1
|
Justić H, Barić A, Ratko M, Šimunić I, Radmilović M, Pongrac M, Škokić S, Dobrivojević Radmilović M. The temporal dynamic of bradykinin type 2 receptor effects reveals its neuroprotective role in the chronic phase of cerebral and retinal ischemic injury. J Cereb Blood Flow Metab 2025; 45:153-170. [PMID: 39113417 PMCID: PMC11572167 DOI: 10.1177/0271678x241270241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 05/31/2024] [Accepted: 06/17/2024] [Indexed: 11/20/2024]
Abstract
The activation of the bradykinin type 2 receptor is intricately involved in acute post-ischemic inflammatory responses. However, its precise role in different stages of ischemic injury, especially in the chronic phase, remains unclear. Following simultaneous cerebral and retinal ischemia, bradykinin type 2 receptor knockout mice and their controls were longitudinally monitored for 35 days via magnetic resonance imaging, fundus photography, fluorescein angiography, behavioral assessments, vascular permeability measurements, and immunohistochemistry, as well as glycemic status assessments. Without impacting the lesion size, bradykinin type 2 receptor deficiency reduced acute cerebral vascular permeability preventing the loss of pericytes and tight junctions. In the chronic phase of ischemia, however, it resulted in increased astrogliosis and cortical neuronal loss, as well as higher functional deficits. The retinal findings demonstrated a similar pattern. Bradykinin type 2 receptor deficiency delayed, but exacerbated the development of retinal necrosis, increased subacute vascular permeability, and promoted retinal ganglion cell loss in the chronic phase of ischemia. This investigation sheds light on the temporal dynamic of bradykinin type 2 receptor effects in ischemia, pointing to a therapeutic potential in the subacute and chronic phases of ischemic injury.
Collapse
Affiliation(s)
- Helena Justić
- Croatian Institute for Brain Research, University of Zagreb School of Medicine, Zagreb, Croatia
- Department of Histology and Embryology, University of Zagreb School of Medicine, Zagreb, Croatia
| | - Anja Barić
- Croatian Institute for Brain Research, University of Zagreb School of Medicine, Zagreb, Croatia
- Department of Histology and Embryology, University of Zagreb School of Medicine, Zagreb, Croatia
| | - Martina Ratko
- Croatian Institute for Brain Research, University of Zagreb School of Medicine, Zagreb, Croatia
- Department of Histology and Embryology, University of Zagreb School of Medicine, Zagreb, Croatia
| | - Iva Šimunić
- Croatian Institute for Brain Research, University of Zagreb School of Medicine, Zagreb, Croatia
- Department of Histology and Embryology, University of Zagreb School of Medicine, Zagreb, Croatia
| | - Marin Radmilović
- Sestre milosrdnice University Hospital Center, Department of Ophthalmology, Zagreb, Croatia
| | - Marta Pongrac
- Croatian Institute for Brain Research, University of Zagreb School of Medicine, Zagreb, Croatia
- Department of Histology and Embryology, University of Zagreb School of Medicine, Zagreb, Croatia
| | - Siniša Škokić
- Croatian Institute for Brain Research, University of Zagreb School of Medicine, Zagreb, Croatia
| | - Marina Dobrivojević Radmilović
- Croatian Institute for Brain Research, University of Zagreb School of Medicine, Zagreb, Croatia
- Department of Histology and Embryology, University of Zagreb School of Medicine, Zagreb, Croatia
| |
Collapse
|
2
|
Lu Y, Gu Y, Chan ASL, Yung Y, Wong YH. Activation of Bradykinin B 2 Receptors in Astrocytes Stimulates the Release of Leukemia Inhibitory Factor for Autocrine and Paracrine Signaling. Int J Mol Sci 2024; 25:13079. [PMID: 39684791 DOI: 10.3390/ijms252313079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 12/02/2024] [Accepted: 12/03/2024] [Indexed: 12/18/2024] Open
Abstract
Communications between different cell types within a tissue are often critical for the proper functioning of an organ. In the central nervous system, interactions among neurons and glial cells are known to modulate neurotransmission, energy metabolism, extracellular ion homeostasis, and neuroprotection. Here we showed that bradykinin, a proinflammatory neuropeptide, can be detected by astrocytes, resulting in the secretion of cytokines that act on neurons. In astrocytic cell lines and primary astrocytes, bradykinin and several other ligands acting on Gq-coupled receptors stimulated Ca2+ mobilization, which subsequently led to the release of leukemia inhibitory factor (LIF) and interleukin-6 (IL-6). The bradykinin B2 receptor antagonist, HOE-140, effectively blocked the ability of bradykinin to mobilize Ca2+ and stimulate mitogen-activated protein kinases (MAPKs) in astrocytes. Interestingly, incubation of neuronal cell lines and primary cortical neurons with conditioned media from bradykinin-treated astrocytes resulted in the activation of STAT3, a key component downstream of LIF and IL-6 receptors. LIF was apparently the major active factor in the conditioned media as the STAT3 response was almost completely neutralized by an anti-LIF antiserum. The presence of kininogen and kallikrein transcripts in neuronal cells but not in astrocytic cells indicates that neurons can produce bradykinin. Correspondingly, conditioned media from neuronal cells stimulated MAPKs in astrocytes in a HOE-140-sensitive manner. These studies demonstrate that paracrine signaling between neurons and astrocytes may involve ligands of Gq-coupled receptors and cytokines such as LIF.
Collapse
Affiliation(s)
- Ying Lu
- Division of Life Science and the Biotechnology Research Institute, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
- School of Public Health, Nantong University, Nantong City 226019, China
| | - Yishan Gu
- Division of Life Science and the Biotechnology Research Institute, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
| | - Anthony S L Chan
- Division of Life Science and the Biotechnology Research Institute, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
| | - Ying Yung
- Division of Life Science and the Biotechnology Research Institute, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
| | - Yung H Wong
- Division of Life Science and the Biotechnology Research Institute, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
- State Key Laboratory of Molecular Neuroscience, and the Molecular Neuroscience Center, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
- Hong Kong Center for Neurodegenerative Diseases, InnoHK, Hong Kong, China
| |
Collapse
|
3
|
Fuse S, Fujisawa H, Murao N, Iwata N, Watanabe T, Seino Y, Takeuchi H, Suzuki A, Sugimura Y. Effects of hypernatremia on the microglia. Peptides 2024; 179:171267. [PMID: 38908517 DOI: 10.1016/j.peptides.2024.171267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 06/07/2024] [Accepted: 06/19/2024] [Indexed: 06/24/2024]
Abstract
Signs and symptoms of hypernatremia largely indicate central nervous system dysfunction. Acute hypernatremia can cause demyelinating lesions similar to that observed in osmotic demyelination syndrome (ODS). We have previously demonstrated that microglia accumulate in ODS lesions and minocycline protects against ODS by inhibiting microglial activation. However, the direct effect of rapid rise in the sodium concentrations on microglia is largely unknown. In addition, the effect of chronic hypernatremia on microglia also remains elusive. Here, we investigated the effects of acute (6 or 24 h) and chronic (the extracellular sodium concentration was increased gradually for at least 7 days) high sodium concentrations on microglia using the microglial cell line, BV-2. We found that both acute and chronic high sodium concentrations increase NOS2 expression and nitric oxide (NO) production. We also demonstrated that the expression of nuclear factor of activated T-cells-5 (NFAT5) is increased by high sodium concentrations. Furthermore, NFAT5 knockdown suppressed NOS2 expression and NO production. We also demonstrated that high sodium concentrations decreased intracellular Ca2+ concentration and an inhibitor of Na+/Ca2+ exchanger, NCX, suppressed a decrease in intracellular Ca2+ concentrations and NOS2 expression and NO production induced by high sodium concentrations. Furthermore, minocycline inhibited NOS2 expression and NO production induced by high sodium concentrations. These in vitro data suggest that microglial activity in response to high sodium concentrations is regulated by NFAT5 and Ca2+ efflux through NCX and is suppressed by minocycline.
Collapse
Affiliation(s)
- Sachiho Fuse
- Department of Endocrinology, Diabetes and Metabolism, School of Medicine, Fujita Health University, Toyoake, Aichi 470-1192, Japan
| | - Haruki Fujisawa
- Department of Endocrinology, Diabetes and Metabolism, School of Medicine, Fujita Health University, Toyoake, Aichi 470-1192, Japan
| | - Naoya Murao
- Department of Endocrinology, Diabetes and Metabolism, School of Medicine, Fujita Health University, Toyoake, Aichi 470-1192, Japan
| | - Naoko Iwata
- Department of Endocrinology, Diabetes and Metabolism, School of Medicine, Fujita Health University, Toyoake, Aichi 470-1192, Japan
| | - Takashi Watanabe
- Division of Gene Regulation, Oncology Innovation Center, Fujita Health University, Toyoake, Aichi 470-1192, Japan
| | - Yusuke Seino
- Department of Endocrinology, Diabetes and Metabolism, School of Medicine, Fujita Health University, Toyoake, Aichi 470-1192, Japan
| | - Hideyuki Takeuchi
- Department of Neurology and Stroke Medicine, Graduate School of Medicine, Yokohama City University, Yokohama, Kanagawa 236-0004, Japan; Department of Neurology, Graduate School of Medicine, International University of Health and Welfare, Narita, Chiba 286-8686, Japan; Center for Intractable Neurological Diseases and Dementia, International University of Health and Welfare Atami Hospital, Atami, Shizuoka 413-0012, Japan
| | - Atsushi Suzuki
- Department of Endocrinology, Diabetes and Metabolism, School of Medicine, Fujita Health University, Toyoake, Aichi 470-1192, Japan
| | - Yoshihisa Sugimura
- Department of Endocrinology, Diabetes and Metabolism, School of Medicine, Fujita Health University, Toyoake, Aichi 470-1192, Japan.
| |
Collapse
|
4
|
Zheng S, Feng S, Song N, Chen G, Jia Y, Zhang G, Liu M, Li X, Ning Y, Wang D, Jia H. The role of the immune system in depersonalisation disorder. World J Biol Psychiatry 2024; 25:291-303. [PMID: 38679810 DOI: 10.1080/15622975.2024.2346096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Accepted: 04/18/2024] [Indexed: 05/01/2024]
Abstract
OBJECTIVES Depersonalisation-derealization disorder (DPD) is a dissociative disorder that impairs cognitive function and occupational performance. Emerging evidence indicate the levels of tumour necrosis factor-α and interleukin associated with the dissociative symptoms. In this study, we aimed to explore the role of the immune system in the pathology of DPD. METHODS We screened the protein expression in serum samples of 30 DPD patients and 32 healthy controls. Using a mass spectrometry-based proteomic approach, we identified differential proteins that were verified in another group of 25 DPD patients and 30 healthy controls using immune assays. Finally, we performed a correlation analysis between the expression of differential proteins and clinical symptoms of patients with DPD. RESULTS We identified several dysregulated proteins in patients with DPD compared to HCs, including decreased levels of C-reactive protein (CRP), complement C1q subcomponent subunit B, apolipoprotein A-IV, and increased levels of alpha-1-antichymotrypsin (SERPINA3). Moreover, the expression of CRP was positively correlated with visuospatial memory and the ability to inhibit cognitive interference of DPD. The expression of SERPINA3 was positively correlated with the ability to inhibit cognitive interference and negatively correlated with the perceptual alterations of DPD. CONCLUSIONS The dysregulation of the immune system may be the underlying biological mechanism in DPD. And the expressions of CRP and SERPINA3 can be the potential predictors for the cognitive performance of DPD.
Collapse
Affiliation(s)
- Sisi Zheng
- Beijing Key Laboratory of Mental Disorders, National Clinical Research Center for Mental Disorders & National Center for Mental Disorders, Beijing Anding Hospital, Capital Medical University, Beijing, China
- Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, China
| | - Sitong Feng
- Beijing Key Laboratory of Mental Disorders, National Clinical Research Center for Mental Disorders & National Center for Mental Disorders, Beijing Anding Hospital, Capital Medical University, Beijing, China
- Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, China
| | - Nan Song
- Beijing Key Laboratory of Mental Disorders, National Clinical Research Center for Mental Disorders & National Center for Mental Disorders, Beijing Anding Hospital, Capital Medical University, Beijing, China
- Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, China
| | - Guangyao Chen
- Traditional Chinese Medicine Department of Rheumatology, China-Japan Friendship Hospital, Beijing, China
| | - Yuan Jia
- Beijing Key Laboratory of Mental Disorders, National Clinical Research Center for Mental Disorders & National Center for Mental Disorders, Beijing Anding Hospital, Capital Medical University, Beijing, China
- Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, China
| | - Guofu Zhang
- Beijing Key Laboratory of Mental Disorders, National Clinical Research Center for Mental Disorders & National Center for Mental Disorders, Beijing Anding Hospital, Capital Medical University, Beijing, China
- Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, China
| | - Min Liu
- Beijing Key Laboratory of Mental Disorders, National Clinical Research Center for Mental Disorders & National Center for Mental Disorders, Beijing Anding Hospital, Capital Medical University, Beijing, China
- Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, China
| | - Xue Li
- Beijing Key Laboratory of Mental Disorders, National Clinical Research Center for Mental Disorders & National Center for Mental Disorders, Beijing Anding Hospital, Capital Medical University, Beijing, China
- Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, China
| | - Yanzhe Ning
- Beijing Key Laboratory of Mental Disorders, National Clinical Research Center for Mental Disorders & National Center for Mental Disorders, Beijing Anding Hospital, Capital Medical University, Beijing, China
- Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, China
| | - Dan Wang
- Inner Mongolia Autonomous Region Mental Health Center, Hohhot, Neimenggu, China
| | - Hongxiao Jia
- Beijing Key Laboratory of Mental Disorders, National Clinical Research Center for Mental Disorders & National Center for Mental Disorders, Beijing Anding Hospital, Capital Medical University, Beijing, China
- Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, China
| |
Collapse
|
5
|
Graeff FG, Joca S, Zangrossi H. Bradykinin actions in the central nervous system: historical overview and psychiatric implications. Acta Neuropsychiatr 2024; 36:129-138. [PMID: 38178717 DOI: 10.1017/neu.2023.57] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/06/2024]
Abstract
Bradykinin (BK), a well-studied mediator of physiological and pathological processes in the peripheral system, has garnered less attention regarding its function in the central nervous system, particularly in behavioural regulation. This review delves into the historical progression of research focused on the behavioural effects of BK and other drugs that act via similar mechanisms to provide new insights into the pathophysiology and pharmacotherapy of psychiatric disorders. Evidence from experiments with animal models indicates that BK modulates defensive reactions associated with panic symptoms and the response to acute stressors. The mechanisms are not entirely understood but point to complex interactions with other neurotransmitter systems, such as opioids, and intracellular signalling cascades. By addressing the existing research gaps in this field, we present new proposals for future research endeavours to foster a new era of investigation regarding BK's role in emotional regulation. Implications for psychiatry, chiefly for panic and depressive disorders are also discussed.
Collapse
Affiliation(s)
- Frederico Guilherme Graeff
- Behavioural Neurosciences Institute (INeC), Ribeirão Preto, SP, Brazil
- Department of Psychology, FFCLRP, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Sâmia Joca
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
| | - Helio Zangrossi
- Department of Pharmacology, Medical School of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, Brazil
| |
Collapse
|
6
|
Carroll KR, Mizrachi M, Simmons S, Toz B, Kowal C, Wingard J, Tehrani N, Zarfeshani A, Kello N, El Khoury L, Weissman-Tsukamoto R, Levin JZ, Volpe BT, Diamond B. Lupus autoantibodies initiate neuroinflammation sustained by continuous HMGB1:RAGE signaling and reversed by increased LAIR-1 expression. Nat Immunol 2024; 25:671-681. [PMID: 38448779 PMCID: PMC11141703 DOI: 10.1038/s41590-024-01772-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Accepted: 01/25/2024] [Indexed: 03/08/2024]
Abstract
Cognitive impairment is a frequent manifestation of neuropsychiatric systemic lupus erythematosus, present in up to 80% of patients and leading to a diminished quality of life. In the present study, we used a model of lupus-like cognitive impairment that is initiated when antibodies that crossreact with excitatory neuronal receptors penetrate the hippocampus, causing immediate, self-limited, excitotoxic death of hippocampal neurons, which is then followed by a significant loss of dendritic complexity in surviving neurons. This injury creates a maladaptive equilibrium that is sustained in mice for at least 1 year. We identified a feedforward loop of microglial activation and microglia-dependent synapse elimination dependent on neuronal secretion of high mobility group box 1 protein (HMGB1) which binds the receptor for advanced glycation end products (RAGE) and leads to microglial secretion of C1q, upregulation of interleukin-10 with consequent downregulation of leukocyte-associated immunoglobulin-like receptor 1 (LAIR-1), an inhibitory receptor for C1q. Treatment with a centrally acting angiotensin-converting enzyme inhibitor or with an angiotensin-receptor blocker restored a healthy equilibrium, microglial quiescence and intact spatial memory.
Collapse
Affiliation(s)
- Kaitlin R Carroll
- Institute of Molecular Medicine, The Feinstein Institutes for Medical Research, Manhasset, NY, USA
| | - Mark Mizrachi
- Institute of Molecular Medicine, The Feinstein Institutes for Medical Research, Manhasset, NY, USA
| | - Sean Simmons
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Bahtiyar Toz
- Institute of Molecular Medicine, The Feinstein Institutes for Medical Research, Manhasset, NY, USA
| | - Czeslawa Kowal
- Institute of Molecular Medicine, The Feinstein Institutes for Medical Research, Manhasset, NY, USA
| | - Jeffrey Wingard
- Institute of Molecular Medicine, The Feinstein Institutes for Medical Research, Manhasset, NY, USA
| | - Nazila Tehrani
- Institute of Molecular Medicine, The Feinstein Institutes for Medical Research, Manhasset, NY, USA
| | - Aida Zarfeshani
- Institute of Molecular Medicine, The Feinstein Institutes for Medical Research, Manhasset, NY, USA
| | | | | | | | - Joshua Z Levin
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Bruce T Volpe
- Institute of Molecular Medicine, The Feinstein Institutes for Medical Research, Manhasset, NY, USA
| | - Betty Diamond
- Institute of Molecular Medicine, The Feinstein Institutes for Medical Research, Manhasset, NY, USA.
| |
Collapse
|
7
|
Parthasarathy G, Pattison MB, Midkiff CC. The FGF/FGFR system in the microglial neuroinflammation with Borrelia burgdorferi: likely intersectionality with other neurological conditions. J Neuroinflammation 2023; 20:10. [PMID: 36650549 PMCID: PMC9847051 DOI: 10.1186/s12974-022-02681-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Accepted: 12/22/2022] [Indexed: 01/19/2023] Open
Abstract
BACKGROUND Lyme neuroborreliosis, caused by the bacterium Borrelia burgdorferi affects both the central and peripheral nervous systems (CNS, PNS). The CNS manifestations, especially at later stages, can mimic/cause many other neurological conditions including psychiatric disorders, dementia, and others, with a likely neuroinflammatory basis. The pathogenic mechanisms associated with Lyme neuroborreliosis, however, are not fully understood. METHODS In this study, using cultures of primary rhesus microglia, we explored the roles of several fibroblast growth factor receptors (FGFRs) and fibroblast growth factors (FGFs) in neuroinflammation associated with live B. burgdorferi exposure. FGFR specific siRNA and inhibitors, custom antibody arrays, ELISAs, immunofluorescence and microscopy were used to comprehensively analyze the roles of these molecules in microglial neuroinflammation due to B. burgdorferi. RESULTS FGFR1-3 expressions were upregulated in microglia in response to B. burgdorferi. Inhibition of FGFR 1, 2 and 3 signaling using siRNA and three different inhibitors showed that FGFR signaling is proinflammatory in response to the Lyme disease bacterium. FGFR1 activation also contributed to non-viable B. burgdorferi mediated neuroinflammation. Analysis of the B. burgdorferi conditioned microglial medium by a custom antibody array showed that several FGFs are induced by the live bacterium including FGF6, FGF10 and FGF12, which in turn induce IL-6 and/or CXCL8, indicating a proinflammatory nature. To our knowledge, this is also the first-ever described role for FGF6 and FGF12 in CNS neuroinflammation. FGF23 upregulation, in addition, was observed in response to the Lyme disease bacterium. B. burgdorferi exposure also downregulated many FGFs including FGF 5, 7, 9, 11, 13, 16, 20 and 21. Some of the upregulated FGFs have been implicated in major depressive disorder (MDD) or dementia development, while the downregulated ones have been demonstrated to have protective roles in epilepsy, Parkinson's disease, Alzheimer's disease, spinal cord injury, blood-brain barrier stability, and others. CONCLUSIONS In this study we show that FGFRs and FGFs are novel inducers of inflammatory mediators in Lyme neuroborreliosis. It is likely that an unresolved, long-term (neuro)-Lyme infection can contribute to the development of other neurologic conditions in susceptible individuals either by augmenting pathogenic FGFs or by suppressing ameliorative FGFs or both.
Collapse
Affiliation(s)
- Geetha Parthasarathy
- Division of Immunology, Tulane National Primate Research Center, Tulane University, 18703, Three Rivers Road, Room 109, Covington, LA, 70433, USA.
| | - Melissa B Pattison
- Division of Microbiology, Tulane National Primate Research Center, Tulane University, 18703, Three Rivers Road, Covington, LA, 70433, USA
| | - Cecily C Midkiff
- Division of Comparative Pathology, Tulane National Primate Research Center, Tulane University, 18703, Three Rivers Road, Covington, LA, 70433, USA
| |
Collapse
|
8
|
Zhao H, Wang M, Huang X, Wu X, Xiao H, Jin F, Lv J, Cheng J, Zhao Y, Zhang C. Wasp venom from Vespa magnifica acts as a neuroprotective agent to alleviate neuronal damage after stroke in rats. PHARMACEUTICAL BIOLOGY 2022; 60:334-346. [PMID: 35171059 PMCID: PMC8863380 DOI: 10.1080/13880209.2022.2032207] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 11/24/2021] [Accepted: 01/17/2022] [Indexed: 06/14/2023]
Abstract
CONTEXT Acute ischaemic stroke (AIS) is a major cause of disability and death, which is a serious threat to human health and life. Wasp venom extracted from Vespa magnifica Smith (Vespidae) could treat major neurological disorders. OBJECTIVE This study investigated the effects of wasp venom on AIS in rats. MATERIAL AND METHODS We used a transient middle cerebral artery occlusion (MCAO) model in Sprague-Dawley rats (260-280 g, n = 8-15) with a sham operation group being treated as negative control. MCAO rats were treated with wasp venom (0.05, 0.2 and 0.6 mg/kg, i.p.) using intraperitoneal injection. After treatment 48 h, behavioural tests, cortical blood flow (CBF), TTC staining, H&E staining, Nissl staining, TUNEL assay, immunohistochemistry (IHC) and ELISA were employed to investigate neuroprotective effects of wasp venom. RESULTS Compared with the MCAO group, wasp venom (0.6 mg/kg) improved neurological impairment, accelerated CBF recovery (205.6 ± 52.92 versus 216.7 ± 34.56), reduced infarct volume (337.1 ± 113.2 versus 140.7 ± 98.03) as well as BBB permeability as evidenced by changes in claudin-5 and AQP4. In addition, function recovery of stroke by wasp venom treatment was associated with a decrease in TNF-α, IL-1β, IL-6 and inhibition activated microglia as well as apoptosis. Simultaneously, the wasp venom regulated the angiogenesis factors VEGF and b-FGF in the brain. CONCLUSIONS Wasp venom exhibited a potential neuroprotective effect for AIS. In the future, we will focus on determining whether the observed actions were due to a single compound or the interaction of multiple components of the venom.
Collapse
Affiliation(s)
- Hairong Zhao
- Yunnan Provincial Key Laboratory of Entomological Biopharmaceutical R&D, Dali University, Dali, PR China
- School of Medicine, Xiamen University, Xiamen, PR China
| | - Mei Wang
- Yunnan Provincial Key Laboratory of Entomological Biopharmaceutical R&D, Dali University, Dali, PR China
| | - Xi Huang
- Yunnan Provincial Key Laboratory of Entomological Biopharmaceutical R&D, Dali University, Dali, PR China
| | - Xiumei Wu
- Yunnan Provincial Key Laboratory of Entomological Biopharmaceutical R&D, Dali University, Dali, PR China
- National-Local Joint Engineering Research Center of Entomoceutics, Dali, PR China
| | - Huai Xiao
- Yunnan Provincial Key Laboratory of Entomological Biopharmaceutical R&D, Dali University, Dali, PR China
- National-Local Joint Engineering Research Center of Entomoceutics, Dali, PR China
| | - Fanmao Jin
- Yunnan Provincial Key Laboratory of Entomological Biopharmaceutical R&D, Dali University, Dali, PR China
| | - Jiaming Lv
- School of Medicine, Xiamen University, Xiamen, PR China
| | - Jidong Cheng
- School of Medicine, Xiamen University, Xiamen, PR China
| | - Yu Zhao
- Yunnan Provincial Key Laboratory of Entomological Biopharmaceutical R&D, Dali University, Dali, PR China
- National-Local Joint Engineering Research Center of Entomoceutics, Dali, PR China
| | - Chenggui Zhang
- Yunnan Provincial Key Laboratory of Entomological Biopharmaceutical R&D, Dali University, Dali, PR China
- National-Local Joint Engineering Research Center of Entomoceutics, Dali, PR China
| |
Collapse
|
9
|
Cognitive dysfunction in SLE: An understudied clinical manifestation. J Autoimmun 2022; 132:102911. [PMID: 36127204 DOI: 10.1016/j.jaut.2022.102911] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Accepted: 08/31/2022] [Indexed: 11/22/2022]
Abstract
Neuropsychiatric lupus (NPSLE) is a debilitating manifestation of SLE which occurs in a majority of SLE patients and has a variety of clinical manifestations. In the central nervous system, NPSLE may result from ischemia or penetration of inflammatory mediators and neurotoxic antibodies through the blood brain barrier (BBB). Here we focus on cognitive dysfunction (CD) as an NPSLE manifestation; it is common, underdiagnosed, and without specific therapy. For a very long time, clinicians ignored cognitive dysfunction and researchers who might be interested in the question struggled to find an approach to understanding mechanisms for this manifestation. Recent years, however, propelled by a more patient-centric approach to disease, have seen remarkable progress in our understanding of CD pathogenesis. This has been enabled through the use of novel imaging modalities and numerous mouse models. Overall, these studies point to a pivotal role of an impaired BBB and microglial activation in leading to neuronal injury. These insights suggest potential therapeutic modalities and make possible clinical trials for cognitive impairment.
Collapse
|
10
|
Yu T, Wang P, Wu Y, Zhong J, Chen Q, Wang D, Chen H, Hu S, Wu Q. MiR-26a Reduces Inflammatory Responses via Inhibition of PGE2 Production by Targeting COX-2. Inflammation 2022; 45:1484-1495. [PMID: 35083625 PMCID: PMC8791555 DOI: 10.1007/s10753-022-01631-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 11/03/2021] [Accepted: 01/20/2022] [Indexed: 12/24/2022]
Abstract
MicroRNAs are small non-coding RNA regulatory molecules that play an important role in the development and function of immune cells. MicroRNA-26a (miR-26a) exhibits anti-inflammatory immune effects on immune cells. However, the exact mechanism by which miR-26a plays an anti-inflammatory role remains unclear. Here, we report that miR-26a reduces inflammatory response via inhibition of prostaglandin E2 (PGE2) production by targeting cyclooxygenase-2 (COX-2). We found that miR-26a was downregulated in vitro and in vivo. The miR-26a mimic significantly decreased COX-2 protein levels, further inhibiting pro-inflammatory cytokine production in LPS-stimulated macrophages. We predicted that miR-26a could potentially target COX-2 in LPS-stimulated macrophages. Computational algorithms showed that the 3'-UTR of COX-2 mRNA contains a binding site for miR-26a. This putative targeting relationship between miR-26a and COX-2 was further confirmed by a dual-reporter gene assay. The anti-inflammatory effects of the miR-26a mimic were diminished by PGE2 supplementation. Importantly, miR-26a mimics protected mice from lethal endotoxic shock and attenuated pro-inflammatory cytokine production. Collectively, these results suggest that miR-26a may function as a novel feedback negative regulator of the hyperinflammatory response and as a drug target for the progression of inflammation.
Collapse
Affiliation(s)
- Ting Yu
- Department of Pharmacy, Hainan General Hospital, Hainan Affiliated Hospital of Hainan Medical University, HaiKou, 510080, People's Republic of China
| | - Peng Wang
- Department of Emergency Medicine, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, People's Republic of China
| | - Yuxia Wu
- Department of Pharmacy, Hainan General Hospital, Hainan Affiliated Hospital of Hainan Medical University, HaiKou, 510080, People's Republic of China
| | - Jingbo Zhong
- Department of Pharmacy, Hainan General Hospital, Hainan Affiliated Hospital of Hainan Medical University, HaiKou, 510080, People's Republic of China
| | - Qingshu Chen
- Department of Pharmacy, Hainan General Hospital, Hainan Affiliated Hospital of Hainan Medical University, HaiKou, 510080, People's Republic of China
| | - Daimei Wang
- Department of Pharmacy, Hainan General Hospital, Hainan Affiliated Hospital of Hainan Medical University, HaiKou, 510080, People's Republic of China
| | - Hong Chen
- Department of Pharmacy, Hainan General Hospital, Hainan Affiliated Hospital of Hainan Medical University, HaiKou, 510080, People's Republic of China
| | - Shengfeng Hu
- Institute of Molecular Immunology, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, 510515, People's Republic of China.
| | - Qiongshi Wu
- Department of Pharmacy, Hainan General Hospital, Hainan Affiliated Hospital of Hainan Medical University, HaiKou, 510080, People's Republic of China.
| |
Collapse
|
11
|
Vespakinin-M, a natural peptide from Vespa magnifica, promotes functional recovery in stroke mice. Commun Biol 2022; 5:74. [PMID: 35058552 PMCID: PMC8776894 DOI: 10.1038/s42003-022-03024-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Accepted: 12/28/2021] [Indexed: 02/06/2023] Open
Abstract
Acute ischemic stroke triggers complex systemic pathological responses for which the exploration of drug resources remains a challenge. Wasp venom extracted from Vespa magnifica (Smith, 1852) is most commonly used to treat rheumatoid arthritis as well as neurological disorders. Vespakinin-M (VK), a natural peptide from wasp venom, has remained largely unexplored for stroke. Herein, we first confirmed the structure, stability, toxicity and distribution of VK as well as its penetration into the blood–brain barrier. VK (150 and 300 µg/kg, i.p.) was administered to improve stroke constructed by middle cerebral artery occlusion in mice. Our results indicate that VK promote functional recovery in mice after ischemia stroke, including an improvement of neurological impairment, reduction of infarct volume, maintenance of blood-brain barrier integrity, and an obstruction of the inflammatory response and oxidative stress. In addition, VK treatment led to reduced neuroinflammation and apoptosis associated with the activation of PI3K–AKT and inhibition of IκBα–NF-κB signaling pathways. Simultaneously, we confirmed that VK can combine with bradykinin receptor 2 (B2R) as detected by molecular docking, the B2R antagonist HOE140 could counteract the neuro-protective effects of VK on stroke in mice. Overall, targeting the VK–B2R interaction can be considered as a practical strategy for stroke therapy. Zhao et al establish the structure, stability, toxicity and distribution of vespakinin-M (VK) as well as its penetration into the blood–brain barrier in mice. They go on to show that VK promotes functional recovery in mice after ischemia stroke and shed light on the potential underlying mechanisms, which together indicates the potential therapeutic value of targeting VK in stroke therapy.
Collapse
|
12
|
Saklani P, Khan H, Gupta S, Kaur A, Singh TG. Neuropeptides: Potential neuroprotective agents in ischemic injury. Life Sci 2022; 288:120186. [PMID: 34852271 DOI: 10.1016/j.lfs.2021.120186] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 11/22/2021] [Accepted: 11/24/2021] [Indexed: 12/24/2022]
Abstract
AIM Ischemic damage to the brain is linked to an increased rate of morbidity and mortality worldwide. In certain parts of the world, it remains a leading cause of mortality and the primary cause of long-term impairment. Ischemic injury is exacerbated when particular neuropeptides are removed, or their function in the brain is blocked, whereas supplying such neuropeptides lowers ischemic harm. Here, we have discussed the role of neuropeptides in ischemic injury. MATERIALS & METHODS Numerous neuropeptides had their overexpression following cerebral ischemia. Neuropeptides such as NPY, CGRP, CART, SP, BK, PACAP, oxytocin, nociception, neurotensin and opioid peptides act as transmitters, documented in several "in vivo" and "in vitro" studies. Neuropeptides provide neuroprotection by activating the survival pathways or inhibiting the death pathways, i.e., MAPK, BDNF, Nitric Oxide, PI3k/Akt and NF-κB. KEY FINDINGS Neuropeptides have numerous beneficial effects in ischemic models, including antiapoptotic, anti-inflammatory, and antioxidant actions that provide a powerful protective impact in neurons when combined. These innovative therapeutic substances have the potential to treat ischemia injury due to their pleiotropic modes of action. SIGNIFICANCE This review emphasizes the neuroprotective role of neuropeptides in ischemic injury via modulation of various signalling pathways i.e., MAPK, BDNF, Nitric Oxide, PI3k/Akt and NF-κB.
Collapse
Affiliation(s)
- Priyanka Saklani
- Chitkara College of Pharmacy, Chitkara University, 140401, Punjab, India
| | - Heena Khan
- Chitkara College of Pharmacy, Chitkara University, 140401, Punjab, India
| | - Saurabh Gupta
- Chitkara College of Pharmacy, Chitkara University, 140401, Punjab, India
| | - Amarjot Kaur
- Chitkara College of Pharmacy, Chitkara University, 140401, Punjab, India
| | | |
Collapse
|
13
|
Kouki MA, Pritchard AB, Alder JE, Crean S. Do Periodontal Pathogens or Associated Virulence Factors Have a Deleterious Effect on the Blood-Brain Barrier, Contributing to Alzheimer's Disease? J Alzheimers Dis 2021; 85:957-973. [PMID: 34897087 DOI: 10.3233/jad-215103] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The central nervous system (CNS) is protected by a highly selective barrier, the blood-brain barrier (BBB), that regulates the exchange and homeostasis of bloodborne molecules, excluding xenobiotics. This barrier forms the first line of defense by prohibiting pathogens from crossing to the CNS. Aging and chronic exposure of the BBB to pathogens renders it permeable, and this may give rise to pathology in the CNS such as Alzheimer's disease (AD). Researchers have linked pathogens associated with periodontitis to neuroinflammation and AD-like pathology in vivo and in vitro. Although the presence of periodontitis-associated bacteria has been linked to AD in several clinical studies as DNA and virulence factors were confirmed in brain samples of human AD subjects, the mechanism by which the bacteria traverse to the brain and potentially influences neuropathology is unknown. In this review, we present current knowledge about the association between periodontitis and AD, the mechanism whereby periodontal pathogens might provoke neuroinflammation and how periodontal pathogens could affect the BBB. We suggest future studies, with emphasis on the use of human in vitro models of cells associated with the BBB to unravel the pathway of entry for these bacteria to the CNS and to reveal the molecular and cellular pathways involved in initiating the AD-like pathology. In conclusion, evidence demonstrate that bacteria associated with periodontitis and their virulence factors are capable of inflecting damage to the BBB and have a role in giving rise to pathology similar to that found in AD.
Collapse
Affiliation(s)
- Mhd Ammar Kouki
- Brain and Behaviour Centre, Faculty of Clinical and Biomedical Sciences, School of Pharmacy and Biomedical Sciences, University of Central Lancashire, Preston, UK
| | - Anna Barlach Pritchard
- Brain and Behaviour Centre, Faculty of Clinical and Biomedical Sciences, School of Dentistry, University of Central Lancashire, Preston, UK
| | - Jane Elizabeth Alder
- Brain and Behaviour Centre, Faculty of Clinical and Biomedical Sciences, School of Pharmacy and Biomedical Sciences, University of Central Lancashire, Preston, UK
| | - StJohn Crean
- Brain and Behaviour Centre, Faculty of Clinical and Biomedical Sciences, School of Dentistry, University of Central Lancashire, Preston, UK
| |
Collapse
|
14
|
Hasan HF, Mostafa DM, Lotfy DM. Concerted hepatoprotective effect of bradykinin potentiating factor and low dose of γ- radiation on Naja haje envenomed rats via Bax/Bcl2 pathway. Toxicol Mech Methods 2021; 32:67-76. [PMID: 34353221 DOI: 10.1080/15376516.2021.1965276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
This study investigates the concerted hepatoprotective effects for three doses of bradykinin potentiating factor (BPF) and/or followed by exposure to a low dose of γ-radiation (LDR) against Naja haje envenoming in rats. Male rats were injected with three consecutive doses of BPF (1 μg/g i.p. for 3 days), followed by exposure to a low dose of gamma radiation (0.5 Gy), and then rats were injected with a dose of Naja haje venom (250 μg/kg i.p.). Results showed that Naja haje causes liver damage, significant elevation of alanine aminotransferase (ALT), aspartate aminotransferase (AST), alkaline phosphatase (ALP), cytochrome c, Nitric oxide (NO), malondialdehyde (MDA) and significant depletion in glutathione peroxidase (GPx) contents. In addition, significant depletion in B-cell lymphoma 2 (Bcl-2) and significant elevation in BcL-2 associated X (Bax protein), nuclear factor kappa B (NF-κB), interleukin-1β (IL-1β) in hepatocytes. Bradykinin potentiating factor and/or low dose of γ-radiation caused improvement in liver damage caused by Naja haje venom by a significant decrease in ALT, AST, ALP levels, Bax, cytochrome c, NF-κB, IL-1β, NO and MDA contents, BPF alone or combined with low dose radiation caused a significant increase in Bcl2 and GPx contents. In conclusion, the concerted impact of BPF and LDR may provide an effective venom detoxification tool that helps to reduce hepatic toxicity and extends the lifespan.
Collapse
Affiliation(s)
- Hesham Farouk Hasan
- Radiation Biology Department, National Center for Radiation Research and Technology (NCRRT), Egyptian Atomic Energy Authority (EAEA), Cairo, Egypt
| | - Dalia M Mostafa
- Radiation Biology Department, National Center for Radiation Research and Technology (NCRRT), Egyptian Atomic Energy Authority (EAEA), Cairo, Egypt
| | - Dina Mahmoud Lotfy
- Drug Radiation Research Department, National Center for Radiation Research and Technology (NCRRT), Egyptian Atomic Energy Authority (EAEA), Cairo, Egypt
| |
Collapse
|
15
|
Serum proteomic analysis of major depressive disorder patients and their remission status: Novel biomarker set of zinc-alpha-2-glycoprotein and keratin type II cytoskeletal 1. Int J Biol Macromol 2021; 183:2001-2008. [PMID: 34052271 DOI: 10.1016/j.ijbiomac.2021.05.172] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Revised: 05/24/2021] [Accepted: 05/25/2021] [Indexed: 11/22/2022]
Abstract
Major depressive disorder (MDD) is the most common mood disorder, and causes various mental, physical and cognitive symptoms. Clinicians diagnose MDD using multiple interviews and overall impression during the interviews, which makes MDD diagnosis highly subjective. To overcome this, we investigated novel protein biomarker for MDD. Serum from each subject were analyzed using nano liquid chromatography-triple time-of-flight mass spectrometry. We identified two proteins, zinc-alpha-2-glycoprotein (ZA2G) and keratin type II cytoskeletal 1 (K2C1), as final biomarkers. These biomarkers were downregulated during depression (p < 0.05, AUC of ROC >0.7). ZA2G is related to tryptophan metabolism, which is a main serotonin synthesis pathway. K2C1 is involved in the kinin-kallikrein system, which produces bradykinin, an anti-inflammatory mediator in the brain. Our results suggest that the two protein candidates are related to inflammation and that MDD is highly associated with inflammation. Finally, since all subjects in the two groups were taking antidepressants, our results suggest that the identified biomarkers could determine the presence or absence of illness and could be used to monitor therapeutic effects.
Collapse
|
16
|
Zarfeshani A, Carroll KR, Volpe BT, Diamond B. Cognitive Impairment in SLE: Mechanisms and Therapeutic Approaches. Curr Rheumatol Rep 2021; 23:25. [PMID: 33782842 PMCID: PMC11207197 DOI: 10.1007/s11926-021-00992-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/20/2021] [Indexed: 02/06/2023]
Abstract
A wide range of patients with systemic lupus erythematosus (SLE) suffer from cognitive dysfunction (CD) which severely impacts their quality of life. However, CD remains underdiagnosed and poorly understood. Here, we discuss current findings in patients and in animal models. Strong evidence suggests that CD pathogenesis involves known mechanisms of tissue injury in SLE. These mechanisms recruit brain resident cells, in particular microglia, into the pathological process. While systemic immune activation is critical to central nervous system injury, the current focus of therapy is the microglial cell and not the systemic immune perturbation. Further studies are critical to examine additional potential therapeutic targets and more specific treatments based on the cause and progress of the disease.
Collapse
Affiliation(s)
- Aida Zarfeshani
- Institute of Molecular Medicine, Feinstein Institutes for Medical Research, 350 Community Drive, Manhasset, NY, 11030, USA
| | - Kaitlin R Carroll
- Institute of Molecular Medicine, Feinstein Institutes for Medical Research, 350 Community Drive, Manhasset, NY, 11030, USA
| | - Bruce T Volpe
- Institute of Molecular Medicine, Feinstein Institutes for Medical Research, 350 Community Drive, Manhasset, NY, 11030, USA
| | - Betty Diamond
- Institute of Molecular Medicine, Feinstein Institutes for Medical Research, 350 Community Drive, Manhasset, NY, 11030, USA.
| |
Collapse
|
17
|
Gorica E, Calderone V. Arachidonic Acid Derivatives and Neuroinflammation. CNS & NEUROLOGICAL DISORDERS-DRUG TARGETS 2021; 21:118-129. [PMID: 33557740 DOI: 10.2174/1871527320666210208130412] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Revised: 07/29/2020] [Accepted: 09/29/2020] [Indexed: 11/22/2022]
Abstract
Neuroinflammation is characterized by dysregulated inflammatory responses localized within the brain and spinal cord. Neuroinflammation plays a pivotal role in the onset of several neurodegenerative disorders and is considered a typical feature of these disorders. Microglia perform primary immune surveillance and macrophage-like activities within the central nervous system. Activated microglia are predominant players in the central nervous system response to damage related to stroke, trauma, and infection. Moreover, microglial activation per se leads to a proinflammatory response and oxidative stress. During the release of cytokines and chemokines, cyclooxygenases and phospholipase A2 are stimulated. Elevated levels of these compounds play a significant role in immune cell recruitment into the brain. Cyclic phospholipase A2 plays a fundamental role in the production of prostaglandins by releasing arachidonic acid. In turn, arachidonic acid is biotransformed through different routes into several mediators that are endowed with pivotal roles in the regulation of inflammatory processes. Some experimental models of neuroinflammation exhibit an increase in cyclic phospholipase A2, leukotrienes, and prostaglandins such as prostaglandin E2, prostaglandin D2, or prostacyclin. However, findings on the role of the prostacyclin receptors have revealed that their signalling suppresses Th2-mediated inflammatory responses. In addition, other in vitro evidence suggests that prostaglandin E2 may inhibit the production of some inflammatory cytokines, attenuating inflammatory events such as mast cell degranulation or inflammatory leukotriene production. Based on these conflicting experimental data, the role of arachidonic acid derivatives in neuroinflammation remains a challenging issue.
Collapse
Affiliation(s)
- Era Gorica
- Department of Pharmacy, University of Pisa, Pisa. Italy
| | | |
Collapse
|
18
|
Barić A, Dobrivojević Radmilović M. Microglia and bradykinin cross talk in poststroke cognitive impairment in diabetes. Am J Physiol Cell Physiol 2021; 320:C613-C618. [PMID: 33502951 DOI: 10.1152/ajpcell.00402.2020] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Stroke is one of the leading causes of mortality and the leading cause of long-term disability worldwide. Although cognitive impairment is a common consequence of stroke, the underlying pathophysiological processes that lead to it are still poorly understood. Recently, more studies have shown evidence of the involvement of diabetes in producing a chronic neuroinflammatory state, which ultimately alters the recovery of function and cognition after stroke. To better understand the impact of diabetes on poststroke recovery, here we highlight the recent insights on the role of diabetes in neuroinflammation, especially regarding its effect on microglial function, and the emerging data on the involvement of kinins in both diabetes and neuroinflammation.
Collapse
Affiliation(s)
- Anja Barić
- Department of Histology and Embryology, Croatian Institute for Brain Research, University of Zagreb School of Medicine, Zagreb, Croatia
| | - Marina Dobrivojević Radmilović
- Department of Histology and Embryology, Croatian Institute for Brain Research, University of Zagreb School of Medicine, Zagreb, Croatia
| |
Collapse
|
19
|
Nunes MA, Toricelli M, Schöwe NM, Malerba HN, Dong-Creste KE, Farah DMAT, De Angelis K, Irigoyen MC, Gobeil F, Araujo Viel T, Buck HS. Kinin B2 Receptor Activation Prevents the Evolution of Alzheimer's Disease Pathological Characteristics in a Transgenic Mouse Model. Pharmaceuticals (Basel) 2020; 13:ph13100288. [PMID: 33019732 PMCID: PMC7601323 DOI: 10.3390/ph13100288] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Revised: 09/16/2020] [Accepted: 09/18/2020] [Indexed: 12/02/2022] Open
Abstract
Background: Alzheimer’s disease is mainly characterized by remarkable neurodegeneration in brain areas related to memory formation. This progressive neurodegeneration causes cognitive impairment, changes in behavior, functional disability, and even death. Our group has demonstrated changes in the kallikrein–kinin system (KKS) in Alzheimer’s disease (AD) experimental models, but there is a lack of evidence about the role of the KKS in Alzheimer’s disease. Aim: In order to answer this question, we evaluated the potential of the kinin B2 receptors (BKB2R) to modify AD characteristics, particularly memory impairment, neurodegeneration, and Aβ peptide deposition. Methods: To assess the effects of B2, we used transgenic Alzheimer’s disease mice treated with B2 receptor (B2R) agonists and antagonists, and performed behavioral and biochemical tests. In addition, we performed organotypic hippocampal culture of wild-type (WT) and transgenic (TG) animals, where the density of cytokines, neurotrophin BDNF, activated astrocyte marker S100B, and cell death were analyzed after treatments. Results: Treatment with the B2R agonist preserved the spatial memory of transgenic mice and decreased amyloid plaque deposition. In organotypic hippocampal culture, treatment with B2R agonist decreased cell death, neuroinflammation, and S100B levels, and increased BDNF release. Conclusions: Our results indicate that the kallikrein–kinin system plays a beneficial role in Alzheimer’s disease through B2R activation. The use of B2R agonists could, therefore, be a possible therapeutic option for patients diagnosed with Alzheimer’s disease.
Collapse
Affiliation(s)
- Marielza Andrade Nunes
- Department of Physiological Sciences, Santa Casa de Sao Paulo School of Medical Sciences, Sao Paulo 01221-020, Brazil; (M.A.N.); (M.T.); (K.E.D.-C.)
| | - Mariana Toricelli
- Department of Physiological Sciences, Santa Casa de Sao Paulo School of Medical Sciences, Sao Paulo 01221-020, Brazil; (M.A.N.); (M.T.); (K.E.D.-C.)
| | - Natalia Mendes Schöwe
- School of Arts, Sciences and Humanities, University of Sao Paulo, Sao Paulo 03828-080, Brazil; (N.M.S.); (H.N.M.); (T.A.V.)
| | - Helena Nascimento Malerba
- School of Arts, Sciences and Humanities, University of Sao Paulo, Sao Paulo 03828-080, Brazil; (N.M.S.); (H.N.M.); (T.A.V.)
| | - Karis Ester Dong-Creste
- Department of Physiological Sciences, Santa Casa de Sao Paulo School of Medical Sciences, Sao Paulo 01221-020, Brazil; (M.A.N.); (M.T.); (K.E.D.-C.)
| | - Daniela Moura Azevedo Tuma Farah
- Heart Institute (Incor), Hypertension Unit, University of Sao Paulo, Sao Paulo 05403-900, Brazil; (D.M.A.T.F.); (M.C.I.)
- Department of Physiology, Federal University of São Paulo (UNIFESP), Sao Paulo 04023-901, Brazil;
| | - Katia De Angelis
- Department of Physiology, Federal University of São Paulo (UNIFESP), Sao Paulo 04023-901, Brazil;
- Translational Physiology Laboratory, Universidade Nove de Julho (UNINOVE), Sao Paulo 01504-001, Brazil
| | - Maria Claudia Irigoyen
- Heart Institute (Incor), Hypertension Unit, University of Sao Paulo, Sao Paulo 05403-900, Brazil; (D.M.A.T.F.); (M.C.I.)
| | - Fernand Gobeil
- Department of Pharmacology and Physiology, Université de Sherbrooke, Sherbrooke, QC J1H 5N4, Canada;
| | - Tânia Araujo Viel
- School of Arts, Sciences and Humanities, University of Sao Paulo, Sao Paulo 03828-080, Brazil; (N.M.S.); (H.N.M.); (T.A.V.)
| | - Hudson Sousa Buck
- Department of Physiological Sciences, Santa Casa de Sao Paulo School of Medical Sciences, Sao Paulo 01221-020, Brazil; (M.A.N.); (M.T.); (K.E.D.-C.)
- Correspondence: ; Tel./Fax: +55-11-3367-7790
| |
Collapse
|
20
|
Sriramula S. Kinin B1 receptor: A target for neuroinflammation in hypertension. Pharmacol Res 2020; 155:104715. [DOI: 10.1016/j.phrs.2020.104715] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Revised: 02/11/2020] [Accepted: 02/16/2020] [Indexed: 11/25/2022]
|
21
|
Famitafreshi H, Karimian M. Prostaglandins as the Agents That Modulate the Course of Brain Disorders. Degener Neurol Neuromuscul Dis 2020; 10:1-13. [PMID: 32021549 PMCID: PMC6970614 DOI: 10.2147/dnnd.s240800] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Accepted: 12/30/2019] [Indexed: 12/14/2022] Open
Abstract
Neurologic and neuropsychiatric diseases are associated with great morbidity and mortality. Prostaglandins (PGs) are formed by sequential oxygenation of arachidonic acid in physiologic and pathologic conditions. For the production of PGs cyclooxygenase is a necessary enzyme that has two isoforms, that are named COX-1 and COX-2. COX-1 produces type 1 prostaglandins and on the other hand, COX-2 produces type 2 prostaglandins. Recent studies suggest PGs abnormalities are present in a variety of neurologic and psychiatric disorders. In a disease state, type 2 prostaglandins are mostly responsible and type 1 PGs are not so important in the disease state. In this review, the importance of prostaglandins especially type 2 in brain diseases has been discussed and their possible role in the initiation and outcome of brain diseases has been assessed. Overall the studies suggest prostaglandins are the agents that modulate the course of brain diseases in a positive or negative manner. Here in this review article, the various aspects of PGs in the disease state have discussed. It appears more studies must be done to understand the exact role of these agents in the pathophysiology of brain diseases. However, the suppression of prostaglandin production may confer the alleviation of some brain diseases.
Collapse
Affiliation(s)
| | - Morteza Karimian
- Physiology Department, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
22
|
Barış E, Arıcı M, Hamurtekin E. THE ROLE OF NICOTINIC ANTI-INFLAMMATORY PATHWAY IN PROSTAGLANDİN MEDIATED INFLAMMATORY RESPONSE IN SEPSIS: A short review. CLINICAL AND EXPERIMENTAL HEALTH SCIENCES 2019. [DOI: 10.33808/clinexphealthsci.548030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
23
|
Biro A, Markovich A, Homoki JR, Szőllősi E, Hegedűs C, Tarapcsák S, Lukács J, Stündl L, Remenyik J. Anthocyanin-Rich Sour Cherry Extract Attenuates the Lipopolysaccharide-Induced Endothelial Inflammatory Response. Molecules 2019; 24:molecules24193427. [PMID: 31546579 PMCID: PMC6804180 DOI: 10.3390/molecules24193427] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Revised: 09/10/2019] [Accepted: 09/19/2019] [Indexed: 01/25/2023] Open
Abstract
The anthocyanin content of Hungarian sour cherry is remarkable based on our preliminary investigations. Nutraceutical and pharmaceutical effects of anthocyanins have been extensively studied. The objective of this work was to investigate the the effect of purified sour cherry extract using human umbilical cord vein endothelial cells (HUVECs) as the inflammatory model. HUVECs were isolated by enzymatic digestion and characterized by flow cytometry. The optimal concentration range of sour cherry extract was selected based on MTT, apoptosis, and necrosis assays. Cells were divided into three groups, incubating with M199 medium as control, or with lipopolysaccharide (LPS) or with LPS plus anthocyanin extract (ACE). The effect of sour cherry extract on oxidative stress, pro-inflammatory factors, and arachidonic pathway was investigated. An amount of 50 μg/mL ACE (ACE50) was able to increase the level of glutathione and decrease the ROS, thereby improving the unbalanced redox status in inflammation. ACE50 lowered pro-inflammatory cytokine levels including Interleukin-6 (IL-6), regulated on activation, normal T cell expressed and secreted (RANTES), granulocyte-macrophage colony-stimulating factor (GM-CSF), and tumor necrosis factor alpha (TNF-α). ACE50 affected the arachidonic acid pathway by reducing the LPS-induced enzyme expression (cyclooxygenase-1, cyclooxygenase-2, and prostacyclin synthase). The extract under investigation seems to have a pleiotropic effect including anti-oxidative, anti-inflammatory, hemostatic, and vasoactive effects. Our results indicate that purified sour cherry extract could reduce the LPS-induced inflammatory response, thereby improving endothelial dysfunction.
Collapse
Affiliation(s)
- Attila Biro
- Institute of Animal Science, Biotechnology and Nature Conservation, Institute of Food Technology, University of Debrecen, H-4032 Debrecen, Hungary.
| | - Arnold Markovich
- Institute of Animal Science, Biotechnology and Nature Conservation, Institute of Food Technology, University of Debrecen, H-4032 Debrecen, Hungary.
| | - Judit Rita Homoki
- Institute of Animal Science, Biotechnology and Nature Conservation, Institute of Food Technology, University of Debrecen, H-4032 Debrecen, Hungary.
| | - Erzsébet Szőllősi
- Institute of Animal Science, Biotechnology and Nature Conservation, Institute of Food Technology, University of Debrecen, H-4032 Debrecen, Hungary.
| | - Csaba Hegedűs
- Department of Pharmacology and Pharmacotherapy, University of Debrecen, H-4032 Debrecen, Hungary.
| | - Szabolcs Tarapcsák
- Department of Biophysics and Cell Biology, Faculty of Medicine, University of Debrecen, H-4032 Debrecen, Hungary.
| | - János Lukács
- Department of Obstetrics and Gynaecology, University of Debrecen, H-4032 Debrecen, Hungary.
| | - László Stündl
- Institute of Animal Science, Biotechnology and Nature Conservation, Institute of Food Technology, University of Debrecen, H-4032 Debrecen, Hungary.
| | - Judit Remenyik
- Institute of Animal Science, Biotechnology and Nature Conservation, Institute of Food Technology, University of Debrecen, H-4032 Debrecen, Hungary.
| |
Collapse
|
24
|
Toricelli M, Evangelista SR, Oliveira LR, Viel TA, Buck HS. Neuroprotective Effects of Kinin B2 Receptor in Organotypic Hippocampal Cultures of Middle-Aged Mice. Front Aging Neurosci 2019; 11:168. [PMID: 31354470 PMCID: PMC6639675 DOI: 10.3389/fnagi.2019.00168] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Accepted: 06/17/2019] [Indexed: 11/13/2022] Open
Abstract
Aging is a multifactorial phenomenon that results in several changes at cellular and molecular levels and is considered the main risk factor for some neurodegenerative diseases. Several evidence show the participation of the kallikrein-kinin system (KKS) in neurodegeneration and this system has been associated with inflammation and immunogenic responses in the central and peripheral systems by the activation of the B1 and B2 receptors. Previous work by our group showed that bradykinin (BK) and the B2 receptor played a possible role in neuroprotection. Therefore, the objective of this study was to evaluate the participation of B2 receptors in cell viability, neuroinflammatory response and neuroplasticity in organotypic hippocampal cultures (OHCs) of 6- and 12-month-old mice. It was observed that activation of the B2 receptor by bradykinin decreased the inflammatory response and increased plasticity in 12-month-old slices. Conversely, there was an increase in the inflammatory response and a decrease in neural plasticity in the 6-month-old slices. In both ages, an increase in cell viability was observed. This data suggests that the function of the kinin B2 receptor in the hippocampus is modulated by age, providing neuroprotective action in old age.
Collapse
Affiliation(s)
- Mariana Toricelli
- Department of Physiological Sciences, Santa Casa de São Paulo School of Medical Sciences, São Paulo, Brazil.,Research Group on Neuropharmacology of Aging-ReGNA, São Paulo, Brazil
| | - Sebastiana Ribeiro Evangelista
- Department of Physiological Sciences, Santa Casa de São Paulo School of Medical Sciences, São Paulo, Brazil.,Research Group on Neuropharmacology of Aging-ReGNA, São Paulo, Brazil
| | - Larissa Rolim Oliveira
- Department of Physiological Sciences, Santa Casa de São Paulo School of Medical Sciences, São Paulo, Brazil
| | - Tania Araujo Viel
- Research Group on Neuropharmacology of Aging-ReGNA, São Paulo, Brazil.,School of Arts, Sciences and Humanities, University of São Paulo, São Paulo, Brazil
| | - Hudson Sousa Buck
- Department of Physiological Sciences, Santa Casa de São Paulo School of Medical Sciences, São Paulo, Brazil.,Research Group on Neuropharmacology of Aging-ReGNA, São Paulo, Brazil
| |
Collapse
|
25
|
Petrella C, Di Certo MG, Barbato C, Gabanella F, Ralli M, Greco A, Possenti R, Severini C. Neuropeptides in Alzheimer’s Disease: An Update. Curr Alzheimer Res 2019; 16:544-558. [DOI: 10.2174/1567205016666190503152555] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Revised: 03/19/2019] [Accepted: 04/30/2019] [Indexed: 12/19/2022]
Abstract
Neuropeptides are small proteins broadly expressed throughout the central nervous system, which act as neurotransmitters, neuromodulators and neuroregulators. Growing evidence has demonstrated the involvement of many neuropeptides in both neurophysiological functions and neuropathological conditions, among which is Alzheimer’s disease (AD). The role exerted by neuropeptides in AD is endorsed by the evidence that they are mainly neuroprotective and widely distributed in brain areas responsible for learning and memory processes. Confirming this point, it has been demonstrated that numerous neuropeptide-containing neurons are pathologically altered in brain areas of both AD patients and AD animal models. Furthermore, the levels of various neuropeptides have been found altered in both Cerebrospinal Fluid (CSF) and blood of AD patients, getting insights into their potential role in the pathophysiology of AD and offering the possibility to identify novel additional biomarkers for this pathology. We summarized the available information about brain distribution, neuroprotective and cognitive functions of some neuropeptides involved in AD. The main focus of the current review was directed towards the description of clinical data reporting alterations in neuropeptides content in both AD patients and AD pre-clinical animal models. In particular, we explored the involvement in the AD of Thyrotropin-Releasing Hormone (TRH), Cocaine- and Amphetamine-Regulated Transcript (CART), Cholecystokinin (CCK), bradykinin and chromogranin/secretogranin family, discussing their potential role as a biomarker or therapeutic target, leaving the dissertation of other neuropeptides to previous reviews.
Collapse
Affiliation(s)
- Carla Petrella
- Department of Sense Organs, CNR, Institute of Cell Biology and Neurobiology, University Sapienza of Rome, Viale del Policlinico 155, 00161 Rome, Italy
| | - Maria Grazia Di Certo
- Department of Sense Organs, CNR, Institute of Cell Biology and Neurobiology, University Sapienza of Rome, Viale del Policlinico 155, 00161 Rome, Italy
| | - Christian Barbato
- Department of Sense Organs, CNR, Institute of Cell Biology and Neurobiology, University Sapienza of Rome, Viale del Policlinico 155, 00161 Rome, Italy
| | - Francesca Gabanella
- Department of Sense Organs, CNR, Institute of Cell Biology and Neurobiology, University Sapienza of Rome, Viale del Policlinico 155, 00161 Rome, Italy
| | - Massimo Ralli
- Department of Sense Organs, University Sapienza of Rome, Viale del Policlinico 155, 00161 Rome, Italy
| | - Antonio Greco
- Department of Sense Organs, University Sapienza of Rome, Viale del Policlinico 155, 00161 Rome, Italy
| | - Roberta Possenti
- Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy
| | - Cinzia Severini
- Department of Sense Organs, CNR, Institute of Cell Biology and Neurobiology, University Sapienza of Rome, Viale del Policlinico 155, 00161 Rome, Italy
| |
Collapse
|
26
|
Rajchgot T, Thomas SC, Wang JC, Ahmadi M, Balood M, Crosson T, Dias JP, Couture R, Claing A, Talbot S. Neurons and Microglia; A Sickly-Sweet Duo in Diabetic Pain Neuropathy. Front Neurosci 2019; 13:25. [PMID: 30766472 PMCID: PMC6365454 DOI: 10.3389/fnins.2019.00025] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2018] [Accepted: 01/11/2019] [Indexed: 12/11/2022] Open
Abstract
Diabetes is a common condition characterized by persistent hyperglycemia. High blood sugar primarily affects cells that have a limited capacity to regulate their glucose intake. These cells include capillary endothelial cells in the retina, mesangial cells in the renal glomerulus, Schwann cells, and neurons of the peripheral and central nervous systems. As a result, hyperglycemia leads to largely intractable complications such as retinopathy, nephropathy, hypertension, and neuropathy. Diabetic pain neuropathy is a complex and multifactorial disease that has been associated with poor glycemic control, longer diabetes duration, hypertension, advanced age, smoking status, hypoinsulinemia, and dyslipidemia. While many of the driving factors involved in diabetic pain are still being investigated, they can be broadly classified as either neuron -intrinsic or -extrinsic. In neurons, hyperglycemia impairs the polyol pathway, leading to an overproduction of reactive oxygen species and reactive nitrogen species, an enhanced formation of advanced glycation end products, and a disruption in Na+/K+ ATPase pump function. In terms of the extrinsic pathway, hyperglycemia leads to the generation of both overactive microglia and microangiopathy. The former incites a feed-forward inflammatory loop that hypersensitizes nociceptor neurons, as observed at the onset of diabetic pain neuropathy. The latter reduces neurons' access to oxygen, glucose and nutrients, prompting reductions in nociceptor terminal expression and losses in sensation, as observed in the later stages of diabetic pain neuropathy. Overall, microglia can be seen as potent and long-lasting amplifiers of nociceptor neuron activity, and may therefore constitute a potential therapeutic target in the treatment of diabetic pain neuropathy.
Collapse
Affiliation(s)
- Trevor Rajchgot
- Département de Pharmacologie et Physiologie, Faculté de Médecine, Université de Montréal, Montréal, QC, Canada
| | - Sini Christine Thomas
- Département de Pharmacologie et Physiologie, Faculté de Médecine, Université de Montréal, Montréal, QC, Canada
| | - Jo-Chiao Wang
- Graduate Institute of Microbiology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Maryam Ahmadi
- Département de Pharmacologie et Physiologie, Faculté de Médecine, Université de Montréal, Montréal, QC, Canada
| | - Mohammad Balood
- Département de Pharmacologie et Physiologie, Faculté de Médecine, Université de Montréal, Montréal, QC, Canada
| | - Théo Crosson
- Département de Pharmacologie et Physiologie, Faculté de Médecine, Université de Montréal, Montréal, QC, Canada
| | - Jenny Pena Dias
- Johns Hopkins University School of Medicine, Division of Endocrinology, Diabetes and Metabolism, Baltimore, MD, United States
| | - Réjean Couture
- Département de Pharmacologie et Physiologie, Faculté de Médecine, Université de Montréal, Montréal, QC, Canada
| | - Audrey Claing
- Département de Pharmacologie et Physiologie, Faculté de Médecine, Université de Montréal, Montréal, QC, Canada
| | - Sébastien Talbot
- Département de Pharmacologie et Physiologie, Faculté de Médecine, Université de Montréal, Montréal, QC, Canada
| |
Collapse
|
27
|
Kassi AAY, Mahavadi AK, Clavijo A, Caliz D, Lee SW, Ahmed AI, Yokobori S, Hu Z, Spurlock MS, Wasserman JM, Rivera KN, Nodal S, Powell HR, Di L, Torres R, Leung LY, Rubiano AM, Bullock RM, Gajavelli S. Enduring Neuroprotective Effect of Subacute Neural Stem Cell Transplantation After Penetrating TBI. Front Neurol 2019; 9:1097. [PMID: 30719019 PMCID: PMC6348935 DOI: 10.3389/fneur.2018.01097] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2018] [Accepted: 12/03/2018] [Indexed: 12/13/2022] Open
Abstract
Traumatic brain injury (TBI) is the largest cause of death and disability of persons under 45 years old, worldwide. Independent of the distribution, outcomes such as disability are associated with huge societal costs. The heterogeneity of TBI and its complicated biological response have helped clarify the limitations of current pharmacological approaches to TBI management. Five decades of effort have made some strides in reducing TBI mortality but little progress has been made to mitigate TBI-induced disability. Lessons learned from the failure of numerous randomized clinical trials and the inability to scale up results from single center clinical trials with neuroprotective agents led to the formation of organizations such as the Neurological Emergencies Treatment Trials (NETT) Network, and international collaborative comparative effectiveness research (CER) to re-orient TBI clinical research. With initiatives such as TRACK-TBI, generating rich and comprehensive human datasets with demographic, clinical, genomic, proteomic, imaging, and detailed outcome data across multiple time points has become the focus of the field in the United States (US). In addition, government institutions such as the US Department of Defense are investing in groups such as Operation Brain Trauma Therapy (OBTT), a multicenter, pre-clinical drug-screening consortium to address the barriers in translation. The consensus from such efforts including "The Lancet Neurology Commission" and current literature is that unmitigated cell death processes, incomplete debris clearance, aberrant neurotoxic immune, and glia cell response induce progressive tissue loss and spatiotemporal magnification of primary TBI. Our analysis suggests that the focus of neuroprotection research needs to shift from protecting dying and injured neurons at acute time points to modulating the aberrant glial response in sub-acute and chronic time points. One unexpected agent with neuroprotective properties that shows promise is transplantation of neural stem cells. In this review we present (i) a short survey of TBI epidemiology and summary of current care, (ii) findings of past neuroprotective clinical trials and possible reasons for failure based upon insights from human and preclinical TBI pathophysiology studies, including our group's inflammation-centered approach, (iii) the unmet need of TBI and unproven treatments and lastly, (iv) present evidence to support the rationale for sub-acute neural stem cell therapy to mediate enduring neuroprotection.
Collapse
Affiliation(s)
- Anelia A. Y. Kassi
- Department of Neurological Surgery, The Miami Project to Cure Paralysis, University of Miami Miller School of Medicine, Miami, FL, United States
| | - Anil K. Mahavadi
- Department of Neurological Surgery, The Miami Project to Cure Paralysis, University of Miami Miller School of Medicine, Miami, FL, United States
| | - Angelica Clavijo
- Neurosurgery Service, INUB-MEDITECH Research Group, El Bosque University, Bogotá, CO, United States
| | - Daniela Caliz
- Neurosurgery Service, INUB-MEDITECH Research Group, El Bosque University, Bogotá, CO, United States
| | - Stephanie W. Lee
- Department of Neurological Surgery, The Miami Project to Cure Paralysis, University of Miami Miller School of Medicine, Miami, FL, United States
| | - Aminul I. Ahmed
- Wessex Neurological Centre, University Hospitals Southampton, Southampton, United Kingdom
| | - Shoji Yokobori
- Department of Emergency and Critical Care Medicine, Nippon Medical School, Tokyo, Japan
| | - Zhen Hu
- Department of Neurosurgery, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Markus S. Spurlock
- Department of Neurological Surgery, The Miami Project to Cure Paralysis, University of Miami Miller School of Medicine, Miami, FL, United States
| | - Joseph M Wasserman
- Department of Neurological Surgery, The Miami Project to Cure Paralysis, University of Miami Miller School of Medicine, Miami, FL, United States
| | - Karla N. Rivera
- Department of Neurological Surgery, The Miami Project to Cure Paralysis, University of Miami Miller School of Medicine, Miami, FL, United States
| | - Samuel Nodal
- Department of Neurological Surgery, The Miami Project to Cure Paralysis, University of Miami Miller School of Medicine, Miami, FL, United States
| | - Henry R. Powell
- Department of Neurological Surgery, The Miami Project to Cure Paralysis, University of Miami Miller School of Medicine, Miami, FL, United States
| | - Long Di
- Department of Neurological Surgery, The Miami Project to Cure Paralysis, University of Miami Miller School of Medicine, Miami, FL, United States
| | - Rolando Torres
- Department of Neurological Surgery, The Miami Project to Cure Paralysis, University of Miami Miller School of Medicine, Miami, FL, United States
| | - Lai Yee Leung
- Branch of Brain Trauma Neuroprotection and Neurorestoration, Center for Military Psychiatry and Neuroscience, Walter Reed Army Institute of Research, Silver Spring, MD, United States
- Department of Surgery, Uniformed Services University of the Health Sciences, Bethesda, MD, United States
| | - Andres Mariano Rubiano
- Neurosurgery Service, INUB-MEDITECH Research Group, El Bosque University, Bogotá, CO, United States
| | - Ross M. Bullock
- Department of Neurological Surgery, The Miami Project to Cure Paralysis, University of Miami Miller School of Medicine, Miami, FL, United States
| | - Shyam Gajavelli
- Department of Neurological Surgery, The Miami Project to Cure Paralysis, University of Miami Miller School of Medicine, Miami, FL, United States
| |
Collapse
|
28
|
Younger D, Murugan M, Rama Rao KV, Wu LJ, Chandra N. Microglia Receptors in Animal Models of Traumatic Brain Injury. Mol Neurobiol 2018; 56:5202-5228. [PMID: 30554385 DOI: 10.1007/s12035-018-1428-7] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Accepted: 11/13/2018] [Indexed: 02/07/2023]
|
29
|
Nestor J, Arinuma Y, Huerta TS, Kowal C, Nasiri E, Kello N, Fujieda Y, Bialas A, Hammond T, Sriram U, Stevens B, Huerta PT, Volpe BT, Diamond B. Lupus antibodies induce behavioral changes mediated by microglia and blocked by ACE inhibitors. J Exp Med 2018; 215:2554-2566. [PMID: 30185634 PMCID: PMC6170183 DOI: 10.1084/jem.20180776] [Citation(s) in RCA: 104] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2018] [Revised: 07/06/2018] [Accepted: 08/02/2018] [Indexed: 02/03/2023] Open
Abstract
Cognitive impairment occurs in 40-90% of patients with systemic lupus erythematosus (SLE), which is characterized by autoantibodies to nuclear antigens, especially DNA. We discovered that a subset of anti-DNA antibodies, termed DNRAbs, cross reacts with the N-methyl-d-aspartate receptor (NMDAR) and enhances NMDAR signaling. In patients, DNRAb presence associates with spatial memory impairment. In a mouse model, DNRAb-mediated brain pathology proceeds through an acute phase of excitotoxic neuron loss, followed by persistent alteration in neuronal integrity and spatial memory impairment. The latter pathology becomes evident only after DNRAbs are no longer detectable in the brain. Here we investigate the mechanism of long-term neuronal dysfunction mediated by transient exposure to antibody. We show that activated microglia and C1q are critical mediators of neuronal damage. We further show that centrally acting inhibitors of angiotensin-converting enzyme (ACE) can prevent microglial activation and preserve neuronal function and cognitive performance. Thus, ACE inhibition represents a strong candidate for clinical trials aimed at mitigating cognitive dysfunction.
Collapse
Affiliation(s)
- Jacquelyn Nestor
- Center for Autoimmune Musculoskeletal and Hematopoietic Diseases, The Feinstein Institute for Medical Research, Manhasset, NY
- Donald & Barbara Zucker School of Medicine at Hofstra/Northwell, Manhasset, NY
| | - Yoshiyuki Arinuma
- Rheumatology and Infectious Diseases, Kitasato University School of Medicine, Kanagawa, Japan
| | - Tomás S Huerta
- Center for Autoimmune Musculoskeletal and Hematopoietic Diseases, The Feinstein Institute for Medical Research, Manhasset, NY
- Donald & Barbara Zucker School of Medicine at Hofstra/Northwell, Manhasset, NY
| | - Czeslawa Kowal
- Center for Autoimmune Musculoskeletal and Hematopoietic Diseases, The Feinstein Institute for Medical Research, Manhasset, NY
| | - Elham Nasiri
- Center for Autoimmune Musculoskeletal and Hematopoietic Diseases, The Feinstein Institute for Medical Research, Manhasset, NY
| | - Nina Kello
- Center for Autoimmune Musculoskeletal and Hematopoietic Diseases, The Feinstein Institute for Medical Research, Manhasset, NY
| | - Yuichiro Fujieda
- Department of Rheumatology, Endocrinology and Nephrology Faculty of Medicine and Graduate School of Medicine Hokkaido University, Sapporo, Japan
| | - Alison Bialas
- Boston Children's Hospital and Department of Pediatrics, Harvard Medical School, Boston, MA
| | - Tim Hammond
- Boston Children's Hospital and Department of Pediatrics, Harvard Medical School, Boston, MA
| | - Uma Sriram
- Department of Pathology and Laboratory Medicine, Lewis Katz School of Medicine, Temple University, Philadelphia, PA
| | - Beth Stevens
- Kirby Neurobiology Center Boston Children's Hospital, Boston, MA
| | - Patricio T Huerta
- Center for Autoimmune Musculoskeletal and Hematopoietic Diseases, The Feinstein Institute for Medical Research, Manhasset, NY
- Donald & Barbara Zucker School of Medicine at Hofstra/Northwell, Manhasset, NY
| | - Bruce T Volpe
- Center for Biomedical Sciences, The Feinstein Institute for Medical Research, Manhasset, NY
| | - Betty Diamond
- Center for Autoimmune Musculoskeletal and Hematopoietic Diseases, The Feinstein Institute for Medical Research, Manhasset, NY
| |
Collapse
|
30
|
Neuropathic pain inhibitor, RAP-103, is a potent inhibitor of microglial CCL1/CCR8. Neurochem Int 2018; 119:184-189. [DOI: 10.1016/j.neuint.2017.12.005] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2017] [Revised: 11/26/2017] [Accepted: 12/13/2017] [Indexed: 01/10/2023]
|
31
|
Zhang JY, Bai QK, Zhang YD. Pretreatment with simvastatin upregulates expression of BK-2R and CD11b in the ischemic penumbra of rats. J Biomed Res 2018; 32:354-360. [PMID: 29784898 PMCID: PMC6163114 DOI: 10.7555/jbr.32.20160152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Abstract
Inhibitors of 3-hydroxy-3-methylglutaryl coenzyme A reductases, collectively known as statins, have been shown to minimize cerebral ischemic events in patients. We assessed the mechanisms of simvastatin pretreatment in preventing cerebral ischemia/reperfusion injury in rats using a model of middle cerebral artery occlusion (MCAO). Rats were pretreated with simvastatin 14 days prior to MCAO induction. At 3, 24, and 48 hours after reperfusion, bradykinin levels in the ischemic penumbra were assayed by ELISA, mRNA levels of bradykinin B2 receptors (BK-2Rs) and CD11b were measured by fluorescent quantitative real-time PCR (RT-PCR), and co-expression of microglia and BK-2Rs was determined by immunofluorescence. Simvastatin had no effect on bradykinin expression in the ischemic penumbra at any time point. However, the levels of BK-2R and CD11b mRNA in the ischemic penumbra, which were significantly decreased 3 hours after ischemia-reperfusion, were increased in simvastatin-pretreated rats. Moreover, the co-expression of BK-2Rs and microglia was confirmed by immunofluorescence analysis. These results suggest that the beneficial effects of simvastatin pretreatment before cerebral ischemia/reperfusion injury in rats may be partially due to increased expression of BK-2R and CD11b in the ischemic penumbra.
Collapse
Affiliation(s)
- Jian-Ying Zhang
- Department of Neurology, Pudong People's Hospital, Shanghai 201299, China
| | - Qing-Ke Bai
- Department of Neurology, Pudong People's Hospital, Shanghai 201299, China
| | - Ying-Dong Zhang
- Department of Neurology, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu 210006, China
| |
Collapse
|
32
|
França AJVBDV, De Faveri R, Nunes R, Steimbach VMB, Santin JR, Quintão NLM. The role of kinins in the proliferation of fibroblast primed with TNF in scratch wound assay: Kinins and cell proliferation. Int Immunopharmacol 2018; 65:23-28. [PMID: 30268800 DOI: 10.1016/j.intimp.2018.09.036] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2018] [Revised: 09/17/2018] [Accepted: 09/24/2018] [Indexed: 12/19/2022]
Abstract
The aim of this study was to evaluate the involvement of both B1 and B2 kinins receptors (B1R and B2R) in the fibroblast proliferation induced by the cytokine tumour necrosis factor (TNF) attempting to establish an in vitro model of wound healing. Murine fibroblasts L-929 were cultivated in 24 wells plaque until total confluence (DMEM (Vitrocell®); 5% fetal bovine serum, 5% CO2, 37 °C) and then submitted to the scratch assay. The cells were treated with PBS, TNF (2 ng/mL) and/or mr-TNF antibody (200 μg/mL), or PDTC. The cells received the second set of treatment (3 h later): PBS; 1 μM HOE-140; 1 μM des-Arg9-Leu8-BK (DALBK) or 100 μM PDTC. TNF was able to increase the cell proliferation when compared with the group treated with PBS. The co-treatment with the TNF antibody completely reversed the TNF effect. The TNF-proliferative effect was blocked by B1 (DALBK) and B2 (HOE-140) kinin receptor antagonists administered separately or along, suggesting the involvement of both receptors in the TNF mechanism of action. Furthermore, the treatment with a NF-ĸB inhibitor PDTC completely blocked the cell proliferation. The TNF cell proliferation was incremented with BK (1 μM) treatment, and its effect was totally reversed by HOE-140 treatment. No effect was observed for TNF plus DABK. Eventually, TNF treatment was able to increase TNF level in the growing medium; however, this increase was suppressed by BK treatment. These results suggest that TNF induces cell proliferation and the induced signalling cascade has the B2R participation. All these events seem to be totally dependent on the NF-ĸB activation. These inflammatory mediators can improve the wound healing in the resolution of inflammation.
Collapse
Affiliation(s)
- Ana Julia Von Borell du Vernay França
- Postgraduate Program in Pharmaceutical Science, Universidade do Vale do Itajaí, Itajaí, Santa Catarina, Brazil; Cosmethology Course, Universidade do Vale do Itajaí, Itajaí, Santa Catarina, Brazil
| | - Renata De Faveri
- Biomedicine Course, Universidade do Vale do Itajaí, Itajaí, Santa Catarina, Brazil
| | - Roberta Nunes
- Postgraduate Program in Pharmaceutical Science, Universidade do Vale do Itajaí, Itajaí, Santa Catarina, Brazil
| | | | - José Roberto Santin
- Postgraduate Program in Pharmaceutical Science, Universidade do Vale do Itajaí, Itajaí, Santa Catarina, Brazil
| | - Nara Lins Meira Quintão
- Postgraduate Program in Pharmaceutical Science, Universidade do Vale do Itajaí, Itajaí, Santa Catarina, Brazil.
| |
Collapse
|
33
|
Nokkari A, Abou-El-Hassan H, Mechref Y, Mondello S, Kindy MS, Jaffa AA, Kobeissy F. Implication of the Kallikrein-Kinin system in neurological disorders: Quest for potential biomarkers and mechanisms. Prog Neurobiol 2018; 165-167:26-50. [PMID: 29355711 PMCID: PMC6026079 DOI: 10.1016/j.pneurobio.2018.01.003] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2017] [Accepted: 01/15/2018] [Indexed: 01/06/2023]
Abstract
Neurological disorders represent major health concerns in terms of comorbidity and mortality worldwide. Despite a tremendous increase in our understanding of the pathophysiological processes involved in disease progression and prevention, the accumulated knowledge so far resulted in relatively moderate translational benefits in terms of therapeutic interventions and enhanced clinical outcomes. Aiming at specific neural molecular pathways, different strategies have been geared to target the development and progression of such disorders. The kallikrein-kinin system (KKS) is among the most delineated candidate systems due to its ubiquitous roles mediating several of the pathophysiological features of these neurological disorders as well as being implicated in regulating various brain functions. Several experimental KKS models revealed that the inhibition or stimulation of the two receptors of the KKS system (B1R and B2R) can exhibit neuroprotective and/or adverse pathological outcomes. This updated review provides background details of the KKS components and their functions in different neurological disorders including temporal lobe epilepsy, traumatic brain injury, stroke, spinal cord injury, Alzheimer's disease, multiple sclerosis and glioma. Finally, this work will highlight the putative roles of the KKS components as potential neurotherapeutic targets and provide future perspectives on the possibility of translating these findings into potential clinical biomarkers in neurological disease.
Collapse
Affiliation(s)
- Amaly Nokkari
- Department of Biochemistry and Molecular Genetics, Faculty of Medicine, American University of Beirut, Lebanon
| | - Hadi Abou-El-Hassan
- Faculty of Medicine, American University of Beirut Medical Center, Beirut, Lebanon
| | - Yehia Mechref
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX, USA
| | - Stefania Mondello
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, University of Messina, Messina, Italy
| | - Mark S Kindy
- Department of Pharmaceutical Science, College of Pharmacy, University of South Florida, Tampa, FL, USA; James A. Haley VA Medical Center, Tampa, FL, USA
| | - Ayad A Jaffa
- Department of Biochemistry and Molecular Genetics, Faculty of Medicine, American University of Beirut, Lebanon; Department of Medicine, Medical University of South, Charleston, SC, USA.
| | - Firas Kobeissy
- Department of Biochemistry and Molecular Genetics, Faculty of Medicine, American University of Beirut, Lebanon; Center for Neuroproteomics & Biomarkers Research, Department of Psychiatry, McKnight Brain Institute, University of Florida, Gainesville, FL, USA.
| |
Collapse
|
34
|
Marhuenda J, Medina S, Martínez-Hernández P, Arina S, Zafrilla P, Mulero J, Oger C, Galano JM, Durand T, Solana A, Ferreres F, López-García JJ, Gil-Izquierdo A. Effect of the dietary intake of melatonin- and hydroxytyrosol-rich wines by healthy female volunteers on the systemic lipidomic-related oxylipins. Food Funct 2018; 8:3745-3757. [PMID: 28956582 DOI: 10.1039/c7fo01081h] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Oxylipins are lipid mediators involved in the physiopathology of all organs. Moreover, isoprostanes have been established as general and reliable in vivo oxidative stress biomarkers. Red wine has proved to exert several benefits through the maintenance of the oxidative balance of the organism. Antiradical scavenging capacity has been mainly attributed to polyphenols. However, melatonin and hydroxytyrosol should be taken into account as potent antiradical agents. The present research aimed to clarify the situation of enzymatic and oxidative injury and eicosanoid urinary excretion related to the intake of three kinds of red wines and their primary musts. Judging by the reduction in the excretion of isoprostanes, red wine consumption exhibited the highest antioxidant protection against oxidative stress, attributed to its OHTyr content (p < 0.05), and to a lesser extent to its MEL content. Similarly, the intake of red wine leads to the cardioprotective effect due to the reduction in the urinary excretion of the pro-inflammatory prostaglandin 2,3-dinor-11-β-PGF2α, besides the increase in the vasodilator prostaglandin PGE1, mediated by the melatonin (p < 0.05) and hydroxytyrosol (p < 0.05) contents. In conclusion, red wine (especially non-aged wine) exerts a higher in vivo antioxidant capacity than must or alcohol.
Collapse
Affiliation(s)
- Javier Marhuenda
- Research Group on Quality, Safety and Bioactivity of Plant Foods, Department of Food Science and Technology, CEBAS (CSIC), P.O. Box 164, 30100 Campus University Espinardo, Murcia, Spain.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Aranda JV, Salomone F, Valencia GB, Beharry KD. Non-steroidal Anti-inflammatory Drugs in Newborns and Infants. Pediatr Clin North Am 2017; 64:1327-1340. [PMID: 29173788 DOI: 10.1016/j.pcl.2017.08.009] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Nonsteroidal antiinflammatory drugs (NSAIDs) and acetaminophen are used in young infants and newborns for pain and fever control, patent ductus closure, prevention of intraventricular hemorrhage, and potentially for prevention of retinopathy of prematurity. These drugs inhibit cyclooxygenase 1 (COX-1), COX-2, and peroxidases, thus, blocking prostaglandin (PG) synthesis. PGs are eicosanoids that regulate several physiologic, pathologic, and cellular processes, including vasomotor tone, platelet aggregation, sensitization of neurons to pain, and many molecular events critical to physiologic homeostasis. NSAIDs inhibit caspases and cell death. Increasing knowledge of these molecular entities may allow targeted drug development to prevent or minimize neonatal morbidities.
Collapse
Affiliation(s)
- Jacob V Aranda
- State University of New York Downstate Medical Center, 450 Clarkson Avenue, Box 49, Brooklyn, NY 11203, USA.
| | - Fabrizio Salomone
- Neonatology and Pulmonary Rare Disease Unit, Corporate Pre-Clinical R and D, Chiesi Farmaceutici S.p.A, Largo Belloli 11/A, Parma IT-43122, Italy
| | - Gloria B Valencia
- State University of New York Downstate Medical Center, 450 Clarkson Avenue, Box 49, Brooklyn, NY 11203, USA
| | - Kay D Beharry
- State University of New York Downstate Medical Center, 450 Clarkson Avenue, Box 49, Brooklyn, NY 11203, USA
| |
Collapse
|
36
|
Neuroprotection of bradykinin/bradykinin B2 receptor system in cerebral ischemia. Biomed Pharmacother 2017; 94:1057-1063. [DOI: 10.1016/j.biopha.2017.08.042] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2017] [Revised: 08/07/2017] [Accepted: 08/07/2017] [Indexed: 12/17/2022] Open
|
37
|
Patel S, Rauf A, Khan H, Abu-Izneid T. Renin-angiotensin-aldosterone (RAAS): The ubiquitous system for homeostasis and pathologies. Biomed Pharmacother 2017; 94:317-325. [PMID: 28772209 DOI: 10.1016/j.biopha.2017.07.091] [Citation(s) in RCA: 367] [Impact Index Per Article: 45.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2017] [Revised: 07/10/2017] [Accepted: 07/19/2017] [Indexed: 12/22/2022] Open
Abstract
Renin-angiotensin-aldosterone system (RAAS) is a vital system of human body, as it maintains plasma sodium concentration, arterial blood pressure and extracellular volume. Kidney-secreted renin enzyme acts on its substrate to form angiotensin II, a versatile effector peptide hormone. Every organ is affected by RAAS activation and the resultant hypertension, cell proliferation, inflammation, and fibrosis. The imbalance of renin and angiotensin II can result in an overwhelming number of chronic and acute diseases. RAAS is influenced by other enzymes, hormones, pumps and signaling pathways, hence, this review discusses important facets of this system, its crosstalk with other crucial factors like estrogen, thyroid, cortisol, kallikrein-kinin system, Wnt/β-catenin signaling, and sodium-potassium pump. The nexus of RAAS with the above-discussed systems was scantily explored before. So, this review furnishes a new perspective in comprehension of inflammation diseases. It is followed by the formulation of hypotheses, which can contribute to better management of an array of pathologies plaguing mankind. Manipulation of RAAS, by bending it towards ACE2 expression can regulate endocrine functions, which can be critical for a number of pathological management. Dietary intervention can restore RAAS to normalcy.
Collapse
Affiliation(s)
- Seema Patel
- Bioinformatics and Medical Informatics Research Center, San Diego State University, San Diego, 92182, USA.
| | - Abdur Rauf
- Department of Chemistry, University of Swabi, Anbar-23561, Khyber Pakhtunkhwa, Pakistan.
| | - Haroon Khan
- Department of Pharmacy, Abdul Wali Khan University Mardan, 23200, Pakistan
| | - Tareq Abu-Izneid
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Umm Al-Qura University, Makkah, P.O. Box 42, Saudi Arabia
| |
Collapse
|
38
|
Kern K, Pierre S, Schreiber Y, Angioni C, Thomas D, Ferreirós N, Geisslinger G, Scholich K. CD200 selectively upregulates prostaglandin E 2 and D 2 synthesis in LPS-treated bone marrow-derived macrophages. Prostaglandins Other Lipid Mediat 2017; 133:53-59. [PMID: 28583890 DOI: 10.1016/j.prostaglandins.2017.06.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2017] [Revised: 05/05/2017] [Accepted: 06/01/2017] [Indexed: 10/19/2022]
Abstract
The CD200/CD200R signalling pathway downregulates the synthesis of proinflammatory mediators and induces the synthesis of antiinflammatory mediators in macrophages and microglia. However, very little is known about the effect of this immunosuppressive pathway on the synthesis of lipid mediators. Therefore, we determined the synthesis of 35 lipids spanning 5 different lipid families in bone marrow-derived macrophages, which were treated with interleukin (IL) 4, IL10, lipopolysaccharide (LPS), or interferon γ (IFNγ) in absence and presence of CD200. Out of these conditions the only significant effect of CD200 was an increased synthesis of prostaglandin (PG) E2 and D2 in the presence of LPS. Accordingly, mRNA levels of cyclooxygenase-2, microsomal PGE2 synthase-1 and hematopoietic PGD synthase were upregulated by CD200 in presence of LPS. During Complete Freund's Adjuvant (CFA-) induced inflammation mPGES-1 was expressed in monocyte-derived macrophages and its expression was stronger in CD200R-positive than in CD200R-negative macrophages.
Collapse
Affiliation(s)
- Katharina Kern
- Institute of Clinical Pharmacology, pharmazentrum frankfurt/ZAFES, Germany
| | - Sandra Pierre
- Institute of Clinical Pharmacology, pharmazentrum frankfurt/ZAFES, Germany
| | - Yannick Schreiber
- Institute of Clinical Pharmacology, pharmazentrum frankfurt/ZAFES, Germany
| | - Carlo Angioni
- Institute of Clinical Pharmacology, pharmazentrum frankfurt/ZAFES, Germany
| | - Dominique Thomas
- Institute of Clinical Pharmacology, pharmazentrum frankfurt/ZAFES, Germany
| | - Nerea Ferreirós
- Institute of Clinical Pharmacology, pharmazentrum frankfurt/ZAFES, Germany
| | - Gerd Geisslinger
- Institute of Clinical Pharmacology, pharmazentrum frankfurt/ZAFES, Germany
| | - Klaus Scholich
- Institute of Clinical Pharmacology, pharmazentrum frankfurt/ZAFES, Germany.
| |
Collapse
|
39
|
Statins Reduce Lipopolysaccharide-Induced Cytokine and Inflammatory Mediator Release in an In Vitro Model of Microglial-Like Cells. Mediators Inflamm 2017; 2017:2582745. [PMID: 28546657 PMCID: PMC5435995 DOI: 10.1155/2017/2582745] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2016] [Revised: 02/15/2017] [Accepted: 03/13/2017] [Indexed: 01/10/2023] Open
Abstract
The anti-inflammatory effects of statins (HMG-CoA reductase inhibitors) within the cardiovascular system are well-established; however, their neuroinflammatory potential is unclear. It is currently unknown whether statins' neurological effects are lipid-dependent or due to pleiotropic mechanisms. Therefore, the assumption that all statin compounds will have the same effect within the central nervous system is potentially inappropriate, with no studies to date having compared all statins in a single model. Thus, the aim of this study was to compare the effects of the six statins (atorvastatin, fluvastatin, pitavastatin, pravastatin, rosuvastatin, and simvastatin) within a single in vitro model of neuroinflammation. To achieve this, PMA-differentiated THP-1 cells were used as surrogate microglial cells, and LPS was used to induce inflammatory conditions. Here, we show that pretreatment with all statins was able to significantly reduce LPS-induced interleukin (IL)-1β and tumour necrosis factor (TNF)-α release, as well as decrease LPS-induced prostaglandin E2 (PGE2). Similarly, global reactive oxygen species (ROS) and nitric oxide (NO) production were decreased following pretreatment with all statins. Based on these findings, it is suggested that more complex cellular models should be considered to further compare individual statin compounds, including translation into in vivo models of acute and/or chronic neuroinflammation.
Collapse
|
40
|
Seo MJ, Oh DK. Prostaglandin synthases: Molecular characterization and involvement in prostaglandin biosynthesis. Prog Lipid Res 2017; 66:50-68. [DOI: 10.1016/j.plipres.2017.04.003] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2016] [Revised: 03/30/2017] [Accepted: 04/01/2017] [Indexed: 01/30/2023]
|
41
|
Nagano T, Nishiyama R, Sanada A, Mutaguchi Y, Ioku A, Umeki H, Kishimoto S, Yamanaka D, Kimura SH, Takemura M. Prostaglandin E 2 potentiates interferon-γ-induced nitric oxide production in cultured rat microglia. J Neurochem 2017; 140:605-612. [PMID: 27973680 DOI: 10.1111/jnc.13926] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2016] [Revised: 11/30/2016] [Accepted: 12/06/2016] [Indexed: 12/26/2022]
Abstract
Prostaglandin E2 (PGE2 ) plays crucial roles in managing microglial activation through the prostanoid EP2 receptor, a PGE2 receptor subtype. In this study, we report that PGE2 enhances interferon-γ (IFN-γ)-induced nitric oxide production in microglia. IFN-γ increased the release of nitrite, a metabolite of nitric oxide, which was augmented by PGE2 , although PGE2 by itself slightly affects nitrite release. The potentiating effect of PGE2 was positively associated with increased expression of inducible nitric oxide synthase. In contrast to nitrite release induced by IFN-γ, lipopolysaccharide-induced nitrite release was not affected by PGE2 . An EP2 agonist, ONO-AE1-259-01 also augmented IFN-γ-induced nitrite release, while an EP1 agonist, ONO-DI-004, an EP3 agonist, ONO-AE-248, or an EP4 agonist, ONO-AE1-329, did not. In addition, the potentiating effect of PGE2 was inhibited by an EP2 antagonist, PF-04418948, but not by an EP1 antagonist, ONO-8713, an EP3 antagonist, ONO-AE3-240, or an EP4 antagonist, ONO-AE3-208, at 10-6 M. Among the EP agonists, ONO-AE1-259-01 alone was able to accumulate cyclic adenosine monophosphate (AMP), and among the EP antagonists, PF-04418948 was the only one able to inhibit PGE2 -increased intracellular cyclic AMP accumulation. On the other hand, IFN-γ promoted phosphorylation of signal transducer and activator of transcription 1, which was not affected by PGE2 . Furthermore, other prostanoid receptor agonists, PGD2 , PGF2α , iloprost, and U-46119, slightly affected IFN-γ-induced nitrite release. These results indicate that PGE2 potentiates IFN-γ-induced nitric oxide production in microglia through the EP2 receptor, which may shed light on one of the pro-inflammatory aspects of PGE2 .
Collapse
Affiliation(s)
- Takayuki Nagano
- Department of Pharmacology, Hyogo College of Medicine, Nishinomiya, Hyogo, Japan
| | - Ryo Nishiyama
- Department of Pharmacology, Hyogo College of Medicine, Nishinomiya, Hyogo, Japan
| | - Ayaka Sanada
- Department of Pharmacology, Hyogo College of Medicine, Nishinomiya, Hyogo, Japan
| | - Yukiko Mutaguchi
- Department of Pharmacology, Hyogo College of Medicine, Nishinomiya, Hyogo, Japan
| | - Anna Ioku
- Department of Pharmacology, Hyogo College of Medicine, Nishinomiya, Hyogo, Japan
| | - Hirohisa Umeki
- Department of Pharmacology, Hyogo College of Medicine, Nishinomiya, Hyogo, Japan
| | - Satoshi Kishimoto
- Department of Pharmacology, Hyogo College of Medicine, Nishinomiya, Hyogo, Japan
| | - Daisuke Yamanaka
- Department of Pharmacology, Hyogo College of Medicine, Nishinomiya, Hyogo, Japan
| | - Shinya H Kimura
- Department of Pharmacology, Hyogo College of Medicine, Nishinomiya, Hyogo, Japan
| | - Motohiko Takemura
- Department of Pharmacology, Hyogo College of Medicine, Nishinomiya, Hyogo, Japan
| |
Collapse
|
42
|
Dutra RC. Kinin receptors: Key regulators of autoimmunity. Autoimmun Rev 2017; 16:192-207. [DOI: 10.1016/j.autrev.2016.12.011] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2016] [Accepted: 10/25/2016] [Indexed: 01/06/2023]
|
43
|
Ji B, Liu H, Zhang R, Jiang Y, Wang C, Li S, Chen J, Bai B. Novel signaling of dynorphin at κ-opioid receptor/bradykinin B2 receptor heterodimers. Cell Signal 2017; 31:66-78. [PMID: 28069442 DOI: 10.1016/j.cellsig.2017.01.005] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2016] [Revised: 12/19/2016] [Accepted: 01/04/2017] [Indexed: 01/06/2023]
Abstract
The κ-opioid receptor (KOR) and bradykinin B2 receptor (B2R) are involved in a variety of important physiological processes and share many similar characteristics in terms of their distribution and functions in the nervous system. We first demonstrated the endogenous expression of KOR and B2R in human SH-SY5Y cells and their co-localization on the membrane of human embryonic kidney 293 (HEK293) cells. Bioluminescence and fluorescence resonance energy transfer and the proximity ligation assay were exploited to demonstrate the formation of functional KOR and B2R heteromers in transfected cells. KOR/B2R heteromers triggered dynorphin A (1-13)-induced Gαs/protein kinase A signaling pathway activity, including upregulation of intracellular cAMP levels and cAMP-response element luciferase reporter activity, resulting in increased cAMP-response element-binding protein (CREB) phosphorylation, which could be dampened by the protein kinase A (PKA) inhibitor H89. This indicated that the co-existence of KOR and B2R is critical for CREB phosphorylation. In addition, dynorphin A (1-13) induced a significantly higher rate of proliferation in HEK293-KOR/B2R and human SH-SY5Y cells than in the control group. These results indicate that KOR can form a heterodimer with B2R and this leads to increased protein kinase A activity by the CREB signaling pathway, leading to a significant increase in cell proliferation. The nature of this signaling pathway has significant implications for the role of dynorphin in the regulation of neuroprotective effects.
Collapse
Affiliation(s)
- Bingyuan Ji
- School of Life Science, Shandong Agricultural University, Taian 271018, PR China; Neurobiology Institute, Jining Medical University, Jining 272067, PR China
| | - Haiqing Liu
- Department of Physiology, Taishan Medical College, Taian 271000, PR China
| | - Rumin Zhang
- Neurobiology Institute, Jining Medical University, Jining 272067, PR China
| | - Yunlu Jiang
- Neurobiology Institute, Jining Medical University, Jining 272067, PR China
| | - Chunmei Wang
- Neurobiology Institute, Jining Medical University, Jining 272067, PR China
| | - Sheng Li
- Neurobiology Institute, Jining Medical University, Jining 272067, PR China
| | - Jing Chen
- Neurobiology Institute, Jining Medical University, Jining 272067, PR China; Division of Translational and Systems Medicine, Warwick Medical School, University of Warwick, Coventry, UK.
| | - Bo Bai
- Neurobiology Institute, Jining Medical University, Jining 272067, PR China.
| |
Collapse
|
44
|
Bonfill-Teixidor E, Otxoa-de-Amezaga A, Font-Nieves M, Sans-Fons MG, Planas AM. Differential expression of E-type prostanoid receptors 2 and 4 in microglia stimulated with lipopolysaccharide. J Neuroinflammation 2017; 14:3. [PMID: 28086956 PMCID: PMC5234110 DOI: 10.1186/s12974-016-0780-7] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2016] [Accepted: 12/15/2016] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Cyclooxygenase-2 (COX-2) is induced under inflammatory conditions, and prostaglandin E2 (PGE2) is one of the products of COX activity. PGE2 has pleiotropic actions depending on the activation of specific E-type prostanoid EP1-4 receptors. We investigated the involvement of PGE2 and EP receptors in glial activation in response to an inflammatory challenge induced by LPS. METHODS Cultures of mouse microglia or astroglia cells were treated with LPS in the presence or absence of COX-2 inhibitors, and the production of PGE2 was measured by ELISA. Cells were treated with PGE2, and the effect on LPS-induced expression of TNF-α messenger RNA (mRNA) and protein was studied in the presence or absence of drug antagonists of the four EP receptors. EP receptor expression and the effects of EP2 and EP4 agonists and antagonists were studied at different time points after LPS. RESULTS PGE2 production after LPS was COX-2-dependent. PGE2 reduced the glial production of TNF-α after LPS. Microglia expressed higher levels of EP4 and EP2 mRNA than astroglia. Activation of EP4 or EP2 receptors with selective drug agonists attenuated LPS-induced TNF-α in microglia. However, only antagonizing EP4 prevented the PGE2 effect demonstrating that EP4 was the main target of PGE2 in naïve microglia. Moreover, the relative expression of EP receptors changed during the course of classical microglial activation since EP4 expression was strongly depressed while EP2 increased 24 h after LPS and was detected in nuclear/peri-nuclear locations. EP2 regulated the expression of iNOS, NADPH oxidase-2, and vascular endothelial growth factor. NADPH oxidase-2 and iNOS activities require the oxidation of NADPH, and the pentose phosphate pathway is a main source of NADPH. LPS increased the mRNA expression of the rate-limiting enzyme of the pentose pathway glucose-6-phosphate dehydrogenase, and EP2 activity was involved in this effect. CONCLUSIONS These results show that while selective activation of EP4 or EP2 exerts anti-inflammatory actions, EP4 is the main target of PGE2 in naïve microglia. The level of EP receptor expression changes from naïve to primed microglia where the COX-2/PGE2/EP2 axis modulates important adaptive metabolic changes.
Collapse
Affiliation(s)
- Ester Bonfill-Teixidor
- Departament d'Isquèmia Cerebral i Neurodegeneració, Institut d'Investigacions Biomèdiques de Barcelona (IIBB), Consejo Superior de Investigaciones Científicas (CSIC), Barcelona, Spain.,Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Amaia Otxoa-de-Amezaga
- Departament d'Isquèmia Cerebral i Neurodegeneració, Institut d'Investigacions Biomèdiques de Barcelona (IIBB), Consejo Superior de Investigaciones Científicas (CSIC), Barcelona, Spain.,Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Miriam Font-Nieves
- Departament d'Isquèmia Cerebral i Neurodegeneració, Institut d'Investigacions Biomèdiques de Barcelona (IIBB), Consejo Superior de Investigaciones Científicas (CSIC), Barcelona, Spain
| | - M Glòria Sans-Fons
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Anna M Planas
- Departament d'Isquèmia Cerebral i Neurodegeneració, Institut d'Investigacions Biomèdiques de Barcelona (IIBB), Consejo Superior de Investigaciones Científicas (CSIC), Barcelona, Spain. .,Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain. .,Department of Brain Ischemia and Neurodegeneration, Institut d'Investigacions Biomèdiques de Barcelona (IIBB), Consejo Superior de Investigaciones Científicas (CSIC), Rosselló 161 planta 6, 08036, Barcelona, Spain.
| |
Collapse
|
45
|
Asraf K, Torika N, Danon A, Fleisher-Berkovich S. Involvement of the Bradykinin B 1 Receptor in Microglial Activation: In Vitro and In Vivo Studies. Front Endocrinol (Lausanne) 2017; 8:82. [PMID: 28469598 PMCID: PMC5396024 DOI: 10.3389/fendo.2017.00082] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/14/2016] [Accepted: 03/30/2017] [Indexed: 11/13/2022] Open
Abstract
The importance of brain inflammation to Alzheimer's disease (AD) pathogenesis has been accepted of late, with it currently being held that brain inflammation aggravates AD pathology. One important aspect of brain inflammation is the recruitment and activation of microglia, a process termed microgliosis. Kinins and bradykinin (BK), in particular, are major pro-inflammatory mediators in the periphery, although all of the factors comprising the kinin system have also been described in the brain. Moreover, it was shown that the amyloid β (Aβ) peptide (a component of AD plaques) enhances kinin secretion and activates BK receptors that can, in turn, stimulate Aβ production. Still, the role of bradykinin in modulating brain inflammation and AD is not completely understood. In this study, we aimed to investigate the roles of the bradykinin B1 receptor (B1R) and bradykinin B2 receptor (B2R) in regulating microglial secretion of pro-inflammatory factors in vitro. Furthermore, the effects of intranasal administration of specific B1R and B2R antagonists on Aβ burden and microglial accumulation in the brains of transgenic AD mice were studied. The data obtained show that neither R-715 (a B1R antagonist) nor HOE 140 (a B2R antagonist) altered microglial cell viability. However, R-715, but not HOE 140, markedly increased lipopolysaccharide-induced nitric oxide (NO) and tumor necrosis factor-alpha (TNF-α) release, as well as inducible nitric oxide synthase expression in BV2 microglial cells. Neither antagonist altered NO nor TNF-α production in non-stimulated cells. We also showed that intranasal administration of R-715 but not HOE 140 to 8-week-old 5X familial AD mice enhanced amyloid burden and microglia/macrophage accumulation in the cortex. To conclude, we provide evidence supporting a role of B1R in brain inflammation and in the regulation of amyloid deposition in AD mice, possibly with microglial/macrophage involvement. Further studies are required to test whether modulation of this receptor can serve as a novel therapeutic strategy for AD.
Collapse
Affiliation(s)
- Keren Asraf
- Department of Clinical Biochemistry and Pharmacology, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Nofar Torika
- Department of Clinical Biochemistry and Pharmacology, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Abraham Danon
- Department of Clinical Biochemistry and Pharmacology, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Sigal Fleisher-Berkovich
- Department of Clinical Biochemistry and Pharmacology, Ben-Gurion University of the Negev, Beer-Sheva, Israel
- *Correspondence: Sigal Fleisher-Berkovich,
| |
Collapse
|
46
|
Nicotine inhibits activation of microglial proton currents via interactions with α7 acetylcholine receptors. J Physiol Sci 2016; 67:235-245. [PMID: 27256075 PMCID: PMC5910455 DOI: 10.1007/s12576-016-0460-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2016] [Accepted: 05/12/2016] [Indexed: 01/03/2023]
Abstract
Alpha 7 subunits of nicotinic acetylcholine receptors (nAChRs) are expressed in microglia and are involved in the suppression of neuroinflammation. Over the past decade, many reports show beneficial effects of nicotine, though little is known about the mechanism. Here we show that nicotine inhibits lipopolysaccharide (LPS)-induced proton (H+) currents and morphological change by using primary cultured microglia. The H+ channel currents were measured by whole-cell patch clamp method under voltage-clamp condition. Increased H+ current in activated microglia was attenuated by blocking NADPH oxidase. The inhibitory effect of nicotine was due to the activation of α7 nAChR, not a direct action on the H+ channels, because the effects of nicotine was cancelled by α7 nAChR antagonists. Neurotoxic effect of LPS-activated microglia due to inflammatory cytokines was also attenuated by pre-treatment of microglia with nicotine. These results suggest that α7 nAChRs in microglia may be a therapeutic target in neuroinflammatory diseases.
Collapse
|
47
|
Hadley KB, Ryan AS, Forsyth S, Gautier S, Salem N. The Essentiality of Arachidonic Acid in Infant Development. Nutrients 2016; 8:216. [PMID: 27077882 PMCID: PMC4848685 DOI: 10.3390/nu8040216] [Citation(s) in RCA: 241] [Impact Index Per Article: 26.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2016] [Revised: 04/01/2016] [Accepted: 04/05/2016] [Indexed: 01/16/2023] Open
Abstract
Arachidonic acid (ARA, 20:4n-6) is an n-6 polyunsaturated 20-carbon fatty acid formed by the biosynthesis from linoleic acid (LA, 18:2n-6). This review considers the essential role that ARA plays in infant development. ARA is always present in human milk at a relatively fixed level and is accumulated in tissues throughout the body where it serves several important functions. Without the provision of preformed ARA in human milk or infant formula the growing infant cannot maintain ARA levels from synthetic pathways alone that are sufficient to meet metabolic demand. During late infancy and early childhood the amount of dietary ARA provided by solid foods is low. ARA serves as a precursor to leukotrienes, prostaglandins, and thromboxanes, collectively known as eicosanoids which are important for immunity and immune response. There is strong evidence based on animal and human studies that ARA is critical for infant growth, brain development, and health. These studies also demonstrate the importance of balancing the amounts of ARA and DHA as too much DHA may suppress the benefits provided by ARA. Both ARA and DHA have been added to infant formulas and follow-on formulas for more than two decades. The amounts and ratios of ARA and DHA needed in infant formula are discussed based on an in depth review of the available scientific evidence.
Collapse
Affiliation(s)
- Kevin B Hadley
- DSM Nutritional Products, 6480 Dobbin Road, Columbia, MD 21045, USA.
| | - Alan S Ryan
- Clinical Research Consulting, 9809 Halston Manor, Boynton Beach, FL 33473, USA.
| | - Stewart Forsyth
- School of Medicine, Dentistry & Nursing, University of Dundee, Ninewells Hospital and Medical School, Dundee, UK.
| | - Sheila Gautier
- DSM Nutritional Products, 6480 Dobbin Road, Columbia, MD 21045, USA.
| | - Norman Salem
- DSM Nutritional Products, 6480 Dobbin Road, Columbia, MD 21045, USA.
| |
Collapse
|
48
|
Abstract
Immunomodulators regulate stem cell activity at all stages of development as well as during adulthood. Embryonic stem cell (ESC) proliferation as well as neurogenic processes during embryonic development are controlled by factors of the immune system. We review here immunophenotypic expression patterns of different stem cell types, including ESC, neural (NSC) and tissue-specific mesenchymal stem cells (MSC), and focus on immunodulatory properties of these cells. Immune and inflammatory responses, involving actions of cytokines as well as toll-like receptor (TLR) signaling are known to affect the differentiation capacity of NSC and MSC. Secretion of pro- and anti-inflammatory messengers by MSC have been observed as the consequence of TLR and cytokine activation and promotion of differentiation into specified phenotypes. As result of augmented differentiation capacity, stem cells secrete angiogenic factors including vascular endothelial growth factor, resulting in multifactorial actions in tissue repair. Immunoregulatory properties of tissue specific adult stem cells are put into the context of possible clinical applications.
Collapse
|
49
|
dos Anjos LC, Gomes FMM, do Couto LL, Mourão CA, Moreira KG, Silva LP, Mortari MR. Anxiolytic activity and evaluation of potentially adverse effects of a bradykinin-related peptide isolated from a social wasp venom. Life Sci 2016; 149:153-9. [PMID: 26898126 DOI: 10.1016/j.lfs.2016.02.063] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2015] [Revised: 02/12/2016] [Accepted: 02/16/2016] [Indexed: 01/04/2023]
Abstract
Anxiety disorders are major health problems in terms of costs stemming from sick leave, disabilities, healthcare and premature mortality. Despite the availability of classic anxiolytics, some anxiety disorders are still resistant to treatment, with higher rates of adverse effects. In this respect, several toxins isolated from arthropod venoms are useful in identifying new compounds to treat neurological disorders, particularly pathological anxiety. Thus, the aims of this study were to identify and characterize an anxiolytic peptide isolated from the venom of the social wasp Polybia paulista. The peptide was identified as Polisteskinin R, with nominal molecular mass [M+H](+)=1301Da and primary structure consisting of Ala-Arg-Arg-Pro-Pro-Gly-Phe-Thr-Pro-Phe-Arg-OH. The anxiolytic effect was tested using the elevated plus maze test. Moreover, adverse effects on the spontaneous behavior and motor coordination of animals were assessed using the open field and rotarod tests. Polisteskinin R induced a dose-dependent anxiolytic effect. Animals treated with the peptide and diazepam spent significantly more time into the open arms when compared to the groups treated with the vehicle and pentylenetetrazole. No significant differences in spontaneous behavior or motor coordination were observed between the groups, showing that the peptide was well tolerated. The interaction by agonists in both known BK receptors induces a variability of physiological effects; Polisteskinin R can act on these receptors, inducing modulatory activity and thus, attenuating anxiety behaviors. The results of this study demonstrated that the compound Polisteskinin R exerted potent anxiolytic effects and its analogues are promising candidates for experimental pharmacology.
Collapse
Affiliation(s)
- Lilian Carneiro dos Anjos
- Neuropharmacology Laboratory, Department of Physiological Sciences, Institute of Biological Sciences, University of Brasília, Brasília, DF, Brazil; Graduate Program of Animal Biology, University of Brasília, Brasília, DF, Brazil
| | - Flávia Maria Medeiros Gomes
- Neuropharmacology Laboratory, Department of Physiological Sciences, Institute of Biological Sciences, University of Brasília, Brasília, DF, Brazil; Graduate Program of Animal Biology, University of Brasília, Brasília, DF, Brazil
| | - Lucianna Lopes do Couto
- Neuropharmacology Laboratory, Department of Physiological Sciences, Institute of Biological Sciences, University of Brasília, Brasília, DF, Brazil
| | - Cecília Alves Mourão
- Neuropharmacology Laboratory, Department of Physiological Sciences, Institute of Biological Sciences, University of Brasília, Brasília, DF, Brazil
| | | | - Luciano Paulino Silva
- Graduate Program of Animal Biology, University of Brasília, Brasília, DF, Brazil; Laboratory of Mass Spectrometry and Laboratory of Nanobiotechnology, Embrapa Genetic Resources and Biotechnology, Brasília, DF, Brazil
| | - Márcia Renata Mortari
- Neuropharmacology Laboratory, Department of Physiological Sciences, Institute of Biological Sciences, University of Brasília, Brasília, DF, Brazil; Graduate Program of Animal Biology, University of Brasília, Brasília, DF, Brazil.
| |
Collapse
|
50
|
Caetano AL, Dong-Creste KE, Amaral FA, Monteiro-Silva KC, Pesquero JB, Araujo MS, Montor WR, Viel TA, Buck HS. Kinin B2 receptor can play a neuroprotective role in Alzheimer's disease. Neuropeptides 2015; 53:51-62. [PMID: 26387425 DOI: 10.1016/j.npep.2015.09.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/02/2014] [Revised: 09/04/2015] [Accepted: 09/05/2015] [Indexed: 12/19/2022]
Abstract
Alzheimer's disease (AD) is characterized by cognitive decline, presence of amyloid-beta peptide (Aβ) aggregates and neurofibrillary tangles. Kinins act through B1 and B2 G-protein coupled receptors (B1R and B2R). Chronic infusion of Aβ peptide leads to memory impairment and increases in densities of both kinin receptors in memory processing areas. Similar memory impairment was observed in C57BL/6 mice (WTAβ) but occurred earlier in mice lacking B2R (KOB2Aβ) and was absent in mice lacking B1R (KOB1Aβ). Thus, the aim of this study was to evaluate the participation of B1R and B2R in Aβ peptide induced cognitive deficits through the evaluation of densitiesof kinin receptors, synapses, cell bodies and number of Aβ deposits in brain ofWTAβ, KOB1Aβ and KOB2Aβ mice. An increase in B2R density was observed in both WTAβ and KOB1Aβ in memory processing related areas. KOB1Aβ showed a decrease in neuronal density and an increase in synaptic density and, in addition, an increase in Aβ deposits in KOB2Aβ was observed. In conclusion, memory preservation in KOB1Aβ, could be due to the increase in densities of B2R, suggesting a neuroprotective role for B2R, reinforced by the increased number of Aβ plaques in KOB2Aβ. Our data point to B2R as a potential therapeutic target in AD.
Collapse
Affiliation(s)
- A L Caetano
- Department of Physiological Sciences, Santa Casa de Sao Paulo School of Medical Sciences, Sao Paulo, SP CEP 01221-020, Brazil; Research Group on Neuropharmacology of Aging, Brazil
| | - K E Dong-Creste
- Department of Physiological Sciences, Santa Casa de Sao Paulo School of Medical Sciences, Sao Paulo, SP CEP 01221-020, Brazil; Research Group on Neuropharmacology of Aging, Brazil
| | - F A Amaral
- Department of Physiological Sciences, Santa Casa de Sao Paulo School of Medical Sciences, Sao Paulo, SP CEP 01221-020, Brazil
| | - K C Monteiro-Silva
- Department of Physiological Sciences, Santa Casa de Sao Paulo School of Medical Sciences, Sao Paulo, SP CEP 01221-020, Brazil
| | - J B Pesquero
- Department of Biophysics, Federal University of Sao Paulo, São Paulo, SP CEP 04021-001, Brazil
| | - M S Araujo
- Department of Biochemistry, Federal University of Sao Paulo, São Paulo, SP CEP 04021-001, Brazil
| | - W R Montor
- Department of Physiological Sciences, Santa Casa de Sao Paulo School of Medical Sciences, Sao Paulo, SP CEP 01221-020, Brazil
| | - T A Viel
- School of Arts, Sciences and Humanities and Graduation Course on Pharmacology at Institute of Biomedical Sciences, University of Sao Paulo, Sao Paulo, SP CEP 03828-080, Brazil; Research Group on Neuropharmacology of Aging, Brazil
| | - H S Buck
- Department of Physiological Sciences, Santa Casa de Sao Paulo School of Medical Sciences, Sao Paulo, SP CEP 01221-020, Brazil; Research Group on Neuropharmacology of Aging, Brazil
| |
Collapse
|