1
|
Makeeva VS, Dyrkheeva NS, Lavrik OI, Zakian SM, Malakhova AA. Mutant-Huntingtin Molecular Pathways Elucidate New Targets for Drug Repurposing. Int J Mol Sci 2023; 24:16798. [PMID: 38069121 PMCID: PMC10706709 DOI: 10.3390/ijms242316798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 11/18/2023] [Accepted: 11/24/2023] [Indexed: 12/18/2023] Open
Abstract
The spectrum of neurodegenerative diseases known today is quite extensive. The complexities of their research and treatment lie not only in their diversity. Even many years of struggle and narrowly focused research on common pathologies such as Alzheimer's, Parkinson's, and other brain diseases have not brought cures for these illnesses. What can be said about orphan diseases? In particular, Huntington's disease (HD), despite affecting a smaller part of the human population, still attracts many researchers. This disorder is known to result from a mutation in the HTT gene, but having this information still does not simplify the task of drug development and studying the mechanisms of disease progression. Nonetheless, the data accumulated over the years and their analysis provide a good basis for further research. Here, we review studies devoted to understanding the mechanisms of HD. We analyze genes and molecular pathways involved in HD pathogenesis to describe the action of repurposed drugs and try to find new therapeutic targets.
Collapse
Affiliation(s)
- Vladlena S. Makeeva
- Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, 10 Akad. Lavrentiev Ave., 630090 Novosibirsk, Russia; (V.S.M.); (S.M.Z.); (A.A.M.)
| | - Nadezhda S. Dyrkheeva
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of Russian Academy of Sciences, 8 Akad. Lavrentiev Ave., 630090 Novosibirsk, Russia;
| | - Olga I. Lavrik
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of Russian Academy of Sciences, 8 Akad. Lavrentiev Ave., 630090 Novosibirsk, Russia;
| | - Suren M. Zakian
- Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, 10 Akad. Lavrentiev Ave., 630090 Novosibirsk, Russia; (V.S.M.); (S.M.Z.); (A.A.M.)
| | - Anastasia A. Malakhova
- Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, 10 Akad. Lavrentiev Ave., 630090 Novosibirsk, Russia; (V.S.M.); (S.M.Z.); (A.A.M.)
| |
Collapse
|
2
|
Tucci P, Lattanzi R, Severini C, Saso L. Nrf2 Pathway in Huntington's Disease (HD): What Is Its Role? Int J Mol Sci 2022; 23:ijms232315272. [PMID: 36499596 PMCID: PMC9739588 DOI: 10.3390/ijms232315272] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 11/22/2022] [Accepted: 12/01/2022] [Indexed: 12/08/2022] Open
Abstract
Huntington's disease (HD) is an autosomal dominant neurodegenerative disease that occurs worldwide. Despite some progress in understanding the onset of HD, drugs that block or delay symptoms are still not available. In recent years, many treatments have been proposed; among them, nuclear transcriptional factor-2 (Nrf2) enhancer compounds have been proposed as potential therapeutic agents to treat HD. Nrf2 triggers an endogenous antioxidant pathway activated in different neurodegenerative disorders. Probably, the stimulation of Nrf2 during either the early phase or before HD symptoms' onset, could slow or prevent striatum degeneration. In this review, we present the scientific literature supporting the role of Nrf2 in HD and the potential prophylactic and therapeutic role of this compound.
Collapse
Affiliation(s)
- Paolo Tucci
- Department of Clinical and Experimental Medicine, University of Foggia, 71122 Foggia, Italy
| | - Roberta Lattanzi
- Department of Physiology and Pharmacology “Vittorio Erspamer”, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy
| | - Cinzia Severini
- Institute of Biochemistry and Cell Biology (IBBC), National Research Council of Italy (CNR), Viale del Policlinico 155, 00161 Rome, Italy
| | - Luciano Saso
- Department of Physiology and Pharmacology “Vittorio Erspamer”, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy
- Correspondence:
| |
Collapse
|
3
|
Shah S, Dooms MM, Amaral-Garcia S, Igoillo-Esteve M. Current Drug Repurposing Strategies for Rare Neurodegenerative Disorders. Front Pharmacol 2022; 12:768023. [PMID: 34992533 PMCID: PMC8724568 DOI: 10.3389/fphar.2021.768023] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Accepted: 11/10/2021] [Indexed: 12/12/2022] Open
Abstract
Rare diseases are life-threatening or chronically debilitating low-prevalent disorders caused by pathogenic mutations or particular environmental insults. Due to their high complexity and low frequency, important gaps still exist in their prevention, diagnosis, and treatment. Since new drug discovery is a very costly and time-consuming process, leading pharmaceutical companies show relatively low interest in orphan drug research and development due to the high cost of investments compared to the low market return of the product. Drug repurposing–based approaches appear then as cost- and time-saving strategies for the development of therapeutic opportunities for rare diseases. In this article, we discuss the scientific, regulatory, and economic aspects of the development of repurposed drugs for the treatment of rare neurodegenerative disorders with a particular focus on Huntington’s disease, Friedreich’s ataxia, Wolfram syndrome, and amyotrophic lateral sclerosis. The role of academia, pharmaceutical companies, patient associations, and foundations in the identification of candidate compounds and their preclinical and clinical evaluation will also be discussed.
Collapse
Affiliation(s)
- Sweta Shah
- Faculty of Medicine, Université Libre de Bruxelles, Brussels, Belgium
| | | | | | | |
Collapse
|
4
|
Keillor JW, Johnson GVW. Transglutaminase 2 as a therapeutic target for neurological conditions. Expert Opin Ther Targets 2021; 25:721-731. [PMID: 34607527 DOI: 10.1080/14728222.2021.1989410] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Accepted: 10/01/2021] [Indexed: 12/14/2022]
Abstract
INTRODUCTION Transglutaminase 2 (TG2) has been implicated in numerous neurological conditions, including neurodegenerative diseases, multiple sclerosis, and CNS injury. Early studies on the role of TG2 in neurodegenerative conditions focused on its ability to 'crosslink' proteins into insoluble aggregates. However, more recent studies have suggested that this is unlikely to be the primary mechanism by which TG2 contributes to the pathogenic processes. Although the specific mechanisms by which TG2 is involved in neurological conditions have not been clearly defined, TG2 regulates numerous cellular processes through which it could contribute to a specific disease. Given the fact that TG2 is a stress-induced gene and elevated in disease or injury conditions, TG2 inhibitors may be useful neurotherapeutics. AREAS COVERED Overview of TG2 and different TG2 inhibitors. A brief review of TG2 in neurodegenerative diseases, multiple sclerosis and CNS injury and inhibitors that have been tested in different models. Database search: https://pubmed.ncbi.nlm.nih.gov prior to 1 July 2021. EXPERT OPINION Currently, it appears unlikely that inhibiting TG2 in the context of neurodegenerative diseases would be therapeutically advantageous. However, for multiple sclerosis and CNS injuries, TG2 inhibitors may have the potential to be therapeutically useful and thus there is rationale for their further development.
Collapse
Affiliation(s)
- Jeffrey W Keillor
- Department of Chemistry and Biomolecular Sciences, University of Ottawa, Ottawa, ON, Canada
| | - Gail V W Johnson
- Department of Anesthesiology and Perioperative Medicine, University of Rochester, Rochester, NY, USA
| |
Collapse
|
5
|
Abstract
Significance: The molecular processes that determine Huntington's disease (HD) pathogenesis are not yet fully understood, and until now no effective neuroprotective therapeutic strategies have been developed. Mitochondria are one of most important organelles required for neuronal homeostasis, by providing metabolic pathways relevant for energy production, regulating calcium homeostasis, or controlling free radical generation and cell death. Because augmented reactive oxygen species (ROS) accompanied by mitochondrial dysfunction are relevant early HD mechanisms, targeting these cellular mechanisms may constitute relevant therapeutic approaches. Recent Advances: Previous findings point toward a close relationship between mitochondrial dysfunction and redox changes in HD. Mutant huntingtin (mHTT) can directly interact with mitochondrial proteins, as translocase of the inner membrane 23 (TIM23), disrupting mitochondrial proteostasis and favoring ROS production and HD progression. Furthermore, abnormal brain and muscle redox signaling contributes to altered proteostasis and motor impairment in HD, which can be improved with the mitochondria-targeted antioxidant mitoquinone or resveratrol, an SIRT1 activator that ameliorates mitochondrial biogenesis and function. Critical Issues: Various antioxidants and metabolic enhancers have been studied in HD; however, the real outcome of these molecules is still debatable. New compounds have proven to ameliorate mitochondrial and redox-based signaling pathways in early stages of HD, potentially precluding selective neurodegeneration. Future Directions: Unraveling the molecular etiology of deregulated mitochondrial function and dynamics, and oxidative stress opens new prospects for HD therapeutics. In this review, we explore the role of redox unbalance and mitochondrial dysfunction in HD progression, and further describe advances on clinical trials in HD based on mitochondrial and redox-based therapeutic strategies.
Collapse
Affiliation(s)
- Lígia Fão
- Center for Neuroscience and Cell Biology (CNC), University of Coimbra, Coimbra, Portugal.,Faculty of Medicine, University of Coimbra, Coimbra, Portugal.,CIBB-Center for Innovative Biomedicine and Biotechnology, University of Coimbra, Coimbra, Portugal
| | - Ana Cristina Rego
- Center for Neuroscience and Cell Biology (CNC), University of Coimbra, Coimbra, Portugal.,Faculty of Medicine, University of Coimbra, Coimbra, Portugal.,CIBB-Center for Innovative Biomedicine and Biotechnology, University of Coimbra, Coimbra, Portugal
| |
Collapse
|
6
|
Shanmugaraj K, Sasikumar T, Campos CH, Ilanchelian M, Mangalaraja RV, Torres CC. Colorimetric determination of cysteamine based on the aggregation of polyvinylpyrrolidone-stabilized silver nanoparticles. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2020; 236:118281. [PMID: 32335419 DOI: 10.1016/j.saa.2020.118281] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Revised: 03/19/2020] [Accepted: 03/19/2020] [Indexed: 06/11/2023]
Abstract
A simple, colorimetric and visual method is described for the determination of cysteamine (CA) using polyvinylpyrrolidone-stabilized silver nanoparticles (PVP-AgNPs) as a colorimetric probe. The sensing method was based on the aggregation of PVP-AgNPs that led to the changes in the color and absorption profile of the probe. The aggregation of PVP-AgNPs in the presence of CA was evidenced by using transmission electron microscopy (TEM), zeta and dynamic light scattering (DLS) measurements. A distinct color transition could be observed with the naked eye from pale yellow color of PVP-AgNPs to purple. PVP-AgNPs probe showed an excellent selectivity towards CA versus other interfering biomolecules, cations and anions. Furthermore, the colorimetric probe had a linear response for CA from 0.1 to 1.0 μM concentration range with the limit of detection (LOD) of 4.9 nM. The prepared probe was successfully utilized for the determination of CA in blood serum as biological samples.
Collapse
Affiliation(s)
- Krishnamoorthy Shanmugaraj
- Departamento de Físico-Química, Facultad de Ciencias Químicas, Universidad de Concepción, Edmundo Larenas 129, Concepción 4070371, Chile.
| | - Thangarasu Sasikumar
- Department of Chemistry, Bharathiar University, Coimbatore 641046, Tamil Nadu, India
| | - Cristian H Campos
- Departamento de Físico-Química, Facultad de Ciencias Químicas, Universidad de Concepción, Edmundo Larenas 129, Concepción 4070371, Chile
| | | | - Ramalinga Viswanathan Mangalaraja
- Advanced Ceramics and Nanotechnology Laboratory, Department of Materials Engineering, University of Concepción, Concepción, Chile; Technological Development Unit (UDT), University of Concepción, Coronel Industrial Park, Coronel, Chile
| | - Cecilia C Torres
- Departamento de Química, Facultad de Ciencias Exactas, Universidad Andres Bello, Sede Concepción, Autopista Concepción-Talcahuano 7100, Talcahuano 4300866, Chile
| |
Collapse
|
7
|
Tripathy D, Migazzi A, Costa F, Roncador A, Gatto P, Fusco F, Boeri L, Albani D, Juárez-Hernández JL, Musio C, Colombo L, Salmona M, Wilhelmus MMM, Drukarch B, Pennuto M, Basso M. Increased transcription of transglutaminase 1 mediates neuronal death in in vitro models of neuronal stress and Aβ1-42-mediated toxicity. Neurobiol Dis 2020; 140:104849. [PMID: 32222473 DOI: 10.1016/j.nbd.2020.104849] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Revised: 03/01/2020] [Accepted: 03/24/2020] [Indexed: 12/18/2022] Open
Abstract
Alzheimer's disease (AD) is the most common cause of dementia. At the pre-symptomatic phase of the disease, the processing of the amyloid precursor protein (APP) produces toxic peptides, called amyloid-β 1-42 (Aβ 1-42). The downstream effects of Aβ 1-42 production are not completely uncovered. Here, we report the involvement of transglutaminase 1 (TG1) in in vitro AD models of neuronal toxicity. TG1 was increased at late stages of the disease in the hippocampus of a mouse model of AD and in primary cortical neurons undergoing stress. Silencing of TGM1 gene was sufficient to prevent Aβ-mediated neuronal death. Conversely, its overexpression enhanced cell death. TGM1 upregulation was mediated at the transcriptional level by an activator protein 1 (AP1) binding site that when mutated halted TGM1 promoter activation. These results indicate that TG1 acts downstream of Aβ-toxicity, and that its stress-dependent increase makes it suitable for pharmacological intervention.
Collapse
Affiliation(s)
- Debasmita Tripathy
- Department of Cellular, Computational and Integrative Biology - CIBIO, University of Trento, Trento, TN, Italy
| | - Alice Migazzi
- Department of Cellular, Computational and Integrative Biology - CIBIO, University of Trento, Trento, TN, Italy
| | - Federica Costa
- Department of Cellular, Computational and Integrative Biology - CIBIO, University of Trento, Trento, TN, Italy
| | - Alessandro Roncador
- Department of Cellular, Computational and Integrative Biology - CIBIO, University of Trento, Trento, TN, Italy
| | - Pamela Gatto
- Department of Cellular, Computational and Integrative Biology - CIBIO, University of Trento, Trento, TN, Italy
| | - Federica Fusco
- Department of Neuroscience, Laboratory of Genetics of Neurodegenerative Disorders, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milano, Italy
| | - Lucia Boeri
- Department of Chemistry, Materials and Chemical Engineering "G. Natta", Politecnico di Milano, Milan, Italy
| | - Diego Albani
- Department of Neuroscience, Laboratory of Genetics of Neurodegenerative Disorders, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milano, Italy
| | - J Leon Juárez-Hernández
- Institute of Biophysics, Trento Unit, National Research Council (IBF-CNR), Bruno Kessler Foundation (FBK), LabSSAH, Via alla Cascata 56/C, 38123 Trento, Italy
| | - Carlo Musio
- Institute of Biophysics, Trento Unit, National Research Council (IBF-CNR), Bruno Kessler Foundation (FBK), LabSSAH, Via alla Cascata 56/C, 38123 Trento, Italy
| | - Laura Colombo
- Department of Molecular Biochemistry and Pharmacology, Laboratory of Biochemistry and Protein Chemistry, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milano, Italy
| | - Mario Salmona
- Department of Molecular Biochemistry and Pharmacology, Laboratory of Biochemistry and Protein Chemistry, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milano, Italy
| | - M M Micha Wilhelmus
- VU University Medical Center, Neuroscience Campus Amsterdam, Department of Anatomy and Neurosciences, Amsterdam, the Netherlands
| | - Benjamin Drukarch
- VU University Medical Center, Neuroscience Campus Amsterdam, Department of Anatomy and Neurosciences, Amsterdam, the Netherlands
| | - Maria Pennuto
- Dulbecco Telethon Institute Lab of Neurodegenerative Diseases, Centre for Integrative Biology (CIBIO), University of Trento, Italy; Department of Biomedical sciences, via Ugo Bassi 58/B, University of Padova, 35131 Padova, Italy; Padova Neuroscience Center, 35100 Padova, Italy
| | - Manuela Basso
- Department of Cellular, Computational and Integrative Biology - CIBIO, University of Trento, Trento, TN, Italy.
| |
Collapse
|
8
|
Arbez N, Roby E, Akimov S, Eddings C, Ren M, Wang X, Ross CA. Cysteamine Protects Neurons from Mutant Huntingtin Toxicity. J Huntingtons Dis 2019; 8:129-143. [PMID: 30856117 DOI: 10.3233/jhd-180312] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
BACKGROUND The potential benefit of cysteamine for Huntington's disease has been demonstrated in HD animal models. Cysteamine and its derivate cystamine were shown to reduce neuropathology and prolong lifespan. Human studies have demonstrated safety, and suggestive results regarding efficacy. Despite all the studies available in vivo, there are only few in vitro studies, and the mechanism of action of cysteamine remains unclear. OBJECTIVE The objective of this study is to assess the capacity of cysteamine for neuroprotection against mutant Huntingtin in vitro using cellular models of HD, and to provide initial data regarding mechanism of action. METHODS We tested the neuroprotective properties of cysteamine in vitro in our primary neuron and iPSC models of HD. RESULTS Cysteamine showed a strong neuroprotective effect (EC50 = 7.1 nM) against mutant Htt-(aa-1-586 82Q) toxicity, in a nuclear condensation cell toxicity assay. Cysteamine also rescued mitochondrial changes induced by mutant Htt. Modulation of the levels of cysteine or glutathione failed to protect neurons, suggesting that cysteamine neuroprotection is not mediated through cysteine metabolism. Taurine and Hypotaurine, which are metabolites of cysteamine can protect neurons against Htt toxicity, but the inhibition of the enzyme converting cysteamine to hypotaurine does not block either protective activity, suggesting independent protective pathways. Cysteamine has been suggested to activate BDNF secretion; however, cysteamine protection was not blocked by BDNF pathway antagonists. CONCLUSIONS Cysteamine was strongly neuroprotective with relatively high potency. We demonstrated that the main neuroprotective pathways that have been proposed to be the mechanism of protection by cysteamine can all be blocked and still not prevent the neuroprotective effect. The results suggest the involvement of other yet-to-be-determined neuroprotective pathways.
Collapse
Affiliation(s)
- Nicolas Arbez
- Department of Psychiatry and Behavioral Sciences, Division of Neurobiology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Elaine Roby
- Department of Psychiatry and Behavioral Sciences, Division of Neurobiology, Johns Hopkins University School of Medicine, Baltimore, MD, USA.,Current address: Nuredis, Menlo Park, CA, USA
| | - Sergey Akimov
- Department of Psychiatry and Behavioral Sciences, Division of Neurobiology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Chelsy Eddings
- Department of Psychiatry and Behavioral Sciences, Division of Neurobiology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Mark Ren
- Department of Psychiatry and Behavioral Sciences, Division of Neurobiology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Xiaofang Wang
- Department of Psychiatry and Behavioral Sciences, Division of Neurobiology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Christopher A Ross
- Department of Psychiatry and Behavioral Sciences, Division of Neurobiology, Johns Hopkins University School of Medicine, Baltimore, MD, USA.,Departments of Neurology, Neuroscience and Pharmacology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| |
Collapse
|
9
|
Paul BD, Snyder SH. Impaired Redox Signaling in Huntington's Disease: Therapeutic Implications. Front Mol Neurosci 2019; 12:68. [PMID: 30941013 PMCID: PMC6433839 DOI: 10.3389/fnmol.2019.00068] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2018] [Accepted: 03/04/2019] [Indexed: 12/22/2022] Open
Abstract
Huntington's disease (HD) is a neurodegenerative disease triggered by expansion of polyglutamine repeats in the protein huntingtin. Mutant huntingtin (mHtt) aggregates and elicits toxicity by multiple mechanisms which range from dysregulated transcription to disturbances in several metabolic pathways in both the brain and peripheral tissues. Hallmarks of HD include elevated oxidative stress and imbalanced redox signaling. Disruption of antioxidant defense mechanisms, involving antioxidant molecules and enzymes involved in scavenging or reversing oxidative damage, have been linked to the pathophysiology of HD. In addition, mitochondrial function is compromised in HD leading to impaired bioenergetics and elevated production of free radicals in cells. However, the exact mechanisms linking redox imbalance to neurodegeneration are still elusive. This review will focus on the current understanding of aberrant redox homeostasis in HD and potential therapeutic interventions.
Collapse
Affiliation(s)
- Bindu D. Paul
- The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Solomon H. Snyder
- The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, United States
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, United States
- Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| |
Collapse
|
10
|
Abstract
The concept of cell signaling in the context of nonenzyme-assisted protein modifications by reactive electrophilic and oxidative species, broadly known as redox signaling, is a uniquely complex topic that has been approached from numerous different and multidisciplinary angles. Our Review reflects on five aspects critical for understanding how nature harnesses these noncanonical post-translational modifications to coordinate distinct cellular activities: (1) specific players and their generation, (2) physicochemical properties, (3) mechanisms of action, (4) methods of interrogation, and (5) functional roles in health and disease. Emphasis is primarily placed on the latest progress in the field, but several aspects of classical work likely forgotten/lost are also recollected. For researchers with interests in getting into the field, our Review is anticipated to function as a primer. For the expert, we aim to stimulate thought and discussion about fundamentals of redox signaling mechanisms and nuances of specificity/selectivity and timing in this sophisticated yet fascinating arena at the crossroads of chemistry and biology.
Collapse
Affiliation(s)
- Saba Parvez
- Department of Pharmacology and Toxicology, College of
Pharmacy, University of Utah, Salt Lake City, Utah, 84112, USA
- Department of Chemistry and Chemical Biology, Cornell
University, Ithaca, New York, 14853, USA
| | - Marcus J. C. Long
- Department of Chemistry and Chemical Biology, Cornell
University, Ithaca, New York, 14853, USA
| | - Jesse R. Poganik
- Ecole Polytechnique Fédérale de Lausanne,
Institute of Chemical Sciences and Engineering, 1015, Lausanne, Switzerland
- Department of Chemistry and Chemical Biology, Cornell
University, Ithaca, New York, 14853, USA
| | - Yimon Aye
- Ecole Polytechnique Fédérale de Lausanne,
Institute of Chemical Sciences and Engineering, 1015, Lausanne, Switzerland
- Department of Chemistry and Chemical Biology, Cornell
University, Ithaca, New York, 14853, USA
- Department of Biochemistry, Weill Cornell Medicine, New
York, New York, 10065, USA
| |
Collapse
|
11
|
Cystamine and cysteamine as inhibitors of transglutaminase activity in vivo. Biosci Rep 2018; 38:BSR20180691. [PMID: 30054429 PMCID: PMC6123069 DOI: 10.1042/bsr20180691] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2018] [Revised: 11/07/2018] [Accepted: 07/24/2018] [Indexed: 12/22/2022] Open
Abstract
Cystamine is commonly used as a transglutaminase inhibitor. This disulphide undergoes reduction in vivo to the aminothiol compound, cysteamine. Thus, the mechanism by which cystamine inhibits transglutaminase activity in vivo could be due to either cystamine or cysteamine, which depends on the local redox environment. Cystamine inactivates transglutaminases by promoting the oxidation of two vicinal cysteine residues on the enzyme to an allosteric disulphide, whereas cysteamine acts as a competitive inhibitor for transamidation reactions catalyzed by this enzyme. The latter mechanism is likely to result in the formation of a unique biomarker, N-(γ-glutamyl)cysteamine that could serve to indicate how cyst(e)amine acts to inhibit transglutaminases inside cells and the body.
Collapse
|
12
|
Schmidt ME, Buren C, Mackay JP, Cheung D, Dal Cengio L, Raymond LA, Hayden MR. Altering cortical input unmasks synaptic phenotypes in the YAC128 cortico-striatal co-culture model of Huntington disease. BMC Biol 2018; 16:58. [PMID: 29945611 PMCID: PMC6020351 DOI: 10.1186/s12915-018-0526-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2018] [Accepted: 05/08/2018] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Huntington disease (HD) is a fatal neurodegenerative disorder caused by a CAG expansion in the huntingtin (HTT) gene, leading to selective and progressive neuronal death predominantly in the striatum. Mutant HTT expression causes dysfunctional cortico-striatal (CS) transmission, loss of CS synapses, and striatal medium spiny neuron (MSN) dendritic spine instability prior to neuronal death. Co-culturing cortical and striatal neurons in vitro promotes the formation of functional CS synapses and is a widely used approach to elucidate pathogenic mechanisms of HD and to validate potential synapto-protective therapies. A number of relevant in vivo synaptic phenotypes from the YAC128 HD mouse model, which expresses full-length transgenic human mutant HTT, are recapitulated in CS co-culture by 21 days in vitro (DIV). However, striatal spine loss, which occurs in HD patients and in vivo animal models, has been observed in YAC128 CS co-culture in some studies but not in others, leading to difficulties in reproducing and interpreting results. Here, we investigated whether differences in the relative proportion of cortical and striatal neurons alter YAC128 synaptic phenotypes in this model. RESULTS YAC128 MSNs in 1:1 CS co-culture exhibited impaired dendritic length and complexity compared to wild-type, whereas reducing cortical input using a 1:3 CS ratio revealed a dramatic loss of YAC128 MSN dendritic spines. Chimeric experiments determined that this spine instability was primarily cell autonomous, depending largely on mutant HTT expression in striatal neurons. Moreover, we found that spontaneous electrophysiological MSN activity correlated closely with overall dendritic length, with no differences observed between genotypes in 1:3 co-cultures despite significant YAC128 spine loss. Finally, limiting cortical input with a 1:3 CS ratio impaired the basal survival of YAC128 neurons at DIV21, and this was partially selective for dopamine- and cAMP-regulated phosphoprotein 32-positive MSNs. CONCLUSIONS Our findings reconcile previous discordant reports of spine loss in this model, and improve the utility and reliability of the CS co-culture for the development of novel therapeutic strategies for HD.
Collapse
Affiliation(s)
- Mandi E Schmidt
- Centre for Molecular Medicine and Therapeutics, BC Children's Hospital Research Institute, University of British Columbia, 950 West 28th Avenue, Vancouver, V5Z 4H4, Canada
| | - Caodu Buren
- Department of Psychiatry and Djavad Mowafaghian Centre for Brain Health, University of British Columbia, 4834-2255 Wesbrook Mall, Vancouver, V6T 1Z3, Canada.,Present address: The Hospital for Sick Children, 555 University Avenue, Toronto, M5G 1X8, Canada
| | - James P Mackay
- Department of Psychiatry and Djavad Mowafaghian Centre for Brain Health, University of British Columbia, 4834-2255 Wesbrook Mall, Vancouver, V6T 1Z3, Canada
| | - Daphne Cheung
- Centre for Molecular Medicine and Therapeutics, BC Children's Hospital Research Institute, University of British Columbia, 950 West 28th Avenue, Vancouver, V5Z 4H4, Canada
| | - Louisa Dal Cengio
- Centre for Molecular Medicine and Therapeutics, BC Children's Hospital Research Institute, University of British Columbia, 950 West 28th Avenue, Vancouver, V5Z 4H4, Canada
| | - Lynn A Raymond
- Department of Psychiatry and Djavad Mowafaghian Centre for Brain Health, University of British Columbia, 4834-2255 Wesbrook Mall, Vancouver, V6T 1Z3, Canada
| | - Michael R Hayden
- Centre for Molecular Medicine and Therapeutics, BC Children's Hospital Research Institute, University of British Columbia, 950 West 28th Avenue, Vancouver, V5Z 4H4, Canada.
| |
Collapse
|
13
|
Rossin F, Villella VR, D'Eletto M, Farrace MG, Esposito S, Ferrari E, Monzani R, Occhigrossi L, Pagliarini V, Sette C, Cozza G, Barlev NA, Falasca L, Fimia GM, Kroemer G, Raia V, Maiuri L, Piacentini M. TG2 regulates the heat-shock response by the post-translational modification of HSF1. EMBO Rep 2018; 19:embr.201745067. [PMID: 29752334 DOI: 10.15252/embr.201745067] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2017] [Revised: 03/24/2018] [Accepted: 04/13/2018] [Indexed: 01/24/2023] Open
Abstract
Heat-shock factor 1 (HSF1) is the master transcription factor that regulates the response to proteotoxic stress by controlling the transcription of many stress-responsive genes including the heat-shock proteins. Here, we show a novel molecular mechanism controlling the activation of HSF1. We demonstrate that transglutaminase type 2 (TG2), dependent on its protein disulphide isomerase activity, triggers the trimerization and activation of HSF1 regulating adaptation to stress and proteostasis impairment. In particular, we find that TG2 loss of function correlates with a defect in the nuclear translocation of HSF1 and in its DNA-binding ability to the HSP70 promoter. We show that the inhibition of TG2 restores the unbalance in HSF1-HSP70 pathway in cystic fibrosis (CF), a human disorder characterized by deregulation of proteostasis. The absence of TG2 leads to an increase of about 40% in CFTR function in a new experimental CF mouse model lacking TG2. Altogether, these results indicate that TG2 plays a key role in the regulation of cellular proteostasis under stressful cellular conditions through the modulation of the heat-shock response.
Collapse
Affiliation(s)
- Federica Rossin
- Department of Biology, University of Rome 'Tor Vergata', Rome, Italy
| | - Valeria Rachela Villella
- Division of Genetics and Cell Biology, European Institute for Research in Cystic Fibrosis, San Raffaele Scientific Institute, Milan, Italy
| | - Manuela D'Eletto
- Department of Biology, University of Rome 'Tor Vergata', Rome, Italy
| | | | - Speranza Esposito
- Division of Genetics and Cell Biology, European Institute for Research in Cystic Fibrosis, San Raffaele Scientific Institute, Milan, Italy
| | - Eleonora Ferrari
- Division of Genetics and Cell Biology, European Institute for Research in Cystic Fibrosis, San Raffaele Scientific Institute, Milan, Italy
| | - Romina Monzani
- Division of Genetics and Cell Biology, European Institute for Research in Cystic Fibrosis, San Raffaele Scientific Institute, Milan, Italy
| | - Luca Occhigrossi
- Department of Biology, University of Rome 'Tor Vergata', Rome, Italy
| | - Vittoria Pagliarini
- Department of Biomedicine and Prevention, University of Rome 'Tor Vergata', Rome, Italy.,Laboratory of Neuroembryology, Fondazione Santa Lucia, Rome, Italy
| | - Claudio Sette
- Department of Biomedicine and Prevention, University of Rome 'Tor Vergata', Rome, Italy.,Laboratory of Neuroembryology, Fondazione Santa Lucia, Rome, Italy
| | - Giorgio Cozza
- Department of Molecular Medicine, University of Padua, Padova, Italy
| | - Nikolai A Barlev
- Gene Expression Laboratory, Institute of Cytology, Saint-Petersburg, Russia
| | - Laura Falasca
- National Institute for Infectious Diseases IRCCS 'L. Spallanzani', Rome, Italy
| | - Gian Maria Fimia
- National Institute for Infectious Diseases IRCCS 'L. Spallanzani', Rome, Italy.,Department of Biological and Environmental Sciences and Technologies (DiSTeBA), University of Salento, Lecce, Italy
| | - Guido Kroemer
- Sorbonne Paris Cité, Université Paris Descartes, Paris, France.,Equipe 11 labellisée Ligue Nationale contre le Cancer, Centre de Recherche des Cordeliers, Paris, France.,Institut National de la Santé et de la Recherche Médicale, U1138, Paris, France.,Université Pierre et Marie Curie, Paris, France.,Metabolomics and Cell Biology Platforms, Gustave Roussy Cancer Campus, Villejuif, France.,Pôle de Biologie, Hôpital Européen Georges Pompidou, AP-HP, Paris, France.,Department of Women's and Children's Health, Karolinska University Hospital, Stockholm, Sweden
| | - Valeria Raia
- Regional Cystic Fibrosis Center, Pediatric Unit, Department of Translational Medical Sciences, Federico II University, Naples, Italy
| | - Luigi Maiuri
- Division of Genetics and Cell Biology, European Institute for Research in Cystic Fibrosis, San Raffaele Scientific Institute, Milan, Italy.,SCDU of Pediatrics, Department of Health Sciences, University of Piemonte Orientale, Novara, Italy
| | - Mauro Piacentini
- Department of Biology, University of Rome 'Tor Vergata', Rome, Italy .,National Institute for Infectious Diseases IRCCS 'L. Spallanzani', Rome, Italy
| |
Collapse
|
14
|
Kieburtz K, Reilmann R, Olanow CW. Huntington's disease: Current and future therapeutic prospects. Mov Disord 2018; 33:1033-1041. [DOI: 10.1002/mds.27363] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2017] [Revised: 02/01/2018] [Accepted: 02/02/2018] [Indexed: 01/04/2023] Open
|
15
|
Dickey AS, La Spada AR. Therapy development in Huntington disease: From current strategies to emerging opportunities. Am J Med Genet A 2017; 176:842-861. [PMID: 29218782 DOI: 10.1002/ajmg.a.38494] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2017] [Accepted: 09/08/2017] [Indexed: 12/13/2022]
Abstract
Huntington disease (HD) is a progressive autosomal dominant neurodegenerative disorder in which patients typically present with uncontrolled involuntary movements and subsequent cognitive decline. In 1993, a CAG trinucleotide repeat expansion in the coding region of the huntingtin (HTT) gene was identified as the cause of this disorder. This extended CAG repeat results in production of HTT protein with an expanded polyglutamine tract, leading to pathogenic HTT protein conformers that are resistant to protein turnover, culminating in cellular toxicity and neurodegeneration. Research into the mechanistic basis of HD has highlighted a role for bioenergetics abnormalities stemming from mitochondrial dysfunction, and for synaptic defects, including impaired neurotransmission and excitotoxicity. Interference with transcription regulation may underlie the mitochondrial dysfunction. Current therapies for HD are directed at treating symptoms, as there are no disease-modifying therapies. Commonly prescribed drugs for involuntary movement control include tetrabenazine, a potent and selective inhibitor of vesicular monoamine transporter 2 that depletes synaptic monoamines, and olanzapine, an atypical neuroleptic that blocks the dopamine D2 receptor. Various drugs are used to treat non-motor features. The HD therapeutic pipeline is robust, as numerous efforts are underway to identify disease-modifying treatments, with some small compounds and biological agents moving into clinical trials. Especially encouraging are dosage reduction strategies, including antisense oligonucleotides, and molecules directed at transcription dysregulation. Given the depth and breadth of current HD drug development efforts, there is reason to believe that disease-modifying therapies for HD will emerge, and this achievement will have profound implications for the entire neurotherapeutics field.
Collapse
Affiliation(s)
- Audrey S Dickey
- Departments of Neurology, Neurobiology, and Cell Biology, Duke Center for Neurodegeneration & Neurotherapeutics, Duke University Medical Center, Durham, North Carolina
| | - Albert R La Spada
- Departments of Neurology, Neurobiology, and Cell Biology, Duke Center for Neurodegeneration & Neurotherapeutics, Duke University Medical Center, Durham, North Carolina
| |
Collapse
|
16
|
The effects of cysteamine in a mouse model of levodopa-induced dyskinesias. Neurosci Lett 2017; 662:395-401. [PMID: 29100803 DOI: 10.1016/j.neulet.2017.10.062] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2017] [Revised: 10/27/2017] [Accepted: 10/30/2017] [Indexed: 11/21/2022]
Abstract
Levo-dopa (L-DOPA) has shown significant and long-lasting efficacy in the treatment of motor features characteristic of Parkinson's disease (PD). However, the effects tend to wear off at a time typically when side-effects, such as L-DOPA induced dyskinesias (LIDs), start to emerge and for which the treatment options are very limited. In recent years, we have reported on the neuroprotective and neurorestorative properties of the compounds cystamine/cysteamine in ameliorating several aspects of PD. Building on these observations, we set out to further evaluate the benefits of cysteamine on LIDs. We thus treated mice displaying LIDs with single cysteamine challenges at various doses (20, 50 and 30mg/kg) or chronically for 2 weeks using cysteamine at a dose of 30mg/kg. None of the regimens nor doses ameliorated any LID-related behavioral impairments. Mice displaying LIDs did, however, respond to a single treatment of 60mg/kg of amantadine, a drug used to clinically manage LIDs. Taken together, our results suggest that cysteamine does not induce benefits on LIDs, at least at the doses and regimen tested in our study. However, the disease-modifying effects depicted by cystamine/cysteamine, which we have shown in several reports, would strongly encourage its continued evaluation in the clinical setting.
Collapse
|
17
|
Verny C, Bachoud-Lévi AC, Durr A, Goizet C, Azulay JP, Simonin C, Tranchant C, Calvas F, Krystkowiak P, Charles P, Youssov K, Scherer C, Prundean A, Olivier A, Reynier P, Saudou F, Maison P, Allain P, von Studnitz E, Bonneau D. A randomized, double-blind, placebo-controlled trial evaluating cysteamine in Huntington's disease. Mov Disord 2017; 32:932-936. [DOI: 10.1002/mds.27010] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2016] [Revised: 02/22/2017] [Accepted: 02/28/2017] [Indexed: 11/08/2022] Open
Affiliation(s)
- Christophe Verny
- Centre Hospitalier Universitaire d'Angers, Département de Neurologie et UMR CNRS 6214 - INSERM U1083 et Institut Mitovasc; Angers France
| | - Anne-Catherine Bachoud-Lévi
- Assistance Publique-Hôpitaux de Paris; Centre National de Référence Maladie de Huntington, Centre Hospitalier Universitaire H. Mondor - A. Chenevier de Créteil et INSERM U955, Equipe 01 Neuropsychologie interventionnelle, Créteil et Ecole Normale Supérieure, Institut d'Etudes Cognitives, Paris et Université Paris-Est, Faculté de Médecine; Créteil France
| | - Alexandra Durr
- Assistance Publique-Hôpitaux de Paris; Département de Génétique, and Institut du Cerveau et de la Moelle épinière, Hôpital de la Pitié-Salpêtrière; Paris France
| | - Cyril Goizet
- Centre Hospitalier Universitaire de Bordeaux; Hôpital Pellegrin, Service de Génétique Médicale, Université de Bordeaux, INSERM U1211; Bordeaux France
| | - Jean-Philippe Azulay
- Assistance Publique-Hôpitaux de Marseille; Hôpital de la Timone, Département de neurologie et de pathologie du mouvement, Institut de neurosciences de la Timone; UMR 7289 AMU-CNRS Marseille France
| | - Clémence Simonin
- Institut de Recherche sur le Cancer de Lille, INSERM UMR837, Centre Hospitalier Universitaire de Lille, Département de Neurologie et des Mouvements Anormaux; Lille France
| | - Christine Tranchant
- Hôpitaux Universitaire de Strasbourg; Hôpital Hautepierre, Service de Neurologie, Unité des Pathologies du mouvement; Strasbourg France
| | - Fabienne Calvas
- Centre Hospitalier Universitaire Purpan, Centre d'Investigation Clinique; Toulouse France
| | - Pierre Krystkowiak
- Centre Hospitalier Universitaire d'Amiens; Département de Neurologie, Université de Picardie Jules Verne, EA4559, Laboratoire de Neurosciences Fonctionnelles et Pathologie; Amiens France
| | - Perrine Charles
- Assistance Publique-Hôpitaux de Paris; Département de Génétique, and Institut du Cerveau et de la Moelle épinière, Hôpital de la Pitié-Salpêtrière; Paris France
| | - Katia Youssov
- Assistance Publique-Hôpitaux de Paris; Centre National de Référence Maladie de Huntington, Centre Hospitalier Universitaire H. Mondor - A. Chenevier de Créteil et INSERM U955, Equipe 01 Neuropsychologie interventionnelle, Créteil et Ecole Normale Supérieure, Institut d'Etudes Cognitives, Paris et Université Paris-Est, Faculté de Médecine; Créteil France
| | - Clarisse Scherer
- Centre Hospitalier Universitaire d'Angers, Département de Neurologie et UMR CNRS 6214 - INSERM U1083 et Institut Mitovasc; Angers France
| | - Adriana Prundean
- Centre Hospitalier Universitaire d'Angers, Département de Neurologie et UMR CNRS 6214 - INSERM U1083 et Institut Mitovasc; Angers France
| | - Audrey Olivier
- Centre Hospitalier Universitaire d'Angers, Département de Neurologie et UMR CNRS 6214 - INSERM U1083 et Institut Mitovasc; Angers France
| | - Pascal Reynier
- Centre Hospitalier Universitaire d'Angers, Département de Biochimie et Génétique et UMR CNRS 6214 - INSERM U1083 et Institut Mitovasc; Angers France
| | - Frédéric Saudou
- Université Grenoble Alpes, Grenoble Institut des Neurosciences; GIN, Grenoble France
- INSERM U1216
- Centre Hospitalier Universitaire de Grenoble; Grenoble France
| | - Patrick Maison
- INSERM U955, Equipe 01 Neuropsychologie interventionnelle; Créteil France
| | - Philippe Allain
- Centre Hospitalier Universitaire d'Angers, Département de Neurologie et UPRES EA 4638, Laboratoire de Psychologie des Pays de la Loire; Angers France
| | | | - Dominique Bonneau
- Centre Hospitalier Universitaire d'Angers, Département de Biochimie et Génétique et UMR CNRS 6214 - INSERM U1083 et Institut Mitovasc; Angers France
| | | |
Collapse
|
18
|
Ding Y, Zhang J, Wang R. Inhibition of tissue transglutaminase attenuates lipopolysaccharide-induced inflammation in glial cells through AKT/mTOR signal pathway. Biomed Pharmacother 2017; 89:1310-1319. [PMID: 28320098 DOI: 10.1016/j.biopha.2017.03.027] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2017] [Revised: 02/26/2017] [Accepted: 03/09/2017] [Indexed: 10/19/2022] Open
Abstract
AIM In view of the facts that tTG protein expression level and its enzyme activity increase in AD brains of both individuals and transgenic animals and compelling evidence of the involvement of inflammation in AD pathogenesis, tTG could be involved in the inflammation responses in the brain. In the present study, we examined the effects of the irreversible and the competitive inhibitor of tTG on the condition of lipopolysaccharide-induced mimic inflammation models in glial cells. METHODS Western blot and tTG enzyme activity assay were applied to detect tTG and isopeptide protein levels and tTG enzyme activity. The production of nitric oxide and the expression levels of inducible nitric oxide synthase and cyclooxygenase-2 were determined by Griess Reagents and Western blot respectively to assess anti-inflammatory effects. Moreover, the activation of AKT/mTOR signaling pathway was determined to evaluate the underlying mechanism of anti-inflammatory response. RESULTS Irreversible and competitive inhibitor of tTG could ameliorate LPS-induced neuroinflammation in glial cells without cytotoxicity. Moreover, AKT/mTOR pathway may be involved in the anti-inflammatory response of tTG inhibitors. Therefore, NTU283 and Cystamine may alleviate inflammatory response in glial cells, probably through, at least partially, inhibiting the activation of AKT/mTOR signaling pathway. CONCLUSION Our study provided some clues that tTG inhibitors NTU283 and Cystamine might be potential candidates for the treatments of neuroinflammation-related diseases, although more studies needed for further exploration.
Collapse
Affiliation(s)
- Yirong Ding
- Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Ji Zhang
- Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China; Department of Nuclear Medicine, Fudan University Shanghai Cancer Center, Shanghai 200032, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Rui Wang
- Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China.
| |
Collapse
|
19
|
Velusamy T, Panneerselvam AS, Purushottam M, Anusuyadevi M, Pal PK, Jain S, Essa MM, Guillemin GJ, Kandasamy M. Protective Effect of Antioxidants on Neuronal Dysfunction and Plasticity in Huntington's Disease. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2017; 2017:3279061. [PMID: 28168008 PMCID: PMC5266860 DOI: 10.1155/2017/3279061] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/29/2016] [Revised: 11/09/2016] [Accepted: 12/05/2016] [Indexed: 01/08/2023]
Abstract
Huntington's disease (HD) is characterised by movement disorders, cognitive impairments, and psychiatric problems. The abnormal generation of reactive oxygen species and the resulting oxidative stress-induced mitochondrial damage in neurons upon CAG mutations in the HTT gene have been hypothesized as the contributing factors of neurodegeneration in HD. The potential use of antioxidants against free radical toxicity has been an emerging field in the management of ageing and many neurodegenerative disorders. Neural stem cells derived adult neurogenesis represents the regenerative capacity of the adult brain. The process of adult neurogenesis has been implicated in the cognitive functions of the brain and is highly modulated positively by different factors including antioxidants. The supportive role of antioxidants to reduce the severity of HD via promoting the functional neurogenesis and neuroprotection in the pathological adult brain has great promise. This review comprehends the recent studies describing the therapeutic roles of antioxidants in HD and other neurologic disorders and highlights the scope of using antioxidants to promote adult neurogenesis in HD. It also advocates a new line of research to delineate the mechanisms by which antioxidants promote adult neurogenesis in HD.
Collapse
Affiliation(s)
- Thirunavukkarasu Velusamy
- Department of Biotechnology, Bharathiar University, Coimbatore, Tamil Nadu, India
- DBT Ramalingaswami Re-Entry Fellowship Programme, Department of Biotechnology (DBT), New Delhi, India
| | - Archana S. Panneerselvam
- Laboratory of Stem Cells and Neuroregeneration, Department of Animal Science, School of Life Sciences, Bharathidasan University, Tiruchirappalli, Tamil Nadu, India
| | - Meera Purushottam
- Department of Psychiatry, National Institute of Mental Health and Neurosciences (NIMHANS), Bangalore, Karnataka, India
| | - Muthuswamy Anusuyadevi
- Molecular Gerontology Laboratory, Department of Biochemistry, School of Life Sciences, Bharathidasan University, Tiruchirappalli, Tamil Nadu, India
| | - Pramod Kumar Pal
- Department of Neurology, National Institute of Mental Health and Neurosciences (NIMHANS), Bangalore, Karnataka, India
| | - Sanjeev Jain
- Department of Psychiatry, National Institute of Mental Health and Neurosciences (NIMHANS), Bangalore, Karnataka, India
| | - Musthafa Mohamed Essa
- Department of Food Science and Nutrition, CAMS, Sultan Qaboos University, Muscat, Oman
| | - Gilles J. Guillemin
- Neuroinflammation Group, Faculty of Medicine and Health Sciences, Macquarie University, Sydney, NSW, Australia
| | - Mahesh Kandasamy
- Laboratory of Stem Cells and Neuroregeneration, Department of Animal Science, School of Life Sciences, Bharathidasan University, Tiruchirappalli, Tamil Nadu, India
- UGC-Faculty Recharge Program (UGC-FRP), University Grant Commission, New Delhi, India
| |
Collapse
|
20
|
Recombinant Adeno Associated Viral (AAV) vector type 9 delivery of Ex1-Q138-mutant huntingtin in the rat striatum as a short-time model for in vivo studies in drug discovery. Neurobiol Dis 2016; 86:41-51. [DOI: 10.1016/j.nbd.2015.11.019] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2015] [Revised: 09/30/2015] [Accepted: 11/23/2015] [Indexed: 11/18/2022] Open
|
21
|
Menalled L, Brunner D. Animal models of Huntington's disease for translation to the clinic: best practices. Mov Disord 2015; 29:1375-90. [PMID: 25216369 DOI: 10.1002/mds.26006] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2014] [Accepted: 07/28/2014] [Indexed: 12/11/2022] Open
Abstract
Mouse models of Huntington's disease (HD) recapitulate many aspects of the human disease. These genetically modified mice are powerful tools that are used not only to examine the pathogenesis of the disease, but also to assess the efficacy of potential new treatments. Disappointingly, in the past few years we have seen the success of potential therapies in animal studies, subsequently followed by failure in clinical trials. We discuss here a number of factors that influence the translatability of findings from the preclinical to the clinical realm. In particular, we discuss issues related to sample size, reporting of information regarding experimental protocols and mouse models, assignment to experimental groups, incorporation of cognitive measures for early phases of the disease, environmental enrichment, surrogate measures for survival, and the use of more than one HD mouse model. Although it is reasonable to question the appropriateness of the animal models used, we argue that it is more parsimonious to assume that improvements in experimental design and publication of negative results will lead to improved translatability to the clinic and insights about HD pathophysiology.
Collapse
|
22
|
Aleman MM, Holle LA, Stember KG, Devette CI, Monroe DM, Wolberg AS. Cystamine preparations exhibit anticoagulant activity. PLoS One 2015; 10:e0124448. [PMID: 25915545 PMCID: PMC4411037 DOI: 10.1371/journal.pone.0124448] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2015] [Accepted: 03/14/2015] [Indexed: 12/30/2022] Open
Abstract
Transglutaminases are a superfamily of isoenzymes found in cells and plasma. These enzymes catalyze the formation of ε-N-(γ-glutamyl)-lysyl crosslinks between proteins. Cystamine blocks transglutaminase activity and is used in vitro in human samples and in vivo in mice and rats in studies of coagulation, immune dysfunction, and inflammatory disease. These studies have suggested cystamine blocks fibrin crosslinking and has anti-inflammatory effects, implicating transglutaminase activity in the pathogenesis of several diseases. We measured the effects of cystamine on fibrin crosslinking, tissue factor-triggered plasma clot formation and thrombin generation, and coagulation factor enzymatic activity. At concentrations that blocked fibrin crosslinking, cystamine also inhibited plasma clot formation and reduced thrombin generation. Cystamine inhibited the amidolytic activity of coagulation factor XI and thrombin towards chromogenic substrates. These findings demonstrate that cystamine exhibits anticoagulant activity during coagulation. Given the close relationship between coagulation and inflammation, these findings suggest prior studies that used cystamine to implicate transglutaminase activity in disease pathogenesis warrant re-examination.
Collapse
Affiliation(s)
- Maria M. Aleman
- Department of Pathology and Laboratory Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
- McAllister Heart Institute, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Lori A. Holle
- Department of Pathology and Laboratory Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Katherine G. Stember
- Department of Pathology and Laboratory Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Christa I. Devette
- Department of Pathology and Laboratory Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Dougald M. Monroe
- McAllister Heart Institute, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
- Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Alisa S. Wolberg
- Department of Pathology and Laboratory Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
- McAllister Heart Institute, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
- * E-mail:
| |
Collapse
|
23
|
Prundean A, Youssov K, Humbert S, Bonneau D, Verny C. A phase II, open-label evaluation of cysteamine tolerability in patients with Huntington's disease. Mov Disord 2014; 30:288-9. [PMID: 25475049 DOI: 10.1002/mds.26101] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2014] [Revised: 09/29/2014] [Accepted: 10/27/2014] [Indexed: 11/10/2022] Open
Affiliation(s)
- Adriana Prundean
- Centre de référence des maladies neurogénétiques, Centre Hospitalier Universitaire, Angers, France
| | | | | | | | | |
Collapse
|
24
|
Aberrant calcium signaling by transglutaminase-mediated posttranslational modification of inositol 1,4,5-trisphosphate receptors. Proc Natl Acad Sci U S A 2014; 111:E3966-75. [PMID: 25201980 DOI: 10.1073/pnas.1409730111] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
The inositol 1,4,5-trisphosphate receptor (IP3R) in the endoplasmic reticulum mediates calcium signaling that impinges on intracellular processes. IP3Rs are allosteric proteins comprising four subunits that form an ion channel activated by binding of IP3 at a distance. Defective allostery in IP3R is considered crucial to cellular dysfunction, but the specific mechanism remains unknown. Here we demonstrate that a pleiotropic enzyme transglutaminase type 2 targets the allosteric coupling domain of IP3R type 1 (IP3R1) and negatively regulates IP3R1-mediated calcium signaling and autophagy by locking the subunit configurations. The control point of this regulation is the covalent posttranslational modification of the Gln2746 residue that transglutaminase type 2 tethers to the adjacent subunit. Modification of Gln2746 and IP3R1 function was observed in Huntington disease models, suggesting a pathological role of this modification in the neurodegenerative disease. Our study reveals that cellular signaling is regulated by a new mode of posttranslational modification that chronically and enzymatically blocks allosteric changes in the ligand-gated channels that relate to disease states.
Collapse
|
25
|
Ghilan M, Bostrom CA, Hryciw BN, Simpson JM, Christie BR, Gil-Mohapel J. YAC128 Huntington׳s disease transgenic mice show enhanced short-term hippocampal synaptic plasticity early in the course of the disease. Brain Res 2014; 1581:117-28. [DOI: 10.1016/j.brainres.2014.06.011] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2014] [Revised: 05/02/2014] [Accepted: 06/07/2014] [Indexed: 01/31/2023]
|
26
|
Abstract
Changes in the level and activity of brain-derived neurotrophic factor (BDNF) have been described in a number of neurodegenerative disorders since early 1990s. However, only in Huntington disease (HD) gain- and loss-of-function experiments have mechanistically linked these abnormalities with the genetic defect.In this chapter we will describe how huntingtin protein, whose mutation causes HD, is involved in the physiological control of BDNF synthesis and transport in neurons and how both processes are simultaneously disrupted in HD. We will describe the underlying molecular mechanisms and discuss pre-clinical data concerning the impact of the experimental manipulation of BDNF levels on HD progression. These studies have revealed that a major loss of BDNF protein in the brain of HD patients may contribute to the clinical manifestations of the disease. The experimental strategies under investigation to increase brain BDNF levels in animal models of HD will also be described, with a view to ultimately improving the clinical treatment of this condition.
Collapse
Affiliation(s)
- Chiara Zuccato
- Department of Biosciences and Centre for Stem cell Research, Università degli Studi di Milano, Via Viotti 3/5, 20133, Milan, Italy,
| | | |
Collapse
|
27
|
Transglutaminase is a therapeutic target for oxidative stress, excitotoxicity and stroke: a new epigenetic kid on the CNS block. J Cereb Blood Flow Metab 2013; 33:809-18. [PMID: 23571278 PMCID: PMC3677119 DOI: 10.1038/jcbfm.2013.53] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Transglutaminases (TGs) are multifunctional, calcium-dependent enzymes that have been recently implicated in stroke pathophysiology. Classically, these enzymes are thought to participate in cell injury and death in chronic neurodegenerative conditions via their ability to catalyze covalent, nondegradable crosslinks between proteins or to incorporate polyamines into protein substrates. Accumulating lines of inquiry indicate that specific TG isoforms can shuttle into the nucleus when they sense pathologic changes in calcium or oxidative stress, bind to chromatin and thereby transduce these changes into transcriptional repression of genes involved in metabolic or oxidant adaptation. Here, we review the evidence that supports principally a role for one isoform of this family, TG2, in cell injury and death associated with hemorrhagic or ischemic stroke. We also outline an evolving model in which TG2 is a critical mediator between pathologic signaling and epigenetic modifications that lead to gene repression. Accordingly, the salutary effects of TG inhibitors in stroke may derive from their ability to restore homeostasis by removing inappropriate deactivation of adaptive genetic programs by oxidative stress or extrasynaptic glutamate receptor signaling.
Collapse
|
28
|
Switonski PM, Szlachcic WJ, Gabka A, Krzyzosiak WJ, Figiel M. Mouse models of polyglutamine diseases in therapeutic approaches: review and data table. Part II. Mol Neurobiol 2012; 46:430-66. [PMID: 22944909 PMCID: PMC3461214 DOI: 10.1007/s12035-012-8316-3] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2012] [Accepted: 07/29/2012] [Indexed: 12/13/2022]
Abstract
Mouse models of human diseases are created both to understand the pathogenesis of the disorders and to find successful therapies for them. This work is the second part in a series of reviews of mouse models of polyglutamine (polyQ) hereditary disorders and focuses on in vivo experimental therapeutic approaches. Like part I of the polyQ mouse model review, this work is supplemented with a table that contains data from experimental studies of therapeutic approaches in polyQ mouse models. The aim of this review was to characterize the benefits and outcomes of various therapeutic strategies in mouse models. We examine whether the therapeutic strategies are specific to a single disease or are applicable to more than one polyQ disorder in mouse models. In addition, we discuss the suitability of mouse models in therapeutic approaches. Although the majority of therapeutic studies were performed in mouse models of Huntington disease, similar strategies were also used in other disease models.
Collapse
Affiliation(s)
- Pawel M Switonski
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, Noskowskiego 12/14, 61-704 Poznan, Poland
| | | | | | | | | |
Collapse
|
29
|
Kumar A, Kneynsberg A, Tucholski J, Perry G, van Groen T, Detloff PJ, Lesort M. Tissue transglutaminase overexpression does not modify the disease phenotype of the R6/2 mouse model of Huntington's disease. Exp Neurol 2012; 237:78-89. [PMID: 22698685 DOI: 10.1016/j.expneurol.2012.05.015] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2012] [Revised: 05/14/2012] [Accepted: 05/27/2012] [Indexed: 01/22/2023]
Abstract
Huntington's disease (HD) is a devastating autosomal-dominant neurodegenerative disorder initiated by an abnormally expanded polyglutamine in the huntingtin protein. Determining the contribution of specific factors to the pathogenesis of HD should provide rational targets for therapeutic intervention. One suggested contributor is the type 2 transglutaminase (TG2), a multifunctional calcium dependent enzyme. A role for TG2 in HD has been suggested because a polypeptide-bound glutamine is a rate-limiting factor for a TG2-catalyzed reaction, and TG2 can cross-link mutant huntingtin in vitro. Further, TG2 is up regulated in brain areas affected in HD. The objective of this study was to further examine the contribution of TG2 as a potential modifier of HD pathogenesis and its validity as a therapeutic target in HD. In particular our goal was to determine whether an increase in TG2 level, as documented in human HD brains, modulates the well-characterized phenotype of the R6/2 HD mouse model. To accomplish this objective a genetic cross was performed between R6/2 mice and an established transgenic mouse line that constitutively expresses human TG2 (hTG2) under control of the prion promoter. Constitutive expression of hTG2 did not affect the onset and progression of the behavioral and neuropathological HD phenotype of R6/2 mice. We found no alterations in body weight changes, rotarod performances, grip strength, overall activity, and no significant effect on the neuropathological features of R6/2 mice. Overall the results of this study suggest that an increase in hTG2 expression does not significantly modify the pathology of HD.
Collapse
Affiliation(s)
- Ashish Kumar
- Department of Psychiatry, University of Alabama at Birmingham, Birmingham, AL 35294-0017, USA
| | | | | | | | | | | | | |
Collapse
|
30
|
Brooks S, Higgs G, Janghra N, Jones L, Dunnett SB. Longitudinal analysis of the behavioural phenotype in YAC128 (C57BL/6J) Huntington's disease transgenic mice. Brain Res Bull 2012; 88:113-20. [DOI: 10.1016/j.brainresbull.2010.05.005] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2010] [Revised: 04/27/2010] [Accepted: 05/02/2010] [Indexed: 10/19/2022]
|
31
|
Gil-Mohapel JM. Screening of therapeutic strategies for Huntington's disease in YAC128 transgenic mice. CNS Neurosci Ther 2012; 18:77-86. [PMID: 21501423 DOI: 10.1111/j.1755-5949.2011.00246.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Huntington’s disease (HD) is a hereditary neurodegenerative disorder caused by an unstable expansion of cytosine-adenine-guanine (CAG) repeats in the HD gene. The symptoms include cognitive dysfunction and severe motor impairment with loss of voluntary movement coordination that is later replaced by bradykinesia and rigidity. The neuropathology is characterized by neuronal loss mainly in the striatum and cortex, and the appearance of neuronal intranuclear inclusions of mutant huntingtin. The mechanisms responsible for neurodegeneration are still not fully understood although excitotoxicity and a consequent increase in intracellular calcium concentration as well as the activation of caspases and calapins are known to play a key role. There is currently no satisfactory treatment or cure for this disease. The YAC128 transgenic mice express the full-length human HD gene with 128 CAG repeats and constitute a unique model for the study of HD as they replicate the slow and biphasic progression of behavioral deficits characteristic of the human condition and show striatal neuronal loss. As such, these transgenic mice have been an invaluable model not only for the elucidation of the neurodegenerative pathways in HD, but also for the screening and development of new therapeutic approaches. Here, I will review the unique characteristics of this transgenic HD model and will provide a summary of the therapies that have been tested in these mice, namely: potentiation of the protective roles of wild-type huntingtin and mutant huntingtin aggregation, transglutaminase inhibition, inhibition of glutamate- and dopamine-induced toxicity, apoptosis inhibition, use of essential fatty acids, and the novel approach of intrabody gene therapy. The insights obtained from these and future studies will help identify potential candidates for clinical trials and will ultimately contribute to the discovery of a successful treatment for this devastating neurodegenerative disorder.
Collapse
Affiliation(s)
- Joana M Gil-Mohapel
- Division of Medical Sciences, Island Medical Program, University of Victoria, British Columbia, Canada.
| |
Collapse
|
32
|
Tiboldi A, Lentini A, Provenzano B, Tabolacci C, Höger H, Beninati S, Lubec G. Hippocampal polyamine levels and transglutaminase activity are paralleling spatial memory retrieval in the C57BL/6J mouse. Hippocampus 2012; 22:1068-74. [DOI: 10.1002/hipo.22016] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/28/2012] [Indexed: 11/07/2022]
|
33
|
Pouladi MA, Stanek LM, Xie Y, Franciosi S, Southwell AL, Deng Y, Butland S, Zhang W, Cheng SH, Shihabuddin LS, Hayden MR. Marked differences in neurochemistry and aggregates despite similar behavioural and neuropathological features of Huntington disease in the full-length BACHD and YAC128 mice. Hum Mol Genet 2012; 21:2219-32. [PMID: 22328089 DOI: 10.1093/hmg/dds037] [Citation(s) in RCA: 106] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The development of animal models of Huntington disease (HD) has enabled studies that help define the molecular aberrations underlying the disease. The BACHD and YAC128 transgenic mouse models of HD harbor a full-length mutant huntingtin (mHTT) and recapitulate many of the behavioural and neuropathological features of the human condition. Here, we demonstrate that while BACHD and YAC128 animals exhibit similar deficits in motor learning and coordination, depressive-like symptoms, striatal volume loss and forebrain weight loss, they show obvious differences in key features characteristic of HD. While YAC128 mice exhibit significant and widespread accumulation of mHTT striatal aggregates, these mHTT aggregates are absent in BACHD mice. Furthermore, the levels of several striatally enriched mRNA for genes, such as DARPP-32, enkephalin, dopamine receptors D1 and D2 and cannabinoid receptor 1, are significantly decreased in YAC128 but not BACHD mice. These findings may reflect sequence differences in the human mHTT transgenes harboured by the BACHD and YAC128 mice, including both single nucleotide polymorphisms as well as differences in the nature of CAA interruptions of the CAG tract. Our findings highlight a similar profile of HD-like behavioural and neuropathological deficits and illuminate differences that inform the use of distinct endpoints in trials of therapeutic agents in the YAC128 and BACHD mice.
Collapse
Affiliation(s)
- Mahmoud A Pouladi
- Centre for Molecular Medicine and Therapeutics, University of British Columbia, and Child and Family Research Institute, Vancouver, BC, Canada
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Transglutaminase 2: biology, relevance to neurodegenerative diseases and therapeutic implications. Pharmacol Ther 2011; 133:392-410. [PMID: 22212614 DOI: 10.1016/j.pharmthera.2011.12.003] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2011] [Accepted: 12/06/2011] [Indexed: 12/24/2022]
Abstract
Neurodegenerative disorders are characterized by progressive neuronal loss and the aggregation of disease-specific pathogenic proteins in hallmark neuropathologic lesions. Many of these proteins, including amyloid Αβ, tau, α-synuclein and huntingtin, are cross-linked by the enzymatic activity of transglutaminase 2 (TG2). Additionally, the expression and activity of TG2 is increased in affected brain regions in these disorders. These observations along with experimental evidence in cellular and mouse models suggest that TG2 can contribute to the abnormal aggregation of disease causing proteins and consequently to neuronal damage. This accumulating evidence has provided the impetus to develop inhibitors of TG2 as possible neuroprotective agents. However, TG2 has other enzymatic activities in addition to its cross-linking function and can modulate multiple cellular processes including apoptosis, autophagy, energy production, synaptic function, signal transduction and transcription regulation. These diverse properties must be taken into consideration in designing TG2 inhibitors. In this review, we discuss the biochemistry of TG2, its various physiologic functions and our current understanding about its role in degenerative diseases of the brain. We also describe the different approaches to designing TG2 inhibitors that could be developed as potential disease-modifying therapies.
Collapse
|
35
|
Hoffner G, Vanhoutteghem A, André W, Djian P. Transglutaminase in epidermis and neurological disease or what makes a good cross-linking substrate. ADVANCES IN ENZYMOLOGY AND RELATED AREAS OF MOLECULAR BIOLOGY 2011; 78:97-160. [PMID: 22220473 DOI: 10.1002/9781118105771.ch3] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Guylaine Hoffner
- Unité Propre de Recherche 2228 du Centre National de la Recherche Scientifique, Régulation de la Transcription et Maladies Génétiques, Université Paris Descartes, Paris, France
| | | | | | | |
Collapse
|
36
|
Brooks SP, Jones L, Dunnett SB. Comparative analysis of pathology and behavioural phenotypes in mouse models of Huntington's disease. Brain Res Bull 2011; 88:81-93. [PMID: 22004616 DOI: 10.1016/j.brainresbull.2011.10.002] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2011] [Accepted: 10/03/2011] [Indexed: 12/30/2022]
Abstract
The longitudinal characterisation of Huntington's disease (HD) mouse lines is essential for the understanding of the differential developmental time course, nature and severity of phenotype progression over time. This overview outlines detailed behavioural, neuropathological and gene expression studies in four HD mouse lines: R6/1, YAC128, HdhQ92 and HdhQ150 and outlines their relevance to human HD. The review describes the similarities and differences between the models at the behavioural, anatomical and genetic levels of pathology and how these phenotypes interact in the development of disease in the lines. The HdhQ150 mouse demonstrates the most similarities to the functional deficits observed in human HD. The neuropathological profile with early cortical development of intense aggregate/inclusion pathology in the YAC128 mouse suggests that this line most resembles the development of inclusion pathology in the human disease. The gene expression analyses of the mouse lines find significant similarities between each of the lines and human HD, which converge as the mice age. In the YAC128 and HdhQ92 mouse lines some severe functional deficits are progressive whilst others are not, despite the concomitant ongoing development of neuropathological and gene expression changes. We suggest that the YAC128 and R6/1 lines may be more representative of the juvenile form of HD. The suitability of the different mouse models studied here for different types of pre-clinical therapeutic trials is discussed.
Collapse
Affiliation(s)
- Simon P Brooks
- Brain Repair Group, School of Biosciences, Cardiff University, Wales, UK.
| | | | | |
Collapse
|
37
|
Zádori D, Klivényi P, Plangár I, Toldi J, Vécsei L. Endogenous neuroprotection in chronic neurodegenerative disorders: with particular regard to the kynurenines. J Cell Mol Med 2011; 15:701-17. [PMID: 21155972 PMCID: PMC3922661 DOI: 10.1111/j.1582-4934.2010.01237.x] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Parkinson's disease (PD) and Huntington's disease (HD) are progressive chronic neurodegenerative disorders that are accompanied by a considerable impairment of the motor functions. PD may develop for familial or sporadic reasons, whereas HD is based on a definite genetic mutation. Nevertheless, the pathological processes involve oxidative stress and glutamate excitotoxicity in both cases. A number of metabolic routes are affected in these disorders. The decrease in antioxidant capacity and alterations in the kynurenine pathway, the main pathway of the tryptophan metabolism, are features that deserve particular interest, because the changes in levels of neuroactive kynurenine pathway compounds appear to be strongly related to the oxidative stress and glutamate excitotoxicity involved in the disease pathogenesis. Increase of the antioxidant capacity and pharmacological manipulation of the kynurenine pathway are therefore promising therapeutic targets in these devastating disorders.
Collapse
Affiliation(s)
- Dénes Zádori
- Department of Neurology, Albert Szent-Györgyi Clinical Centre, University of Szeged, Szeged, Hungary
| | | | | | | | | |
Collapse
|
38
|
Mice lacking caspase-2 are protected from behavioral changes, but not pathology, in the YAC128 model of Huntington disease. Mol Neurodegener 2011; 6:59. [PMID: 21854568 PMCID: PMC3180273 DOI: 10.1186/1750-1326-6-59] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2011] [Accepted: 08/19/2011] [Indexed: 01/26/2023] Open
Abstract
BACKGROUND Huntington Disease (HD) is a neurodegenerative disorder in which caspase activation and cleavage of substrates, including the huntingtin protein, has been invoked as a pathological mechanism. Specific changes in caspase-2 (casp2) activity have been suggested to contribute to the pathogenesis of HD, however unique casp2 cleavage substrates have remained elusive. We thus utilized mice completely lacking casp2 (casp2-/-) to examine the role played by casp2 in the progression of HD. This 'substrate agnostic' approach allows us to query the effect of casp2 on HD progression without pre-defining proteolytic substrates of interest. RESULTS YAC128 HD model mice lacking casp2 show protection from well-validated motor and cognitive features of HD, including performance on rotarod, swimming T-maze, pre-pulse inhibition, spontaneous alternation and locomotor tasks. However, the specific pathological features of the YAC128 mice including striatal volume loss and testicular degeneration are unaltered in mice lacking casp2. The application of high-resolution magnetic resonance imaging (MRI) techniques validates specific neuropathology in the YAC128 mice that is not altered by ablation of casp2. CONCLUSIONS The rescue of behavioral phenotypes in the absence of pathological improvement suggests that different pathways may be operative in the dysfunction of neural circuitry in HD leading to behavioral changes compared to the processes leading to cell death and volume loss. Inhibition of caspase-2 activity may be associated with symptomatic improvement in HD.
Collapse
|
39
|
Gil-Mohapel J, Simpson JM, Ghilan M, Christie BR. Neurogenesis in Huntington's disease: Can studying adult neurogenesis lead to the development of new therapeutic strategies? Brain Res 2011; 1406:84-105. [DOI: 10.1016/j.brainres.2011.06.040] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2011] [Revised: 06/14/2011] [Accepted: 06/15/2011] [Indexed: 01/01/2023]
|
40
|
Engholm M, Eftekhari A, Chwatko G, Bald E, Mulvany MJ. Effect of cystamine on blood pressure and vascular characteristics in spontaneously hypertensive rats. J Vasc Res 2011; 48:476-84. [PMID: 21778764 DOI: 10.1159/000327773] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2010] [Accepted: 03/13/2011] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Tissue transglutaminase (t-TG) has been implicated in small artery remodelling. The aim of this study was to determine if cystamine, an inhibitor of t-TG, could reduce blood pressure in spontaneously hypertensive rats (SHR) and if so to what extent this is mediated through small arteries. METHODS In vitro inhibition of t-TG, with cystamine, was studied in organ culture and wire myograph setups in small mesenteric arteries obtained from SHR. In vivo treatment with cystamine (80 mg/kg/day) or amlodipine (10 mg/kg/day) was performed with osmotic pumps in adult SHR, and hemodynamic parameters determined with telemetry. Plasma concentrations of cystamine were determined with a liquid chromatography setup. Small arteries were harvested following administration of cystamine, and structural as well as functional characteristics were determined. RESULTS SHR small arteries showed inward remodelling following in vitro activation. Administration of cystamine caused attenuation of the inward remodelling induced by activation. In vivo administration of cystamine caused a 9 ± 2 mm Hg reduction in blood pressure, but with no detectable alterations in small artery structure. CONCLUSION t-TG is potentially involved in vascular remodelling of SHR small arteries and results support a possible role for t-TG in blood pressure control.
Collapse
Affiliation(s)
- M Engholm
- Department of Pharmacology, University of Aarhus, Aarhus, Denmark. Morten.engholm.pedersen @ farm.au.dk
| | | | | | | | | |
Collapse
|
41
|
Sivananthan SN, Leavitt BR. Cystamine and ethyl-eicosapentaenoic acid treatment fail to prevent malonate-induced striatal toxicity in mice. Neurobiol Aging 2011; 32:2326.e1-4. [PMID: 21741126 DOI: 10.1016/j.neurobiolaging.2011.05.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2010] [Revised: 04/19/2011] [Accepted: 05/25/2011] [Indexed: 10/18/2022]
Abstract
Cystamine has demonstrated neuroprotective activity in a variety of studies, and is currently being evaluated in a human clinical trial in Huntington's disease (HD). Cystamine treatment of various genetic models of HD demonstrated protection against neurodegeneration and/or improvement in behavior. Given the need for a rapid screening tool for HD therapeutics, we assessed the potential therapeutic benefits of cystamine in a short-term acute toxicity murine model of striatal cell death. Cystamine did not provide neuroprotection against bilateral intrastriatal malonate injections in mice as measured by lesion size, loss of striatal volume, or decreased striatal neuronal counts. Similar results were obtained for treatment with another potential therapeutic agent that was protective in genetic mouse models of HD, the essential fatty acid ethyl-eicosapentaenoic acid. Our findings suggest that this toxic model is not reflective or predictive of findings in genetic mouse models, and may not be useful as a preclinical screen for HD therapeutics.
Collapse
Affiliation(s)
- Saskia N Sivananthan
- Department of Medical Genetics and Centre for Molecular Medicine and Therapeutics, University of British Columbia, British Columbia, Vancouver, Canada
| | | |
Collapse
|
42
|
Brooks SP, Jones L, Dunnett SB. Longitudinal analyses of operant performance on the serial implicit learning task (SILT) in the YAC128 Huntington's disease mouse line. Brain Res Bull 2011; 88:130-6. [PMID: 21763407 DOI: 10.1016/j.brainresbull.2011.06.008] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2011] [Revised: 06/15/2011] [Accepted: 06/22/2011] [Indexed: 11/16/2022]
Abstract
Huntington's disease is a genetic disorder characterised by progressive striatal and cortical neurodegeneration, resulting in a broad range of motor, cognitive and behavioural abnormalities. The disease is caused by a single mutation in the gene responsible for the protein huntingtin, increasing the number of polyQ repeats and conferring a toxic gain of function to the mutant protein, which ultimately induces cell death. Several mouse models of HD are available. The YAC128 mouse model carries 128 CAG repeats and is known to develop several HD-like symptoms. This model has been well characterised on the FVB/N background strain, a strain that develops severe retinal degeneration. We have therefore sought to characterise YAC128 deficit in mice backcrossed onto the C57BL/6j background strain which is free of visual deficits and therefore more amenable to behavioural testing. In a parallel study (this special issue) we have provided a longitudinal characterisation of the emergence of a motor phenotype in the YAC128/C57BL mice. In the present paper, we have undertaken a more detailed characterisation of cognitive impairment in this mouse line at 6, 12, and 18 months of age using the operant serial implicit learning task (SILT), a task that was first designed to assess impairments in mice similar to the implicit serial learning impairments in HD patients task, and which has subsequently been shown to be highly sensitive to cortico-striatal disruption in mice. On the SILT task, the mouse must attain rewards by correctly nose-poking to 2 stimulus lights (S1 and S2) presented randomly and sequentially in 5 holes (deemed A-E) on a light array. Performance is measured by accuracy and speed of response to the S1 and S2 stimuli. Embedded within the random sequences, was a predictable sequence whereby an S1 in hole B is always followed by the S2 in hole D, which constitutes an implicit learning probe. The YAC128 carriers were less accurate in their responses to both S1 and S2 stimuli in the absence of response latency deficits. The deficits in accuracy to the S2 stimuli were present from 6 months of age and were progressive. There was no difference between the wildtype and the YAC128 carriers in the benefits gained from identifying the predictable B-D sequence. The results suggest that the YAC128 mice have a motor-learning deficit that may reflect impulsive responding and/or impaired visuo-spatial attention consistent with a model of HD.
Collapse
Affiliation(s)
- Simon P Brooks
- Brain Repair Group, School of Biosciences, Cardiff University, Wales, UK.
| | | | | |
Collapse
|
43
|
Carroll JB, Lerch JP, Franciosi S, Spreeuw A, Bissada N, Henkelman RM, Hayden MR. Natural history of disease in the YAC128 mouse reveals a discrete signature of pathology in Huntington disease. Neurobiol Dis 2011; 43:257-65. [DOI: 10.1016/j.nbd.2011.03.018] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2011] [Revised: 03/07/2011] [Accepted: 03/23/2011] [Indexed: 11/25/2022] Open
|
44
|
Gibrat C, Cicchetti F. Potential of cystamine and cysteamine in the treatment of neurodegenerative diseases. Prog Neuropsychopharmacol Biol Psychiatry 2011; 35:380-9. [PMID: 21111020 DOI: 10.1016/j.pnpbp.2010.11.023] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/16/2010] [Revised: 11/10/2010] [Accepted: 11/17/2010] [Indexed: 01/08/2023]
Abstract
Neurodegenerative disorders are a subset of disabling pathologies characterized, in part, by a progressive and specific loss of certain brain cell populations. Current therapeutic approaches for the treatment of these disorders are mainly designed towards symptom management and do not manifestly block their typified neuronal loss. However, research conducted over the past decade has reflected the increasing interest and need to find disease-modifying molecules. Among the several neuroprotective agents emerging from experimental animal work, cystamine, as well as its reduced form cysteamine, have been identified as potential candidate drugs. Given the significant benefits observed in a Huntington's disease (HD) model, cysteamine has recently leaped to clinical trial. Here, we review the beneficial properties of these compounds as reported in animal studies, their mechanistic underpinnings, and their potential implications for the future treatment of patients suffering from neurodegenerative diseases, and more specifically for HD and Parkinson's disease (PD).
Collapse
Affiliation(s)
- C Gibrat
- Centre de Recherche du CHUL (CHUQ), Axe Neurosciences, 2705 Boulevard Laurier, Québec, QC, Canada, G1V 4G2
| | | |
Collapse
|
45
|
Beneficial effects of treatment with transglutaminase inhibitor cystamine on the severity of inflammation in a rat model of inflammatory bowel disease. J Transl Med 2011; 91:452-61. [PMID: 21042292 DOI: 10.1038/labinvest.2010.186] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Inflammatory bowel disease (IBD) represents a socially and clinically relevant disorder, characterized by intestinal chronic inflammation. Cystamine (CysN) is a multipotent molecule with healthy effects and, moreover, it is an inhibitor of transglutaminases (TGs), including the TG type 2 (TG2), an enzyme with pleiotropic functions, involved in different pathways of inflammation and central in the pathogenesis of some human disorders as the IBD. Our aim was to evaluate the effect of CysN in an IBD rat model. A total of 30 rats were divided into 4 groups: controls without treatment (CTR; n=7); receiving the 2,4,6-trinitrobenzene sulfonic acid enema (TNBS group; n=8); treated with TNBS enema plus oral CysN (TNBS-CysN group; n=8); treated with CysN (CysN group; n=7). After killing, bowel inflammation was evaluated applying specific scores. TG activity, TG2 and isopeptide bond immunohistochemical expression, and tumor necrosis factor-α (TNF-α) were evaluated in the colonic tissue, such as interleukin-6 (IL-6) serological levels (ELISA). TG2 was also evaluated on the luminal side of the colon by immunoautoradiography. Colonic samples from IBD patients were compared with animal results. TNBS-CysN group developed a less severe colitis compared with the TNBS group (macroscopic score 0.43±0.78 vs 3.28±0.95, microscopic score 6.62±12.01 vs 19.25±6.04, P<0.05, respectively) associated with a decrease of TG activity, TG2 and isopeptide bond immunohistochemical expression, TNF-α and IL-6 levels. No statistically significant differences were found between CysN and CTR groups. The colonic immunolocalization of TG2 was comparable in humans affected by IBD and TNBS-administered animals. This is the first demonstration that treatment with a CysN has an anti-inflammatory effect, reducing severity of colitis in a rat model. CysN could be tested as a possible treatment or co-treatment in IBD therapeutic trials.
Collapse
|
46
|
McConoughey SJ, Basso M, Niatsetskaya ZV, Sleiman SF, Smirnova NA, Langley BC, Mahishi L, Cooper AJL, Antonyak MA, Cerione RA, Li B, Starkov A, Chaturvedi RK, Beal MF, Coppola G, Geschwind DH, Ryu H, Xia L, Iismaa SE, Pallos J, Pasternack R, Hils M, Fan J, Raymond LA, Marsh JL, Thompson LM, Ratan RR. Inhibition of transglutaminase 2 mitigates transcriptional dysregulation in models of Huntington disease. EMBO Mol Med 2011; 2:349-70. [PMID: 20665636 PMCID: PMC3068019 DOI: 10.1002/emmm.201000084] [Citation(s) in RCA: 110] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Caused by a polyglutamine expansion in the huntingtin protein, Huntington's disease leads to striatal degeneration via the transcriptional dysregulation of a number of genes, including those involved in mitochondrial biogenesis. Here we show that transglutaminase 2, which is upregulated in HD, exacerbates transcriptional dysregulation by acting as a selective corepressor of nuclear genes; transglutaminase 2 interacts directly with histone H3 in the nucleus. In a cellular model of HD, transglutaminase inhibition de-repressed two established regulators of mitochondrial function, PGC-1α and cytochrome c and reversed susceptibility of human HD cells to the mitochondrial toxin, 3-nitroproprionic acid; however, protection mediated by transglutaminase inhibition was not associated with improved mitochondrial bioenergetics. A gene microarray analysis indicated that transglutaminase inhibition normalized expression of not only mitochondrial genes but also 40% of genes that are dysregulated in HD striatal neurons, including chaperone and histone genes. Moreover, transglutaminase inhibition attenuated degeneration in a Drosophila model of HD and protected mouse HD striatal neurons from excitotoxicity. Altogether these findings demonstrate that selective TG inhibition broadly corrects transcriptional dysregulation in HD and defines a novel HDAC-independent epigenetic strategy for treating neurodegeneration.
Collapse
|
47
|
Caccamo D, Currò M, Ientile R. Potential of transglutaminase 2 as a therapeutic target. Expert Opin Ther Targets 2010; 14:989-1003. [PMID: 20670177 DOI: 10.1517/14728222.2010.510134] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
IMPORTANCE OF THE FIELD Increased expression and activity of transglutaminase 2 - a calcium-dependent enzyme which catalyzes protein cross-linking, polyamination or deamidation at selective glutamine residues - are involved in the etiopathogenesis of several pathological conditions, such as neurodegenerative disorders, autoimmune diseases and inflammatory diseases. Inhibition of enzyme activity has potential for therapeutic management of these diseases. AREAS COVERED IN THIS REVIEW The major results achieved in the last twelve years of research in the field of inhibition of tranglutaminase activity using cell cultures as well as in vivo models of high-social-impact or widespread diseases, such as CNS neurodegenerative disorders, celiac sprue, cancer and fibrotic diseases. WHAT THE READER WILL GAIN Beneficial effects of enzyme activity inhibition have been observed in neurodegeneration and fibrosis in vivo models by delivery of the competitive inhibitor cystamine and more recently designed inhibitors, such as thiomidaziolium or norleucine derivatives, which irreversibly bind the active site cysteine residue. Transglutaminase 2 targeting with specific antibodies has also been shown to be a promising tool for celiac disease treatment. TAKE HOME MESSAGE New insights from transglutaminase inhibition studies dealing with side effects of in vivo administration of pan-transglutaminase inhibitors will help in design of novel therapeutic approaches to various diseases.
Collapse
Affiliation(s)
- Daniela Caccamo
- University of Messina, Policlinico Universitario, Department of Biochemical, Physiological and Nutritional Sciences, Italy
| | | | | |
Collapse
|
48
|
Hoffstrom BG, Kaplan A, Letso R, Schmid RS, Turmel GJ, Lo DC, Stockwell BR. Inhibitors of protein disulfide isomerase suppress apoptosis induced by misfolded proteins. Nat Chem Biol 2010; 6:900-6. [PMID: 21079601 PMCID: PMC3018711 DOI: 10.1038/nchembio.467] [Citation(s) in RCA: 245] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2010] [Accepted: 10/08/2010] [Indexed: 11/09/2022]
Abstract
A hallmark of many neurodegenerative diseases is accumulation of misfolded proteins within neurons, leading to cellular dysfunction and cell death. Although several mechanisms have been proposed to link protein misfolding to cellular toxicity, the connection remains enigmatic. Here, we report a cell death pathway involving protein disulfide isomerase (PDI), a protein chaperone that catalyzes isomerization, reduction and oxidation of disulfides. Through a small molecule screening approach, we discovered five structurally distinct compounds that prevent apoptosis induced by mutant huntingtin protein. Using modified Huisgen cycloaddition chemistry, we then identified PDI as the molecular target of these small molecules. Expression of polyglutamine-expanded huntingtin exon 1 in PC12 cells caused PDI to accumulate at mitochondrial-associated ER membranes and trigger apoptotic cell death via mitochondrial outer-membrane permeabilization. Inhibiting PDI in rat brain cells suppressed the toxicity of mutant huntingtin exon 1 and Aβ peptides processed from the amyloid precursor protein. This pro-apoptotic function of PDI represents a new mechanism linking protein misfolding and apoptotic cell death.
Collapse
Affiliation(s)
- Benjamin G Hoffstrom
- Howard Hughes Medical Institute, Department of Biological Sciences, Columbia University, New York, New York, USA
| | | | | | | | | | | | | |
Collapse
|
49
|
Davies JE, Rose C, Sarkar S, Rubinsztein DC. Cystamine suppresses polyalanine toxicity in a mouse model of oculopharyngeal muscular dystrophy. Sci Transl Med 2010; 2:34ra40. [PMID: 20519718 DOI: 10.1126/scitranslmed.3000723] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Oculopharyngeal muscular dystrophy (OPMD) is caused by a trinucleotide repeat expansion mutation in the coding region of the gene encoding PABPN1 (polyadenylate-binding protein nuclear 1). Mutant PABPN1 with a polyalanine tract expansion forms aggregates within the nuclei of skeletal muscle fibers. There is currently no effective treatment. We have developed cell and mouse models of OPMD and have identified the aggregation of mutant PABPN1 and apoptosis as therapeutic targets. Here, we show that transglutaminase activity is increased in muscle from OPMD model mice. Elevated transglutaminase 2 expression enhances, whereas TG2 knockdown suppresses, the toxicity and aggregation of mutant PABPN1 in cells. Cystamine protects against the toxicity of mutant PABPN1 and exerts its effect via the inhibition of transglutaminase 2, as cystamine treatment is unable to further reduce the protective effect of transglutaminase 2 knockdown on mutant PABPN1 toxicity in cells. Cystamine also reduces the aggregation and toxicity of mutant PABPN1 in human cells. In a mouse model of OPMD, cystamine treatment reduced the elevated transglutaminase activity, attenuated muscle weakness, reduced aggregate load, and decreased apoptotic markers in muscle. Therefore, inhibitors of transglutaminase 2 should be considered as possible therapeutics for OPMD.
Collapse
Affiliation(s)
- Janet E Davies
- Department of Medical Genetics, University of Cambridge, Cambridge Institute for Medical Research, Addenbrooke's Hospital, Cambridge, UK
| | | | | | | |
Collapse
|
50
|
Chiang MC, Chen CM, Lee MR, Chen HW, Chen HM, Wu YS, Hung CH, Kang JJ, Chang CP, Chang C, Wu YR, Tsai YS, Chern Y. Modulation of energy deficiency in Huntington's disease via activation of the peroxisome proliferator-activated receptor gamma. Hum Mol Genet 2010; 19:4043-58. [PMID: 20668093 DOI: 10.1093/hmg/ddq322] [Citation(s) in RCA: 73] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Huntington's disease (HD) is a neurodegenerative disease caused by the expansion of a CAG trinucleotide repeat in exon 1 of the huntingtin (HTT) gene. Here, we report that the transcript of the peroxisome proliferator-activated receptor-γ (PPARγ), a transcription factor that is critical for energy homeostasis, was markedly downregulated in multiple tissues of a mouse model (R6/2) of HD and in lymphocytes of HD patients. Therefore, downregulation of PPARγ seems to be a pathomechanism of HD. Chronic treatment of R6/2 mice with an agonist of PPARγ (thiazolidinedione, TZD) rescued progressive weight loss, motor deterioration, formation of mutant Htt aggregates, jeopardized global ubiquitination profiles, reduced expression of two neuroprotective proteins (brain-derived neurotrophic factor and Bcl-2) and shortened life span exhibited by these mice. By reducing HTT aggregates and, thus, ameliorating the recruitment of PPARγ into HTT aggregates, chronic TZD treatment also elevated the availability of the PPARγ protein and subsequently normalized the expression of two of its downstream genes (the glucose transporter type 4 and PPARγ coactivator-1 alpha genes). The protective effects described above appear to have been exerted, at least partially, via direct activation of PPARγ in the brain, as TZD was detected in the brains of mice treated with TZD and because a PPARγ agonist (rosiglitazone) protected striatal cells from mHTT-evoked energy deficiency and toxicity. We demonstrated that the systematic downregulation of PPARγ seems to play a critical role in the dysregulation of energy homeostasis observed in HD, and that PPARγ is a potential therapeutic target for this disease.
Collapse
Affiliation(s)
- Ming-Chang Chiang
- Institute of Biomedical Sciences, Academia Sinica, Nankang, Taipei 115, Taiwan
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|