and Fruit Tree Research Institute, Shanghai Academy of Agricultural Sciences (SAAS), Shanghai, 201403 China
| | - Chao Dong
- Shanghai Key Laboratory of Protected Horticultural Technology, Forestry and Fruit Tree Research Institute, Shanghai Academy of Agricultural Sciences (SAAS), Shanghai, 201403 China
| | - Jia-Hui Tan
- Shanghai Key Laboratory of Protected Horticultural Technology, Forestry and Fruit Tree Research Institute, Shanghai Academy of Agricultural Sciences (SAAS), Shanghai, 201403 China
- Environmental Engineering College, Suzhou Polytechnic Institute of Agriculture, Suzhou, 215008 China
| | - Di-An Ni
- Ecological Technique and Engineering College, Shanghai Institute of Technology, Shanghai, 201418 China
| | - Ke Duan
- Shanghai Key Laboratory of Protected Horticultural Technology, Forestry and Fruit Tree Research Institute, Shanghai Academy of Agricultural Sciences (SAAS), Shanghai, 201403 China
| |
Collapse
|
40
|
Ram C, Annamalai M, Koramutla MK, Kansal R, Arora A, Jain PK, Bhattacharya R. Characterization of STP4 promoter in Indian mustard Brassica juncea for use as an aphid responsive promoter. Biotechnol Lett 2020; 42:2013-2033. [PMID: 32676799 DOI: 10.1007/s10529-020-02961-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2019] [Accepted: 07/03/2020] [Indexed: 10/23/2022]
Abstract
OBJECTIVE Brassica juncea, a major oilseed crop, suffers substantial yield losses due to infestation by mustard aphids (Lipaphis erysimi). Unavailability of resistance genes within the accessible gene pool underpins significance of the transgenic strategy in developing aphid resistance. In this study, we aimed for the identification of an aphid-responsive promoter from B. juncea, based on the available genomic resources. RESULTS A monosaccharide transporter gene, STP4 in B. juncea was activated by aphids and sustained increased expression as the aphids colonized the plants. We cloned the upstream intergenic region of STP4 and validated its stand-alone aphid-responsive promoter activity. Further, deletion analysis identified the putative cis-elements important for the aphid responsive promoter activity. CONCLUSION The identified STP4 promoter can potentially be used for driving high level aphid-inducible expression of transgenes in plants. Use of aphid-responsive promoter instead of constitutive promoters can potentially reduce the metabolic burden of transgene-expression on the host plant.
Collapse
Affiliation(s)
- Chet Ram
- ICAR-National Institute for Plant Biotechnology, ICAR-Indian Agricultural Research Institute Campus, New Delhi, 110012, India
| | - Muthuganeshan Annamalai
- ICAR-National Institute for Plant Biotechnology, ICAR-Indian Agricultural Research Institute Campus, New Delhi, 110012, India
| | - Murali Krishna Koramutla
- ICAR-National Institute for Plant Biotechnology, ICAR-Indian Agricultural Research Institute Campus, New Delhi, 110012, India
| | - Rekha Kansal
- ICAR-National Institute for Plant Biotechnology, ICAR-Indian Agricultural Research Institute Campus, New Delhi, 110012, India
| | - Ajay Arora
- Division of Plant Physiology, ICAR-Indian Agricultural Research Institute Campus, New Delhi, 110012, India
| | - Pradeep K Jain
- ICAR-National Institute for Plant Biotechnology, ICAR-Indian Agricultural Research Institute Campus, New Delhi, 110012, India
| | - Ramcharan Bhattacharya
- ICAR-National Institute for Plant Biotechnology, ICAR-Indian Agricultural Research Institute Campus, New Delhi, 110012, India.
| |
Collapse
|
41
|
Genome-Wide Identification and Expression Profiling of Monosaccharide Transporter Genes Associated with High Harvest Index Values in Rapeseed ( Brassica napus L.). Genes (Basel) 2020; 11:genes11060653. [PMID: 32549312 PMCID: PMC7349323 DOI: 10.3390/genes11060653] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Revised: 06/10/2020] [Accepted: 06/12/2020] [Indexed: 01/15/2023] Open
Abstract
Sugars are important throughout a plant’s lifecycle. Monosaccharide transporters (MST) are essential sugar transporters that have been identified in many plants, but little is known about the evolution or functions of MST genes in rapeseed (Brassica napus). In this study, we identified 175 MST genes in B. napus, 87 in Brassica oleracea, and 83 in Brassica rapa. These genes were separated into the sugar transport protein (STP), polyol transporter (PLT), vacuolar glucose transporter (VGT), tonoplast monosaccharide transporter (TMT), inositol transporter (INT), plastidic glucose transporter (pGlcT), and ERD6-like subfamilies, respectively. Phylogenetic and syntenic analysis indicated that gene redundancy and gene elimination have commonly occurred in Brassica species during polyploidization. Changes in exon-intron structures during evolution likely resulted in the differences in coding regions, expression patterns, and functions seen among BnMST genes. In total, 31 differentially expressed genes (DEGs) were identified through RNA-seq among materials with high and low harvest index (HI) values, which were divided into two categories based on the qRT-PCR results, expressed more highly in source or sink organs. We finally identified four genes, including BnSTP5, BnSTP13, BnPLT5, and BnERD6-like14, which might be involved in monosaccharide uptake or unloading and further affect the HI of rapeseed. These findings provide fundamental information about MST genes in Brassica and reveal the importance of BnMST genes to high HI in B. napus.
Collapse
|
42
|
Smith AM, Zeeman SC. Starch: A Flexible, Adaptable Carbon Store Coupled to Plant Growth. ANNUAL REVIEW OF PLANT BIOLOGY 2020; 71:217-245. [PMID: 32075407 DOI: 10.1146/annurev-arplant-050718-100241] [Citation(s) in RCA: 91] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Research in the past decade has uncovered new and surprising information about the pathways of starch synthesis and degradation. This includes the discovery of previously unsuspected protein families required both for processes and for the long-sought mechanism of initiation of starch granules. There is also growing recognition of the central role of leaf starch turnover in making carbon available for growth across the day-night cycle. Sophisticated systems-level control mechanisms involving the circadian clock set rates of nighttime starch mobilization that maintain a steady supply of carbon until dawn and modulate partitioning of photosynthate into starch in the light, optimizing the fraction of assimilated carbon that can be used for growth. These discoveries also uncover complexities: Results from experiments with Arabidopsis leaves in conventional controlled environments are not necessarily applicable to other organs or species or to growth in natural, fluctuating environments.
Collapse
Affiliation(s)
| | - Samuel C Zeeman
- Institute of Plant Molecular Biology, ETH Zürich, 8092 Zürich, Switzerland
| |
Collapse
|
43
|
Genome-wide identification, expression, and association analysis of the monosaccharide transporter (MST) gene family in peanut ( Arachis hypogaea L.). 3 Biotech 2020; 10:130. [PMID: 32154043 DOI: 10.1007/s13205-020-2123-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Accepted: 02/05/2020] [Indexed: 10/25/2022] Open
Abstract
In this study, we reported the genome-wide analysis of the whole sugar transporter gene family of a legume species, peanut (Arachis hypogaea L.), including the chromosome locations, gene structures, phylogeny, expression patterns, as well as comparative genomic analysis with Arabidopsis, rice, grape, and soybean. A total of 76 AhMST genes (AhMST1-76) were identified from the peanut genome and located unevenly in 20 chromosomes. Phylogeny analysis indicated that the AhMSTs can be divided into eight groups including two undefined peanut-specific groups. Transcriptional profiles revealed that many AhMST genes showed tissue-specific expression, the majority of the AhMST genes mainly expressed in sink organs and floral organ of peanut. Chromosome distribution pattern and synteny analysis strongly indicated that genome-wide segmental and tandem duplication contributed to the expansion of peanut MST genes. Four common orthologs (AhMST9, AhMST13, AhMST40, and AhMST43) between peanut and the other four species were identified by comparative genomic analysis, which might play important roles in maintaining the growth and development of plant. Furthermore, four polymorphic sites in AhMST11, AhMST13, and AhMST60 were significantly correlated with hundred pod weight (HPW) and hundred seed weight (HSW) by association analysis. In a word, these results will provide new insights for understanding the functions of AhMST family members to sugar transporting and the potential for yield improvement in peanut.
Collapse
|
44
|
Malinova I, Kössler S, Orawetz T, Matthes U, Orzechowski S, Koch A, Fettke J. Identification of Two Arabidopsis thaliana Plasma Membrane Transporters Able to Transport Glucose 1-Phosphate. PLANT & CELL PHYSIOLOGY 2020; 61:381-392. [PMID: 31722406 DOI: 10.1093/pcp/pcz206] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Accepted: 10/25/2019] [Indexed: 06/10/2023]
Abstract
Primary carbohydrate metabolism in plants includes several sugar and sugar-derivative transport processes. Over recent years, evidences have shown that in starch-related transport processes, in addition to glucose 6-phosphate, maltose, glucose and triose-phosphates, glucose 1-phosphate also plays a role and thereby increases the possible fluxes of sugar metabolites in planta. In this study, we report the characterization of two highly similar transporters, At1g34020 and At4g09810, in Arabidopsis thaliana, which allow the import of glucose 1-phosphate through the plasma membrane. Both transporters were expressed in yeast and were biochemically analyzed to reveal an antiport of glucose 1-phosphate/phosphate. Furthermore, we showed that the apoplast of Arabidopsis leaves contained glucose 1-phosphate and that the corresponding mutant of these transporters had higher glucose 1-phosphate amounts in the apoplast and alterations in starch and starch-related metabolism.
Collapse
Affiliation(s)
- Irina Malinova
- Group of Biopolymer Analytics, University of Potsdam, Potsdam-Golm 14476, Germany
| | - Stella Kössler
- Group of Biopolymer Analytics, University of Potsdam, Potsdam-Golm 14476, Germany
| | - Tom Orawetz
- Group of Biopolymer Analytics, University of Potsdam, Potsdam-Golm 14476, Germany
| | - Ulrike Matthes
- Group of Biopolymer Analytics, University of Potsdam, Potsdam-Golm 14476, Germany
| | - Slawomir Orzechowski
- Department of Biochemistry, Warsaw University of Life Sciences-SGGW, Warsaw 02-776, Poland
| | - Anke Koch
- Plant Physiology, University of Potsdam, Potsdam-Golm 14476, Germany
| | - Joerg Fettke
- Group of Biopolymer Analytics, University of Potsdam, Potsdam-Golm 14476, Germany
| |
Collapse
|
45
|
Ceusters N, Frans M, Van den Ende W, Ceusters J. Maltose Processing and Not β-Amylase Activity Curtails Hydrolytic Starch Degradation in the CAM Orchid Phalaenopsis. FRONTIERS IN PLANT SCIENCE 2019; 10:1386. [PMID: 31798600 PMCID: PMC6868039 DOI: 10.3389/fpls.2019.01386] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2019] [Accepted: 10/08/2019] [Indexed: 05/19/2023]
Abstract
Crassulacean acid metabolism (CAM) is one of the three photosynthetic pathways in higher plants and is characterized by high water use efficiency. This mainly relies on major nocturnal CO2 fixation sustained by degradation of storage carbohydrate such as starch to provide phosphoenolpyruvate (PEP) and energy. In contrast to C3 plants where starch is mainly degraded by the hydrolytic route, different observations suggested the phosphorolytic route to be a major pathway for starch degradation in CAM plants. To elucidate the interplay and relevant contributions of the phosphorolytic and hydrolytic pathways for starch degradation in CAM, we assessed diel patterns for metabolites and enzymes implicated in both the hydrolytic route (β-amylase, DPE1, DPE2, maltase) and the phosphorolytic route (starch phosphorylase) of starch degradation in the CAM orchid Phalaenopsis "Edessa." By comparing the catalytic enzyme activities and starch degradation rates, we showed that the phosphorolytic pathway is the major route to accommodate nocturnal starch degradation and that measured activities of starch phosphorylase perfectly matched calculated starch degradation rates in order to avoid premature exhaustion of starch reserves before dawn. The hydrolytic pathway seemed hampered in starch processing not by β-amylase but through insufficient catalytic capacity of both DPE2 and maltase. These considerations were further corroborated by measurements of enzyme activities in the CAM model plant Kalanchoë fedtschenkoi and strongly contradict with the situation in the C3 plant Arabidopsis. The data support the view that the phosphorolytic pathway might be the main route of starch degradation in CAM to provide substrate for PEP with additional hydrolytic starch breakdown to accommodate mainly sucrose synthesis.
Collapse
Affiliation(s)
- Nathalie Ceusters
- KU Leuven, Department of Biosystems, Division of Crop Biotechnics, Research Group for Sustainable Crop Production & Protection, Campus Geel, Geel, Belgium
| | - Mario Frans
- KU Leuven, Department of Biosystems, Division of Crop Biotechnics, Research Group for Sustainable Crop Production & Protection, Campus Geel, Geel, Belgium
| | - Wim Van den Ende
- KU Leuven, Department of Biology, Laboratory of Molecular Plant Biology, Leuven, Belgium
| | - Johan Ceusters
- KU Leuven, Department of Biosystems, Division of Crop Biotechnics, Research Group for Sustainable Crop Production & Protection, Campus Geel, Geel, Belgium
- UHasselt, Centre for Environmental Sciences, Environmental Biology, Diepenbeek, Belgium
| |
Collapse
|
46
|
Mdodana NT, Jewell JF, Phiri EE, Smith ML, Oberlander K, Mahmoodi S, Kossmann J, Lloyd JR. Mutations in Glucan, Water Dikinase Affect Starch Degradation and Gametophore Development in the Moss Physcomitrella patens. Sci Rep 2019; 9:15114. [PMID: 31641159 PMCID: PMC6805951 DOI: 10.1038/s41598-019-51632-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Accepted: 10/01/2019] [Indexed: 11/23/2022] Open
Abstract
The role of starch degradation in non-vascular plants is poorly understood. To expand our knowledge of this area, we have studied this process in Physcomitrella patens. This has been achieved through examination of the step known to initiate starch degradation in angiosperms, glucan phosphorylation, catalysed by glucan, water dikinase (GWD) enzymes. Phylogenetic analysis indicates that GWD isoforms can be divided into two clades, one of which contains GWD1/GWD2 and the other GWD3 isoforms. These clades split at a very early stage within plant evolution, as distinct sequences that cluster within each were identified in all major plant lineages. Of the five genes we identified within the Physcomitrella genome that encode GWD-like enzymes, two group within the GWD1/GWD2 clade and the others within the GWD3 clade. Proteins encoded by both loci in the GWD1/GWD2 clade, named PpGWDa and PpGWDb, are localised in plastids. Mutations of either PpGWDa or PpGWDb reduce starch phosphate abundance, however, a mutation at the PpGWDa locus had a much greater influence than one at PpGWDb. Only mutations affecting PpGWDa inhibited starch degradation. Mutants lacking this enzyme also failed to develop gametophores, a phenotype that could be chemically complemented using glucose supplementation within the growth medium.
Collapse
Affiliation(s)
- Ntombizanele T Mdodana
- Department of Genetics, Institute for Plant Biotechnology, University of Stellenbosch, Stellenbosch, South Africa
| | - Jonathan F Jewell
- Department of Genetics, Institute for Plant Biotechnology, University of Stellenbosch, Stellenbosch, South Africa
| | - Ethel E Phiri
- Department of Genetics, Institute for Plant Biotechnology, University of Stellenbosch, Stellenbosch, South Africa
| | - Marthinus L Smith
- Department of Genetics, Institute for Plant Biotechnology, University of Stellenbosch, Stellenbosch, South Africa
| | - Kenneth Oberlander
- Schweickerdt Herbarium, Department of Plant and Soil Sciences, University of Pretoria, Private Bag X20, Hatfield, 0028, South Africa
| | - Saire Mahmoodi
- Department of Genetics, Institute for Plant Biotechnology, University of Stellenbosch, Stellenbosch, South Africa
| | - Jens Kossmann
- Department of Genetics, Institute for Plant Biotechnology, University of Stellenbosch, Stellenbosch, South Africa
| | - James R Lloyd
- Department of Genetics, Institute for Plant Biotechnology, University of Stellenbosch, Stellenbosch, South Africa.
| |
Collapse
|
47
|
Niño-González M, Novo-Uzal E, Richardson DN, Barros PM, Duque P. More Transporters, More Substrates: The Arabidopsis Major Facilitator Superfamily Revisited. MOLECULAR PLANT 2019; 12:1182-1202. [PMID: 31330327 DOI: 10.1016/j.molp.2019.07.003] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/24/2018] [Revised: 07/10/2019] [Accepted: 07/11/2019] [Indexed: 05/20/2023]
Abstract
The Major Facilitator Superfamily (MFS) is ubiquitous in living organisms and represents the largest group of secondary active membrane transporters. In plants, significant research efforts have focused on the role of specific families within the MFS, particularly those transporting macronutrients (C, N, and P) that constitute the vast majority of the members of this superfamily. Other MFS families remain less explored, although a plethora of additional substrates and physiological functions have been uncovered. Nevertheless, the lack of a systematic approach to analyzing the MFS as a whole has obscured the high diversity and versatility of these transporters. Here, we present a phylogenetic analysis of all annotated MFS domain-containing proteins encoded in the Arabidopsis thaliana genome and propose that this superfamily of transporters consists of 218 members, clustered in 22 families. In reviewing the available information regarding the diversity in biological functions and substrates of Arabidopsis MFS members, we provide arguments for intensified research on these membrane transporters to unveil the breadth of their physiological relevance, disclose the molecular mechanisms underlying their mode of action, and explore their biotechnological potential.
Collapse
Affiliation(s)
| | | | | | - Pedro M Barros
- Genomics of Plant Stress Unit, ITQB NOVA - Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, 2780-157 Oeiras, Portugal
| | - Paula Duque
- Instituto Gulbenkian de Ciência, 2780-156 Oeiras, Portugal.
| |
Collapse
|
48
|
Cordenunsi-Lysenko BR, Nascimento JRO, Castro-Alves VC, Purgatto E, Fabi JP, Peroni-Okyta FHG. The Starch Is (Not) Just Another Brick in the Wall: The Primary Metabolism of Sugars During Banana Ripening. FRONTIERS IN PLANT SCIENCE 2019; 10:391. [PMID: 31001305 PMCID: PMC6454214 DOI: 10.3389/fpls.2019.00391] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2019] [Accepted: 03/14/2019] [Indexed: 05/25/2023]
Abstract
The monocot banana fruit is one of the most important crops worldwide. As a typical climacteric fruit, the harvest of commercial bananas usually occurs when the fruit is physiologically mature but unripe. The universal treatment of green bananas with ethylene or ethylene-releasing compounds in order to accelerate and standardize the ripening of a bunch of bananas mimics natural maturation after increasing the exogenous production of ethylene. The trigger of autocatalytic ethylene production regulated by a dual positive feedback loop circuit derived from a NAC gene and three MADS genes results in metabolic processes that induce changes in the primary metabolism of bananas. These changes include pulp softening and sweetening which are sensorial attributes that determine banana postharvest quality. During fruit development, bananas accumulate large amounts of starch (between 15 and 35% w/w of their fresh weight, depending on the cultivar). Pulp softening and sweetening during banana ripening are attributed not only to changes in the activities of cell wall hydrolases but also to starch-to-sugar metabolism. Therefore, starch granule erosion and disassembling are key events that lead bananas to reach their optimal postharvest quality. The knowledge of the mechanisms that regulate sugar primary metabolism during banana ripening is fundamental to reduce postharvest losses and improve final product quality, though. Recent studies have shown that ethylene-mediated regulation of starch-degrading enzymes at transcriptional and translational levels is crucial for sugar metabolism in banana ripening. Furthermore, the crosstalk between ethylene and other hormones including indole-3-acetic acid and abscisic acid also influences primary sugar metabolism. In this review, we will describe the state-of-the-art sugar primary metabolism in bananas and discuss the recent findings that shed light on the understanding of the molecular mechanisms involved in the regulation of this metabolism during fruit ripening.
Collapse
Affiliation(s)
- Beatriz Rosana Cordenunsi-Lysenko
- Department of Food Science and Experimental Nutrition, School of Pharmaceutical Sciences, University of São Paulo, São Paulo, Brazil
- Food Research Center (FoRC), Research, Innovation and Dissemination Centers, São Paulo Research Foundation (CEPID-FAPESP), São Paulo, Brazil
- Food and Nutrition Research Center (NAPAN), University of São Paulo, São Paulo, Brazil
| | - João Roberto Oliveira Nascimento
- Department of Food Science and Experimental Nutrition, School of Pharmaceutical Sciences, University of São Paulo, São Paulo, Brazil
- Food Research Center (FoRC), Research, Innovation and Dissemination Centers, São Paulo Research Foundation (CEPID-FAPESP), São Paulo, Brazil
- Food and Nutrition Research Center (NAPAN), University of São Paulo, São Paulo, Brazil
| | - Victor Costa Castro-Alves
- Department of Food Science and Experimental Nutrition, School of Pharmaceutical Sciences, University of São Paulo, São Paulo, Brazil
- Food Research Center (FoRC), Research, Innovation and Dissemination Centers, São Paulo Research Foundation (CEPID-FAPESP), São Paulo, Brazil
| | - Eduardo Purgatto
- Department of Food Science and Experimental Nutrition, School of Pharmaceutical Sciences, University of São Paulo, São Paulo, Brazil
- Food Research Center (FoRC), Research, Innovation and Dissemination Centers, São Paulo Research Foundation (CEPID-FAPESP), São Paulo, Brazil
- Food and Nutrition Research Center (NAPAN), University of São Paulo, São Paulo, Brazil
| | - João Paulo Fabi
- Department of Food Science and Experimental Nutrition, School of Pharmaceutical Sciences, University of São Paulo, São Paulo, Brazil
- Food Research Center (FoRC), Research, Innovation and Dissemination Centers, São Paulo Research Foundation (CEPID-FAPESP), São Paulo, Brazil
- Food and Nutrition Research Center (NAPAN), University of São Paulo, São Paulo, Brazil
| | - Fernanda Helena Gonçalves Peroni-Okyta
- Department of Food Science and Experimental Nutrition, School of Pharmaceutical Sciences, University of São Paulo, São Paulo, Brazil
- Food Research Center (FoRC), Research, Innovation and Dissemination Centers, São Paulo Research Foundation (CEPID-FAPESP), São Paulo, Brazil
| |
Collapse
|
49
|
Deng X, An B, Zhong H, Yang J, Kong W, Li Y. A Novel Insight into Functional Divergence of the MST Gene Family in Rice Based on Comprehensive Expression Patterns. Genes (Basel) 2019; 10:genes10030239. [PMID: 30897847 PMCID: PMC6470851 DOI: 10.3390/genes10030239] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Revised: 03/14/2019] [Accepted: 03/18/2019] [Indexed: 01/18/2023] Open
Abstract
Sugars are critical for plant growth and development as suppliers of carbon and energy, as signal molecules, or as solute molecules for osmotic homeostasis. Monosaccharide transporter (MST) genes are involved in various processes of plant growth and development as well as in response to abiotic stresses. However, the evolution and their roles of MST genes in growth and development and in coping with abiotic stresses in rice are poorly known. Here, we identified 64 MST genes in rice genome, which are classified into seven subfamilies: STP, PLT, AZT, ERD, pGlcT, INT, and XTPH. MST genes are not evenly distributed between chromosomes (Chrs) with a bias to Chr 3, 4, 7, and 11, which could be a result of duplication of fragments harboring MST genes. In total, 12 duplication events were found in the rice MST family, among which, two pairs were derived from fragmental duplications and ten pairs were from tandem duplications. The synonymous and nonsynonymous substitution rates of duplicate gene pairs demonstrated that the MST family was under a strong negative selection during the evolution process. Furthermore, a comprehensive expression analysis conducted in 11 different tissues, three abiotic stresses, five hormone treatments, and three sugar treatments revealed different expression patterns of MST genes and indicated diversified functions of them. Our results suggest that MST genes play important roles not only in various abiotic stresses but also in hormone and sugar responses. The present results will provide a vital insight into the functional divergence of the MST family in the future study.
Collapse
Affiliation(s)
- Xiaolong Deng
- State Key Laboratory for Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan 430072, China.
| | - Baoguang An
- State Key Laboratory for Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan 430072, China.
| | - Hua Zhong
- State Key Laboratory for Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan 430072, China.
| | - Jing Yang
- State Key Laboratory for Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan 430072, China.
| | - Weilong Kong
- State Key Laboratory for Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan 430072, China.
| | - Yangsheng Li
- State Key Laboratory for Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan 430072, China.
| |
Collapse
|
50
|
Fan ZQ, Ba LJ, Shan W, Xiao YY, Lu WJ, Kuang JF, Chen JY. A banana R2R3-MYB transcription factor MaMYB3 is involved in fruit ripening through modulation of starch degradation by repressing starch degradation-related genes and MabHLH6. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2018; 96:1191-1205. [PMID: 30242914 DOI: 10.1111/tpj.14099] [Citation(s) in RCA: 79] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2018] [Revised: 09/03/2018] [Accepted: 09/13/2018] [Indexed: 05/28/2023]
Abstract
Starch degradation is a necessary process determining banana fruit quality during ripening. Many starch degradation-related genes are well studied. However, the transcriptional regulation of starch degradation during banana fruit ripening remains poorly understood. In this study, we identified a MYB transcription factor (TF) termed MaMYB3, as a putative protein binding the promoter of MaGWD1, a member of glucan water dikinase (GWD) family which has been demonstrated as an important enzyme of starch degradation. MaMYB3 was ripening- and ethylene-repressible, and its expression was negatively correlated with starch degradation. Acting as a nucleus-localized transcriptional repressor, MaMYB3 repressed the transcription of 10 starch degradation-related genes, including MaGWD1, MaSEX4, MaBAM7-MaBAM8, MaAMY2B, MaAMY3, MaAMY3A, MaAMY3C, MaMEX1, and MapGlcT2-1, by directly binding to their promoters. Interestingly, a previously identified activator of starch degradation-related genes, MabHLH6, was also suppressed by MaMYB3. The ectopic overexpression of MaMYB3 in tomato down-regulated the expression of starch degradation-related genes, inhibited starch degradation and delayed fruit ripening. Based on these findings, we conclude that MaMYB3 negatively impacts starch degradation by directly repressing starch degradation-related genes and MabHLH6, and thereby delays banana fruit ripening. Collectively, our study expands our understanding of the complex transcriptional regulatory hierarchy modulating starch degradation during fruit ripening.
Collapse
Affiliation(s)
- Zhong-Qi Fan
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources/Guangdong Provincial Key Laboratory of Postharvest Science of Fruits and Vegetables, College of Horticulture, South China Agricultural University, Guangzhou, 510642, China
| | - Liang-Jie Ba
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources/Guangdong Provincial Key Laboratory of Postharvest Science of Fruits and Vegetables, College of Horticulture, South China Agricultural University, Guangzhou, 510642, China
| | - Wei Shan
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources/Guangdong Provincial Key Laboratory of Postharvest Science of Fruits and Vegetables, College of Horticulture, South China Agricultural University, Guangzhou, 510642, China
| | - Yun-Yi Xiao
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources/Guangdong Provincial Key Laboratory of Postharvest Science of Fruits and Vegetables, College of Horticulture, South China Agricultural University, Guangzhou, 510642, China
| | - Wang-Jin Lu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources/Guangdong Provincial Key Laboratory of Postharvest Science of Fruits and Vegetables, College of Horticulture, South China Agricultural University, Guangzhou, 510642, China
| | - Jian-Fei Kuang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources/Guangdong Provincial Key Laboratory of Postharvest Science of Fruits and Vegetables, College of Horticulture, South China Agricultural University, Guangzhou, 510642, China
| | - Jian-Ye Chen
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources/Guangdong Provincial Key Laboratory of Postharvest Science of Fruits and Vegetables, College of Horticulture, South China Agricultural University, Guangzhou, 510642, China
| |
Collapse
|