1
|
Acute Hypobaric Hypoxia Exposure Causes Neurobehavioral Impairments in Rats: Role of Brain Catecholamines and Tetrahydrobiopterin Alterations. Neurochem Res 2023; 48:471-486. [PMID: 36205808 DOI: 10.1007/s11064-022-03767-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 09/12/2022] [Accepted: 09/22/2022] [Indexed: 02/07/2023]
Abstract
Hypoxia is a state in which the body or a specific part of the body is deprived of adequate oxygen supply at the tissue level. Sojourners involved in different activities at high altitudes (> 2500 m) face hypobaric hypoxia (HH) due to low oxygen in the atmosphere. HH is an example of generalized hypoxia, where the homeostasis of the entire body of an organism is affected and results in neurochemical changes. It is known that lower O2 levels affect catecholamines (CA), severely impairing cognitive and locomotor behavior. However, there is less evidence on the effect of HH-mediated alteration in brain Tetrahydrobiopterin (BH4) levels and its role in neurobehavioral impairments. Hence, this study aimed to shed light on the effect of acute HH on CA and BH4 levels with its neurobehavioral impact on Wistar rat models. After HH exposure, significant alteration of the CA levels in the discrete brain regions, viz., frontal cortex, hippocampus, midbrain, and cerebellum was observed. HH exposure significantly reduced spontaneous motor activity, motor coordination, and spatial memory. The present study suggests that the HH-induced behavioral changes might be related to the alteration of the expression pattern of CA and BH4-related genes and proteins in different rat brain regions. Overall, this study provides novel insights into the role of BH4 and CA in HH-induced neurobehavioral impairments.
Collapse
|
2
|
Zhao Y, Liu Y, Xu Y, Li K, Zhou L, Qiao H, Xu Q, Zhao J. The Role of Ferroptosis in Blood-Brain Barrier Injury. Cell Mol Neurobiol 2023; 43:223-236. [PMID: 35106665 DOI: 10.1007/s10571-022-01197-5] [Citation(s) in RCA: 17] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Accepted: 01/20/2022] [Indexed: 01/07/2023]
Abstract
The blood-brain barrier (BBB) is an important barrier that maintains homeostasis within the central nervous system. Brain microvascular endothelial cells are arranged to form vessel walls and express tight junctional complexes that limit the paracellular pathways of the BBB and therefore play a crucial role in ensuring brain function. These vessel walls tightly regulate the movement of ions, molecules, and cells between the blood and the brain, which protect the neural tissue from toxins and pathogens. Primary damage caused by BBB dysfunction can disrupt the expression of tight junctions, transport proteins and leukocyte adhesion molecules, leading to brain edema, disturbances in ion homeostasis, altered signaling and immune infiltration, which can lead to neuronal cell death. Various neurological diseases are known to cause BBB dysfunction, but the mechanism that causes this disorder is not clear. Recently, ferroptosis has been found to play an important role in BBB dysfunction. Ferroptosis is a new form of regulatory cell death, which is caused by the excessive accumulation of lipid peroxides and iron-dependent reactive oxygen species. This review summarizes the role of ferroptosis in BBB dysfunction and the latest progress of ferroptosis mechanism, and further discusses the influence of various factors of ferroptosis on the severity and prognosis of BBB dysfunction, which may provide better therapeutic targets for BBB dysfunction.
Collapse
Affiliation(s)
- Yao Zhao
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China.,Department of Pathophysiology, Xiangya School of Medicine, Central South University, Changsha, 410008, Hunan, China.,Sepsis Translational Medicine Key Lab of Hunan Province, Changsha, 410008, Hunan, China.,China-Africa Research Center of Infectious Diseases, Central South University, Changsha, 410008, Hunan, China
| | - Ying Liu
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China. .,Department of Pathophysiology, Xiangya School of Medicine, Central South University, Changsha, 410008, Hunan, China. .,Sepsis Translational Medicine Key Lab of Hunan Province, Changsha, 410008, Hunan, China. .,China-Africa Research Center of Infectious Diseases, Central South University, Changsha, 410008, Hunan, China.
| | - Yunfei Xu
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China.,Department of Pathophysiology, Xiangya School of Medicine, Central South University, Changsha, 410008, Hunan, China.,Sepsis Translational Medicine Key Lab of Hunan Province, Changsha, 410008, Hunan, China.,China-Africa Research Center of Infectious Diseases, Central South University, Changsha, 410008, Hunan, China
| | - Kexin Li
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China.,Department of Pathophysiology, Xiangya School of Medicine, Central South University, Changsha, 410008, Hunan, China.,Sepsis Translational Medicine Key Lab of Hunan Province, Changsha, 410008, Hunan, China.,China-Africa Research Center of Infectious Diseases, Central South University, Changsha, 410008, Hunan, China
| | - Lin Zhou
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China.,Department of Pathophysiology, Xiangya School of Medicine, Central South University, Changsha, 410008, Hunan, China.,Sepsis Translational Medicine Key Lab of Hunan Province, Changsha, 410008, Hunan, China.,China-Africa Research Center of Infectious Diseases, Central South University, Changsha, 410008, Hunan, China
| | - Haoduo Qiao
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China.,Department of Pathophysiology, Xiangya School of Medicine, Central South University, Changsha, 410008, Hunan, China.,Sepsis Translational Medicine Key Lab of Hunan Province, Changsha, 410008, Hunan, China.,China-Africa Research Center of Infectious Diseases, Central South University, Changsha, 410008, Hunan, China
| | - Qing Xu
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China.,Department of Pathophysiology, Xiangya School of Medicine, Central South University, Changsha, 410008, Hunan, China.,Sepsis Translational Medicine Key Lab of Hunan Province, Changsha, 410008, Hunan, China.,China-Africa Research Center of Infectious Diseases, Central South University, Changsha, 410008, Hunan, China
| | - Jie Zhao
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China.
| |
Collapse
|
3
|
Fanet H, Capuron L, Castanon N, Calon F, Vancassel S. Tetrahydrobioterin (BH4) Pathway: From Metabolism to Neuropsychiatry. Curr Neuropharmacol 2021; 19:591-609. [PMID: 32744952 PMCID: PMC8573752 DOI: 10.2174/1570159x18666200729103529] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Revised: 07/03/2020] [Accepted: 07/23/2020] [Indexed: 11/22/2022] Open
Abstract
Tetrahydrobipterin (BH4) is a pivotal enzymatic cofactor required for the synthesis of serotonin, dopamine and nitric oxide. BH4 is essential for numerous physiological processes at periphery and central levels, such as vascularization, inflammation, glucose homeostasis, regulation of oxidative stress and neurotransmission. BH4 de novo synthesis involves the sequential activation of three enzymes, the major controlling point being GTP cyclohydrolase I (GCH1). Complementary salvage and recycling pathways ensure that BH4 levels are tightly kept within a physiological range in the body. Even if the way of transport of BH4 and its ability to enter the brain after peripheral administration is still controversial, data showed increased levels in the brain after BH4 treatment. Available evidence shows that GCH1 expression and BH4 synthesis are stimulated by immunological factors, notably pro-inflammatory cytokines. Once produced, BH4 can act as an anti- inflammatory molecule and scavenger of free radicals protecting against oxidative stress. At the same time, BH4 is prone to autoxidation, leading to the release of superoxide radicals contributing to inflammatory processes, and to the production of BH2, an inactive form of BH4, reducing its bioavailability. Alterations in BH4 levels have been documented in many pathological situations, including Alzheimer's disease, Parkinson's disease and depression, in which increased oxidative stress, inflammation and alterations in monoaminergic function are described. This review aims at providing an update of the knowledge about metabolism and the role of BH4 in brain function, from preclinical to clinical studies, addressing some therapeutic implications.
Collapse
Affiliation(s)
- H. Fanet
- INRAe, Nutrition and Integrated Neurobiology, UMR 1286, Bordeaux, France
- Université de Bordeaux, Nutrition and Integrated Neurobiology, UMR 1286, Bordeaux, France
- Faculty of Pharmacy, Université Laval, Quebec City, QC, Canada
- Neurosciences Axis, Centre de Recherche du CHU de Québec-Université Laval, Quebec City, QC, Canada
- OptiNutriBrain International Associated Laboratory (NurtriNeuro France-INAF Canada), Quebec City, Canada
| | - L. Capuron
- INRAe, Nutrition and Integrated Neurobiology, UMR 1286, Bordeaux, France
- Université de Bordeaux, Nutrition and Integrated Neurobiology, UMR 1286, Bordeaux, France
- OptiNutriBrain International Associated Laboratory (NurtriNeuro France-INAF Canada), Quebec City, Canada
| | - N. Castanon
- INRAe, Nutrition and Integrated Neurobiology, UMR 1286, Bordeaux, France
- Université de Bordeaux, Nutrition and Integrated Neurobiology, UMR 1286, Bordeaux, France
- OptiNutriBrain International Associated Laboratory (NurtriNeuro France-INAF Canada), Quebec City, Canada
| | - F. Calon
- Faculty of Pharmacy, Université Laval, Quebec City, QC, Canada
- Neurosciences Axis, Centre de Recherche du CHU de Québec-Université Laval, Quebec City, QC, Canada
- OptiNutriBrain International Associated Laboratory (NurtriNeuro France-INAF Canada), Quebec City, Canada
| | - S. Vancassel
- INRAe, Nutrition and Integrated Neurobiology, UMR 1286, Bordeaux, France
- Université de Bordeaux, Nutrition and Integrated Neurobiology, UMR 1286, Bordeaux, France
- OptiNutriBrain International Associated Laboratory (NurtriNeuro France-INAF Canada), Quebec City, Canada
| |
Collapse
|
4
|
Wu Y, Chen P, Sun L, Yuan S, Cheng Z, Lu L, Du H, Zhan M. Sepiapterin reductase: Characteristics and role in diseases. J Cell Mol Med 2020; 24:9495-9506. [PMID: 32734666 PMCID: PMC7520308 DOI: 10.1111/jcmm.15608] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Revised: 05/05/2020] [Accepted: 06/21/2020] [Indexed: 12/16/2022] Open
Abstract
Sepiapterin reductase, a homodimer composed of two subunits, plays an important role in the biosynthesis of tetrahydrobiopterin. Furthermore, sepiapterin reductase exhibits a wide distribution in different tissues and is associated with many diseases, including brain dysfunction, chronic pain, cardiovascular disease and cancer. With regard to drugs targeting sepiapterin reductase, many compounds have been identified and provide potential methods to treat various diseases. However, the underlying mechanism of sepiapterin reductase in many biological processes is unclear. Therefore, this article summarized the structure, distribution and function of sepiapterin reductase, as well as the relationship between sepiapterin reductase and different diseases, with the aim of finding evidence to guide further studies on the molecular mechanisms and the potential clinical value of sepiapterin reductase. In particular, the different effects induced by the depletion of sepiapterin reductase or the inhibition of the enzyme suggest that the non-enzymatic activity of sepiapterin reductase could function in certain biological processes, which also provides a possible direction for sepiapterin reductase research.
Collapse
Affiliation(s)
- Yao Wu
- Jiangsu Key Laboratory of Drug ScreeningChina Pharmaceutical UniversityNanjingChina
| | - Peng Chen
- Department of NeurosurgeryThe Second Affiliated Hospital of Nanchang UniversityNanchangChina
| | - Li Sun
- Jiangsu Key Laboratory of Drug ScreeningChina Pharmaceutical UniversityNanjingChina
| | - Shengtao Yuan
- Jiangsu Key Laboratory of Drug ScreeningChina Pharmaceutical UniversityNanjingChina
| | - Zujue Cheng
- Department of NeurosurgeryThe Second Affiliated Hospital of Nanchang UniversityNanchangChina
| | - Ligong Lu
- Interventional Radiology CenterZhuhai People's HospitalZhuhai Hospital Affiliated with Jinan UniversityZhuhaiChina
| | - Hongzhi Du
- School of PharmacyHubei University of Chinese MedicineWuhanChina
| | - Meixiao Zhan
- Interventional Radiology CenterZhuhai People's HospitalZhuhai Hospital Affiliated with Jinan UniversityZhuhaiChina
| |
Collapse
|
5
|
Ghisoni K, Martins RDP, Barbeito L, Latini A. Neopterin as a potential cytoprotective brain molecule. J Psychiatr Res 2015; 71:134-9. [PMID: 26476490 DOI: 10.1016/j.jpsychires.2015.10.003] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/30/2015] [Revised: 09/18/2015] [Accepted: 10/01/2015] [Indexed: 11/29/2022]
Abstract
Neopterin, a byproduct of the tetrahydrobiopterin de novo pathway, is found in increased levels in cerebrospinal fluid and plasma and significantly increases upon damage, infection or during immune system activation. The production of this compound seems almost restricted to the monocyte/macrophage linage cells, in response to interferon-γ stimulation. However, it is unclear whether and which nervous cells are able to synthesize neopterin, respond to any stressor applied extracellularly, or even the role of the compound in the central nervous system. Here we propose a potential cytoprotective role of neopterin in the brain, and show evidence that cultured rat astrocytes are responsive to the molecule; the pterin elicited increased hemeoxygenase-1 cellular content and decreased oxidative stress induced by mitochondrial dysfunction. Further studies are needed to clarify neopterin's cytoprotective effects in the central nervous system, and its potential role in different neuroinflammatory diseases.
Collapse
Affiliation(s)
- Karina Ghisoni
- Laboratório de Bioenergética e Estresse Oxidativo - LABOX, Departamento de Bioquímica, Universidade Federal de Santa Catarina, Florianópolis, SC, Brazil
| | - Roberta de Paula Martins
- Laboratório de Bioenergética e Estresse Oxidativo - LABOX, Departamento de Bioquímica, Universidade Federal de Santa Catarina, Florianópolis, SC, Brazil
| | | | - Alexandra Latini
- Laboratório de Bioenergética e Estresse Oxidativo - LABOX, Departamento de Bioquímica, Universidade Federal de Santa Catarina, Florianópolis, SC, Brazil.
| |
Collapse
|
6
|
Martins-de-Souza D, Cassoli JS, Nascimento JM, Hensley K, Guest PC, Pinzon-Velasco AM, Turck CW. The protein interactome of collapsin response mediator protein-2 (CRMP2/DPYSL2) reveals novel partner proteins in brain tissue. Proteomics Clin Appl 2015; 9:817-31. [PMID: 25921334 DOI: 10.1002/prca.201500004] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2015] [Revised: 03/23/2015] [Accepted: 04/27/2015] [Indexed: 01/18/2023]
Abstract
PURPOSE Collapsin response mediator protein-2 (CRMP2) is a CNS protein involved in neuronal development, axonal and neuronal growth, cell migration, and protein trafficking. Recent studies have linked perturbations in CRMP2 function to neurodegenerative disorders such as Alzheimer's disease, neuropathic pain, and Batten disease, and to psychiatric disorders such as schizophrenia. Like most proteins, CRMP2 functions though interactions with a molecular network of proteins and other molecules. EXPERIMENTAL DESIGN Here, we have attempted to identify additional proteins of the CRMP2 interactome to provide further leads about its roles in neurological functions. We used a combined co-immunoprecipitation and shotgun proteomic approach in order to identify CRMP2 protein partners. RESULTS We identified 78 CRMP2 protein partners not previously reported in public protein interaction databases. These were involved in seven biological processes, which included cell signaling, growth, metabolism, trafficking, and immune function, according to Gene Ontology classifications. Furthermore, 32 different molecular functions were found to be associated with these proteins, such as RNA binding, ribosomal functions, transporter activity, receptor activity, serine/threonine phosphatase activity, cell adhesion, cytoskeletal protein binding and catalytic activity. In silico pathway interactome construction revealed a highly connected network with the most overrepresented functions corresponding to semaphorin interactions, along with axon guidance and WNT5A signaling. CONCLUSIONS AND CLINICAL RELEVANCE Taken together, these findings suggest that the CRMP2 pathway is critical for regulating neuronal and synaptic architecture. Further studies along these lines might uncover novel biomarkers and drug targets for use in drug discovery.
Collapse
Affiliation(s)
- Daniel Martins-de-Souza
- Laboratory of Neuroproteomics, Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas (UNICAMP), Campinas, SP, Brazil.,UNICAMP's Neurobiology Center, Campinas, Brazil
| | - Juliana S Cassoli
- Laboratory of Neuroproteomics, Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas (UNICAMP), Campinas, SP, Brazil
| | - Juliana M Nascimento
- Laboratory of Neuroproteomics, Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas (UNICAMP), Campinas, SP, Brazil.,D'Or Institute for Research and Education (IDOR), Rio de Janeiro, Brazil
| | - Kenneth Hensley
- Department of Pathology, University of Toledo, Toledo, OH, USA.,Department of Neurosciences, University of Toledo, Toledo, OH, USA
| | - Paul C Guest
- Laboratory of Neuroproteomics, Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas (UNICAMP), Campinas, SP, Brazil
| | - Andres M Pinzon-Velasco
- Bioinformatics and Computational Systems Biology Group, Institute for Genetics, National University of Colombia, Bogotá, Colombia
| | - Christoph W Turck
- Department of Translational Research in Psychiatry, Max Planck Institute of Psychiatry, Munich, Germany
| |
Collapse
|
7
|
Kim K, Kim H, Yim J. Functional analysis of sepiapterin reductase in Drosophila melanogaster. Pteridines 2015. [DOI: 10.1515/pterid-2014-0018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Abstract
Sepiapterin reductase (SR) is a key enzyme involved in the biosynthesis of tetrahydrobiopterin (BH4), an essential cofactor for the synthesis of important biogenic amines, including catecholamines and serotonin. BH4 deficiencies have been implicated in several neurological disorders. Here, we characterized sepiapterin reductase (SR) loss-of-function mutants in Drosophila melanogaster and demonstrated that SR mutations are responsible for hyposensitivity to oxidative stress. Biochemical analysis further revealed that SR activity and BH4 levels in SR mutants were significantly reduced. Furthermore, we showed that the levels of phosphorylated Akt and total Akt protein were increased in SR mutants. Our findings indicate that SR plays an important role in the Akt pathway and that SR mutants will be a valuable tool for investigating the physiological functions of BH4.
Collapse
Affiliation(s)
- Kiyoung Kim
- Department of Medical Biotechnology, Soonchunhyang University, Asan 336-745, Korea
| | - Heuijong Kim
- School of Biological Sciences, Seoul National University, Seoul 151-742, Korea
| | - Jeongbin Yim
- Department of Medical Biotechnology, Soonchunhyang University, Asan 336-745, Korea
| |
Collapse
|
8
|
Fujii T, Abe H, Kawamoto M, Katsuma S, Banno Y, Shimada T. Albino (al) is a tetrahydrobiopterin (BH4)-deficient mutant of the silkworm Bombyx mori. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2013; 43:594-600. [PMID: 23567588 DOI: 10.1016/j.ibmb.2013.03.009] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2012] [Revised: 03/14/2013] [Accepted: 03/16/2013] [Indexed: 06/02/2023]
Abstract
Albino (al) is a lethal mutant of Bombyx mori that exhibits a colourless cuticle after the first ecdysis and dies without feeding on mulberry. Previous studies have indicated that sclerotisation was insufficient because of defective phenylalanine and tyrosine metabolism in albino larvae. However, the genetic mechanism underlying the albino phenotype has not been determined. Dopamine plays a central role in insect cuticle colouration and sclerotisation. The pathway for dopamine biosynthesis from phenylalanine involves phenylalanine hydroxylase (PAH; EC 1.14.16.1) and tyrosine hydroxylase (TH; EC 1.14.16.2). Tetrahydrobiopterin (BH4) is an essential cofactor of aromatic amino acid hydroxylases, including PAH and TH. Thus, BH4 is indispensable for cuticle colouration and sclerotisation. Here we report on identifying mutations in the gene that encodes for the Bombyx homolog of 6-pyruvoyl-tetrahydropterin synthase (PTS) which is involved in the biosynthesis of BH4, in 2 strains with different al alleles. In strain a60 (al), a transposable element was inserted in exon 2 of BmPTS. In strain a61 (al²), an 11-bp deletion was identified in the exon 2 region of BmPTS. After oral administration of BH4 to the al² larvae, the survival rate was effectively increased and the larval integument was pigmented. These results indicated that BmPTS was responsible for the albino mutants of B. mori. We conclude that (i) a mutation in BmPTS leads to an insufficient supply of BH4 and results in defective dopamine biosynthesis and (ii) lack of dopamine results in cuticle colouration and sclerotisation failure. Lemon (lem) is a BH4-deficient mutant. It has been reported that de novo synthesis of zygotic BH4 was indispensable for viability of the embryo in eggs laid by lem (lem/lem¹) females. We found that lem/lem, al²/al² larvae produced by lem (lem/lem) females were viable during the first instar stage, suggesting that al²/al² embryo could synthesis BH4 by using maternally transmitted BmPTS.
Collapse
Affiliation(s)
- Tsuguru Fujii
- Institute of Genetic Resources, Graduate School of Bioresource and Bioenvironmental Sciences, Kyushu University, Hakozaki 6-10-1, Higashi-ku, Fukuoka 812-8581, Japan.
| | | | | | | | | | | |
Collapse
|
9
|
Abstract
Understanding and consequently treating neuropathic pain effectively is a challenge for modern medicine, as unlike inflammation, which can be controlled relatively well, chronic pain due to nerve injury is refractory to most current therapeutics. Here we define a target pathway for a new class of analgesics, tetrahydrobiopterin (BH4) synthesis and metabolism. BH4 is an essential co-factor in the synthesis of serotonin, dopamine, epinephrine, norepinephrine and nitric oxide and as a result, its availability influences many systems, including neurons. Following peripheral nerve damage, levels of BH4 are dramatically increased in sensory neurons, consequently this has a profound effect on the physiology of these cells, causing increased activity and pain hypersensitivity. These changes are principally due to the upregulation of the rate limiting enzyme for BH4 synthesis GTP Cyclohydrolase 1 (GCH1). A GCH1 pain-protective haplotype which decreases pain levels in a variety of settings, by reducing the levels of endogenous activation of this enzyme, has been characterized in humans. Here we define the control of BH4 homeostasis and discuss the consequences of large perturbations within this system, both negatively via genetic mutations and after pathological increases in the production of this cofactor that result in chronic pain. We explain the nature of the GCH1 reduced-function haplotype and set out the potential for a ' BH4 blocking' drug as a novel analgesic.
Collapse
Affiliation(s)
- Alban Latremoliere
- F.M. Kirby Neurobiology Center, Children’s Hospital Boston, Harvard Medical School, 3 Blackfan Circle, CLS 12260, Boston, MA 02115, USA
| | - Michael Costigan
- F.M. Kirby Neurobiology Center, Children’s Hospital Boston, Harvard Medical School, 3 Blackfan Circle, CLS 12260, Boston, MA 02115, USA
| |
Collapse
|
10
|
Gerecke KM, Jiao Y, Pani A, Pagala V, Smeyne RJ. Exercise protects against MPTP-induced neurotoxicity in mice. Brain Res 2010; 1341:72-83. [PMID: 20116369 DOI: 10.1016/j.brainres.2010.01.053] [Citation(s) in RCA: 83] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2009] [Revised: 01/06/2010] [Accepted: 01/18/2010] [Indexed: 01/11/2023]
Abstract
Exercise has been shown to be potently neuroprotective in several neurodegenerative models, including 1-methyl-4-phenyl-1, 2, 3, 6-tetrahydropyridine (MPTP) model of Parkinson's disease (PD). In order to determine the critical duration of exercise necessary for DA neuroprotection, mice were allowed to run for either 1, 2 or 3months prior to treatment with saline or MPTP. Quantification of DA neurons in the SNpc show that mice allowed to run unrestricted for 1 or 2months lost significant numbers of neurons following MPTP administration as compared to saline treated mice; however, 3months of exercise provided complete protection against MPTP-induced neurotoxicity. To determine the critical intensity of exercise for DA neuroprotection, mice were restricted in their running to either 1/3 or 2/3 that of the full running group for 3months prior to treatment with saline or MPTP. Quantification of DA neurons in the SNpc show that mice whose running was restricted lost significant numbers of DA neurons due to MPTP toxicity; however, the 2/3 running group demonstrated partial protection. Neurochemical analyses of DA and its metabolites DOPAC and HVA show that exercise also functionally protects neurons from MPTP-induced neurotoxicity. Proteomic analysis of SN and STR tissues indicates that 3months of exercise induces changes in proteins related to energy regulation, cellular metabolism, the cytoskeleton, and intracellular signaling events. Taken together, these data indicate that exercise potently protects DA neurons from acute MPTP toxicity, suggesting that this simple lifestyle element may also confer significant protection against developing PD in humans.
Collapse
|
11
|
Stuehr DJ, Griffith OW. Mammalian nitric oxide synthases. ADVANCES IN ENZYMOLOGY AND RELATED AREAS OF MOLECULAR BIOLOGY 2006; 65:287-346. [PMID: 1373932 DOI: 10.1002/9780470123119.ch8] [Citation(s) in RCA: 107] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- D J Stuehr
- Department of Medicine, Cornell University Medical College, New York, New York
| | | |
Collapse
|
12
|
Yang S, Lee YJ, Kim JM, Park S, Peris J, Laipis P, Park YS, Chung JH, Oh SP. A murine model for human sepiapterin-reductase deficiency. Am J Hum Genet 2006; 78:575-87. [PMID: 16532389 PMCID: PMC1424682 DOI: 10.1086/501372] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2005] [Accepted: 01/17/2006] [Indexed: 11/03/2022] Open
Abstract
Tetrahydrobiopterin (BH(4)) is an essential cofactor for several enzymes, including all three forms of nitric oxide synthases, the three aromatic hydroxylases, and glyceryl-ether mono-oxygenase. A proper level of BH(4) is, therefore, necessary for the metabolism of phenylalanine and the production of nitric oxide, catecholamines, and serotonin. BH(4) deficiency has been shown to be closely associated with diverse neurological psychiatric disorders. Sepiapterin reductase (SPR) is an enzyme that catalyzes the final step of BH(4) biosynthesis. Whereas the number of cases of neuropsychological disorders resulting from deficiencies of other catalytic enzymes involved in BH(4) biosynthesis and metabolism has been increasing, only a handful of cases of SPR deficiency have been reported, and the role of SPR in BH(4) biosynthesis in vivo has been poorly understood. Here, we report that mice deficient in the Spr gene (Spr(-/-)) display disturbed pterin profiles and greatly diminished levels of dopamine, norepinephrine, and serotonin, indicating that SPR is essential for homeostasis of BH(4) and for the normal functions of BH(4)-dependent enzymes. The Spr(-/-) mice exhibit phenylketonuria, dwarfism, and impaired body movement. Oral supplementation of BH(4) and neurotransmitter precursors completely rescued dwarfism and phenylalanine metabolism. The biochemical and behavioral characteristics of Spr(-/-) mice share striking similarities with the symptoms observed in SPR-deficient patients. This Spr mutant strain of mice will be an invaluable resource to elucidate many important issues regarding SPR and BH(4) deficiencies.
Collapse
Affiliation(s)
- Seungkyoung Yang
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, and Department of Pathology, Chungnam National University School of Medicine, Daejeon, South Korea; Departments of Physiology and Functional Genomics and Biochemistry and Molecular Biology, University of Florida College of Medicine, and Department of Pharmacodynamics, University of Florida College of Pharmacy, Gainesville; and School of Biotechnology and Biomedical Science, Inje University, Kimhae, South Korea
| | - Young Jae Lee
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, and Department of Pathology, Chungnam National University School of Medicine, Daejeon, South Korea; Departments of Physiology and Functional Genomics and Biochemistry and Molecular Biology, University of Florida College of Medicine, and Department of Pharmacodynamics, University of Florida College of Pharmacy, Gainesville; and School of Biotechnology and Biomedical Science, Inje University, Kimhae, South Korea
| | - Jin-Man Kim
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, and Department of Pathology, Chungnam National University School of Medicine, Daejeon, South Korea; Departments of Physiology and Functional Genomics and Biochemistry and Molecular Biology, University of Florida College of Medicine, and Department of Pharmacodynamics, University of Florida College of Pharmacy, Gainesville; and School of Biotechnology and Biomedical Science, Inje University, Kimhae, South Korea
| | - Sean Park
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, and Department of Pathology, Chungnam National University School of Medicine, Daejeon, South Korea; Departments of Physiology and Functional Genomics and Biochemistry and Molecular Biology, University of Florida College of Medicine, and Department of Pharmacodynamics, University of Florida College of Pharmacy, Gainesville; and School of Biotechnology and Biomedical Science, Inje University, Kimhae, South Korea
| | - Joanna Peris
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, and Department of Pathology, Chungnam National University School of Medicine, Daejeon, South Korea; Departments of Physiology and Functional Genomics and Biochemistry and Molecular Biology, University of Florida College of Medicine, and Department of Pharmacodynamics, University of Florida College of Pharmacy, Gainesville; and School of Biotechnology and Biomedical Science, Inje University, Kimhae, South Korea
| | - Philip Laipis
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, and Department of Pathology, Chungnam National University School of Medicine, Daejeon, South Korea; Departments of Physiology and Functional Genomics and Biochemistry and Molecular Biology, University of Florida College of Medicine, and Department of Pharmacodynamics, University of Florida College of Pharmacy, Gainesville; and School of Biotechnology and Biomedical Science, Inje University, Kimhae, South Korea
| | - Young Shik Park
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, and Department of Pathology, Chungnam National University School of Medicine, Daejeon, South Korea; Departments of Physiology and Functional Genomics and Biochemistry and Molecular Biology, University of Florida College of Medicine, and Department of Pharmacodynamics, University of Florida College of Pharmacy, Gainesville; and School of Biotechnology and Biomedical Science, Inje University, Kimhae, South Korea
| | - Jae Hoon Chung
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, and Department of Pathology, Chungnam National University School of Medicine, Daejeon, South Korea; Departments of Physiology and Functional Genomics and Biochemistry and Molecular Biology, University of Florida College of Medicine, and Department of Pharmacodynamics, University of Florida College of Pharmacy, Gainesville; and School of Biotechnology and Biomedical Science, Inje University, Kimhae, South Korea
| | - S. Paul Oh
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, and Department of Pathology, Chungnam National University School of Medicine, Daejeon, South Korea; Departments of Physiology and Functional Genomics and Biochemistry and Molecular Biology, University of Florida College of Medicine, and Department of Pharmacodynamics, University of Florida College of Pharmacy, Gainesville; and School of Biotechnology and Biomedical Science, Inje University, Kimhae, South Korea
| |
Collapse
|
13
|
Heusner CL, Hnasko TS, Szczypka MS, Liu Y, During MJ, Palmiter RD. Viral restoration of dopamine to the nucleus accumbens is sufficient to induce a locomotor response to amphetamine. Brain Res 2003; 980:266-74. [PMID: 12867267 DOI: 10.1016/s0006-8993(03)02986-x] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Administration of amphetamine to mice evokes hyperlocomotion. Dopamine deficient (DD) mice, in which tyrosine hydroxylase (TH) has been specifically inactivated in dopaminergic neurons, have a blunted response to amphetamine, indicating that the hyperlocomotive response requires dopamine. Dopamine production can be restored to specific brain regions by using adeno-associated viruses expressing TH and GTP cyclohydrolase 1 (GTPCH1). Restoration of dopamine specifically to the nucleus accumbens (NAc) of DD mice completely restores the ability of these mice to respond to amphetamine. This response is specific to the dopamine production in the NAc, as restoration of dopamine production to the caudate putamen (CPu) does not fully restore the hyperlocomotive response to amphetamine. These data support previous studies in which accumbal dopamine is required for producing a normal locomotor response to amphetamine and further show that release of dopamine restricted to the NAc is sufficient for this response
Collapse
Affiliation(s)
- Carrie L Heusner
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA
| | | | | | | | | | | |
Collapse
|
14
|
Ikemoto K, Suzuki T, Ichinose H, Ohye T, Nishimura A, Nishi K, Nagatsu I, Nagatsu T. Localization of sepiapterin reductase in the human brain. Brain Res 2002; 954:237-46. [PMID: 12414107 DOI: 10.1016/s0006-8993(02)03341-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Sepiapterin reductase (SPR) is the enzyme that catalyzes the final step of the synthesis of tetrahydrobiopterin (BH4), the cofactor for phenylalanine hydroxylase, tyrosine hydroxylase (TH), tryptophan hydroxylase, and nitric oxide synthase (NOS). Although SPR is essential for synthesizing BH4, the distribution of SPR in the human brain has not yet been clarified. In the present study, we purified recombinant human SPR from cDNA, raised an antibody against human SPR (hSPR), and examined the localization of SPR protein and SPR activity. Human brain homogenates from the substantia nigra (SN), caudate nucleus (CN), gray and white matters of the cerebral cortex (CTX), and dorsal and ventral parts of the medulla oblongata (MO) were subjected to Western blot analysis with anti-hSPR antibody or with anti-TH antibody. Whereas TH protein showed a restricted localization, being mainly detected in the SN and CN, SPR protein was detected in all brain regions examined. SPR activity was relatively high compared with the activity of GTP cyclohydrolase I (GCH), the rate-limiting biosynthetic enzyme of BH4, and was more widely distributed than GCH activity. Immunohistochemistry revealed SPR immunoreactivity in pyramidal neurons in the cerebral CTX, in a small number of striatal neurons, and in neurons of the hypothalamic and brain stem monoaminergic fields and olivary nucleus. Double-staining immunohistochemistry showed that TH and SPR were colocalized in the SN dopamine neurons. Localization of SPR immunoreactive neurons corresponded to monoamine or NOS neuronal fields, and also to the areas where no monoamine or NOS neurons were located. The results indicate that there might be a BH4 biosynthetic pathway where GCH is not involved and that SPR might have some yet unidentified function(s) in addition to BH4 biosynthesis.
Collapse
Affiliation(s)
- Keiko Ikemoto
- Department of Anatomy, Fujita Health University School of Medicine, Toyoake, Aichi 470-1192, Japan.
| | | | | | | | | | | | | | | |
Collapse
|
15
|
Bonafé L, Thöny B, Penzien JM, Czarnecki B, Blau N. Mutations in the sepiapterin reductase gene cause a novel tetrahydrobiopterin-dependent monoamine-neurotransmitter deficiency without hyperphenylalaninemia. Am J Hum Genet 2001; 69:269-77. [PMID: 11443547 PMCID: PMC1235302 DOI: 10.1086/321970] [Citation(s) in RCA: 151] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2001] [Accepted: 05/31/2001] [Indexed: 11/03/2022] Open
Abstract
Classic tetrahydrobiopterin (BH(4)) deficiencies are characterized by hyperphenylalaninemia and deficiency of monoamine neurotransmitters. In this article, we report two patients with progressive psychomotor retardation, dystonia, severe dopamine and serotonin deficiencies (low levels of 5-hydroxyindoleacetic and homovanillic acids), and abnormal pterin pattern (high levels of biopterin and dihydrobiopterin) in cerebrospinal fluid. Furthermore, they presented with normal urinary pterins and without hyperphenylalaninemia. Investigation of skin fibroblasts revealed inactive sepiapterin reductase (SR), the enzyme catalyzing the final two-step reaction in the biosynthesis of BH(4). Mutations in the SPR gene were detected in both patients and their family members. One patient was homozygous for a TC-->CT dinucleotide exchange, predicting a truncated SR (Q119X). The other patient was a compound heterozygote for a genomic 5-bp deletion (1397-1401delAGAAC) resulting in abolished SPR-gene expression and an A-->G transition leading to an R150G amino acid substitution and to inactive SR as confirmed by recombinant expression. The absence of hyperphenylalaninemia and the presence of normal urinary pterin metabolites and of normal SR-like activity in red blood cells may be explained by alternative pathways for the final two-step reaction of BH(4) biosynthesis in peripheral and neuronal tissues. We propose that, for the biosynthesis of BH(4) in peripheral tissues, SR activity may be substituted by aldose reductase (AR), carbonyl reductase (CR), and dihydrofolate reductase, whereas, in the brain, only AR and CR are fully present. Thus, autosomal recessive SR deficiency leads to BH(4) and to neurotransmitter deficiencies without hyperphenylalaninemia and may not be detected by neonatal screening for phenylketonuria.
Collapse
Affiliation(s)
- Luisa Bonafé
- Division of Clinical Chemistry and Biochemistry, University Children's Hospital, Zurich; Children’s Hospital, Augsburg; and Children’s Hospital Königsborn, Unna, Germany
| | - Beat Thöny
- Division of Clinical Chemistry and Biochemistry, University Children's Hospital, Zurich; Children’s Hospital, Augsburg; and Children’s Hospital Königsborn, Unna, Germany
| | - Johann M. Penzien
- Division of Clinical Chemistry and Biochemistry, University Children's Hospital, Zurich; Children’s Hospital, Augsburg; and Children’s Hospital Königsborn, Unna, Germany
| | - Barbara Czarnecki
- Division of Clinical Chemistry and Biochemistry, University Children's Hospital, Zurich; Children’s Hospital, Augsburg; and Children’s Hospital Königsborn, Unna, Germany
| | - Nenad Blau
- Division of Clinical Chemistry and Biochemistry, University Children's Hospital, Zurich; Children’s Hospital, Augsburg; and Children’s Hospital Königsborn, Unna, Germany
| |
Collapse
|
16
|
Szczypka MS, Mandel RJ, Donahue BA, Snyder RO, Leff SE, Palmiter RD. Viral gene delivery selectively restores feeding and prevents lethality of dopamine-deficient mice. Neuron 1999; 22:167-78. [PMID: 10027299 DOI: 10.1016/s0896-6273(00)80688-1] [Citation(s) in RCA: 97] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Dopamine-deficient mice (DA-/- ), lacking tyrosine hydroxylase (TH) in dopaminergic neurons, become hypoactive and aphagic and die by 4 weeks of age. They are rescued by daily treatment with L-3,4-dihydroxyphenylalanine (L-DOPA); each dose restores dopamine (DA) and feeding for less than 24 hr. Recombinant adeno-associated viruses expressing human TH or GTP cyclohydrolase 1 (GTPCH1) were injected into the striatum of DA-/- mice. Bilateral coinjection of both viruses restored feeding behavior for several months. However, locomotor activity and coordination were partially improved. A virus expressing only TH was less effective, and one expressing GTPCH1 alone was ineffective. TH immunoreactivity and DA were detected in the ventral striatum and adjacent posterior regions of rescued mice, suggesting that these regions mediate a critical DA-dependent aspect of feeding behavior.
Collapse
Affiliation(s)
- M S Szczypka
- Howard Hughes Medical Institute, Department of Biochemistry, University of Washington, Seattle 98195, USA
| | | | | | | | | | | |
Collapse
|
17
|
Linscheid P, Schaffner A, Blau N, Schoedon G. Regulation of 6-pyruvoyltetrahydropterin synthase activity and messenger RNA abundance in human vascular endothelial cells. Circulation 1998; 98:1703-6. [PMID: 9788822 DOI: 10.1161/01.cir.98.17.1703] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND The nitric oxide synthase cofactor tetrahydrobiopterin (BH4) is involved in the regulation of endothelium-dependent vascular functions mediated by nitric oxide. Vascular endothelial cells synthesize and secrete large amounts of BH4 on cytokine activation. There is scant knowledge about molecular mechanisms of cytokine-triggered BH4 production in endothelial cells. METHODS AND RESULTS Pteridine production, mRNA expression of GTP cyclohydrolase (GTPCH) and 6-pyruvoyltetrahydropterin synthase (PTPS) (both key enzymes of BH4 biosynthesis), and PTPS activity were studied in human umbilical vein endothelial cells (HUVECs) exposed to inflammatory cytokines. BH4 levels were </=140-fold enhanced on treatment of HUVECs with combined interferon-gamma/tumor necrosis factor-alpha/interleukin-1 (IFN/TNF/IL-1). Specific PTPS activity was approximately 3-fold higher in cytokine-treated HUVECs than in untreated cells. Reverse-transcription/limiting-dilution polymerase chain reaction analysis showed that in response to IFN/TNF/IL-1, mRNA abundance of GTPCH and PTPS was increased approximately 64-fold and 10-fold, respectively. CONCLUSIONS The present study demonstrates for the first time the cytokine-dependent regulation of PTPS, the second enzyme in BH4 synthesis. Although GTPCH is believed to be the rate-limiting step, control of endothelial PTPS expression by cytokines may play an important role in regulating BH4-dependent nitric oxide production in the vascular system.
Collapse
Affiliation(s)
- P Linscheid
- Medical Clinic B Research Unit, Department of Medicine, University Hospital of Zurich, Switzerland
| | | | | | | |
Collapse
|
18
|
Anastasiadis PZ, Bezin L, Gordon LJ, Imerman B, Blitz J, Kuhn DM, Levine RA. Vasoactive intestinal peptide induces both tyrosine hydroxylase activity and tetrahydrobiopterin biosynthesis in PC12 cells. Neuroscience 1998; 86:179-89. [PMID: 9692753 DOI: 10.1016/s0306-4522(97)00611-8] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Vasoactive intestinal peptide plays an important role in the trans-synaptic activation of tyrosine hydroxylase in sympathoadrenal tissues in response to physiological stress. Since tyrosine hydroxylase is thought to be subsaturated with its cofactor, tetrahydrobiopterin, we tested the hypothesis that up-regulation of tyrosine hydroxylase gene expression following vasoactive intestinal peptide treatment is accompanied by a concomitant elevation of intracellular tetrahydrobiopterin biosynthesis. We also investigated the second messenger systems involved in vasoactive intestinal peptide's effects on tetrahydrobiopterin metabolism. Our results demonstrate that treatment of PC12 cells for 24 h with vasoactive intestinal peptide induced intracellular tetrahydrobiopterin levels 3.5-fold. This increase was due to increased expression of the gene encoding GTP cyclohydrolase, the initial and rate-limiting enzyme in tetrahydrobiopterin biosynthesis, which was blocked by the transcriptional inhibitor, actinomycin D. Activation of tyrosine hydroxylase and GTP cyclohydrolase by vasoactive intestinal peptide was mediated by cyclic-AMP. Furthermore, stimulation of cyclic-AMP-mediated responses or protein kinase C activity induced the maximal in vitro activities of both tyrosine hydroxylase and GTP cyclohydrolase; the responses were additive when both treatments were combined. Induction of sphingolipid metabolism had no effect on the activation of tyrosine hydroxylase, while it induced GTP cyclohydrolase in a protein kinase C-independent manner. Our results support the hypothesis that intracellular tetrahydrobiopterin levels are tightly linked to tyrosine hydroxylation and that tetrahydrobiopterin bioavailability modulates catecholamine synthesis.
Collapse
Affiliation(s)
- P Z Anastasiadis
- William T. Gossett Neurology Laboratories of Henry Ford Hospital, Detroit, MI 48202, USA
| | | | | | | | | | | | | |
Collapse
|
19
|
Abstract
The first and rate-limiting enzyme in tetrahydrobiopterin (BH4) biosynthesis is GTP cyclohydrolase (GTPCH). BH4 serves as the essential cofactor for aromatic L-amino acid hydroxylases, such as tyrosine hydroxylase (TH) and tryptophan hydroxylase (TPH), as well as for nitric oxide synthase (NOS). We hypothesized that to provide access to the cofactor, a close association exists between BH4-synthesizing and BH4-dependent enzymes, and we determined the relationship among GTPCH, neuronal NOS (nNOS), and TH in rat brain and adrenal gland using immunohistochemistry and in situ hybridization. Analyses of adjacent sections revealed specific localization of GTPCH in TH-containing cells of the substantia nigra, ventral tegmental area, hypothalamus, locus ceruleus, and adrenal medulla, and also in TPH-containing cells of the dorsal raphe nucleus and pineal gland. Thus, BH4 can be synthesized in all monoaminergic cells and is readily available for the enzymes requiring it. In contrast, analysis of adjacent sections showed that nNOS was not colocalized with GTPCH. Scattered nNOS-positive cells were found in the cortex, striatum, cerebellum, and olfactory bulb, all areas that receive monoaminergic innervation. The absence of GTPCH in nNOS cells suggests that nitric oxide-producing cells may either obtain biopterin from monoamine-containing processes which terminate in close proximity, or take up biopterin released into the blood. Double labelling of the same section for TH and nNOS revealed the TH nerve terminals connecting with the nNOS-positive cell bodies, suggesting the possibility that the BH4-containing nerve terminals may directly donate this cofactor to the nNOS-containing cells.
Collapse
Affiliation(s)
- O Hwang
- Department of Neuroscience, Cornell University Medical College at the Burke Medical Research Institute, White Plains, New York 10605, USA
| | | | | | | |
Collapse
|
20
|
Dassesse D, Hemmens B, Cuvelier L, Résibois A. GTP-cyclohydrolase-I like immunoreactivity in rat brain. Brain Res 1997; 777:187-201. [PMID: 9449428 DOI: 10.1016/s0006-8993(97)01111-6] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
GTPCH-I immunoreactive structures in the rat brain were studied using a polyclonal antibody raised in the chick. General mapping was made using the avidin-biotin-peroxidase technique and compared with the distribution of tyrosine hydroxylase and serotonin immunoreactivities. Double immunofluorescence was performed in order to establish real intracellular colocalization. GTPCH-I immunoreactivity was generally found to be low. Immunostained neurons were present in all the serotonin cell groups. In catecholaminergic neurons, although tyrosine hydroxylase immunoreactivity was always very high, GTPCH-I immunoreactivity was extremely variable, from relatively strong (substantia nigra, ventral tegmental area) to low (locus coeruleus, caudal part of the hypothalamus), extremely low (rostral hypothalamus, ventral brainstem) or almost absent (dorsal brainstem, some hypothalamic nuclei). When feasible, double immunolabeling revealed that all the serotonin cells and most of the tyrosine hydroxylase cells were also expressing GTPCH-I. Our results argue in favor of a regulation of tyrosine hydroxylase activity by the intracellular synthesis of BH4.
Collapse
Affiliation(s)
- D Dassesse
- Laboratoire d'Histologie, Faculté de Médecine, Université Libre de Bruxelles, Belgium
| | | | | | | |
Collapse
|
21
|
Serova LI, Nankova B, Kvetnansky R, Sabban EL. Immobilization Stress Elevates GTP Cyclohydrolase I mRNA Levels in Rat Adrenals Predominantly by Hormonally Mediated Mechanisms. Stress 1997; 1:135-144. [PMID: 9787239 DOI: 10.3109/10253899709001103] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
GTP cyclohydrolase I (GTPCH) is the rate-limiting enzyme in the biosynthesis of tetrahydrobiopterin, the cofactor for catecholamine, indolamine and nitric oxide biosynthesis. In this study we examined the effect of immobilization stress on GTPCH mRNA levels and the mechanism(s) of stress-induced changes in adrenomedullary GTPCH mRNA levels. We used reverse-polymerase chain reaction to isolate and clone a cDNA corresponding to nucleotides 269 to 570 of rat GTPCH. Northern blot analysis with a cRNA probe revealed two species of GTPCH mRNA (about 3.6 and 1.2 kb) in rat adrenal medulla and cortex, and in PC12 cells. The levels of both forms of GTPCH mRNA were significantly increased 3-5 fold in adrenal medulla by a single 2 hour immobilization and by repeated immobilizations (2 hours a day for 2 days). Hypophysectomy had little effect on their basal levels but prevented the stress elicited rise in both GTPCH mRNAs. In contrast, unilateral transection of the splanchnic nerve did not affect induction of the 3.6 kb GTPCH mRNA by stress. Combined denervation with hypophysectomy completely blocked the induction of both GTPCH mRNA species by immobilization stress. Thus, stress elicits elevation of both forms of GTPCH mRNA by a mechanism requiring an intact pituitary-adrenocortical axis.
Collapse
Affiliation(s)
- LI Serova
- Department of Biochemistry and Molecular Biology, New York Medical College, Valhalla, N.Y. 10595 USA
| | | | | | | |
Collapse
|
22
|
Iino T, Sawada H, Tsusué M, Takikawa S. Discovery of a new tetrahydrobiopterin-synthesizing enzyme in the lemon mutant of the silkworm Bombyx mori. BIOCHIMICA ET BIOPHYSICA ACTA 1996; 1297:191-9. [PMID: 8917621 DOI: 10.1016/s0167-4838(96)00087-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
A new tetrahydrobiopterin-synthesizing enzyme, which is different from sepiapterin reductase (EC 1.1.1.153), was discovered in the integument of the lemon mutant of the silkworm Bombyx mori. This enzyme converted 6-pyruvoyltetrahydropterin to tetrahydrobiopterin, an essential cofactor in the hydroxylation of aromatic amino acids, in the presence of NADPH. The reaction proceeded via 6-lactoyltetrahydropterin and 1'-hydroxy-2'-oxopropyltetrahydropterin as intermediates. The molecular mass of this enzyme was estimated to be 40 kDa. N-Acetylserotonin, a potent inhibitor of sepiapterin reductase, slightly inhibited the enzymatic reaction. In the presence of 0.5 mM N-acetylserotonin, the formation of tetrahydrobiopterin by sepiapterin reductase purified from the normal strain silkworm was completely inhibited. However, the formation of tetrahydrobiopterin by the enzyme purified from the lemon mutant was inhibited by only about 50%. These results suggest an alternative biosynthetic pathway to tetrahydrobiopterin.
Collapse
Affiliation(s)
- T Iino
- Department of General Education, Nihon University, Tokyo, Japan
| | | | | | | |
Collapse
|
23
|
Lentz SI, Kapatos G. Tetrahydrobiopterin biosynthesis in the rat brain: heterogeneity of GTP cyclohydrolase I mRNA expression in monoamine-containing neurons. Neurochem Int 1996; 28:569-82. [PMID: 8792338 DOI: 10.1016/0197-0186(95)00124-7] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
GTP cyclohydrolase I is the first and rate-limiting enzyme in the biosynthesis of tetrahydrobiopterin. A quantitative in situ hybridization technique was used to study the expression of GTP cyclohydrolase I mRNA in the rat brain at the cellular level. Coronal sections between the diencephalon and myelencephalon were exposed to a 35S-labelled antisense GTP cyclohydrolase I cRNA probe. Sections serial to these were hybridized with a 35S-labelled antisense cRNA probe complementary to tyrosine hydroxylase mRNA. Tyrosine hydroxylase and GTP cyclohydrolase I mRNAs were found to colocalize within catecholamine neurons located throughout the brain. The overall distribution of neurons expressing GTP cyclohydrolase I mRNA was observed to correspond exactly to the known distribution of the dopamine, norepinephrine/epinephrine and serotonin-containing cell groups. Overall, a 30-fold range of GTP cyclohydrolase I mRNA expression was observed, with the transcript being significantly more abundant in serotonin than in dopamine or norepinephrine/epinephrine neurons. Comparisons across serotonin cell groups indicated that neurons of the median raphe nucleus, caudal linear nucleus raphe (B8) and the dorsal raphe (B6/B7) expressed the highest levels of GTP cyclohydrolase I mRNA. Comparisons across dopamine cell groups indicated that the transcript was more abundant in neurons of the ventral tegmental area (A10) than in neurons of the substantia nigra pars compacta (A9) and that both A9 and A10 dopamine neurons exhibited higher levels of expression than the DA neurons of the hypothalamus (A11-A14). Norepinephrine neurons of the locus coeruleus (A6) and subcoeruleus (A6v) exhibited significantly higher levels of GTP cyclohydrolase I mRNA than did neurons in other norepinephrine (A1 and A2) or epinephrine (C1 and C2) cell groups. GTP cyclohydrolase I mRNA could not be detected unequivocally in neurons known to contain nitric oxide synthase. Heterogeneity in the level of expression of GTP cyclohydrolase I mRNA by monoamine-containing neurons may play an important role in determining steady state levels of tetrahydrobiopterin and, ultimately, the regulation of monoamine biosynthesis.
Collapse
Affiliation(s)
- S I Lentz
- Department of Psychiatry and Behavioral Neurosciences, Wayne State University School of Medicine, Detroit, MI 48201, USA
| | | |
Collapse
|
24
|
Anastasiadis PZ, Kuhn DM, Blitz J, Imerman BA, Louie MC, Levine RA. Regulation of tyrosine hydroxylase and tetrahydrobiopterin biosynthetic enzymes in PC12 cells by NGF, EGF and IFN-gamma. Brain Res 1996; 713:125-33. [PMID: 8724983 DOI: 10.1016/0006-8993(95)01494-2] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
The regulation of catecholamine and tetrahydrobiopterin synthesis was investigated in cultured rat pheochromocytoma PC12 cells following treatments with nerve growth factor (NGF), epidermal growth factor (EGF) and interferon-gamma (IFN-gamma). NGF and EGF, but not IFN-gamma, caused an increase after 24 h in the levels of BH4 and catecholamines, and the activities of tyrosine hydroxylase and GTP cyclohydrolase, the rate-limiting enzymes in catecholamine and BH4 synthesis, respectively. Actinomycin D, a transcriptional inhibitor, blocked treatment-induced elevations in tyrosine hydroxylase and GTP cyclohydrolase activities. NGF, EGF or IFN-gamma did not affect the activity of sepiapterin reductase, the final enzyme in BH4 biosynthesis. Rp-cAMP, an inhibitor of cAMP-mediated responses, blocked the induction of tyrosine hydroxylase by NGF or EGF; inhibition of protein kinase C partially blocked the EGF effect, but not the NGF effect, NGF also induced GTP cyclohydrolase in a cAMP-dependent manner, while the EGF effect was not blocked by Rp-cAMP or protein kinase C inhibitors. Sphingosine induced GTP cyclohydrolase in a protein kinase C-independent manner without affecting tyrosine hydroxylase activity. Our results suggest that both tyrosine hydroxylase and GTP cyclohydrolase are induced in a coordinate and transcription-dependent manner by NGF and EGF, while conditions exist where the induction of tyrosine hydroxylase and GTP cyclohydrolase is not coordinately regulated.
Collapse
Affiliation(s)
- P Z Anastasiadis
- William T. Gossett Neurology Laboratories, Henry Ford Health Sciences Center, Detroit, MI 48202, USA
| | | | | | | | | | | |
Collapse
|
25
|
Hirayama K, Kapatos G. Regulation of GTP cyclohydrolase I gene expression and tetrahydrobiopterin content by nerve growth factor in cultures of superior cervical ganglia. Neurochem Int 1995; 27:157-61. [PMID: 7580871 DOI: 10.1016/0197-0186(95)00008-v] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Monolayer cultures of superior cervical ganglia free of support cells were maintained in the presence of 100 ng/ml 7S-NGF for 4 days. The concentration of NGF was then changed to between 50 and 400 ng/ml and cultures continued for an additional 7 days. Tetrahydrobiopterin (BH4) content, GTP cyclohydrolase (GTPCH) enzyme activity and mRNA levels were then determined. All three of these measures were found to be elevated between 2- to 4-fold by treatment with increasing concentrations of NGF. Tyrosine hydroxylase (TH) enzyme activity and mRNA levels were increased from 8 to 13-fold by these same treatments. These results indicate that the content of BH4 within sympathetic neurons can be regulated by NGF receptor-mediated changes in GTPCH gene expression. Moreover, concomitant increases in TH enzyme activity and BH4 content demonstrate a coordinated regulation by NGF of this enzyme and its essential cofactor.
Collapse
Affiliation(s)
- K Hirayama
- Department of Psychiatry and Behavioral Neurosciences, Wayne State University School of Medicine, Detroit, MI 48201, USA
| | | |
Collapse
|
26
|
Kapatos G, Hirayama K. A comparison of the developing dopamine neuron phenotype in cultures of embryonic rat mesencephalon and hypothalamus. Neurochem Int 1994; 25:309-19. [PMID: 7820064 DOI: 10.1016/0197-0186(94)90137-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Development of the dopamine (DA) neuron phenotype was monitored in cultures of embryonic rat mesencephalon (MES) and hypothalamus (HYP) maintained for 1 to 21 days in vitro (DIV) in the absence of glial support cells. Cell counts following immunohistochemistry for tyrosine hydroxylase (TH) demonstrated that the number of DA neurons declined by 85% in MES cultures yet increased 5-fold in cultures of HYP, so that by 21 DIV equal numbers of DA neurons were present in these culture systems. After 21 DIV MES DA neurons exhibited a multipolar morphology, with numerous branching processes. HYP DA neurons were primarily fusiform in shape with fewer processes and process branch points. Double-label immunohistochemistry for TH and microtubule-associated protein 2 identified the majority of TH-positive processes in either culture system as dendrites. Individual MES but not HYP DA neurons were also found to generate axons. Western analysis showed that between 1 and 21 DIV the concentration of TH protein increased 2-fold in MES and 4-fold in HYP cultures. After 21 DIV the concentration of TH protein in MES cultures was twice that found in cultures of HYP. In the period between 1 and 21 DIV levels of tetrahydrobiopterin (BH4) increased by 6-fold in MES and 20-fold in HYP cultures. After 21 DIV BH4 content was 3-fold higher in HYP than in MES cultures. The abundance of the mRNA encoding for GTP cyclohydrolase I, the rate-limiting enzyme in BH4 biosynthesis, was similar in MES and HYP cultures despite this difference in BH4 levels. In contrast, TH mRNA was 4-fold more abundant in MES than in HYP cultures. Treatment of MES cultures with the DA neuron toxin 1-methyl-4-phenylpyridinium decreased DA cell numbers, TH protein content and BH4 levels, demonstrating that BH4 is localized primarily to DA neurons. Similar treatment of HYP cultures did not effect any of these parameters. Steady-state levels of DA and the rate of DA synthesis were both 3-fold higher in MES than in HYP cultures. A 95% decline in BH4 content produced by inhibiting BH4 biosynthesis resulted in 64% and 84% declines in the rate of MES and HYP DA synthesis, respectively. Overall, these observations indicate that, with the exception of the capacity to synthesize DA, DA neurons in MES and HYP cultures share few common properties.
Collapse
Affiliation(s)
- G Kapatos
- Department of Psychiatry and Behavioral Neuroscience, Wayne State University School of Medicine, Detroit, MI 48201
| | | |
Collapse
|
27
|
Primus JP, Brown GM. Sepiapterin reductase and the biosynthesis of tetrahydrobiopterin in Drosophila melanogaster. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 1994; 24:907-18. [PMID: 7951268 DOI: 10.1016/0965-1748(94)90019-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Ammonium sulfate fractionation and standard column chromatography techniques have been used to purify the enzyme sepiapterin reductase to electrophoretic homogeneity from pupae of Drosophila melanogaster. This purification constitutes a 1000-fold increase in the specific activity of the enzyme. The native molecular weight of the enzyme was determined to be ca 67,000 Da, while the subunit molecular weight is estimated to be 36,000-39,000 Da. The apparent Km for 6-lactoyltetrahydropterin (lactoyl-H4pterin) is 50 microns. The Drosophila enzyme is sensitive to inhibition by the biogenic amine, N-acetyl serotonin, and (to a lesser extent) melatonin, but its activity is not affected by serotonin, epinephrine or norepinephrine. The enzyme was shown to be an integral component of the Drosophila enzyme system which functions in catalyzing the conversion of dihydroneopterin triphosphate (H2NTP) to (6R)-5,6,7,8-tetrahydrobiopterin (H4biopterin). It appears that although purified Drosophila sepiapterin reductase can catalyze low levels of conversion of 6-pyruvoyltetrahydropterin (pyruvoyl-H4pterin) to H4 biopterin in the presence of NADPH, the efficient conversion of pyruvoyl-H4pterin to H4biopterin requires the presence of both sepiapterin reductase and pyruvoyl-H4pterin reductase.
Collapse
Affiliation(s)
- J P Primus
- Department of Biology, Emory University, Atlanta, GA 30322
| | | |
Collapse
|
28
|
Ribeiro P, Kaufman S. The effect of tetrahydrobiopterin on the in situ phosphorylation of tyrosine hydroxylase in rat striatal synaptosomes. Neurochem Res 1994; 19:541-8. [PMID: 7915013 DOI: 10.1007/bf00971328] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Tetrahydrobiopterin (BH4), the obligatory cofactor of the aromatic amino acid hydroxylases, decreased the in situ 32P-phosphorylation of tyrosine hydroxylase (TH) in rat striatal synaptosomes. Incubation of pre-32P-labeled synaptosomes with BH4 in the presence of a permeant analogue of cAMP decreased the cAMP-stimulated level of 32P label incorporation into TH by about 50%, as determined by immunoprecipitation and autoradiography of SDS-polyacrylamide gels. The extent of inhibition mirrored changes in intrasynaptosomal BH4 levels and varied both as a function of BH4 concentration and length of incubation. A similar decrease in the amount of TH 32P-labeling was observed with the precursor of BH4, sepiapterin. This effect, in turn, was reversed by the inhibitor of sepiapterin reductase, N-acetyl-serotonin. Finally, exposure of pre-32P-labeled synaptosomes to the inhibitor of protein phosphatase 2A, okadaic acid, blocked the response to BH4. Collectively, the data suggest that BH4 stimulates the dephosphorylation of TH in situ and thus may play a dual role both as a cofactor for catalysis and a regulator of hydroxylase activity.
Collapse
Affiliation(s)
- P Ribeiro
- Laboratory of Neurochemistry, National Institute of Mental Health, Bethesda, Maryland 20892
| | | |
Collapse
|
29
|
Hirayama K, Lentz SI, Kapatos G. Tetrahydrobiopterin cofactor biosynthesis: GTP cyclohydrolase I mRNA expression in rat brain and superior cervical ganglia. J Neurochem 1993; 61:1006-14. [PMID: 8103077 DOI: 10.1111/j.1471-4159.1993.tb03614.x] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
GTP cyclohydrolase I (GTPCH) is the rate-limiting enzyme in the biosynthesis of tetrahydrobiopterin, the reduced pteridine cofactor required for catecholamine (CA), indoleamine, and nitric oxide biosynthesis. We have used the reverse transcription-polymerase chain reaction technique, based on the published cDNA sequence for rat liver GTPCH, to clone a portion of the GTPCH transcript from rat adrenal gland mRNA and have used this clone for the analysis of GTPCH mRNA in brain and other tissues of the rat by northern blot, nuclease protection assay, and in situ hybridization. Two GTPCH mRNA transcripts of 1.2 and 3.8 kb in length were detected by northern blot, with the 1.2-kb form predominating in the liver and the 3.8-kb form in the pineal gland, adrenal gland, brainstem, and hypothalamic neurons maintained in culture. In situ hybridization studies localized GTPCH mRNA to CA-containing perikarya in the locus ceruleus, ventral tegmental area, and substantia nigra, pars compacta. Levels of GTPCH mRNA in central and peripheral catecholamine neurons determined by nuclease protection assay were increased twofold 24 h after a single injection of the CA-depleting drug reserpine; both the 1.2- and 3.8-kb transcripts were increased in the adrenal gland. Low levels of GTPCH mRNA were also detected by nuclease protection assay in the striatum, hippocampus, and cerebellum, brain regions that do not contain monoaminergic perikarya.
Collapse
Affiliation(s)
- K Hirayama
- Department of Psychiatry, Wayne State University School of Medicine, Detroit, Michigan 48201
| | | | | |
Collapse
|
30
|
Hirayama K, Zhu M, Kapatos G. Regulation of tetrahydrobiopterin biosynthesis in cultured hypothalamic and mesencephalic neurons by cyclic AMP dependent GTP cyclohydrolase I gene expression. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 1993; 338:179-82. [PMID: 8304105 DOI: 10.1007/978-1-4615-2960-6_35] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Affiliation(s)
- K Hirayama
- Department of Psychiatry, Wayne State University School of Medicine, Detroit, Michigan 48201
| | | | | |
Collapse
|
31
|
Kapatos G, Hirayama K, Lentz SI, Zhu M, Stegenga S. Differential metabolism of tetrahydrobiopterin in monoamine neurons: a hypothesis based upon clinical and basic research. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 1993; 338:217-22. [PMID: 8304113 DOI: 10.1007/978-1-4615-2960-6_43] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
This chapter has attempted to describe and integrate some of the clinical and basic research that support our hypothesis that the metabolism of BH4 is normally heterogeneous across different populations of monoamine-containing neurons. Based upon this hypothesis, there may now be reason to support the idea that certain neuropsychiatric illnesses, which are though to be the result (at least in part) of altered monoamine metabolism, might find their roots in an abnormal metabolism of BH4 within specific monoaminergic cell groups. Such a specific dysfunction might not be apparent in the rest of the brain or peripheral nervous system, thereby being difficult to detect. Perhaps the application of molecular biological techniques to studies of BH4 metabolism in man will shed new light on these problems.
Collapse
Affiliation(s)
- G Kapatos
- Department of Psychiatry, Wayne State University School of Medicine, Detroit, Michigan 48201
| | | | | | | | | |
Collapse
|
32
|
Levine RA, States JC, Anastasiadis PZ, Kuhn DM. Cloning and characterization of genes encoding tetrahydrobiopterin biosynthetic enzymes. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 1993; 338:139-45. [PMID: 7905695 DOI: 10.1007/978-1-4615-2960-6_28] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Affiliation(s)
- R A Levine
- William T. Gossett Neurology Laboratories, Henry Ford Hospital, Detroit, MI 48201
| | | | | | | |
Collapse
|
33
|
Anastasiadis PZ, States JC, Kuhn DM, Levine RA. Co-induction of tetrahydrobiopterin (BH4) levels and tyrosine hydroxylase activity in cultured PC12 cells. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 1993; 338:227-30. [PMID: 7905696 DOI: 10.1007/978-1-4615-2960-6_45] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Affiliation(s)
- P Z Anastasiadis
- William T. Gossett Neurology Labs, Henry Ford Hospital, Detroit, MI
| | | | | | | |
Collapse
|
34
|
Hirayama K, Lentz SI, Kapatos G. Expression of GTP cyclohydrolase I (GTPCH) mRNA in the rat: tissue distribution and effect of reserpine. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 1993; 338:175-8. [PMID: 8304104 DOI: 10.1007/978-1-4615-2960-6_34] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Affiliation(s)
- K Hirayama
- Department of Psychiatry, Wayne State University School of Medicine, Detroit, Michigan 48201
| | | | | |
Collapse
|
35
|
Sepiapterin Reductase and ALR2 (“Aldose Reductase”) from Bovine Brain. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 1993. [DOI: 10.1007/978-1-4615-2904-0_33] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register]
|
36
|
Kapatos G, Hirayama K, Hasegawa H. Tetrahydrobiopterin turnover in cultured rat sympathetic neurons: developmental profile, pharmacologic sensitivity, and relationship to norepinephrine synthesis. J Neurochem 1992; 59:2048-55. [PMID: 1359012 DOI: 10.1111/j.1471-4159.1992.tb10093.x] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
We have examined the turnover of 5,6,7,8-tetrahydrobiopterin (BH4) and the effect of decreasing BH4 levels on in situ tyrosine hydroxylase (TH) activity and norepinephrine (NE) content in a homogeneous population of NE-containing neurons derived from the superior cervical ganglion (SCG) of the neonatal rat and maintained in tissue culture. Initial studies indicated that the level of BH4 within SCG cultures increased fourfold between 5 and 37 days in vitro (DIV). This increase in BH4 levels was determined to result from an increase in the rate of BH4 biosynthesis without a change in the rate of degradation. Regardless of culture age, the BH4 content of SCG neurons was observed to turn over with a half-life of approximately 2.5 h. BH4 synthesis by SCG neurons was found to be five times more sensitive to inhibition by 2,4-diamino-6-hydroxypyrimidine (DAHP) and 25 times less sensitive to inhibition by N-acetylserotonin than was previously reported for CNS neurons in culture. Under basal conditions, the rates of in situ TH activity and BH4 biosynthesis were similar. In response to inhibition of BH4 biosynthesis by DAHP and a 90-95% decrease in BH4 levels, in situ TH activity declined by 75%. NE levels declined by 30% following a 24-h period of inhibition of BH4 synthesis. After 2 days of BH4 synthesis inhibition, the level of NE was decreased by 47%. On treatment days 3 and 4, the decline in NE content plateaued at 24% of control levels.(ABSTRACT TRUNCATED AT 250 WORDS)
Collapse
Affiliation(s)
- G Kapatos
- Department of Psychiatry, Wayne State University School of Medicine, Detroit, Michigan
| | | | | |
Collapse
|
37
|
Ichinose H, Katoh S, Sueoka T, Titani K, Fujita K, Nagatsu T. Cloning and sequencing of cDNA encoding human sepiapterin reductase--an enzyme involved in tetrahydrobiopterin biosynthesis. Biochem Biophys Res Commun 1991; 179:183-9. [PMID: 1883349 DOI: 10.1016/0006-291x(91)91352-d] [Citation(s) in RCA: 51] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
A full-length cDNA clone for sepiapterin reductase, an enzyme involved in tetrahydrobiopterin biosynthesis, was isolated from a human liver cDNA library by plaque hybridization. The nucleotide sequence of hSPR 8-25, which contained an entire coding region of the enzyme, was determined. The clone encoded a protein of 261 amino acids with a calculated molecular mass of 28,047 daltons. The predicted amino acid sequence of human sepiapterin reductase showed a 74% identity with the rat enzyme. We further found a striking homology between human SPR and carbonyl reductase, estradiol 17 beta-dehydrogenase, and 3 beta-hydroxy-5-ene steroid dehydrogenase, especially in their N-terminal region.
Collapse
Affiliation(s)
- H Ichinose
- Department of Biochemistry, Nagoya University School of Medicine, Japan
| | | | | | | | | | | |
Collapse
|
38
|
Park YS, Heizmann CW, Wermuth B, Levine RA, Steinerstauch P, Guzman J, Blau N. Human carbonyl and aldose reductases: new catalytic functions in tetrahydrobiopterin biosynthesis. Biochem Biophys Res Commun 1991; 175:738-44. [PMID: 1902669 DOI: 10.1016/0006-291x(91)91628-p] [Citation(s) in RCA: 59] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
New catalytic functions of human carbonyl- and aldose reductase in tetrahydrobiopterin biosynthesis are proposed. 6-Pyruvoyl tetrahydropterin, an intermediate in the biosynthesis of tetrahydrobiopterin, was converted to 6-lactoyl tetrahydropterin and 1'-hydroxy-2'-oxopropyl tetrahydropterin by carbonyl reductase under anaerobic condition. 1'-Hydroxy-2'-oxopropyl tetrahydropterin was subsequently metabolized to tetrahydrobiopterin by aldose reductase. Based on these results alternative pathways for the synthesis of tetrahydrobiopterin in patients with genetic defects of sepiapterin reductase are suggested.
Collapse
Affiliation(s)
- Y S Park
- Department of Pediatrics, University of Zürich, Switzerland
| | | | | | | | | | | | | |
Collapse
|
39
|
Citron BA, Milstien S, Gutierrez JC, Levine RA, Yanak BL, Kaufman S. Isolation and expression of rat liver sepiapterin reductase cDNA. Proc Natl Acad Sci U S A 1990; 87:6436-40. [PMID: 2201030 PMCID: PMC54549 DOI: 10.1073/pnas.87.16.6436] [Citation(s) in RCA: 31] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Sepiapterin reductase (7,8-dihydrobiopterin: NADP+ oxidoreductase, EC 1.1.1.153) catalyzes the terminal step in the biosynthetic pathway for tetrahydrobiopterin, the cofactor necessary for aromatic amino acid hydroxylation. We report here the isolation of a cDNA clone for rat liver sepiapterin reductase. The cDNA has been excised from a lambda vector and the DNA sequence was determined. The insert contains the coding sequence for at least 95% of the rat enzyme and is fused to the Escherichia coli beta-galactosidase N-terminal segment and the lac promoter. The N-terminal region of the clone contains an extraordinarily high G + C content. The amino acid sequence deduced from the clone is in agreement with the size and composition of the enzyme and was matched to several tryptic peptide sequences. The enzyme encoded by the cDNA insert was shown to have sepiapterin reductase activity after expression in E. coli. Structural similarities were identified between this protein and several enzymes that should contain similar nucleotide and pteridine binding sites.
Collapse
Affiliation(s)
- B A Citron
- Laboratory of Neurochemistry, National Institute of Mental Health, National Institutes of Health, Bethesda, MD 20892
| | | | | | | | | | | |
Collapse
|