1
|
Sun Y, Robert CA, Thakur MP. Drought intensity and duration effects on morphological root traits vary across trait type and plant functional groups: a meta-analysis. BMC Ecol Evol 2024; 24:92. [PMID: 38965481 PMCID: PMC11223356 DOI: 10.1186/s12862-024-02275-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Accepted: 06/17/2024] [Indexed: 07/06/2024] Open
Abstract
The increasing severity and frequency of drought pose serious threats to plant species worldwide. Yet, we lack a general understanding of how various intensities of droughts affect plant traits, in particular root traits. Here, using a meta-analysis of drought experiments (997 effect sizes from 76 papers), we investigate the effects of various intensities of droughts on some of the key morphological root traits. Our results show that root length, root mean diameter, and root area decline when drought is of severe or extreme intensity, whereas severe drought increases root tissue density. These patterns are most pronounced in trees compared to other plant functional groups. Moreover, the long duration of severe drought decreases root length in grasses and root mean diameter in legumes. The decline in root length and root diameter due to severe drought in trees was independent of drought duration. Our results suggest that morphological root traits respond strongly to increasing intensity of drought, which further depends on drought duration and may vary among plant functional groups. Our meta-analysis highlights the need for future studies to consider the interactive effects of drought intensity and drought duration for a better understanding of variable plant responses to drought.
Collapse
Affiliation(s)
- Yu Sun
- Institute of Ecology and Evolution, University of Bern, Bern, 3012, Switzerland.
| | | | - Madhav P Thakur
- Institute of Ecology and Evolution, University of Bern, Bern, 3012, Switzerland
| |
Collapse
|
2
|
Zhao Y, Xiong L, Yin J, Zha X, Li W, Han Y. Understanding the effects of flash drought on vegetation photosynthesis and potential drivers over China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 931:172926. [PMID: 38697519 DOI: 10.1016/j.scitotenv.2024.172926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 04/26/2024] [Accepted: 04/29/2024] [Indexed: 05/05/2024]
Abstract
Flash droughts characterized by rapid onset and intensification are expected to be a new normal under climate change and potentially affect vegetation photosynthesis and terrestrial carbon sink. However, the effects of flash drought on vegetation photosynthesis and their potential dominant driving factors remain uncertain. Here, we quantify the susceptibility and response magnitude of vegetation photosynthesis to flash drought across different ecosystems (i.e., forest, shrubland, grassland, and cropland) in China based on reanalysis and satellite observations. By employing the extreme gradient boosting model, we also identify the dominant factors that influence these flash drought-photosynthesis relationships. We show that over 51.46 % of ecosystems across China are susceptible to flash drought, and grasslands are substantially suppressed, as reflected in both sensitivity and response magnitude (with median gross primary productivity anomalies of -0.13). We further demonstrate that background climate differences (e.g., mean annual temperature and aridity) predominantly regulate the response variation in forest and shrubland, with hotter/colder or drier ecosystems being more severely suppressed by flash drought. However, in grasslands and croplands, the differential vegetation responses are attributed to the intensity of abnormal hydro-meteorological conditions during flash drought (e.g., vapor pressure deficit (VPD) and temperature anomalies). The effects of flash droughts intensify with increasing VPD and nonmonotonically relate to temperature, with colder or hotter temperatures leading to more severe vegetation loss. Our results identify the vulnerable ecological regions under flash drought and enable a better understanding of vegetation photosynthesis response to climate extremes, which may be useful for developing effective management strategies.
Collapse
Affiliation(s)
- Yue Zhao
- State Key Laboratory of Water Resources Engineering and Management, Wuhan University, Wuhan 430072, PR China.
| | - Lihua Xiong
- State Key Laboratory of Water Resources Engineering and Management, Wuhan University, Wuhan 430072, PR China.
| | - Jiabo Yin
- State Key Laboratory of Water Resources Engineering and Management, Wuhan University, Wuhan 430072, PR China.
| | - Xini Zha
- Changjiang Water Resources Protection Institute, Wuhan 430051, PR China; Key Laboratory of Ecological Regulation of Non-point Source Pollution in Lake and Reservoir Water Sources, Changjiang Water Resources Commission, Wuhan 430051, PR China.
| | - Wenbin Li
- State Key Laboratory of Water Resources Engineering and Management, Wuhan University, Wuhan 430072, PR China.
| | - Yajing Han
- State Key Laboratory of Water Resources Engineering and Management, Wuhan University, Wuhan 430072, PR China.
| |
Collapse
|
3
|
Holden P, Anderson M, Eckardt F, Ziervogel G, Jack SL, New MG, Smit J, Visser M, Hoffman MT. Importance of methodological pluralism in deriving counterfactuals for evidence-based conservation. CONSERVATION BIOLOGY : THE JOURNAL OF THE SOCIETY FOR CONSERVATION BIOLOGY 2024; 38:e14285. [PMID: 38686632 DOI: 10.1111/cobi.14285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 12/21/2023] [Accepted: 02/15/2024] [Indexed: 05/02/2024]
Abstract
Most protected area impact research that uses counterfactuals draws heavily on quantitative methods, data, and knowledge types, making it valuable in producing generalizations but limited in temporal scope, historical detail, and habitat diversity and coverage of ecosystem services. We devised a methodological pluralistic approach, which supports social science qualitative methods, narratives, mixed methods, and interdisciplinarity, to fully unlock the potential of counterfactuals in ensuring a place-based and detailed understanding of the socioecological context and impacts of protected areas. We applied this approach to derive possible counterfactual conditions for the impact of a montane protected area on 40 years of vegetation change in the Cape Floristic Region-a global biodiversity hotspot and UNESCO World Heritage Site in South Africa. We incorporated diverse methods, knowledge, and information sources, drawing on before-after protected area comparisons for inside and outside the protected area. A significant increase in shrubland vegetation (17-30%) was observed and attributed primarily to a decline in frequent burning for grazing. This also occurred outside the protected area and was driven by socioeconomic drivers and not by concerns over biodiversity conservation or land degradation. Had the protected area not been established the area would have seen intensification of cultivation and increased road networks, buildings, and water storage in dams. Our approach increased historical temporal coverage of socioecological change and contextualized assumptions around causality. Protected area impact evaluation should reengage in place-based research that fully incorporates pluralism in methodologies for constructing counterfactuals in a way that builds regional and global understanding from the local level upward. We devised 10 key principles for deriving counterfactuals grounded in methodological pluralism, covering aspects of collaboration, cocreation, inter- and transdisciplinarity, diverse values and lived experiences, multiple knowledge types, multiple possible causal mechanisms, social science qualitative methods, perceptions, perspectives, and narratives.
Collapse
Affiliation(s)
- Petra Holden
- African Climate and Development Initiative, University of Cape Town, Cape Town, South Africa
- Plant Conservation Unit, Department of Biological Sciences, University of Cape Town, Cape Town, South Africa
| | - Molly Anderson
- African Climate and Development Initiative, University of Cape Town, Cape Town, South Africa
- Environmental and Geographical Science, University of Cape Town, Cape Town, South Africa
| | - Frank Eckardt
- Environmental and Geographical Science, University of Cape Town, Cape Town, South Africa
| | - Gina Ziervogel
- African Climate and Development Initiative, University of Cape Town, Cape Town, South Africa
- Environmental and Geographical Science, University of Cape Town, Cape Town, South Africa
| | - Samuel L Jack
- Plant Conservation Unit, Department of Biological Sciences, University of Cape Town, Cape Town, South Africa
| | - Mark G New
- African Climate and Development Initiative, University of Cape Town, Cape Town, South Africa
- Environmental and Geographical Science, University of Cape Town, Cape Town, South Africa
| | - Julian Smit
- Department of Civil Engineering and Geomatics, Cape Peninsula University of Technology (CPUT), Cape Town, South Africa
| | - Martine Visser
- School of Economics, University of Cape Town, Cape Town, South Africa
| | - M Timm Hoffman
- Plant Conservation Unit, Department of Biological Sciences, University of Cape Town, Cape Town, South Africa
| |
Collapse
|
4
|
West AG, Atkins K, van Blerk JJ, Skelton RP. Assessing vulnerability to embolism and hydraulic safety margins in reed-like Restionaceae. PLANT BIOLOGY (STUTTGART, GERMANY) 2024; 26:633-646. [PMID: 38588329 DOI: 10.1111/plb.13644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Accepted: 03/12/2024] [Indexed: 04/10/2024]
Abstract
The African Restionaceae (Poales), the dominant graminoid layer in the megadiverse Cape Floristic Region of South Africa, are distributed across a wide range of moisture availability, yet currently there is very little known about the underlying hydraulics of this group. We tested two methods for measuring culm vulnerability to embolism, the optical and pneumatic methods, in three species of Cannomois ranging in habitat from semi-riparian (Cannomois virgata) to dryland (Cannomois parviflora and C. congesta). Estimates of culm xylem vulnerability were coupled with measures of turgor loss point (ΨTLP) and minimum field water potential (ΨMD) to assess hydraulic safety margins. The optical and pneumatic methods produced similar estimates of P50, but differed for P12 and P88. All three species were quite vulnerable to embolism, with P50 of -1.9 MPa (C. virgata), -2.3 MPa (C. congesta), and -2.4 MPa (C. parviflora). Estimates of P50, ΨTLP and ΨMD aligned with habitat moisture stress, with highest values found in the semi-riparian C. virgata. Consistent differences in P50, ΨMD and ΨTLP between species resulted in consistent hydraulic safety margins across species of 0.96 ± 0.1 MPa between ΨMD and P50, with onset of embolism occurring 0.43 ± 0.04 MPa after ΨTLP for all three species. Our study demonstrates that restio occupancy of dry environments involves more than the evolution of highly resistant xylem, suggesting that other aspects of water relations are key to understanding trait-environment relationships in this group.
Collapse
Affiliation(s)
- A G West
- Department of Biological Sciences, University of Cape Town, Rondebosch, South Africa
| | - K Atkins
- Department of Biological Sciences, University of Cape Town, Rondebosch, South Africa
| | - J J van Blerk
- Department of Biological Sciences, University of Cape Town, Rondebosch, South Africa
| | - R P Skelton
- Fynbos Node, South African Environmental Observation Network, Newlands, South Africa
- Department of Animal, Plant and Environmental Sciences, University of the Witwatersrand, Johannesburg, South Africa
| |
Collapse
|
5
|
Kongjarat W, Han L, Aritsara ANA, Zhang SB, Zhao GJ, Zhang YJ, Maenpuen P, Li YM, Zou YK, Li MY, Li XN, Tao LB, Chen YJ. Hydraulic properties and drought response of a tropical bamboo ( Cephalostachyum pergracile). PLANT DIVERSITY 2024; 46:406-415. [PMID: 38798721 PMCID: PMC11119542 DOI: 10.1016/j.pld.2023.12.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 12/20/2023] [Accepted: 12/25/2023] [Indexed: 05/29/2024]
Abstract
Bamboo plants are an essential component of tropical ecosystems, yet their vulnerability to climate extremes, such as drought, is poorly understood due to limited knowledge of their hydraulic properties. Cephalostachyum pergracile, a commonly used tropical bamboo species, exhibited a substantially higher mortality rate than other co-occurring bamboos during a severe drought event in 2019, but the underlying mechanisms remain unclear. This study investigated the leaf and stem hydraulic traits related to drought responses, including leaf-stem embolism resistance (P50leaf; P50stem) estimated using optical and X-ray microtomography methods, leaf pressure-volume and water-releasing curves. Additionally, we investigated the seasonal water potentials, native embolism level (PLC) and xylem water source using stable isotope. We found that C. pergracile exhibited strong resistance to embolism, showing low P50leaf, P50stem, and turgor loss point, despite its rapid leaf water loss. Interestingly, its leaves displayed greater resistance to embolism than its stem, suggesting a lack of effective hydraulic vulnerability segmentation (HVS) to protect the stem from excessive xylem tension. During the dry season, approximately 49% of the water was absorbed from the upper 20-cm-deep soil layer. Consequently, significant diurnal variation in leaf water potentials and an increase in midday PLC from 5.87 ± 2.33% in the wet season to 12.87 ± 4.09% in the dry season were observed. In summary, this study demonstrated that the rapid leaf water loss, high reliance on surface water, and a lack of effective HVS in C. pergracile accelerated water depletion and increased xylem embolism even in the typical dry season, which may explain its high mortality rate during extreme drought events in 2019.
Collapse
Affiliation(s)
- Wanwalee Kongjarat
- CAS Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Yunnan 666303, China
- University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Lu Han
- CAS Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Yunnan 666303, China
- University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Amy Ny Aina Aritsara
- CAS Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Yunnan 666303, China
- T-STAR Core Team, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Yunnan 666303, China
| | - Shu-Bin Zhang
- CAS Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Yunnan 666303, China
- T-STAR Core Team, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Yunnan 666303, China
| | - Gao-Juan Zhao
- CAS Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Yunnan 666303, China
- T-STAR Core Team, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Yunnan 666303, China
| | - Yong-Jiang Zhang
- School of Biology and Ecology, University of Maine, Orono, ME, USA
- Climate Change Institute, University of Maine, Orono, ME 04469, USA
| | - Phisamai Maenpuen
- CAS Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Yunnan 666303, China
- University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Ying-Mei Li
- School of Biological and Chemical Science, Pu’er University, Xueyuan Road, Yunnan 665000, China
| | - Yi-Ke Zou
- CAS Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Yunnan 666303, China
- University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Ming-Yi Li
- CAS Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Yunnan 666303, China
- Institute of Ecology and Geobotany, School of Ecology and Environmental Sciences, Yunnan University, Kunming, Yunnan 650091, China
| | - Xue-Nan Li
- CAS Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Yunnan 666303, China
- School of Ecology and Environment, Southwest Forestry University, Kunming, Yunnan 650224, China
| | - Lian-Bin Tao
- CAS Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Yunnan 666303, China
| | - Ya-Jun Chen
- CAS Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Yunnan 666303, China
- T-STAR Core Team, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Yunnan 666303, China
- Yuanjiang Savanna Ecosystem Research Station, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Yuanjiang, Yunnan 653300, China
| |
Collapse
|
6
|
Yan Y, Piao S, Hammond WM, Chen A, Hong S, Xu H, Munson SM, Myneni RB, Allen CD. Climate-induced tree-mortality pulses are obscured by broad-scale and long-term greening. Nat Ecol Evol 2024; 8:912-923. [PMID: 38467712 DOI: 10.1038/s41559-024-02372-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2022] [Accepted: 02/16/2024] [Indexed: 03/13/2024]
Abstract
Vegetation greening has been suggested to be a dominant trend over recent decades, but severe pulses of tree mortality in forests after droughts and heatwaves have also been extensively reported. These observations raise the question of to what extent the observed severe pulses of tree mortality induced by climate could affect overall vegetation greenness across spatial grains and temporal extents. To address this issue, here we analyse three satellite-based datasets of detrended growing-season normalized difference vegetation index (NDVIGS) with spatial resolutions ranging from 30 m to 8 km for 1,303 field-documented sites experiencing severe drought- or heat-induced tree-mortality events around the globe. We find that severe tree-mortality events have distinctive but localized imprints on vegetation greenness over annual timescales, which are obscured by broad-scale and long-term greening. Specifically, although anomalies in NDVIGS (ΔNDVI) are negative during tree-mortality years, this reduction diminishes at coarser spatial resolutions (that is, 250 m and 8 km). Notably, tree-mortality-induced reductions in NDVIGS (|ΔNDVI|) at 30-m resolution are negatively related to native plant species richness and forest height, whereas topographic heterogeneity is the major factor affecting ΔNDVI differences across various spatial grain sizes. Over time periods of a decade or longer, greening consistently dominates all spatial resolutions. The findings underscore the fundamental importance of spatio-temporal scales for cohesively understanding the effects of climate change on forest productivity and tree mortality under both gradual and abrupt changes.
Collapse
Affiliation(s)
- Yuchao Yan
- Institute of Carbon Neutrality, Sino-French Institute for Earth System Science, College of Urban and Environmental Sciences, Peking University, Beijing, China
| | - Shilong Piao
- Institute of Carbon Neutrality, Sino-French Institute for Earth System Science, College of Urban and Environmental Sciences, Peking University, Beijing, China.
- State Key Laboratory of Tibetan Plateau Earth System, Resources and Environment, Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing, China.
| | - William M Hammond
- Institute of Food and Agricultural Sciences, Agronomy Department, University of Florida, Gainesville, FL, USA
| | - Anping Chen
- Department of Biology and Graduate Degree Program in Ecology, Colorado State University, Fort Collins, CO, USA.
| | - Songbai Hong
- Institute of Carbon Neutrality, Sino-French Institute for Earth System Science, College of Urban and Environmental Sciences, Peking University, Beijing, China
| | - Hao Xu
- Institute of Carbon Neutrality, Sino-French Institute for Earth System Science, College of Urban and Environmental Sciences, Peking University, Beijing, China
| | - Seth M Munson
- U.S. Geological Survey, Southwest Biological Science Center, Flagstaff, AZ, USA
| | - Ranga B Myneni
- Department of Earth and Environment, Boston University, Boston, MA, USA
| | - Craig D Allen
- Department of Geography and Environmental Studies, University of New Mexico, Albuquerque, NM, USA
| |
Collapse
|
7
|
Bachofen C, Tumber-Dávila SJ, Mackay DS, McDowell NG, Carminati A, Klein T, Stocker BD, Mencuccini M, Grossiord C. Tree water uptake patterns across the globe. THE NEW PHYTOLOGIST 2024. [PMID: 38649790 DOI: 10.1111/nph.19762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Accepted: 03/13/2024] [Indexed: 04/25/2024]
Abstract
Plant water uptake from the soil is a crucial element of the global hydrological cycle and essential for vegetation drought resilience. Yet, knowledge of how the distribution of water uptake depth (WUD) varies across species, climates, and seasons is scarce relative to our knowledge of aboveground plant functions. With a global literature review, we found that average WUD varied more among biomes than plant functional types (i.e. deciduous/evergreen broadleaves and conifers), illustrating the importance of the hydroclimate, especially precipitation seasonality, on WUD. By combining records of rooting depth with WUD, we observed a consistently deeper maximum rooting depth than WUD with the largest differences in arid regions - indicating that deep taproots act as lifelines while not contributing to the majority of water uptake. The most ubiquitous observation across the literature was that woody plants switch water sources to soil layers with the highest water availability within short timescales. Hence, seasonal shifts to deep soil layers occur across the globe when shallow soils are drying out, allowing continued transpiration and hydraulic safety. While there are still significant gaps in our understanding of WUD, the consistency across global ecosystems allows integration of existing knowledge into the next generation of vegetation process models.
Collapse
Affiliation(s)
- Christoph Bachofen
- Plant Ecology Research Laboratory PERL, School of Architecture, Civil and Environmental Engineering, EPFL, 1015, Lausanne, Switzerland
- Functional Plant Ecology, Community Ecology Unit, Swiss Federal Institute for Forest, Snow and Landscape WSL, 1015, Lausanne, Switzerland
| | - Shersingh Joseph Tumber-Dávila
- Department of Environmental Studies, Dartmouth College, Hanover, NH, 03755, USA
- Harvard Forest, Harvard University, Petersham, MA, 01316, USA
| | - D Scott Mackay
- Department of Geography, University at Buffalo, Buffalo, NY, 14261, USA
| | - Nate G McDowell
- Atmospheric Sciences and Global Change Division, Pacific Northwest National Laboratory, Richland, WA, 99354, USA
- School of Biological Sciences, Washington State University, Pullman, WA, 99163, USA
| | - Andrea Carminati
- Physics of Soils and Terrestrial Ecosystems, Department of Environmental Systems Science, ETH Zürich, 8092, Zürich, Switzerland
| | - Tamir Klein
- Plant & Environmental Sciences Department, Weizmann Institute of Science, Rehovot, 76100, Israel
| | - Benjamin D Stocker
- Institute of Geography, University of Bern, Bern, 3013, Switzerland
- Oeschger Centre for Climate Change Research, University of Bern, 3013, Bern, Switzerland
| | - Maurizio Mencuccini
- CREAF, Cerdanyola del Vallès, Barcelona, 08193, Spain
- ICREA at CREAF, Cerdanyola del Vallès, Barcelona, 08193, Spain
| | - Charlotte Grossiord
- Plant Ecology Research Laboratory PERL, School of Architecture, Civil and Environmental Engineering, EPFL, 1015, Lausanne, Switzerland
- Functional Plant Ecology, Community Ecology Unit, Swiss Federal Institute for Forest, Snow and Landscape WSL, 1015, Lausanne, Switzerland
| |
Collapse
|
8
|
Zhao N, Zhao J, Li S, Li B, Lv J, Gao X, Xu X, Lu S. The Response of Endogenous ABA and Soluble Sugars of Platycladus orientalis to Drought and Post-Drought Rehydration. BIOLOGY 2024; 13:194. [PMID: 38534463 DOI: 10.3390/biology13030194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2024] [Revised: 03/13/2024] [Accepted: 03/15/2024] [Indexed: 03/28/2024]
Abstract
To uncover the internal mechanisms of various drought stress intensities affecting the soluble sugar content in organs and its regulation by endogenous abscisic acid (ABA), we selected the saplings of Platycladus orientalis, a typical tree species in the Beijing area, as our research subject. We investigated the correlation between tree soluble sugars and endogenous ABA in the organs (comprised of leaf, branch, stem, coarse root, and fine root) under two water treatments. One water treatment was defined as T1, which stopped watering until the potted soil volumetric water content (SWC) reached the wilting coefficient and then rewatered the sapling. The other water treatment, named T2, replenished 95% of the total water loss of one potted sapling every day and irrigated the above-mentioned sapling after its SWC reached the wilt coefficients. The results revealed that (1) the photosynthetic physiological parameters of P. orientalis were significantly reduced (p < 0.05) under fast and slow drought processes. The photosynthetic physiological parameters of P. orientalis in the fast drought-rehydration treatment group recovered faster relative to the slow drought-rehydration treatment group. (2) The fast and slow drought treatments significantly (p < 0.05) increased the ABA and soluble sugar contents in all organs. The roots of the P. orientalis exhibited higher sensitivity in ABA and soluble sugar content to changes in soil moisture dynamics compared to other organs. (3) ABA and soluble sugar content of P. orientalis showed a significant positive correlation (p < 0.05) under fast and slow drought conditions. During the rehydration stage, the two were significantly correlated in the T2 treatment (p < 0.05). In summary, soil drought rhythms significantly affected the photosynthetic parameters, organ ABA, and soluble sugar content of P. orientalis. This study elucidates the adaptive mechanisms of P. orientalis plants to drought and rehydration under the above-mentioned two water drought treatments, offering theoretical insights for selecting and cultivating drought-tolerant tree species.
Collapse
Affiliation(s)
- Na Zhao
- Institute of Forestry and Pomology, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100093, China
- Beijing Yanshan Forest Ecosystem Research Station, National Forest and Grassland Administration, Beijing 100093, China
| | - Jiahui Zhao
- Institute of Forestry and Pomology, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100093, China
- Beijing Yanshan Forest Ecosystem Research Station, National Forest and Grassland Administration, Beijing 100093, China
- College of Forestry, Shenyang Agricultural University, Shenyang 110866, China
| | - Shaoning Li
- Institute of Forestry and Pomology, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100093, China
- Beijing Yanshan Forest Ecosystem Research Station, National Forest and Grassland Administration, Beijing 100093, China
- College of Forestry, Shenyang Agricultural University, Shenyang 110866, China
| | - Bin Li
- Institute of Forestry and Pomology, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100093, China
- Beijing Yanshan Forest Ecosystem Research Station, National Forest and Grassland Administration, Beijing 100093, China
| | - Jiankui Lv
- Institute of Forestry and Pomology, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100093, China
- Beijing Yanshan Forest Ecosystem Research Station, National Forest and Grassland Administration, Beijing 100093, China
- College of Forestry, Shenyang Agricultural University, Shenyang 110866, China
| | - Xin Gao
- Institute of Forestry and Pomology, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100093, China
- Beijing Yanshan Forest Ecosystem Research Station, National Forest and Grassland Administration, Beijing 100093, China
- College of Forestry, Shenyang Agricultural University, Shenyang 110866, China
| | - Xiaotian Xu
- Institute of Forestry and Pomology, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100093, China
- Beijing Yanshan Forest Ecosystem Research Station, National Forest and Grassland Administration, Beijing 100093, China
| | - Shaowei Lu
- Institute of Forestry and Pomology, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100093, China
- Beijing Yanshan Forest Ecosystem Research Station, National Forest and Grassland Administration, Beijing 100093, China
- College of Forestry, Shenyang Agricultural University, Shenyang 110866, China
| |
Collapse
|
9
|
Cooksley H, Dreyling L, Esler KJ, Griebenow S, Neumann G, Valentine A, Schleuning M, Schurr FM. Functional traits shape plant-plant interactions and recruitment in a hotspot of woody plant diversity. THE NEW PHYTOLOGIST 2024; 241:1100-1114. [PMID: 38083904 DOI: 10.1111/nph.19453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Accepted: 06/28/2023] [Indexed: 01/12/2024]
Abstract
Understanding and predicting recruitment in species-rich plant communities requires identifying functional determinants of both density-independent performance and interactions. In a common-garden field experiment with 25 species of the woody plant genus Protea, we varied the initial spatial and taxonomic arrangement of seedlings and followed their survival and growth during recruitment. Neighbourhood models quantified how six key functional traits affect density-independent performance, interaction effects and responses. Trait-based neighbourhood models accurately predicted individual survival and growth from the initial spatial and functional composition of species-rich experimental communities. Functional variation among species caused substantial variation in density-independent survival and growth that was not correlated with interaction effects and responses. Interactions were spatially restricted but had important, predominantly competitive, effects on recruitment. Traits increasing the acquisition of limiting resources (water for survival and soil P for growth) mediated trade-offs between interaction effects and responses. Moreover, resprouting species had higher survival but reduced growth, likely reinforcing the survival-growth trade-off in adult plants. Resource acquisition of juvenile plants shapes Protea community dynamics with acquisitive species with strong competitive effects suffering more from competition. Together with functional determinants of density-independent performance, this makes recruitment remarkably predictable, which is critical for efficient restoration and near-term ecological forecasts of species-rich communities.
Collapse
Affiliation(s)
- Huw Cooksley
- Institute of Landscape and Plant Ecology, University of Hohenheim, 70599, Stuttgart, Germany
- Department of Conservation Ecology and Entomology, Stellenbosch University, Stellenbosch, 7602, South Africa
| | - Lukas Dreyling
- Institute of Landscape and Plant Ecology, University of Hohenheim, 70599, Stuttgart, Germany
- Senckenberg Biodiversity and Climate Research Centre, 60325, Frankfurt am Main, Germany
| | - Karen J Esler
- Department of Conservation Ecology and Entomology, Stellenbosch University, Stellenbosch, 7602, South Africa
| | - Stian Griebenow
- Department of Botany and Zoology, Stellenbosch University, Stellenbosch, 7602, South Africa
| | - Günter Neumann
- Institute of Crop Science, University of Hohenheim, 70599, Stuttgart, Germany
| | - Alex Valentine
- Department of Horticulture, Stellenbosch University, Stellenbosch, 7602, South Africa
| | - Matthias Schleuning
- Senckenberg Biodiversity and Climate Research Centre, 60325, Frankfurt am Main, Germany
| | - Frank M Schurr
- Institute of Landscape and Plant Ecology, University of Hohenheim, 70599, Stuttgart, Germany
- KomBioTa - Center for Biodiversity and Integrative Taxonomy, University of Hohenheim & State Museum of Natural History, 70599, Stuttgart, Germany
| |
Collapse
|
10
|
Parra A, Pratt RB, Jacobsen AL, Chamorro D, Torres I, Moreno JM. Functional response and resistance to drought in seedlings of six shrub species with contrasting leaf traits from the Mediterranean Basin and California. TREE PHYSIOLOGY 2023; 43:1758-1771. [PMID: 37369036 DOI: 10.1093/treephys/tpad079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 05/16/2023] [Accepted: 06/20/2023] [Indexed: 06/29/2023]
Abstract
Extreme drought events during post-fire regeneration are becoming increasingly frequent in Mediterranean-type ecosystems. Understanding how plants with different traits and origins respond to such conditions during early life stages is therefore critical for assessing the effect of climate change. Here, seedlings of three Cistus (semi-deciduous malacophylls from the Mediterranean Basin) and three Ceanothus (evergreen sclerophylls from California) species, two post-fire seeder genera with contrasting leaf traits, were subjected to complete water deprivation for 3 months in a common garden experiment. The leaf and plant structure and plant tissue water relations were characterized before the drought, and the functional responses (water availability, gas exchange and fluorescence) were monitored during the drought. Both genera exhibited contrasting leaf structure and tissue water relations traits, with higher leaf area and specific leaf area as well as higher osmotic potential at maximum turgor and turgor loss point in Cistus than Ceanothus. During drought, Ceanothus showed a more conservative use of water than Cistus, with a water potential less sensitive to decreasing soil moisture and a strong decline in photosynthesis and stomatal conductance in response to water deficit, but also a level of fluorescence more responsive to drought than Cistus. However, we could not find a different degree of drought resistance between the genera. This was particularly clear between Cistus ladanifer L. and Ceanothus pauciflorus DC., the two most functionally contrasting species, but at the same time, the two most drought-resistant. Our findings demonstrate that species with different leaf traits and functional responses to water stress may not differ in their degree of drought resistance, at least during the seedling stage. This underlines the need to take general categorizations by genus or functional types with caution and to deepen our knowledge about the Mediterranean-type species ecophysiology, especially during early life stages, in order to anticipate their vulnerability to climate change.
Collapse
Affiliation(s)
- Antonio Parra
- Departamento de Ciencias Ambientales, Universidad de Castilla-La Mancha, Av. Carlos III s/n, 45071 Toledo, Spain
| | - R Brandon Pratt
- Department of Biology, California State University, 9001 Stockdale Highway, Bakersfield, CA 93311, USA
| | - Anna L Jacobsen
- Department of Biology, California State University, 9001 Stockdale Highway, Bakersfield, CA 93311, USA
| | - Daniel Chamorro
- Departamento de Ciencias Ambientales, Universidad de Castilla-La Mancha, Av. Carlos III s/n, 45071 Toledo, Spain
| | - Iván Torres
- Departamento de Ciencias Ambientales, Universidad de Castilla-La Mancha, Av. Carlos III s/n, 45071 Toledo, Spain
| | - José M Moreno
- Departamento de Ciencias Ambientales, Universidad de Castilla-La Mancha, Av. Carlos III s/n, 45071 Toledo, Spain
| |
Collapse
|
11
|
Martín-Gómez P, Rodríguez-Robles U, Ogée J, Wingate L, Sancho-Knapik D, Peguero-Pina J, Dos Santos Silva JV, Gil-Pelegrín E, Pemán J, Ferrio JP. Contrasting stem water uptake and storage dynamics of water-saver and water-spender species during drought and recovery. TREE PHYSIOLOGY 2023; 43:1290-1306. [PMID: 36930058 DOI: 10.1093/treephys/tpad032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2022] [Revised: 03/01/2023] [Accepted: 03/07/2023] [Indexed: 06/18/2023]
Abstract
Drought is projected to occur more frequently and intensely in the coming decades, and the extent to which it will affect forest functioning will depend on species-specific responses to water stress. Aiming to understand the hydraulic traits and water dynamics behind water-saver and water-spender strategies in response to drought and recovery, we conducted a pot experiment with two species with contrasting physiological strategies, Scots pine (Pinus sylvestris L.) and Portuguese oak (Quercus faginea L.). We applied two cycles of soil drying and recovery and irrigated with isotopically different water to track fast changes in soil and stem water pools, while continuously measuring physiological status and xylem water content from twigs. Our results provide evidence for a tight link between the leaf-level response and the water uptake and storage patterns in the stem. The water-saver strategy of pines prevented stem dehydration by rapidly closing stomata which limited their water uptake during the early stages of drought and recovery. Conversely, oaks showed a less conservative strategy, maintaining transpiration and physiological activity under dry soil conditions, and consequently becoming more dehydrated at the stem level. We interpreted this dehydration as the release of water from elastic storage tissues as no major loss of hydraulic conductance occurred for this species. After soil rewetting, pines recovered pre-drought leaf water potential rapidly, but it took longer to replace the water from conductive tissues (slower labeling speed). In contrast, water-spender oaks were able to quickly replace xylem water during recovery (fast labeling speed), but it took longer to refill stem storage tissues, and hence to recover pre-drought leaf water potential. These different patterns in sap flow rates, speed and duration of the labeling reflected a combination of water-use and storage traits, linked to the leaf-level strategies in response to drought and recovery.
Collapse
Affiliation(s)
- Paula Martín-Gómez
- Joint Research Unit CTFC - AGROTECNIO - CERCA, Ctra de Sant Llorenç de Morunys, km 2, E-25280 Solsona, Lleida, Spain
| | - Ulises Rodríguez-Robles
- Departamento de Ecología y Recursos Naturales, Centro Universitario de la Costa Sur, Universidad de Guadalajara, Av. Independencia Nacional 151, Autlán de Navarro, 48900 Jalisco, México
| | - Jérôme Ogée
- Atmosphere Plant Soil Interactions Research Unit (UMR ISPA), Institut National de Recherche pour l'Agriculture, l'Alimentation et l'Environnement (INRAE), 71 Av. Edouard Bourlaux, F-33140 Villenave d'Ornon, France
| | - Lisa Wingate
- Atmosphere Plant Soil Interactions Research Unit (UMR ISPA), Institut National de Recherche pour l'Agriculture, l'Alimentation et l'Environnement (INRAE), 71 Av. Edouard Bourlaux, F-33140 Villenave d'Ornon, France
| | - Domingo Sancho-Knapik
- Departamento de Sistemas Agrícolas, Forestales y Medio Ambiente, Centro de Investigación y Tecnología Agroalimentaria de Aragón (CITA), Avda. Montañana 930, E-50059 Zaragoza, Spain
| | - José Peguero-Pina
- Departamento de Sistemas Agrícolas, Forestales y Medio Ambiente, Centro de Investigación y Tecnología Agroalimentaria de Aragón (CITA), Avda. Montañana 930, E-50059 Zaragoza, Spain
| | - José Victor Dos Santos Silva
- Departamento de Sistemas Agrícolas, Forestales y Medio Ambiente, Centro de Investigación y Tecnología Agroalimentaria de Aragón (CITA), Avda. Montañana 930, E-50059 Zaragoza, Spain
| | - Eustaquio Gil-Pelegrín
- Departamento de Sistemas Agrícolas, Forestales y Medio Ambiente, Centro de Investigación y Tecnología Agroalimentaria de Aragón (CITA), Avda. Montañana 930, E-50059 Zaragoza, Spain
| | - Jesús Pemán
- Department of Crop and Forest Sciences, Universitat de Lleida (UdL), Av. Alcalde Rovira Roure 191, 25198 Lleida, Spain
| | - Juan Pedro Ferrio
- Departamento de Sistemas Agrícolas, Forestales y Medio Ambiente, Centro de Investigación y Tecnología Agroalimentaria de Aragón (CITA), Avda. Montañana 930, E-50059 Zaragoza, Spain
- Aragon Agency for Research and Development (ARAID), E-50018 Zaragoza, Spain
| |
Collapse
|
12
|
Fickle JC, Pratt RB, Jacobsen AL. Xylem structure and hydraulic function in roots and stems of chaparral shrub species from high and low elevation in the Sierra Nevada, California. PHYSIOLOGIA PLANTARUM 2023; 175:e13970. [PMID: 37401910 DOI: 10.1111/ppl.13970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 06/16/2023] [Accepted: 06/25/2023] [Indexed: 07/05/2023]
Abstract
Xylem structure and hydraulics were compared between individuals at lower and upper elevation distribution limits for five chaparral shrub species along a steep transect in the southern Sierra Nevada, California, USA. Higher-elevation plants experienced frequent winter freeze-thaw events and increased precipitation. We hypothesized that environmental differences would lead to xylem trait differences between high and low elevations, but predictions were complicated because both water stress (low elevation) and freeze-thaw events (high elevation) may select for similar traits, such as narrow vessel diameter. We found significant changes in the ratio of stem xylem area to leaf area (Huber value) between elevations, with more xylem area required to support leaves at low elevations. Co-occurring species significantly differed in their xylem traits, suggesting diverse strategies to cope with the highly seasonal environment of this Mediterranean-type climate region. Roots were more hydraulically efficient and more vulnerable to embolism relative to stems, potentially due to roots being buffered from freeze-thaw stress, which allows them to maintain wider diameter vessels. Knowledge of the structure and function of both roots and stems is likely important in understanding whole-plant response to environmental gradients.
Collapse
Affiliation(s)
- Jaycie C Fickle
- Department of Biology, California State University, Bakersfield, California, USA
- University of Utah, Salt Lake City, Utah, USA
| | - R Brandon Pratt
- Department of Biology, California State University, Bakersfield, California, USA
| | - Anna L Jacobsen
- Department of Biology, California State University, Bakersfield, California, USA
| |
Collapse
|
13
|
Skelton RP, West AG, Buttner D, Dawson TE. Consistent responses to moisture stress despite diverse growth forms within mountain fynbos communities. Oecologia 2023; 201:323-339. [PMID: 36692692 PMCID: PMC9944370 DOI: 10.1007/s00442-023-05326-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2022] [Accepted: 01/17/2023] [Indexed: 01/25/2023]
Abstract
Understanding climate change impacts on the Cape Floristic Region requires improved knowledge of plant physiological responses to the environment. Studies examining physiological responses of mountain fynbos have consisted of campaign-based measurements, capturing snapshots of plant water relations and photosynthesis. We examine conclusions drawn from prior studies by tracking in situ physiological responses of three species, representing dominant growth forms (proteoid, ericoid, restioid), over 2 years using miniature continuous sap flow technology, long-term observations of leaf/culm water potential and gas exchange, and xylem vulnerability to embolism. We observed considerable inter-specific variation in the timing and extent of seasonal declines in productivity. Shallow-rooted Erica monsoniana exhibited steep within-season declines in sap flow and water potentials, and pronounced inter-annual variability in total daily sap flux (Js). Protea repens showed steady reductions in Js across both years, despite deeper roots and less negative water potentials. Cannomois congesta-a shallow-rooted restioid-was least negatively impacted. Following rehydrating rain at the end of summer, gas exchange recovery was lower in the drier year compared with the normal year, but did not differ between species. Loss of function in the drier year was partially accounted for by loss of xylem transport capacity in Erica and Cannomois, but not Protea. Hitherto unseen water use patterns, including inter-annual variability of gas exchange associated with contrasting water uptake properties, reveal that species use different mechanisms to cope with summer dry periods. Revealing physiological responses of key growth forms enhances predictions of plant function within mountain fynbos under future conditions.
Collapse
Affiliation(s)
| | - Adam G West
- Department of Biological Sciences, University of Cape Town, Cape Town, South Africa
| | - Daniel Buttner
- Department of Botany, Nelson Mandela University, Gqeberha, South Africa
| | - Todd E Dawson
- Department of Integrative Biology, University of California, Berkeley, Berkeley, USA
| |
Collapse
|
14
|
Wu Y, Wang W, Li W, Zhao S, Wang S, Liu T. Assessment of the spatiotemporal characteristics of vegetation water use efficiency in response to drought in Inner Mongolia, China. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:6345-6357. [PMID: 35996049 DOI: 10.1007/s11356-022-22622-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Accepted: 08/16/2022] [Indexed: 06/15/2023]
Abstract
Ecosystem water use efficiency (eWUE) can be used to obtain a better comprehension of the ecosystem water-carbon cycle. This study aimed to characterize the regional-scale responses and adaptations of different vegetation categories to drought changes and the spatiotemporal characteristics of WUE and associated drought factors for nine vegetation categories in Inner Mongolia, China, from 2000 to 2020. This study estimated drought, the association between drought and eWUE among varying vegetation categories, and the differences in eWUE between the drought stage and the post-drought stage by analyzing the spatiotemporal variations in eWUE of different vegetation categories based on MODIS ET (evapotranspiration), GPP (gross primary productivity), and temperature vegetation drought index data. The results illustrated the following: (1) the multi-year mean eWUE from 2000 to 2020 was 1.03 g·m-2·mm-1, with an overall significantly increasing trend of 0.008 g·m-2·mm-1 and eWUE decreasing from northeast to southwest. (2) The rank of vegetation types in Inner Mongolia according to multi-year mean eWUE was evergreen coniferous forest > savanna > evergreen broadleaf forest > forested grassland > farmland > deciduous broadleaf forest > mixed forest > closed scrub > grassland. All vegetation categories illustrated an increasing trend in eWUE over time. (3) eWUE was inversely associated with drought in the drought stage and a clear effect of drought legacy was identified in which harsh drought impacted the eWUE of the ecosystem, whereas eWUE was positively associated with drought. (4) The eWUE values of ecosystems increased significantly after drought, indicating that ecosystems that are adapted to drought show high capacity to recovery from drought stress.
Collapse
Affiliation(s)
- Yingjie Wu
- China Institute of Water Resources and Hydropower Research, Yinshanbeilu National Field Research Station of Desert Steppe Eco-Hydrological System, Beijing, 100038, China
- Institute of Water Resources for Pastoral Area Ministry of Water Resources, Hohhot, 010020, Inner Mongolia, China
| | - Wenjun Wang
- China Institute of Water Resources and Hydropower Research, Yinshanbeilu National Field Research Station of Desert Steppe Eco-Hydrological System, Beijing, 100038, China.
- Institute of Water Resources for Pastoral Area Ministry of Water Resources, Hohhot, 010020, Inner Mongolia, China.
| | - Wei Li
- China Institute of Water Resources and Hydropower Research, Yinshanbeilu National Field Research Station of Desert Steppe Eco-Hydrological System, Beijing, 100038, China
- Institute of Water Resources for Pastoral Area Ministry of Water Resources, Hohhot, 010020, Inner Mongolia, China
| | - Shuixia Zhao
- China Institute of Water Resources and Hydropower Research, Yinshanbeilu National Field Research Station of Desert Steppe Eco-Hydrological System, Beijing, 100038, China
- Institute of Water Resources for Pastoral Area Ministry of Water Resources, Hohhot, 010020, Inner Mongolia, China
| | - Sinan Wang
- China Institute of Water Resources and Hydropower Research, Yinshanbeilu National Field Research Station of Desert Steppe Eco-Hydrological System, Beijing, 100038, China
- Institute of Water Resources for Pastoral Area Ministry of Water Resources, Hohhot, 010020, Inner Mongolia, China
- College of Water Conservancy and Civil Engineering, Inner Mongolia Agricultural University, Hohhot, 010018, Inner Mongolia, China
| | - Tiejun Liu
- China Institute of Water Resources and Hydropower Research, Yinshanbeilu National Field Research Station of Desert Steppe Eco-Hydrological System, Beijing, 100038, China
- Institute of Water Resources for Pastoral Area Ministry of Water Resources, Hohhot, 010020, Inner Mongolia, China
| |
Collapse
|
15
|
Liu C, Sack L, Li Y, He N. Contrasting adaptation and optimization of stomatal traits across communities at continental scale. JOURNAL OF EXPERIMENTAL BOTANY 2022; 73:6405-6416. [PMID: 35716087 DOI: 10.1093/jxb/erac266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Accepted: 06/15/2022] [Indexed: 06/15/2023]
Abstract
Shifts in stomatal trait distributions across contrasting environments and their linkage with ecosystem productivity at large spatial scales have been unclear. Here, we measured the maximum stomatal conductance (g), stomatal area fraction (f), and stomatal space-use efficiency (e, the ratio of g to f) of 800 plant species ranging from tropical to cold-temperate forests, and determined their values for community-weighted mean, variance, skewness, and kurtosis. We found that the community-weighted means of g and f were higher in drier sites, and thus, that drought 'avoidance' by water availability-driven growth pulses was the dominant mode of adaptation for communities at sites with low water availability. Additionally, the variance of g and f was also higher at arid sites, indicating greater functional niche differentiation, whereas that for e was lower, indicating the convergence in efficiency. When all other stomatal trait distributions were held constant, increasing kurtosis or decreasing skewness of g would improve ecosystem productivity, whereas f showed the opposite patterns, suggesting that the distributions of inter-related traits can play contrasting roles in regulating ecosystem productivity. These findings demonstrate the climatic trends of stomatal trait distributions and their significance in the prediction of ecosystem productivity.
Collapse
Affiliation(s)
- Congcong Liu
- Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Lawren Sack
- Department of Ecology and Evolutionary Biology, University of California, Los Angeles, CA 90025, USA
| | - Ying Li
- Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China
| | - Nianpeng He
- Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
16
|
Gao Y, Chen J, Wang G, Liu Z, Sun W, Zhang Y, Zhang X. Different Responses in Root Water Uptake of Summer Maize to Planting Density and Nitrogen Fertilization. FRONTIERS IN PLANT SCIENCE 2022; 13:918043. [PMID: 35812915 PMCID: PMC9263914 DOI: 10.3389/fpls.2022.918043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Accepted: 05/23/2022] [Indexed: 06/15/2023]
Abstract
Modifying farming practices combined with breeding has the potential to improve water and nutrient use efficiency by regulating root growth, but achieving this goal requires phenotyping the roots, including their architecture and ability to take up water and nutrients from different soil layers. This is challenging due to the difficulty of in situ root measurement and opaqueness of the soil. Using stable isotopes and soil coring, we calculated the change in root water uptake of summer maize in response to planting density and nitrogen fertilization in a 2-year field experiment. We periodically measured root-length density, soil moisture content, and stable isotopes δ18O and δD in the plant stem, soil water, and precipitation concurrently and calculated the root water uptake based on the mass balance of the isotopes and the Bayesian inference method coupled with the Markov Chain Monte Carlo simulation. The results show that the root water uptake increased asymptotically with root-length density and that nitrogen application affected the locations in soil from which the roots acquired water more significantly than planting density. In particular, we find that reducing nitrogen application promoted root penetration to access subsoil nutrients and consequently enhanced their water uptake from the subsoil, while increasing planting density benefited water uptake of the roots in the topsoil. These findings reveal that it is possible to manipulate plant density and fertilization to improve water and nutrient use efficiency of the summer maize and the results thus have imperative implications for agricultural production.
Collapse
Affiliation(s)
- Yang Gao
- Farmland Irrigation Research Institute, Chinese Academy of Agricultural Sciences, Xinxiang, China
| | - Jinsai Chen
- Farmland Irrigation Research Institute, Chinese Academy of Agricultural Sciences, Xinxiang, China
| | - Guangshuai Wang
- Farmland Irrigation Research Institute, Chinese Academy of Agricultural Sciences, Xinxiang, China
| | - Zhandong Liu
- Farmland Irrigation Research Institute, Chinese Academy of Agricultural Sciences, Xinxiang, China
| | - Weihao Sun
- Farmland Irrigation Research Institute, Chinese Academy of Agricultural Sciences, Xinxiang, China
| | - Yingying Zhang
- Farmland Irrigation Research Institute, Chinese Academy of Agricultural Sciences, Xinxiang, China
| | - Xiaoxian Zhang
- Department Sustainable Agriculture Science, Rothamsted Research, Harpenden, United Kingdom
| |
Collapse
|
17
|
Multi-Stemmed Habit in Trees Contributes Climate Resilience in Tropical Dry Forest. SUSTAINABILITY 2022. [DOI: 10.3390/su14116779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Understanding how environmental adaptations mediate plant and ecosystem responses becomes increasingly important under accelerating global environmental change. Multi-stemmed trees, for example, differ in form and function from single-stemmed trees and may possess physiological advantages that allow for persistence during stressful climatic events such as extended drought. Following the worst drought in Hawaii in a century, we examined patterns of stem abundance and turnover in a Hawaiian lowland dry forest (LDF) and a montane wet forest (MWF) to investigate how multi-stemmed trees might influence site persistence, and how stem abundance and turnover relate to key functional traits. We found stem abundance and multi-stemmed trees to be an important component for climate resilience within the LDF. The LDF had higher relative abundance of multi-stemmed trees, stem abundance, and mean stem abundance compared to a reference MWF. Within the LDF, multi-stemmed trees had higher relative stem abundance (i.e., percent composition of stems to the total number of stems in the LDF) and higher estimated aboveground carbon than single-stemmed trees. Stem abundance varied among species and tree size classes. Stem turnover (i.e., change in stem abundance between five-year censuses) varied among species and tree size classes and species mean stem turnover was correlated with mean species stem abundance per tree. At the plot level, stem abundance per tree is also a predictor of survival, though mortality did not differ between multiple- and single-stemmed trees. Lastly, species with higher mean stem abundance per tree tended to have traits associated with a higher light-saturated photosynthetic rate, suggesting greater productivity in periods with higher water supply. Identifying the traits that allow species and forest communities to persist in dry environments or respond to disturbance is useful for forecasting ecological climate resilience or potential for restoration in tropical dry forests.
Collapse
|
18
|
Salesa D, Baeza MJ, Pérez-Ferrándiz E, Santana VM. Longer summer seasons after fire induce permanent drought legacy effects on Mediterranean plant communities dominated by obligate seeders. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 822:153655. [PMID: 35124057 DOI: 10.1016/j.scitotenv.2022.153655] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 01/30/2022] [Accepted: 01/30/2022] [Indexed: 06/14/2023]
Abstract
The ecological stability of Mediterranean ecosystems is being threatened by climate change. One of the impacts that is expected to be aggravated is the effect of summer drought prolongation toward previous or subsequent seasons by becoming more frequent. This, along with wildfires, could trigger synergistic negative effects on ecosystem regeneration capacity. Here we assessed how extending summer drought in two different ways (to autumn, AutExcl treatment, or bringing it forward to the following spring, SprExcl treatment) would affect plant recovery after an experimental fire carried out in summer in a Mediterranean seeder community. By installing rainout shelters, we assessed differences in seedling emergence, survival and establishment in the main families (Cistaceae, Labiatae, Leguminosae), and the effect on species richness and community composition. We observed that these post-fire dry season extensions reduced the total number of established seedlings and species richness. The most impacting drought treatment was AutExcl. However, the regeneration response was variable depending on the studied family. SprExcl was also determinant for Labiate survival rates. These results suggest that drought events which prolong the usual summer season may have a permanent drought legacy effect on seeder communities as practically all the seeder species populations were established in the first post-fire year. This fact is relevant for Mediterranean ecosystems dominated by seeder species as severer and longer droughts are increasingly recorded and are expected to become more frequent in forthcoming decades.
Collapse
Affiliation(s)
- David Salesa
- Fundación de la Comunidad Valenciana Centro de Estudios Ambientales del Mediterráneo (CEAM), C/ Charles Darwin 14, 46980 Paterna, Valencia, Spain.
| | - M Jaime Baeza
- Departamento de Ecología, Universidad de Alicante, Ap. 99, 03080 Alicante, Spain
| | - E Pérez-Ferrándiz
- Fundación de la Comunidad Valenciana Centro de Estudios Ambientales del Mediterráneo (CEAM), C/ Charles Darwin 14, 46980 Paterna, Valencia, Spain
| | - Victor M Santana
- Fundación de la Comunidad Valenciana Centro de Estudios Ambientales del Mediterráneo (CEAM), C/ Charles Darwin 14, 46980 Paterna, Valencia, Spain; Departamento de Ecología, Universidad de Alicante, Ap. 99, 03080 Alicante, Spain
| |
Collapse
|
19
|
D’Orangeville L, Itter M, Kneeshaw D, Munger JW, Richardson AD, Dyer JM, Orwig DA, Pan Y, Pederson N. Peak radial growth of diffuse-porous species occurs during periods of lower water availability than for ring-porous and coniferous trees. TREE PHYSIOLOGY 2022; 42:304-316. [PMID: 34312673 PMCID: PMC8842417 DOI: 10.1093/treephys/tpab101] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Accepted: 07/07/2021] [Indexed: 05/27/2023]
Abstract
Climate models project warmer summer temperatures will increase the frequency and heat severity of droughts in temperate forests of Eastern North America. Hotter droughts are increasingly documented to affect tree growth and forest dynamics, with critical impacts on tree mortality, carbon sequestration and timber provision. The growing acknowledgement of the dominant role of drought timing on tree vulnerability to water deficit raises the issue of our limited understanding of radial growth phenology for most temperate tree species. Here, we use well-replicated dendrometer band data sampled frequently during the growing season to assess the growth phenology of 610 trees from 15 temperate species over 6 years. Patterns of diameter growth follow a typical logistic shape, with growth rates reaching a maximum in June, and then decreasing until process termination. On average, we find that diffuse-porous species take 16-18 days less than other wood-structure types to put on 50% of their annual diameter growth. However, their peak growth rate occurs almost a full month later than ring-porous and conifer species (ca. 24 ± 4 days; mean ± 95% credible interval). Unlike other species, the growth phenology of diffuse-porous species in our dataset is highly correlated with their spring foliar phenology. We also find that the later window of growth in diffuse-porous species, coinciding with peak evapotranspiration and lower water availability, exposes them to a higher water deficit of 88 ± 19 mm (mean ± SE) during their peak growth than ring-porous and coniferous species (15 ± 35 mm and 30 ± 30 mm, respectively). Given the high climatic sensitivity of wood formation, our findings highlight the importance of wood porosity as one predictor of species climatic sensitivity to the projected intensification of the drought regime in the coming decades.
Collapse
Affiliation(s)
- Loïc D’Orangeville
- Harvard Forest, Harvard University, 324 N Main St, Petersham, MA, 10366, USA
- Faculty of Forestry and Environmental Management, University of New Brunswick, P.O. Box 4400, 28 Dineen Drive, Fredericton, NB, E3B 5A3, Canada
| | - Malcolm Itter
- Research Center for Ecological Change, University of Helsinki, P.O. Box 4, 00014, Finland
- Department of Environmental Conservation, University of Massachusetts Amherst, 225 Holdsworth Hall, Amherst MA 01003, USA
| | - Dan Kneeshaw
- Center for Forest Research, Université du Québec à Montréal, CP 8888, succ. Centre-ville, Montréal, QC, H3C 3P8, Canada
| | - J William Munger
- School of Engineering and Applied Sciences and Department of Earth and Planetary Sciences, Harvard University, 20 Oxford Street, Cambridge, MA 02138, USA
| | - Andrew D Richardson
- School of Informatics, Computing, and Cyber Systems, Northern Arizona University, 1295 S. Knoles Dr., Flagstaff, AZ 86011, USA
- Center for Ecosystem Science and Society, Northern Arizona University, P.O. Box 5620, Flagstaff, AZ 86011, USA
| | - James M Dyer
- Department of Geography, Ohio University, Clippinger 122, Athens, OH 45701, USA
| | - David A Orwig
- Harvard Forest, Harvard University, 324 N Main St, Petersham, MA, 10366, USA
| | - Yude Pan
- U.S. Department of Agriculture Forest Service, 11 Campus Blvd #200, Newtown Square, PA 19073, USA
| | - Neil Pederson
- Harvard Forest, Harvard University, 324 N Main St, Petersham, MA, 10366, USA
| |
Collapse
|
20
|
Chu HH, Farrell C. Fast plants have water-use and drought strategies that balance rainfall retention and drought survival on green roofs. ECOLOGICAL APPLICATIONS : A PUBLICATION OF THE ECOLOGICAL SOCIETY OF AMERICA 2022; 32:e02486. [PMID: 34674341 DOI: 10.1002/eap.2486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Revised: 05/05/2021] [Accepted: 05/26/2021] [Indexed: 06/13/2023]
Abstract
Green roofs can improve ecosystem services in cities; however, this depends on appropriate plant selection. For stormwater management, plants should have high water use to maximize retention and also survive dry periods. Plants adapted to wetter habitats develop "fast" traits for growth, whereas plants from drier habitats develop "slow" traits to conserve water use and survive drought. Therefore, we hypothesized that (1) plants with fast traits would have greater water use, (2) plants with slow traits would have greater drought tolerance, (3) fast-slow traits would be consistent across the plant, and (4) fast plants with greater water use could avoid drought stress. We evaluated 14 green roof species in a glasshouse experiment under well-watered (WW) and water-deficit (WD) conditions to determine relationships between fast-slow traits, water use, and drought resistance. Traits measured were shoot dry mass, specific leaf area (SLA), root mass fraction (RMF), and specific root length (SRL). Daily evapotranspiration per shoot dry mass was used to describe water use. Drought resistance was represented by (1) days to stomatal closure; (2) cumulative ET before stomatal closure; and (3) degree of iso-anisohydry (difference between midday leaf water potential (ΨMD ) of WW and WD plants; ΔΨMD ). Plants with greater water use had fast aboveground traits (greater shoot biomass and SLA). Plants with slow traits had greater drought tolerance as plants with lower shoot dry mass closed their stomata later under WD, and plants with greater root allocation were more anisohydric. Fast-slow traits were not consistent across the plant. Although SLA and SRL were positively related, SRL was not related to water use or drought resistance. Shoot dry mass was inversely related to SLA and had a stronger influence on stomatal closure. Though plants with greater water use under well-watered conditions closed their stomates earlier to avoid drought stress, they were not more isohydric (smaller ∆ΨMD ) and did not necessarily use more water under WD. Fast aboveground traits can be used to select green roof plants with high water use that avoid drought stress to optimize rainfall retention without jeopardizing drought survival. This will facilitate rapid plant selection using trait information from online databases.
Collapse
Affiliation(s)
- Hsiao-Hsuan Chu
- School of Ecosystem and Forest Sciences, The University of Melbourne, 500 Yarra Boulevard, Richmond, Victoria, 3121, Australia
| | - Claire Farrell
- School of Ecosystem and Forest Sciences, The University of Melbourne, 500 Yarra Boulevard, Richmond, Victoria, 3121, Australia
| |
Collapse
|
21
|
Yuan Y, Bao A, Liu T, Zheng G, Jiang L, Guo H, Jiang P, Yu T, De Maeyer P. Assessing vegetation stability to climate variability in Central Asia. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2021; 298:113330. [PMID: 34371215 DOI: 10.1016/j.jenvman.2021.113330] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 07/08/2021] [Accepted: 07/17/2021] [Indexed: 06/13/2023]
Abstract
The dramatic climate change has far-reaching impacts on vegetation in drylands such as Central Asia. Recent attempts to assess vegetation stability to short-term climate variability often account solely for vegetation sensitivity or resilience but ignore the composite effects of these two indicators. Meanwhile, our understanding of the vegetation stability at the seasonal scale remains insufficient. In this study, considering the cumulative effects of vegetation response to three key climate factors, we assessed the stability of vegetation in Central Asia using normalized difference vegetation index (NDVI) and the meteorological data from 1982 to 2014 by integrating vegetation sensitivity and resilience, and further identified the critical regions and seasons of vegetation that experience high risks of pending change. The results show that the sensitivity of vegetation has a strong correlation (R2 = 0.83, p < 0.001) with the aridity index (AI), with the vegetation of drier areas having lower sensitivities to climate variability. At the temporal scale, the sensitivity of vegetation to climate variability varied among different seasons. The average vegetation sensitivity index (VSI) is 41.17, 33.32 and 28.63 in spring, summer and autumn, respectively. Spatially, a trade-off between vegetation sensitivity and resilience is found both for the growing season (R2 = 0.67) and seasonal scale (R2 = 0.71, 0.32 and 0.43 for spring, summer and autumn, respectively), regions with high vegetation sensitivity were always accompanied by strong resilience. Based on the relationship between vegetation sensitivity and resilience, we further identify the critical regions and periods of vegetation with high change risk in Central Asia. Results suggest that herbaceous plants in semi-arid areas present high instability, especially in summer. This study offers a comprehensive perspective to assess vegetation stability to climate variability and the results will facilitate the protection of ecosystems and the implementation of sustainable development goals in Central Asia.
Collapse
Affiliation(s)
- Ye Yuan
- State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, 830011, China; University of Chinese Academy of Sciences, Beijing, 100049, China; Department of Geography, Ghent University, Ghent, 9000, Belgium
| | - Anming Bao
- State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, 830011, China; Sino-Belgian Laboratory for Geo-Information, Urumqi, 83011, China; CAS Research Center for Ecology and Environment of Central Asia, Urumqi, 830011, China; China-Pakistan Joint Research Center on Earth Sciences, CAS-HEC, Islamabad, 45320, Pakistan.
| | - Tie Liu
- State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, 830011, China; Sino-Belgian Laboratory for Geo-Information, Urumqi, 83011, China
| | - Guoxiong Zheng
- State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, 830011, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Liangliang Jiang
- School of Geography and Tourism, Chongqing Normal University, Chongqing, 401331, China
| | - Hao Guo
- School of Geography and Tourism, Qufu Normal University, Rizhao, 276800, China
| | - Ping Jiang
- School of Earth and Environmental Sciences, Lanzhou University, Lanzhou, 730000, China
| | - Tao Yu
- State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, 830011, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Philippe De Maeyer
- Department of Geography, Ghent University, Ghent, 9000, Belgium; Sino-Belgian Laboratory for Geo-Information, Ghent, 9000, Belgium
| |
Collapse
|
22
|
Lawal S, Hewitson B, Egbebiyi TS, Adesuyi A. On the suitability of using vegetation indices to monitor the response of Africa's terrestrial ecoregions to drought. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 792:148282. [PMID: 34146810 DOI: 10.1016/j.scitotenv.2021.148282] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2021] [Revised: 06/01/2021] [Accepted: 06/02/2021] [Indexed: 06/12/2023]
Abstract
Drought remains one of the world's most devastating phenomena, exhibiting impacts in both magnitude and frequency. African vegetation remains highly vulnerable to drought impacts and this is heightened by a changing climate. In this study, we evaluated the suitability of vegetation indices to monitor the response of Africa's terrestrial ecoregions to drought. Here, we used the SPEI, a global drought index to investigate the spatiotemporal characteristics of drought on vegetation. In addition, TVDI, TCI, VCI, NVSWI, VSWI and DSI, which are remotely sensed derived drought indices were also used to characterize drought. For the vegetation indices, we used the optical satellite calculated NDVI; VOD, a passive microwave remote sensing product; and derived Nvod as proxies for vegetation. The climatology of climate and vegetation data was calculated, and the trend of the variables was examined. Additionally, comparisons were performed between the SPEI and the other drought indices. Subsequently, we computed the correlations between the SPEI and vegetation indices spatially, temporally and seasonally. Our results show that VOD and the NDVI have similar spatial distribution, with higher values of the indices recorded over the Democratic Republic of Congo (DRC) and Central African Republic (C.A.R) compared to the rest of the region. Furthermore, we also found that the indices have similar seasonal patterns as precipitation and an inverse relationship with temperature. The study also reveals that there is a declining long-term trend of precipitation over evergreen needleleaf forest, evergreen broadleaf forest, and woody savanna; and an increasing trend of VOD and NDVI over Africa's ecoregions. Furthermore, the results show a high SPEI - VOD correlations (r2 = 0.8) in southern Africa and the Horn of Africa, and a weak response in the Sahelian region. While the response of NDVI is similar to a spatial distribution as VOD, the magnitudes of response are generally weaker in the NDVI, and the magnitudes and distribution of response by Nvod are similar to VOD. Also, the response of Nvod is the weakest across all the timescales although its magnitudes vary significantly from year - year, with the timescale of occurrence mostly shorter for JJA but largely longer for MAM. However, the magnitudes of the response of vegetation indices are different for remotely sensed derived drought indices. In addition, the mean and trend of the response of VOD are consistently stronger in evergreen needleleaf forest and open shrublands but weaker over the evergreen broadleaf forest. Our study has presented insights on methods by which the impacts of droughts on plant activities and functions may be monitored.
Collapse
Affiliation(s)
- Shakirudeen Lawal
- Climate System Analysis Group, Department of Environmental and Geographical Science, University of Cape Town, Cape Town 7700, South Africa; Department of Environmental and Geographical Science, University of Cape Town, Cape Town 7700, South Africa.
| | - Bruce Hewitson
- Climate System Analysis Group, Department of Environmental and Geographical Science, University of Cape Town, Cape Town 7700, South Africa; Department of Environmental and Geographical Science, University of Cape Town, Cape Town 7700, South Africa
| | - Temitope S Egbebiyi
- Climate System Analysis Group, Department of Environmental and Geographical Science, University of Cape Town, Cape Town 7700, South Africa; Department of Environmental and Geographical Science, University of Cape Town, Cape Town 7700, South Africa
| | - Ayodeji Adesuyi
- Department of Environmental and Geographical Science, University of Cape Town, Cape Town 7700, South Africa
| |
Collapse
|
23
|
van Blerk JJ, West AG, Altwegg R, Hoffman MT. Post-fire summer rainfall differentially affects reseeder and resprouter population recovery in fire-prone shrublands of South Africa. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 788:147699. [PMID: 34034189 DOI: 10.1016/j.scitotenv.2021.147699] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Revised: 05/07/2021] [Accepted: 05/07/2021] [Indexed: 06/12/2023]
Abstract
Summer rainfall can have strong effects on post-fire mediterranean-type shrubland recovery patterns, with potentially long-lasting implications on communities. Our three-year field rainfall manipulation experiment tested post-fire survival and physiological responses of reseeders and resprouters to contrasting summer rainfall patterns in Fynbos and Renosterveld shrublands in South Africa. Climate projections are uncertain for this region but indicate that increased convective summer rainfall events could occur. We irrigated treatment plots during the hottest summer months (i.e. Jan, Feb, March) to contrast the naturally dry summer conditions. This allowed for assessments of the potential limiting effects of summer drought on post-fire vegetation recovery and the responsiveness of vegetation to moisture inputs during this time. Natural summer droughts led to leaf dehydration, reduced photosynthesis and reduced photosynthetic capacity. This had a particularly severe effect on reseeders during the first summer after fire leading to high mortality rates. Summer irrigations strongly reduced levels of reseeder stress and mortality. Resprouters in both vegetation types were physiologically less sensitive to rainfall patterns and showed little drought-related mortality. Comparisons of final population sizes with emergence and survival patterns showed that summer rainfall during the first summer after fire had the potential to strongly alter reseeder population sizes. The physiological sensitivity of plants to summer rainfall patterns was higher in shrubland communities occurring on fine-textured, moderately fertile soils (e.g. Renosterveld). Shrublands occurring on sandy, nutrient-poor soils (e.g. Fynbos) were remarkably insensitive to summer drought after the first summer with lower irrigation responses. Our study demonstrated the potential for variation in post-fire summer rainfall to strongly affect reseeder and resprouter population recovery patterns.
Collapse
Affiliation(s)
- J J van Blerk
- Department of Biological Sciences, University of Cape Town, Private Bag X3, Rondebosch 7701, South Africa.
| | - A G West
- Department of Biological Sciences, University of Cape Town, Private Bag X3, Rondebosch 7701, South Africa
| | - R Altwegg
- Centre for Statistics in Ecology, Environment and Conservation, Department of Statistical Sciences, University of Cape Town, Private Bag X3, Rondebosch 7701, South Africa
| | - M T Hoffman
- Plant Conservation Unit, Department of Biological Sciences, University of Cape Town, Private Bag X3, Rondebosch 7701, South Africa
| |
Collapse
|
24
|
Abate E, Azzarà M, Trifilò P. When Water Availability Is Low, Two Mediterranean Salvia Species Rely on Root Hydraulics. PLANTS (BASEL, SWITZERLAND) 2021; 10:1888. [PMID: 34579421 PMCID: PMC8472023 DOI: 10.3390/plants10091888] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 08/31/2021] [Accepted: 09/08/2021] [Indexed: 11/16/2022]
Abstract
Increase in severity and frequency of drought events is altering plant community composition, exposing biomes to a higher risk of biodiversity losses. This is exacerbated in the most fragile areas as Mediterranean biome. Thus, identifying plant traits for forecasting species with a high risk of drought-driven mortality is particularly urgent. In the present study, we investigated the drought resistance strategy of two Mediterranean native species: Salvia ceratophylloides Ard. (Sc) and Salvia officinalis L. (So) by considering the impact of drought-driven water content decline on plant hydraulics. Well-watered samples of Sc displayed higher leaf and stemsaturated water content and lower shoot biomass than So samples, but similar root biomass. In response to drought, Sc showed a conservative water use strategy, as the prompt stomatal closure and leaves shedding suggested. A drought-tolerant mechanism was confirmed in So samples. Nevertheless, Sc and So showed similar drought-driven plant hydraulic conductance (Kplant) recover ability. Root hydraulic traits played a key role to reach this goal. Relative water content as well as loss of cell rehydration capability and membrane damages, especially of stem and root, were good proxies of drought-driven Kplant decline.
Collapse
Affiliation(s)
| | | | - Patrizia Trifilò
- Dipartimento di Scienze Chimiche, Biologiche, Farmaceutiche ed Ambientali, Università di Messina, Viale Ferdinando Stagno d’Alcontres 31, 98166 Messina, Italy; (E.A.); (M.A.)
| |
Collapse
|
25
|
Kassout J, Ater M, Ivorra S, Barbara H, Limier B, Ros J, Girard V, Paradis L, Terral JF. Resisting Aridification: Adaptation of Sap Conduction Performance in Moroccan Wild Olive Subspecies Distributed Over an Aridity Gradient. FRONTIERS IN PLANT SCIENCE 2021; 12:663721. [PMID: 34276726 PMCID: PMC8283533 DOI: 10.3389/fpls.2021.663721] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Accepted: 06/03/2021] [Indexed: 06/13/2023]
Abstract
In the current context of global change, the increasing frequency and the length of drought periods are testing the resistance capacities of plants of dry habitats. However, although the adaptation of plants to drought has been widely studied, the anatomical features of wood influencing the functional responses of plants to drought are still lacking at the intraspecific level, especially for species with a wide geographical distribution. As a result, we have studied the variation of wood anatomical traits related to sap conduction (i.e., vessel surface area, vessel density, and number of vessels joined by radial file) in two wild olive subspecies distributed in Morocco (i.e., Olea europaea subsp. europaea. var. sylvestris and Olea europaea subsp. maroccana), in relation to various drought conditions. This functional study, based on wood trait measurements of 351 samples from 130 trees and 13 populations, explores potential sap conduction in relation to environmental parameters and as a result, strategies to resist water stress. We found that (1) branch diameter (BD) captured 78% of total wood trait variation, (2) vessel size (SVS) expressed 32% of intraspecific variation according to cambium age, and (3) the positive relationship between SVS and BD could be explained by climate type, vegetation cover changes, and therefore available water resources. Taking into consideration the diameter of the branch as the main factor of anatomical variation, established reaction norms (linear models) at the intrapopulation scale of vessel lumen area according to aridity show for the first time how the functioning of the cambium modulates and controls sap conduction, according to aridity and thus available water resources. They pinpoint the risks incurred by the wild olive tree in the perspective of a dramatic increase in aridity, in particular, the inability of the cambium to produce large enough vessels to efficiently transport sap and irrigate the leaves. Finally, this study opens new and interesting avenues for studying at a Mediterranean scale, the resistance and the vulnerability of wild forms and cultivated varieties of olive to heterogeneous and changing environmental conditions.
Collapse
Affiliation(s)
- Jalal Kassout
- Laboratoire Botanique Appliquée, Equipe bio-Agrodiversité, Faculté des Sciences, Université Abdelmalek Essaâdi, Tétouan, Morocco
- ISEM, Université de Montpellier, Equipe DBA, CNRS, IRD, EPHE, Montpellier, France
- Associated International Laboratory/International Research Project EVOLEA, INEE-CNRS, France – Morocco, Montpellier, France
| | - Mohammed Ater
- Laboratoire Botanique Appliquée, Equipe bio-Agrodiversité, Faculté des Sciences, Université Abdelmalek Essaâdi, Tétouan, Morocco
- Associated International Laboratory/International Research Project EVOLEA, INEE-CNRS, France – Morocco, Montpellier, France
| | - Sarah Ivorra
- ISEM, Université de Montpellier, Equipe DBA, CNRS, IRD, EPHE, Montpellier, France
- Associated International Laboratory/International Research Project EVOLEA, INEE-CNRS, France – Morocco, Montpellier, France
| | - Hicham Barbara
- Laboratoire Botanique Appliquée, Equipe bio-Agrodiversité, Faculté des Sciences, Université Abdelmalek Essaâdi, Tétouan, Morocco
- ISEM, Université de Montpellier, Equipe DBA, CNRS, IRD, EPHE, Montpellier, France
- Associated International Laboratory/International Research Project EVOLEA, INEE-CNRS, France – Morocco, Montpellier, France
| | - Bertrand Limier
- ISEM, Université de Montpellier, Equipe DBA, CNRS, IRD, EPHE, Montpellier, France
- Associated International Laboratory/International Research Project EVOLEA, INEE-CNRS, France – Morocco, Montpellier, France
- INRAE, Centre Occitanie-Montpellier, Montpellier, France
| | - Jérôme Ros
- ISEM, Université de Montpellier, Equipe DBA, CNRS, IRD, EPHE, Montpellier, France
- Associated International Laboratory/International Research Project EVOLEA, INEE-CNRS, France – Morocco, Montpellier, France
| | - Vincent Girard
- ISEM, Université de Montpellier, Equipe DBA, CNRS, IRD, EPHE, Montpellier, France
- Associated International Laboratory/International Research Project EVOLEA, INEE-CNRS, France – Morocco, Montpellier, France
| | - Laure Paradis
- ISEM, Université de Montpellier, Equipe DBA, CNRS, IRD, EPHE, Montpellier, France
- Associated International Laboratory/International Research Project EVOLEA, INEE-CNRS, France – Morocco, Montpellier, France
| | - Jean-Frédéric Terral
- ISEM, Université de Montpellier, Equipe DBA, CNRS, IRD, EPHE, Montpellier, France
- Associated International Laboratory/International Research Project EVOLEA, INEE-CNRS, France – Morocco, Montpellier, France
| |
Collapse
|
26
|
van Blerk JJ, West AG, Altwegg R, Hoffman MT. Does a trade-off between growth plasticity and resource conservatism mediate post-fire shrubland responses to rainfall seasonality? THE NEW PHYTOLOGIST 2021; 230:1407-1420. [PMID: 33524198 DOI: 10.1111/nph.17246] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2020] [Accepted: 01/27/2021] [Indexed: 06/12/2023]
Abstract
Growth plasticity may allow fire-prone species to maximize their recovery rates during temporary, sporadic periods of rainfall availability in the post-fire environment. However, moisture-driven growth plasticity could be maladaptive in nutrient-limited environments that require tighter control of growth and resource use. We investigated whether a trade-off between plasticity and conservatism mediates growth responses to altered rainfall seasonality in neighbouring shrubland communities that occupy different soils. We monitored post-fire vegetation regrowth in two structurally similar, Mediterranean-type shrublands for 3 years. We investigated the effects of experimentally altered rainfall seasonality on post-fire species' growth rates. We found that moisture-driven growth plasticity was higher among species occupying the fertile soils of the renosterveld site relative to those occupying the nutrient-poor soils of the fynbos site. This resulted in higher overall responsiveness of post-fire recovery patterns in renosterveld to experimental shifts in rainfall seasonality. In post-fire shrubland communities, the trade-off between moisture-dependent growth plasticity and resource conservatism could be mediated by soil nutrient availability. Therefore, edaphic differences between structurally similar shrublands could lead to differences in their sensitivity to post-fire rainfall seasonality.
Collapse
Affiliation(s)
- Justin J van Blerk
- Department of Biological Sciences, University of Cape Town, Private Bag X3, Rondebosch, 7701, South Africa
| | - Adam G West
- Department of Biological Sciences, University of Cape Town, Private Bag X3, Rondebosch, 7701, South Africa
| | - Res Altwegg
- Centre for Statistics in Ecology, Environment and Conservation, Department of Statistical Sciences, University of Cape Town, Private Bag X3, Rondebosch, 7701, South Africa
| | - M Timm Hoffman
- Plant Conservation Unit, Department of Biological Sciences, University of Cape Town, Private Bag X3, Rondebosch, 7701, South Africa
| |
Collapse
|
27
|
López R, Cano FJ, Martin-StPaul NK, Cochard H, Choat B. Coordination of stem and leaf traits define different strategies to regulate water loss and tolerance ranges to aridity. THE NEW PHYTOLOGIST 2021; 230:497-509. [PMID: 33452823 DOI: 10.1111/nph.17185] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Accepted: 12/31/2020] [Indexed: 06/12/2023]
Abstract
Adaptation to drought involves complex interactions of traits that vary within and among species. To date, few data are available to quantify within-species variation in functional traits and they are rarely integrated into mechanistic models to improve predictions of species response to climate change. We quantified intraspecific variation in functional traits of two Hakea species growing along an aridity gradient in southeastern Australia. Measured traits were later used to parameterise the model SurEau to simulate a transplantation experiment to identify the limits of drought tolerance. Embolism resistance varied between species but not across populations. Instead, populations adjusted to drier conditions via contrasting sets of trait trade-offs that facilitated homeostasis of plant water status. The species from relatively mesic climate, Hakea dactyloides, relied on tight stomatal control whereas the species from xeric climate, Hakea leucoptera dramatically increased Huber value and leaf mass per area, while leaf area index (LAI) and epidermal conductance (gmin ) decreased. With trait variability, SurEau predicts the plasticity of LAI and gmin buffers the impact of increasing aridity on population persistence. Knowledge of within-species variability in multiple drought tolerance traits will be crucial to accurately predict species distributional limits.
Collapse
Affiliation(s)
- Rosana López
- Departamento de Sistemas y Recursos Naturales, Universidad Politécnica de Madrid, Madrid, 28040, Spain
| | - Francisco Javier Cano
- Hawkesbury Institute for the Environment, Western Sydney University, Locked Bag 1797, Penrith, NSW, 2751, Australia
| | | | - Hervé Cochard
- Université Clermont-Auvergne, INRA, PIAF, Clermont-Ferrand, 63000, France
| | - Brendan Choat
- Hawkesbury Institute for the Environment, Western Sydney University, Locked Bag 1797, Penrith, NSW, 2751, Australia
| |
Collapse
|
28
|
Satellite-Observed Global Terrestrial Vegetation Production in Response to Water Availability. REMOTE SENSING 2021. [DOI: 10.3390/rs13071289] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Water stress is one of the primary environmental factors that limits terrestrial ecosystems’ productivity. Hense, the way to quantify gobal vegetation productivity’s vulnerability under water stress and reveal its seasonal dynamics in response to drought is of great significance in mitigating and adapting to global changes. Here, we estimated monthly gross primary productivity (GPP) first based on light-use efficiency (LUE) models for 1982–2015. GPP’s response time to water availability can be determined by correlating the monthly GPP series with the multiple timescale Standardized Precipitation Evapotranspiration Index (SPEI). Thereafter, we developed an optimal bivariate probabilistic model to derive the vegetation productivity loss probabilities under different drought scenarios using the copula method. The results showed that LUE models have a good fit and estimate GPP well (R2 exceeded 0.7). GPP is expected to decrease in 71.91% of the global land vegetation area because of increases in radiation and temperature and decreases in soil moisture during drought periods. Largely, we found that vegetation productivity and water availability are correlated positively globally. The vegetation productivity in arid and semiarid areas depends considerably upon water availability compared to that in humid and semi-humid areas. Weak drought resistance often characterizes the land cover types that water availability influences more. In addition, under the scenario of the same level of GPP damage with different drought degrees, as droughts increase in severity, GPP loss probabilities increase as well. Further, under the same drought severity with different levels of GPP damage, drought’s effect on GPP loss probabilities weaken gradually as the GPP damage level increaes. Similar patterns were observed in different seasons. Our results showed that arid and semiarid areas have higher conditional probabilities of vegetation productivity losses under different drought scenarios.
Collapse
|
29
|
Torres-García MT, Salinas-Bonillo MJ, Gázquez-Sánchez F, Fernández-Cortés Á, Querejeta JI, Cabello J. Squandering water in drylands: the water-use strategy of the phreatophyte Ziziphus lotus in a groundwater-dependent ecosystem. AMERICAN JOURNAL OF BOTANY 2021; 108:236-248. [PMID: 33586136 DOI: 10.1002/ajb2.1606] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Accepted: 10/19/2020] [Indexed: 06/12/2023]
Abstract
PREMISE Water is the most limiting factor in dryland ecosystems, and plants are adapted to cope with this constraint. Particularly vulnerable are phreatophytic plants from groundwater-dependent ecosystems (GDEs) in regions that have to face water regime alterations due to the impacts of climate and land-use changes. METHODS We investigated two aspects related to the water-use strategy of a keystone species that dominates one of the few terrestrial GDEs in European drylands (Ziziphus lotus): where it obtains water and how it regulates its use. We (1) evaluated plants' water sources and use patterns using a multiple-isotope approach (δ2 H, δ18 O, and Δ13 C); (2) assessed the regulation of plant water potential by characterizing the species on an isohydric-anisohydric continuum; and (3) evaluated plants' response to increasing water stress along a depth-to-groundwater (DTGW) gradient by measuring foliar gas exchange and nutrient concentrations. RESULTS Ziziphus lotus behaves as a facultative or partial phreatophyte with extreme anisohydric stomatal regulation. However, as DTGW increased, Z. lotus (1) reduced the use of groundwater, (2) reduced total water uptake, and (3) limited transpiration water loss while increasing water-use efficiency. We also found a physiological threshold at 14 m depth to groundwater, which could indicate maximum rooting length beyond which optimal plant function could not be sustained. CONCLUSIONS Species such as Z. lotus survive by squandering water in drylands because of a substantial groundwater uptake. However, the identification of DTGW thresholds indicates that drawdowns in groundwater level would jeopardize the functioning of the GDE.
Collapse
Affiliation(s)
- M Trinidad Torres-García
- Department of Biology and Geology, Universidad de Almería, Carretera de Sacramento s.n, La Cañada de San Urbano, Almería, 04120, Spain
- Andalusian Centre for the Monitoring and Assessment of Global Change (CAESCG), University of Almería, Spain
| | - María J Salinas-Bonillo
- Department of Biology and Geology, Universidad de Almería, Carretera de Sacramento s.n, La Cañada de San Urbano, Almería, 04120, Spain
- Andalusian Centre for the Monitoring and Assessment of Global Change (CAESCG), University of Almería, Spain
| | - Fernando Gázquez-Sánchez
- Department of Biology and Geology, Universidad de Almería, Carretera de Sacramento s.n, La Cañada de San Urbano, Almería, 04120, Spain
- Andalusian Centre for the Monitoring and Assessment of Global Change (CAESCG), University of Almería, Spain
| | - Ángel Fernández-Cortés
- Department of Biology and Geology, Universidad de Almería, Carretera de Sacramento s.n, La Cañada de San Urbano, Almería, 04120, Spain
- Andalusian Centre for the Monitoring and Assessment of Global Change (CAESCG), University of Almería, Spain
| | - José I Querejeta
- Centro de Edafología y Biología Aplicada del Segura, Consejo Superior de Investigaciones Científicas (CEBAS-CSIC), Murcia, Spain
| | - Javier Cabello
- Department of Biology and Geology, Universidad de Almería, Carretera de Sacramento s.n, La Cañada de San Urbano, Almería, 04120, Spain
- Andalusian Centre for the Monitoring and Assessment of Global Change (CAESCG), University of Almería, Spain
| |
Collapse
|
30
|
Ding Y, Nie Y, Chen H, Wang K, Querejeta JI. Water uptake depth is coordinated with leaf water potential, water-use efficiency and drought vulnerability in karst vegetation. THE NEW PHYTOLOGIST 2021; 229:1339-1353. [PMID: 32989748 DOI: 10.1111/nph.16971] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2020] [Revised: 09/10/2020] [Accepted: 09/14/2020] [Indexed: 06/11/2023]
Abstract
Root access to bedrock water storage or groundwater is an important trait allowing plant survival in seasonally dry environments. However, the degree of coordination between water uptake depth, leaf-level water-use efficiency (WUEi) and water potential in drought-prone plant communities is not well understood. We conducted a 135-d rainfall exclusion experiment in a subtropical karst ecosystem with thin skeletal soils to evaluate the responses of 11 co-occurring woody species of contrasting life forms and leaf habits to a severe drought during the wet growing season. Marked differences in xylem water isotopic composition during drought revealed distinct ecohydrological niche separation among species. The contrasting behaviour of leaf water potential in coexisting species during drought was largely explained by differences in root access to deeper, temporally stable water sources. Smaller-diameter species with shallower water uptake, more negative water potentials and lower WUEi showed extensive drought-induced canopy defoliation and/or mortality. By contrast, larger-diameter species with deeper water uptake, higher leaf-level WUEi and more isohydric behaviour survived drought with only moderate canopy defoliation. Severe water limitation imposes strong environmental filtering and/or selective pressures resulting in tight coordination between tree diameter, water uptake depth, iso/anisohydric behaviour, WUEi and drought vulnerability in karst plant communities.
Collapse
Affiliation(s)
- Yali Ding
- Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, 410125, China
- Huanjiang Observation and Research Station for Karst Ecosystems, Chinese Academy of Sciences, Huanjiang, Guangxi, 547100, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yunpeng Nie
- Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, 410125, China
- Huanjiang Observation and Research Station for Karst Ecosystems, Chinese Academy of Sciences, Huanjiang, Guangxi, 547100, China
| | - Hongsong Chen
- Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, 410125, China
- Huanjiang Observation and Research Station for Karst Ecosystems, Chinese Academy of Sciences, Huanjiang, Guangxi, 547100, China
| | - Kelin Wang
- Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, 410125, China
- Huanjiang Observation and Research Station for Karst Ecosystems, Chinese Academy of Sciences, Huanjiang, Guangxi, 547100, China
| | - José I Querejeta
- Soil and Water Conservation Department, Centro de Edafología y Biología Aplicada del Segura-Consejo Superior de Investigaciones Científicas (CEBAS-CSIC), Campus Universitario de Espinardo, Murcia, E30100, Spain
| |
Collapse
|
31
|
Pratt RB, Tobin MF, Jacobsen AL, Traugh CA, De Guzman ME, Hayes CC, Toschi HS, MacKinnon ED, Percolla MI, Clem ME, Smith PT. Starch storage capacity of sapwood is related to dehydration avoidance during drought. AMERICAN JOURNAL OF BOTANY 2021; 108:91-101. [PMID: 33349932 DOI: 10.1002/ajb2.1586] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Accepted: 09/22/2020] [Indexed: 05/26/2023]
Abstract
PREMISE The xylem tissue of plants performs three principal functions: transport of water, support of the plant body, and nutrient storage. Tradeoffs may arise because different structural requirements are associated with different functions or because suites of traits are under selection that relate to resource acquisition, use, and turnover. The structural and functional basis of xylem storage is not well established. We hypothesized that greater starch storage would be associated with greater sapwood parenchyma and reduced fibers, which would compromise resistance to xylem tensions during dehydration. METHODS We measured cavitation resistance, minimum water potential, starch content, and sapwood parenchyma and fiber area in 30 species of southern California chaparral shrubs (evergreen and deciduous). RESULTS We found that species storing greater starch within their xylem tended to avoid dehydration and were less cavitation resistant, and this was supported by phylogenetic independent contrasts. Greater sapwood starch was associated with greater parenchyma area and reduced fiber area. For species without living fibers, the associations with parenchyma were stronger, suggesting that living fibers may expand starch storage capacity while also contributing to the support function of the vascular tissue. Drought-deciduous species were associated with greater dehydration avoidance than evergreens. CONCLUSIONS Evolutionary forces have led to an association between starch storage and dehydration resistance as part of an adaptive suite of traits. We found evidence for a tradeoff between tissue mechanical traits and starch storage; moreover, the evolution of novel strategies, such as starch-storing living fibers, may mitigate the strength of this tradeoff.
Collapse
Affiliation(s)
- R Brandon Pratt
- California State University, Bakersfield, Department of Biology, Bakersfield, California, 93311, USA
| | - Michael F Tobin
- University of Houston-Downtown, Department of Natural Sciences, One Main Street, Houston, Texas, 77002, USA
| | - Anna L Jacobsen
- California State University, Bakersfield, Department of Biology, Bakersfield, California, 93311, USA
| | - Courtney A Traugh
- California State University, Bakersfield, Department of Biology, Bakersfield, California, 93311, USA
| | - Mark E De Guzman
- California State University, Bakersfield, Department of Biology, Bakersfield, California, 93311, USA
| | - Christine C Hayes
- California State University, Bakersfield, Department of Biology, Bakersfield, California, 93311, USA
| | - Hayden S Toschi
- California State University, Bakersfield, Department of Biology, Bakersfield, California, 93311, USA
| | - Evan D MacKinnon
- California State University, Bakersfield, Department of Biology, Bakersfield, California, 93311, USA
| | - Marta I Percolla
- California State University, Bakersfield, Department of Biology, Bakersfield, California, 93311, USA
| | - Michael E Clem
- California State University, Bakersfield, Department of Biology, Bakersfield, California, 93311, USA
| | - Paul T Smith
- California State University, Bakersfield, Department of Biology, Bakersfield, California, 93311, USA
| |
Collapse
|
32
|
Akman M, Carlson JE, Latimer AM. Climate explains population divergence in drought-induced plasticity of functional traits and gene expression in a South African Protea. Mol Ecol 2020; 30:255-273. [PMID: 33098695 DOI: 10.1111/mec.15705] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2019] [Revised: 10/04/2020] [Accepted: 10/06/2020] [Indexed: 12/18/2022]
Abstract
Long-term environmental variation often drives local adaptation and leads to trait differentiation across populations. Additionally, when traits change in an environment-dependent way through phenotypic plasticity, the genetic variation underlying plasticity will also be under selection. These processes could create a landscape of differentiation across populations in traits and their plasticity. Here, we performed a dry-down experiment under controlled conditions to measure responses in seedlings of a shrub species from the Cape Floristic Region, the common sugarbush (Protea repens). We measured morphological and physiological traits, and sequenced whole transcriptomes of leaf tissues from eight populations that represent both the climatic and the geographical distribution of this species. We found that there is substantial variation in how populations respond to drought, but we also observed common patterns such as reduced leaf size and leaf thickness, and up-regulation of stress-related and down-regulation of growth-related gene groups. Both high environmental heterogeneity and milder source site climates were associated with higher plasticity in various traits and co-expression gene networks. Associations between traits, trait plasticity, gene networks and the source site climate suggest that temperature may play a greater role in shaping these patterns when compared to precipitation, in line with recent changes in the region due to climate change. We also found that traits respond to climatic variation in an environment-dependent manner: some associations between traits and climate were apparent only under certain growing conditions. Together, our results uncover common responses of P. repens populations to drought, and climatic drivers of population differentiation in functional traits, gene expression and their plasticity.
Collapse
Affiliation(s)
- Melis Akman
- Department of Plant Sciences, UC Davis, Davis, CA, USA.,Department of Plant and Microbial Biology, UC Berkeley, Berkeley, CA, USA
| | - Jane E Carlson
- Department of Biology, Nicholls State University, Thibodaux, LA, USA.,Gulf Coast Network Inventory and Monitoring Program, National Park Services, Washington, DC, USA
| | | |
Collapse
|
33
|
Grossiord C. Having the right neighbors: how tree species diversity modulates drought impacts on forests. THE NEW PHYTOLOGIST 2020; 228:42-49. [PMID: 30585635 DOI: 10.1111/nph.15667] [Citation(s) in RCA: 64] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Accepted: 12/17/2018] [Indexed: 05/20/2023]
Abstract
Droughts are a rising concern for terrestrial ecosystems, particularly for forests where drought-induced reductions in tree growth and survival are reported. Biodiversity has long been acknowledged as an important component modulating ecosystem functions, including mitigating their vulnerability to climate-related stresses. Yet the impact of tree diversity on forest vulnerability to drought is unclear. In this review, consistent mechanisms are identified by which tree diversity could reduce vulnerability to drought and emerging evidence is revealed that tree diversity is not systematically positively related to drought resistance in forests. A path is suggested to further increase our knowledge on this subject in the face of climate change, proposing standardization of methods to quantitatively establish diversity impacts on the drought resistance of forests.
Collapse
Affiliation(s)
- Charlotte Grossiord
- Swiss Federal Institute for Forest, Snow and Landscape Research WSL, Zürcherstrasse 111, Birmensdorf, 8903, Switzerland
| |
Collapse
|
34
|
Williams CB, Murray JG, Glunk A, Dawson TE, Nadkarni NM, Gotsch SG. Vascular epiphytes show low physiological resistance and high recovery capacity to episodic, short‐term drought in Monteverde, Costa Rica. Funct Ecol 2020. [DOI: 10.1111/1365-2435.13613] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Affiliation(s)
| | - Jessica G. Murray
- Department of Biology and the Ecology Center Utah State University Logan UT USA
| | - Andrew Glunk
- Department of Biology Franklin and Marshall College Lancaster PA USA
| | - Todd E. Dawson
- Department of Integrative Biology University of California Berkeley CA USA
| | | | - Sybil G. Gotsch
- Department of Biology Franklin and Marshall College Lancaster PA USA
| |
Collapse
|
35
|
Ehmig M, Linder HP. Unexpected diversity and evolutionary lability in root architectural ecomorphs in the rushes of the hyperdiverse Cape flora. THE NEW PHYTOLOGIST 2020; 227:216-231. [PMID: 32129895 DOI: 10.1111/nph.16522] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Accepted: 02/19/2020] [Indexed: 06/10/2023]
Abstract
Plants use roots to access soil resources, so differences in root traits and their ecological consequences could be a mechanism of species coexistence and niche divergence. Current views of the evolution of root diversity are informed by large-scale evolutionary analyses based on taxonomically coarse sampling and led to the 'root trait phylogenetic conservatism hypothesis'. Here we test this hypothesised conservatism among closely related species, and whether root variation plays an ecological role. We collected root architectural traits for the species-rich Cape rushes (Restionaceae) in the field and from herbaria. We used machine learning to interpolate missing data. Using model-based clustering we classified root syndromes. We modelled the proportion of the syndromes along environmental gradients using assemblages and environmental data of 735 plots. We fitted trait evolutionary models to test for the conservatism hypothesis. We recognised five root syndromes. Responses to environmental gradients are syndrome specific and thus these represent ecomorphs. Trait evolutionary models reveal an evolutionary lability in these ecomorphs. This could present the mechanistic underpinning of the taxonomic radiation of this group which has been linked to repeated habitat shifts. Our results challenge the perspective of strong phylogenetic conservatism and root trait evolution may more generally drive diversification.
Collapse
Affiliation(s)
- Merten Ehmig
- Department of Systematic and Evolutionary Botany, University of Zurich, Zollikerstr. 107, CH 8008, Zurich, Switzerland
| | - H Peter Linder
- Department of Systematic and Evolutionary Botany, University of Zurich, Zollikerstr. 107, CH 8008, Zurich, Switzerland
| |
Collapse
|
36
|
Lozanovska I, Bejarano MD, Martins MJ, Nilsson C, Ferreira MT, Aguiar FC. Functional Diversity of Riparian Woody Vegetation Is Less Affected by River Regulation in the Mediterranean Than Boreal Region. FRONTIERS IN PLANT SCIENCE 2020; 11:857. [PMID: 32670322 PMCID: PMC7327385 DOI: 10.3389/fpls.2020.00857] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Accepted: 05/27/2020] [Indexed: 06/11/2023]
Abstract
River regulation may filter out riparian plants often resulting in reduced functional diversity, i.e., in the range of functions that organisms have in communities and ecosystems. There is, however, little empirical evidence about the magnitude of such reductions in different regions. We investigated the functional diversity patterns of riparian woody vegetation to streamflow regulation in boreal Sweden and Mediterranean Portugal using nine plant functional traits and field data from 109 sampling sites. We evaluated changes in mean plant functional traits as well as in indices of multidimensional functional traits, i.e., functional richness (FRic) and functional redundancy (FRed) within regions and between free-flowing and regulated river reaches. We found that regulation significantly reduced functional diversity in Sweden but not in Portugal. In Sweden, the increased magnitude of variations in water flow and water level in summer, the prolonged duration of extreme hydrological events, the increased frequency of high-water pulses, and the rate of change in water conditions were the likely main drivers of functional diversity change. Small riparian plant species with tiny leaves, poorly lignified stems, and shallow root systems were consistently associated with regulated sites in the boreal region. In Portugal, the similar functional diversity values for free-flowing and regulated rivers likely stem from the smaller streamflow alterations by regulation combined with the species legacy adaptations to the Mediterranean natural hydrological regimes. We conclude that streamflow regulation may reduce the functional diversity of riparian woody vegetation, but the magnitude of these effects will vary depending on the adaptations of the local flora and the patterns of streamflow disturbances. Our study provides insights into functional diversity patterns of riparian woody vegetation affected by regulation in contrasting biomes and encourages further studies of the functional diversity thresholds for maintaining ecosystems.
Collapse
Affiliation(s)
- Ivana Lozanovska
- Centro de Estudos Florestais, Instituto Superior de Agronomia, Universidade de Lisboa, Lisbon, Portugal
| | - María Dolores Bejarano
- Landscape Ecology Group, Department of Ecology and Environmental Science, Umeå University, Umeå, Sweden
| | - Maria João Martins
- Centro de Estudos Florestais, Instituto Superior de Agronomia, Universidade de Lisboa, Lisbon, Portugal
| | - Christer Nilsson
- Landscape Ecology Group, Department of Ecology and Environmental Science, Umeå University, Umeå, Sweden
- Department of Wildlife, Fish and Environmental Studies, Swedish University of Agricultural Sciences, Umeå, Sweden
| | - Maria Teresa Ferreira
- Centro de Estudos Florestais, Instituto Superior de Agronomia, Universidade de Lisboa, Lisbon, Portugal
| | - Francisca C. Aguiar
- Centro de Estudos Florestais, Instituto Superior de Agronomia, Universidade de Lisboa, Lisbon, Portugal
| |
Collapse
|
37
|
McLaughlin BC, Blakey R, Weitz AP, Feng X, Brown BJ, Ackerly DD, Dawson TE, Thompson SE. Weather underground: Subsurface hydrologic processes mediate tree vulnerability to extreme climatic drought. GLOBAL CHANGE BIOLOGY 2020; 26:3091-3107. [PMID: 32056344 DOI: 10.1111/gcb.15026] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Revised: 01/12/2020] [Accepted: 01/13/2020] [Indexed: 06/10/2023]
Abstract
Drought extent and severity have increased and are predicted to continue to increase in many parts of the world. Understanding tree vulnerability to drought at both individual and species levels is key to ongoing forest management and preparation for future transitions in community composition. The influence of subsurface hydrologic processes is particularly important in water-limited ecosystems, and is an under-studied aspect of tree drought vulnerability. With California's 2013-2016 extraordinary drought as a natural experiment, we studied four co-occurring woodland tree species, blue oak (Quercus douglasii), valley oak (Quercus lobata), gray pine (Pinus sabiniana), and California juniper (Juniperus californica), examining drought vulnerability as a function of climate, lithology and hydrology using regional aerial dieback surveys and site-scale field surveys. We found that in addition to climatic drought severity (i.e., rainfall), subsurface processes explained variation in drought vulnerability within and across species at both scales. Regionally for blue oak, severity of dieback was related to the bedrock lithology, with higher mortality on igneous and metamorphic substrates, and to regional reductions in groundwater. At the site scale, access to deep subsurface water, evidenced by stem water stable isotope composition, was related to canopy condition across all species. Along hillslope gradients, channel locations supported similar environments in terms of water stress across a wide climatic gradient, indicating that subsurface hydrology mediates species' experience of drought, and that areas associated with persistent access to subsurface hydrologic resources may provide important refugia at species' xeric range edges. Despite this persistent overall influence of the subsurface environment, individual species showed markedly different response patterns. We argue that hydrologic niche segregation can be a useful lens through which to interpret these differences in vulnerability to climatic drought and climate change.
Collapse
Affiliation(s)
| | - Rachel Blakey
- La Kretz Center for California Conservation Science, Institute of the Environment and Sustainability, University of California Los Angeles, Los Angeles, CA, USA
| | - Andrew P Weitz
- Department of Integrative Biology, University of California, Berkeley, Berkeley, CA, USA
| | - Xue Feng
- Department of Civil, Environmental, and Geo-Engineering, University of Minnesota, Minneapolis, MN, USA
| | - Brittni J Brown
- Department of Natural Resources and Society, University of Idaho, Moscow, ID, USA
| | - David D Ackerly
- Department of Integrative Biology, University of California, Berkeley, Berkeley, CA, USA
| | - Todd E Dawson
- Department of Integrative Biology, University of California, Berkeley, Berkeley, CA, USA
| | - Sally E Thompson
- Department of Civil, Environmental and Mining Engineering, University of Western Australia, Crawley, WA, Australia
- Department of Civil and Environmental Engineering, University of California, Berkeley, Berkeley, CA, USA
| |
Collapse
|
38
|
Väänänen PJ, Osem Y, Cohen S, Grünzweig JM. Differential drought resistance strategies of co-existing woodland species enduring the long rainless Eastern Mediterranean summer. TREE PHYSIOLOGY 2020; 40:305-320. [PMID: 31860712 DOI: 10.1093/treephys/tpz130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Revised: 08/28/2019] [Accepted: 09/17/2019] [Indexed: 06/10/2023]
Abstract
In anticipation of a drier climate and to project future changes in forest dynamics, it is imperative to understand species-specific differences in drought resistance. The objectives of this study were to form a comprehensive understanding of the drought resistance strategies adopted by Eastern Mediterranean woodland species, and to elaborate specific ecophysiological traits that can explain the observed variation in survival among these species. We examined leaf water potential (𝛹), gas exchange and stem hydraulics during 2-3 years in mature individuals of the key woody species Phillyrea latifolia L., Pistacia lentiscus L. and Quercus calliprinos Webb that co-exist in a dry woodland experiencing ~ 6 rainless summer months. As compared with the other two similarly functioning species, Phillyrea displayed considerably lower 𝛹 (minimum 𝛹 of -8.7 MPa in Phillyrea vs -4.2 MPa in Pistacia and Quercus), lower 𝛹 at stomatal closure and lower leaf turgor loss point (𝛹TLP ), but reduced hydraulic vulnerability and wider safety margins. Notably, Phillyrea allowed 𝛹 to drop below 𝛹TLP under severe drought, whereas the other two species maintained positive turgor. These results indicate that Phillyrea adopted a more anisohydric drought resistance strategy, while Pistacia and Quercus exhibited a more isohydric strategy and probably relied on deeper water reserves. Unlike the two relatively isohydric species, Phillyrea reached complete stomatal closure at the end of the dry summer. Despite assessing a large number of physiological traits, none of them could be directly related to tree mortality. Higher mortality was observed for Quercus than for the other two species, which may result from higher water consumption due to its 2.5-10 times larger crown volume. The observed patterns suggest that similar levels of drought resistance in terms of survival can be achieved via different drought resistance strategies. Conversely, similar resistance strategies in terms of isohydricity can lead to different levels of vulnerability to extreme drought.
Collapse
Affiliation(s)
- Päivi J Väänänen
- Institute of Plant Sciences and Genetics in Agriculture, Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, P.O. Box 12, Rehovot 7610001, Israel
- Department of Natural Resources, Agricultural Research Organization, Volcani Center, Bet-Dagan 50250, Israel
| | - Yagil Osem
- Department of Natural Resources, Agricultural Research Organization, Volcani Center, Bet-Dagan 50250, Israel
| | - Shabtai Cohen
- Institute of Soil, Water and Environmental Sciences, Agricultural Research Organization, Volcani Center, Bet-Dagan 50250, Israel
| | - José M Grünzweig
- Institute of Plant Sciences and Genetics in Agriculture, Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, P.O. Box 12, Rehovot 7610001, Israel
| |
Collapse
|
39
|
Smith‐Martin CM, Skelton RP, Johnson KM, Lucani C, Brodribb TJ. Lack of vulnerability segmentation among woody species in a diverse dry sclerophyll woodland community. Funct Ecol 2020. [DOI: 10.1111/1365-2435.13519] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Chris M. Smith‐Martin
- Department of Ecology, Evolution and Evolutionary Biology Columbia University New York NY USA
| | - Robert Paul Skelton
- South African Environmental Observation NetworkKirstenbosch Botanical Gardens Cape Town South Africa
| | - Kate M. Johnson
- School of Biological Sciences University of Tasmania Hobart TAS Australia
| | - Christopher Lucani
- School of Biological Sciences University of Tasmania Hobart TAS Australia
| | | |
Collapse
|
40
|
Krushelnycky PD, Felts JM, Robichaux RH, Barton KE, Litton CM, Brown MD. Clinal variation in drought resistance shapes past population declines and future management of a threatened plant. ECOL MONOGR 2020. [DOI: 10.1002/ecm.1398] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Paul D. Krushelnycky
- Department of Plant and Environmental Protection Sciences University of Hawaiʻi at Mānoa Honolulu Hawaiʻi 96822 USA
| | - Jesse M. Felts
- Resources Management Division Haleakalā National Park Makawao Hawaiʻi 96768 USA
| | - Robert H. Robichaux
- Department of Ecology and Evolutionary Biology University of Arizona Tucson Arizona 85721 USA
| | - Kasey E. Barton
- Department of Botany University of Hawaiʻi at Mānoa Honolulu Hawaiʻi 96822 USA
| | - Creighton M. Litton
- Department of Natural Resources and Environmental Management University of Hawaiʻi at Mānoa Honolulu Hawaiʻi 96822 USA
| | - Matthew D. Brown
- Resources Management Division Haleakalā National Park Makawao Hawaiʻi 96768 USA
| |
Collapse
|
41
|
Zou J, Ding J, Welp M, Huang S, Liu B. Assessing the Response of Ecosystem Water Use Efficiency to Drought During and after Drought Events across Central Asia. SENSORS (BASEL, SWITZERLAND) 2020; 20:E581. [PMID: 31973086 PMCID: PMC7038223 DOI: 10.3390/s20030581] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Revised: 01/13/2020] [Accepted: 01/19/2020] [Indexed: 11/16/2022]
Abstract
The frequency and intensity of drought are expected to increase worldwide in the future. However, it is still unclear how ecosystems respond to drought. Ecosystem water use efficiency (WUE) is an essential ecological index used to measure the global carbon-water cycles, and is defined as the carbon absorbed per unit of water lost by the ecosystem. In this study, we applied gross primary productivity (GPP), evapotranspiration (ET), land surface temperature (LST), and normalized difference vegetation index (NDVI) data to calculate the WUE and drought index (temperature vegetation dryness index (TVDI)), all of which were retrieved from moderate resolution imaging spectroradiometer (MODIS) data. We compared the mean WUE across different vegetation types, drought classifications, and countries. The temporal and spatial changes in WUE and drought were analyzed. The correlation between drought and WUE was calculated and compared across different vegetation types, and the differences in WUE between drought and post-drought periods were compared. The results showed that (1) ecosystems with a low (high) productivity had a high (low) WUE, and the mean ecosystem WUE of Central Asia showed vast differences across various drought levels, countries, and vegetation types. (2) The WUE in Central Asia exhibited an increasing trend from 2000 to 2014, and Central Asia experienced both drought (from 2000 to 2010) and post-drought (from 2011 to 2014) periods. (3) The WUE showed a negative correlation with drought during the drought period, and an obvious drought legacy effect was found, in which severe drought affected the ecosystem WUE over the following two years, while a positive correlation between WUE and drought was found in the post-drought period. (4) A significant increase in ecosystem WUE was found after drought, which revealed that arid ecosystems exhibit high resilience to drought stress. Our results can provide a specific reference for understanding how ecosystems will respond to climate change.
Collapse
Affiliation(s)
- Jie Zou
- Xinjiang Common University Key Lab of Smart City and Environmental Stimulation, College of Resources and Environment Sciences, Xinjiang University, Urumqi 830046, China; (J.Z.); (S.H.); (B.L.)
- Key Laboratory of Oasis Ecology under Ministry of Education, Xinjiang University, Urumqi 830046, China
| | - Jianli Ding
- Xinjiang Common University Key Lab of Smart City and Environmental Stimulation, College of Resources and Environment Sciences, Xinjiang University, Urumqi 830046, China; (J.Z.); (S.H.); (B.L.)
- Key Laboratory of Oasis Ecology under Ministry of Education, Xinjiang University, Urumqi 830046, China
| | - Martin Welp
- Faculty of Forest and Environment, Eberswalde University for Sustainable Development, Eberswalde 16225, Germany;
| | - Shuai Huang
- Xinjiang Common University Key Lab of Smart City and Environmental Stimulation, College of Resources and Environment Sciences, Xinjiang University, Urumqi 830046, China; (J.Z.); (S.H.); (B.L.)
- Key Laboratory of Oasis Ecology under Ministry of Education, Xinjiang University, Urumqi 830046, China
| | - Bohua Liu
- Xinjiang Common University Key Lab of Smart City and Environmental Stimulation, College of Resources and Environment Sciences, Xinjiang University, Urumqi 830046, China; (J.Z.); (S.H.); (B.L.)
- Key Laboratory of Oasis Ecology under Ministry of Education, Xinjiang University, Urumqi 830046, China
| |
Collapse
|
42
|
Guo JS, Hultine KR, Koch GW, Kropp H, Ogle K. Temporal shifts in iso/anisohydry revealed from daily observations of plant water potential in a dominant desert shrub. THE NEW PHYTOLOGIST 2020; 225:713-726. [PMID: 31519032 DOI: 10.1111/nph.16196] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Accepted: 09/06/2019] [Indexed: 05/25/2023]
Abstract
Plant species are characterized along a spectrum of isohydry to anisohydry depending on their regulation of water potential (Ψ), but the plasticity of hydraulic strategies is largely unknown. The role of environmental drivers was evaluated in the hydraulic behavior of Larrea tridentata, a drought-tolerant desert shrub that withstands a wide range of environmental conditions. With a 1.5 yr time-series of 2324 in situ measurements of daily predawn and midday Ψ, the temporal variability of hydraulic behavior was explored in relation to soil water supply, atmospheric demand and temperature. Hydraulic behavior in Larrea was highly dynamic, ranging from partial isohydry to extreme anisohydry. Larrea exhibited extreme anisohydry under wet soil conditions corresponding to periods of high productivity, whereas partial isohydry was exhibited after prolonged dry or cold conditions, when productivity was low. Environmental conditions can strongly influence plant hydraulic behavior at relatively fast timescales, which enhances our understanding of plant drought responses. Although species may exhibit a dominant hydraulic behavior, variable environmental conditions can prompt plasticity in Ψ regulation, particularly for species in seasonally dry climates.
Collapse
Affiliation(s)
- Jessica S Guo
- Department of Biological Sciences, Northern Arizona University, Flagstaff, AZ, 86011, USA
- Center for Ecosystem Science and Society, Northern Arizona University, Flagstaff, AZ, 86011, USA
| | - Kevin R Hultine
- Department of Research, Conservation, and Collections, Desert Botanical Garden, Phoenix, AZ, 85008, USA
| | - George W Koch
- Department of Biological Sciences, Northern Arizona University, Flagstaff, AZ, 86011, USA
- Center for Ecosystem Science and Society, Northern Arizona University, Flagstaff, AZ, 86011, USA
| | - Heather Kropp
- Department of Geography, Colgate University, Hamilton, NY, 13346, USA
| | - Kiona Ogle
- Department of Biological Sciences, Northern Arizona University, Flagstaff, AZ, 86011, USA
- Center for Ecosystem Science and Society, Northern Arizona University, Flagstaff, AZ, 86011, USA
- School of Informatics, Computing, and Cyber Systems, Northern Arizona University, Flagstaff, AZ, 86011, USA
| |
Collapse
|
43
|
Li Q, Wang N, Liu X, Liu S, Wang H, Zhang W, Wang R, Du N. Growth and physiological responses to successional water deficit and recovery in four warm-temperate woody species. PHYSIOLOGIA PLANTARUM 2019; 167:645-660. [PMID: 30637759 DOI: 10.1111/ppl.12922] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2018] [Revised: 12/20/2018] [Accepted: 01/08/2019] [Indexed: 05/19/2023]
Abstract
Plant responses to drought and their subsequent rehydration can provide evidence for forest dynamics within the context of climate change. In this study, the seedlings of two native species (Vitex negundo var. heterophylla, Quercus acutissima) and two exotic species (Robinia pseudoacacia, Amorpha fruticosa) to China were selected in a greenhouse experiment. The gas exchange, stem hydraulic parameters, plant osmoprotectant contents and antioxidant activities of the seedlings that were subjected to sustained drought and rehydration (test group) as well as those of well-irrigated seedlings (control group) were measured. The two native species exhibited a greater degree of isohydry with drought because they limited the stomatal opening timely from the onset of the drought. However, the two exotic species showed a more 'water spender'-like strategy with R. pseudoacacia showing anisohydric responses and A. fruticosa showing isohydrodynamic responses to drought. Severe drought significantly decreased the leaf gas exchange rates and hydraulic properties, whereas the instantaneous water use efficiency and osmoprotectant contents increased markedly. Most of the physiological parameters recovered rapidly after mild drought rehydration, but the water potential and/or supply of nonstructural carbohydrates did not recover after severe drought rehydration. The results demonstrate that the xylem hydraulic conductivity and shoot water potential jointly play a crucial role in the drought recovery of woody plants. In brief, the native species may play a dominant role in the future in warm-temperate forests because they employ a better balance between carbon gain and water loss than the alien species under extreme drought conditions.
Collapse
Affiliation(s)
- Qiang Li
- Institute of Ecology and Biodiversity, School of Life Sciences, Shandong University, Qingdao, 266237, China
- Shandong Provincial Engineering and Technology Research Center for Vegetation Ecology, Shandong University, Qingdao, 266237, China
| | - Ning Wang
- Institute of Ecology and Biodiversity, School of Life Sciences, Shandong University, Qingdao, 266237, China
- Shandong Provincial Engineering and Technology Research Center for Vegetation Ecology, Shandong University, Qingdao, 266237, China
| | - Xiao Liu
- Institute of Ecology and Biodiversity, School of Life Sciences, Shandong University, Qingdao, 266237, China
- Shandong Provincial Engineering and Technology Research Center for Vegetation Ecology, Shandong University, Qingdao, 266237, China
| | - Shuna Liu
- Institute of Ecology and Biodiversity, School of Life Sciences, Shandong University, Qingdao, 266237, China
- Shandong Provincial Engineering and Technology Research Center for Vegetation Ecology, Shandong University, Qingdao, 266237, China
| | - Hui Wang
- Institute of Ecology and Biodiversity, School of Life Sciences, Shandong University, Qingdao, 266237, China
- Shandong Provincial Engineering and Technology Research Center for Vegetation Ecology, Shandong University, Qingdao, 266237, China
| | - Wenxin Zhang
- Institute of Ecology and Biodiversity, School of Life Sciences, Shandong University, Qingdao, 266237, China
- Shandong Provincial Engineering and Technology Research Center for Vegetation Ecology, Shandong University, Qingdao, 266237, China
| | - Renqing Wang
- Institute of Ecology and Biodiversity, School of Life Sciences, Shandong University, Qingdao, 266237, China
- Shandong Provincial Engineering and Technology Research Center for Vegetation Ecology, Shandong University, Qingdao, 266237, China
| | - Ning Du
- Institute of Ecology and Biodiversity, School of Life Sciences, Shandong University, Qingdao, 266237, China
- Shandong Provincial Engineering and Technology Research Center for Vegetation Ecology, Shandong University, Qingdao, 266237, China
| |
Collapse
|
44
|
Morris TL, Barger NN, Cramer MD. Ecophysiological traits of invasive alien Acacia cyclops
compared to co-occuring native species in Strandveld vegetation of the Cape Floristic Region. AUSTRAL ECOL 2019. [DOI: 10.1111/aec.12827] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Taryn L. Morris
- Department of Ecology and Evolutionary Biology; University of Colorado; Boulder Colorado USA
- Department of Biological Sciences; University of Cape Town; Private Bag X3 Rondebosch 7701 South Africa
| | - Nichole N. Barger
- Department of Ecology and Evolutionary Biology; University of Colorado; Boulder Colorado USA
| | - Michael D. Cramer
- Department of Biological Sciences; University of Cape Town; Private Bag X3 Rondebosch 7701 South Africa
| |
Collapse
|
45
|
Chen Z, Liu S, Lu H, Wan X. Interaction of stomatal behaviour and vulnerability to xylem cavitation determines the drought response of three temperate tree species. AOB PLANTS 2019; 11:plz058. [PMID: 31649812 PMCID: PMC6802943 DOI: 10.1093/aobpla/plz058] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Accepted: 09/04/2019] [Indexed: 06/10/2023]
Abstract
How the mortality and growth of tree species vary with the iso-anisohydric continuum and xylem vulnerability is still being debated. We conducted a precipitation reduction experiment to create a mild drought condition in a forest in the Baotianman Mountains, China, a sub-humid region. Three main sub-canopy tree species in this region were examined. After rainfall reduction, Lindera obtusiloba showed severe dieback, but two other co-occurring species did not show dieback. The water potential at stomatal closure of Dendrobenthamia japonica, L. obtusiloba and Sorbus alnifolia was -1.70, -2.54 and -3.41 MPa, respectively, whereas the water potential at 88 % loss in hydraulic conductivity of the three species was -2.31, -2.11 and -7.01 MPa, respectively. Taken together, near-anisohydric L. obtusiloba with vulnerable xylem was highly susceptible to drought dieback. Anisohydric S. alnifolia had the most negative minimum water potential, and its xylem was the most resistant to cavitation. Isohydric D. japonica conserved water by rapidly closing its stomata. Ultimately, the hydraulic safety margin (HSM) of L. obtusiloba was the smallest among the three species, especially in precipitation-reduced plots. In terms of the stomatal safety margin (SSM), L. obtusiloba was negative, while S. alnifolia and D. japonica were positive. Of the two species without dieback, rainfall reduction decreased growth of D. japonica, but did not influence growth of S. Alnifolia; meanwhile, rainfall reduction led to a decrease of non-structural carbohydrates (NSCs) in D. japonica, but an increase in S. alnifolia. It is concluded that HSM as well as SSM allow interpreting the sensitivity of the three sub-canopy species to drought. The drought-induced dieback of L. obtusiloba is determined by the interaction of stomatal behaviour and xylem vulnerability, and the species could be sensitive to climate change-caused drought although still in sub-humid areas. The isohydric/anisohydric degree is associated with NSCs status and growth of plants.
Collapse
Affiliation(s)
- Zhicheng Chen
- Institute of New Forestry Technology, Chinese Academy of Forestry, Beijing, China
| | - Shirong Liu
- Key Laboratory of Forest Ecology and Environment of State Forestry Administration, Institute of Forest Ecology, Environment and Protection, Chinese Academy of Forestry, Beijing, China
| | - Haibo Lu
- Key Laboratory of Forest Ecology and Environment of State Forestry Administration, Institute of Forest Ecology, Environment and Protection, Chinese Academy of Forestry, Beijing, China
| | - Xianchong Wan
- Institute of New Forestry Technology, Chinese Academy of Forestry, Beijing, China
| |
Collapse
|
46
|
Chelli S, Simonetti E, Campetella G, Chiarucci A, Cervellini M, Tardella FM, Tomasella M, Canullo R. Plant diversity changes in a nature reserve: a probabilistic sampling method for quantitative assessments. NATURE CONSERVATION 2019. [DOI: 10.3897/natureconservation.34.30043] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Species pool conservation is critical for the stability of ecosystem processes. However, climate and land use changes will likely affect biodiversity, and managers of protected areas are under increasing pressure to monitor native species diversity changes by approaches that are scientifically sound and comparable over time. Here we describe a plant diversity monitoring system in use since 2002 in the “Montagna di Torricchio” Nature Reserve (LTER_EU_IT_033), a Central Apennines representative area of 317 ha, most of which is under strict protection. The aim of this paper was to assess changes in plant species richness over time and to deduce the patterns of species assemblage. The monitoring system was based on a probabilistic sampling design representative of the different physiognomic vegetation types occurring in the Reserve. A total of 34 plots (10×10m) were sampled in 2002, 2003 and 2015, and their species presence/absence and relative coverage were estimated. Repeated measure ANOVA was used to test for plot-level and ecosystem-based changes in species richness along the study period. Temporal nestedness and temporal turnover metrics were used to assess patterns of species’ compositional changes. The results showed significantly different levels of species richness depending on the year, with the lowest value in 2003, probably linked to extreme drought events. Forest systems were comparatively stable, demonstrating the capacity to buffer interannual climate variability. Regarding compositional changes along the entire period (2002–2015), we found random patterns of both temporal nestedness and turnover, indicating stability in species composition. However, we also showed the contemporary occurrence of species loss and species replacement processes, considering the dry year 2003, a finding which should be further explored through fine-scale studies to unravel mechanisms of community assembly under drought. The use of a probabilistic sampling design representative of the different physiognomic vegetation types proved to be advantageous in monitoring the Nature Reserve vegetation and collecting reliable quantitative information. This data, in turn, provides the basis for improvements in management practices and proposed adaptation measures.
Collapse
|
47
|
Mayor AG, Bautista S, Rodriguez F, Kéfi S. Connectivity-Mediated Ecohydrological Feedbacks and Regime Shifts in Drylands. Ecosystems 2019. [DOI: 10.1007/s10021-019-00366-w] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
48
|
Chen R, Ran J, Huang H, Dong L, Sun Y, Ji M, Hu W, Yao S, Lu J, Gong H, Xie S, Du Q, Hou Q, Niklas KJ, Deng J. Life history strategies drive size‐dependent biomass allocation patterns of dryland ephemerals and shrubs. Ecosphere 2019. [DOI: 10.1002/ecs2.2709] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Affiliation(s)
- Renfei Chen
- State Key Laboratory of Grassland Agro‐Ecosystem School of Life Sciences Lanzhou University Lanzhou 730000 China
| | - Jinzhi Ran
- State Key Laboratory of Grassland Agro‐Ecosystem School of Life Sciences Lanzhou University Lanzhou 730000 China
| | - Heng Huang
- Department of Environmental Science, Policy, and Management University of California Berkeley California 94720 USA
| | - Longwei Dong
- State Key Laboratory of Grassland Agro‐Ecosystem School of Life Sciences Lanzhou University Lanzhou 730000 China
| | - Yuan Sun
- State Key Laboratory of Grassland Agro‐Ecosystem School of Life Sciences Lanzhou University Lanzhou 730000 China
| | - Mingfei Ji
- State Key Laboratory of Grassland Agro‐Ecosystem School of Life Sciences Lanzhou University Lanzhou 730000 China
| | - Weigang Hu
- State Key Laboratory of Grassland Agro‐Ecosystem School of Life Sciences Lanzhou University Lanzhou 730000 China
| | - Shuran Yao
- State Key Laboratory of Grassland Agro‐Ecosystem School of Life Sciences Lanzhou University Lanzhou 730000 China
| | - Jingli Lu
- State Key Laboratory of Grassland Agro‐Ecosystem School of Life Sciences Lanzhou University Lanzhou 730000 China
| | - Haiyang Gong
- State Key Laboratory of Grassland Agro‐Ecosystem School of Life Sciences Lanzhou University Lanzhou 730000 China
| | - Shubin Xie
- State Key Laboratory of Grassland Agro‐Ecosystem School of Life Sciences Lanzhou University Lanzhou 730000 China
| | - Qiajun Du
- State Key Laboratory of Grassland Agro‐Ecosystem School of Life Sciences Lanzhou University Lanzhou 730000 China
| | - Qingqing Hou
- State Key Laboratory of Grassland Agro‐Ecosystem School of Life Sciences Lanzhou University Lanzhou 730000 China
| | - Karl J. Niklas
- Plant Biology Section School of Integrative Plant Science Cornell University Ithaca New York 14853 USA
| | - Jianming Deng
- State Key Laboratory of Grassland Agro‐Ecosystem School of Life Sciences Lanzhou University Lanzhou 730000 China
| |
Collapse
|
49
|
Feng X, Ackerly DD, Dawson TE, Manzoni S, McLaughlin B, Skelton RP, Vico G, Weitz AP, Thompson SE. Beyond isohydricity: The role of environmental variability in determining plant drought responses. PLANT, CELL & ENVIRONMENT 2019; 42:1104-1111. [PMID: 30513545 DOI: 10.1111/pce.13486] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2018] [Revised: 11/04/2018] [Accepted: 11/20/2018] [Indexed: 05/21/2023]
Abstract
Despite the appeal of the iso/anisohydric framework for classifying plant drought responses, recent studies have shown that such classifications can be strongly affected by a plant's environment. Here, we present measured in situ drought responses to demonstrate that apparent isohydricity can be conflated with environmental conditions that vary over space and time. In particular, we (a) use data from an oak species (Quercus douglasii) during the 2012-2015 extreme drought in California to demonstrate how temporal and spatial variability in the environment can influence plant water potential dynamics, masking the role of traits; (b) explain how these environmental variations might arise from climatic, topographic, and edaphic variability; (c) illustrate, through a "common garden" thought experiment, how existing trait-based or response-based isohydricity metrics can be confounded by these environmental variations, leading to Type-1 (false positive) and Type-2 (false negative) errors; and (d) advocate for the use of model-based approaches for formulating alternate classification schemes. Building on recent insights from greenhouse and vineyard studies, we offer additional evidence across multiple field sites to demonstrate the importance of spatial and temporal drivers of plants' apparent isohydricity. This evidence challenges the use of isohydricity indices, per se, to characterize plant water relations at the global scale.
Collapse
Affiliation(s)
- Xue Feng
- Department of Civil, Environmental, and Geo-Engineering, University of Minnesota, Minneapolis, Minnesota, 55455, USA
| | - David D Ackerly
- Department of Integrative Biology, University of California, Berkeley, Berkeley, California, 94720, USA
| | - Todd E Dawson
- Department of Integrative Biology, University of California, Berkeley, Berkeley, California, 94720, USA
- Department of Environmental Sciences, Policy, and Management, University of California, Berkeley, Berkeley, California, 94720, USA
| | - Stefano Manzoni
- Department of Physical Geography, Stockholm University, Stockholm, Sweden
- Bolin Centre for Climate Research, Stockholm, Sweden
| | | | - Robert P Skelton
- Department of Integrative Biology, University of California, Berkeley, Berkeley, California, 94720, USA
| | - Giulia Vico
- Department of Crop Production Ecology, Swedish University of Agricultural Sciences (SLU), Uppsala, Sweden
| | - Andrew P Weitz
- Department of Integrative Biology, University of California, Berkeley, Berkeley, California, 94720, USA
| | - Sally E Thompson
- Department of Civil and Environmental Engineering, University of California, Berkeley, Berkeley, California, 94720, USA
| |
Collapse
|
50
|
Ratcliffe JL, Campbell DI, Clarkson BR, Wall AM, Schipper LA. Water table fluctuations control CO 2 exchange in wet and dry bogs through different mechanisms. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 655:1037-1046. [PMID: 30577098 DOI: 10.1016/j.scitotenv.2018.11.151] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2018] [Revised: 10/22/2018] [Accepted: 11/10/2018] [Indexed: 06/09/2023]
Abstract
High water tables (WT) stabilise peatland carbon (C) through regulation of biogeochemical processes. The impact of peatland WT on ecosystem function, including C exchange, alters over time, and the factors that cause some peatlands to display resilience and others to undergo degradation are poorly understood. Here we use CO2 flux measurements, measured by eddy covariance, to compare ecosystem function between two raised bogs; one drainage-affected, with a deep and fluctuating water table and the other near-natural, with a shallow and stable water table. The drainage-affected bog was found to be a moderate sink for CO2 (69 g C m-2 yr-1), which was 134 g C m-2 yr-1 less than the near-natural bog (203 g C m-2 yr-1). Greater ecosystem productivity has allowed the drainage-impacted bog to act as a CO2 sink despite higher ecosystem respiration; most likely due to an increase in photosynthetic capacity caused by expansion of ericaceous shrub cover. The tolerance of the vegetation community, particularly the main peat former Empodisma robustum (Restionaceae), to low and fluctuating WT appears to have been key in allowing the site to remain a sink. Despite the current resilience of the ecosystem CO2 sink, we found gross primary production to be limited under both high and low water tables, even in a year with typical rainfall. This is best explained by the limited physiological ability of ericaceous shrubs to tolerate a fluctuating WT. As such we hypothesise that if the WT continues to drop and become even more unstable, then without further vegetation change, a reduction in gross primary production is likely which may in turn cause the site to become a source for CO2.
Collapse
Affiliation(s)
- Joshua L Ratcliffe
- Environmental Research Institute, Faculty of Science and Engineering, University of Waikato, Hamilton 3240, New Zealand.
| | - David I Campbell
- Environmental Research Institute, Faculty of Science and Engineering, University of Waikato, Hamilton 3240, New Zealand
| | - Beverley R Clarkson
- Manaaki Whenua - Landcare Research, Gate 10 Silverdale Road, University of Waikato, Hamilton 3216, New Zealand
| | - Aaron M Wall
- Environmental Research Institute, Faculty of Science and Engineering, University of Waikato, Hamilton 3240, New Zealand
| | - Louis A Schipper
- Environmental Research Institute, Faculty of Science and Engineering, University of Waikato, Hamilton 3240, New Zealand
| |
Collapse
|