1
|
Goyal A, Karanovic U, Blaha CD, Lee KH, Shin H, Oh Y. Toward Precise Modeling of Dopamine Release Kinetics: Comparison and Validation of Kinetic Models Using Voltammetry. ACS OMEGA 2024; 9:33563-33573. [PMID: 39130585 PMCID: PMC11307285 DOI: 10.1021/acsomega.4c01322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Revised: 07/12/2024] [Accepted: 07/18/2024] [Indexed: 08/13/2024]
Abstract
Dopamine (DA) is a neurotransmitter present within the animal brain that is responsible for a wide range of physiologic functions, including motivation, reward, and movement control. Changes or dysfunction in the dynamics of DA release are thought to play a pivotal role in regulating various physiological and behavioral processes, as well as leading to neuropsychiatric diseases. Therefore, it is of fundamental interest to neuroscientists to understand and accurately model the kinetics that govern dopaminergic neurotransmission. In the past several decades, many mathematical models have been proposed to attempt to capture the biologic parameters that govern dopaminergic kinetics, with each model seeking to improve upon a previous model. In this review, each of these models are derived, and the ability of each model to properly fit two fast-scan cyclic voltammetry (FSCV) data sets will be demonstrated and discussed. The dopamine oxidation current in both FSCV data sets exhibits hang-up and overshoot behaviors, which have traditionally been difficult for mathematical models to capture. We show that more recent models are better able to model DA release that exhibits these behaviors but that no single model is clearly the best. Rather, models should be selected based on their mathematical properties to best fit the FSCV data one is trying to model. Developing such differential equation models to describe the kinetics of DA release from the synapse confers significant applications both for advancing scientific understanding of DA neurotransmission and for advancing clinical ability to treat neuropsychiatric diseases.
Collapse
Affiliation(s)
- Abhinav Goyal
- Mayo
Clinic Medical Scientist Training Program, Mayo Clinic, Rochester, Minnesota 55905, United States
- Department
of Neurologic Surgery, Mayo Clinic, Rochester, Minnesota 55905, United States
| | - Una Karanovic
- Department
of Neurologic Surgery, Mayo Clinic, Rochester, Minnesota 55905, United States
- Mayo
Clinic Graduate School of Biomedical Sciences, Mayo Clinic, Rochester, Minnesota 55905, United States
| | - Charles D. Blaha
- Department
of Neurologic Surgery, Mayo Clinic, Rochester, Minnesota 55905, United States
| | - Kendall H. Lee
- Department
of Neurologic Surgery, Mayo Clinic, Rochester, Minnesota 55905, United States
- Department
of Biomedical Engineering, Mayo Clinic, Rochester, Minnesota 55905, United States
| | - Hojin Shin
- Department
of Neurologic Surgery, Mayo Clinic, Rochester, Minnesota 55905, United States
- Department
of Biomedical Engineering, Mayo Clinic, Rochester, Minnesota 55905, United States
| | - Yoonbae Oh
- Department
of Neurologic Surgery, Mayo Clinic, Rochester, Minnesota 55905, United States
- Department
of Biomedical Engineering, Mayo Clinic, Rochester, Minnesota 55905, United States
| |
Collapse
|
2
|
Li YT, Huang YL, Chen JJJ, Hyland BI, Wickens JR. Phasic dopamine signals are reduced in the spontaneously hypertensive rat and increased by methylphenidate. Eur J Neurosci 2024; 59:1567-1584. [PMID: 38314648 DOI: 10.1111/ejn.16269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2023] [Revised: 12/27/2023] [Accepted: 01/17/2024] [Indexed: 02/06/2024]
Abstract
The spontaneously hypertensive rat (SHR) is a selectively bred animal strain that is frequently used to model attention-deficit hyperactivity disorder (ADHD) because of certain genetically determined behavioural characteristics. To test the hypothesis that the characteristically altered response to positive reinforcement in SHRs may be due to altered phasic dopamine response to reward, we measured phasic dopamine signals in the SHRs and Sprague Dawley (SD) rats using in vivo fast-scan cyclic voltammetry. The effects of the dopamine reuptake inhibitor, methylphenidate, on these signals were also studied. Phasic dopamine signals during the pairing of a sensory cue with electrical stimulation of midbrain dopamine neurons were significantly smaller in the SHRs than in the SD rats. Over repeated pairings, the dopamine response to the sensory cue increased, whereas the response to the electrical stimulation of dopamine neurons decreased, similarly in both strains. However, the final amplitude of the response to the sensory cue after pairing was significantly smaller in SHRs than in the SD rats. Methylphenidate increased responses to sensory cues to a significantly greater extent in the SHRs than in the SD rats, due largely to differences in the low dose effect. At a higher dose, methylphenidate increased responses to sensory cues and electrical stimulation similarly in SHRs and SD rats. The smaller dopamine responses may explain the reduced salience of reward-predicting cues previously reported in the SHR, whereas the action of methylphenidate on the cue response suggests a potential mechanism for the therapeutic effects of low-dose methylphenidate in ADHD.
Collapse
Affiliation(s)
- Yu-Ting Li
- Neurobiology Research Unit, Okinawa Institute of Science and Technology, Okinawa, Japan
- Taiwan Instrument Research Institute, National Applied Research Laboratories, Hsinchu, Taiwan
| | - Yi-Ling Huang
- Neurobiology Research Unit, Okinawa Institute of Science and Technology, Okinawa, Japan
| | - Jia-Jin Jason Chen
- Department of Biomedical Engineering, National Cheng Kung University, Tainan, Taiwan
| | - Brian Ian Hyland
- Department of Physiology, Brain Health Research Centre, University of Otago, Dunedin, New Zealand
| | - Jeffery R Wickens
- Neurobiology Research Unit, Okinawa Institute of Science and Technology, Okinawa, Japan
| |
Collapse
|
3
|
Robbins EM, Castagnola E, Cui XT. Accurate and stable chronic in vivo voltammetry enabled by a replaceable subcutaneous reference electrode. iScience 2022; 25:104845. [PMID: 35996579 PMCID: PMC9391596 DOI: 10.1016/j.isci.2022.104845] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Revised: 06/16/2022] [Accepted: 07/22/2022] [Indexed: 01/12/2023] Open
Abstract
In vivo sensing of neurotransmitters has provided valuable insight into both healthy and diseased brain. However, chronically implanted Ag/AgCl reference electrodes suffer from degradationgradation, resulting in errors in the potential at the working electrode. Here, we report a simple, effective way to protect in vivo sensing measurements from reference polarization with a replaceable subcutaneously implanted reference. We compared a brain-implanted reference and a subcutaneous reference and observed no difference in impedance or dopamine redox peak separation in an acute preparation. Chronically, peak background potential and dopamine oxidation potential shifts were eliminated for three weeks. Scanning electron microscopy shows changes in surface morphology and composition of chronically implanted Ag/AgCl electrodes, and postmortem histology reveals extensive cell death and gliosis in the surrounding tissue. As accurate reference potentials are critical to in vivo electrochemistry applications, this simple technique can improve a wide and diverse assortment of in vivo preparations.
Collapse
Affiliation(s)
- Elaine Marie Robbins
- Department of Bioengineering, University of Pittsburgh, 5057 Biomedical Science Tower 3, 3501 Fifth Avenue, Pittsburgh, PA 15260, USA
| | - Elisa Castagnola
- Department of Bioengineering, University of Pittsburgh, 5057 Biomedical Science Tower 3, 3501 Fifth Avenue, Pittsburgh, PA 15260, USA
| | - Xinyan Tracy Cui
- Department of Bioengineering, University of Pittsburgh, 5057 Biomedical Science Tower 3, 3501 Fifth Avenue, Pittsburgh, PA 15260, USA
- Center for Neural Basis of Cognition, Pittsburgh, PA, USA
- McGowan Institute for Regenerative Medicine, Pittsburgh, PA, USA
- Corresponding author
| |
Collapse
|
4
|
Castagnola E, Robbins EM, Wu B, Pwint MY, Garg R, Cohen-Karni T, Cui XT. Flexible Glassy Carbon Multielectrode Array for In Vivo Multisite Detection of Tonic and Phasic Dopamine Concentrations. BIOSENSORS 2022; 12:540. [PMID: 35884343 PMCID: PMC9312827 DOI: 10.3390/bios12070540] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/26/2022] [Revised: 07/13/2022] [Accepted: 07/13/2022] [Indexed: 06/15/2023]
Abstract
Dopamine (DA) plays a central role in the modulation of various physiological brain functions, including learning, motivation, reward, and movement control. The DA dynamic occurs over multiple timescales, including fast phasic release, as a result of neuronal firing and slow tonic release, which regulates the phasic firing. Real-time measurements of tonic and phasic DA concentrations in the living brain can shed light on the mechanism of DA dynamics underlying behavioral and psychiatric disorders and on the action of pharmacological treatments targeting DA. Current state-of-the-art in vivo DA detection technologies are limited in either spatial or temporal resolution, channel count, longitudinal stability, and ability to measure both phasic and tonic dynamics. We present here an implantable glassy carbon (GC) multielectrode array on a SU-8 flexible substrate for integrated multichannel phasic and tonic measurements of DA concentrations. The GC MEA demonstrated in vivo multichannel fast-scan cyclic voltammetry (FSCV) detection of electrically stimulated phasic DA release simultaneously at different locations of the mouse dorsal striatum. Tonic DA measurement was enabled by coating GC electrodes with poly(3,4-ethylenedioxythiophene)/carbon nanotube (PEDOT/CNT) and using optimized square-wave voltammetry (SWV). Implanted PEDOT/CNT-coated MEAs achieved stable detection of tonic DA concentrations for up to 3 weeks in the mouse dorsal striatum. This is the first demonstration of implantable flexible MEA capable of multisite electrochemical sensing of both tonic and phasic DA dynamics in vivo with chronic stability.
Collapse
Affiliation(s)
- Elisa Castagnola
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA 15260, USA; (E.C.); (E.M.R.); (B.W.); (M.Y.P.)
| | - Elaine M. Robbins
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA 15260, USA; (E.C.); (E.M.R.); (B.W.); (M.Y.P.)
| | - Bingchen Wu
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA 15260, USA; (E.C.); (E.M.R.); (B.W.); (M.Y.P.)
- Center for Neural Basis of Cognition, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - May Yoon Pwint
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA 15260, USA; (E.C.); (E.M.R.); (B.W.); (M.Y.P.)
- Center for Neural Basis of Cognition, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Raghav Garg
- Department of Materials Science and Engineering, Carnegie Mellon University, Pittsburgh, PA 15213, USA; (R.G.); (T.C.-K.)
| | - Tzahi Cohen-Karni
- Department of Materials Science and Engineering, Carnegie Mellon University, Pittsburgh, PA 15213, USA; (R.G.); (T.C.-K.)
- Department of Biomedical Engineering, Carnegie Mellon University, Pittsburgh, PA 15213, USA
| | - Xinyan Tracy Cui
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA 15260, USA; (E.C.); (E.M.R.); (B.W.); (M.Y.P.)
- Center for Neural Basis of Cognition, University of Pittsburgh, Pittsburgh, PA 15261, USA
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA 15219, USA
| |
Collapse
|
5
|
Jaquins-Gerstl A, Nesbitt KM, Michael AC. In vivo evidence for the unique kinetics of evoked dopamine release in the patch and matrix compartments of the striatum. Anal Bioanal Chem 2021; 413:6703-6713. [PMID: 33843017 PMCID: PMC8551084 DOI: 10.1007/s00216-021-03300-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 03/11/2021] [Accepted: 03/16/2021] [Indexed: 11/29/2022]
Abstract
The neurochemical transmitter dopamine (DA) is implicated in a number of diseases states, including Parkinson's disease, schizophrenia, and drug abuse. DA terminal fields in the dorsal striatum and core region of the nucleus accumbens in the rat brain are organized as heterogeneous domains exhibiting fast and slow kinetic of DA release. The rates of dopamine release are significantly and substantially faster in the fast domains relative to the slow domains. The striatum is composed of a mosaic of spatial compartments known as the striosomes (patches) and the matrix. Extensive literature exists on the spatial organization of the patch and matrix compartments and their functions. However, little is known about these compartments as they relate to fast and slow kinetic DA domains observed by fast scan cyclic voltammetry (FSCV). Thus, we combined high spatial resolution of FSCV with detailed immunohistochemical analysis of these architectural compartments (patch and matrix) using fluorescence microscopy. Our findings demonstrated a direct correlation between patch compartments with fast domain DA kinetics and matrix compartments to slow domain DA kinetics. We also investigated the kinetic domains in two very distinct sub-regions in the striatum, the lateral dorsal striatum (LDS) and the medial dorsal striatum (MDS). The lateral dorsal striatum as opposed to the medial dorsal striatum is mainly governed by fast kinetic DA domains. These finding are highly relevant as they may hold key promise in unraveling the fast and slow kinetic DA domains and their physiological significance.
Collapse
Affiliation(s)
- Andrea Jaquins-Gerstl
- Department of Chemistry, Chevron Science Center, University of Pittsburgh, 219 Parkman Ave., Pittsburgh, PA, 15213, USA.
| | - Kathryn M Nesbitt
- Department of Chemistry, Chevron Science Center, University of Pittsburgh, 219 Parkman Ave., Pittsburgh, PA, 15213, USA
| | - Adrian C Michael
- Department of Chemistry, Chevron Science Center, University of Pittsburgh, 219 Parkman Ave., Pittsburgh, PA, 15213, USA
| |
Collapse
|
6
|
Lotfi Marchoubeh M, Cobb SJ, Abrego Tello M, Hu M, Jaquins-Gerstl A, Robbins EM, Macpherson JV, Michael AC, Fritsch I. Miniaturized probe on polymer SU-8 with array of individually addressable microelectrodes for electrochemical analysis in neural and other biological tissues. Anal Bioanal Chem 2021; 413:6777-6791. [PMID: 33961102 DOI: 10.1007/s00216-021-03327-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Revised: 03/15/2021] [Accepted: 04/01/2021] [Indexed: 01/08/2023]
Abstract
An SU-8 probe with an array of nine, individually addressable gold microband electrodes (100 μm long, 4 μm wide, separated by 4-μm gaps) was photolithographically fabricated and characterized for detection of low concentrations of chemicals in confined spaces and in vivo studies of biological tissues. The probe's shank (6 mm long, 100 μm wide, 100 μm thick) is flexible, but exhibits sufficient sharpness and rigidity to be inserted into soft tissue. Laser micromachining was used to define probe geometry by spatially revealing the underlying sacrificial aluminum layer, which was then etched to free the probes from a silicon wafer. Perfusion with fluorescent nanobeads showed that, like a carbon fiber electrode, the probe produced no noticeable damage when inserted into rat brain, in contrast to damage from an inserted microdialysis probe. The individual addressability of the electrodes allows single and multiple electrode activation. Redox cycling is possible, where adjacent electrodes serve as generators (that oxidize or reduce molecules) and collectors (that do the opposite) to amplify signals of small concentrations without background subtraction. Information about electrochemical mechanisms and kinetics may also be obtained. Detection limits for potassium ferricyanide in potassium chloride electrolyte of 2.19, 1.25, and 2.08 μM and for dopamine in artificial cerebral spinal fluid of 1.94, 1.08, and 5.66 μM for generators alone and for generators and collectors during redox cycling, respectively, were obtained.
Collapse
Affiliation(s)
- Mahsa Lotfi Marchoubeh
- Department of Chemistry and Biochemistry, University of Arkansas, Fayetteville, AR, 72701, USA
| | - Samuel J Cobb
- Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge, CB2 1EW, UK
- Department of Chemistry and Centre for Doctoral Training in Diamond Science and Technology, and Department of Physics, University of Warwick, Coventry, UK
| | - Miguel Abrego Tello
- Department of Chemistry and Biochemistry, University of Arkansas, Fayetteville, AR, 72701, USA
| | - Mengjia Hu
- Department of Chemistry and Biochemistry, University of Arkansas, Fayetteville, AR, 72701, USA
| | | | - Elaine M Robbins
- Department of Chemistry, University of Pittsburgh, Pittsburgh, PA, 15260, USA
| | - Julie V Macpherson
- Department of Chemistry and Centre for Doctoral Training in Diamond Science and Technology, and Department of Physics, University of Warwick, Coventry, UK
| | - Adrian C Michael
- Department of Chemistry, University of Pittsburgh, Pittsburgh, PA, 15260, USA
| | - Ingrid Fritsch
- Department of Chemistry and Biochemistry, University of Arkansas, Fayetteville, AR, 72701, USA.
| |
Collapse
|
7
|
Castagnola E, Garg R, Rastogi SK, Cohen-Karni T, Cui XT. 3D fuzzy graphene microelectrode array for dopamine sensing at sub-cellular spatial resolution. Biosens Bioelectron 2021; 191:113440. [PMID: 34171734 DOI: 10.1016/j.bios.2021.113440] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Revised: 05/28/2021] [Accepted: 06/13/2021] [Indexed: 02/07/2023]
Abstract
The development of a high sensitivity real-time sensor for multi-site detection of dopamine (DA) with high spatial and temporal resolution is of fundamental importance to study the complex spatial and temporal pattern of DA dynamics in the brain, thus improving the understanding and treatments of neurological and neuropsychiatric disorders. In response to this need, here we present high surface area out-of-plane grown three-dimensional (3D) fuzzy graphene (3DFG) microelectrode arrays (MEAs) for highly selective, sensitive, and stable DA electrochemical sensing. 3DFG microelectrodes present a remarkable sensitivity to DA (2.12 ± 0.05 nA/nM, with LOD of 364.44 ± 8.65 pM), the highest reported for nanocarbon MEAs using Fast Scan Cyclic Voltammetry (FSCV). The high surface area of 3DFG allows for miniaturization of electrode down to 2 × 2 μm2, without compromising the electrochemical performance. Moreover, 3DFG MEAs are electrochemically stable under 7.2 million scans of continuous FSCV cycling, present exceptional selectivity over the most common interferents in vitro with minimum fouling by electrochemical byproducts and can discriminate DA and serotonin (5-HT) in response to the injection of their 50:50 mixture. These results highlight the potential of 3DFG MEAs as a promising platform for FSCV based multi-site detection of DA with high sensitivity, selectivity, and spatial resolution.
Collapse
Affiliation(s)
- Elisa Castagnola
- Department of Bioengineering, University of Pittsburgh, 3501 Fifth Ave. Pittsburgh, PA 15260 Pittsburgh, PA, USA
| | - Raghav Garg
- Department of Materials Science and Engineering, Carnegie Mellon University, 5000 Forbes Avenue, Pittsburgh, PA, 15213, USA
| | - Sahil K Rastogi
- Department of Biomedical Engineering, Carnegie Mellon University, 5000 Forbes Avenue, Pittsburgh, PA, 15213, USA
| | - Tzahi Cohen-Karni
- Department of Materials Science and Engineering, Carnegie Mellon University, 5000 Forbes Avenue, Pittsburgh, PA, 15213, USA; Department of Biomedical Engineering, Carnegie Mellon University, 5000 Forbes Avenue, Pittsburgh, PA, 15213, USA; McGowan Institute for Regenerative Medicine, University of Pittsburgh, 450 Technology Drive Pittsburgh, PA, 15219-3110, USA.
| | - Xinyan Tracy Cui
- Department of Bioengineering, University of Pittsburgh, 3501 Fifth Ave. Pittsburgh, PA 15260 Pittsburgh, PA, USA; McGowan Institute for Regenerative Medicine, University of Pittsburgh, 450 Technology Drive Pittsburgh, PA, 15219-3110, USA; Center for Neural Basis of Cognition, University of Pittsburgh, 4400 Fifth Ave, Pittsburgh, PA 15213, Pittsburgh, PA, 15261, USA.
| |
Collapse
|
8
|
Castagnola E, Thongpang S, Hirabayashi M, Nava G, Nimbalkar S, Nguyen T, Lara S, Oyawale A, Bunnell J, Moritz C, Kassegne S. Glassy carbon microelectrode arrays enable voltage-peak separated simultaneous detection of dopamine and serotonin using fast scan cyclic voltammetry. Analyst 2021; 146:3955-3970. [DOI: 10.1039/d1an00425e] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Glassy carbon (GC) microelectrode arrays can simultaneously discriminate the reduction and oxidation peaks of dopamine and serotonin at low concentrations (10–200 nM). They demonstrated fast electron transfer kinetics and good fouling properties.
Collapse
|
9
|
Castagnola E, Robbins EM, Woeppel KM, McGuier M, Golabchi A, Taylor IM, Michael AC, Cui XT. Real-Time Fast Scan Cyclic Voltammetry Detection and Quantification of Exogenously Administered Melatonin in Mice Brain. Front Bioeng Biotechnol 2020; 8:602216. [PMID: 33330433 PMCID: PMC7732424 DOI: 10.3389/fbioe.2020.602216] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Accepted: 10/30/2020] [Indexed: 01/19/2023] Open
Abstract
Melatonin (MT) has been recently considered an excellent candidate for the treatment of sleep disorders, neural injuries, and neurological diseases. To better investigate the actions of MT in various brain functions, real-time detection of MT concentrations in specific brain regions is much desired. Previously, we have demonstrated detection of exogenously administered MT in anesthetized mouse brain using square wave voltammetry (SWV). Here, for the first time, we show successful detection of exogenous MT in the brain using fast scan cyclic voltammetry (FSCV) on electrochemically pre-activated carbon fiber microelectrodes (CFEs). In vitro evaluation showed the highest sensitivity (28.1 nA/μM) and lowest detection limit (20.2 ± 4.8 nM) ever reported for MT detection at carbon surface. Additionally, an extensive CFE stability and fouling assessment demonstrated that a prolonged CFE pre-conditioning stabilizes the background, in vitro and in vivo, and provides consistent CFE sensitivity over time even in the presence of a high MT concentration. Finally, the stable in vivo background, with minimized CFE fouling, allows us to achieve a drift-free FSCV detection of exogenous administered MT in mouse brain over a period of 3 min, which is significantly longer than the duration limit (usually < 90 s) for traditional in vivo FSCV acquisition. The MT concentration and dynamics measured by FSCV are in good agreement with SWV, while microdialysis further validated the concentration range. These results demonstrated reliable MT detection using FSCV that has the potential to monitor MT in the brain over long periods of time.
Collapse
Affiliation(s)
- Elisa Castagnola
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, United States
| | - Elaine M. Robbins
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, United States
- Department of Chemistry, University of Pittsburgh, Pittsburgh, PA, United States
| | - Kevin M. Woeppel
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, United States
- Center for Neural Basis of Cognition, University of Pittsburgh, Pittsburgh, PA, United States
| | - Moriah McGuier
- Department of Chemistry, Saint Vincent College, Latrobe, PA, United States
| | - Asiyeh Golabchi
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, United States
- Center for Neural Basis of Cognition, University of Pittsburgh, Pittsburgh, PA, United States
| | - I. Mitch Taylor
- Department of Chemistry, Saint Vincent College, Latrobe, PA, United States
| | - Adrian C. Michael
- Department of Chemistry, University of Pittsburgh, Pittsburgh, PA, United States
| | - Xinyan Tracy Cui
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, United States
- Center for Neural Basis of Cognition, University of Pittsburgh, Pittsburgh, PA, United States
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA, United States
| |
Collapse
|
10
|
Taylor IM, Patel NA, Freedman NC, Castagnola E, Cui XT. Direct in Vivo Electrochemical Detection of Resting Dopamine Using Poly(3,4-ethylenedioxythiophene)/Carbon Nanotube Functionalized Microelectrodes. Anal Chem 2019; 91:12917-12927. [PMID: 31512849 DOI: 10.1021/acs.analchem.9b02904] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Dopamine (DA) is a monoamine neurotransmitter responsible for the maintenance of a variety of vital life functions. In vivo DA signaling occurs over multiple time scales, from subsecond phasic release due to dopamine neuron firing to tonic release responsible for long-term DA concentration changes over minutes to hours. Due to the complex, multifaceted nature of DA signaling, analytical sensing technology must be capable of recording DA from multiple locations and over multiple time scales. Decades of research has focused on improving in vivo detection capabilities for subsecond phasic DA, but the accurate detection of absolute resting DA levels in real time has proven challenging. We have developed a poly(3,4-ethylenedioxythiophene) (PEDOT)-based nanocomposite coating that exhibits excellent DA sensing capabilities for resting DA. PEDOT/functionalized carbon nanotube (PEDOT/CNT)-coated carbon fiber microelectrodes (CFEs) are capable of directly measuring resting DA using square wave voltammetry (SWV) with high sensitivity and selectivity. Incorporation of a PEDOT/CNT coating significantly increases the sensitivity for the detection of resting DA by a factor of 422. SWV measurements performed at PEDOT/CNT-functionalized CFEs implanted in the rat dorsal striatum reveal the absolute basal DA concentration to be 82 ± 6 nM. Systemic administration of the dopamine transporter inhibitor nomifensine increases resting DA to a maximum 207 ± 16 nM at 28 ± 2 min following injection. PEDOT/CNT was also functionalized onto individual gold electrode sites along silicon microelectrode arrays (MEAs) to produce a multisite DA sensing electrode. MEA implantation allows for the quantification of basal DA from different brain regions with excellent spatial resolution. SWV detection paired with PEDOT/CNT functionalization is highly adaptable and shows great promise for tonic DA detection with high spatial and temporal resolution.
Collapse
Affiliation(s)
- Ian Mitchell Taylor
- Department of Bioengineering , University of Pittsburgh , Pittsburgh , Pennsylvania 15261 , United States.,Department of Chemistry , Saint Vincent College , Latrobe , Pennsylvania 15650 , United States
| | - Nikita Anurag Patel
- Department of Bioengineering , University of Pittsburgh , Pittsburgh , Pennsylvania 15261 , United States
| | - Noah Chaim Freedman
- Department of Bioengineering , University of Pittsburgh , Pittsburgh , Pennsylvania 15261 , United States
| | - Elisa Castagnola
- Department of Bioengineering , University of Pittsburgh , Pittsburgh , Pennsylvania 15261 , United States
| | - Xinyan Tracy Cui
- Department of Bioengineering , University of Pittsburgh , Pittsburgh , Pennsylvania 15261 , United States
| |
Collapse
|
11
|
Shin M, Field TM, Stucky CS, Furgurson MN, Johnson MA. Ex Vivo Measurement of Electrically Evoked Dopamine Release in Zebrafish Whole Brain. ACS Chem Neurosci 2017; 8:1880-1888. [PMID: 28617576 DOI: 10.1021/acschemneuro.7b00022] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Zebrafish (Danio rerio) have recently emerged as useful model organism for the study of neuronal function. Here, fast-scan cyclic voltammetry (FSCV) at carbon-fiber microelectrodes was used to measure locally evoked dopamine release and uptake in zebrafish whole brain preparations and results were compared with those obtained from brain slices. Evoked dopamine release ([DA]max) was similar in whole brain and sagittal brain slice preparations (0.49 ± 0.13 μM in whole brain and 0.59 ± 0.28 μM in brain slices). Treatment with α-methyl-p-tyrosine methyl ester (αMPT), an inhibitor of tyrosine hydroxylase, diminished release and the electrochemical signal reappeared after subsequent drug washout. No observed change in stimulated release current occurred after treatment with desipramine or fluoxetine in the whole brain. Treatment with the uptake inhibitors, nomifensine or GBR 12909 increased [DA]max, while treatment with sulpiride, a D2 dopamine autoreceptor antagonist, resulted in increased stimulated dopamine release in whole brain, but had no effect on release in slices. Dopamine release in whole brains increased progressively up to an electrical stimulation frequency of 25 Hz, while release in slices increased up to a frequency of only 10 Hz and then plateaued, highlighting another key difference between these preparations. We observed a lag in peak dopamine release following stimulation, which we address using diffusion models and pharmacological treatments. Collectively, these results demonstrate the electrochemical determination of dopamine release in the whole, intact brain of a vertebrate species ex vivo and are an important step for carrying out further experiments in zebrafish.
Collapse
Affiliation(s)
- Mimi Shin
- Department of Chemistry, 1251 Wescoe Hall Drive, University of Kansas, Lawrence, Kansas 66045, United States
| | - Thomas M. Field
- Department of Chemistry, 1251 Wescoe Hall Drive, University of Kansas, Lawrence, Kansas 66045, United States
| | - Chase S. Stucky
- Department of Chemistry, 1251 Wescoe Hall Drive, University of Kansas, Lawrence, Kansas 66045, United States
| | - Mia N. Furgurson
- Department of Chemistry, 1251 Wescoe Hall Drive, University of Kansas, Lawrence, Kansas 66045, United States
| | - Michael A. Johnson
- Department of Chemistry, 1251 Wescoe Hall Drive, University of Kansas, Lawrence, Kansas 66045, United States
| |
Collapse
|
12
|
Harun R, Grassi CM, Munoz MJ, Wagner AK. Modeling Fast-scan Cyclic Voltammetry Data from Electrically Stimulated Dopamine Neurotransmission Data Using QNsim1.0. J Vis Exp 2017. [PMID: 28605373 DOI: 10.3791/55595] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Central dopaminergic (DAergic) pathways have an important role in a wide range of functions, such as attention, motivation, and movement. Dopamine (DA) is implicated in diseases and disorders including attention deficit hyperactivity disorder, Parkinson's disease, and traumatic brain injury. Thus, DA neurotransmission and the methods to study it are of intense scientific interest. In vivo fast-scan cyclic voltammetry (FSCV) is a method that allows for selectively monitoring DA concentration changes with fine temporal and spatial resolution. This technique is commonly used in conjunction with electrical stimulations of ascending DAergic pathways to control the impulse flow of dopamine neurotransmission. Although the stimulated DA neurotransmission paradigm can produce robust DA responses with clear morphologies, making them amenable for kinetic analysis, there is still much debate on how to interpret the responses in terms of their DA release and clearance components. To address this concern, a quantitative neurobiological (QN) framework of stimulated DA neurotransmission was recently developed to realistically model the dynamics of DA release and reuptake over the course of a stimulated DA response. The foundations of this model are based on experimental data from stimulated DA neurotransmission and on principles of neurotransmission adopted from various lines of research. The QN model implements 12 parameters related to stimulated DA release and reuptake dynamics to model DA responses. This work describes how to simulate DA responses using QNsim1.0 and also details principles that have been implemented to systematically discern alterations in the stimulated dopamine release and reuptake dynamics.
Collapse
Affiliation(s)
- Rashed Harun
- Center for Neuroscience, University of Pittsburgh; Department of Physical Medicine & Rehabilitation, University of Pittsburgh, School of Medicine; Safar Center for Resuscitation Research, University of Pittsburgh;
| | - Christine M Grassi
- Department of Physical Medicine & Rehabilitation, University of Pittsburgh, School of Medicine
| | - Miranda J Munoz
- Department of Physical Medicine & Rehabilitation, University of Pittsburgh, School of Medicine; Department of Biological Sciences, Mellon College of Science, Carnegie Mellon University
| | - Amy K Wagner
- Center for Neuroscience, University of Pittsburgh; Department of Physical Medicine & Rehabilitation, University of Pittsburgh, School of Medicine; Safar Center for Resuscitation Research, University of Pittsburgh
| |
Collapse
|
13
|
Taylor IM, Robbins EM, Catt KA, Cody PA, Happe CL, Cui XT. Enhanced dopamine detection sensitivity by PEDOT/graphene oxide coating on in vivo carbon fiber electrodes. Biosens Bioelectron 2017; 89:400-410. [PMID: 27268013 PMCID: PMC5107160 DOI: 10.1016/j.bios.2016.05.084] [Citation(s) in RCA: 115] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2015] [Revised: 05/25/2016] [Accepted: 05/26/2016] [Indexed: 11/26/2022]
Abstract
Dopamine (DA) is a monoamine neurotransmitter responsible for regulating a variety of vital life functions. In vivo detection of DA poses a challenge due to the low concentration and high speed of physiological signaling. Fast scan cyclic voltammetry at carbon fiber microelectrodes (CFEs) is an effective method to monitor real-time in vivo DA signaling, however the sensitivity is somewhat limited. Electrodeposition of poly(3,4-ethylene dioxythiophene) (PEDOT)/graphene oxide (GO) onto the CFE surface is shown to increase the sensitivity and lower the limit of detection for DA compared to bare CFEs. Thicker PEDOT/GO coatings demonstrate higher sensitivities for DA, but display the negative drawback of slow adsorption and electron transfer kinetics. The moderate thickness resulting from 25 s electrodeposition of PEDOT/GO produces the optimal electrode, exhibiting an 880% increase in sensitivity, a 50% decrease in limit of detection and minimally altered electrode kinetics. PEDOT/GO coated electrodes rapidly and robustly detect DA, both in solution and in the rat dorsal striatum. This increase in DA sensitivity is likely due to increasing the electrode surface area with a PEDOT/GO coating and improved adsorption of DA's oxidation product (DA-o-quinone). Increasing DA sensitivity without compromising electrode kinetics is expected to significantly improve our understanding of the DA function in vivo.
Collapse
Affiliation(s)
- I Mitch Taylor
- University of Pittsburgh, Department of Bioengineering, 3501 Fifth Ave., Pittsburgh, PA 15261, USA
| | - Elaine M Robbins
- University of Pittsburgh, Department of Chemistry, 219 Parkman Ave., Pittsburgh, PA 15260, USA
| | - Kasey A Catt
- University of Pittsburgh, Department of Bioengineering, 3501 Fifth Ave., Pittsburgh, PA 15261, USA
| | - Patrick A Cody
- University of Pittsburgh, Department of Bioengineering, 3501 Fifth Ave., Pittsburgh, PA 15261, USA
| | - Cassandra L Happe
- University of California, San Diego, Department of Bioengineering, 9500 Gilman Dr., La Jolla, CA 92093, USA
| | - Xinyan Tracy Cui
- University of Pittsburgh, Department of Bioengineering, 3501 Fifth Ave., Pittsburgh, PA 15261, USA.
| |
Collapse
|
14
|
Schwerdt HN, Kim MJ, Amemori S, Homma D, Yoshida T, Shimazu H, Yerramreddy H, Karasan E, Langer R, Graybiel AM, Cima MJ. Subcellular probes for neurochemical recording from multiple brain sites. LAB ON A CHIP 2017; 17:1104-1115. [PMID: 28233001 PMCID: PMC5572650 DOI: 10.1039/c6lc01398h] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Dysregulation of neurochemicals, in particular, dopamine, is epitomized in numerous debilitating disorders that impair normal movement and mood aspects of our everyday behavior. Neurochemical transmission is a neuron-specific process, and further exhibits region-specific signaling in the brain. Tools are needed to monitor the heterogeneous spatiotemporal dynamics of dopamine neurotransmission without compromising the physiological processes of the neuronal environment. We developed neurochemical probes that are ten times smaller than any existing dopamine sensor, based on the size of the entire implanted shaft and its sensing tip. The microfabricated probe occupies a spatial footprint (9 μm) coordinate with the average size of individual neuronal cells (∼10 μm). These cellular-scale probes were shown to reduce inflammatory response of the implanted brain tissue environment. The probes are further configured in the form of a microarray to permit electrochemical sampling of dopamine and other neurotransmitters at unprecedented spatial densities and distributions. Dopamine recording was performed concurrently from up to 16 sites in the striatum of rats, revealing a remarkable spatiotemporal contrast in dopamine transmission as well as site-specific pharmacological modulation. Collectively, the reported platform endeavors to enable high density mapping of the chemical messengers fundamentally involved in neuronal communication through the use of minimally invasive probes that help preserve the neuronal viability of the implant environment.
Collapse
Affiliation(s)
- Helen N Schwerdt
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Bldg 76 Room 653G, Cambridge, MA 02139, USA. and McGovern Institute for Brain Research and Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Min Jung Kim
- McGovern Institute for Brain Research and Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Satoko Amemori
- McGovern Institute for Brain Research and Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Daigo Homma
- McGovern Institute for Brain Research and Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Tomoko Yoshida
- McGovern Institute for Brain Research and Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Hideki Shimazu
- McGovern Institute for Brain Research and Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Harshita Yerramreddy
- McGovern Institute for Brain Research and Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Ekin Karasan
- McGovern Institute for Brain Research and Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Robert Langer
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Bldg 76 Room 653G, Cambridge, MA 02139, USA. and Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Ann M Graybiel
- McGovern Institute for Brain Research and Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Michael J Cima
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Bldg 76 Room 653G, Cambridge, MA 02139, USA. and Department of Materials Science, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| |
Collapse
|
15
|
Trevathan JK, Yousefi A, Park HO, Bartoletta JJ, Ludwig KA, Lee KH, Lujan JL. Computational Modeling of Neurotransmitter Release Evoked by Electrical Stimulation: Nonlinear Approaches to Predicting Stimulation-Evoked Dopamine Release. ACS Chem Neurosci 2017; 8:394-410. [PMID: 28076681 DOI: 10.1021/acschemneuro.6b00319] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Neurochemical changes evoked by electrical stimulation of the nervous system have been linked to both therapeutic and undesired effects of neuromodulation therapies used to treat obsessive-compulsive disorder, depression, epilepsy, Parkinson's disease, stroke, hypertension, tinnitus, and many other indications. In fact, interest in better understanding the role of neurochemical signaling in neuromodulation therapies has been a focus of recent government- and industry-sponsored programs whose ultimate goal is to usher in an era of personalized medicine by creating neuromodulation therapies that respond to real-time changes in patient status. A key element to achieving these precision therapeutic interventions is the development of mathematical modeling approaches capable of describing the nonlinear transfer function between neuromodulation parameters and evoked neurochemical changes. Here, we propose two computational modeling frameworks, based on artificial neural networks (ANNs) and Volterra kernels, that can characterize the input/output transfer functions of stimulation-evoked neurochemical release. We evaluate the ability of these modeling frameworks to characterize subject-specific neurochemical kinetics by accurately describing stimulation-evoked dopamine release across rodent (R2 = 0.83 Volterra kernel, R2 = 0.86 ANN), swine (R2 = 0.90 Volterra kernel, R2 = 0.93 ANN), and non-human primate (R2 = 0.98 Volterra kernel, R2 = 0.96 ANN) models of brain stimulation. Ultimately, these models will not only improve understanding of neurochemical signaling in healthy and diseased brains but also facilitate the development of neuromodulation strategies capable of controlling neurochemical release via closed-loop strategies.
Collapse
Affiliation(s)
| | - Ali Yousefi
- Department
of Neurologic Surgery, Massachusetts General Hospital and Harvard Medical School, 25 Shattuck Street, Boston, Massachusetts 02115, United States
| | | | | | | | | | | |
Collapse
|
16
|
Salinas AG, Davis MI, Lovinger DM, Mateo Y. Dopamine dynamics and cocaine sensitivity differ between striosome and matrix compartments of the striatum. Neuropharmacology 2016; 108:275-83. [PMID: 27036891 PMCID: PMC5026225 DOI: 10.1016/j.neuropharm.2016.03.049] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2015] [Revised: 02/08/2016] [Accepted: 03/28/2016] [Indexed: 12/13/2022]
Abstract
The striatum is typically classified according to its major output pathways, which consist of dopamine D1 and D2 receptor-expressing neurons. The striatum is also divided into striosome and matrix compartments, based on the differential expression of a number of proteins, including the mu opioid receptor, dopamine transporter (DAT), and Nr4a1 (nuclear receptor subfamily 4, group A, member 1). Numerous functional differences between the striosome and matrix compartments are implicated in dopamine-related neurological disorders including Parkinson's disease and addiction. Using Nr4a1-eGFP mice, we provide evidence that electrically evoked dopamine release differs between the striosome and matrix compartments in a regionally-distinct manner. We further demonstrate that this difference is not due to differences in inhibition of dopamine release by dopamine autoreceptors or nicotinic acetylcholine receptors. Furthermore, cocaine enhanced extracellular dopamine in striosomes to a greater degree than in the matrix and concomitantly inhibited dopamine uptake in the matrix to a greater degree than in striosomes. Importantly, these compartment differences in cocaine sensitivity were limited to the dorsal striatum. These findings demonstrate a level of exquisite microanatomical regulation of dopamine by the DAT in striosomes relative to the matrix.
Collapse
Affiliation(s)
- Armando G Salinas
- The Krasnow Institute for Advanced Study, George Mason University, Fairfax, VA 22030, USA; Laboratory for Integrative Neuroscience, Section on Synaptic Pharmacology, National Institute on Alcohol Abuse and Alcoholism, Rockville, MD 20852, USA
| | - Margaret I Davis
- Laboratory for Integrative Neuroscience, Section on Synaptic Pharmacology, National Institute on Alcohol Abuse and Alcoholism, Rockville, MD 20852, USA
| | - David M Lovinger
- Laboratory for Integrative Neuroscience, Section on Synaptic Pharmacology, National Institute on Alcohol Abuse and Alcoholism, Rockville, MD 20852, USA
| | - Yolanda Mateo
- Laboratory for Integrative Neuroscience, Section on Synaptic Pharmacology, National Institute on Alcohol Abuse and Alcoholism, Rockville, MD 20852, USA.
| |
Collapse
|
17
|
Walters SH, Robbins EM, Michael AC. Kinetic Diversity of Striatal Dopamine: Evidence from a Novel Protocol for Voltammetry. ACS Chem Neurosci 2016; 7:662-7. [PMID: 26886408 DOI: 10.1021/acschemneuro.6b00020] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
In vivo voltammetry reveals substantial diversity of dopamine kinetics in the rat striatum. To substantiate this kinetic diversity, we evaluate the temporal distortion of dopamine measurements arising from the diffusion-limited adsorption of dopamine to voltammetric microelectrodes. We validate two mathematical procedures for correcting adsorptive distortion, both of which substantiate that dopamine's apparent kinetic diversity is not an adsorption artifact.
Collapse
Affiliation(s)
- Seth H. Walters
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | - Elaine M. Robbins
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | - Adrian C. Michael
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| |
Collapse
|
18
|
Trouillon R, Gijs MAM. Dynamic electrochemical quantitation of dopamine release from a cells-on-paper system. RSC Adv 2016. [DOI: 10.1039/c6ra02487d] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
A simple hybrid microfluidic/electrochemical system is used to observe the secretion of neurotransmitters from a cells-on-paper system.
Collapse
Affiliation(s)
- Raphaël Trouillon
- Laboratory of Microsystems
- Ecole Polytechnique Fédérale de Lausanne
- CH-1015 Lausanne
- Switzerland
| | - Martin A. M. Gijs
- Laboratory of Microsystems
- Ecole Polytechnique Fédérale de Lausanne
- CH-1015 Lausanne
- Switzerland
| |
Collapse
|
19
|
Walters SH, Robbins EM, Michael AC. Modeling the kinetic diversity of dopamine in the dorsal striatum. ACS Chem Neurosci 2015; 6:1468-75. [PMID: 26083009 DOI: 10.1021/acschemneuro.5b00128] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Dopamine is an important neurotransmitter that exhibits numerous functions in the healthy, injured, and diseased brain. Fast scan cyclic voltammetry paired with electrical stimulation of dopamine axons is a popular and powerful method for investigating the dynamics of dopamine in the extracellular space. Evidence now suggests that the heterogeneity of electrically evoked dopamine responses reflects the inherent kinetic diversity of dopamine systems, which might contribute to their diversity of physiological function. Dopamine measurements by fast scan cyclic voltammetry are affected by the adsorption of dopamine to carbon fiber electrodes. The temporal distortion caused by dopamine adsorption is correctable by a straightforward mathematical procedure. The corrected responses exhibit excellent agreement with a dopamine kinetic model cast to provide a generic description of restricted diffusion, short-term plasticity of dopamine release, and first-order dopamine clearance. The new DA kinetic model brings to light the rich kinetic information content of electrically evoked dopamine responses recorded via fast scan cyclic voltammetry in the rat dorsal striatum.
Collapse
Affiliation(s)
- Seth H. Walters
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | - Elaine M. Robbins
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | - Adrian C. Michael
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| |
Collapse
|
20
|
Jaquins-Gerstl A, Michael AC. A review of the effects of FSCV and microdialysis measurements on dopamine release in the surrounding tissue. Analyst 2015; 140:3696-708. [PMID: 25876757 PMCID: PMC4437820 DOI: 10.1039/c4an02065k] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Microdialysis is commonly used in neuroscience to obtain information about the concentration of substances, including neurotransmitters such as dopamine (DA), in the extracellular space (ECS) of the brain. Measuring DA concentrations in the ECS with in vivo microdialysis and/or voltammetry is a mainstay of investigations into both normal and pathological function of central DA systems. Although both techniques are instrumental in understanding brain chemistry each has its shortcomings. The objective of this review is to characterize some of the tissue and DA differences associated with each technique in vivo. Much of this work will focus on immunohistochemical and microelectrode measurements of DA in the tissue next to the microdialysis probe and mitigating the response to the damage caused by probe implantation.
Collapse
|
21
|
Taylor IM, Nesbitt KM, Walters SH, Varner EL, Shu Z, Bartlow KM, Jaquins-Gerstl AS, Michael AC. Kinetic diversity of dopamine transmission in the dorsal striatum. J Neurochem 2015; 133:522-31. [PMID: 25683259 DOI: 10.1111/jnc.13059] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2014] [Revised: 02/04/2015] [Accepted: 02/05/2015] [Indexed: 11/29/2022]
Abstract
Dopamine (DA), a highly significant neurotransmitter in the mammalian central nervous system, operates on multiple time scales to affect a diverse array of physiological functions. The significance of DA in human health is heightened by its role in a variety of pathologies. Voltammetric measurements of electrically evoked DA release have brought to light the existence of a patchwork of DA kinetic domains in the dorsal striatum (DS) of the rat. Thus, it becomes necessary to consider how these domains might be related to specific aspects of DA's functions. Responses evoked in the fast and slow domains are distinct in both amplitude and temporal profile. Herein, we report that responses evoked in fast domains can be further classified into four distinct types, types 1-4. The DS, therefore, exhibits a total of at least five distinct evoked responses (four fast types and one slow type). All five response types conform to kinetic models based entirely on first-order rate expressions, which indicates that the heterogeneity among the response types arises from kinetic diversity within the DS terminal field. We report also that functionally distinct subregions of the DS express DA kinetic diversity in a selective manner. Thus, this study documents five response types, provides a thorough kinetic explanation for each of them, and confirms their differential association with functionally distinct subregions of this key DA terminal field. The dorsal striatum is composed of five significantly different dopamine domains (types 1-4 and slow, average ± SEM responses to medial forebrain bundle (MFB) stimulation are shown in the figure). Responses from each of these five domains exhibit significantly different ascending and descending kinetic profiles and return to a long lasting elevated dopamine state, termed the dopamine hang-up. All features of these responses are modeled with high correlation using first-order modeling as well as our recently published restricted diffusion model of evoked dopamine overflow. We also report that functionally distinct subregions of the dorsal striatum express selective dopamine kinetic diversity.
Collapse
Affiliation(s)
- I Mitch Taylor
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | | | | | | | | | | | | | | |
Collapse
|
22
|
Nesbitt K, Varner EL, Jaquins-Gerstl A, Michael AC. Microdialysis in the rat striatum: effects of 24 h dexamethasone retrodialysis on evoked dopamine release and penetration injury. ACS Chem Neurosci 2015; 6:163-73. [PMID: 25491242 PMCID: PMC4304486 DOI: 10.1021/cn500257x] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2014] [Revised: 12/04/2014] [Indexed: 12/25/2022] Open
Abstract
The power of microdialysis for in vivo neurochemical monitoring is a result of intense efforts to enhance microdialysis procedures, the probes themselves, and the analytical systems used for the analysis of dialysate samples. Our goal is to refine microdialysis further by focusing attention on what happens when the probes are implanted into brain tissue. It is broadly acknowledged that some tissue damage occurs, such that the tissue nearest the probes is disrupted from its normal state. We hypothesize that mitigating such disruption would refine microdialysis. Herein, we show that the addition of dexamethasone, an anti-inflammatory drug, to the perfusion fluid protects evoked dopamine responses as measured by fast-scan cyclic voltammetry next to the probes after 24 h. We also show that dexamethasone stabilizes evoked dopamine responses measured at the probe outlet over a 4-24 h postimplantation interval. The effects of dexamethasone are attributable to its anti-inflammatory actions, as dexamethasone had no significant effect on two histochemical markers for dopamine terminals, tyrosine hydroxylase and the dopamine transporter. Using histochemical assays, we confirmed that the actions of dexamethasone are tightly confined to the immediate, local vicinity of the probe.
Collapse
Affiliation(s)
- Kathryn
M. Nesbitt
- Department of Chemistry, University of
Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | - Erika L. Varner
- Department of Chemistry, University of
Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | - Andrea Jaquins-Gerstl
- Department of Chemistry, University of
Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | - Adrian C. Michael
- Department of Chemistry, University of
Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| |
Collapse
|
23
|
Neurobiological model of stimulated dopamine neurotransmission to interpret fast-scan cyclic voltammetry data. Brain Res 2014; 1599:67-84. [PMID: 25527399 DOI: 10.1016/j.brainres.2014.12.020] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2014] [Revised: 12/05/2014] [Accepted: 12/06/2014] [Indexed: 11/22/2022]
Abstract
Fast-scan cyclic voltammetry (FSCV) is an electrochemical method that can assess real-time in vivo dopamine (DA) concentration changes to study the kinetics of DA neurotransmission. Electrical stimulation of dopaminergic (DAergic) pathways can elicit FSCV DA responses that largely reflect a balance of DA release and reuptake. Interpretation of these evoked DA responses requires a framework to discern the contribution of DA release and reuptake. The current, widely implemented interpretive framework for doing so is the Michaelis-Menten (M-M) model, which is grounded on two assumptions- (1) DA release rate is constant during stimulation, and (2) DA reuptake occurs through dopamine transporters (DAT) in a manner consistent with M-M enzyme kinetics. Though the M-M model can simulate evoked DA responses that rise convexly, response types that predominate in the ventral striatum, the M-M model cannot simulate dorsal striatal responses that rise concavely. Based on current neurotransmission principles and experimental FSCV data, we developed a novel, quantitative, neurobiological framework to interpret DA responses that assumes DA release decreases exponentially during stimulation and continues post-stimulation at a diminishing rate. Our model also incorporates dynamic M-M kinetics to describe DA reuptake as a process of decreasing reuptake efficiency. We demonstrate that this quantitative, neurobiological model is an extension of the traditional M-M model that can simulate heterogeneous regional DA responses following manipulation of stimulation duration, frequency, and DA pharmacology. The proposed model can advance our interpretive framework for future in vivo FSCV studies examining regional DA kinetics and their alteration by disease and DA pharmacology.
Collapse
|
24
|
Walters SH, Taylor IM, Shu Z, Michael AC. A novel restricted diffusion model of evoked dopamine. ACS Chem Neurosci 2014; 5:776-83. [PMID: 24983330 PMCID: PMC4176316 DOI: 10.1021/cn5000666] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
In vivo fast-scan cyclic voltammetry provides high-fidelity recordings of electrically evoked dopamine release in the rat striatum. The evoked responses are suitable targets for numerical modeling because the frequency and duration of the stimulus are exactly known. Responses recorded in the dorsal and ventral striatum of the rat do not bear out the predictions of a numerical model that assumes the presence of a diffusion gap interposed between the recording electrode and nearby dopamine terminals. Recent findings, however, suggest that dopamine may be subject to restricted diffusion processes in brain extracellular space. A numerical model cast to account for restricted diffusion produces excellent agreement between simulated and observed responses recorded under a broad range of anatomical, stimulus, and pharmacological conditions. The numerical model requires four, and in some cases only three, adjustable parameters and produces meaningful kinetic parameter values.
Collapse
Affiliation(s)
- Seth H. Walters
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | - I. Mitch Taylor
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | - Zhan Shu
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | - Adrian C. Michael
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| |
Collapse
|
25
|
Shu Z, Taylor IM, Walters SH, Michael AC. Region- and domain-dependent action of nomifensine. Eur J Neurosci 2014; 40:2320-8. [PMID: 24766210 PMCID: PMC4107090 DOI: 10.1111/ejn.12604] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2014] [Revised: 03/24/2014] [Accepted: 03/28/2014] [Indexed: 11/27/2022]
Abstract
The dopamine (DA) terminal fields in the rat dorsal striatum (DS) and nucleus accumbens core (NAcc) are organized as patchworks of domains that exhibit distinct kinetics of DA release and clearance. The present study used fast-scan cyclic voltammetry recordings of electrically evoked DA overflow to test the hypothesis that nomifensine might exhibit domain-dependent actions within the NAcc, as we previously found to be the case within the DS. Within the NAcc, nomifensine preferentially enhanced evoked DA overflow in the slow domains compared with the fast domains. To seek a kinetic explanation for nomifensine's selective actions, we quantified the apparent KM of DA clearance by numerically evaluating the derivative of the descending phase of the DA signal after the end of the stimulus. For comparison, we likewise quantified the apparent KM in the domains of the DS. As expected, because it is a competitive inhibitor, nomifensine significantly increased the apparent KM in both the fast and slow domains of both the NAcc and DS. However, our analysis also led to the novel finding that nomifensine preferentially increases the apparent KM in the NAcc compared with the DS; the apparent KM increased by ~500% in the NAcc and by ~200% in the DS.
Collapse
Affiliation(s)
- Zhan Shu
- Department of Chemistry, University of Pittsburgh, Pittsburgh, PA, USA
| | | | | | | |
Collapse
|
26
|
Shu Z, Taylor IM, Michael AC. The dopamine patchwork of the rat nucleus accumbens core. Eur J Neurosci 2013; 38:3221-9. [PMID: 23937532 PMCID: PMC3805678 DOI: 10.1111/ejn.12319] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2012] [Revised: 05/29/2013] [Accepted: 06/21/2013] [Indexed: 11/29/2022]
Abstract
The dopamine (DA) terminal field in the rat dorsal striatum is organized as a patchwork of domains that show distinct DA kinetics. The rate and short-term plasticity of evoked DA release, the rate of DA clearance and the actions of several dopaminergic drugs are all domain-dependent. The patchwork arises in part from local variations in the basal extracellular concentration of DA, which establishes an autoinhibitory tone in slow but not fast domains. The present study addressed the hypothesis that a domain patchwork might also exist in the nucleus accumbens core (NAcc), a DA terminal field that is deeply involved in reward processing and the mechanisms underlying substance abuse. DA recordings in the NAcc by fast-scan voltammetry during electrical stimulation of the medial forebrain bundle confirmed that the NAcc contains a patchwork of fast and slow domains showing significantly different rates of evoked DA release and DA clearance. Moreover, the NAcc domains are substantially different from those in the dorsal striatum. There were no signs in the NAcc of short-term plasticity of DA release during multiple consecutive stimuli, and no signs of a domain-dependent autoinhibitory tone. Thus, the NAcc domains are distinct from each other and from the domains of the dorsal striatum.
Collapse
Affiliation(s)
- Zhan Shu
- Department of Chemistry, University of Pittsburgh, 219 Parkman Avenue, Pittsburgh, PA, 15260, USA
| | | | | |
Collapse
|
27
|
Nesbitt KM, Jaquins-Gerstl A, Skoda EM, Wipf P, Michael AC. Pharmacological mitigation of tissue damage during brain microdialysis. Anal Chem 2013; 85:8173-9. [PMID: 23927692 PMCID: PMC3799822 DOI: 10.1021/ac401201x] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Microdialysis sampling in the brain is employed frequently in the chemical analysis of neurological function and disease, but implanting the probes, which are substantially larger than the size and spacing of brain cells and blood vessels, is injurious and triggers ischemia, gliosis, and cell death at the sampling site. The nature of the interface between the brain and the microdialysis probe is critical to the use of microdialysis as a neurochemical analysis technique. The objective of the work reported here was to investigate the potential of two compounds, dexamethasone, a glucocorticoid anti-inflammatory agent, and XJB-5-131, a mitochondrially targeted reactive oxygen species scavenger, to mitigate the penetration injury. Measurements were performed in the rat brain striatum, which is densely innervated by axons that release dopamine, an electroactive neurotransmitter. We used voltammetry to measure electrically evoked dopamine release next to microdialysis probes during the retrodialysis of dexamethasone or XJB-5-131. After the in vivo measurements, the brain tissue containing the microdialysis probe tracks was examined by fluorescence microscopy using markers for ischemia, neuronal nuclei, macrophages, and dopamine axons and terminals. Dexamethasone and XJB-5-131 each diminished the loss of evoked dopamine activity, diminished ischemia, diminished the loss of neuronal nuclei, diminished the appearance of extravasated macrophages, and diminished the loss of dopamine axons and terminals next to the probes. Our findings confirm the ability of dexamethasone and XJB-5-131 to mitigate, but not eliminate, the effects of the penetration injury caused by implanting microdialysis probes into brain tissue.
Collapse
Affiliation(s)
- Kathryn M. Nesbitt
- Department of Chemistry, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | | | - Erin M. Skoda
- Department of Chemistry, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | - Peter Wipf
- Department of Chemistry, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | - Adrian C. Michael
- Department of Chemistry, University of Pittsburgh, Pittsburgh, PA 15260, USA
| |
Collapse
|
28
|
Taylor IM, Ilitchev AI, Michael AC. Restricted diffusion of dopamine in the rat dorsal striatum. ACS Chem Neurosci 2013; 4:870-8. [PMID: 23600442 DOI: 10.1021/cn400078n] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Recent evidence has shown that the dorsal striatum of the rat is arranged as a patchwork of domains that exhibit distinct dopamine kinetics and concentrations. This raises the pressing question of how these distinct domains are maintained, especially if dopamine is able to diffuse through the extracellular space. Diffusion between the domains would eliminate the concentration differences and, thereby, the domains themselves. The present study is a closer examination of dopamine's ability to diffuse in the extracellular space. We used voltammetry to record dopamine overflow in dorsal striatum while stimulating the medial forebrain bundle over a range of stimulus currents and frequencies. We also examined the effects of drugs that modulated the dopamine release (raclopride and quinpirole) and uptake (nomifensine). Examining the details of the temporal features of the evoked profiles reveals no clear evidence for long-distance diffusion of dopamine between fast and slow domains, even though uptake inhibition by nomifensine clearly prolongs the time that dopamine resides in the extracellular space. Our observations support the conclusion that striatal tissue has the capacity to retain dopamine molecules, thereby limiting its tendency to diffuse through the extracellular space.
Collapse
Affiliation(s)
- I. Mitch Taylor
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania
15260, United States
| | - Alexandre I. Ilitchev
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania
15260, United States
| | - Adrian C. Michael
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania
15260, United States
| |
Collapse
|
29
|
Wood KM, Hashemi P. Fast-scan cyclic voltammetry analysis of dynamic serotonin reponses to acute escitalopram. ACS Chem Neurosci 2013; 4:715-20. [PMID: 23597074 DOI: 10.1021/cn4000378] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
The treatment of depression with selective serotonin reuptake inhibitors, SSRIs, is important to study on a neurochemical level because of the therapeutic variability experienced by many depressed patients. We employed the rapid temporal capabilities of fast scan cyclic voltammetry at carbon fiber microelectrodes to study the effects of a popular SSRI, escitalopram (ESCIT), marketed as Lexapro, on serotonin in mice. We report novel, dynamic serotonin behavior after acute ESCIT doses, characterized by a rapid increase in stimulated serotonin release and a gradual rise in serotonin clearance over 120 min. Dynamic changes after acute SSRI doses may be clinically relevant to the pathology of increased depression or suicidality after onset of antidepressant treatment. Due to the short-term variability of serotonin responses after acute ESCIT, we outline difficulties in creating dose response curves and we suggest effective means to visualize dynamic serotonin changes after SSRIs. Correlating chemical serotonin patterns to clinical findings will allow a finer understanding of SSRI mechanisms, ultimately providing a platform for reducing therapeutic variability.
Collapse
Affiliation(s)
- Kevin M. Wood
- Department of Chemistry, Wayne State University, 5101 Cass Avenue, Detroit, Michigan 48202, United States
| | - Parastoo Hashemi
- Department of Chemistry, Wayne State University, 5101 Cass Avenue, Detroit, Michigan 48202, United States
| |
Collapse
|
30
|
Miller EM, Pomerleau F, Huettl P, Russell VA, Gerhardt GA, Glaser PEA. The spontaneously hypertensive and Wistar Kyoto rat models of ADHD exhibit sub-regional differences in dopamine release and uptake in the striatum and nucleus accumbens. Neuropharmacology 2012; 63:1327-34. [PMID: 22960443 DOI: 10.1016/j.neuropharm.2012.08.020] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2012] [Revised: 07/31/2012] [Accepted: 08/21/2012] [Indexed: 10/27/2022]
Abstract
The most widely used animal model of attention-deficit/hyperactivity disorder (ADHD) is the spontaneously hypertensive rat (SHR/NCrl), which best represents the combined subtype (ADHD-C). Recent evidence has revealed that a progenitor strain, the Wistar Kyoto from Charles River Laboratories (WKY/NCrl), is useful as a model of the inattentive subtype (ADHD-PI) and the Wistar Kyoto from Harlan Laboratories (WKY/NHsd) and the Sprague Dawley (SD) have been suggested as controls. Dopamine (DA) dysfunction in the striatum (Str) and nucleus accumbens core (NAc) is thought to play a significant role in the pathophysiology of ADHD but data obtained with the SHR is equivocal. Using high-speed chronoamperometric recordings with carbon fiber microelectrodes, we found that the SHR/NCrl displayed decreased KCl-evoked DA release versus the WKY/NCrl model of ADHD-PI in the dorsal Str. The WKY/NCrl and the WKY/NHsd control did not differ from each other; however, the control SD released less DA than the WKY/NCrl model of ADHD-PI in the dorsal Str and less than the control WKY/NHsd in the intermediate Str. The SHR/NCrl had faster DA uptake in the ventral Str and NAc versus both control strains, while the WKY/NCrl model of ADHD-PI exhibited faster DA uptake in the NAc versus the SD control. These results suggest that increased surface expression of DA transporters may explain the more rapid uptake of DA in the Str and NAc of these rodent models of ADHD.
Collapse
Affiliation(s)
- Erin M Miller
- Department of Anatomy & Neurobiology, University of Kentucky College of Medicine, 138 Leader Avenue, Lexington, KY 40506, USA
| | | | | | | | | | | |
Collapse
|
31
|
Lama RD, Charlson K, Anantharam A, Hashemi P. Ultrafast Detection and Quantification of Brain Signaling Molecules with Carbon Fiber Microelectrodes. Anal Chem 2012; 84:8096-101. [DOI: 10.1021/ac301670h] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Rinchen D. Lama
- Department of Chemistry, Wayne State University, Detroit, Michigan 48202, United
States
| | - Karl Charlson
- Department of Chemistry, Wayne State University, Detroit, Michigan 48202, United
States
| | - Arun Anantharam
- Department of Biology, Wayne State University, Detroit, Michigan 48202, United
States
| | - Parastoo Hashemi
- Department of Chemistry, Wayne State University, Detroit, Michigan 48202, United
States
| |
Collapse
|