1
|
Mohtaj Khorassani Y, Moghimi A, Khakzad MR, Fereidoni M, Hassani D, Torbati Gah J. Effects of hyperbaric oxygen therapy on autistic behaviors and GRIN2B gene expression in valproic acid-exposed rats. Front Neurosci 2024; 18:1385189. [PMID: 38562305 PMCID: PMC10982371 DOI: 10.3389/fnins.2024.1385189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Accepted: 03/07/2024] [Indexed: 04/04/2024] Open
Abstract
Introduction Autism is a complex neurodevelopmental condition characterized by deficits in social interaction, communication, and restricted repetitive behaviors. Hyperbaric oxygen therapy (HBOT) has emerged as a potential treatment for autism, although its effects on behavior and gene expression are not well understood. The GRIN2B gene, known for its involvement in encoding a glutamate receptor subunit crucial for neuron communication and associated with autism, was a focus of this study. Methods Using a rat model induced by prenatal exposure to valproic acid, we examined the impact of HBOT on autism-like behaviors and GRIN2B gene expression. Male Wistar rats were categorized into four groups: control, VPA (valproic acid-exposed), VPA+HBOT [2 atmosphere absolute (ATA)], and VPA+HBOT (2.5 ATA). The rats underwent several behavioral tests to assess social behavior, anxiety, stereotype and exploratory behaviors, and learning. Following the behavioral tests, the HBOT groups received 15 sessions of HBOT at pressures of 2 and 2.5 (ATA), and their behaviors were re-evaluated. Subsequently, real-time PCR was employed to measure GRIN2B gene expression in the frontal lobe. Results Our results indicated that HBOT significantly increased social interaction and exploratory behaviors in VPA-exposed rats, alongside elevated GRIN2B gene expression in their frontal lobe. Discussion Our findings imply that HBOT might have a potential role in ameliorating autism-related behaviors in the VPA rat model of autism through potential modulation of GRIN2B gene expression. However, additional research is essential to fully comprehend the underlying mechanisms and refine the HBOT protocol for optimizing its effectiveness in improving autism-related symptoms.
Collapse
Affiliation(s)
- Yalda Mohtaj Khorassani
- Rayan Research Center for Neuroscience & Behavior, Department of Biology, Faculty of Science, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Ali Moghimi
- Rayan Research Center for Neuroscience & Behavior, Department of Biology, Faculty of Science, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Mohammad Reza Khakzad
- Innovative Medical Research Center and Department of Immunology, Mashhad Medical Branch, Islamic Azad University, Mashhad, Iran
| | - Masoud Fereidoni
- Rayan Research Center for Neuroscience & Behavior, Department of Biology, Faculty of Science, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Delaram Hassani
- Department of Cellular and Molecular Biology, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Javad Torbati Gah
- Department of Biology, Faculty of Science, Mashhad Islamic Azad University, Mashhad, Iran
| |
Collapse
|
2
|
Zhuang H, Liang Z, Ma G, Qureshi A, Ran X, Feng C, Liu X, Yan X, Shen L. Autism spectrum disorder: pathogenesis, biomarker, and intervention therapy. MedComm (Beijing) 2024; 5:e497. [PMID: 38434761 PMCID: PMC10908366 DOI: 10.1002/mco2.497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 01/27/2024] [Accepted: 01/30/2024] [Indexed: 03/05/2024] Open
Abstract
Autism spectrum disorder (ASD) has become a common neurodevelopmental disorder. The heterogeneity of ASD poses great challenges for its research and clinical translation. On the basis of reviewing the heterogeneity of ASD, this review systematically summarized the current status and progress of pathogenesis, diagnostic markers, and interventions for ASD. We provided an overview of the ASD molecular mechanisms identified by multi-omics studies and convergent mechanism in different genetic backgrounds. The comorbidities, mechanisms associated with important physiological and metabolic abnormalities (i.e., inflammation, immunity, oxidative stress, and mitochondrial dysfunction), and gut microbial disorder in ASD were reviewed. The non-targeted omics and targeting studies of diagnostic markers for ASD were also reviewed. Moreover, we summarized the progress and methods of behavioral and educational interventions, intervention methods related to technological devices, and research on medical interventions and potential drug targets. This review highlighted the application of high-throughput omics methods in ASD research and emphasized the importance of seeking homogeneity from heterogeneity and exploring the convergence of disease mechanisms, biomarkers, and intervention approaches, and proposes that taking into account individuality and commonality may be the key to achieve accurate diagnosis and treatment of ASD.
Collapse
Affiliation(s)
- Hongbin Zhuang
- College of Life Science and OceanographyShenzhen UniversityShenzhenP. R. China
| | - Zhiyuan Liang
- College of Life Science and OceanographyShenzhen UniversityShenzhenP. R. China
| | - Guanwei Ma
- College of Life Science and OceanographyShenzhen UniversityShenzhenP. R. China
| | - Ayesha Qureshi
- College of Life Science and OceanographyShenzhen UniversityShenzhenP. R. China
| | - Xiaoqian Ran
- College of Life Science and OceanographyShenzhen UniversityShenzhenP. R. China
| | - Chengyun Feng
- Maternal and Child Health Hospital of BaoanShenzhenP. R. China
| | - Xukun Liu
- College of Life Science and OceanographyShenzhen UniversityShenzhenP. R. China
| | - Xi Yan
- College of Life Science and OceanographyShenzhen UniversityShenzhenP. R. China
| | - Liming Shen
- College of Life Science and OceanographyShenzhen UniversityShenzhenP. R. China
- Shenzhen‐Hong Kong Institute of Brain Science‐Shenzhen Fundamental Research InstitutionsShenzhenP. R. China
| |
Collapse
|
3
|
Tener SJ, Lin Z, Park SJ, Oraedu K, Ulgherait M, Van Beek E, Martínez-Muñiz A, Pantalia M, Gatto JA, Volpi J, Stavropoulos N, Ja WW, Canman JC, Shirasu-Hiza M. Neuronal knockdown of Cullin3 as a Drosophila model of autism spectrum disorder. Sci Rep 2024; 14:1541. [PMID: 38233464 PMCID: PMC10794434 DOI: 10.1038/s41598-024-51657-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Accepted: 01/06/2024] [Indexed: 01/19/2024] Open
Abstract
Mutations in Cullin-3 (Cul3), a conserved gene encoding a ubiquitin ligase, are strongly associated with autism spectrum disorder (ASD). Here, we characterize ASD-related pathologies caused by neuron-specific Cul3 knockdown in Drosophila. We confirmed that neuronal Cul3 knockdown causes short sleep, paralleling sleep disturbances in ASD. Because sleep defects and ASD are linked to metabolic dysregulation, we tested the starvation response of neuronal Cul3 knockdown flies; they starved faster and had lower triacylglyceride levels than controls, suggesting defects in metabolic homeostasis. ASD is also characterized by increased biomarkers of oxidative stress; we found that neuronal Cul3 knockdown increased sensitivity to hyperoxia, an exogenous oxidative stress. Additional hallmarks of ASD are deficits in social interactions and learning. Using a courtship suppression assay that measures social interactions and memory of prior courtship, we found that neuronal Cul3 knockdown reduced courtship and learning compared to controls. Finally, we found that neuronal Cul3 depletion alters the anatomy of the mushroom body, a brain region required for memory and sleep. Taken together, the ASD-related phenotypes of neuronal Cul3 knockdown flies establish these flies as a genetic model to study molecular and cellular mechanisms underlying ASD pathology, including metabolic and oxidative stress dysregulation and neurodevelopment.
Collapse
Affiliation(s)
- Samantha J Tener
- Department of Genetics and Development, Columbia University Irving Medical Center, New York, NY, 10032, USA
| | - Zhi Lin
- Department of Genetics and Development, Columbia University Irving Medical Center, New York, NY, 10032, USA
| | - Scarlet J Park
- Department of Neuroscience, The Herbert Wertheim UF Scripps Institute for Biomedical Innovation and Technology, Jupiter, FL, 33458, USA
| | - Kairaluchi Oraedu
- Department of Genetics and Development, Columbia University Irving Medical Center, New York, NY, 10032, USA
| | - Matthew Ulgherait
- Department of Genetics and Development, Columbia University Irving Medical Center, New York, NY, 10032, USA
| | - Emily Van Beek
- Waksman Institute, Rutgers University, Piscataway, NJ, 08854, USA
| | - Andrés Martínez-Muñiz
- Department of Genetics and Development, Columbia University Irving Medical Center, New York, NY, 10032, USA
| | - Meghan Pantalia
- Department of Genetics and Development, Columbia University Irving Medical Center, New York, NY, 10032, USA
| | - Jared A Gatto
- Department of Genetics and Development, Columbia University Irving Medical Center, New York, NY, 10032, USA
| | - Julia Volpi
- Department of Genetics and Development, Columbia University Irving Medical Center, New York, NY, 10032, USA
| | | | - William W Ja
- Department of Neuroscience, The Herbert Wertheim UF Scripps Institute for Biomedical Innovation and Technology, Jupiter, FL, 33458, USA
| | - Julie C Canman
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York, NY, 10032, USA
| | - Mimi Shirasu-Hiza
- Department of Genetics and Development, Columbia University Irving Medical Center, New York, NY, 10032, USA.
| |
Collapse
|
4
|
Evans MM, Kim J, Abel T, Nickl-Jockschat T, Stevens HE. Developmental Disruptions of the Dorsal Striatum in Autism Spectrum Disorder. Biol Psychiatry 2024; 95:102-111. [PMID: 37652130 PMCID: PMC10841118 DOI: 10.1016/j.biopsych.2023.08.015] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 08/10/2023] [Accepted: 08/24/2023] [Indexed: 09/02/2023]
Abstract
Autism spectrum disorder (ASD) is an increasingly prevalent neurodevelopmental condition characterized by social and communication deficits as well as patterns of restricted, repetitive behavior. Abnormal brain development has long been postulated to underlie ASD, but longitudinal studies aimed at understanding the developmental course of the disorder have been limited. More recently, abnormal development of the striatum in ASD has become an area of interest in research, partially due to overlap of striatal functions and deficit areas in ASD, as well as the critical role of the striatum in early development, when ASD is first detected. Focusing on the dorsal striatum and the associated symptom domain of restricted, repetitive behavior, we review the current literature on dorsal striatal abnormalities in ASD, including studies on functional connectivity, morphometry, and cellular and molecular substrates. We highlight that observed striatal abnormalities in ASD are often dynamic across development, displaying disrupted developmental trajectories. Important findings include an abnormal trajectory of increasing corticostriatal functional connectivity with age and increased striatal growth during childhood in ASD. We end by discussing striatal findings from animal models of ASD. In sum, the studies reviewed here demonstrate a key role for developmental disruptions of the dorsal striatum in the pathogenesis of ASD. Directing attention toward these findings will improve our understanding of ASD and of how associated deficits may be better addressed.
Collapse
Affiliation(s)
- Maya M Evans
- Department of Psychiatry, University of Iowa Carver College of Medicine, Iowa City, Iowa; Iowa Neuroscience Institute, University of Iowa, Iowa City, Iowa
| | - Jaekyoon Kim
- Department of Neuroscience and Pharmacology, University of Iowa Carver College of Medicine, Iowa City, Iowa; Iowa Neuroscience Institute, University of Iowa, Iowa City, Iowa
| | - Ted Abel
- Department of Neuroscience and Pharmacology, University of Iowa Carver College of Medicine, Iowa City, Iowa; Iowa Neuroscience Institute, University of Iowa, Iowa City, Iowa
| | - Thomas Nickl-Jockschat
- Department of Psychiatry, University of Iowa Carver College of Medicine, Iowa City, Iowa; Department of Neuroscience and Pharmacology, University of Iowa Carver College of Medicine, Iowa City, Iowa; Iowa Neuroscience Institute, University of Iowa, Iowa City, Iowa
| | - Hanna E Stevens
- Department of Psychiatry, University of Iowa Carver College of Medicine, Iowa City, Iowa; Iowa Neuroscience Institute, University of Iowa, Iowa City, Iowa.
| |
Collapse
|
5
|
Tsang B, Venditti V, Javier CM, Gerlai R. The ram cichlid (Mikrogeophagus ramirezi) learns an associative task: a new fish species for memory research. Sci Rep 2023; 13:13781. [PMID: 37612369 PMCID: PMC10447575 DOI: 10.1038/s41598-023-40739-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Accepted: 08/16/2023] [Indexed: 08/25/2023] Open
Abstract
Fish are the most species rich and evolutionarily oldest vertebrate taxon. This represents opportunities for biologists who intend to employ laboratory animals in their comparative or translational research. Yet, the overwhelming majority of such studies use a single fish species, the zebrafish, a suboptimal strategy from the comparative standpoint. Neuronal plasticity (learning and memory) is perhaps one of the most complex biological phenomena from a mechanistic standpoint, and thus its analysis could benefit from the use of evolutionarily ancient and simple vertebrate model organisms, i.e., fish species. However, learning & memory research with the zebrafish has been replete with problems. Here, we employ a novel fish species, the ram cichlid, we argue will be particularly appropriate for this purpose for practical as well as ethological/ecological reasons. First, we investigate whether the ram cichlid exhibits innate preference for certain colours (red, blue, yellow or green) in a four-choice task, the plus maze. Subsequently, we pair the apparently least preferred colour (green, the conditioned stimulus or CS) with food reward (the unconditioned stimulus, US) in the plus maze, a CS-US associative learning task. After eight pairing trials, we run a probe trial during which only the CS is presented. At this trial, we find significant preference to the CS, i.e., acquisition of memory of CS-US association. We argue that our proof-of-concept study demonstrating fast acquisition of CS-US association in the ram cichlid, coupled with the universal utility of some genome editing methods, will facilitate the mechanistic analysis of learning and memory.
Collapse
Affiliation(s)
- Benjamin Tsang
- Cell and System Biology Department, University of Toronto, Toronto, ON, Canada.
| | - Veronica Venditti
- Department of Psychology, University of Toronto Mississauga, Mississauga, ON, Canada
| | - Celina Micaela Javier
- Department of Psychology, University of Toronto Mississauga, Mississauga, ON, Canada
| | - Robert Gerlai
- Cell and System Biology Department, University of Toronto, Toronto, ON, Canada.
- Department of Psychology, University of Toronto Mississauga, Rm CCT4004, 3359 Mississauga Road, Mississauga, ON, L5L 1C6, Canada.
| |
Collapse
|
6
|
Gioia R, Seri T, Diamanti T, Fimmanò S, Vitale M, Ahlenius H, Kokaia Z, Tirone F, Micheli L, Biagioni S, Lupo G, Rinaldi A, De Jaco A, Cacci E. Adult hippocampal neurogenesis and social behavioural deficits in the R451C Neuroligin3 mouse model of autism are reverted by the antidepressant fluoxetine. J Neurochem 2022; 165:318-333. [PMID: 36583243 DOI: 10.1111/jnc.15753] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 12/07/2022] [Accepted: 12/16/2022] [Indexed: 12/31/2022]
Abstract
Neuron generation persists throughout life in the hippocampus but is altered in animal models of neurological and neuropsychiatric diseases, suggesting that disease-associated decline in cognitive and emotional hippocampal-dependent behaviours might be functionally linked with dysregulation of postnatal neurogenesis. Depletion of the adult neural stem/progenitor cell (NSPCs) pool and neurogenic decline have been recently described in mice expressing synaptic susceptibility genes associated with autism spectrum disorder (ASDs). To gain further insight into mechanisms regulating neurogenesis in mice carrying mutations in synaptic genes related to monogenic ASDs, we used the R451C Neuroligin3 knock-in (Nlgn3 KI) mouse, which is characterized by structural brain abnormalities, deficits in synaptic functions and reduced sociability. We show that the number of adult-born neurons, but not the size of the NSPC pool, was reduced in the ventral dentate gyrus in knock-in mice. Notably, this neurogenic decline was rescued by daily injecting mice with 10 mg/Kg of the antidepressant fluoxetine for 20 consecutive days. Sustained treatment also improved KI mice's sociability and increased the number of c-Fos active adult-born neurons, compared with vehicle-injected KI mice. Our study uncovers neurogenesis-mediated alterations in the brain of R451C KI mouse, showing that the R451C Nlgn3 mutation leads to lasting, albeit pharmacologically reversible, changes in the brain, affecting neuron formation in the adult hippocampus. Our results suggest that fluoxetine can ameliorate social behaviour in KI mice, at least in part, by rescuing adult hippocampal neurogenesis, which may be relevant for the pharmacological treatment of ASDs.
Collapse
Affiliation(s)
- Roberta Gioia
- Department of Biology and Biotechnology "Charles Darwin", Sapienza, University of Rome, Rome, Italy
| | - Tommaso Seri
- Department of Biology and Biotechnology "Charles Darwin", Sapienza, University of Rome, Rome, Italy
- PhD program in Behavioral Neuroscience, Sapienza University of Rome, Rome, Italy
| | - Tamara Diamanti
- Department of Biology and Biotechnology "Charles Darwin", Sapienza, University of Rome, Rome, Italy
| | - Stefania Fimmanò
- Department of Biology and Biotechnology "Charles Darwin", Sapienza, University of Rome, Rome, Italy
| | - Marina Vitale
- Department of Biology and Biotechnology "Charles Darwin", Sapienza, University of Rome, Rome, Italy
| | - Henrik Ahlenius
- Faculty of Medicine, Department of Clinical Sciences Lund, Neurology, Stem Cells, Aging and Neurodegeneration, Lund University, Lund, Sweden
- Lund Stem Cell Center, Lund, Sweden
| | - Zaal Kokaia
- Lund Stem Cell Center, Department of Clinical Sciences, Lund University Hospital, Lund, Sweden
| | - Felice Tirone
- Institute of Biochemistry and Cell Biology, National Research Council, Rome, Italy
| | - Laura Micheli
- Institute of Biochemistry and Cell Biology, National Research Council, Rome, Italy
| | - Stefano Biagioni
- Department of Biology and Biotechnology "Charles Darwin", Sapienza, University of Rome, Rome, Italy
| | - Giuseppe Lupo
- Department of Biology and Biotechnology "Charles Darwin", Sapienza, University of Rome, Rome, Italy
| | - Arianna Rinaldi
- Department of Biology and Biotechnology "Charles Darwin", Sapienza, University of Rome, Rome, Italy
- Centre for Research in Neurobiology "D. Bovet", Sapienza University of Rome, Rome, Italy
| | - Antonella De Jaco
- Department of Biology and Biotechnology "Charles Darwin", Sapienza, University of Rome, Rome, Italy
- Centre for Research in Neurobiology "D. Bovet", Sapienza University of Rome, Rome, Italy
| | - Emanuele Cacci
- Department of Biology and Biotechnology "Charles Darwin", Sapienza, University of Rome, Rome, Italy
- Centre for Research in Neurobiology "D. Bovet", Sapienza University of Rome, Rome, Italy
| |
Collapse
|
7
|
ECIROGLU H, ŞENER EF, ÖZTOP DB, ÖZMEN S, KAAN D, ÖZKUL Y. Otizm Spektrum Bozukluğu Olan Hastalarda Öğrenme ve Hafıza Bozukluklarının NEURL1 ve RGS14 Genleri ile İlişkisi. ACTA MEDICA ALANYA 2022. [DOI: 10.30565/medalanya.1136820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Aim: We aimed to evaluate the relationship between learning-memory difficulties and NEURL1 and RGS14 genes in patients with autism spectrum disorders (ASD).
Method: Forty children with ASD (20 ASD, 20 high functioning autism (HFA)) and 20 healthy controls were enrolled in this study. NEURL1 and RGS14 gene expressions in the blood samples of volunteers were assessed by quantitative Real-Time PCR (qRT-PCR). The clinical and demographical findings in patients were determined and examined relation with the gene expressions.
Results: According to our findings, NEURL1 gene expression was decreased in both patient groups compared to the control (p0.05). A statistically significant correlation was found between learning and memory difficulties and RGS14 gene expression in HFA patients (p = 0.045). There was a positive correlation between between NEURL1 and RGS14 gene expressions of ASD patients (p=0.032, r=0,59).
Conclusion: According to this study, NEURL1 gene may be proposed as a candidate gene for ASD. Nonetheless, we recommend that both genes be studied with more patients and preferably with brain tissues. These genes were evaluated for the first time in a clinical study on autism, and we believe that they will contribute to the literature in this respect.
Collapse
Affiliation(s)
- Hamiyet ECIROGLU
- ALANYA ALAADDIN KEYKUBAT UNIVERSITY, HEALTH SERVICES VOCATIONAL SCHOOL
| | | | | | | | | | | |
Collapse
|
8
|
Shahrbabaki SV, Jonaidi H, Sheibani V, Bashiri H. Early postnatal handling alters social behavior, learning, and memory of pre- and post-natal VPA-induced rat models of autism in a context-based manner. Physiol Behav 2022; 249:113739. [DOI: 10.1016/j.physbeh.2022.113739] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 02/05/2022] [Accepted: 02/09/2022] [Indexed: 12/20/2022]
|
9
|
Bicker F, Nardi L, Maier J, Vasic V, Schmeisser MJ. Criss-crossing autism spectrum disorder and adult neurogenesis. J Neurochem 2021; 159:452-478. [PMID: 34478569 DOI: 10.1111/jnc.15501] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Revised: 08/05/2021] [Accepted: 08/28/2021] [Indexed: 12/19/2022]
Abstract
Autism spectrum disorder (ASD) comprises a group of multifactorial neurodevelopmental disorders primarily characterized by deficits in social interaction and repetitive behavior. Although the onset is typically in early childhood, ASD poses a lifelong challenge for both patients and caretakers. Adult neurogenesis (AN) is the process by which new functional neurons are created from neural stem cells existing in the post-natal brain. The entire event is based on a sequence of cellular processes, such as proliferation, specification of cell fate, maturation, and ultimately, synaptic integration into the existing neural circuits. Hence, AN is implicated in structural and functional brain plasticity throughout life. Accumulating evidence shows that impaired AN may underlie some of the abnormal behavioral phenotypes seen in ASD. In this review, we approach the interconnections between the molecular pathways related to AN and ASD. We also discuss existing therapeutic approaches targeting such pathways both in preclinical and clinical studies. A deeper understanding of how ASD and AN reciprocally affect one another could reveal important converging pathways leading to the emergence of psychiatric disorders.
Collapse
Affiliation(s)
- Frank Bicker
- Institute for Microscopic Anatomy and Neurobiology, University Medical Center of the Johannes Gutenberg-University, Mainz, Germany
| | - Leonardo Nardi
- Institute for Microscopic Anatomy and Neurobiology, University Medical Center of the Johannes Gutenberg-University, Mainz, Germany
| | - Jannik Maier
- Institute for Microscopic Anatomy and Neurobiology, University Medical Center of the Johannes Gutenberg-University, Mainz, Germany
| | - Verica Vasic
- Institute for Microscopic Anatomy and Neurobiology, University Medical Center of the Johannes Gutenberg-University, Mainz, Germany
| | - Michael J Schmeisser
- Institute for Microscopic Anatomy and Neurobiology, University Medical Center of the Johannes Gutenberg-University, Mainz, Germany.,Focus Program Translational Neurosciences (FTN), University Medical Center of the Johannes Gutenberg-University, Mainz, Germany
| |
Collapse
|
10
|
Packard MG, Gadberry T, Goodman J. Neural systems and the emotion-memory link. Neurobiol Learn Mem 2021; 185:107503. [PMID: 34418544 DOI: 10.1016/j.nlm.2021.107503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 08/11/2021] [Accepted: 08/13/2021] [Indexed: 10/20/2022]
Abstract
The present brief review for this Special Issue summarizes some of the original research on the emotional modulation of memory. The review begins by highlighting the pioneering research from James L. McGaugh and colleagues demonstrating modulatory effects of post-training drug administration on memory consolidation, in particular the stress hormone epinephrine. The subsequent discovery of a critical role for the basolateral amygdala in emotional modulation of memory is described. Within the context of a multiple systems approach to memory focusing on selective roles for the hippocampus and dorsolateral striatum in cognitive and habit memory, the original studies indicating that robust emotional arousal can bias animals and humans toward the predominant use of habit memory are reviewed. This effect of emotional arousal on the relative use of multiple memory systems depends on a modulatory role of the basolateral amygdala. Finally, we briefly consider how an emotion-induced enhancement of dorsolateral striatal-dependent memory may be relevant to understanding maladaptive habitual behaviors in certain human psychopathologies.
Collapse
Affiliation(s)
- Mark G Packard
- Department of Psychological and Brain Sciences, Texas A&M University, United States.
| | - Ty Gadberry
- Department of Psychological and Brain Sciences, Texas A&M University, United States
| | - Jarid Goodman
- Department of Psychology, Delaware State University, United States
| |
Collapse
|
11
|
Daikoku T, Wiggins GA, Nagai Y. Statistical Properties of Musical Creativity: Roles of Hierarchy and Uncertainty in Statistical Learning. Front Neurosci 2021; 15:640412. [PMID: 33958983 PMCID: PMC8093513 DOI: 10.3389/fnins.2021.640412] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Accepted: 03/10/2021] [Indexed: 12/18/2022] Open
Abstract
Creativity is part of human nature and is commonly understood as a phenomenon whereby something original and worthwhile is formed. Owing to this ability, humans can produce innovative information that often facilitates growth in our society. Creativity also contributes to esthetic and artistic productions, such as music and art. However, the mechanism by which creativity emerges in the brain remains debatable. Recently, a growing body of evidence has suggested that statistical learning contributes to creativity. Statistical learning is an innate and implicit function of the human brain and is considered essential for brain development. Through statistical learning, humans can produce and comprehend structured information, such as music. It is thought that creativity is linked to acquired knowledge, but so-called "eureka" moments often occur unexpectedly under subconscious conditions, without the intention to use the acquired knowledge. Given that a creative moment is intrinsically implicit, we postulate that some types of creativity can be linked to implicit statistical knowledge in the brain. This article reviews neural and computational studies on how creativity emerges within the framework of statistical learning in the brain (i.e., statistical creativity). Here, we propose a hierarchical model of statistical learning: statistically chunking into a unit (hereafter and shallow statistical learning) and combining several units (hereafter and deep statistical learning). We suggest that deep statistical learning contributes dominantly to statistical creativity in music. Furthermore, the temporal dynamics of perceptual uncertainty can be another potential causal factor in statistical creativity. Considering that statistical learning is fundamental to brain development, we also discuss how typical versus atypical brain development modulates hierarchical statistical learning and statistical creativity. We believe that this review will shed light on the key roles of statistical learning in musical creativity and facilitate further investigation of how creativity emerges in the brain.
Collapse
Affiliation(s)
- Tatsuya Daikoku
- International Research Center for Neurointelligence (WPI-IRCN), The University of Tokyo, Tokyo, Japan
| | - Geraint A. Wiggins
- AI Lab, Vrije Universiteit Brussel, Brussels, Belgium
- School of Electronic Engineering and Computer Science, Queen Mary University of London, London, United Kingdom
| | - Yukie Nagai
- International Research Center for Neurointelligence (WPI-IRCN), The University of Tokyo, Tokyo, Japan
- Institute for AI and Beyond, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
12
|
Parker ML, Diamond RM, Auwood LH. Exploring Exceptions and Discovering Solutions: A Case Presentation of Autism and the Family. FAMILY PROCESS 2020; 59:1891-1902. [PMID: 31613401 DOI: 10.1111/famp.12500] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
As the prevalence of autism spectrum disorder (ASD) continues to rise, there is a rapidly increasing need for treatment services among individuals diagnosed with ASD and families. Currently, the majority of the evidence-based treatments, such as Applied Behavior Analysis, overlook the notable systemic effects of ASD and maintain a problem-focused lens. There is a growing body of research calling for strength-based, relational interventions that build on existing resources to enhance coping, efficacy, and well-being among families affected by ASD. Solution-Focused Brief Therapy (SFBT) is a widely practiced clinical approach that is increasingly being used among clinicians to address the systemic effects of developmental disabilities in the family. However, particular modifications to specific interventions may better accommodate autism-associated deficits in executive functioning (e.g., goal development and impulsivity), perspective taking, or restricted interests when using an SFBT approach. This article offers recommendations for adapting a solution-focused approach by modifying commonly used SFBT interventions to address family-driven treatment goals using a collaborative stance with families of children with ASD. A case presentation is included to demonstrate SFBT as informed by the unique challenges and inherent resources of families affected by ASD that have been identified in the extant literature.
Collapse
|
13
|
Navas-Pérez E, Vicente-García C, Mirra S, Burguera D, Fernàndez-Castillo N, Ferrán JL, López-Mayorga M, Alaiz-Noya M, Suárez-Pereira I, Antón-Galindo E, Ulloa F, Herrera-Úbeda C, Cuscó P, Falcón-Moya R, Rodríguez-Moreno A, D'Aniello S, Cormand B, Marfany G, Soriano E, Carrión ÁM, Carvajal JJ, Garcia-Fernàndez J. Characterization of an eutherian gene cluster generated after transposon domestication identifies Bex3 as relevant for advanced neurological functions. Genome Biol 2020; 21:267. [PMID: 33100228 PMCID: PMC7586669 DOI: 10.1186/s13059-020-02172-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2020] [Accepted: 09/25/2020] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND One of the most unusual sources of phylogenetically restricted genes is the molecular domestication of transposable elements into a host genome as functional genes. Although these kinds of events are sometimes at the core of key macroevolutionary changes, their origin and organismal function are generally poorly understood. RESULTS Here, we identify several previously unreported transposable element domestication events in the human and mouse genomes. Among them, we find a remarkable molecular domestication that gave rise to a multigenic family in placental mammals, the Bex/Tceal gene cluster. These genes, which act as hub proteins within diverse signaling pathways, have been associated with neurological features of human patients carrying genomic microdeletions in chromosome X. The Bex/Tceal genes display neural-enriched patterns and are differentially expressed in human neurological disorders, such as autism and schizophrenia. Two different murine alleles of the cluster member Bex3 display morphological and physiopathological brain modifications, such as reduced interneuron number and hippocampal electrophysiological imbalance, alterations that translate into distinct behavioral phenotypes. CONCLUSIONS We provide an in-depth understanding of the emergence of a gene cluster that originated by transposon domestication and gene duplication at the origin of placental mammals, an evolutionary process that transformed a non-functional transposon sequence into novel components of the eutherian genome. These genes were integrated into existing signaling pathways involved in the development, maintenance, and function of the CNS in eutherians. At least one of its members, Bex3, is relevant for higher brain functions in placental mammals and may be involved in human neurological disorders.
Collapse
Affiliation(s)
- Enrique Navas-Pérez
- Department of Genetics, Microbiology and Statistics, Faculty of Biology, and Institut de Biomedicina (IBUB), University of Barcelona, 08028, Barcelona, Spain
| | - Cristina Vicente-García
- Centro Andaluz de Biología del Desarrollo, CSIC-UPO-JA, Universidad Pablo de Olavide, 41013, Sevilla, Spain
| | - Serena Mirra
- Department of Genetics, Microbiology and Statistics, Faculty of Biology, and Institut de Biomedicina (IBUB), University of Barcelona, 08028, Barcelona, Spain.,Department of Cell Biology, Physiology and Immunology, and Institute of Neurosciences, University of Barcelona, 08028, Barcelona, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Instituto de Salud Carlos III (ISCIII), Madrid, Spain.,Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos III (ISCIII), 28029, Madrid, Spain
| | - Demian Burguera
- Department of Genetics, Microbiology and Statistics, Faculty of Biology, and Institut de Biomedicina (IBUB), University of Barcelona, 08028, Barcelona, Spain.,Department of Zoology, Charles University, Vinicna 7, 12844, Prague, Czech Republic
| | - Noèlia Fernàndez-Castillo
- Department of Genetics, Microbiology and Statistics, Faculty of Biology, and Institut de Biomedicina (IBUB), University of Barcelona, 08028, Barcelona, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Instituto de Salud Carlos III (ISCIII), Madrid, Spain.,Institut de Recerca Sant Joan de Déu (IR-SJD), Esplugues de Llobregat, 08950, Barcelona, Spain
| | - José Luis Ferrán
- Department of Human Anatomy, School of Medicine, University of Murcia and IMIB-Arrixaca Institute, 30120, Murcia, Spain
| | - Macarena López-Mayorga
- Centro Andaluz de Biología del Desarrollo, CSIC-UPO-JA, Universidad Pablo de Olavide, 41013, Sevilla, Spain
| | - Marta Alaiz-Noya
- Department of Physiology, Anatomy and Cell Biology, Universidad Pablo de Olavide, 41013, Sevilla, Spain.,Present Address: Instituto de Neurociencias de Alicante (Universidad Miguel Hernández - Consejo Superior de Investigaciones Científicas), Alicante, Spain
| | - Irene Suárez-Pereira
- Department of Physiology, Anatomy and Cell Biology, Universidad Pablo de Olavide, 41013, Sevilla, Spain.,Present Address: Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Neuropsychopharmacology and psychobiology research group, UCA, INiBICA, Cádiz, Spain
| | - Ester Antón-Galindo
- Department of Genetics, Microbiology and Statistics, Faculty of Biology, and Institut de Biomedicina (IBUB), University of Barcelona, 08028, Barcelona, Spain
| | - Fausto Ulloa
- Department of Cell Biology, Physiology and Immunology, and Institute of Neurosciences, University of Barcelona, 08028, Barcelona, Spain.,Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos III (ISCIII), 28029, Madrid, Spain
| | - Carlos Herrera-Úbeda
- Department of Genetics, Microbiology and Statistics, Faculty of Biology, and Institut de Biomedicina (IBUB), University of Barcelona, 08028, Barcelona, Spain
| | - Pol Cuscó
- Genome Architecture, Gene Regulation, Stem Cells and Cancer Programme, Centre for Genomic Regulation (CRG), the Barcelona Institute of Science and Technology, 08003, Barcelona, Spain.,Universitat Pompeu Fabra (UPF), 08003, Barcelona, Spain
| | - Rafael Falcón-Moya
- Department of Physiology, Anatomy and Cell Biology, Universidad Pablo de Olavide, 41013, Sevilla, Spain
| | - Antonio Rodríguez-Moreno
- Department of Physiology, Anatomy and Cell Biology, Universidad Pablo de Olavide, 41013, Sevilla, Spain
| | - Salvatore D'Aniello
- Department of Biology and Evolution of Marine Organisms, Stazione Zoologica Anton Dohrn, 80121, Naples, Italy
| | - Bru Cormand
- Department of Genetics, Microbiology and Statistics, Faculty of Biology, and Institut de Biomedicina (IBUB), University of Barcelona, 08028, Barcelona, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Instituto de Salud Carlos III (ISCIII), Madrid, Spain.,Institut de Recerca Sant Joan de Déu (IR-SJD), Esplugues de Llobregat, 08950, Barcelona, Spain
| | - Gemma Marfany
- Department of Genetics, Microbiology and Statistics, Faculty of Biology, and Institut de Biomedicina (IBUB), University of Barcelona, 08028, Barcelona, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Instituto de Salud Carlos III (ISCIII), Madrid, Spain.,Institut de Recerca Sant Joan de Déu (IR-SJD), Esplugues de Llobregat, 08950, Barcelona, Spain
| | - Eduardo Soriano
- Department of Cell Biology, Physiology and Immunology, and Institute of Neurosciences, University of Barcelona, 08028, Barcelona, Spain.,Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos III (ISCIII), 28029, Madrid, Spain.,Institució Catalana de Recerca i Estudis Avançats (ICREA), 08010, Barcelona, Spain
| | - Ángel M Carrión
- Department of Physiology, Anatomy and Cell Biology, Universidad Pablo de Olavide, 41013, Sevilla, Spain
| | - Jaime J Carvajal
- Centro Andaluz de Biología del Desarrollo, CSIC-UPO-JA, Universidad Pablo de Olavide, 41013, Sevilla, Spain.
| | - Jordi Garcia-Fernàndez
- Department of Genetics, Microbiology and Statistics, Faculty of Biology, and Institut de Biomedicina (IBUB), University of Barcelona, 08028, Barcelona, Spain.
| |
Collapse
|
14
|
Parker ML, Diamond RM, Del Guercio AD. Care Coordination of Autism Spectrum Disorder: A Solution-Focused Approach. Issues Ment Health Nurs 2020; 41:138-145. [PMID: 31322982 DOI: 10.1080/01612840.2019.1624899] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
The expanding practice of multi-disciplinary care to address the complex nature of Autism Spectrum Disorder (ASD) suggests that there is a need for a means of coordinating care that transcends the disciplinary distinctions of relevant ASD treatment providers. As ASD services become more specialized, there is a growing need for effective care coordination with providers across the systems of care. Nursing professionals are ideally qualified to support families affected by ASD, as they provide a necessary holistic lens of health and wellbeing to obtain the appropriate treatments. Solution-focused brief therapy has been applied to a growing number of clinical settings, indicating solution-focused techniques are applicable to the various contexts associated with ASD treatments. We provide a case presentation to demonstrate a solution-focused approach to address ASD-related concerns within the family that are generalizable to coordination of care.
Collapse
Affiliation(s)
- M L Parker
- Department of Family and Child Sciences, Florida State University, Tallahassee, Florida, USA
| | - Rachel M Diamond
- Department of Couples and Family Therapy, Adler University, Chicago, Illinois, USA
| | - Ashley D Del Guercio
- Department of Psychology, University of Hartford, West Hartford, Connecticut, USA
| |
Collapse
|
15
|
Preliminary Evidence That Motor Planning Is Slower and More Difficult for Children With Autism Spectrum Disorder During Motor Cooperation. Motor Control 2020; 24:127-149. [PMID: 31369997 DOI: 10.1123/mc.2019-0007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Revised: 05/07/2019] [Accepted: 06/10/2019] [Indexed: 11/18/2022]
Abstract
Children with autism spectrum disorder (ASD) exhibit impairment in helping someone else with a motor action, which may arise from impairment in selecting and preparing motor responses. Five children with ASD and five typically developing children performed a cooperative motor planning task that required them to reach for, lift, and hand an object (hammer or stick) to a researcher. The response, movement, and grasp time were measured. Children with ASD grasped the object longer on trials where they helped, indicating that the action was planned in sequence versus as a whole (i.e., prior to the onset of movement). The hammer object elicited a quicker response than the stick, suggesting the facilitation of planning by tools with inherent action properties. Finally, the increased helping of children with ASD was not mirrored by changes in the response, movement, or grasp time.
Collapse
|
16
|
A Protocol for Sedation Free MRI and PET Imaging in Adults with Autism Spectrum Disorder. J Autism Dev Disord 2019; 49:3036-3044. [PMID: 31004246 DOI: 10.1007/s10803-019-04010-3] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Imaging technologies such as positron emission tomography (PET) and magnetic resonance imaging (MRI) present unparalleled opportunities to investigate the neural basis of autism spectrum disorder (ASD). However, challenges such as deficits in social interaction, anxiety around new experiences, impaired language abilities, and hypersensitivity to sensory stimuli make participating in neuroimaging studies challenging for individuals with ASD. In this commentary, we describe the existent training protocols for preparing individuals with ASD for PET/MRI scans and our own experience developing a training protocol to facilitate the inclusion of low-functioning adults with ASD in PET-MRI studies. We hope to raise awareness of the need for more information exchange between research groups about lessons learned in this context in order to include the entire disease spectrum in neuroimaging studies.
Collapse
|
17
|
Yamamoto K, Masumoto K. Brief Report: Memory for Self-Performed Actions in Adults with Autism Spectrum Disorder: Why Does Memory of Self Decline in ASD? J Autism Dev Disord 2019; 48:3216-3222. [PMID: 29623564 DOI: 10.1007/s10803-018-3559-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The decline in self-related memory in ASD was investigated by using encoding, forgetting, and source monitoring. Participants memorized action sentences verbally, observationally, or by enacted encoding. Then, they underwent recall, recognition, and source monitoring memory tests immediately and 1 week later. If the information were properly encoded, memory performance in the enacted encoding would be the highest (enactment effect). The result of memory tests in ASD and TD people showed that enacted encoding was superior. However, recall and source monitoring in ASD was significantly lower than in TD, which was not the case for recognition and forgetting. These results suggest that the decline in memory of self in ASD is associated with a deficit in memory reconstruction and source monitoring.
Collapse
Affiliation(s)
- Kenta Yamamoto
- Graduate School of Human Development and Environment, Kobe University, 3-11, Tsurukabuto, Nada-ku, Kobe, Japan.
| | - Kouhei Masumoto
- Graduate School of Human Development and Environment, Kobe University, 3-11, Tsurukabuto, Nada-ku, Kobe, Japan
| |
Collapse
|
18
|
Gao M, Pusch R, Güntürkün O. Blocking NMDA-Receptors in the Pigeon’s Medial Striatum Impairs Extinction Acquisition and Induces a Motoric Disinhibition in an Appetitive Classical Conditioning Paradigm. Front Behav Neurosci 2019; 13:153. [PMID: 31354445 PMCID: PMC6630161 DOI: 10.3389/fnbeh.2019.00153] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2019] [Accepted: 06/21/2019] [Indexed: 11/13/2022] Open
|
19
|
Goodman J, Packard MG. There Is More Than One Kind of Extinction Learning. Front Syst Neurosci 2019; 13:16. [PMID: 31133825 PMCID: PMC6514057 DOI: 10.3389/fnsys.2019.00016] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2018] [Accepted: 04/12/2019] [Indexed: 01/15/2023] Open
Abstract
The view that different kinds of memory are mediated by dissociable neural systems has received extensive experimental support. Dissociations between memory systems are usually observed during initial acquisition, consolidation, and retrieval of memory, however increasing evidence also indicates a role for multiple memory systems in extinction behavior. The present article reviews a recent series of maze learning experiments that provide evidence for a multiple memory systems approach to extinction learning and memory. Evidence is described indicating that: (1) the hippocampus and dorsolateral striatum (DLS) mediate different kinds of extinction learning; (2) the effectiveness of different extinction protocols depends on the kind of memory being extinguished; and (3) whether a neural system is involved in extinction is also determined by the extinction protocol and kind of memory undergoing extinction. Based on these findings, a novel hypothetical model regarding the role of multiple memory systems in extinction is presented. In addition, the relevance of this multiple memory systems approach to other learning paradigms involving extinction (i.e., extinction of conditioned fear) and for treating human psychopathologies characterized by maladaptive memories (e.g., drug addiction and relapse) is briefly considered.
Collapse
Affiliation(s)
- Jarid Goodman
- Department of Psychology, Delaware State University, Dover, DE, United States
| | - Mark G. Packard
- Department of Psychological and Brain Sciences, Texas A&M University, College Station, TX, United States
| |
Collapse
|
20
|
The role of the dorsal striatum in extinction: A memory systems perspective. Neurobiol Learn Mem 2018; 150:48-55. [DOI: 10.1016/j.nlm.2018.02.028] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2017] [Revised: 01/25/2018] [Accepted: 02/28/2018] [Indexed: 11/23/2022]
|
21
|
Solek CM, Farooqi N, Verly M, Lim TK, Ruthazer ES. Maternal immune activation in neurodevelopmental disorders. Dev Dyn 2017; 247:588-619. [PMID: 29226543 DOI: 10.1002/dvdy.24612] [Citation(s) in RCA: 83] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2017] [Revised: 11/30/2017] [Accepted: 12/01/2017] [Indexed: 12/12/2022] Open
Abstract
Converging lines of evidence from basic science and clinical studies suggest a relationship between maternal immune activation (MIA) and neurodevelopmental disorders such as autism spectrum disorder (ASD) and schizophrenia. The mechanisms through which MIA increases the risk of neurodevelopmental disorders have become a subject of intensive research. This review aims to describe how dysregulation of microglial function and immune mechanisms may link MIA and neurodevelopmental pathologies. We also summarize the current evidence in animal models of MIA. Developmental Dynamics 247:588-619, 2018. © 2017 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Cynthia M Solek
- Montreal Neurological Institute, McGill University, Montreal, Quebec, Canada
| | - Nasr Farooqi
- Montreal Neurological Institute, McGill University, Montreal, Quebec, Canada
| | - Myriam Verly
- Montreal Neurological Institute, McGill University, Montreal, Quebec, Canada
| | - Tony K Lim
- Montreal Neurological Institute, McGill University, Montreal, Quebec, Canada
| | - Edward S Ruthazer
- Montreal Neurological Institute, McGill University, Montreal, Quebec, Canada
| |
Collapse
|
22
|
Carnell S, Benson L, Chang KYV, Wang Z, Huo Y, Geliebter A, Peterson BS. Neural correlates of familial obesity risk and overweight in adolescence. Neuroimage 2017; 159:236-247. [PMID: 28754348 PMCID: PMC5671352 DOI: 10.1016/j.neuroimage.2017.07.052] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2016] [Revised: 07/20/2017] [Accepted: 07/24/2017] [Indexed: 01/28/2023] Open
Abstract
BACKGROUND Rates of adolescent obesity and overweight are high. The offspring of overweight parents are at increased risk of becoming obese later in life. Investigating neural correlates of familial obesity risk and current overweight status in adolescence could help identify biomarkers that predict future obesity and that may serve as novel targets for obesity interventions. OBJECTIVE Our primary aim was to use functional MRI to compare neural responses to words denoting high or low energy density (ED) foods and non-foods, in currently lean adolescents at higher compared with lower familial risk for obesity, and in overweight compared with lean adolescents. Secondary aims were to assess group differences in subjective appetite when viewing food and non-food words, and in objective ad libitum intake of high-ED foods in a laboratory setting. DESIGN We recruited 36 adolescents (14-19y), of whom 10 were (obese/overweight "overweight"), 16 lean with obese/overweight mothers (lean high-risk, "lean-HR"), and 10 lean with lean mothers (lean low-risk, "lean-LR"). All underwent fMRI scanning while they viewed words representing high-ED foods, low-ED foods, or non-foods, and provided appetitive ratings in response to each word stimulus. They then consumed a multi-item ad libitum buffet meal. RESULTS Food compared with non-food words activated a distributed emotion/reward system including insula and pregenual anterior cingulate cortex (ACC). Participants who were at increasing risk for obesity exhibited progressively weaker activation of an attentional/regulatory system including dorsolateral prefrontal cortex (PFC), dorsal ACC, and basal ganglia nuclei (activation was greatest in lean-LR, intermediate in lean-HR, and weakest in the overweight group). These group differences were most apparent for neural responses to high-compared with low-ED foods. Lean-HR (compared with lean-LR and overweight) adolescents reported greater desire for high-ED foods. Meal intake was greatest for the overweight, then lean-HR, then lean-LR groups. CONCLUSIONS Adolescents at higher obesity risk exhibited reduced neural responses to high-ED food cues in a neural system that subserves attention and self-regulation. They also reported heightened appetitive responses to high-ED cues. Interventions that promote the capacity for self-regulation could prevent youth who have a familial predisposition for obesity from translating risk into reality.
Collapse
Affiliation(s)
- Susan Carnell
- Division of Child and Adolescent Psychiatry, Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| | - Leora Benson
- Division of Child and Adolescent Psychiatry, Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Ku-Yu Virginia Chang
- Mt Sinai St. Luke's Hospital and Department of Psychiatry, Icahn School of Medicine at Mt Sinai New York, NY, USA
| | - Zhishun Wang
- Department of Psychiatry, Columbia University Medical Center, New York, NY, USA
| | - Yuankai Huo
- Department of Psychiatry, Columbia University Medical Center, New York, NY, USA
| | - Allan Geliebter
- Mt Sinai St. Luke's Hospital and Department of Psychiatry, Icahn School of Medicine at Mt Sinai New York, NY, USA; Department of Psychology, Touro College and University System, New York, NY, USA
| | - Bradley S Peterson
- Institute for the Developing Mind, Children's Hospital Los Angeles and the Keck School of Medicine, University of Southern California, LA, USA
| |
Collapse
|
23
|
Goodman J, McIntyre CK. Impaired Spatial Memory and Enhanced Habit Memory in a Rat Model of Post-traumatic Stress Disorder. Front Pharmacol 2017; 8:663. [PMID: 29018340 PMCID: PMC5614977 DOI: 10.3389/fphar.2017.00663] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2017] [Accepted: 09/06/2017] [Indexed: 01/25/2023] Open
Abstract
High levels of emotional arousal can impair spatial memory mediated by the hippocampus, and enhance stimulus-response (S-R) habit memory mediated by the dorsolateral striatum (DLS). The present study was conducted to determine whether these memory systems may be similarly affected in an animal model of post-traumatic stress disorder (PTSD). Sprague-Dawley rats were subjected to a “single-prolonged stress” (SPS) procedure and 1 week later received training in one of two distinct versions of the plus-maze: a hippocampus-dependent place learning task or a DLS-dependent response learning task. Results indicated that, relative to non-stressed control rats, SPS rats displayed slower acquisition in the place learning task and faster acquisition in the response learning task. In addition, extinction of place learning and response learning was impaired in rats exposed to SPS, relative to non-stressed controls. The influence of SPS on hippocampal spatial memory and DLS habit memory observed in the present study may be relevant to understanding some common features of PTSD, including hippocampal memory deficits, habit-like avoidance responses to trauma-related stimuli, and greater likelihood of developing drug addiction and alcoholism.
Collapse
Affiliation(s)
- Jarid Goodman
- School of Behavioral and Brain Sciences, University of Texas at Dallas, RichardsonTX, United States
| | - Christa K McIntyre
- School of Behavioral and Brain Sciences, University of Texas at Dallas, RichardsonTX, United States
| |
Collapse
|
24
|
Cheng N, Alshammari F, Hughes E, Khanbabaei M, Rho JM. Dendritic overgrowth and elevated ERK signaling during neonatal development in a mouse model of autism. PLoS One 2017; 12:e0179409. [PMID: 28609458 PMCID: PMC5469475 DOI: 10.1371/journal.pone.0179409] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2016] [Accepted: 05/30/2017] [Indexed: 12/13/2022] Open
Abstract
Autism spectrum disorder (hereafter referred to as “ASD”) is a heterogeneous neurodevelopmental condition characterized by impaired social communication and interactions, and restricted, repetitive activities or interests. Alterations in network connectivity and memory function are frequently observed in autism patients, often involving the hippocampus. However, specific changes during early brain development leading to disrupted functioning remain largely unclear. Here, we investigated the development of dendritic arbor of hippocampal CA1 pyramidal neurons in the BTBR T+tf/J (BTBR) mouse model of autism. BTBR mice display the defining behavioural features of autism, and also exhibit impaired learning and memory. We found that compared to control C57BL/6J (B6) animals, the lengths of both apical and basal dendrites were significantly greater in neonatal BTBR animals. Further, basal dendrites in the BTBR mice had higher branching complexity. In contrast, cross-sectional area of the soma was unchanged. In addition, we observed a similar density of CA1 pyramidal neurons and thickness of the neuronal layer between the two strains. Thus, there was a specific, compartmentalized overgrowth of dendrites during early development in the BTBR animals. Biochemical analysis further showed that the extracellular signal-regulated kinases (ERK) pathway was up-regulated in the hippocampus of neonatal BTBR animals. Since dendritic structure is critical for information integration and relay, our data suggest that altered development of dendrites could potentially contribute to impaired hippocampal function and behavior observed in the BTBR model, and that this might be related to increased activation of the ERK pathway.
Collapse
Affiliation(s)
- Ning Cheng
- Developmental Neurosciences Research Program, Alberta Children’s Hospital Research Institute (ACHRI), Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
- * E-mail:
| | - Fawaz Alshammari
- O’Brien Centre for the Bachelor of Health Sciences, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Elizabeth Hughes
- Developmental Neurosciences Research Program, Alberta Children’s Hospital Research Institute (ACHRI), Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Maryam Khanbabaei
- Developmental Neurosciences Research Program, Alberta Children’s Hospital Research Institute (ACHRI), Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Jong M. Rho
- Departments of Pediatrics, Clinical Neurosciences, Physiology & Pharmacology, Alberta Children’s Hospital Research Institute (ACHRI), Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| |
Collapse
|
25
|
Goodman J, Ressler RL, Packard MG. Enhancing and impairing extinction of habit memory through modulation of NMDA receptors in the dorsolateral striatum. Neuroscience 2017; 352:216-225. [DOI: 10.1016/j.neuroscience.2017.03.042] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2017] [Revised: 03/22/2017] [Accepted: 03/26/2017] [Indexed: 01/20/2023]
|
26
|
Immature Neurons and Radial Glia, But Not Astrocytes or Microglia, Are Altered in Adult Cntnap2 and Shank3 Mice, Models of Autism. eNeuro 2016; 3:eN-CFN-0196-16. [PMID: 27785461 PMCID: PMC5066262 DOI: 10.1523/eneuro.0196-16.2016] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2016] [Revised: 09/09/2016] [Accepted: 09/09/2016] [Indexed: 12/28/2022] Open
Abstract
Autism spectrum disorder (ASD) is often associated with cognitive deficits and excessive anxiety. Neuroimaging studies have shown atypical structure and neural connectivity in the hippocampus, medial prefrontal cortex (mPFC), and striatum, regions associated with cognitive function and anxiety regulation. Adult hippocampal neurogenesis is involved in many behaviors that are disrupted in ASD, including cognition, anxiety, and social behaviors. Additionally, glial cells, such as astrocytes and microglia, are important for modulating neural connectivity during development, and glial dysfunction has been hypothesized to be a key contributor to the development of ASD. Cells with astroglial characteristics are known to serve as progenitor cells in the developing and adult brain. Here, we examined adult neurogenesis in the hippocampus, as well as astroglia and microglia in the hippocampus, mPFC, and striatum of two models that display autism-like phenotypes, Cntnap2-/- and Shank3+/ΔC transgenic mice. We found a substantial decrease in the number of immature neurons and radial glial progenitor cells in the ventral hippocampus of both transgenic models compared with wild-type controls. No consistent differences were detected in the number or size of astrocytes or microglia in any other brain region examined. Future work is needed to explore the functional contribution of adult neurogenesis to autism-related behaviors as well as to temporally characterize glial plasticity as it is associated with ASD.
Collapse
|
27
|
Wong CT, Ussyshkin N, Ahmad E, Rai-Bhogal R, Li H, Crawford DA. Prostaglandin E2promotes neural proliferation and differentiation and regulates Wnt target gene expression. J Neurosci Res 2016; 94:759-75. [DOI: 10.1002/jnr.23759] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2015] [Revised: 04/06/2016] [Accepted: 04/06/2016] [Indexed: 12/11/2022]
Affiliation(s)
- Christine T. Wong
- School of Kinesiology and Health Science; York University; Toronto Ontario Canada
- Neuroscience Graduate Diploma Program; York University; Toronto Ontario Canada
| | - Netta Ussyshkin
- Department of Biology; York University; Toronto Ontario Canada
| | - Eizaaz Ahmad
- Neuroscience Graduate Diploma Program; York University; Toronto Ontario Canada
- Department of Biology; York University; Toronto Ontario Canada
| | - Ravneet Rai-Bhogal
- Neuroscience Graduate Diploma Program; York University; Toronto Ontario Canada
- Department of Biology; York University; Toronto Ontario Canada
| | - Hongyan Li
- School of Kinesiology and Health Science; York University; Toronto Ontario Canada
| | - Dorota A. Crawford
- School of Kinesiology and Health Science; York University; Toronto Ontario Canada
- Neuroscience Graduate Diploma Program; York University; Toronto Ontario Canada
- Department of Biology; York University; Toronto Ontario Canada
| |
Collapse
|
28
|
South M, Stephenson KG, Nielson CA, Maisel M, Top DN, Kirwan CB. Overactive Pattern Separation Memory Associated with Negative Emotionality in Adults Diagnosed with Autism Spectrum Disorder. J Autism Dev Disord 2016; 45:3458-67. [PMID: 26231206 DOI: 10.1007/s10803-015-2547-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Bowler et al. (Journal of Autism and Developmental Disorders 44(9):2355-2362. doi:10.1007/s10803-014-2105-y, 2014) have suggested that a specific memory impairment in autism spectrum disorders (ASD) arises from hippocampal failure to consolidate multiple related pieces of information. Twenty-four adults diagnosed with ASD and matched healthy controls completed a pattern separation memory task that is known to critically depend on hippocampal involvement. They additionally completed questionnaires regarding anxiety, depression, and behavioral motivation. Specific deficits in pattern separation were significantly correlated with negative emotionality; the best predictor of memory deficit was from a measure of achievement motivation that has also been associated with hyperactivity and impulsivity. In the context of impaired emotion regulation in ASD, there is a need for integrated cognitive, affective, and neural systems approaches to build targeted interventions.
Collapse
Affiliation(s)
- M South
- Department of Psychology, Brigham Young University, 245 TLRB, Provo, UT, 84602, USA. .,Neuroscience Center, Brigham Young University, Provo, UT, USA.
| | - K G Stephenson
- Department of Psychology, Brigham Young University, 245 TLRB, Provo, UT, 84602, USA
| | - C A Nielson
- Neuroscience Center, Brigham Young University, Provo, UT, USA
| | - M Maisel
- Department of Psychology, Brigham Young University, 245 TLRB, Provo, UT, 84602, USA
| | - D N Top
- Department of Psychology, Brigham Young University, 245 TLRB, Provo, UT, 84602, USA
| | - C B Kirwan
- Department of Psychology, Brigham Young University, 245 TLRB, Provo, UT, 84602, USA.,Neuroscience Center, Brigham Young University, Provo, UT, USA
| |
Collapse
|
29
|
Trontel HG, Duffield TC, Bigler ED, Abildskov TJ, Froehlich A, Prigge MBD, Travers BG, Anderson JS, Zielinski BA, Alexander AL, Lange N, Lainhart JE. Mesial temporal lobe and memory function in autism spectrum disorder: an exploration of volumetric findings. J Clin Exp Neuropsychol 2015; 37:178-92. [PMID: 25749302 DOI: 10.1080/13803395.2014.997677] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Studies have shown that individuals with autism spectrum disorder (ASD) tend to perform significantly below typical developing individuals on standardized measures of memory, even when not significantly different on measures of IQ. The current study sought to examine within ASD whether anatomical correlates of memory performance differed between those with average-to-above-average IQ (AIQ group) and those with low-average to borderline ability (LIQ group) as well as in relations to typically developing comparisons (TDC). Using automated volumetric analyses, we examined regional volume of classic memory areas including the hippocampus, parahippocampal gyrus, entorhinal cortex, and amygdala in an all-male sample AIQ (n = 38) and LIQ (n = 18) individuals with ASD along with 30 typically developing comparisons (TDC). Memory performance was assessed using the Test of Memory and Learning (TOMAL) compared among the groups and then correlated with regional brain volumes. Analyses revealed group differences on almost all facets of memory and learning as assessed by the various subtests of the TOMAL. The three groups did not differ on any region of interest (ROI) memory-related brain volumes. However, significant size-memory function interactions were observed. Negative correlations were found between the volume of the amygdala and composite, verbal, and delayed memory indices for the LIQ ASD group, indicating larger volume related to poorer performance. Implications for general memory functioning and dysfunctional neural connectivity in ASD are discussed.
Collapse
Affiliation(s)
- Haley G Trontel
- a Department of Psychology , Brigham Young University , Provo , UT , USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Foti F, De Crescenzo F, Vivanti G, Menghini D, Vicari S. Implicit learning in individuals with autism spectrum disorders: a meta-analysis. Psychol Med 2015; 45:897-910. [PMID: 25126858 DOI: 10.1017/s0033291714001950] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
BACKGROUND Individuals with autism spectrum disorders (ASDs) are characterized by social communication difficulties and behavioural rigidity. Difficulties in learning from others are one of the most devastating features of this group of conditions. Nevertheless, the nature of learning difficulties in ASDs is still unclear. Given the relevance of implicit learning for social and communicative functioning, a link has been hypothesized between ASDs and implicit learning deficit. However, studies that have employed formal testing of implicit learning in ASDs provided mixed results. METHOD We undertook a systematic search of studies that examined implicit learning in ASDs using serial reaction time (SRT), alternating serial reaction time (ASRT), pursuit rotor (PR), and contextual cueing (CC) tasks, and synthesized the data using meta-analysis. A total of 11 studies were identified, representing data from 407 individuals with ASDs and typically developing comparison participants. RESULTS The results indicate that individuals with ASDs do not differ in any task considered [SRT and ASRT task: standardized mean difference (SMD) -0.18, 95% confidence interval (CI) -0.71 to 0.36; PR task: SMD -0.34, 95% CI -1.04 to 0.36; CC task: SMD 0.27, 95% CI -0.07 to 0.60]. CONCLUSIONS Based on our synthesis of the existing literature, we conclude that individuals with ASDs can learn implicitly, supporting the hypothesis that implicit learning deficits do not represent a core feature in ASDs.
Collapse
Affiliation(s)
- F Foti
- Department of Psychology,'Sapienza' University of Rome,Italy
| | - F De Crescenzo
- Child Neuropsychiatry Unit, Neuroscience Department,'Children's Hospital Bambino Gesu',Rome,Italy
| | - G Vivanti
- Olga Tennison Autism Research Centre, School of Psychological Science,La Trobe University,Melbourne, VIC,Australia
| | - D Menghini
- Child Neuropsychiatry Unit, Neuroscience Department,'Children's Hospital Bambino Gesu',Rome,Italy
| | - S Vicari
- Child Neuropsychiatry Unit, Neuroscience Department,'Children's Hospital Bambino Gesu',Rome,Italy
| |
Collapse
|
31
|
Micheau J, Vimeney A, Normand E, Mulle C, Riedel G. Impaired hippocampus-dependent spatial flexibility and sociability represent autism-like phenotypes in GluK2 mice. Hippocampus 2014; 24:1059-69. [PMID: 24753134 DOI: 10.1002/hipo.22290] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2013] [Revised: 04/08/2014] [Accepted: 04/09/2014] [Indexed: 11/06/2022]
Abstract
Autism is a complex neurodevelopmental disorder with high heritability. grik2 (which encodes the GluK2 subunit of kainate receptors) has been identified as a susceptibility gene in Autism Spectrum Disorders (ASD), but its role in the core and associated symptoms of ASD still remains elusive. We used mice lacking GluK2 (GluK2 KO) to examine their endophenotype with a view to modeling aspects of autism, including social deficits, stereotyped and repetitive behavior and decreased cognitive abilities. Anxiety was recorded in the elevated plus maze, social behavior in a three-chamber apparatus, and cognition in different water maze protocols. Deletion of the GluK2 gene reduced locomotor activity and sociability as indicated by the social interaction task. In addition, GluK2 KO mice learnt to locate a hidden platform in a water maze surrounded by a curtain with hanging cues faster than wild-type mice. They maintained a bias toward the target quadrant when some of these cues were removed, at which point wild-types orthogonalized the behavior and showed no memory. However, GluK2 KO mice were impaired in spatial reversal learning. These behavioral data together with previously published electrophysiology showing severe anomalies in CA3 network activity, suggest a computational shift in this network for enhanced propensity of pattern completion that would explain the loss of behavioral flexibility in GluK2 KO mice. Although a single mutation cannot recapitulate the entire core symptoms of ASD, our data provide evidence for glutamatergic dysfunction underlying a number of social- and cognition-related phenotypes relevant to ASD.
Collapse
Affiliation(s)
- Jacques Micheau
- Institut de Neurosciences Cognitives et Intégratives d'Aquitaine, Université de Bordeaux, CNRS, UMR 5287, 33 405, Talence, Cedex, France
| | | | | | | | | |
Collapse
|
32
|
Goodman J, Marsh R, Peterson BS, Packard MG. Annual research review: The neurobehavioral development of multiple memory systems--implications for childhood and adolescent psychiatric disorders. J Child Psychol Psychiatry 2014; 55:582-610. [PMID: 24286520 PMCID: PMC4244838 DOI: 10.1111/jcpp.12169] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 09/01/2013] [Indexed: 01/26/2023]
Abstract
Extensive evidence indicates that mammalian memory is organized into multiple brains systems, including a 'cognitive' memory system that depends on the hippocampus and a stimulus-response 'habit' memory system that depends on the dorsolateral striatum. Dorsal striatal-dependent habit memory may in part influence the development and expression of some human psychopathologies, particularly those characterized by strong habit-like behavioral features. The present review considers this hypothesis as it pertains to psychopathologies that typically emerge during childhood and adolescence. These disorders include Tourette syndrome, attention-deficit/hyperactivity disorder, obsessive-compulsive disorder, eating disorders, and autism spectrum disorders. Human and nonhuman animal research shows that the typical development of memory systems comprises the early maturation of striatal-dependent habit memory and the relatively late maturation of hippocampal-dependent cognitive memory. We speculate that the differing rates of development of these memory systems may in part contribute to the early emergence of habit-like symptoms in childhood and adolescence. In addition, abnormalities in hippocampal and striatal brain regions have been observed consistently in youth with these disorders, suggesting that the aberrant development of memory systems may also contribute to the emergence of habit-like symptoms as core pathological features of these illnesses. Considering these disorders within the context of multiple memory systems may help elucidate the pathogenesis of habit-like symptoms in childhood and adolescence, and lead to novel treatments that lessen the habit-like behavioral features of these disorders.
Collapse
Affiliation(s)
- Jarid Goodman
- The Department of Psychology, Texas A&M University, College Station, TX, USA
| | - Rachel Marsh
- The MRI Unit and Division of Child & Adolescent Psychiatry in the Department of Psychiatry, the New York State Psychiatric Institute and the College of Physicians and Surgeons, Columbia University, New York, NY, USA
| | - Bradley S. Peterson
- The MRI Unit and Division of Child & Adolescent Psychiatry in the Department of Psychiatry, the New York State Psychiatric Institute and the College of Physicians and Surgeons, Columbia University, New York, NY, USA
| | - Mark G. Packard
- The Department of Psychology, Texas A&M University, College Station, TX, USA
| |
Collapse
|
33
|
Wang J, Qin W, Liu B, Wang D, Zhang Y, Jiang T, Yu C. Variant in OXTR gene and functional connectivity of the hypothalamus in normal subjects. Neuroimage 2013; 81:199-204. [DOI: 10.1016/j.neuroimage.2013.05.029] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2013] [Revised: 04/11/2013] [Accepted: 05/05/2013] [Indexed: 10/26/2022] Open
|
34
|
Kazama A, Bachevalier J. Effects of Selective Neonatal Amygdala Damage on Concurrent Discrimination Learning and Reinforcer Devaluation in Monkeys. ACTA ACUST UNITED AC 2013; Suppl 7:5. [PMID: 24567865 PMCID: PMC3932052 DOI: 10.4172/2161-0487.s7-005] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
OBJECTIVES The amygdala is known to be a key neural structure in many neuropsychiatric disorders. Primarily known for its involvement in fear regulation, the amygdala also plays a critical role in appetitive flexible decision-making. Yet, its contribution to the development of flexible goal-directed behavior has not been thoroughly examined. DESIGN The current study examined flexible decision-making abilities after neonatal amygdala lesions in nonhuman primates using a behavioral paradigm known to measure the flexible monitoring of goal-directed choices in rodents, monkeys, and humans. METHOD Rhesus monkeys of both sexes were divided into two groups, a sham-operated control group (N=4) and a group with neonatal neurotoxic amygdala lesions (N=5). Animals received the lesions at 1-2 weeks and were tested at both four and six years of age on a concurrent discrimination reinforcer devaluation task. RESULTS Although neonatal amygdala damage spared learning stimulus-reward associations, it severely impaired the ability to flexibly shift object choices away from those items associated with devalued food rewards. The results were similar to those obtained in monkeys that had acquired the same lesions in adulthood. CONCLUSIONS Thus, the amygdala is critical for appetitive decision-making, and provide further evidence of little functional sparing after early amygdala insult. The findings are discussed in relation to other behavioral measures on the same animals and to clinical neuropsychiatric disorders.
Collapse
Affiliation(s)
- Am Kazama
- Yerkes National Primate Research Center and Department of Psychology, Emory University, Atlanta, GA, USA
| | - J Bachevalier
- Yerkes National Primate Research Center and Department of Psychology, Emory University, Atlanta, GA, USA
| |
Collapse
|
35
|
Poljac E, Bekkering H. A review of intentional and cognitive control in autism. Front Psychol 2012; 3:436. [PMID: 23112781 PMCID: PMC3481002 DOI: 10.3389/fpsyg.2012.00436] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2012] [Accepted: 10/02/2012] [Indexed: 11/13/2022] Open
Abstract
Different clinical studies have provided empirical evidence for impairments in cognitive control in individuals with autism spectrum disorders (ASD). The challenge arises, however, when trying to specify the neurocognitive mechanisms behind the reported observations of deviant patterns of goal-directed behavior in ASD. Studies trying to test specific assumptions by applying designs that are based on a more controlled experimental conditions often fail in providing strong evidence for an impairment in specific cognitive functions. In this review, we summarize and critically reflect on behavioral findings and their theoretical explanations regarding cognitive control processing in autism, also from a developmental perspective. The specific focus of this review is the recent evidence of deficits in intentional control – a specific subset of cognitive control processes that biases the choice of our behavioral goals – coming from different research fields. We relate this evidence to the cognitive rigidity observed in ASD and argue that individuals with ASD experience problems at the intentional level rather than at the level of implementation of intentions. Both these processes are related to cognitive control mechanisms but in different ways. Finally, we discuss new directions in studying cognitive control in ASD and how these relate to adaptive cognition.
Collapse
Affiliation(s)
- Edita Poljac
- Department of Experimental Psychology, University of Oxford Oxford, UK
| | | |
Collapse
|
36
|
Santosh PJ. A neural systems approach in autism spectrum disorders. Dev Med Child Neurol 2012; 54:206-7. [PMID: 22324642 DOI: 10.1111/j.1469-8749.2012.04222.x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|