1
|
Liu X, Zhou J, Zeeshan Ul Haq M, Fu Z, Gu G, Yu J, Liu Y, Yang D, Yang H, Wu Y. Functional analysis of the PcCDPK5 gene in response to allelopathic substances on p-hydroxybenzoic acid (p-HBA) stress in patchouli. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2025; 291:117807. [PMID: 39884012 DOI: 10.1016/j.ecoenv.2025.117807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Revised: 01/15/2025] [Accepted: 01/22/2025] [Indexed: 02/01/2025]
Abstract
Calcium-dependent protein kinase (CDPK) is an important mediator for Ca2 + signal recognition and transduction, playing a crucial role in plant stress response. Previous studies have shown that PcCDPK5 may be involved in the response of patchouli to p-hydroxybenzoic acid (p-HBA) stress. In this study, we further found that the subcellular localization of PcCDPK5 protein is in the cytoplasm, and its gene expression is closely related to continuous cropping (CC) and p-HBA stress. Under p-HBA stress, silencing the PcCDPK5 homologous gene in Nicotiana tabacum leads to decreased antioxidant enzyme activity and increased malondialdehyde (MDA) content, significantly accumulating reactive oxygen species (ROS) and affecting normal plant growth. On the contrary, overexpression of PcCDPK5 can effectively alleviate the damage caused by p-HBA stress to plant bodies. Through this research, the function of PcCDPK5 in response to p-HBA stress has been preliminarily analyzed, laying a theoretical foundation for alleviating CC obstacles in patchouli.
Collapse
Affiliation(s)
- Xiaofeng Liu
- School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), School of Tropical Agriculture and Forestry, Hainan University, Sanya 572025, China
| | - Jingru Zhou
- School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), School of Tropical Agriculture and Forestry, Hainan University, Sanya 572025, China
| | - Muhammad Zeeshan Ul Haq
- School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), School of Tropical Agriculture and Forestry, Hainan University, Sanya 572025, China
| | - Zhineng Fu
- School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), School of Tropical Agriculture and Forestry, Hainan University, Sanya 572025, China
| | - Guangtao Gu
- School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), School of Tropical Agriculture and Forestry, Hainan University, Sanya 572025, China
| | - Jing Yu
- School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), School of Tropical Agriculture and Forestry, Hainan University, Sanya 572025, China
| | - Ya Liu
- School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), School of Tropical Agriculture and Forestry, Hainan University, Sanya 572025, China
| | - Dongmei Yang
- School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), School of Tropical Agriculture and Forestry, Hainan University, Sanya 572025, China
| | - Huageng Yang
- School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), School of Tropical Agriculture and Forestry, Hainan University, Sanya 572025, China
| | - Yougen Wu
- School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), School of Tropical Agriculture and Forestry, Hainan University, Sanya 572025, China.
| |
Collapse
|
2
|
Li J, Ishii T, Yoshioka M, Hino Y, Nomoto M, Tada Y, Yoshioka H, Takahashi H, Yamauchi T, Nakazono M. CDPK5 and CDPK13 play key roles in acclimation to low oxygen through the control of RBOH-mediated ROS production in rice. PLANT PHYSIOLOGY 2024; 197:kiae293. [PMID: 38849987 PMCID: PMC11663579 DOI: 10.1093/plphys/kiae293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 03/26/2024] [Accepted: 05/03/2024] [Indexed: 06/09/2024]
Abstract
CALCIUM-DEPENDENT PROTEIN KINASE (CDPK) stimulates reactive oxygen species (ROS)-dependent signaling by activating RESPIRATORY BURST OXIDASE HOMOLOG (RBOH). The lysigenous aerenchyma is a gas space created by cortical cell death that facilitates oxygen diffusion from the shoot to the root tips. Previously, we showed that RBOHH is indispensable for the induction of aerenchyma formation in rice (Oryza sativa) roots under low-oxygen conditions. Here, we showed that CDPK5 and CDPK13 localize to the plasma membrane where RBOHH functions. Mutation analysis of the serine at residues 92 and 107 of RBOHH revealed that these residues are required for CDPK5- and CDPK13-mediated activation of ROS production. The requirement of Ca2+ for CDPK5 and CDPK13 function was confirmed using in vitro kinase assays. CRISPR/Cas9-based mutagenesis of CDPK5 and/or CDPK13 revealed that the double knockout almost completely suppressed inducible aerenchyma formation, whereas the effects were limited in the single knockout of either CDPK5 or CDPK13. Interestingly, the double knockout almost suppressed the induction of adventitious root formation, which is widely conserved in vascular plants, under low-oxygen conditions. Our results suggest that CDPKs are essential for the acclimation of rice to low-oxygen conditions and also for many other plant species conserving CDPK-targeted phosphorylation sites in RBOH homologs.
Collapse
Affiliation(s)
- Jingxia Li
- Graduate School of Bioagricultural Sciences, Nagoya University, Furo-cho Chikusa, Nagoya 464-8601, Japan
| | - Takahiro Ishii
- Graduate School of Bioagricultural Sciences, Nagoya University, Furo-cho Chikusa, Nagoya 464-8601, Japan
| | - Miki Yoshioka
- Graduate School of Bioagricultural Sciences, Nagoya University, Furo-cho Chikusa, Nagoya 464-8601, Japan
| | - Yuta Hino
- Graduate School of Bioagricultural Sciences, Nagoya University, Furo-cho Chikusa, Nagoya 464-8601, Japan
| | - Mika Nomoto
- Graduate School of Science, Nagoya University, Furo-cho Chikusa, Nagoya 464-8601, Japan
- Center for Gene Research, Nagoya University, Furo-cho Chikusa, Nagoya 464-8602, Japan
| | - Yasuomi Tada
- Graduate School of Science, Nagoya University, Furo-cho Chikusa, Nagoya 464-8601, Japan
- Center for Gene Research, Nagoya University, Furo-cho Chikusa, Nagoya 464-8602, Japan
| | - Hirofumi Yoshioka
- Graduate School of Bioagricultural Sciences, Nagoya University, Furo-cho Chikusa, Nagoya 464-8601, Japan
| | - Hirokazu Takahashi
- Graduate School of Bioagricultural Sciences, Nagoya University, Furo-cho Chikusa, Nagoya 464-8601, Japan
| | - Takaki Yamauchi
- Bioscience and Biotechnology Center, Nagoya University, Furo-cho Chikusa, Nagoya 464-8601, Japan
| | - Mikio Nakazono
- Graduate School of Bioagricultural Sciences, Nagoya University, Furo-cho Chikusa, Nagoya 464-8601, Japan
- The UWA School of Agriculture and Environment, The University of Western Australia, Crawley, WA 6009, Australia
| |
Collapse
|
3
|
Wang X, Wei Y, Jiang S, Ye J, Chen Y, Xu F, Shao X. Transcriptome analysis reveals that trehalose alleviates chilling injury of peach fruit by regulating ROS signaling pathway and enhancing antioxidant capacity. Food Res Int 2024; 186:114331. [PMID: 38729716 DOI: 10.1016/j.foodres.2024.114331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 03/29/2024] [Accepted: 04/16/2024] [Indexed: 05/12/2024]
Abstract
Peach fruit is prone to chilling injury (CI) during low-temperature storage, resulting in quality deterioration and economic losses. Our previous studies have found that exogenous trehalose treatment can alleviate the CI symptoms of peach by increasing sucrose accumulation. The purpose of this study was to explore the potential molecular mechanism of trehalose treatment in alleviating CI in postharvest peach fruit. Transcriptome analysis showed that trehalose induced gene expression in pathways of plant MAPK signaling, calcium signaling, and reactive oxygen species (ROS) signaling. Furthermore, molecular docking analysis indicated that PpCDPK24 may activate the ROS signaling pathway by phosphorylating PpRBOHE. Besides, PpWRKY40 mediates the activation of PpMAPKKK2-induced ROS signaling pathway by interacting with the PpRBOHE promoter. Accordingly, trehalose treatment significantly enhanced the activities of antioxidant-related enzymes such as superoxide dismutase (SOD), catalase (CAT), ascorbate peroxidase (APX), and gluathione reductase (GR), as well as the transcription levels AsA-GSH cycle related gene, which led to the reduction of H2O2 and malondialdehyde (MDA) content in peach during cold storage. In summary, our results suggest that the potential molecular mechanism of trehalose treatment is to enhance antioxidant capacity by activating CDPK-mediated Ca2 + -ROS signaling pathway and WRKY-mediated MAPK-WRKY-ROS signaling pathway, thereby reducing the CI in peach fruit.
Collapse
Affiliation(s)
- Xingxing Wang
- Zhejiang Key Laboratory of Intelligent Food Logistic and Processing, Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, College of Food Science and Engineering, Ningbo University, Ningbo 315800, China
| | - Yingying Wei
- Zhejiang Key Laboratory of Intelligent Food Logistic and Processing, Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, College of Food Science and Engineering, Ningbo University, Ningbo 315800, China
| | - Shu Jiang
- Zhejiang Key Laboratory of Intelligent Food Logistic and Processing, Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, College of Food Science and Engineering, Ningbo University, Ningbo 315800, China
| | - Jianfen Ye
- Zhejiang Key Laboratory of Intelligent Food Logistic and Processing, Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, College of Food Science and Engineering, Ningbo University, Ningbo 315800, China
| | - Yi Chen
- Zhejiang Key Laboratory of Intelligent Food Logistic and Processing, Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, College of Food Science and Engineering, Ningbo University, Ningbo 315800, China
| | - Feng Xu
- Zhejiang Key Laboratory of Intelligent Food Logistic and Processing, Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, College of Food Science and Engineering, Ningbo University, Ningbo 315800, China
| | - Xingfeng Shao
- Zhejiang Key Laboratory of Intelligent Food Logistic and Processing, Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, College of Food Science and Engineering, Ningbo University, Ningbo 315800, China.
| |
Collapse
|
4
|
Farooq S, Lone ML, Ul Haq A, Parveen S, Altaf F, Tahir I. Signalling cascades choreographing petal cell death: implications for postharvest quality. PLANT MOLECULAR BIOLOGY 2024; 114:63. [PMID: 38805152 DOI: 10.1007/s11103-024-01449-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Accepted: 04/01/2024] [Indexed: 05/29/2024]
Abstract
Senescence is a multifaceted and dynamic developmental phase pivotal in the plant's lifecycle, exerting significant influence and involving intricate regulatory mechanisms marked by a variety of structural, biochemical and molecular alterations. Biochemical changes, including reactive oxygen species (ROS) generation, membrane deterioration, nucleic acid degradation and protein degradation, characterize flower senescence. The progression of senescence entails a meticulously orchestrated network of interconnected molecular mechanisms and signalling pathways, ensuring its synchronized and efficient execution. Within flowering plants, petal senescence emerges as a crucial aspect significantly impacting flower longevity and postharvest quality, emphasizing the pressing necessity of unravelling the underlying signalling cascades orchestrating this process. Understanding the complex signalling pathways regulating petal senescence holds paramount importance, not only shedding light on the broader phenomenon of plant senescence but also paving the way for the development of targeted strategies to enhance the postharvest longevity of cut flowers. Various signalling pathways participate in petal senescence, encompassing hormone signalling, calcium signalling, protein kinase signalling and ROS signalling. Among these, the ethylene signalling pathway is extensively studied, and the manipulation of genes associated with ethylene biosynthesis or signal transduction has demonstrated the potential to enhance flower longevity. A thorough understanding of these complex pathways is critical for effectively delaying flower senescence, thereby enhancing postharvest quality and ornamental value. Therefore, this review adopts a viewpoint that combines fundamental research into the molecular intricacies of senescence with a practical orientation towards developing strategies for improving the postharvest quality of cut flowers. The innovation of this review is to shed light on the pivotal signalling cascades underpinning flower senescence and offer insights into potential approaches for modulating these pathways to postpone petal senescence in ornamental plants.
Collapse
Affiliation(s)
- Sumira Farooq
- Plant Physiology and Biochemistry Research Laboratory, Department of Botany, University of Kashmir, Srinagar, 190006, India
| | - Mohammad Lateef Lone
- Plant Physiology and Biochemistry Research Laboratory, Department of Botany, University of Kashmir, Srinagar, 190006, India
| | - Aehsan Ul Haq
- Plant Physiology and Biochemistry Research Laboratory, Department of Botany, University of Kashmir, Srinagar, 190006, India
| | - Shazia Parveen
- Plant Physiology and Biochemistry Research Laboratory, Department of Botany, University of Kashmir, Srinagar, 190006, India
| | - Foziya Altaf
- Plant Physiology and Biochemistry Research Laboratory, Department of Botany, University of Kashmir, Srinagar, 190006, India
| | - Inayatullah Tahir
- Plant Physiology and Biochemistry Research Laboratory, Department of Botany, University of Kashmir, Srinagar, 190006, India.
| |
Collapse
|
5
|
Gao Z, Geng X, Xiang L, Shao C, Geng Q, Wu J, Yang Q, Liu S, Chen X. TaVQ22 Interacts with TaWRKY19-2B to Negatively Regulate Wheat Resistance to Sheath Blight. PHYTOPATHOLOGY 2024; 114:454-463. [PMID: 38394356 DOI: 10.1094/phyto-02-23-0058-fi] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/25/2024]
Abstract
Wheat sheath blight caused by the necrotic fungal pathogen Rhizoctonia cerealis is responsible for severe damage to bread wheat. Reactive oxygen species (ROS) are vital for stress resistance by plants and their homeostasis plays an important role in wheat resistance to sheath blight. Valine-glutamine (VQ) proteins play important roles in plant growth and development, and responses to biotic and abiotic stresses. However, the functional mechanism mediated by wheat VQ protein in response to sheath blight via ROS homeostasis regulation is unclear. In this study, we identified TaVQ22 protein containing the VQ motif and clarified the functional mechanisms involved in the defense of wheat against R. cerealis. TaVQ22 silencing reduced the accumulation of ROS and enhanced the resistance of wheat to R. cerealis. In addition, we showed that TaVQ22 regulated ROS generation by interacting with the WRKY transcription factor TaWRKY19-2B, thereby indicating that TaVQ22 and TaWRKY19-2B formed complexes in the plant cell nucleus. Yeast two-hybrid analysis showed that the VQ motif in TaVQ22 is crucial for the interaction, where it inhibits the transcriptional activation function of TaWRKY19-2B. In summary, TaVQ22 interacts with TaWRKY19-2B to regulate ROS homeostasis and negatively regulate the defense response to R. cerealis infection. This study provides novel insights into the mechanism that allows VQ protein to mediate the immune response in plants.
Collapse
Affiliation(s)
- Zhen Gao
- Shaanxi Key Laboratory of Genetic Engineering for Plant Breeding, College of Agronomy, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Xingxia Geng
- Jiangsu Key Laboratory for Biofunctional Molecules, College of Life Science and Chemistry, Jiangsu Second Normal University, 77 West Beijing Road, Nanjing 210013, China
| | - Linrun Xiang
- Shaanxi Key Laboratory of Genetic Engineering for Plant Breeding, College of Agronomy, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Chunyu Shao
- Shaanxi Key Laboratory of Genetic Engineering for Plant Breeding, College of Agronomy, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Qiang Geng
- Shaanxi Key Laboratory of Genetic Engineering for Plant Breeding, College of Agronomy, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Jun Wu
- Shaanxi Key Laboratory of Genetic Engineering for Plant Breeding, College of Agronomy, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Qunhui Yang
- Shaanxi Key Laboratory of Genetic Engineering for Plant Breeding, College of Agronomy, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Shuhui Liu
- Shaanxi Key Laboratory of Genetic Engineering for Plant Breeding, College of Agronomy, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Xinhong Chen
- Shaanxi Key Laboratory of Genetic Engineering for Plant Breeding, College of Agronomy, Northwest A&F University, Yangling 712100, Shaanxi, China
| |
Collapse
|
6
|
Goher F, Bai X, Liu S, Pu L, Xi J, Lei J, Kang Z, Jin Q, Guo J. The Calcium-Dependent Protein Kinase TaCDPK7 Positively Regulates Wheat Resistance to Puccinia striiformis f. sp. tritici. Int J Mol Sci 2024; 25:1048. [PMID: 38256123 PMCID: PMC10816280 DOI: 10.3390/ijms25021048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 01/01/2024] [Accepted: 01/11/2024] [Indexed: 01/24/2024] Open
Abstract
Ca2+ plays a crucial role as a secondary messenger in plant development and response to abiotic/biotic stressors. Calcium-dependent protein kinases (CDPKs/CPKs) are essential Ca2+ sensors that can convert Ca2+ signals into downstream phosphorylation signals. However, there is limited research on the function of CDPKs in the context of wheat-Puccinia striiformis f. sp. tritici (Pst) interaction. In this study, we aimed to address this gap by identifying putative CDPK genes from the wheat reference genome and organizing them into four phylogenetic clusters (I-IV). To investigate the expression patterns of the TaCDPK family during the wheat-Pst interaction, we analyzed time series RNA-seq data and further validated the results through qRT-PCR assays. Among the TaCDPK genes, TaCDPK7 exhibited a significant induction during the wheat-Pst interaction, suggesting that it has a potential role in wheat resistance to Pst. To gain further insights into the function of TaCDPK7, we employed virus-induced gene silencing (VIGS) to knock down its expression which resulted in impaired wheat resistance to Pst, accompanied by decreased accumulation of hydrogen peroxide (H2O2), increased fungal biomass ratio, reduced expression of defense-related genes, and enhanced pathogen hyphal growth. These findings collectively suggest that TaCDPK7 plays an important role in wheat resistance to Pst. In summary, this study expands our understanding of wheat CDPKs and provides novel insights into their involvement in the wheat-Pst interaction.
Collapse
Affiliation(s)
- Farhan Goher
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling 712100, China; (F.G.); (X.B.); (S.L.); (L.P.); (J.X.); (J.L.); (Z.K.)
- Key Laboratory of Plant Protection Resources and Pest Management of Ministry of Education, College of Plant Protection, Northwest A&F University, Yangling 712100, China
| | - Xingxuan Bai
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling 712100, China; (F.G.); (X.B.); (S.L.); (L.P.); (J.X.); (J.L.); (Z.K.)
- Key Laboratory of Plant Protection Resources and Pest Management of Ministry of Education, College of Plant Protection, Northwest A&F University, Yangling 712100, China
| | - Shuai Liu
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling 712100, China; (F.G.); (X.B.); (S.L.); (L.P.); (J.X.); (J.L.); (Z.K.)
- Key Laboratory of Plant Protection Resources and Pest Management of Ministry of Education, College of Plant Protection, Northwest A&F University, Yangling 712100, China
| | - Lefan Pu
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling 712100, China; (F.G.); (X.B.); (S.L.); (L.P.); (J.X.); (J.L.); (Z.K.)
- Key Laboratory of Plant Protection Resources and Pest Management of Ministry of Education, College of Plant Protection, Northwest A&F University, Yangling 712100, China
| | - Jiaojiao Xi
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling 712100, China; (F.G.); (X.B.); (S.L.); (L.P.); (J.X.); (J.L.); (Z.K.)
- Key Laboratory of Plant Protection Resources and Pest Management of Ministry of Education, College of Plant Protection, Northwest A&F University, Yangling 712100, China
| | - Jiaqi Lei
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling 712100, China; (F.G.); (X.B.); (S.L.); (L.P.); (J.X.); (J.L.); (Z.K.)
- Key Laboratory of Plant Protection Resources and Pest Management of Ministry of Education, College of Plant Protection, Northwest A&F University, Yangling 712100, China
| | - Zhensheng Kang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling 712100, China; (F.G.); (X.B.); (S.L.); (L.P.); (J.X.); (J.L.); (Z.K.)
- Key Laboratory of Plant Protection Resources and Pest Management of Ministry of Education, College of Plant Protection, Northwest A&F University, Yangling 712100, China
| | - Qiaojun Jin
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling 712100, China; (F.G.); (X.B.); (S.L.); (L.P.); (J.X.); (J.L.); (Z.K.)
- Key Laboratory of Plant Protection Resources and Pest Management of Ministry of Education, College of Plant Protection, Northwest A&F University, Yangling 712100, China
| | - Jun Guo
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling 712100, China; (F.G.); (X.B.); (S.L.); (L.P.); (J.X.); (J.L.); (Z.K.)
- Key Laboratory of Plant Protection Resources and Pest Management of Ministry of Education, College of Plant Protection, Northwest A&F University, Yangling 712100, China
| |
Collapse
|
7
|
Bvindi C, Howe K, Wang Y, Mullen RT, Rogan CJ, Anderson JC, Goyer A. Potato Non-Specific Lipid Transfer Protein StnsLTPI.33 Is Associated with the Production of Reactive Oxygen Species, Plant Growth, and Susceptibility to Alternaria solani. PLANTS (BASEL, SWITZERLAND) 2023; 12:3129. [PMID: 37687375 PMCID: PMC10490331 DOI: 10.3390/plants12173129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 08/21/2023] [Accepted: 08/29/2023] [Indexed: 09/10/2023]
Abstract
Plant non-specific lipid transfer proteins (nsLTPs) are small proteins capable of transferring phospholipids between membranes and binding non-specifically fatty acids in vitro. They constitute large gene families in plants, e.g., 83 in potato (Solanum tuberosum). Despite their recognition decades ago, very few have been functionally characterized. Here, we set out to better understand the function of one of the potato members, StnsLTPI.33. Using quantitative polymerase chain reaction, we show that StnsLTPI.33 is expressed throughout the potato plant, but at relatively higher levels in roots and leaves compared to petals, anthers, and the ovary. We also show that ectopically-expressed StnsLTPI.33 fused to green fluorescent protein colocalized with an apoplastic marker in Nicotiana benthamiana leaves, indicating that StnsLTPI.33 is targeted to the apoplast. Constitutive overexpression of the StnsLTPI.33 gene in potato led to increased levels of superoxide anions and reduced plant growth, particularly under salt stress conditions, and enhanced susceptibility to Alternaria solani. In addition, StnsLTPI.33-overexpressing plants had a depleted leaf pool of pipecolic acid, threonic acid, and glycine, while they accumulated putrescine. To our knowledge, this is the first report of an nsLTP that is associated with enhanced susceptibility to a pathogen in potato.
Collapse
Affiliation(s)
- Carol Bvindi
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, OR 97331, USA; (C.B.); (K.H.); (C.J.R.); (J.C.A.)
| | - Kate Howe
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, OR 97331, USA; (C.B.); (K.H.); (C.J.R.); (J.C.A.)
| | - You Wang
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, ON N1G 2W1, Canada; (Y.W.); (R.T.M.)
| | - Robert T. Mullen
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, ON N1G 2W1, Canada; (Y.W.); (R.T.M.)
| | - Conner J. Rogan
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, OR 97331, USA; (C.B.); (K.H.); (C.J.R.); (J.C.A.)
| | - Jeffrey C. Anderson
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, OR 97331, USA; (C.B.); (K.H.); (C.J.R.); (J.C.A.)
| | - Aymeric Goyer
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, OR 97331, USA; (C.B.); (K.H.); (C.J.R.); (J.C.A.)
| |
Collapse
|
8
|
Qiu H, Wang B, Huang M, Sun X, Yu L, Cheng D, He W, Zhou D, Wu X, Song B, Tang N, Chen H. A novel effector RipBT contributes to Ralstonia solanacearum virulence on potato. MOLECULAR PLANT PATHOLOGY 2023; 24:947-960. [PMID: 37154802 PMCID: PMC10346376 DOI: 10.1111/mpp.13342] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 03/21/2023] [Accepted: 04/05/2023] [Indexed: 05/10/2023]
Abstract
Ralstonia solanacearum is one of the most destructive plant-pathogenic bacteria, infecting more than 200 plant species, including potato (Solanum tuberosum) and many other solanaceous crops. R. solanacearum has numerous pathogenicity factors, and type III effectors secreted through type III secretion system (T3SS) are key factors to counteract host immunity. Here, we show that RipBT is a novel T3SS-secreted effector by using a cyaA reporter system. Transient expression of RipBT in Nicotiania benthamiana induced strong cell death in a plasma membrane-localization dependent manner. Notably, mutation of RipBT in R. solanacearum showed attenuated virulence on potato, while RipBT transgenic potato plants exhibited enhanced susceptibility to R. solanacearum. Interestingly, transcriptomic analyses suggest that RipBT may interfere with plant reactive oxygen species (ROS) metabolism during the R. solanacearum infection of potato roots. In addition, the expression of RipBT remarkably suppressed the flg22-induced pathogen-associated molecular pattern-triggered immunity responses, such as the ROS burst. Taken together, RipBT acts as a T3SS effector, promoting R. solanacearum infection on potato and presumably disturbing ROS homeostasis.
Collapse
Affiliation(s)
- Huishan Qiu
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural CropsHuazhong Agricultural UniversityWuhanChina
- Key Laboratory of Potato Biology and Biotechnology, Ministry of Agriculture and Rural AffairsHuazhong Agricultural UniversityWuhanChina
- Potato Engineering and Technology Research Center of Hubei ProvinceHuazhong Agricultural UniversityWuhanChina
- College of Horticulture and Forestry ScienceHuazhong Agricultural UniversityWuhanChina
| | - Bingsen Wang
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural CropsHuazhong Agricultural UniversityWuhanChina
- Key Laboratory of Potato Biology and Biotechnology, Ministry of Agriculture and Rural AffairsHuazhong Agricultural UniversityWuhanChina
- Potato Engineering and Technology Research Center of Hubei ProvinceHuazhong Agricultural UniversityWuhanChina
- College of Horticulture and Forestry ScienceHuazhong Agricultural UniversityWuhanChina
| | - Mengshu Huang
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural CropsHuazhong Agricultural UniversityWuhanChina
- Key Laboratory of Potato Biology and Biotechnology, Ministry of Agriculture and Rural AffairsHuazhong Agricultural UniversityWuhanChina
- Potato Engineering and Technology Research Center of Hubei ProvinceHuazhong Agricultural UniversityWuhanChina
- College of Horticulture and Forestry ScienceHuazhong Agricultural UniversityWuhanChina
| | - Xiaohu Sun
- State Key Laboratory of Crop Stress Adaptation and ImprovementHenan UniversityKaifengChina
| | - Liu Yu
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural CropsHuazhong Agricultural UniversityWuhanChina
- Key Laboratory of Potato Biology and Biotechnology, Ministry of Agriculture and Rural AffairsHuazhong Agricultural UniversityWuhanChina
- Potato Engineering and Technology Research Center of Hubei ProvinceHuazhong Agricultural UniversityWuhanChina
- College of Horticulture and Forestry ScienceHuazhong Agricultural UniversityWuhanChina
| | - Dong Cheng
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural CropsHuazhong Agricultural UniversityWuhanChina
- Key Laboratory of Potato Biology and Biotechnology, Ministry of Agriculture and Rural AffairsHuazhong Agricultural UniversityWuhanChina
- Potato Engineering and Technology Research Center of Hubei ProvinceHuazhong Agricultural UniversityWuhanChina
- College of Horticulture and Forestry ScienceHuazhong Agricultural UniversityWuhanChina
| | - Wenfeng He
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural CropsHuazhong Agricultural UniversityWuhanChina
- Key Laboratory of Potato Biology and Biotechnology, Ministry of Agriculture and Rural AffairsHuazhong Agricultural UniversityWuhanChina
- Potato Engineering and Technology Research Center of Hubei ProvinceHuazhong Agricultural UniversityWuhanChina
- College of Horticulture and Forestry ScienceHuazhong Agricultural UniversityWuhanChina
| | - Dan Zhou
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural CropsHuazhong Agricultural UniversityWuhanChina
- Key Laboratory of Potato Biology and Biotechnology, Ministry of Agriculture and Rural AffairsHuazhong Agricultural UniversityWuhanChina
- Potato Engineering and Technology Research Center of Hubei ProvinceHuazhong Agricultural UniversityWuhanChina
- College of Horticulture and Forestry ScienceHuazhong Agricultural UniversityWuhanChina
| | - Xintong Wu
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural CropsHuazhong Agricultural UniversityWuhanChina
- Key Laboratory of Potato Biology and Biotechnology, Ministry of Agriculture and Rural AffairsHuazhong Agricultural UniversityWuhanChina
- Potato Engineering and Technology Research Center of Hubei ProvinceHuazhong Agricultural UniversityWuhanChina
- College of Horticulture and Forestry ScienceHuazhong Agricultural UniversityWuhanChina
| | - Botao Song
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural CropsHuazhong Agricultural UniversityWuhanChina
- Key Laboratory of Potato Biology and Biotechnology, Ministry of Agriculture and Rural AffairsHuazhong Agricultural UniversityWuhanChina
- Potato Engineering and Technology Research Center of Hubei ProvinceHuazhong Agricultural UniversityWuhanChina
- College of Horticulture and Forestry ScienceHuazhong Agricultural UniversityWuhanChina
| | - Ning Tang
- State Key Laboratory of Crop Stress Adaptation and ImprovementHenan UniversityKaifengChina
| | - Huilan Chen
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural CropsHuazhong Agricultural UniversityWuhanChina
- Key Laboratory of Potato Biology and Biotechnology, Ministry of Agriculture and Rural AffairsHuazhong Agricultural UniversityWuhanChina
- Potato Engineering and Technology Research Center of Hubei ProvinceHuazhong Agricultural UniversityWuhanChina
- College of Horticulture and Forestry ScienceHuazhong Agricultural UniversityWuhanChina
| |
Collapse
|
9
|
Yue JY, Jiao JL, Wang WW, Jie XR, Wang HZ. Silencing of the calcium-dependent protein kinase TaCDPK27 improves wheat resistance to powdery mildew. BMC PLANT BIOLOGY 2023; 23:134. [PMID: 36882703 PMCID: PMC9993671 DOI: 10.1186/s12870-023-04140-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/21/2023] [Accepted: 02/28/2023] [Indexed: 06/18/2023]
Abstract
BACKGROUND Calcium ions (Ca2+), secondary messengers, are crucial for the signal transduction process of the interaction between plants and pathogens. Ca2+ signaling also regulates autophagy. As plant calcium signal-decoding proteins, calcium-dependent protein kinases (CDPKs) have been found to be involved in biotic and abiotic stress responses. However, information on their functions in response to powdery mildew attack in wheat crops is limited. RESULT In the present study, the expression levels of TaCDPK27, four essential autophagy-related genes (ATGs) (TaATG5, TaATG7, TaATG8, and TaATG10), and two major metacaspase genes, namely, TaMCA1 and TaMCA9, were increased by powdery mildew (Blumeria graminis f. sp. tritici, Bgt) infection in wheat seedling leaves. Silencing TaCDPK27 improves wheat seedling resistance to powdery mildew, with fewer Bgt hyphae occurring on TaCDPK27-silenced wheat seedling leaves than on normal seedlings. In wheat seedling leaves under powdery mildew infection, silencing TaCDPK27 induced excess contents of reactive oxygen species (ROS); decreased the activities of superoxide dismutase (SOD), peroxidase (POD) and catalase (CAT); and led to an increase in programmed cell death (PCD). Silencing TaCDPK27 also inhibited autophagy in wheat seedling leaves, and silencing TaATG7 also enhanced wheat seedling resistance to powdery mildew infection. TaCDPK27-mCherry and GFP-TaATG8h colocalized in wheat protoplasts. Overexpressed TaCDPK27-mCherry fusions required enhanced autophagy activity in wheat protoplast under carbon starvation. CONCLUSION These results suggested that TaCDPK27 negatively regulates wheat resistance to PW infection, and functionally links with autophagy in wheat.
Collapse
Affiliation(s)
- Jie-Yu Yue
- Tianjin Key Laboratory of Animal and Plant Resistance, Tianjin Normal University, Tianjin, 300387, People's Republic of China.
| | - Jin-Lan Jiao
- Tianjin Key Laboratory of Animal and Plant Resistance, Tianjin Normal University, Tianjin, 300387, People's Republic of China
| | - Wen-Wen Wang
- Tianjin Key Laboratory of Animal and Plant Resistance, Tianjin Normal University, Tianjin, 300387, People's Republic of China
| | - Xin-Rui Jie
- Tianjin Key Laboratory of Animal and Plant Resistance, Tianjin Normal University, Tianjin, 300387, People's Republic of China
| | - Hua-Zhong Wang
- Tianjin Key Laboratory of Animal and Plant Resistance, Tianjin Normal University, Tianjin, 300387, People's Republic of China.
| |
Collapse
|
10
|
Fu KK, Liang J, Wan W, Jing X, Feng H, Cai Y, Zhou S. Overexpression of SQUALENE SYNTHASE Reduces Nicotiana benthamiana Resistance against Phytophthora infestans. Metabolites 2023; 13:metabo13020261. [PMID: 36837880 PMCID: PMC9960828 DOI: 10.3390/metabo13020261] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 02/07/2023] [Accepted: 02/07/2023] [Indexed: 02/15/2023] Open
Abstract
Plant triterpenoids play a critical role in plant resistance against Phytophthora infestans de Bary, the causal pathogen of potato and tomato late blight. However, different triterpenoids could have contrasting functions on plant resistance against P. infestans. In this study, we targeted the key biosynthetic gene of all plant triterpenoids, SQUALENE SYNTHASE (SQS), to examine the function of this gene in plant-P. infestans interactions. A post-inoculation, time-course gene expression analysis revealed that SQS expression was induced in Nicotiana benthamiana but was transiently suppressed in Solanum lycopersicum. Consistent with the host-specific changes in SQS expression, concentrations of major triterpenoid compounds were only induced in S. lycopersicum. A stable overexpression of SQS in N. benthamiana reduced plant resistance against P. infestans and induced the hyperaccumulation of stigmasterol. A comparative transcriptomics analysis of the transgenic lines showed that diverse plant physiological processes were influenced by SQS overexpression, suggesting that phytosterol content regulation may not be the sole mechanism through which SQS promotes plant susceptibility towards P. infestans. This study provides experimental evidence for the host-specific transcriptional regulation and function of SQS in plant interactions with P. infestans, offering a novel perspective in examining the quantitative disease resistance against late blight.
Collapse
Affiliation(s)
- Ke-Ke Fu
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, School of Agricultural Sciences, Zhengzhou University, Zhengzhou 450001, China
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China
| | - Junhao Liang
- Key Laboratory of Northwest Loess Plateau Crop Pest Management of Ministry of Agriculture and Rural Affairs, Northwest A&F University, Yangling 712100, China
| | - Wei Wan
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Beibei, Chongqing 400715, China
| | - Xiangfeng Jing
- Key Laboratory of Northwest Loess Plateau Crop Pest Management of Ministry of Agriculture and Rural Affairs, Northwest A&F University, Yangling 712100, China
| | - Hongjie Feng
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, School of Agricultural Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Yanling Cai
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China
- Correspondence: (Y.C.); (S.Z.)
| | - Shaoqun Zhou
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China
- Correspondence: (Y.C.); (S.Z.)
| |
Collapse
|
11
|
Calcium decoders and their targets: The holy alliance that regulate cellular responses in stress signaling. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2023; 134:371-439. [PMID: 36858741 DOI: 10.1016/bs.apcsb.2022.11.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Calcium (Ca2+) signaling is versatile communication network in the cell. Stimuli perceived by cells are transposed through Ca2+-signature, and are decoded by plethora of Ca2+ sensors present in the cell. Calmodulin, calmodulin-like proteins, Ca2+-dependent protein kinases and calcineurin B-like proteins are major classes of proteins that decode the Ca2+ signature and serve in the propagation of signals to different parts of cells by targeting downstream proteins. These decoders and their targets work together to elicit responses against diverse stress stimuli. Over a period of time, significant attempts have been made to characterize as well as summarize elements of this signaling machinery. We begin with a structural overview and amalgamate the newly identified Ca2+ sensor protein in plants. Their ability to bind Ca2+, undergo conformational changes, and how it facilitates binding to a wide variety of targets is further embedded. Subsequently, we summarize the recent progress made on the functional characterization of Ca2+ sensing machinery and in particular their target proteins in stress signaling. We have focused on the physiological role of Ca2+, the Ca2+ sensing machinery, and the mode of regulation on their target proteins during plant stress adaptation. Additionally, we also discuss the role of these decoders and their mode of regulation on the target proteins during abiotic, hormone signaling and biotic stress responses in plants. Finally, here, we have enumerated the limitations and challenges in the Ca2+ signaling. This article will greatly enable in understanding the current picture of plant response and adaptation during diverse stimuli through the lens of Ca2+ signaling.
Collapse
|
12
|
Imran M, Khan AL, Mun BG, Bilal S, Shaffique S, Kwon EH, Kang SM, Yun BW, Lee IJ. Melatonin and nitric oxide: Dual players inhibiting hazardous metal toxicity in soybean plants via molecular and antioxidant signaling cascades. CHEMOSPHERE 2022; 308:136575. [PMID: 36155020 DOI: 10.1016/j.chemosphere.2022.136575] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 09/18/2022] [Accepted: 09/19/2022] [Indexed: 06/16/2023]
Abstract
Melatonin (MT), a ubiquitous signaling molecule, is known to improve plant growth. Its regulatory function alongside nitric oxide (NO) is known to induce heavy metal (Cd and Pb) stress tolerance, although the underlying mechanisms remain unknown. Here, we observed that the combined application of MT and NO remarkably enhanced plant biomass by reducing oxidative stress. Both MT and NO minimized metal toxicity by significantly lowering the levels of endogenous abscisic acid and jasmonic acid via downregulating NCED3 and upregulating catabolic genes (CYP707A1 and CYP707A2). MT/NO-induced mitigation of Cd and Pb stress was associated with increased endo-melatonin and variable endo-S-nitrosothiol levels caused by enhanced expression of gmNR and gmGSNOR mRNAs. Remarkably, the combined application of MT/NO reduced soil Cd and Pb mobilization by increasing the uptake of Ca2+ and K+ and increasing the exudation of organic acids into the rhizosphere. These results correlated with the upregulation of MTF-1 and WARKY27 during metal translocation. MT/NO regulates the MAPK and CDPK cascades to promote plant cell survival and Ca2+ signaling, thereby imparting resistance to heavy metal toxicity. In conclusion, MT/NO modulates the stress-resistance machinery to mitigate Cd and Pb toxicity by regulating the activation of antioxidant and molecular transcription factors.
Collapse
Affiliation(s)
- Muhammad Imran
- Department of Applied Biosciences, Kyungpook National University, Daegu, 41566, Republic of Korea.
| | - Abdul Latif Khan
- Department of Engineering Technology, College of Technology, University of Houston, Sugar Land, TX 77479, USA
| | - Bong-Gyu Mun
- Department of Applied Biosciences, Kyungpook National University, Daegu, 41566, Republic of Korea
| | - Saqib Bilal
- Natural & Medical Sciences Research Center, University of Nizwa, Nizwa 616, Oman
| | - Shifa Shaffique
- Department of Applied Biosciences, Kyungpook National University, Daegu, 41566, Republic of Korea
| | - Eun-Hae Kwon
- Department of Applied Biosciences, Kyungpook National University, Daegu, 41566, Republic of Korea
| | - Sang-Mo Kang
- Department of Applied Biosciences, Kyungpook National University, Daegu, 41566, Republic of Korea
| | - Byung-Wook Yun
- Department of Applied Biosciences, Kyungpook National University, Daegu, 41566, Republic of Korea.
| | - In-Jung Lee
- Department of Applied Biosciences, Kyungpook National University, Daegu, 41566, Republic of Korea.
| |
Collapse
|
13
|
Zhao L, Xie B, Hou Y, Zhao Y, Zheng Y, Jin P. Genome-wide identification of the CDPK gene family reveals the CDPK-RBOH pathway potential involved in improving chilling tolerance in peach fruit. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2022; 191:10-19. [PMID: 36174282 DOI: 10.1016/j.plaphy.2022.09.015] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Revised: 09/14/2022] [Accepted: 09/16/2022] [Indexed: 06/16/2023]
Abstract
Calcium-dependent protein kinase (CDPK), as an essential calcium receptor, plays a major role in the perception and decoding of intracellular calcium signaling in plant development and stress responses. Here, the CDPK gene family was analyzed at the genome-wide level in peach. This study identified 17 PpCDPK gene members from the peach genome, and systematically investigated phylogenetic relationships, conserved motifs, exon-intron structures, chromosome distribution, and cis-acting elements of each PpCDPK gene using bioinformatics. Furthermore, the expression levels of most PpCDPK genes were significantly changed under the CaCl2, EBR, GB, cold shock, hot water treatments, and various temperatures in the cold storage of peach fruits. RNA-seq data showed that PpCDPK2, PpCDPK7, PpCDPK10, and PpCDPK13 were related to postharvest chilling stress in peach. The interaction network of PpCDPK7 protein showed that the interaction between PpCDPK7 and PpRBOH may be the intersectional point of Ca2+ and ROS signal transmission during cold storage of peach fruits. These systematic analyses are helpful to further characterize the regulation of PpCDPKs and CDPK-RBOH mediated signal cascades in postharvest chilling injury in peach fruit.
Collapse
Affiliation(s)
- Liangyi Zhao
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing, 210095, PR China.
| | - Bing Xie
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing, 210095, PR China.
| | - Yuanyuan Hou
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing, 210095, PR China.
| | - Yaqin Zhao
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing, 210095, PR China.
| | - Yonghua Zheng
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing, 210095, PR China.
| | - Peng Jin
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing, 210095, PR China.
| |
Collapse
|
14
|
Dekomah SD, Bi Z, Dormatey R, Wang Y, Haider FU, Sun C, Yao P, Bai J. The role of CDPKs in plant development, nutrient and stress signaling. Front Genet 2022; 13:996203. [PMID: 36246614 PMCID: PMC9561101 DOI: 10.3389/fgene.2022.996203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2022] [Accepted: 09/14/2022] [Indexed: 11/13/2022] Open
Abstract
The second messenger calcium (Ca2+) is a ubiquitous intracellular signaling molecule found in eukaryotic cells. In plants, the multigene family of calcium-dependent protein kinases (CDPKs) plays an important role in regulating plant growth, development, and stress tolerance. CDPKs sense changes in intracellular Ca2+ concentration and translate them into phosphorylation events that initiate downstream signaling processes. Several functional and expression studies on different CDPKs and their encoding genes have confirmed their multifunctional role in stress. Here, we provide an overview of the signal transduction mechanisms and functional roles of CDPKs. This review includes details on the regulation of secondary metabolites, nutrient uptake, regulation of flower development, hormonal regulation, and biotic and abiotic stress responses.
Collapse
Affiliation(s)
- Simon Dontoro Dekomah
- Gansu Provincial Key Laboratory of Aridland Crop Science, Lanzhou, China
- College of Agronomy, Gansu Agricultural University, Lanzhou, China
| | - Zhenzhen Bi
- Gansu Provincial Key Laboratory of Aridland Crop Science, Lanzhou, China
- College of Agronomy, Gansu Agricultural University, Lanzhou, China
| | - Richard Dormatey
- Gansu Provincial Key Laboratory of Aridland Crop Science, Lanzhou, China
- College of Agronomy, Gansu Agricultural University, Lanzhou, China
| | - Yihao Wang
- Gansu Provincial Key Laboratory of Aridland Crop Science, Lanzhou, China
- College of Agronomy, Gansu Agricultural University, Lanzhou, China
| | - Fasih Ullah Haider
- College of Agronomy, Gansu Agricultural University, Lanzhou, China
- College of Resources and Environmental Sciences, Gansu Agricultural University, Lanzhou, China
| | - Chao Sun
- Gansu Provincial Key Laboratory of Aridland Crop Science, Lanzhou, China
- College of Agronomy, Gansu Agricultural University, Lanzhou, China
| | - Panfeng Yao
- Gansu Provincial Key Laboratory of Aridland Crop Science, Lanzhou, China
| | - Jiangping Bai
- Gansu Provincial Key Laboratory of Aridland Crop Science, Lanzhou, China
- College of Agronomy, Gansu Agricultural University, Lanzhou, China
- *Correspondence: Jiangping Bai,
| |
Collapse
|
15
|
Dey S, Sarkar A, Chowdhury S, Singh R, Mukherjee A, Ghosh Z, Kundu P. Heightened miR6024-NLR interactions facilitate necrotrophic pathogenesis in tomato. PLANT MOLECULAR BIOLOGY 2022; 109:717-739. [PMID: 35499677 DOI: 10.1007/s11103-022-01270-z] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2021] [Accepted: 03/27/2022] [Indexed: 06/14/2023]
Abstract
miR6024 acts as a negative regulator of R genes, hence of Tomato plant immunity, and facilitates disease by the necrotrophic pathogen A. solani. Plant resistance genes or Nucleotide-binding leucine-rich repeat (NLR) genes, integral components of plant disease stress-signaling are targeted by variable groups of miRNAs. However, the significance of miRNA-mediated regulation of NLRs during a pathogen stress response, specifically for necrotrophic fungus, is poorly understood. A thorough examination of Tomato NLRs and miRNAs could map substantial interactions of which half the annotated NLRs were targets of Solanaceae-specific and conserved miRNAs, at the NB subdomain. The Solanaceae-specific miR6024 and its NLR targets analysed in different phytopathogenic stresses revealed differential and mutually antagonistic regulation. Interestingly, miR6024-targeted cleavage of a target NLR also triggered the generation of secondary phased siRNAs which could potentially amplify the defense signal. RNA-seq analysis of leaf tissues from miR6024 overexpressing Tomato plants evidenced a perturbation in the defense transcriptome with the transgenics showing unwarranted immune response-related genes' expression with or without infection with necrotrophic Alternaria solani, though no adverse effect could be observed in the growth and development of the transgenic plants. Transgenic plants exhibited constitutive downregulation of the target NLRs, aggravated disease phenotype with an enhanced lesion, greater ROS generation and hypersusceptibility to A. solani infection, thus establishing that miR6024 negatively impacts plant immune response during necrotrophic pathogenesis. Limited knowledge about the outcome of NLR-miRNA interaction during necrotrophic pathogenesis is a hindrance to the deployment of miRNAs in crop improvement programs. With the elucidation of the necrotrophic disease-synergistic role played by miR6024, it becomes a potent candidate for biotechnological manipulation for the rapid development of pathogen-tolerant solanaceous plants.
Collapse
Affiliation(s)
- Sayani Dey
- Division of Plant Biology, Unified Academic Campus, Bose Institute, EN 80, Bidhan Nagar, Kolkata, West Bengal, 700091, India
| | - Arijita Sarkar
- Division of Bioinformatics, Unified Academic Campus, Bose Institute, EN 80, Bidhan Nagar, Kolkata, West Bengal, 700091, India
| | - Shreya Chowdhury
- Division of Plant Biology, Unified Academic Campus, Bose Institute, EN 80, Bidhan Nagar, Kolkata, West Bengal, 700091, India
| | - Raghuvir Singh
- Division of Plant Biology, Unified Academic Campus, Bose Institute, EN 80, Bidhan Nagar, Kolkata, West Bengal, 700091, India
| | - Ananya Mukherjee
- Division of Plant Biology, Unified Academic Campus, Bose Institute, EN 80, Bidhan Nagar, Kolkata, West Bengal, 700091, India
| | - Zhumur Ghosh
- Division of Bioinformatics, Unified Academic Campus, Bose Institute, EN 80, Bidhan Nagar, Kolkata, West Bengal, 700091, India
| | - Pallob Kundu
- Division of Plant Biology, Unified Academic Campus, Bose Institute, EN 80, Bidhan Nagar, Kolkata, West Bengal, 700091, India.
| |
Collapse
|
16
|
Receptor for Activated C Kinase1B (OsRACK1B) Impairs Fertility in Rice through NADPH-Dependent H2O2 Signaling Pathway. Int J Mol Sci 2022; 23:ijms23158455. [PMID: 35955593 PMCID: PMC9368841 DOI: 10.3390/ijms23158455] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2022] [Revised: 07/25/2022] [Accepted: 07/25/2022] [Indexed: 11/16/2022] Open
Abstract
The scaffold protein receptor for Activated C Kinase1 (RACK1) regulates multiple aspects of plants, including seed germination, growth, environmental stress responses, and flowering. Recent studies have revealed that RACK1 is associated with NADPH-dependent reactive oxygen species (ROS) signaling in plants. ROS, as a double-edged sword, can modulate several developmental pathways in plants. Thus, the resulting physiological consequences of perturbing the RACK1 expression-induced ROS balance remain to be explored. Herein, we combined molecular, pharmacological, and ultrastructure analysis approaches to investigate the hypothesized connection using T-DNA-mediated activation-tagged RACK1B overexpressed (OX) transgenic rice plants. In this study, we find that OsRACK1B-OX plants display reduced pollen viability, defective anther dehiscence, and abnormal spikelet morphology, leading to partial spikelet sterility. Microscopic observation of the mature pollen grains from the OX plants revealed abnormalities in the exine and intine structures and decreased starch granules in the pollen, resulting in a reduced number of grains per locule from the OX rice plants as compared to that of the wild-type (WT). Histochemical staining revealed a global increase in hydrogen peroxide (H2O2) in the leaves and roots of the transgenic lines overexpressing OsRACK1B compared to that of the WT. However, the elevated H2O2 in tissues from the OX plants can be reversed by pre-treatment with diphenylidonium (DPI), an NADPH oxidase inhibitor, indicating that the source of H2O2 could be, in part, NADPH oxidase. Expression analysis showed a differential expression of the NADPH/respiratory burst oxidase homolog D (RbohD) and antioxidant enzyme-related genes, suggesting a homeostatic mechanism of H2O2 production and antioxidant enzyme activity. BiFC analysis demonstrated that OsRACK1B interacts with the N-terminal region of RbohD in vivo. Taken together, these data indicate that elevated OsRACK1B accumulates a threshold level of ROS, in this case H2O2, which negatively regulates pollen development and fertility. In conclusion, we hypothesized that an optimal expression of RACK1 is critical for fertility in rice plants.
Collapse
|
17
|
Zhang B, Song Y, Zhang X, Wang Q, Li X, He C, Luo H. Identification and expression assay of calcium-dependent protein kinase family genes in Hevea brasiliensis and determination of HbCDPK5 functions in disease resistance. TREE PHYSIOLOGY 2022; 42:1070-1083. [PMID: 35022787 DOI: 10.1093/treephys/tpab156] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Accepted: 11/17/2021] [Indexed: 06/14/2023]
Abstract
Calcium (Ca2+) signaling is one of the earliest factors to coordinate plant adaptive responses. As direct sensors and activators of Ca2+ signals, calcium-dependent protein kinases (CDPKs) were reported to be widely involved in regulating different biotic and abiotic stress stimuli. In this study, 32 Hevea brasiliensis CDPK (HbCDPK) genes were predicted and classified into four subgroups. Among them, the full-length coding sequences of 28 HbCDPK genes were confirmed by RT-PCR and verified by sequencing. Putative cis-elements assay in the promoters of HbCDPKs showed that most of the HbCDPK genes contained gibberellic acid-responsive element (GARE), abscisic acid-responsive element (ABRE), salicylic acid-responsive element (SARE), defense and stress responsive element (TC-rich repeats) and low-temperature response element (LTR), which could be activated by different biotic and abiotic stresses. Real-time PCR analysis indicated that 28 HbCDPK genes respond to infection of pathogenic fungi and a variety of phytohormones. Subcellular localization was observed with most HbCDPKs located in cell membrane, cytoplasm or organelles. Some HbCDPKs were confirmed to cause reactive oxygen species (ROS) production and accumulation in rubber tree mesophyll protoplast directly. HbCDPK5 was strongly induced by the inoculation with Colletotrichum gloeosporioides and was chosen for further analysis. HbCDPK5 localized to the cell membrane and cytoplasm, and obviously regulated the accumulation of ROS in rubber tree mesophyll protoplast. Overexpression of HbCDPK5 in Arabidopsis enhanced the resistance to Botrytis cinerea. These results indicate that rubber tree CDPK genes play important roles in plant disease resistance.
Collapse
Affiliation(s)
- Bei Zhang
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresources, College of Tropical Corps, Hainan University, 58# Renmin Road, Haikou 570228, China
- Natural Rubber Cooperative Innovation Center of Hainan Province & Ministry of Education of PRC, Hainan University, 58# Renmin Road, Haikou 570228, China
| | - Yufeng Song
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresources, College of Tropical Corps, Hainan University, 58# Renmin Road, Haikou 570228, China
- Natural Rubber Cooperative Innovation Center of Hainan Province & Ministry of Education of PRC, Hainan University, 58# Renmin Road, Haikou 570228, China
| | - Xiaodong Zhang
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresources, College of Tropical Corps, Hainan University, 58# Renmin Road, Haikou 570228, China
| | - Qiannan Wang
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresources, College of Tropical Corps, Hainan University, 58# Renmin Road, Haikou 570228, China
- Natural Rubber Cooperative Innovation Center of Hainan Province & Ministry of Education of PRC, Hainan University, 58# Renmin Road, Haikou 570228, China
| | - Xiuqiong Li
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresources, College of Tropical Corps, Hainan University, 58# Renmin Road, Haikou 570228, China
| | - Chaozu He
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresources, College of Tropical Corps, Hainan University, 58# Renmin Road, Haikou 570228, China
| | - Hongli Luo
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresources, College of Tropical Corps, Hainan University, 58# Renmin Road, Haikou 570228, China
- Natural Rubber Cooperative Innovation Center of Hainan Province & Ministry of Education of PRC, Hainan University, 58# Renmin Road, Haikou 570228, China
| |
Collapse
|
18
|
Genome-wide screening and identification of nuclear Factor-Y family genes and exploration their function on regulating abiotic and biotic stress in potato (Solanum tuberosum L.). Gene 2021; 812:146089. [PMID: 34896520 DOI: 10.1016/j.gene.2021.146089] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Revised: 10/21/2021] [Accepted: 11/16/2021] [Indexed: 12/30/2022]
Abstract
The Nuclear Factor-Y (NF-Y) transcription factor (TF), which includes three distinct subunits (NF-YA, NF-YB and NF-YC), is known to manipulate various aspects of plant growth, development, and stress responses. Although the NF-Y gene family was well studied in many species, little is known about their functions in potato. In this study, a total of 37 potato NF-Y genes were identified, including 11 StNF-YAs, 20 StNF-YBs, and 6 StNF-YCs. The genetic features of these StNF-Y genes were investigated by comparing their evolutionary relationship, intron/exon organization and motif distribution pattern. Multiple alignments showed that all StNF-Y proteins possessed clearly conserved core regions that were flanked by non-conserved sequences. Gene duplication analysis indicated that nine StNF-Y genes were subjected to tandem duplication and eight StNF-Ys arose from segmental duplication events. Synteny analysis suggested that most StNF-Y genes (33 of 37) were orthologous to potato's close relative tomato (Solanum lycopersicum L.). Tissue-specific expression of the StNF-Y genes suggested their potential roles in controlling potato growth and development. The role of StNF-Ys in regulating potato responses to abiotic stress (ABA, drought and salinity) was also confirmed: twelve StNF-Y genes were up-regulated and another two were down-regulated under different abiotic treatments. In addition, genes responded differently to pathogen challenges, suggesting that StNF-Y genes may play distinct roles under certain biotic stress. In summary, insights into the evolution of NF-Y family members and their functions in potato development and stress responses are provided.
Collapse
|
19
|
Hu Y, Cheng Y, Yu X, Liu J, Yang L, Gao Y, Ke G, Zhou M, Mu B, Xiao S, Wang Y, Wen YQ. Overexpression of two CDPKs from wild Chinese grapevine enhances powdery mildew resistance in Vitis vinifera and Arabidopsis. THE NEW PHYTOLOGIST 2021; 230:2029-2046. [PMID: 33595857 DOI: 10.1111/nph.17285] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Accepted: 02/05/2021] [Indexed: 06/12/2023]
Abstract
Calcium-dependent protein kinases (CDPKs) play vital roles in metabolic regulations and stimuli responses in plants. However, little is known about their function in grapevine. Here, we report that VpCDPK9 and VpCDPK13, two paralogous CDPKs from Vitis pseudoreticulata accession Baihe-35-1, appear to positively regulate powdery mildew resistance. The transcription of them in leaves of 'Baihe-35-1' were differentially induced upon powdery mildew infection. Overexpression of VpCDPK9-YFP or VpCDPK13-YFP in the V. vinifera susceptible cultivar Thompson Seedless resulted in enhanced resistance to powdery mildew (YFP, yellow fluorescent protein). This might be due to elevation of SA and ethylene production, and excess accumulation of H2 O2 and callose in penetrated epidermal cells and/or the mesophyll cells underneath. Ectopic expression of VpCDPK9-YFP in Arabidopsis resulted in varied degrees of reduced stature, pre-mature senescence and enhanced powdery mildew resistance. However, these phenotypes were abolished in VpCDPK9-YFP transgenic lines impaired in SA signaling (pad4sid2) or ethylene signaling (ein2). Moreover, both of VpCDPK9 and VpCDPK13 were found to interact with and potentially phosphorylate VpMAPK3, VpMAPK6, VpACS1 and VpACS2 in vivo (ACS, 1-aminocyclopropane-1-carboxylic acid (ACC) synthase; MAPK, mitogen-activated protein kinase). These results suggest that VpCDPK9 and VpCDPK13 contribute to powdery mildew resistance via positively regulating SA and ethylene signaling in grapevine.
Collapse
Affiliation(s)
- Yang Hu
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Horticulture, Northwest A&F University, Yangling, Shaanxi, 712100, China
- Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture and Rural Affairs, Yangling, Shaanxi, 712100, China
| | - Yuan Cheng
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Horticulture, Northwest A&F University, Yangling, Shaanxi, 712100, China
- Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture and Rural Affairs, Yangling, Shaanxi, 712100, China
| | - Xuena Yu
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Horticulture, Northwest A&F University, Yangling, Shaanxi, 712100, China
- Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture and Rural Affairs, Yangling, Shaanxi, 712100, China
| | - Jie Liu
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Horticulture, Northwest A&F University, Yangling, Shaanxi, 712100, China
- Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture and Rural Affairs, Yangling, Shaanxi, 712100, China
| | - Lushan Yang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Horticulture, Northwest A&F University, Yangling, Shaanxi, 712100, China
- Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture and Rural Affairs, Yangling, Shaanxi, 712100, China
| | - Yurong Gao
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Horticulture, Northwest A&F University, Yangling, Shaanxi, 712100, China
- Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture and Rural Affairs, Yangling, Shaanxi, 712100, China
| | - Guihua Ke
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Horticulture, Northwest A&F University, Yangling, Shaanxi, 712100, China
- Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture and Rural Affairs, Yangling, Shaanxi, 712100, China
| | - Min Zhou
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Horticulture, Northwest A&F University, Yangling, Shaanxi, 712100, China
- Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture and Rural Affairs, Yangling, Shaanxi, 712100, China
| | - Bo Mu
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Horticulture, Northwest A&F University, Yangling, Shaanxi, 712100, China
- Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture and Rural Affairs, Yangling, Shaanxi, 712100, China
| | - Shunyuan Xiao
- Institute for Bioscience and Biotechnology Research & Department of Plant Sciences and Landscape Architecture, University of Maryland College Park, Rockville, MD, 20850, USA
| | - Yuejin Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Horticulture, Northwest A&F University, Yangling, Shaanxi, 712100, China
- Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture and Rural Affairs, Yangling, Shaanxi, 712100, China
| | - Ying-Qiang Wen
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Horticulture, Northwest A&F University, Yangling, Shaanxi, 712100, China
- Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture and Rural Affairs, Yangling, Shaanxi, 712100, China
| |
Collapse
|
20
|
Li Y, Wang Y, Wu X, Wang J, Wu X, Wang B, Lu Z, Li G. Novel Genomic Regions of Fusarium Wilt Resistance in Bottle Gourd [ Lagenaria siceraria (Mol.) Standl.] Discovered in Genome-Wide Association Study. FRONTIERS IN PLANT SCIENCE 2021; 12:650157. [PMID: 34025697 PMCID: PMC8137845 DOI: 10.3389/fpls.2021.650157] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Accepted: 03/30/2021] [Indexed: 06/12/2023]
Abstract
Fusarium wilt (FW) is a typical soil-borne disease that seriously affects the yield and fruit quality of bottle gourd. Thus, to improve resistance to FW in bottle gourd, the genetic mechanism underlying FW resistance needs to be explored. In this study, we performed a genome-wide association study (GWAS) based on 5,330 single-nucleotide polymorphisms (SNPs) and 89 bottle gourd accessions. The GWAS results revealed a total of 10 SNPs (P ≤ 0.01, -log10 P ≥ 2.0) significantly associated with FW resistance that were detected in at least two environments (2019DI, 2020DI, and the average across the 2 years); these SNPs were located on chromosomes 1, 2, 3, 4, 8, and 9. Linkage disequilibrium (LD) block structure analysis predicted three potential candidate genes for FW resistance. Genes HG_GLEAN_10001030 and HG_GLEAN_10001042 were within the range of the mean LD block of the marker BGReSe_14202; gene HG_GLEAN_10011803 was 280 kb upstream of the marker BGReSe_00818. Real-time quantitative PCR (qRT-PCR) analysis showed that HG_GLEAN_10011803 was significantly up-regulated in FW-infected plants of YD-4, Yin-10, and Hanbi; HG_GLEAN_10001030 and HG_GLEAN_10001042 were specifically up-regulated in FW-infected plants of YD-4. Therefore, gene HG_GLEAN_10011803 is likely the major effect candidate gene for resistance against FW in bottle gourd. This work provides scientific evidence for the exploration of candidate gene and development of functional markers in FW-resistant bottle gourd breeding programs.
Collapse
|
21
|
Ren H, Zhao X, Li W, Hussain J, Qi G, Liu S. Calcium Signaling in Plant Programmed Cell Death. Cells 2021; 10:cells10051089. [PMID: 34063263 PMCID: PMC8147489 DOI: 10.3390/cells10051089] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2021] [Revised: 04/24/2021] [Accepted: 04/28/2021] [Indexed: 12/12/2022] Open
Abstract
Programmed cell death (PCD) is a process intended for the maintenance of cellular homeostasis by eliminating old, damaged, or unwanted cells. In plants, PCD takes place during developmental processes and in response to biotic and abiotic stresses. In contrast to the field of animal studies, PCD is not well understood in plants. Calcium (Ca2+) is a universal cell signaling entity and regulates numerous physiological activities across all the kingdoms of life. The cytosolic increase in Ca2+ is a prerequisite for the induction of PCD in plants. Although over the past years, we have witnessed significant progress in understanding the role of Ca2+ in the regulation of PCD, it is still unclear how the upstream stress perception leads to the Ca2+ elevation and how the signal is further propagated to result in the onset of PCD. In this review article, we discuss recent advancements in the field, and compare the role of Ca2+ signaling in PCD in biotic and abiotic stresses. Moreover, we discuss the upstream and downstream components of Ca2+ signaling and its crosstalk with other signaling pathways in PCD. The review is expected to provide new insights into the role of Ca2+ signaling in PCD and to identify gaps for future research efforts.
Collapse
Affiliation(s)
- Huimin Ren
- State Key Laboratory of Subtropical Silviculture, School of Forestry and Biotechnology, Zhejiang A & F University, Hangzhou 311300, China; (H.R.); (X.Z.); (W.L.)
| | - Xiaohong Zhao
- State Key Laboratory of Subtropical Silviculture, School of Forestry and Biotechnology, Zhejiang A & F University, Hangzhou 311300, China; (H.R.); (X.Z.); (W.L.)
| | - Wenjie Li
- State Key Laboratory of Subtropical Silviculture, School of Forestry and Biotechnology, Zhejiang A & F University, Hangzhou 311300, China; (H.R.); (X.Z.); (W.L.)
| | - Jamshaid Hussain
- Department of Biotechnology, COMSATS University Islamabad, Abbottabad Campus, University Road, Abbottabad 22060, Pakistan;
| | - Guoning Qi
- State Key Laboratory of Subtropical Silviculture, School of Forestry and Biotechnology, Zhejiang A & F University, Hangzhou 311300, China; (H.R.); (X.Z.); (W.L.)
- Correspondence: (G.Q.); (S.L.)
| | - Shenkui Liu
- State Key Laboratory of Subtropical Silviculture, School of Forestry and Biotechnology, Zhejiang A & F University, Hangzhou 311300, China; (H.R.); (X.Z.); (W.L.)
- Correspondence: (G.Q.); (S.L.)
| |
Collapse
|
22
|
Najdabbasi N, Mirmajlessi SM, Dewitte K, Ameye M, Mänd M, Audenaert K, Landschoot S, Haesaert G. Green Leaf Volatile Confers Management of Late Blight Disease: A Green Vaccination in Potato. J Fungi (Basel) 2021; 7:jof7040312. [PMID: 33919547 PMCID: PMC8072593 DOI: 10.3390/jof7040312] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 04/15/2021] [Accepted: 04/16/2021] [Indexed: 11/16/2022] Open
Abstract
Yield losses of crops due to plant pathogens are a major threat in all agricultural systems. In view of environmental issues and legislative limitations for chemical crop protection products, the need to design new environmentally friendly disease management strategies has gained interest. Despite the unique capability of green leaf volatiles (GLVs) to suppress a broad spectrum of plant pathogens, their capacity to control the potato late-blight-causing agent Phytophthora infestans has not been well studied. This study addresses the potential role of the GLV Z-3-hexenyl acetate (Z-3-HAC) in decreasing the severity of late blight and the underlying gene-based evidence leading to this effect. Nine-week-old potato plants (Solanum tuberosum L.) were exposed to Z-3-HAC before they were inoculated with P. infestans genotypes at different time points. These pre-exposed potato plants exhibited slower disease development after infection with the highly pathogenic genotype of P. infestans (EU-13-A2) over time. Qualitative assessment showed that the exposed, infected plants possessed significantly lower sporulation intensity and disease severity compared to the control plants. Hypersensitive response (HR)-like symptoms were observed on the treated leaves when inoculated with different pathogen genotypes. No HR-like lesions were detected on the untreated leaves after infection. It was shown that the transcript levels of several defense-related genes, especially those that are involved in reactive oxygen species (ROS) production pathways were significantly expressed in plants at 48 and 72 h postexposure to the Z-3-HAC. The current work provides evidence on the role of Z-3-HAC in the increased protection of potato plants against late blight through plant immunity and offers new opportunities for the sustainable control of potato diseases.
Collapse
Affiliation(s)
- Neda Najdabbasi
- Department of Plants and Crops, Valentin Vaerwyckweg 1, Faculty of Bioscience Engineering, Ghent University, 9000 Ghent, Belgium; (S.M.M.); (K.D.); (M.A.); (K.A.); (S.L.); (G.H.)
- Institute of Agricultural and Environmental Sciences, Department of Plant Health, Estonian University of Life Sciences, Kreutzwaldi 5, 51014 Tartu, Estonia;
- Correspondence:
| | - Seyed Mahyar Mirmajlessi
- Department of Plants and Crops, Valentin Vaerwyckweg 1, Faculty of Bioscience Engineering, Ghent University, 9000 Ghent, Belgium; (S.M.M.); (K.D.); (M.A.); (K.A.); (S.L.); (G.H.)
| | - Kevin Dewitte
- Department of Plants and Crops, Valentin Vaerwyckweg 1, Faculty of Bioscience Engineering, Ghent University, 9000 Ghent, Belgium; (S.M.M.); (K.D.); (M.A.); (K.A.); (S.L.); (G.H.)
| | - Maarten Ameye
- Department of Plants and Crops, Valentin Vaerwyckweg 1, Faculty of Bioscience Engineering, Ghent University, 9000 Ghent, Belgium; (S.M.M.); (K.D.); (M.A.); (K.A.); (S.L.); (G.H.)
| | - Marika Mänd
- Institute of Agricultural and Environmental Sciences, Department of Plant Health, Estonian University of Life Sciences, Kreutzwaldi 5, 51014 Tartu, Estonia;
| | - Kris Audenaert
- Department of Plants and Crops, Valentin Vaerwyckweg 1, Faculty of Bioscience Engineering, Ghent University, 9000 Ghent, Belgium; (S.M.M.); (K.D.); (M.A.); (K.A.); (S.L.); (G.H.)
| | - Sofie Landschoot
- Department of Plants and Crops, Valentin Vaerwyckweg 1, Faculty of Bioscience Engineering, Ghent University, 9000 Ghent, Belgium; (S.M.M.); (K.D.); (M.A.); (K.A.); (S.L.); (G.H.)
| | - Geert Haesaert
- Department of Plants and Crops, Valentin Vaerwyckweg 1, Faculty of Bioscience Engineering, Ghent University, 9000 Ghent, Belgium; (S.M.M.); (K.D.); (M.A.); (K.A.); (S.L.); (G.H.)
| |
Collapse
|
23
|
Ma L, Jiang H, Bi Y, Li YC, Yang JW, Si HJ, Ren YY, Prusky D. The Interaction Between StCDPK14 and StRbohB Contributes to Benzo-(1, 2, 3)-Thiadiazole-7-Carbothioic Acid S-Methyl Ester-Induced Wound Healing of Potato Tubers by Regulating Reactive Oxygen Species Generation. FRONTIERS IN PLANT SCIENCE 2021; 12:737524. [PMID: 34868121 PMCID: PMC8634758 DOI: 10.3389/fpls.2021.737524] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Accepted: 10/13/2021] [Indexed: 05/15/2023]
Abstract
Reactive oxygen species (ROS) production is essential for both physiological processes and environmental stress in diverse plants. Previous studies have found that benzo-(1, 2, 3)-thiadiazole-7-carbothioic acid S-methyl ester (BTH)-inducible ROS were associated with wound healing of potato tubers. Calcium-dependent protein kinases (CDPKs), the important calcium receptors, are known to play a crucial part in plant development and adaptation to abiotic stresses. However, whether CDPK-mediated ROS generation induced by BTH is involved in wound healing is elusive. In this study, we measured Solanum tuberosum CDPKs (StCDPKs) expression using real-time PCR, and it was found that the transcriptional levels of StCDPKs from BTH-treated tissues were significantly induced, among which StCDPK14 presented the most increased level. Subcellular localization results showed that StCDPK14 is located in the nucleus and membrane. The transgenic potato plants and tubers were developed using interference-expression of StCDPK14 by Agrobacterium tumefaciens-mediated transformation. The St respiratory burst oxidase homologs (StRbohs) expression showed a remarkable decrease in StCDPK14 transgenic tubers, notably, H2O2 content and suberin deposition were also significantly declined. To confirm the relationship between StCDPK14 and StRbohB, yeast-two-hybrid and bimolecular fluorescence complementation were used to examine the interaction, and it was shown that StCDPK14 interacted with the specific Ca2 + -binding motif (helix-loop-helix, called EF-hand) of StRbohB N-terminus. The above results unraveled that StCDPK14 functions in ROS generation via interacting with StRbohB during wound healing of potato tubers.
Collapse
Affiliation(s)
- Li Ma
- College of Horticulture, Gansu Agricultural University, Lanzhou, China
| | - Hong Jiang
- College of Horticulture, Gansu Agricultural University, Lanzhou, China
| | - Yang Bi
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou, China
- *Correspondence: Yang Bi,
| | - Yong-Cai Li
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou, China
| | - Jiang-Wei Yang
- College of Life Science and Technology, Gansu Agricultural University, Lanzhou, China
| | - Huai-Jun Si
- College of Life Science and Technology, Gansu Agricultural University, Lanzhou, China
| | - Ying-Yue Ren
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou, China
| | - Dov Prusky
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou, China
- Department of Postharvest Science, Agricultural Research Organization, Rishon LeZion, Israel
| |
Collapse
|
24
|
Chang Y, Li B, Shi Q, Geng R, Geng S, Liu J, Zhang Y, Cai Y. Comprehensive Analysis of Respiratory Burst Oxidase Homologs (Rboh) Gene Family and Function of GbRboh5/18 on Verticillium Wilt Resistance in Gossypium barbadense. Front Genet 2020; 11:788. [PMID: 33061930 PMCID: PMC7517705 DOI: 10.3389/fgene.2020.00788] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2020] [Accepted: 07/02/2020] [Indexed: 12/24/2022] Open
Abstract
Respiratory burst oxidase homologs (Rbohs) play a predominant role in reactive oxygen species (ROS) production, which is crucial in plant growth, differentiation, as well as their responses to biotic and abiotic stresses. To date, however, there is little knowledge about the function of cotton Rboh genes. Here, we identified a total of 87 Rbohs from five sequenced Gossypium species (the diploids Gossypium arboreum, Gossypium raimondii, and Gossypium australe, and the allotetraploids Gossypium hirsutum and Gossypium barbadense) via BLAST searching their genomes. Phylogenetic analysis of the putative 87 cotton Rbohs revealed that they were divided into seven clades. All members within the same clade are generally similar to each other in terms of gene structure and conserved domain arrangement. In G. barbadense, the expression levels of GbRbohs in the CladeD were induced in response to a fungal pathogen and to hormones (i.e., jasmonic acid and abscisic acid), based upon which the main functional member in CladeD was discerned to be GbRboh5/18. Further functional and physiological analyses showed that the knock-down of GbRboh5/18 expression attenuates plant resistance to Verticillium dahliae infection. Combined with the molecular and biochemical analyses, we found less ROS accumulation in GbRboh5/18-VIGS plants than in control plants after V. dahliae infection. Overexpression of GbRboh5/18 in G. barbadense resulted in more ROS accumulation than in control plants. These results suggest that GbRboh5/18 enhances the cotton plants' resistance against V. dahliae by elevating the levels of ROS accumulation. By integrating phylogenetic, molecular, and biochemical approaches, this comprehensive study provides a detailed overview of the number, phylogeny, and evolution of the Rboh gene family from five sequenced Gossypium species, as well as elucidating the function of GbRboh5/18 for plant resistance against V. dahliae. This study sheds fresh light on the molecular evolutionary properties and function of Rboh genes in cotton, and provides a reference for improving cotton's responses to the pathogen V. dahliae.
Collapse
Affiliation(s)
- Ying Chang
- State Key Laboratory of Cotton Biology, Key Laboratory of Plant Stress Biology, School of Life Sciences, Henan University, Kaifeng, China
| | - Bo Li
- State Key Laboratory of Cotton Biology, Key Laboratory of Plant Stress Biology, School of Life Sciences, Henan University, Kaifeng, China
| | - Qian Shi
- State Key Laboratory of Cotton Biology, Key Laboratory of Plant Stress Biology, School of Life Sciences, Henan University, Kaifeng, China
| | - Rui Geng
- State Key Laboratory of Cotton Biology, Key Laboratory of Plant Stress Biology, School of Life Sciences, Henan University, Kaifeng, China
| | - Shuaipeng Geng
- State Key Laboratory of Cotton Biology, Key Laboratory of Plant Stress Biology, School of Life Sciences, Henan University, Kaifeng, China
| | - Jinlei Liu
- State Key Laboratory of Cotton Biology, Key Laboratory of Plant Stress Biology, School of Life Sciences, Henan University, Kaifeng, China
| | - Yuanyuan Zhang
- State Key Laboratory of Cotton Biology, Key Laboratory of Plant Stress Biology, School of Life Sciences, Henan University, Kaifeng, China
| | - Yingfan Cai
- State Key Laboratory of Cotton Biology, Key Laboratory of Plant Stress Biology, School of Life Sciences, Henan University, Kaifeng, China
| |
Collapse
|
25
|
Guerra T, Schilling S, Hake K, Gorzolka K, Sylvester FP, Conrads B, Westermann B, Romeis T. Calcium-dependent protein kinase 5 links calcium signaling with N-hydroxy-l-pipecolic acid- and SARD1-dependent immune memory in systemic acquired resistance. THE NEW PHYTOLOGIST 2020; 225:310-325. [PMID: 31469917 DOI: 10.1111/nph.16147] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2019] [Accepted: 08/14/2019] [Indexed: 05/20/2023]
Abstract
Systemic acquired resistance (SAR) prepares infected plants for faster and stronger defense activation upon subsequent attacks. SAR requires an information relay from primary infection to distal tissue and the initiation and maintenance of a self-maintaining phytohormone salicylic acid (SA)-defense loop. In spatial and temporal resolution, we show that calcium-dependent protein kinase CPK5 contributes to immunity and SAR. In local basal resistance, CPK5 functions upstream of SA synthesis, perception, and signaling. In systemic tissue, CPK5 signaling leads to accumulation of SAR-inducing metabolite N-hydroxy-L-pipecolic acid (NHP) and SAR marker genes, including Systemic Acquired Resistance Deficient 1 (SARD1) Plants of increased CPK5, but not CPK6, signaling display an 'enhanced SAR' phenotype towards a secondary bacterial infection. In the sard1-1 background, CPK5-mediated basal resistance is still mounted, but NHP concentration is reduced and enhanced SAR is lost. The biochemical analysis estimated CPK5 half maximal kinase activity for calcium, K50 [Ca2+ ], to be c. 100 nM, close to the cytoplasmic resting level. This low threshold uniquely qualifies CPK5 to decode subtle changes in calcium, a prerequisite to signal relay and onset and maintenance of priming at later time points in distal tissue. Our data explain why CPK5 functions as a hub in basal and systemic plant immunity.
Collapse
Affiliation(s)
- Tiziana Guerra
- Department of Plant Biochemistry, Dahlem Centre of Plant Sciences, Institute for Biology, Freie Universität Berlin, Berlin, 14195, Germany
| | - Silke Schilling
- Department of Plant Biochemistry, Dahlem Centre of Plant Sciences, Institute for Biology, Freie Universität Berlin, Berlin, 14195, Germany
| | - Katharina Hake
- Department of Plant Biochemistry, Dahlem Centre of Plant Sciences, Institute for Biology, Freie Universität Berlin, Berlin, 14195, Germany
| | - Karin Gorzolka
- Leibniz Institute of Plant Biochemistry, Halle (Saale), 06120, Germany
| | - Fabian-Philipp Sylvester
- Department of Plant Biochemistry, Dahlem Centre of Plant Sciences, Institute for Biology, Freie Universität Berlin, Berlin, 14195, Germany
| | - Benjamin Conrads
- Department of Plant Biochemistry, Dahlem Centre of Plant Sciences, Institute for Biology, Freie Universität Berlin, Berlin, 14195, Germany
| | | | - Tina Romeis
- Department of Plant Biochemistry, Dahlem Centre of Plant Sciences, Institute for Biology, Freie Universität Berlin, Berlin, 14195, Germany
- Leibniz Institute of Plant Biochemistry, Halle (Saale), 06120, Germany
| |
Collapse
|
26
|
Khalid MHB, Raza MA, Yu HQ, Khan I, Sun FA, Feng LY, Qu JT, Fu FL, Li WC. Expression, Subcellular Localization, and Interactions of CPK Family Genes in Maize. Int J Mol Sci 2019; 20:E6173. [PMID: 31817801 PMCID: PMC6940914 DOI: 10.3390/ijms20246173] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Revised: 11/30/2019] [Accepted: 12/05/2019] [Indexed: 12/20/2022] Open
Abstract
Calcium-dependent protein kinase (CPKs) is a key player in the calcium signaling pathway to decode calcium signals into various physiological responses. cDNA sequences of 9 ZmCPK genes were successfully cloned from all four phylogenetic groups in maize. qRT-PCR analysis showed the expression variation of these selected genes under abscisic acid (ABA) and calcium chloride (CaCl2) treatment. Due to the presence of N-myristoylation/palmitoylation sites, the selected ZmCPK members were localized in a plasma membrane. To clarify whether ZmCPK, a key player in calcium signaling, interacts with key players of ABA, protein phosphatase 2Cs (PP2Cs) and the SNF1-related protein kinase 2s (SnRK2s) and mitogen-activated protein kinase (MAPK) signaling pathways in maize, we examined the interaction between 9 CPKs, 8 PP2Cs, 5 SnRKs, and 20 members of the MPK family in maize by using yeast two-hybrid assay. Our results showed that three ZmCPKs interact with three different members of ZmSnRKs while four ZmCPK members had a positive interaction with 13 members of ZmMPKs in different combinations. These four ZmCPK proteins are from three different groups in maize. These findings of physical interactions between ZmCPKs, ZmSnRKs, and ZmMPKs suggested that these signaling pathways do not only have indirect influence but also have direct crosstalk that may involve the defense mechanism in maize. The present study may improve the understanding of signal transduction in plants.
Collapse
Affiliation(s)
- Muhammad Hayder Bin Khalid
- Maize Research Institute, Sichuan Agricultural University, Chengdu 611130, China; (M.H.B.K.); (H.Q.Y.); (F.A.S.); (J.T.Q.)
| | - Muhammad Ali Raza
- College of Agronomy, Sichuan Agricultural University, Chengdu 611130, China; (M.A.R.); (L.Y.F.)
| | - Hao Qiang Yu
- Maize Research Institute, Sichuan Agricultural University, Chengdu 611130, China; (M.H.B.K.); (H.Q.Y.); (F.A.S.); (J.T.Q.)
| | - Imran Khan
- Department of Grassland Science, Sichuan Agricultural University, Chengdu 611130, China;
| | - Fu Ai Sun
- Maize Research Institute, Sichuan Agricultural University, Chengdu 611130, China; (M.H.B.K.); (H.Q.Y.); (F.A.S.); (J.T.Q.)
| | - Ling Yang Feng
- College of Agronomy, Sichuan Agricultural University, Chengdu 611130, China; (M.A.R.); (L.Y.F.)
| | - Jing Tao Qu
- Maize Research Institute, Sichuan Agricultural University, Chengdu 611130, China; (M.H.B.K.); (H.Q.Y.); (F.A.S.); (J.T.Q.)
| | - Feng Ling Fu
- Maize Research Institute, Sichuan Agricultural University, Chengdu 611130, China; (M.H.B.K.); (H.Q.Y.); (F.A.S.); (J.T.Q.)
| | - Wan Chen Li
- Maize Research Institute, Sichuan Agricultural University, Chengdu 611130, China; (M.H.B.K.); (H.Q.Y.); (F.A.S.); (J.T.Q.)
| |
Collapse
|
27
|
Wang D, Liu YX, Yu Q, Zhao SP, Zhao JY, Ru JN, Cao XY, Fang ZW, Chen J, Zhou YB, Chen M, Ma YZ, Xu ZS, Lan JH. Functional Analysis of the Soybean GmCDPK3 Gene Responding to Drought and Salt Stresses. Int J Mol Sci 2019; 20:E5909. [PMID: 31775269 PMCID: PMC6928923 DOI: 10.3390/ijms20235909] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Revised: 11/19/2019] [Accepted: 11/20/2019] [Indexed: 11/16/2022] Open
Abstract
Plants have a series of response mechanisms to adapt when they are subjected to external stress. Calcium-dependent protein kinases (CDPKs) in plants function against a variety of abiotic stresses. We screened 17 CDPKs from drought- and salt-induced soybean transcriptome sequences. The phylogenetic tree divided CDPKs of rice, Arabidopsis and soybean into five groups (I-V). Cis-acting element analysis showed that the 17 CDPKs contained some elements associated with drought and salt stresses. Quantitative real-time PCR (qRT-PCR) analysis indicated that the 17 CDPKs were responsive after different degrees of induction under drought and salt stresses. GmCDPK3 was selected as a further research target due to its high relative expression. The subcellular localization experiment showed that GmCDPK3 was located on the membrane of Arabidopsis mesophyll protoplasts. Overexpression of GmCDPK3 improved drought and salt resistance in Arabidopsis. In the soybean hairy roots experiment, the leaves of GmCDPK3 hairy roots with RNA interference (GmCDPK3-RNAi) soybean lines were more wilted than those of GmCDPK3 overexpression (GmCDPK3-OE) soybean lines after drought and salt stresses. The trypan blue staining experiment further confirmed that cell membrane damage of GmCDPK3-RNAi soybean leaves was more severe than in GmCDPK3-OE soybean lines. In addition, proline (Pro) and chlorophyll contents were increased and malondialdehyde (MDA) content was decreased in GmCDPK3-OE soybean lines. On the contrary, GmCDPK3-RNAi soybean lines had decreased Pro and chlorophyll content and increased MDA. The results indicate that GmCDPK3 is essential in resisting drought and salt stresses.
Collapse
Affiliation(s)
- Dan Wang
- College of Agronomy, Qingdao Agricultural University, Qingdao 266109, China; (D.W.); (Y.-X.L.); (Q.Y.)
- Key Laboratory of Biology and Genetic Improvement of Triticeae Crops, Ministry of Agriculture, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences (CAAS)/National Key Facility for Crop Gene Resources and Genetic Improvement, Beijing 100081, China; (S.-P.Z.); (J.-Y.Z.); (J.-N.R.); (J.C.); (Y.-B.Z.); (M.C.); (Y.-Z.M.)
| | - Yuan-Xia Liu
- College of Agronomy, Qingdao Agricultural University, Qingdao 266109, China; (D.W.); (Y.-X.L.); (Q.Y.)
| | - Qian Yu
- College of Agronomy, Qingdao Agricultural University, Qingdao 266109, China; (D.W.); (Y.-X.L.); (Q.Y.)
| | - Shu-Ping Zhao
- Key Laboratory of Biology and Genetic Improvement of Triticeae Crops, Ministry of Agriculture, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences (CAAS)/National Key Facility for Crop Gene Resources and Genetic Improvement, Beijing 100081, China; (S.-P.Z.); (J.-Y.Z.); (J.-N.R.); (J.C.); (Y.-B.Z.); (M.C.); (Y.-Z.M.)
| | - Juan-Ying Zhao
- Key Laboratory of Biology and Genetic Improvement of Triticeae Crops, Ministry of Agriculture, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences (CAAS)/National Key Facility for Crop Gene Resources and Genetic Improvement, Beijing 100081, China; (S.-P.Z.); (J.-Y.Z.); (J.-N.R.); (J.C.); (Y.-B.Z.); (M.C.); (Y.-Z.M.)
| | - Jing-Na Ru
- Key Laboratory of Biology and Genetic Improvement of Triticeae Crops, Ministry of Agriculture, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences (CAAS)/National Key Facility for Crop Gene Resources and Genetic Improvement, Beijing 100081, China; (S.-P.Z.); (J.-Y.Z.); (J.-N.R.); (J.C.); (Y.-B.Z.); (M.C.); (Y.-Z.M.)
| | - Xin-You Cao
- National Engineering Laboratory for Wheat and Maize/Key Laboratory of Wheat Biology and Genetic Improvement, Crop Research Institute, Shandong Academy of Agricultural Sciences, Jinan 250100, China;
| | - Zheng-Wu Fang
- College of Agronomy, College of Agriculture, Yangtze University, Jingzhou 434025, China;
| | - Jun Chen
- Key Laboratory of Biology and Genetic Improvement of Triticeae Crops, Ministry of Agriculture, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences (CAAS)/National Key Facility for Crop Gene Resources and Genetic Improvement, Beijing 100081, China; (S.-P.Z.); (J.-Y.Z.); (J.-N.R.); (J.C.); (Y.-B.Z.); (M.C.); (Y.-Z.M.)
| | - Yong-Bin Zhou
- Key Laboratory of Biology and Genetic Improvement of Triticeae Crops, Ministry of Agriculture, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences (CAAS)/National Key Facility for Crop Gene Resources and Genetic Improvement, Beijing 100081, China; (S.-P.Z.); (J.-Y.Z.); (J.-N.R.); (J.C.); (Y.-B.Z.); (M.C.); (Y.-Z.M.)
| | - Ming Chen
- Key Laboratory of Biology and Genetic Improvement of Triticeae Crops, Ministry of Agriculture, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences (CAAS)/National Key Facility for Crop Gene Resources and Genetic Improvement, Beijing 100081, China; (S.-P.Z.); (J.-Y.Z.); (J.-N.R.); (J.C.); (Y.-B.Z.); (M.C.); (Y.-Z.M.)
| | - You-Zhi Ma
- Key Laboratory of Biology and Genetic Improvement of Triticeae Crops, Ministry of Agriculture, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences (CAAS)/National Key Facility for Crop Gene Resources and Genetic Improvement, Beijing 100081, China; (S.-P.Z.); (J.-Y.Z.); (J.-N.R.); (J.C.); (Y.-B.Z.); (M.C.); (Y.-Z.M.)
| | - Zhao-Shi Xu
- Key Laboratory of Biology and Genetic Improvement of Triticeae Crops, Ministry of Agriculture, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences (CAAS)/National Key Facility for Crop Gene Resources and Genetic Improvement, Beijing 100081, China; (S.-P.Z.); (J.-Y.Z.); (J.-N.R.); (J.C.); (Y.-B.Z.); (M.C.); (Y.-Z.M.)
| | - Jin-Hao Lan
- College of Agronomy, Qingdao Agricultural University, Qingdao 266109, China; (D.W.); (Y.-X.L.); (Q.Y.)
| |
Collapse
|
28
|
Atif RM, Shahid L, Waqas M, Ali B, Rashid MAR, Azeem F, Nawaz MA, Wani SH, Chung G. Insights on Calcium-Dependent Protein Kinases (CPKs) Signaling for Abiotic Stress Tolerance in Plants. Int J Mol Sci 2019; 20:E5298. [PMID: 31653073 PMCID: PMC6862689 DOI: 10.3390/ijms20215298] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Revised: 10/16/2019] [Accepted: 10/17/2019] [Indexed: 12/18/2022] Open
Abstract
Abiotic stresses are the major limiting factors influencing the growth and productivity of plants species. To combat these stresses, plants can modify numerous physiological, biochemical, and molecular processes through cellular and subcellular signaling pathways. Calcium-dependent protein kinases (CDPKs or CPKs) are the unique and key calcium-binding proteins, which act as a sensor for the increase and decrease in the calcium (Ca) concentrations. These Ca flux signals are decrypted and interpreted into the phosphorylation events, which are crucial for signal transduction processes. Several functional and expression studies of different CPKs and their encoding genes validated their versatile role for abiotic stress tolerance in plants. CPKs are indispensable for modulating abiotic stress tolerance through activation and regulation of several genes, transcription factors, enzymes, and ion channels. CPKs have been involved in supporting plant adaptation under drought, salinity, and heat and cold stress environments. Diverse functions of plant CPKs have been reported against various abiotic stresses in numerous research studies. In this review, we have described the evaluated functions of plant CPKs against various abiotic stresses and their role in stress response signaling pathways.
Collapse
Affiliation(s)
- Rana Muhammad Atif
- Department of Plant Breeding and Genetics, University of Agriculture, Faisalabad 38000, Pakistan.
- Center for Advanced Studies in Agriculture and Food Security, University of Agriculture, Faisalabad 38040, Pakistan.
| | - Luqman Shahid
- Department of Plant Breeding and Genetics, University of Agriculture, Faisalabad 38000, Pakistan.
| | - Muhammad Waqas
- Department of Plant Breeding and Genetics, University of Agriculture, Faisalabad 38000, Pakistan.
| | - Babar Ali
- Department of Plant Breeding and Genetics, University of Agriculture, Faisalabad 38000, Pakistan.
| | - Muhammad Abdul Rehman Rashid
- Department of Plant Breeding and Genetics, University of Agriculture, Faisalabad 38000, Pakistan.
- Industrial Crops Research Institute, Yunnan Academy of Agricultural Sciences, Kunming 650200, China.
| | - Farrukh Azeem
- Department of Bioinformatics and Biotechnology, Government College University, Faisalabad 38040, Pakistan.
| | - Muhammad Amjad Nawaz
- Education Scientific Center of Nanotechnology, Far Eastern Federal University, 690950 Vladivostok, Russia.
| | - Shabir Hussain Wani
- Mountain Research Centre for Field Crops, Sher-e-Kashmir University of Agricultural Sciences and Technology of Kashmir, Srinagar 190001, India.
| | - Gyuhwa Chung
- Department of Biotechnology, Chonnam National University, Chonnam 59626, Korea.
| |
Collapse
|
29
|
Yoshioka M, Adachi A, Sato Y, Doke N, Kondo T, Yoshioka H. RNAi of the sesquiterpene cyclase gene for phytoalexin production impairs pre- and post-invasive resistance to potato blight pathogens. MOLECULAR PLANT PATHOLOGY 2019; 20:907-922. [PMID: 30990946 PMCID: PMC6589726 DOI: 10.1111/mpp.12802] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Potato antimicrobial sesquiterpenoid phytoalexins lubimin and rishitin have been implicated in resistance to the late blight pathogen, Phytophthora infestans and early blight pathogen, Alternaria solani. We generated transgenic potato plants in which sesquiterpene cyclase, a key enzyme for production of lubimin and rishitin, is compromised by RNAi to investigate the role of phytoalexins in potato defence. The transgenic tubers were deficient in phytoalexins and exhibited reduced post-invasive resistance to an avirulent isolate of P. infestans, resulting in successful infection of the first attacked cells without induction of cell death. However, cell death was observed in the subsequently penetrated cells. Although we failed to detect phytoalexins and antifungal activity in the extract from wild-type leaves, post-invasive resistance to avirulent P. infestans was reduced in transgenic leaves. On the other hand, A. solani frequently penetrated epidermal cells of transgenic leaves and caused severe disease symptoms presumably from a deficiency in unidentified antifungal compounds. The contribution of antimicrobial components to resistance to penetration and later colonization may vary depending on the pathogen species, suggesting that sesquiterpene cyclase-mediated compounds participate in pre-invasive resistance to necrotrophic pathogen A. solani and post-invasive resistance to hemibiotrophic pathogen P. infestans.
Collapse
Affiliation(s)
- Miki Yoshioka
- Graduate School of Bioagricultural SciencesNagoya UniversityChikusaNagoya464‐8601Japan
| | - Ayako Adachi
- Graduate School of Bioagricultural SciencesNagoya UniversityChikusaNagoya464‐8601Japan
| | - Yutaka Sato
- National Institute of GeneticsYata 1111, MishimaShizuoka411‐8540Japan
| | - Noriyuki Doke
- Graduate School of Bioagricultural SciencesNagoya UniversityChikusaNagoya464‐8601Japan
| | - Tatsuhiko Kondo
- Graduate School of Bioagricultural SciencesNagoya UniversityChikusaNagoya464‐8601Japan
| | - Hirofumi Yoshioka
- Graduate School of Bioagricultural SciencesNagoya UniversityChikusaNagoya464‐8601Japan
| |
Collapse
|
30
|
Wang J, Gao C, Li L, Cao W, Dong R, Ding X, Zhu C, Chu Z. Transgenic RXLR Effector PITG_15718.2 Suppresses Immunity and Reduces Vegetative Growth in Potato. Int J Mol Sci 2019; 20:ijms20123031. [PMID: 31234322 PMCID: PMC6627464 DOI: 10.3390/ijms20123031] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Revised: 06/18/2019] [Accepted: 06/19/2019] [Indexed: 01/25/2023] Open
Abstract
Phytophthora infestans causes the severe late blight disease of potato. During its infection process, P. infestans delivers hundreds of RXLR (Arg-x-Leu-Arg, x behalf of any one amino acid) effectors to manipulate processes in its hosts, creating a suitable environment for invasion and proliferation. Several effectors interact with host proteins to suppress host immunity and inhibit plant growth. However, little is known about how P. infestans regulates the host transcriptome. Here, we identified an RXLR effector, PITG_15718.2, which is upregulated and maintains a high expression level throughout the infection. Stable transgenic potato (Solanum tuberosum) lines expressing PITG_15718.2 show enhanced leaf colonization by P. infestans and reduced vegetative growth. We further investigated the transcriptional changes between three PITG_15718.2 transgenic lines and the wild type Désirée by using RNA sequencing (RNA-Seq). Compared with Désirée, 190 differentially expressed genes (DEGs) were identified, including 158 upregulated genes and 32 downregulated genes in PITG_15718.2 transgenic lines. Eight upregulated and nine downregulated DEGs were validated by real-time RT-PCR, which showed a high correlation with the expression level identified by RNA-Seq. These DEGs will help to explore the mechanism of PITG_15718.2-mediated immunity and growth inhibition in the future.
Collapse
Affiliation(s)
- Jiao Wang
- State Key Laboratory of Crop Biology, Shandong Agricultural University, Tai'an 271018, China.
- Shandong Provincial Key Laboratory of Vegetable Disease and Insect Pests, College of Plant Protection, Shandong Agricultural University, Tai'an 271018, China.
| | - Cungang Gao
- State Key Laboratory of Crop Biology, Shandong Agricultural University, Tai'an 271018, China.
- College of Agronomy, Shandong Agricultural University, Tai'an 271018, China.
| | - Long Li
- College of Agronomy, Shandong Agricultural University, Tai'an 271018, China.
| | - Weilin Cao
- State Key Laboratory of Crop Biology, Shandong Agricultural University, Tai'an 271018, China.
- College of Life Science, Shandong Agricultural University, Tai'an, 271018, China.
| | - Ran Dong
- Shandong Provincial Key Laboratory of Vegetable Disease and Insect Pests, College of Plant Protection, Shandong Agricultural University, Tai'an 271018, China.
| | - Xinhua Ding
- State Key Laboratory of Crop Biology, Shandong Agricultural University, Tai'an 271018, China.
- Shandong Provincial Key Laboratory of Vegetable Disease and Insect Pests, College of Plant Protection, Shandong Agricultural University, Tai'an 271018, China.
| | - Changxiang Zhu
- State Key Laboratory of Crop Biology, Shandong Agricultural University, Tai'an 271018, China.
- College of Life Science, Shandong Agricultural University, Tai'an, 271018, China.
| | - Zhaohui Chu
- State Key Laboratory of Crop Biology, Shandong Agricultural University, Tai'an 271018, China.
- College of Agronomy, Shandong Agricultural University, Tai'an 271018, China.
| |
Collapse
|
31
|
Yang J, Wang GQ, Zhou Q, Lu W, Ma JQ, Huang JH. Transcriptomic and proteomic response of Manihot esculenta to Tetranychus urticae infestation at different densities. EXPERIMENTAL & APPLIED ACAROLOGY 2019; 78:273-293. [PMID: 31168751 DOI: 10.1007/s10493-019-00387-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Accepted: 05/30/2019] [Indexed: 05/24/2023]
Abstract
Tetranychus urticae (Acari: Tetranychidae) is an extremely serious cassava (Manihot esculenta) pest. Building a genomic resource to investigate the molecular mechanisms of cassava responses to T. urticae is vital for characterizing cassava resistance to mites. Based on the tolerance of cassava varieties to mite infestation (focusing on mite development rate, fecundity and physiology), cassava variety SC8 was selected to analyze transcriptomic and proteomic changes after 5 days of T. urticae feeding. Transcriptomic analysis revealed 698 and 2140 genes with significant expression changes under low and high mite infestation, respectively. More defense-related genes were found in the enrichment pathways at high mite density than at low density. In addition, iTRAQ-labeled proteomic analysis revealed 191 proteins with significant expression changes under low mite infestation. Differentially expressed genes and proteins were mainly found in the following defense-related pathways: flavonoid biosynthesis, phenylpropanoid biosynthesis, and glutathione metabolism under low-density mite feeding and plant hormone signal transduction and plant-pathogen interaction pathways under high-density mite feeding. The plant hormone signal transduction network, involving ethylene, jasmonic acid, and salicylic acid transduction pathways, was explored in relation to the M. esculenta response to T. urticae. Correlation analysis of the transcriptome and proteome generated a Pearson correlation coefficients of R = 0.2953 (P < 0.01), which might have been due to post-transcriptional or post-translational regulation resulting in many genes being inconsistently expressed at both the transcript and protein levels. In summary, the M. esculenta transcriptome and proteome changed in response to T. urticae, providing insight into the general activation of plant defense pathways in response to mite infestation.
Collapse
Affiliation(s)
- Juan Yang
- College of Agriculture, Guangxi University, Nanning, 530004, Guangxi, China
- Guangxi Key Laboratory for Agro-Environment and Agro-Product Safety, National Demonstration Center for Experimental Plant Science Education, Guangxi University, Nanning, 530004, Guangxi, China
| | - Guo-Quan Wang
- College of Agriculture, Guangxi University, Nanning, 530004, Guangxi, China
- Guangxi Key Laboratory for Agro-Environment and Agro-Product Safety, National Demonstration Center for Experimental Plant Science Education, Guangxi University, Nanning, 530004, Guangxi, China
| | - Qiong Zhou
- College of Agriculture, Guangxi University, Nanning, 530004, Guangxi, China
| | - Wen Lu
- College of Agriculture, Guangxi University, Nanning, 530004, Guangxi, China
- Guangxi Key Laboratory for Agro-Environment and Agro-Product Safety, National Demonstration Center for Experimental Plant Science Education, Guangxi University, Nanning, 530004, Guangxi, China
| | - Jun-Qing Ma
- College of Agriculture, Guangxi University, Nanning, 530004, Guangxi, China
| | - Jing-Hua Huang
- College of Agriculture, Guangxi University, Nanning, 530004, Guangxi, China.
- Guangxi Colleges and Universities Key Laboratory of Crop Cultivation and Tillage, Guangxi University, Nanning, 530004, Guangxi, China.
| |
Collapse
|
32
|
Marcec MJ, Gilroy S, Poovaiah BW, Tanaka K. Mutual interplay of Ca 2+ and ROS signaling in plant immune response. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2019; 283:343-354. [PMID: 31128705 DOI: 10.1016/j.plantsci.2019.03.004] [Citation(s) in RCA: 109] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Revised: 03/07/2019] [Accepted: 03/08/2019] [Indexed: 05/20/2023]
Abstract
Second messengers are cellular chemicals that act as "language codes", allowing cells to pass outside information to the cell interior. The cells then respond through triggering downstream reactions, including transcriptional reprograming to affect appropriate adaptive responses. The spatiotemporal patterning of these stimuli-induced signal changes has been referred to as a "signature", which is detected, decoded, and transmitted to elicit these downstream cellular responses. Recent studies have suggested that dynamic changes in second messengers, such as calcium (Ca2+), reactive oxygen species (ROS), and nitric oxide (NO), serve as signatures for both intracellular signaling and cell-to-cell communications. These second messenger signatures work in concert with physical signal signatures (such as electrical and hydraulic waves) to create a "lock and key" mechanism that triggers appropriate response to highly varied stresses. In plants, detailed information of how these signatures deploy their downstream signaling networks remains to be elucidated. Recent evidence suggests a mutual interplay between Ca2+ and ROS signaling has important implications for fine-tuning cellular signaling networks in plant immunity. These two signaling mechanisms amplify each other and this interaction may be a critical element of their roles in information processing for plant defense responses.
Collapse
Affiliation(s)
- Matthew J Marcec
- Department of Plant Pathology, Washington State University, Pullman, WA, 99164, USA; Molecular Plant Sciences Program, Washington State University, Pullman, WA, 99164, USA
| | - Simon Gilroy
- Department of Botany, University of Wisconsin, Madison, WI, 53706, USA
| | - B W Poovaiah
- Molecular Plant Sciences Program, Washington State University, Pullman, WA, 99164, USA; Department of Horticulture, Washington State University, Pullman, WA, 99164, USA
| | - Kiwamu Tanaka
- Department of Plant Pathology, Washington State University, Pullman, WA, 99164, USA; Molecular Plant Sciences Program, Washington State University, Pullman, WA, 99164, USA.
| |
Collapse
|
33
|
Wang B, Zhang Y, Bi Z, Liu Q, Xu T, Yu N, Cao Y, Zhu A, Wu W, Zhan X, Anis GB, Yu P, Chen D, Cheng S, Cao L. Impaired Function of the Calcium-Dependent Protein Kinase, OsCPK12, Leads to Early Senescence in Rice ( Oryza sativa L.). FRONTIERS IN PLANT SCIENCE 2019; 10:52. [PMID: 30778363 PMCID: PMC6369234 DOI: 10.3389/fpls.2019.00052] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Accepted: 01/16/2019] [Indexed: 05/21/2023]
Abstract
Premature leaf senescence affects plant yield and quality, and numerous researches about it have been conducted until now. In this study, we identified an early senescent mutant es4 in rice (Oryza sativa L.); early senescence appeared approximately at 60 dps and became increasingly senescent with the growth of es4 mutant. We detected that content of reactive oxygen species (ROS) and malondialdehyde (MDA), as well as activity of superoxide dismutase (SOD) were elevated, while chlorophyll content, soluble protein content, activity of catalase (CAT), activity of peroxidase (POD) and photosynthetic rate were reduced in the es4 mutant leaves. We mapped es4 in a 33.5 Kb physical distance on chromosome 4 by map-based cloning. Sequencing analysis in target interval indicated there was an eight bases deletion mutation in OsCPK12 which encoded a calcium-dependent protein kinase. Functional complementation of OsCPK12 in es4 completely restored the normal phenotype. We used CRISPR/Cas9 for targeted disruption of OsCPK12 in ZH8015 and all the mutants exhibited the premature senescence. All the results indicated that the phenotype of es4 was caused by the mutation of OsCPK12. Overexpression of OsCPK12 in ZH8015 enhanced the net photosynthetic rate (P n) and chlorophyll content. OsCPK12 was mainly expressed in green organs. The results of qRT-PCR analysis showed that the expression levels of some key genes involved in senescence, chlorophyll biosynthesis, and photosynthesis were significantly altered in the es4 mutant. Our results demonstrate that the mutant of OsCPK12 triggers the premature leaf senescence; however, the overexpression of OsCPK12 may delay its growth period and provide the potentially positive effect on productivity in rice.
Collapse
Affiliation(s)
- Beifang Wang
- Key Laboratory for Zhejiang Super Rice Research and State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, China
| | - Yingxin Zhang
- Key Laboratory for Zhejiang Super Rice Research and State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, China
| | - Zhenzhen Bi
- Key Laboratory for Zhejiang Super Rice Research and State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, China
- College of Agronomy, Gansu Agricultural University, Lanzhou, China
| | - Qunen Liu
- Key Laboratory for Zhejiang Super Rice Research and State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, China
| | - Tingting Xu
- Key Laboratory for Zhejiang Super Rice Research and State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, China
| | - Ning Yu
- Key Laboratory for Zhejiang Super Rice Research and State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, China
| | - Yongrun Cao
- Key Laboratory for Zhejiang Super Rice Research and State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, China
| | - Aike Zhu
- Key Laboratory for Zhejiang Super Rice Research and State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, China
- Nanchong Academy of Agricultural Sciences, Nanchong, China
| | - Weixun Wu
- Key Laboratory for Zhejiang Super Rice Research and State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, China
| | - Xiaodeng Zhan
- Key Laboratory for Zhejiang Super Rice Research and State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, China
| | - Galal Bakr Anis
- Key Laboratory for Zhejiang Super Rice Research and State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, China
- Rice Research and Training Center, Field Crops Research Institute, Agriculture Research Center, Kafr El Sheikh, Egypt
| | - Ping Yu
- Key Laboratory for Zhejiang Super Rice Research and State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, China
| | - Daibo Chen
- Key Laboratory for Zhejiang Super Rice Research and State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, China
| | - Shihua Cheng
- Key Laboratory for Zhejiang Super Rice Research and State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, China
| | - Liyong Cao
- Key Laboratory for Zhejiang Super Rice Research and State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, China
| |
Collapse
|
34
|
Bredow M, Monaghan J. Regulation of Plant Immune Signaling by Calcium-Dependent Protein Kinases. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2019; 32:6-19. [PMID: 30299213 DOI: 10.1094/mpmi-09-18-0267-fi] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
Activation of Ca2+ signaling is a universal response to stress that allows cells to quickly respond to environmental cues. Fluctuations in cytosolic Ca2+ are decoded in plants by Ca2+-sensing proteins such as Ca2+-dependent protein kinases (CDPKs). The perception of microbes results in an influx of Ca2+ that activates numerous CDPKs responsible for propagating immune signals required for resistance against disease-causing pathogens. This review describes our current understanding of CDPK activation and regulation, and provides a comprehensive overview of CDPK-mediated immune signaling through interaction with various substrates.
Collapse
Affiliation(s)
- Melissa Bredow
- Biology Department, Queen's University, Kingston ON K7L 3N6, Canada
| | | |
Collapse
|
35
|
Zhang H, Zhang Y, Deng C, Deng S, Li N, Zhao C, Zhao R, Liang S, Chen S. The Arabidopsis Ca 2+-Dependent Protein Kinase CPK12 Is Involved in Plant Response to Salt Stress. Int J Mol Sci 2018; 19:ijms19124062. [PMID: 30558245 PMCID: PMC6321221 DOI: 10.3390/ijms19124062] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2018] [Revised: 12/11/2018] [Accepted: 12/12/2018] [Indexed: 11/22/2022] Open
Abstract
CDPKs (Ca2+-Dependent Protein Kinases) are very important regulators in plant response to abiotic stress. The molecular regulatory mechanism of CDPKs involved in salt stress tolerance remains unclear, although some CDPKs have been identified in salt-stress signaling. Here, we investigated the function of an Arabidopsis CDPK, CPK12, in salt-stress signaling. The CPK12-RNA interference (RNAi) mutant was much more sensitive to salt stress than the wild-type plant GL1 in terms of seedling growth. Under NaCl treatment, Na+ levels in the roots of CPK12-RNAi plants increased and were higher than levels in GL1 plants. In addition, the level of salt-elicited H2O2 production was higher in CPK12-RNAi mutants than in wild-type GL1 plants after NaCl treatment. Collectively, our results suggest that CPK12 is required for plant adaptation to salt stress.
Collapse
Affiliation(s)
- Huilong Zhang
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China.
| | - Yinan Zhang
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China.
| | - Chen Deng
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China.
| | - Shurong Deng
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China.
| | - Nianfei Li
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China.
| | - Chenjing Zhao
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China.
| | - Rui Zhao
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China.
| | - Shan Liang
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, School of Food and Chemical Engineering, Beijing Technology and Business University, Beijing 100048, China.
| | - Shaoliang Chen
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China.
| |
Collapse
|
36
|
Yu TF, Zhao WY, Fu JD, Liu YW, Chen M, Zhou YB, Ma YZ, Xu ZS, Xi YJ. Genome-Wide Analysis of CDPK Family in Foxtail Millet and Determination of SiCDPK24 Functions in Drought Stress. FRONTIERS IN PLANT SCIENCE 2018; 9:651. [PMID: 30093908 PMCID: PMC6071576 DOI: 10.3389/fpls.2018.00651] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2018] [Accepted: 04/27/2018] [Indexed: 05/22/2023]
Abstract
Plant calcium-dependent protein kinases (CDPKs) were reported to play important roles in plant resistance to abiotic stress. Foxtail millet cultivation "H138" was used for RNA-seq analysis. The data from drought-induced de novo transcriptomic sequences of foxtail millet showed that CDPKs were up- or down-regulated by drought to different degrees. In this study, 29 foxtail millet CDPKs were classified into four subgroups. These genes were unevenly distributed on nine foxtail millet chromosomes, and chromosomes 2, 3, and 9 contained the most SiCDPK members. Analysis of putative cis-acting elements showed that most foxtail millet CDPK genes contained the ABRE, LTR, HSE, MYB, MYC, DRE, CGTCA-motif, and TGACG-motif cis-acting elements, which could be activated by abiotic stresses. Real-time PCR analysis indicated that 29 SiCDPK genes experienced different degrees of induction under drought and ABA stresses. SiCDPK24 had the highest expression levels at 6 and 12 h of drought treatment and was chosen for further analysis. SiCDPK24 localized to the cell membrane and the nucleus of Arabidopsis mesophyll protoplasts. Western blot analysis showed that SiCDPK24 protein had autophosphorylation activity. Overexpression of SiCDPK24 in Arabidopsis enhanced drought resistance and improved the survival rate under drought stress. It also activated the expressions of nine stress-related genes, namely RD29A, RD29B, RD22, KIN1, COR15, COR47, LEA14, CBF3/DREB1A, and DREB2A. These genes are involved in resistance to abiotic stresses in Arabidopsis. These results indicate that foxtail millet CDPK genes play important roles in resisting drought stress.
Collapse
Affiliation(s)
- Tai-Fei Yu
- State Key Laboratory of Crop Stress Biology for Arid Areas, Northwest Agricultural and Forestry University, Yangling, China
- Institute of Crop Science, Chinese Academy of Agricultural Sciences, National Key Facility for Crop Gene Resources and Genetic Improvement, Key Laboratory of Biology and Genetic Improvement of Triticeae Crops, Ministry of Agriculture, Beijing, China
| | - Wan-Ying Zhao
- State Key Laboratory of Crop Stress Biology for Arid Areas, Northwest Agricultural and Forestry University, Yangling, China
- Institute of Crop Science, Chinese Academy of Agricultural Sciences, National Key Facility for Crop Gene Resources and Genetic Improvement, Key Laboratory of Biology and Genetic Improvement of Triticeae Crops, Ministry of Agriculture, Beijing, China
| | - Jin-Dong Fu
- Institute of Crop Science, Chinese Academy of Agricultural Sciences, National Key Facility for Crop Gene Resources and Genetic Improvement, Key Laboratory of Biology and Genetic Improvement of Triticeae Crops, Ministry of Agriculture, Beijing, China
| | - Yong-Wei Liu
- Institute of Genetics and Physiology, Hebei Academy of Agriculture and Forestry Sciences, Plant Genetic Engineering Center of Hebei Province, Shijiazhuang, China
| | - Ming Chen
- Institute of Crop Science, Chinese Academy of Agricultural Sciences, National Key Facility for Crop Gene Resources and Genetic Improvement, Key Laboratory of Biology and Genetic Improvement of Triticeae Crops, Ministry of Agriculture, Beijing, China
| | - Yong-Bin Zhou
- Institute of Crop Science, Chinese Academy of Agricultural Sciences, National Key Facility for Crop Gene Resources and Genetic Improvement, Key Laboratory of Biology and Genetic Improvement of Triticeae Crops, Ministry of Agriculture, Beijing, China
| | - You-Zhi Ma
- Institute of Crop Science, Chinese Academy of Agricultural Sciences, National Key Facility for Crop Gene Resources and Genetic Improvement, Key Laboratory of Biology and Genetic Improvement of Triticeae Crops, Ministry of Agriculture, Beijing, China
| | - Zhao-Shi Xu
- Institute of Crop Science, Chinese Academy of Agricultural Sciences, National Key Facility for Crop Gene Resources and Genetic Improvement, Key Laboratory of Biology and Genetic Improvement of Triticeae Crops, Ministry of Agriculture, Beijing, China
| | - Ya-Jun Xi
- State Key Laboratory of Crop Stress Biology for Arid Areas, Northwest Agricultural and Forestry University, Yangling, China
| |
Collapse
|
37
|
Lv X, Li H, Chen X, Xiang X, Guo Z, Yu J, Zhou Y. The role of calcium-dependent protein kinase in hydrogen peroxide, nitric oxide and ABA-dependent cold acclimation. JOURNAL OF EXPERIMENTAL BOTANY 2018; 69:4127-4139. [PMID: 29868714 PMCID: PMC6054180 DOI: 10.1093/jxb/ery212] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2018] [Accepted: 05/25/2018] [Indexed: 05/18/2023]
Abstract
Cold acclimation-induced cold tolerance is associated with the generation of reactive oxygen species (ROS), nitric oxide (NO), and mitogen-activated protein kinases (MPKs) in plants. Here, we hypothesized that calcium-dependent protein kinases (CPKs) induce a crosstalk among ROS, NO, and MPKs, leading to the activation of abscisic acid (ABA) signaling in plant adaptation to cold stress. Results showed that cold acclimation significantly increased the transcript levels of CPK27 along with the biosynthesis of ABA in tomato (Solanum lycopersicum). Silencing of CPK27 compromised acclimation-induced cold tolerance, generation of hydrogen peroxide (H2O2) in the apoplast, NO and ABA accumulation, and the activation of MPK1/2. Crosstalk among H2O2, NO, and MPK1/2 contributes to the homeostasis of H2O2 and NO, activation of MPK1/2, and cold tolerance. ABA is also critical for CPK27-induced cold tolerance, generation of H2O2 and NO, and the activation of MPK1/2. These results strongly suggest that CPK27 may function as a positive regulator of ABA generation by activating the production of ROS and NO as well as MPK1/2 in cold adaptation.
Collapse
Affiliation(s)
- Xiangzhang Lv
- Department of Horticulture, Zijingang Campus, Zhejiang University, Hangzhou, P.R. China
| | - Huizi Li
- Department of Horticulture, Zijingang Campus, Zhejiang University, Hangzhou, P.R. China
| | - Xiaoxiao Chen
- Department of Horticulture, Zijingang Campus, Zhejiang University, Hangzhou, P.R. China
| | - Xun Xiang
- Department of Horticulture, Zijingang Campus, Zhejiang University, Hangzhou, P.R. China
| | - Zhixin Guo
- Department of Horticulture, Zijingang Campus, Zhejiang University, Hangzhou, P.R. China
| | - Jingquan Yu
- Department of Horticulture, Zijingang Campus, Zhejiang University, Hangzhou, P.R. China
- Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, Hangzhou, P.R. China
| | - Yanhong Zhou
- Department of Horticulture, Zijingang Campus, Zhejiang University, Hangzhou, P.R. China
- Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, Hangzhou, P.R. China
- Correspondence:
| |
Collapse
|
38
|
Aldon D, Mbengue M, Mazars C, Galaud JP. Calcium Signalling in Plant Biotic Interactions. Int J Mol Sci 2018; 19:E665. [PMID: 29495448 PMCID: PMC5877526 DOI: 10.3390/ijms19030665] [Citation(s) in RCA: 167] [Impact Index Per Article: 23.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2018] [Revised: 02/21/2018] [Accepted: 02/22/2018] [Indexed: 12/31/2022] Open
Abstract
Calcium (Ca2+) is a universal second messenger involved in various cellular processes, leading to plant development and to biotic and abiotic stress responses. Intracellular variation in free Ca2+ concentration is among the earliest events following the plant perception of environmental change. These Ca2+ variations differ in their spatio-temporal properties according to the nature, strength and duration of the stimulus. However, their conversion into biological responses requires Ca2+ sensors for decoding and relaying. The occurrence in plants of calmodulin (CaM) but also of other sets of plant-specific Ca2+ sensors such as calmodulin-like proteins (CMLs), Ca2+-dependent protein kinases (CDPKs) and calcineurin B-like proteins (CBLs) indicate that plants possess specific tools and machineries to convert Ca2+ signals into appropriate responses. Here, we focus on recent progress made in monitoring the generation of Ca2+ signals at the whole plant or cell level and their long distance propagation during biotic interactions. The contribution of CaM/CMLs and CDPKs in plant immune responses mounted against bacteria, fungi, viruses and insects are also presented.
Collapse
Affiliation(s)
- Didier Aldon
- Laboratoire de Recherche en Sciences Vegetales, Universite de Toulouse, CNRS, UPS, 24, Chemin de Borde-Rouge, Auzeville, BP 42617, 31326 Castanet-Tolosan, France.
| | - Malick Mbengue
- Laboratoire de Recherche en Sciences Vegetales, Universite de Toulouse, CNRS, UPS, 24, Chemin de Borde-Rouge, Auzeville, BP 42617, 31326 Castanet-Tolosan, France.
| | - Christian Mazars
- Laboratoire de Recherche en Sciences Vegetales, Universite de Toulouse, CNRS, UPS, 24, Chemin de Borde-Rouge, Auzeville, BP 42617, 31326 Castanet-Tolosan, France.
| | - Jean-Philippe Galaud
- Laboratoire de Recherche en Sciences Vegetales, Universite de Toulouse, CNRS, UPS, 24, Chemin de Borde-Rouge, Auzeville, BP 42617, 31326 Castanet-Tolosan, France.
| |
Collapse
|
39
|
Liu Y, Xu C, Zhu Y, Zhang L, Chen T, Zhou F, Chen H, Lin Y. The calcium-dependent kinase OsCPK24 functions in cold stress responses in rice. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2018; 60:173-188. [PMID: 29193704 DOI: 10.1111/jipb.12614] [Citation(s) in RCA: 69] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2017] [Accepted: 11/23/2017] [Indexed: 05/08/2023]
Abstract
Calcium-dependent protein kinases (CPKs) are serine/threonine protein kinases that function in plant stress responses. Although CPKs are recognized as key messengers in signal transduction, the specific roles of CPKs and the molecular mechanisms underlying their activity remain largely unknown. Here, we characterized the function of OsCPK24, a cytosol-localized calcium-dependent protein kinase in rice. OsCPK24 was universally and highly expressed in rice plants and was induced by cold treatment. Whereas OsCPK24 knockdown plants exhibited increased sensitivity to cold compared to wild type (WT), OsCPK24-overexpressing plants exhibited increased cold tolerance. Plants overexpressing OsCPK24 exhibited increased accumulation of proline (an osmoprotectant) and glutathione (an antioxidant) and maintained a higher GSH/GSSG (reduced glutathione to oxidized glutathione) ratio during cold stress compared to WT. In addition to these effects in response to cold stress, we observed the kinase activity of OsCPK24 varied under different calcium concentrations. Further, OsCPK24 phosphorylated OsGrx10, a glutathione-dependent thioltransferase, at rates modulated by changes in calcium concentration. Together, our results support the hypothesis that OsCPK24 functions as a positive regulator of cold stress tolerance in rice, a process mediated by calcium signaling and involving phosphorylation and the inhibition of OsGrx10 to sustain higher glutathione levels.
Collapse
Affiliation(s)
- Yu Liu
- National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan 430070, China
| | - Chunjue Xu
- Shenzhen Institute of Molecular Crop Design, Shenzhen 518107, China
| | - Yanfen Zhu
- National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan 430070, China
| | - Lina Zhang
- National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan 430070, China
| | - Taiyu Chen
- National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan 430070, China
| | - Fei Zhou
- National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan 430070, China
| | - Hao Chen
- National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan 430070, China
| | - Yongjun Lin
- National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan 430070, China
| |
Collapse
|
40
|
Yang F, Ding X, Chen J, Shen Y, Kong L, Li N, Chu Z. Functional analysis of the GRMZM2G174449 promoter to identify Rhizoctonia solani-inducible cis-elements in maize. BMC PLANT BIOLOGY 2017; 17:233. [PMID: 29202693 PMCID: PMC5715495 DOI: 10.1186/s12870-017-1181-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2017] [Accepted: 11/22/2017] [Indexed: 05/27/2023]
Abstract
BACKGROUND Banded leaf and sheath blight (BLSB), caused by the necrotrophic fungus Rhizoctonia solani, is a highly devastating disease in most maize and rice growing areas of the world. However, the molecular mechanisms of perceiving pathogen signals are poorly understood in hosts. RESULTS Here, we identified a Rhizoctonia solani-inducible promoter pGRMZM2G174449 in maize. Deletion analysis showed that the -574 to -455 fragment was necessary for pGRMZM2G174449 in responding to R. solani and this fragment contained the unknown pathogen-inducible cis-elements according to the bioinformatics analysis. Furthermore, detailed quantitative assays showed that two cis-elements, GCTGA in the -567 to -563 region and TATAT in the -485 to -481 region, were specifically responsible for the R. solani-inducible activity. A series of point mutation analysis indicated that the two cis-elements have the conserved motifs of NHWGN and DWYWT, respectively. CONCLUSION Our results indicated that pGRMZM2G174449 is a good R. solani-inducible promoter suitable for genetic engineering of BLSB resistance. And NHWGN and DWYWT are two R. solani-inducible cis-elements that play important roles in pGRMZM2G174449 responding to R. solani.
Collapse
Affiliation(s)
- Fangfang Yang
- State Key Laboratory of Crop Biology, College of Agronomy, Shandong Agricultural University, Tai an, 271018 Shandong Province People’s Republic of China
| | - Xinhua Ding
- State Key Laboratory of Crop Biology, College of Agronomy, Shandong Agricultural University, Tai an, 271018 Shandong Province People’s Republic of China
- Shandong Provincial Key Laboratory of Agricultural Microbiology, College of Plant Protection, Shandong Agricultural University, Tai an, 271018 Shandong Province People’s Republic of China
| | - Jing Chen
- Shandong Provincial Key Laboratory of Agricultural Microbiology, College of Plant Protection, Shandong Agricultural University, Tai an, 271018 Shandong Province People’s Republic of China
| | - Yanting Shen
- State Key Laboratory of Crop Biology, College of Agronomy, Shandong Agricultural University, Tai an, 271018 Shandong Province People’s Republic of China
| | - Lingguang Kong
- Shandong Provincial Key Laboratory of Agricultural Microbiology, College of Plant Protection, Shandong Agricultural University, Tai an, 271018 Shandong Province People’s Republic of China
| | - Ning Li
- State Key Laboratory of Crop Biology, College of Agronomy, Shandong Agricultural University, Tai an, 271018 Shandong Province People’s Republic of China
| | - Zhaohui Chu
- State Key Laboratory of Crop Biology, College of Agronomy, Shandong Agricultural University, Tai an, 271018 Shandong Province People’s Republic of China
| |
Collapse
|
41
|
Wang Q, Yin X, Chen Q, Xiang N, Sun X, Yang Y, Yang Y. Genome-wide survey indicates diverse physiological roles of the turnip (Brassica rapa var. rapa) calcium-dependent protein kinase genes. Sci Rep 2017; 7:15803. [PMID: 29150669 PMCID: PMC5693941 DOI: 10.1038/s41598-017-16102-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2017] [Accepted: 11/07/2017] [Indexed: 11/28/2022] Open
Abstract
Calcium-dependent protein kinases (CDPKs) as crucial sensors of calcium concentration changes play important roles in responding to abiotic and biotic stresses. In this study, 55 BrrCDPK genes, which were phylogenetically clustered into four subfamilies, were identified. Chromosome locations indicated that the CDPK family in turnip expanded by segmental duplication and genome rearrangement. Moreover, gene expression profiles showed that different BrrCDPKs were expressed in specific tissues or stages. Transcript levels of BrrCDPKs indicated that they were involved in abiotic and biotic stresses and that paralogs exhibited functional divergence. Additionally, we identified 15 Rboh genes in turnip; the results of yeast two-hybrid analysis suggested that BrrRbohD1 interacted only with BrrCDPK10 and that BrrRbohD2 interacted with BrrCDPK4/7/9/10/17/22/23. Most of the genes play an important role in pst DC3000 defense by regulating the accumulation of H2O2 and stomatal closure. Our study may provide an important foundation for future functional analysis of BrrCDPKs and reveal further biological roles.
Collapse
Affiliation(s)
- Qiuli Wang
- Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Science, Kunming, 650204, China
- Plant Germplasm and Genomics Center, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China
- Institute of Tibetan Plateau Research at Kunming, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China
- School of Life Sciences, Yunnan University, Kunming, 650091, China
| | - Xin Yin
- Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Science, Kunming, 650204, China
- Plant Germplasm and Genomics Center, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China
- Institute of Tibetan Plateau Research at Kunming, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Qian Chen
- Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Science, Kunming, 650204, China
- Plant Germplasm and Genomics Center, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China
- Institute of Tibetan Plateau Research at Kunming, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China
| | - Nan Xiang
- Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Science, Kunming, 650204, China
- Plant Germplasm and Genomics Center, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China
- Institute of Tibetan Plateau Research at Kunming, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China
| | - Xudong Sun
- Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Science, Kunming, 650204, China
- Plant Germplasm and Genomics Center, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China
- Institute of Tibetan Plateau Research at Kunming, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China
| | - Yunqiang Yang
- Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Science, Kunming, 650204, China.
- Plant Germplasm and Genomics Center, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China.
- Institute of Tibetan Plateau Research at Kunming, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China.
| | - Yongping Yang
- Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Science, Kunming, 650204, China.
- Plant Germplasm and Genomics Center, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China.
- Institute of Tibetan Plateau Research at Kunming, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China.
| |
Collapse
|
42
|
Fantino E, Segretin ME, Santin F, Mirkin FG, Ulloa RM. Analysis of the potato calcium-dependent protein kinase family and characterization of StCDPK7, a member induced upon infection with Phytophthora infestans. PLANT CELL REPORTS 2017; 36:1137-1157. [PMID: 28451820 DOI: 10.1007/s00299-017-2144-x] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2017] [Accepted: 04/15/2017] [Indexed: 05/25/2023]
Abstract
We describe the potato CDPK family and place StCDPK7 as a player in potato response to Phytophthora infestans infection, identifying phenylalanine ammonia lyase as its specific phosphorylation target in vitro. Calcium-dependent protein kinases (CDPKs) decode calcium (Ca2+) signals and activate different signaling pathways involved in hormone signaling, plant growth, development, and both abiotic and biotic stress responses. In this study, we describe the potato CDPK/CRK multigene family; bioinformatic analysis allowed us to identify 20 new CDPK isoforms, three CDPK-related kinases (CRKs), and a CDPK-like kinase. Phylogenetic analysis indicated that 26 StCDPKs can be classified into four groups, whose members are predicted to undergo different acylation patterns and exhibited diverse expression levels in different tissues and in response to various stimuli. With the aim of characterizing those members that are particularly involved in plant-pathogen interaction, we focused on StCDPK7. Tissue expression profile revealed that StCDPK7 transcript levels are high in swollen stolons, roots, and mini tubers. Moreover, its expression is induced upon Phytophthora infestans infection in systemic leaves. Transient expression assays showed that StCDPK7 displays a cytosolic/nuclear localization in spite of having a predicted chloroplast transit peptide. The recombinant protein, StCDPK7:6xHis, is an active Ca2+-dependent protein kinase that can phosphorylate phenylalanine ammonia lyase, an enzyme involved in plant defense response. The analysis of the potato CDPK family provides the first step towards the identification of CDPK isoforms involved in biotic stress. StCDPK7 emerges as a relevant player that could be manipulated to deploy disease resistance in potato crops.
Collapse
Affiliation(s)
- Elisa Fantino
- Instituto de Investigaciones en Ingeniería Genética y Biología Molecular "Dr. Héctor Torres" (INGEBI-CONICET) Vuelta de Obligado 2490, 2do piso, Ciudad Autónoma de Buenos Aires, Argentina
| | - María Eugenia Segretin
- Instituto de Investigaciones en Ingeniería Genética y Biología Molecular "Dr. Héctor Torres" (INGEBI-CONICET) Vuelta de Obligado 2490, 2do piso, Ciudad Autónoma de Buenos Aires, Argentina
- Departamento de Fisiología, Biología Molecular y Celular Universidad de Buenos Aires, Ciudad Autónoma de Buenos Aires, Argentina
| | - Franco Santin
- Instituto de Investigaciones en Ingeniería Genética y Biología Molecular "Dr. Héctor Torres" (INGEBI-CONICET) Vuelta de Obligado 2490, 2do piso, Ciudad Autónoma de Buenos Aires, Argentina
| | - Federico Gabriel Mirkin
- Instituto de Investigaciones en Ingeniería Genética y Biología Molecular "Dr. Héctor Torres" (INGEBI-CONICET) Vuelta de Obligado 2490, 2do piso, Ciudad Autónoma de Buenos Aires, Argentina
| | - Rita M Ulloa
- Instituto de Investigaciones en Ingeniería Genética y Biología Molecular "Dr. Héctor Torres" (INGEBI-CONICET) Vuelta de Obligado 2490, 2do piso, Ciudad Autónoma de Buenos Aires, Argentina.
- Departamento de Química Biológica, Universidad de Buenos Aires, Ciudad Autónoma de Buenos Aires, Argentina.
| |
Collapse
|
43
|
De Novo Assembly, Annotation, and Characterization of Root Transcriptomes of Three Caladium Cultivars with a Focus on Necrotrophic Pathogen Resistance/Defense-Related Genes. Int J Mol Sci 2017; 18:ijms18040712. [PMID: 28346370 PMCID: PMC5412298 DOI: 10.3390/ijms18040712] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2017] [Revised: 03/21/2017] [Accepted: 03/24/2017] [Indexed: 01/11/2023] Open
Abstract
Roots are vital to plant survival and crop yield, yet few efforts have been made to characterize the expressed genes in the roots of non-model plants (root transcriptomes). This study was conducted to sequence, assemble, annotate, and characterize the root transcriptomes of three caladium cultivars (Caladium × hortulanum) using RNA-Seq. The caladium cultivars used in this study have different levels of resistance to Pythiummyriotylum, the most damaging necrotrophic pathogen to caladium roots. Forty-six to 61 million clean reads were obtained for each caladium root transcriptome. De novo assembly of the reads resulted in approximately 130,000 unigenes. Based on bioinformatic analysis, 71,825 (52.3%) caladium unigenes were annotated for putative functions, 48,417 (67.4%) and 31,417 (72.7%) were assigned to Gene Ontology (GO) and Clusters of Orthologous Groups (COG), respectively, and 46,406 (64.6%) unigenes were assigned to 128 Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways. A total of 4518 distinct unigenes were observed only in Pythium-resistant "Candidum" roots, of which 98 seemed to be involved in disease resistance and defense responses. In addition, 28,837 simple sequence repeat sites and 44,628 single nucleotide polymorphism sites were identified among the three caladium cultivars. These root transcriptome data will be valuable for further genetic improvement of caladium and related aroids.
Collapse
|
44
|
Veremeichik G, Grigorchuk V, Shkryl Y, Bulgakov D, Silantieva S, Bulgakov V. Induction of resveratrol biosynthesis in Vitis amurensis cells by heterologous expression of the Arabidopsis constitutively active, Ca2+-independent form of the AtCPK1 gene. Process Biochem 2017. [DOI: 10.1016/j.procbio.2016.12.026] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
45
|
Zhang T, Hu S, Yan C, Li C, Zhao X, Wan S, Shan S. Mining, identification and function analysis of microRNAs and target genes in peanut (Arachis hypogaea L.). PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2017; 111:85-96. [PMID: 27915176 DOI: 10.1016/j.plaphy.2016.11.018] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2016] [Revised: 11/03/2016] [Accepted: 11/23/2016] [Indexed: 06/06/2023]
Abstract
In the present investigation, a total of 60 conserved peanut (Arachis hypogaea L.) microRNA (miRNA) sequences, belonging to 16 families, were identified using bioinformatics methods. There were 392 target gene sequences, identified from 58 miRNAs with Target-align software and BLASTx analyses. Gene Ontology (GO) functional analysis suggested that these target genes were involved in mediating peanut growth and development, signal transduction and stress resistance. There were 55 miRNA sequences, verified employing a poly (A) tailing test, with a success rate of up to 91.67%. Twenty peanut target gene sequences were randomly selected, and the 5' rapid amplification of the cDNA ends (5'-RACE) method were used to validate the cleavage sites of these target genes. Of these, 14 (70%) peanut miRNA targets were verified by means of gel electrophoresis, cloning and sequencing. Furthermore, functional analysis and homologous sequence retrieval were conducted for target gene sequences, and 26 target genes were chosen as the objects for stress resistance experimental study. Real-time fluorescence quantitative PCR (qRT-PCR) technology was applied to measure the expression level of resistance-associated miRNAs and their target genes in peanut exposed to Aspergillus flavus (A. flavus) infection and drought stress, respectively. In consequence, 5 groups of miRNAs & targets were found accorded with the mode of miRNA negatively controlling the expression of target genes. This study, preliminarily determined the biological functions of some resistance-associated miRNAs and their target genes in peanut.
Collapse
Affiliation(s)
- Tingting Zhang
- Shandong Peanut Research Institute, Qingdao, 266100, China
| | - Shuhao Hu
- Shandong Peanut Research Institute, Qingdao, 266100, China; Shandong University, Weihai, 264200, China
| | - Caixia Yan
- Shandong Peanut Research Institute, Qingdao, 266100, China
| | - Chunjuan Li
- Shandong Peanut Research Institute, Qingdao, 266100, China
| | - Xiaobo Zhao
- Shandong Peanut Research Institute, Qingdao, 266100, China
| | - Shubo Wan
- Shandong Academy of Agricultural Sciences, Jinan, 250100, China.
| | - Shihua Shan
- Shandong Peanut Research Institute, Qingdao, 266100, China.
| |
Collapse
|
46
|
Liu H, Che Z, Zeng X, Zhou X, Sitoe HM, Wang H, Yu D. Genome-wide analysis of calcium-dependent protein kinases and their expression patterns in response to herbivore and wounding stresses in soybean. Funct Integr Genomics 2016; 16:481-93. [PMID: 27179522 DOI: 10.1007/s10142-016-0498-8] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2015] [Revised: 04/27/2016] [Accepted: 05/03/2016] [Indexed: 12/20/2022]
Abstract
Calcium-dependent protein kinases (CDPKs) play important roles in various aspects of plant physiology and involve in many cellular processes. However, genome-wide analysis of CDPK family in plant species is limited and few studies have been reported in soybean. In this study, a total of 39 genes encoding CDPKs were identified from the whole-genome sequence of soybean (Glycine max), which were denominated as GmCPK1-GmCPK39. These 39 CDPK genes could be classified into four subfamilies, and most genes showed tissue-specific expression patterns. Eight soybean CDPKs clustered together with the previously reported CDPKs related to pathogen, wounding, or herbivore stress were further analyzed. Differential gene expression analysis of these eight CDPK genes in response to herbivore and wounding stresses helps us identify GmCPK3 and GmCPK31 as the candidate genes for herbivore resistance in soybean, whose relative transcript abundance rapidly increased after wound and herbivore attacks. Sub-cellular localization revealed that GmCPK3 and GmCPK31 were localized in plasma membranes, which is consistent with previously reported plant defense related CDPKs. These results may suggest that GmCPK3 and GmCPK31 play important roles in the plant response to biotic stress. Simultaneously, our study will provide an important foundation for further functional characterization of the soybean CDPK gene family.
Collapse
Affiliation(s)
- Hailun Liu
- National Key Laboratory of Crop Genetics and Germplasm Enhancement, National Center for Soybean Improvement, Nanjing Agricultural University, Nanjing, 210095, China
| | - Zhijun Che
- National Key Laboratory of Crop Genetics and Germplasm Enhancement, National Center for Soybean Improvement, Nanjing Agricultural University, Nanjing, 210095, China
| | - Xuanrui Zeng
- National Key Laboratory of Crop Genetics and Germplasm Enhancement, National Center for Soybean Improvement, Nanjing Agricultural University, Nanjing, 210095, China
| | - Xiaoqiong Zhou
- National Key Laboratory of Crop Genetics and Germplasm Enhancement, National Center for Soybean Improvement, Nanjing Agricultural University, Nanjing, 210095, China
| | - Hélder Manuel Sitoe
- National Key Laboratory of Crop Genetics and Germplasm Enhancement, National Center for Soybean Improvement, Nanjing Agricultural University, Nanjing, 210095, China
| | - Hui Wang
- National Key Laboratory of Crop Genetics and Germplasm Enhancement, National Center for Soybean Improvement, Nanjing Agricultural University, Nanjing, 210095, China
| | - Deyue Yu
- National Key Laboratory of Crop Genetics and Germplasm Enhancement, National Center for Soybean Improvement, Nanjing Agricultural University, Nanjing, 210095, China.
| |
Collapse
|
47
|
Veremeichik G, Bulgakov V, Shkryl Y. Modulation of NADPH-oxidase gene expression in rolB-transformed calli of Arabidopsis thaliana and Rubia cordifolia. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2016; 105:282-289. [PMID: 27208504 DOI: 10.1016/j.plaphy.2016.05.014] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2016] [Revised: 05/10/2016] [Accepted: 05/10/2016] [Indexed: 06/05/2023]
Abstract
Expression of rol genes from Agrobacterium rhizogenes induces reprogramming of transformed plant cells and provokes pleiotropic effects on primary and secondary metabolism. We have previously established that the rolB and rolC genes impair reactive oxygen species (ROS) generation in transformed cells of Rubia cordifolia and Arabidopsis thaliana. In the present investigation, we tested whether this effect is associated with changes in the expression levels of NADPH oxidases, which are considered to be the primary source of ROS during plant-microbe interactions. We identified two full-length NADPH oxidase genes from R. cordifolia and examined their expression in non-transformed and rolB-transformed calli. In addition, we examined the expression of their homologous genes from A. thaliana in non-transformed and rolB-expressing cells. The expression of Rboh isoforms was 3- to 7-fold higher in both R. cordifolia and A. thaliana rolB-transformed cells compared with non-transformed cells. Our results for the first time show that Agrobacterium rolB gene regulates particular NADPH oxidase isoforms.
Collapse
Affiliation(s)
- Galina Veremeichik
- Institute of Biology and Soil Science, Far East Branch of Russian Academy of Sciences, Vladivostok, 690022, Russia
| | - Victor Bulgakov
- Institute of Biology and Soil Science, Far East Branch of Russian Academy of Sciences, Vladivostok, 690022, Russia; Far Eastern Federal University, Vladivostok, 690950, Russia
| | - Yury Shkryl
- Institute of Biology and Soil Science, Far East Branch of Russian Academy of Sciences, Vladivostok, 690022, Russia; Far Eastern Federal University, Vladivostok, 690950, Russia.
| |
Collapse
|
48
|
Simeunovic A, Mair A, Wurzinger B, Teige M. Know where your clients are: subcellular localization and targets of calcium-dependent protein kinases. JOURNAL OF EXPERIMENTAL BOTANY 2016; 67:3855-72. [PMID: 27117335 DOI: 10.1093/jxb/erw157] [Citation(s) in RCA: 76] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Calcium-dependent protein kinases (CDPKs) are at the forefront of decoding transient Ca(2+) signals into physiological responses. They play a pivotal role in many aspects of plant life starting from pollen tube growth, during plant development, and in stress response to senescence and cell death. At the cellular level, Ca(2+) signals have a distinct, narrow distribution, thus requiring a conjoined localization of the decoders. Accordingly, most CDPKs have a distinct subcellular distribution which enables them to 'sense' the local Ca(2+) concentration and to interact specifically with their targets. Here we present a comprehensive overview of identified CDPK targets and discuss them in the context of kinase-substrate specificity and subcellular distribution of the CDPKs. This is particularly relevant for calcium-mediated phosphorylation where different CDPKs, as well as other kinases, were frequently reported to be involved in the regulation of the same target. However, often these studies were not performed in an in situ context. Thus, considering the specific expression patterns, distinct subcellular distribution, and different Ca(2+) affinities of CDPKs will narrow down the number of potential CDPKs for one given target. A number of aspects still remain unresolved, giving rise to pending questions for future research.
Collapse
Affiliation(s)
- Andrea Simeunovic
- Department of Ecogenomics and Systems Biology, University of Vienna, Althanstr. 14, 1090 Vienna, Austria
| | - Andrea Mair
- Department of Ecogenomics and Systems Biology, University of Vienna, Althanstr. 14, 1090 Vienna, Austria
| | - Bernhard Wurzinger
- Department of Ecogenomics and Systems Biology, University of Vienna, Althanstr. 14, 1090 Vienna, Austria
| | - Markus Teige
- Department of Ecogenomics and Systems Biology, University of Vienna, Althanstr. 14, 1090 Vienna, Austria
| |
Collapse
|
49
|
Li H, Ren B, Kang Z, Huang L. Comparison of cell death and accumulation of reactive oxygen species in wheat lines with or without Yr36 responding to Puccinia striiformis f. sp. tritici under low and high temperatures at seedling and adult-plant stages. PROTOPLASMA 2016; 253:787-802. [PMID: 26070270 DOI: 10.1007/s00709-015-0833-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2014] [Accepted: 05/12/2015] [Indexed: 06/04/2023]
Abstract
Yr36 is an important gene conferring resistance to stripe rust of wheat caused by Puccinia striiformis f. sp. tritici (Pst). To determine if the Yr36 resistance is correlated to reactive oxygen species (ROS) burst and cell death, wheat near-isogenic lines with (UC1041 + Yr36) and without (UC1041) the gene were histologically characterized for response to Pst infection. Yr36 conferred stripe rust resistance at both seedling and adult-plant stages when the gene line was tested with Pst race CYR29 at a high-temperature (HT) cycle (12 °C at night and 33 °C during the day). At the HT cycle, the growth of secondary hyphae was obviously suppressed in both seedlings and adult plants of UC1041 + Yr36 compared with those of UC1041. The percentages of infection sites with necrotic host cells in UC1041 + Yr36 were significantly higher than UC1041 60 hours after inoculation (hai) at both seedling and adult-plant stages. Mesophyll cell death in the inoculated UC1041 + Yr36 leaves at the HT cycle was stronger than at a low-temperature (LT) cycle (12 °C at night and 18 °C during the day). At the HT cycle, the level of ROS burst started increasing in the inoculated leaves of UC1041 + Yr36 when Pst hyphae started differentiating and extending, and simultaneously, the number of penetration sites with hypersensitive cell death was also increasing. The results indicate that Yr36 product affects the ROS accumulation and cell death of the host in interaction of wheat with Pst.
Collapse
Affiliation(s)
- Hui Li
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, 712100, People's Republic of China
| | - Bin Ren
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, 712100, People's Republic of China
| | - Zhensheng Kang
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, 712100, People's Republic of China
| | - Lili Huang
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, 712100, People's Republic of China.
| |
Collapse
|
50
|
Vivek PJ, Resmi MS, Sreekumar S, Sivakumar KC, Tuteja N, Soniya EV. Calcium-Dependent Protein Kinase in Ginger Binds with Importin-α through Its Junction Domain for Nuclear Localization, and Further Interacts with NAC Transcription Factor. FRONTIERS IN PLANT SCIENCE 2016; 7:1909. [PMID: 28133460 PMCID: PMC5233720 DOI: 10.3389/fpls.2016.01909] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2016] [Accepted: 12/02/2016] [Indexed: 05/11/2023]
Abstract
Calcium-dependent protein kinases (CDPKs) are important sensors of Ca2+ elevations in plant cells regulating the gene expression linked with various cellular processes like stress response, growth and development, metabolism, and cytoskeleton dynamics. Ginger is an extensively used spice due to its unique flavor and immense medicinal value. The two major threats that interfere with the large scale production of ginger are the salinity and drought stress. ZoCDPK1 (Zingiber officinale Calcium-dependent protein kinase 1) is a salinity and drought-inducible CDPK gene isolated from ginger and undergoes dynamic subcellular localization during stress conditions. ZoCDPK1, with signature features of a typical Ca2+ regulated kinase, also possesses a bipartite nuclear localization sequence (NLS) in its junction domain (JD). A striking feature in ZoCDPK1 is the rare occurrence of a coupling between the NLS in JD and consensus sequences in regulatory domain. Here, we further identified its nature of nuclear localization and its interaction partners. In the homology model generated for ZoCDPK1, the regulatory domain mimics the crystal structure of the regulatory domain in Arabidopsis CDPK1. Molecular docking simulation of importin (ZoIMPα), an important protein involved in nuclear translocation, into the NLS of ZoCDPK1 was well-visualized. Furthermore, the direct interaction of ZoCDPK1 and ZoIMPα proteins was studied by the yeast 2-hybrid (Y2H) system, which confirmed that junction domain (JD) is an important interaction module required for ZoCDPK1 and ZoIMPα binding. The probable interacting partners of ZoCDPK1 were also identified using Y2H experiment. Of the 10 different stress-related interacting partners identified for ZoCDPK1, NAC transcription factor (TF) needs special mention, especially in the context of ZoCDPK1 function. The interaction between ZoCDPK1 and NAC TF, in fact, corroborate with the results of gene expression and over-expression studies of ZoCDPK1. Hence ZoCDPK1 is operating through NAC TF mediated ABA-independent, cold non-responsive stress signaling pathway in ginger.
Collapse
Affiliation(s)
| | | | - Sweda Sreekumar
- Rajiv Gandhi Centre for BiotechnologyThiruvananthapuram, India
| | - K. C. Sivakumar
- Rajiv Gandhi Centre for BiotechnologyThiruvananthapuram, India
| | - Narendra Tuteja
- Amity Institute of Microbial Technology, Amity UniversityNoida, India
| | - Eppurathu Vasudevan Soniya
- Rajiv Gandhi Centre for BiotechnologyThiruvananthapuram, India
- *Correspondence: Eppurathu Vasudevan Soniya
| |
Collapse
|