1
|
Gao J, Meng X, Yang X, Xie C, Tian C, Gong J, Zhang J, Dai S, Gao T. The protection of nicotinamide riboside against diabetes mellitus-induced bone loss via OXPHOS. Bone 2025; 193:117411. [PMID: 39884488 DOI: 10.1016/j.bone.2025.117411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/28/2024] [Revised: 01/21/2025] [Accepted: 01/25/2025] [Indexed: 02/01/2025]
Abstract
Diabetes mellitus is a global disease that results in various complications, including diabetic osteoporosis. Prior studies have indicated a correlation between low levels of nicotinamide adenine dinucleotide (NAD+) and diabetes-related complications. Nicotinamide riboside (NR), a widely utilized precursor vitamin of NAD+, has been demonstrated to enhance age-related osteoporosis through the Sirt1/FOXO/β-catenin pathway in osteoblast progenitors. However, the impact of NR on bone health in diabetes mellitus remains unclear. In this study, we assessed the potential effects of NR on bone in diabetic mice. NR was administered to high-fat diet (HFD)/streptozotocin (STZ)-induced type 2 diabetic mice (T2DM), and various parameters, including metabolic indicators, bone quality, bone metabolic markers, and RNA sequences, were measured. Our findings confirmed that HFD/STZ-induced T2DM impaired bone microstructures, resulting in bone loss. NR effectively ameliorated insulin resistance, improved bone microarchitecture, and bone quality, reduced bone resorption, enhanced the Forkhead box O (FOXO) signaling pathway, mitigated the nuclear factor kappa B (NF-kB) signaling pathway, and ameliorated the disorder of the oxidative phosphorylation process (OXPHOS) in diabetic mice. In conclusion, NR demonstrated the capacity to alleviate T2DM-induced bone loss through the modulation of OXPHOS in type 2 diabetic mice. Our results underscore the potential of NR as a therapeutic target for addressing T2DM-related bone metabolism and associated diseases. Further cell-based studies under diabetic conditions, such as in vitro cultures of key cell types (e.g., osteoblasts and osteoclasts), are necessary to validate these findings.
Collapse
Affiliation(s)
- Jie Gao
- Qingdao Hospital, University of Health and Rehabilitation Sciences (Qingdao Municipal Hospital), Qingdao 266000, China; School of Public Health, Qingdao University, Qingdao 266071, China.
| | - Xiangyuan Meng
- Department of Toxicology, School of Public Health, Jilin University, Changchun 130021, China.
| | - Xingxiang Yang
- School of Public Health, Qingdao University, Qingdao 266071, China.
| | - Chenqi Xie
- School of Public Health, Qingdao University, Qingdao 266071, China.
| | - Chunyan Tian
- School of Public Health, Qingdao University, Qingdao 266071, China
| | - Jianbao Gong
- Qingdao Hospital, University of Health and Rehabilitation Sciences (Qingdao Municipal Hospital), Qingdao 266000, China
| | - Junwei Zhang
- Shandong Wendeng Osteopathic Hospital, Weihai 264400, China
| | - Shiyou Dai
- Qingdao Hospital, University of Health and Rehabilitation Sciences (Qingdao Municipal Hospital), Qingdao 266000, China.
| | - Tianlin Gao
- School of Public Health, Qingdao University, Qingdao 266071, China.
| |
Collapse
|
2
|
Sola-Sevilla N, Garmendia-Berges M, Mera-Delgado MC, Puerta E. Context-dependent role of sirtuin 2 in inflammation. Neural Regen Res 2025; 20:682-694. [PMID: 38886935 PMCID: PMC11433891 DOI: 10.4103/nrr.nrr-d-23-02063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 03/09/2024] [Accepted: 03/30/2024] [Indexed: 06/20/2024] Open
Abstract
Sirtuin 2 is a member of the sirtuin family nicotinamide adenine dinucleotide (NAD+)-dependent deacetylases, known for its regulatory role in different processes, including inflammation. In this context, sirtuin 2 has been involved in the modulation of key inflammatory signaling pathways and transcription factors by deacetylating specific targets, such as nuclear factor κB and nucleotide-binding oligomerization domain-leucine-rich-repeat and pyrin domain-containing protein 3 (NLRP3). However, whether sirtuin 2-mediated pathways induce a pro- or an anti-inflammatory response remains controversial. Sirtuin 2 has been implicated in promoting inflammation in conditions such as asthma and neurodegenerative diseases, suggesting that its inhibition in these conditions could be a potential therapeutic strategy. Conversely, arthritis and type 2 diabetes mellitus studies suggest that sirtuin 2 is essential at the peripheral level and, thus, its inhibition in these pathologies would not be recommended. Overall, the precise role of sirtuin 2 in inflammation appears to be context-dependent, and further investigation is needed to determine the specific molecular mechanisms and downstream targets through which sirtuin 2 influences inflammatory processes in various tissues and pathological conditions. The present review explores the involvement of sirtuin 2 in the inflammation associated with different pathologies to elucidate whether its pharmacological modulation could serve as an effective strategy for treating this prevalent symptom across various diseases.
Collapse
Affiliation(s)
- Noemí Sola-Sevilla
- Department of Pharmaceutical Sciences, Division of Pharmacology, School of Pharmacy and Nutrition, University of Navarra, Pamplona, Spain
- Navarra Institute for Health Research (IdiSNA), Pamplona, Spain
| | - Maider Garmendia-Berges
- Department of Pharmaceutical Sciences, Division of Pharmacology, School of Pharmacy and Nutrition, University of Navarra, Pamplona, Spain
| | - MCarmen Mera-Delgado
- Department of Pharmaceutical Sciences, Division of Pharmacology, School of Pharmacy and Nutrition, University of Navarra, Pamplona, Spain
| | - Elena Puerta
- Department of Pharmaceutical Sciences, Division of Pharmacology, School of Pharmacy and Nutrition, University of Navarra, Pamplona, Spain
- Navarra Institute for Health Research (IdiSNA), Pamplona, Spain
| |
Collapse
|
3
|
Wu Z, Zhan W, Wu L, Yu L, Xie X, Yu F, Kong W, Bi S, Liu S, Yin G, Zhou J. The Roles of Forkhead Box O3a (FOXO3a) in Bone and Cartilage Diseases - A Narrative Review. Drug Des Devel Ther 2025; 19:1357-1375. [PMID: 40034405 PMCID: PMC11874768 DOI: 10.2147/dddt.s494841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Accepted: 02/20/2025] [Indexed: 03/05/2025] Open
Abstract
Bone and cartilage diseases are significantly associated with musculoskeletal disability. However, no effective drugs are available to cure them. FOXO3a, a member of the FOXO family, has been implicated in cell proliferation, ROS detoxification, autophagy, and apoptosis. The biological functions of FOXO3a can be modulated by post-translational modifications (PTMs), such as phosphorylation and acetylation. Several signaling pathways, such as MAPK, NF-κB, PI3K/AKT, and AMPK/Sirt1 pathways, have been implicated in the development of bone and cartilage diseases by mediating the expression of FOXO3a. In particular, FOXO3a acts as a transcriptional factor in mediating the expression of various genes, such as MnSOD, CAT, BIM, BBC3, and CDK6. FOXO3a plays a critical role in the metabolism of bone and cartilage. In this article, we mainly discussed the biological functions of FOXO3a in bone and cartilage diseases, such as osteoporosis (OP), osteoarthritis (OA), rheumatoid arthritis (RA), ankylosing spondylitis (AS), and intervertebral disc degeneration (IDD). FOXO3a can promote osteogenic differentiation, induce osteoblast proliferation, inhibit osteoclast activity, suppress chondrocyte apoptosis, and reduce inflammatory responses. Collectively, up-regulation of FOXO3a expression shows beneficial effects, and FOXO3a has become a potential target for bone and cartilage diseases.
Collapse
Affiliation(s)
- Zhenyu Wu
- Department of Medical Imaging, First Affiliated Hospital of Gannan Medical University, Ganzhou, 341000, People’s Republic of China
- First Clinical Medical College, Gannan Medical University, Ganzhou, 341000, People’s Republic of China
| | - Wang Zhan
- First Clinical Medical College, Gannan Medical University, Ganzhou, 341000, People’s Republic of China
| | - Longhuo Wu
- College of Pharmacy, Gannan Medical University, Ganzhou, 341000, People’s Republic of China
| | - Luhu Yu
- Department of Clinical Laboratory, Ganzhou People’s Hospital, Ganzhou, 341000, People’s Republic of China
| | - Xunlu Xie
- Department of Pathology, Ganzhou People’s Hospital, Ganzhou, 341000, People’s Republic of China
| | - Fang Yu
- Department of Joint Surgery, Ganzhou People’s Hospital, Ganzhou, 341000, People’s Republic of China
| | - Weihao Kong
- Department of Joint Surgery, Ganzhou People’s Hospital, Ganzhou, 341000, People’s Republic of China
| | - Shengrong Bi
- Department of Joint Surgery, Ganzhou People’s Hospital, Ganzhou, 341000, People’s Republic of China
| | - Shiwei Liu
- Department of Joint Surgery, Ganzhou People’s Hospital, Ganzhou, 341000, People’s Republic of China
| | - Guoqiang Yin
- Department of Joint Surgery, Ganzhou Hospital Affiliated to Nanchang University, Ganzhou, 341000, People’s Republic of China
| | - Jianguo Zhou
- Department of Joint Surgery, Ganzhou People’s Hospital, Ganzhou, 341000, People’s Republic of China
| |
Collapse
|
4
|
Yuan L, Yin L, Lin X, Li J, Liang P, Jiang B. Revealing the Complex Interaction of Noncoding RNAs, Sirtuin Family, and Mitochondrial Function. J Gene Med 2025; 27:e70007. [PMID: 39842441 DOI: 10.1002/jgm.70007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 10/23/2024] [Accepted: 12/04/2024] [Indexed: 01/24/2025] Open
Abstract
Mitochondria are key organelles that perform and coordinate various metabolic processes in the cell, and their homeostasis is essential for the maintenance of eukaryotic life. To maintain mitochondrial homeostasis and cellular health, close communication between noncoding RNAs (ncRNAs) and proteins is required. For example, there are numerous crosstalk between ncRNAs and the sirtuin (SIRT1-7) family, which is a group of nicotinamide adenine dinucleotides (NAD(+))-dependent Type III deacetylases. NcRNAs are involved in the regulation of gene expression of sirtuin family members, and deacetylation of sirtuin family members can also influence the generation of ncRNAs. This review focuses on the relationship between the two mentioned above and summarizes the impact of their interactions on mitochondrial metabolism, oxidative stress, mitochondrial apoptotic pathways, mitochondrial biogenesis, mitochondrial dynamics, and other mitochondria-related pathophysiological processes. Finally, the review also describes targeted and appropriate treatment strategies. In conclusion, we provide an overview of the ncRNA-sirtuins/mitochondria relationship that could provide a reference for related research in the mitochondrial field and help the future development of new biomedical applications in this area.
Collapse
Affiliation(s)
- Ludong Yuan
- Department of Pathophysiology, Sepsis Translational Medicine Key Laboratory of Hunan Province, Xiangya School of Medicine, Central South University, Changsha, Hunan, China
- National Medicine Functional Experimental Teaching Center, Central South University, Changsha, Hunan, China
| | - Leijing Yin
- Department of Pathophysiology, Sepsis Translational Medicine Key Laboratory of Hunan Province, Xiangya School of Medicine, Central South University, Changsha, Hunan, China
- National Medicine Functional Experimental Teaching Center, Central South University, Changsha, Hunan, China
| | - Xiaofang Lin
- Department of Pathophysiology, Sepsis Translational Medicine Key Laboratory of Hunan Province, Xiangya School of Medicine, Central South University, Changsha, Hunan, China
- National Medicine Functional Experimental Teaching Center, Central South University, Changsha, Hunan, China
| | - Jing Li
- Department of Pathophysiology, Sepsis Translational Medicine Key Laboratory of Hunan Province, Xiangya School of Medicine, Central South University, Changsha, Hunan, China
- National Medicine Functional Experimental Teaching Center, Central South University, Changsha, Hunan, China
| | - Pengfei Liang
- Department of Burns and Plastic Surgery, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Bimei Jiang
- Department of Pathophysiology, Sepsis Translational Medicine Key Laboratory of Hunan Province, Xiangya School of Medicine, Central South University, Changsha, Hunan, China
- National Medicine Functional Experimental Teaching Center, Central South University, Changsha, Hunan, China
| |
Collapse
|
5
|
Lee HY, Min KJ. Dietary Restriction and Lipid Metabolism: Unveiling Pathways to Extended Healthspan. Nutrients 2024; 16:4424. [PMID: 39771045 PMCID: PMC11678862 DOI: 10.3390/nu16244424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2024] [Revised: 12/18/2024] [Accepted: 12/18/2024] [Indexed: 01/11/2025] Open
Abstract
Dietary restriction (DR) has been reported to be a significant intervention that influences lipid metabolism and potentially modulates the aging process in a wide range of organisms. Lipid metabolism plays a pivotal role in the regulation of aging and longevity. In this review, we summarize studies on the significant role of lipid metabolism in aging in relation to DR. As a potent intervention to slow down aging, DR has demonstrated promising effects on lipid metabolism, influencing the aging processes across various species. The current review focuses on the relationships among DR-related molecular signaling proteins such as the sirtuins, signaling pathways such as the target of rapamycin and the insulin/insulin-like growth factor (IGF)-1, lipid metabolism, and aging. Furthermore, the review presents research results on diet-associated changes in cell membrane lipids and alterations in lipid metabolism caused by commensal bacteria, highlighting the importance of lipid metabolism in aging. Overall, the review explores the interplay between diet, lipid metabolism, and aging, while presenting untapped areas for further understanding of the aging process.
Collapse
Affiliation(s)
| | - Kyung-Jin Min
- Department of Biological Sciences and Bioengineering, Inha University, Incheon 22212, Republic of Korea;
| |
Collapse
|
6
|
Qu Q, Chen Y, Wang Y, Wang W, Long S, Yang HY, Wu J, Li M, Tian X, Wei X, Liu YH, Xu S, Xiong J, Yang C, Wu Z, Huang X, Xie C, Wu Y, Xu Z, Zhang C, Zhang B, Feng JW, Chen J, Feng Y, Fang H, Lin L, Xie ZK, Sun B, Tian H, Yu Y, Piao HL, Xie XS, Deng X, Zhang CS, Lin SC. Lithocholic acid binds TULP3 to activate sirtuins and AMPK to slow down ageing. Nature 2024:10.1038/s41586-024-08348-2. [PMID: 39695235 DOI: 10.1038/s41586-024-08348-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Accepted: 11/05/2024] [Indexed: 12/20/2024]
Abstract
Lithocholic acid (LCA) is accumulated in mammals during calorie restriction and it can activate AMP-activated protein kinase (AMPK) to slow down ageing1. However, the molecular details of how LCA activates AMPK and induces these biological effects are unclear. Here we show that LCA enhances the activity of sirtuins to deacetylate and subsequently inhibit vacuolar H+-ATPase (v-ATPase), which leads to AMPK activation through the lysosomal glucose-sensing pathway. Proteomics analyses of proteins that co-immunoprecipitated with sirtuin 1 (SIRT1) identified TUB-like protein 3 (TULP3), a sirtuin-interacting protein2, as a LCA receptor. In detail, LCA-bound TULP3 allosterically activates sirtuins, which then deacetylate the V1E1 subunit of v-ATPase on residues K52, K99 and K191. Muscle-specific expression of a V1E1 mutant (3KR), which mimics the deacetylated state, strongly activates AMPK and rejuvenates muscles in aged mice. In nematodes and flies, LCA depends on the TULP3 homologues tub-1 and ktub, respectively, to activate AMPK and extend lifespan and healthspan. Our study demonstrates that activation of the TULP3-sirtuin-v-ATPase-AMPK pathway by LCA reproduces the benefits of calorie restriction.
Collapse
Affiliation(s)
- Qi Qu
- State Key Laboratory for Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, China
| | - Yan Chen
- State Key Laboratory for Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, China
| | - Yu Wang
- State Key Laboratory for Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, China
| | - Weiche Wang
- State Key Laboratory for Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, China
| | - Shating Long
- State Key Laboratory for Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, China
| | - Heng-Ye Yang
- State Key Laboratory for Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, China
| | - Jianfeng Wu
- Laboratory Animal Research Centre, Xiamen University, Xiamen, China
| | - Mengqi Li
- State Key Laboratory for Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, China
| | - Xiao Tian
- State Key Laboratory for Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, China
| | - Xiaoyan Wei
- State Key Laboratory for Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, China
| | - Yan-Hui Liu
- State Key Laboratory for Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, China
| | - Shengrong Xu
- State Key Laboratory for Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, China
| | - Jinye Xiong
- State Key Laboratory for Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, China
| | - Chunyan Yang
- State Key Laboratory for Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, China
| | - Zhenhua Wu
- State Key Laboratory for Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, China
| | - Xi Huang
- State Key Laboratory for Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, China
| | - Changchuan Xie
- State Key Laboratory for Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, China
| | - Yaying Wu
- State Key Laboratory for Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, China
| | - Zheni Xu
- State Key Laboratory for Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, China
| | - Cixiong Zhang
- State Key Laboratory for Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, China
| | - Baoding Zhang
- State Key Laboratory for Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, China
| | - Jin-Wei Feng
- State Key Laboratory for Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, China
| | - Junjie Chen
- Analysis and Measurement Centre, School of Pharmaceutical Sciences, Xiamen University, Xiamen, China
| | - Yuanji Feng
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, China
| | - Huapan Fang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, China
| | - Liyun Lin
- State Key Laboratory for Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, China
| | - Z K Xie
- State Key Laboratory for Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, China
| | - Beibei Sun
- State Key Laboratory for Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, China
| | - Huayu Tian
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, China
| | - Yong Yu
- State Key Laboratory for Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, China
| | - Hai-Long Piao
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, China
| | - Xiao-Song Xie
- McDermott Center of Human Growth and Development, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Xianming Deng
- State Key Laboratory for Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, China
| | - Chen-Song Zhang
- State Key Laboratory for Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, China.
| | - Sheng-Cai Lin
- State Key Laboratory for Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, China.
| |
Collapse
|
7
|
Jessop E, Young N, Garcia-Del-Valle B, Crusher JT, Obara B, Karakesisoglou I. SIRT2 Inhibition by AGK2 Promotes Perinuclear Cytoskeletal Organisation and Reduces Invasiveness of MDA-MB-231 Triple-Negative Breast Cancer Cells in Confined In Vitro Models. Cells 2024; 13:2023. [PMID: 39682770 DOI: 10.3390/cells13232023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2024] [Revised: 12/04/2024] [Accepted: 12/05/2024] [Indexed: 12/18/2024] Open
Abstract
Triple-negative breast cancer (TNBC) is a highly aggressive breast cancer subtype characterised by the absence of targetable hormone receptors and increased metastatic rates. As nuclear softening strongly contributes to TNBC's enhanced metastatic capacity, increasing the nuclear stiffness of TNBC cells may present a promising therapeutic avenue. Previous evidence has demonstrated the ability of Sirtuin 2 (SIRT2) inhibition to induce cytoskeletal reorganisation, a key factor in regulating nuclear mechanics. Thus, our study aimed to investigate the effect of SIRT2 inhibition on the nuclear mechanics and migratory behaviour of TNBC cells. To achieve this, SIRT2 was pharmacologically inhibited in MDA-MB-231 cells using AGK2, a SIRT2-specific inhibitor. Although SIRT2 inhibition had no effect on LINC complex composition, the AGK2-treated MDA-MB-231 cells displayed more prominent perinuclear organisations of acetylated α-tubulin, vimentin, and F-actin. Additionally, the nuclei of the AGK2-treated MDA-MB-231 cells exhibited greater resistance to collapse under osmotic shock. Scratch-wound assays also revealed that SIRT2 inhibition led to polarity defects in the MDA-MB-231 cells, while in vitro space-restrictive invasion assays highlighted their reduced migratory capacity upon AGK2 treatment. Taken together, our findings suggest that SIRT2 inhibition promotes a perinuclear cytoskeletal organisation in MDA-MB-231 cells, which enhances their nuclear rigidity and impedes their invasion through confined spaces in vitro.
Collapse
Affiliation(s)
- Emily Jessop
- Department of Biosciences, Durham University, Durham DH1 3LE, UK
| | - Natalie Young
- Department of Biosciences, Durham University, Durham DH1 3LE, UK
| | | | - Jack T Crusher
- Department of Biosciences, Durham University, Durham DH1 3LE, UK
| | - Boguslaw Obara
- School of Computing, Newcastle University, Newcastle upon Tyne NE4 5TG, UK
| | | |
Collapse
|
8
|
Mackova V, Raudenska M, Polanska HH, Jakubek M, Masarik M. Navigating the redox landscape: reactive oxygen species in regulation of cell cycle. Redox Rep 2024; 29:2371173. [PMID: 38972297 PMCID: PMC11637001 DOI: 10.1080/13510002.2024.2371173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/09/2024] Open
Abstract
Objectives: To advance our knowledge of disease mechanisms and therapeutic options, understanding cell cycle regulation is critical. Recent research has highlighted the importance of reactive oxygen species (ROS) in cell cycle regulation. Although excessive ROS levels can lead to age-related pathologies, ROS also play an essential role in normal cellular functions. Many cell cycle regulatory proteins are affected by their redox status, but the precise mechanisms and conditions under which ROS promote or inhibit cell proliferation are not fully understood.Methods: This review presents data from the scientific literature and publicly available databases on changes in redox state during the cell cycle and their effects on key regulatory proteins.Results: We identified redox-sensitive targets within the cell cycle machinery and analysed different effects of ROS (type, concentration, duration of exposure) on cell cycle phases. For example, moderate levels of ROS can promote cell proliferation by activating signalling pathways involved in cell cycle progression, whereas excessive ROS levels can induce DNA damage and trigger cell cycle arrest or cell death.Discussion: Our findings encourage future research focused on identifying redox-sensitive targets in the cell cycle machinery, potentially leading to new treatments for diseases with dysregulated cell proliferation.
Collapse
Affiliation(s)
- Viktoria Mackova
- Department of Pathological Physiology, Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Martina Raudenska
- Department of Pathological Physiology, Faculty of Medicine, Masaryk University, Brno, Czech Republic
- Department of Physiology, Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Hana Holcova Polanska
- Department of Pathological Physiology, Faculty of Medicine, Masaryk University, Brno, Czech Republic
- Department of Physiology, Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Milan Jakubek
- BIOCEV, First Faculty of Medicine, Charles University, Vestec, Czech Republic
| | - Michal Masarik
- Department of Pathological Physiology, Faculty of Medicine, Masaryk University, Brno, Czech Republic
- Department of Physiology, Faculty of Medicine, Masaryk University, Brno, Czech Republic
- BIOCEV, First Faculty of Medicine, Charles University, Vestec, Czech Republic
- Institute of Pathophysiology, First Faculty of Medicine, Charles University, Prague, Czech Republic
| |
Collapse
|
9
|
Pun R, Kumari N, Monieb RH, Wagh S, North BJ. BubR1 and SIRT2: Insights into aneuploidy, aging, and cancer. Semin Cancer Biol 2024; 106-107:201-216. [PMID: 39490401 PMCID: PMC11625622 DOI: 10.1016/j.semcancer.2024.10.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 10/22/2024] [Accepted: 10/23/2024] [Indexed: 11/05/2024]
Abstract
Aging is a significant risk factor for cancer which is due, in part, to heightened genomic instability. Mitotic surveillance proteins such as BubR1 play a pivotal role in ensuring accurate chromosomal segregation and preventing aneuploidy. BubR1 levels have been shown to naturally decline with age and its loss is associated with various age-related pathologies. Sirtuins, a class of NAD+-dependent deacylases, are implicated in cancer and genomic instability. Among them, SIRT2 acts as an upstream regulator of BubR1, offering a critical pathway that can potentially mitigate age-related diseases, including cancer. In this review, we explore BubR1 as a key regulator of cellular processes crucial for aging-related phenotypes. We delve into the intricate mechanisms through which BubR1 influences genomic stability and cellular senescence. Moreover, we highlight the role of NAD+ and SIRT2 in modulating BubR1 expression and function, emphasizing its potential as a therapeutic target. The interaction between BubR1 and SIRT2 not only serves as a fundamental regulatory pathway in cellular homeostasis but also represents a promising avenue for developing targeted therapies against age-related diseases, particularly cancer.
Collapse
Affiliation(s)
- Renju Pun
- Biomedical Sciences Department, Creighton University School of Medicine, Omaha, NE, USA
| | - Niti Kumari
- Biomedical Sciences Department, Creighton University School of Medicine, Omaha, NE, USA
| | - Rodaina Hazem Monieb
- Biomedical Sciences Department, Creighton University School of Medicine, Omaha, NE, USA
| | - Sachin Wagh
- Biomedical Sciences Department, Creighton University School of Medicine, Omaha, NE, USA
| | - Brian J North
- Biomedical Sciences Department, Creighton University School of Medicine, Omaha, NE, USA.
| |
Collapse
|
10
|
Xing WQ, Piao XJ, Han Q, Shi HY, Wu WC, Si F, Lu JJ, Zhou TZ, Guo JR, Li SZ, Xu B. SIRT2 regulates high mobility group protein B1 nucleoplasmic shuttle and degradation via deacetylation in microglia. J Cell Physiol 2024; 239:e31364. [PMID: 39129208 DOI: 10.1002/jcp.31364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2024] [Revised: 06/13/2024] [Accepted: 06/19/2024] [Indexed: 08/13/2024]
Abstract
High mobility group protein B1 (HMGB1) acts as a pathogenic inflammatory response to mediate ranges of conditions such as epilepsy, septic shock, ischemia, traumatic brain injury, Parkinson's disease, Alzheimer's disease and mass spectrometry. HMGB1 promotes inflammation during sterile and infectious damage and plays a crucial role in disease development. Mobilization from the nucleus to the cytoplasm is the first important step in the release of HMGB1 from activated immune cells. Here, we demonstrated that Sirtuin 2 (SIRT2) physically interacts with and deacetylates HMGB1 at 43 lysine residue at nuclear localization signal locations, strengthening its interaction with HMGB1 and causing HMGB1 to be localized in the cytoplasm. These discoveries are the first to shed light on the SIRT2 nucleoplasmic shuttle, which influences HMGB1 and its degradation, hence revealing novel therapeutic targets and avenues for neuroinflammation treatment.
Collapse
Affiliation(s)
- Wan-Qun Xing
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing, China
| | - Xian-Ji Piao
- The Fifth Affiliated Hospital of Harbin Medical University, Daqing, China
| | - Qi Han
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing, China
| | - Hui-Ying Shi
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing, China
| | - Wen-Cong Wu
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing, China
| | - Fan Si
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing, China
| | - Jing-Jing Lu
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing, China
| | - Tie-Zhong Zhou
- College of Animal Husbandry and Veterinary Medicine, Jinzhou Medical University, Jinzhou, China
| | - Jing-Ru Guo
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing, China
| | - Shi-Ze Li
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing, China
| | - Bin Xu
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing, China
| |
Collapse
|
11
|
Chen Z, Chen T, Lin R, Zhang Y. Circulating inflammatory proteins and abdominal aortic aneurysm: A two-sample Mendelian randomization and colocalization analyses. Cytokine 2024; 182:156700. [PMID: 39033731 DOI: 10.1016/j.cyto.2024.156700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2024] [Revised: 05/24/2024] [Accepted: 07/17/2024] [Indexed: 07/23/2024]
Abstract
OBJECTIVES Inflammatory proteins are implicated in the progression of abdominal aortic aneurysms (AAA); however, it remains debated whether they are causal or consequential. This study aimed to assess the influence of circulating inflammatory proteins on AAA via two-sample Mendelian randomization (MR) and colocalization analysis. METHODS Summary data on 91 circulating inflammatory protein levels were extracted from a comprehensive protein quantitative trait loci (pQTL) study involving 14,824 individuals. Genetic associations with AAA were derived from the FinnGen study (3,869 cases and 381,977 controls). MR analysis was conducted to assess the relationships between proteins and AAA risk. Colocalization analysis was employed to explore potential shared causal variants between identified proteins and AAA. RESULTS Using a two-sample bidirectional MR study, our findings suggested that genetically predicted elevated levels of TGFB1 (OR = 1.21, P = 0.003), SIRT2 (OR = 1.196, P = 0.031) and TNFSF14 (OR = 1.129, P = 0.034) were linked to an increased risk of AAA. Conversely, genetically predicted higher levels of CD40 (OR = 0.912, P = 0.049), IL2RB (OR = 0.839, P = 0.028) and KITLG (OR = 0.827, P = 0.008) were associated with a decreased risk of AAA. Colocalization analyses supported the association of TGFB1 and SIRT2 levels with AAA risk. CONCLUSIONS The proteome-wide MR and colocalization study identified TGFB1 and SIRT2 as being associated with the risk of AAA, warranting further investigation as potential therapeutic targets.
Collapse
Affiliation(s)
- Zhan Chen
- Department of Vascular Surgery, Beijing Haidian Hospital, Beijing Haidian Section of Peking University Third Hospital, Beijing, China
| | - Tingting Chen
- Department of Hematology, Beijing Luhe Hospital, Capital Medical University, Beijing, China
| | - Ruimin Lin
- Department of Vascular Surgery, Beijing Haidian Hospital, Beijing Haidian Section of Peking University Third Hospital, Beijing, China.
| | - Yue Zhang
- Department of Hematology, Beijing Luhe Hospital, Capital Medical University, Beijing, China.
| |
Collapse
|
12
|
Tian S, Zhong K, Yang Z, Fu J, Cai Y, Xiao M. Investigating the mechanism of tricyclic decyl benzoxazole -induced apoptosis in liver Cancer cells through p300-mediated FOXO3 activation. Cell Signal 2024; 121:111280. [PMID: 38960058 DOI: 10.1016/j.cellsig.2024.111280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 06/07/2024] [Accepted: 06/26/2024] [Indexed: 07/05/2024]
Abstract
OBJECTIVE To investigate whether tricyclic decylbenzoxazole (TDB) regulates liver cancer cell proliferation and apoptosis through p300-mediated FOXO acetylation. METHODS Sequencing, adenovirus, and lentivirus transfection were performed in human liver cancer cell line SMMC-7721 and apoptosis was detected by Tunel, Hoechst, and flow cytometry. TEM for mitochondrial morphology, MTT for cell proliferation ability, Western blot, and PCR were used to detect protein levels and mRNA changes. RESULTS Sequencing analysis and cell experiments confirmed that TDB can promote the up-regulation of FOXO3 expression. TDB induced FOXO3 up-regulation in a dose-dependent manner, promoted the expression of p300 and Bim, and enhanced the acetylation and dephosphorylation of FOXO3, thus promoting apoptosis. p300 promotes apoptosis of cancer cells through Bim and other proteins, while HAT enhances the phosphorylation of FOXO3 and inhibits apoptosis. Overexpression of FOXO3 can increase the expression of exo-apoptotic pathways (FasL, TRAIL), endo-apoptotic pathways (Bim), and acetylation at the protein level and inhibit cell proliferation and apoptotic ability, while FOXO3 silencing or p300 mutation can partially reverse apoptosis. In tumor tissues with overexpression of FOXO3, TDB intervention can further increase the expression of p53 and caspase-9 proteins in tumor cells, resulting in loss of mitochondrial membrane integrity during apoptosis, the release of cytoplasm during signal transduction, activation of caspase-9 and synergistic inhibition of growth. CONCLUSION TDB induces proliferation inhibition and promotes apoptosis of SMMC-7721 cells by activating p300-mediated FOXO3 acetylation.
Collapse
Affiliation(s)
- Shuhong Tian
- Research Center for Drug Safety Evaluation of Hainan Province, Hainan Medical University, Haikou 571199, China
| | - Keyan Zhong
- Clinical Skills Experimental Teaching Center of Hainan Medical University, Haikou 571199, China
| | - Zhaoxin Yang
- Research Center for Drug Safety Evaluation of Hainan Province, Hainan Medical University, Haikou 571199, China
| | - Jian Fu
- Research Center for Drug Safety Evaluation of Hainan Province, Hainan Medical University, Haikou 571199, China
| | - Yangbo Cai
- Department of Hepatobiliary and Pancreatic Surgery, The Second Affiliated Hospital of Hainan Medical University, Haikou 570100, China
| | - Min Xiao
- Research Center for Drug Safety Evaluation of Hainan Province, Hainan Medical University, Haikou 571199, China.
| |
Collapse
|
13
|
Tu H, Gao Q, Zhou Y, Peng L, Wu D, Zhang D, Yang J. The role of sirtuins in intervertebral disc degeneration: Mechanisms and therapeutic potential. J Cell Physiol 2024; 239:e31328. [PMID: 38922861 DOI: 10.1002/jcp.31328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Revised: 04/27/2024] [Accepted: 05/13/2024] [Indexed: 06/28/2024]
Abstract
Intervertebral disc degeneration (IDD) is one of the main causes of low back pain, which affects the patients' quality of life and health and imposes a significant socioeconomic burden. Despite great efforts made by researchers to understand the pathogenesis of IDD, effective strategies for preventing and treating this disease remain very limited. Sirtuins are a highly conserved family of (NAD+)-dependent deacetylases in mammals that are involved in a variety of metabolic processes in vivo. In recent years, sirtuins have attracted much attention owing to their regulatory roles in IDD on physiological activities such as inflammation, apoptosis, autophagy, aging, oxidative stress, and mitochondrial function. At the same time, many studies have explored the therapeutic effects of sirtuins-targeting activators or micro-RNA in IDD. This review summarizes the molecular pathways of sirtuins involved in IDD, and summarizes the therapeutic role of activators or micro-RNA targeting Sirtuins in IDD, as well as the current limitations and challenges, with a view to provide possible solutions for the treatment of IDD.
Collapse
Affiliation(s)
- Heng Tu
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Qian Gao
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Yumeng Zhou
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Li Peng
- Key Laboratory of Bio-Resource & Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, Sichuan, China
| | - Dan Wu
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Demao Zhang
- Institute of Biomedical Engineering, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, Sichuan, China
| | - Jing Yang
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| |
Collapse
|
14
|
Tahimic CGT, Steczina S, Sebastian A, Hum NR, Abegaz M, Terada M, Cimini M, Goukassian DA, Schreurs AS, Hoban-Higgins TM, Fuller CA, Loots GG, Globus RK, Shirazi-Fard Y. Simulated Microgravity Alters Gene Regulation Linked to Immunity and Cardiovascular Disease. Genes (Basel) 2024; 15:975. [PMID: 39202335 PMCID: PMC11353732 DOI: 10.3390/genes15080975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2024] [Revised: 07/18/2024] [Accepted: 07/19/2024] [Indexed: 09/03/2024] Open
Abstract
Microgravity exposure induces a cephalad fluid shift and an overall reduction in physical activity levels which can lead to cardiovascular deconditioning in the absence of countermeasures. Future spaceflight missions will expose crew to extended periods of microgravity among other stressors, the effects of which on cardiovascular health are not fully known. In this study, we determined cardiac responses to extended microgravity exposure using the rat hindlimb unloading (HU) model. We hypothesized that exposure to prolonged simulated microgravity and subsequent recovery would lead to increased oxidative damage and altered expression of genes involved in the oxidative response. To test this hypothesis, we examined hearts of male (three and nine months of age) and female (3 months of age) Long-Evans rats that underwent HU for various durations up to 90 days and reambulated up to 90 days post-HU. Results indicate sex-dependent changes in oxidative damage marker 8-hydroxydeoxyguanosine (8-OHdG) and antioxidant gene expression in left ventricular tissue. Three-month-old females displayed elevated 8-OHdG levels after 14 days of HU while age-matched males did not. In nine-month-old males, there were no differences in 8-OHdG levels between HU and normally loaded control males at any of the timepoints tested following HU. RNAseq analysis of left ventricular tissue from nine-month-old males after 14 days of HU revealed upregulation of pathways involved in pro-inflammatory signaling, immune cell activation and differential expression of genes associated with cardiovascular disease progression. Taken together, these findings provide a rationale for targeting antioxidant and immune pathways and that sex differences should be taken into account in the development of countermeasures to maintain cardiovascular health in space.
Collapse
Affiliation(s)
- Candice G. T. Tahimic
- Department of Biology, University of North Florida, Jacksonville, FL 32224, USA
- Space Biosciences Division, NASA Ames Research Center, Moffett Field, CA 94035, USA (M.A.); (Y.S.)
| | - Sonette Steczina
- Space Biosciences Division, NASA Ames Research Center, Moffett Field, CA 94035, USA (M.A.); (Y.S.)
- Blue Marble Space Institute of Science, Seattle, WA 98104, USA
| | - Aimy Sebastian
- Lawrence Livermore National Laboratory, Livermore, CA 94550, USA (G.G.L.)
| | - Nicholas R. Hum
- Lawrence Livermore National Laboratory, Livermore, CA 94550, USA (G.G.L.)
| | - Metadel Abegaz
- Space Biosciences Division, NASA Ames Research Center, Moffett Field, CA 94035, USA (M.A.); (Y.S.)
- Blue Marble Space Institute of Science, Seattle, WA 98104, USA
| | - Masahiro Terada
- Space Biosciences Division, NASA Ames Research Center, Moffett Field, CA 94035, USA (M.A.); (Y.S.)
- Universities Space Research Association, Washington, DC 20024, USA
| | - Maria Cimini
- Temple University School of Medicine, Philadelphia, PA 19140, USA;
| | - David A. Goukassian
- Cardiovascular Research Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA;
| | - Ann-Sofie Schreurs
- Space Biosciences Division, NASA Ames Research Center, Moffett Field, CA 94035, USA (M.A.); (Y.S.)
- Universities Space Research Association, Washington, DC 20024, USA
| | - Tana M. Hoban-Higgins
- Department of Neurobiology, Physiology and Behavior, University of California Davis, Davis, CA 95616, USA
| | - Charles A. Fuller
- Department of Neurobiology, Physiology and Behavior, University of California Davis, Davis, CA 95616, USA
| | - Gabriela G. Loots
- Lawrence Livermore National Laboratory, Livermore, CA 94550, USA (G.G.L.)
- Department of Orthopedic Surgery, University of California Davis Health, Sacramento, CA 95817, USA
| | - Ruth K. Globus
- Space Biosciences Division, NASA Ames Research Center, Moffett Field, CA 94035, USA (M.A.); (Y.S.)
| | - Yasaman Shirazi-Fard
- Space Biosciences Division, NASA Ames Research Center, Moffett Field, CA 94035, USA (M.A.); (Y.S.)
| |
Collapse
|
15
|
Zhang Q, Guo J, Shi C, Zhang D, Wang Y, Wang L, Gong Z. The SIRT2-AMPK axis regulates autophagy induced by acute liver failure. Sci Rep 2024; 14:16278. [PMID: 39009648 PMCID: PMC11251177 DOI: 10.1038/s41598-024-67102-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Accepted: 07/08/2024] [Indexed: 07/17/2024] Open
Abstract
This study explores the role of SIRT2 in regulating autophagy and its interaction with AMPK in the context of acute liver failure (ALF). This study investigated the effects of SIRT2 and AMPK on autophagy in ALF mice and TAA-induced AML12 cells. The results revealed that the liver tissue in ALF model group had a lot of inflammatory cell infiltration and hepatocytes necrosis, which were reduced by SIRT2 inhibitor AGK2. In comparison to normal group, the level of SIRT2, P62, MDA, TOS in TAA group were significantly increased, which were decreased in AGK2 treatment. Compared with normal group, the expression of P-PRKAA1, Becilin1 and LC3B-II was decreased in TAA group. However, AGK2 enhanced the expression of P-PRKAA1, Becilin1 and LC3B-II in model group. Overexpression of SIRT2 in AML12 cell resulted in decreased P-PRKAA1, Becilin1 and LC3B-II level, enhanced the level of SIRT2, P62, MDA, TOS. Overexpression of PRKAA1 in AML12 cell resulted in decreased SIRT2, TOS and MDA level and triggered more autophagy. In conclusion, the data suggested the link between AMPK and SIRT2, and reveals the important role of AMPK and SIRT2 in autophagy on acute liver failure.
Collapse
Affiliation(s)
- Qingqi Zhang
- Department of Infectious Diseases, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Jin Guo
- Department of Infectious Diseases, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Chunxia Shi
- Department of Infectious Diseases, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Danmei Zhang
- Department of Infectious Diseases, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Yukun Wang
- Department of Infectious Diseases, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Luwen Wang
- Department of Infectious Diseases, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Zuojiong Gong
- Department of Infectious Diseases, Renmin Hospital of Wuhan University, Wuhan, 430060, China.
| |
Collapse
|
16
|
Karimova D, Rostami E, Chubarev VN, Tarasov VV, Schiöth HB, Rask-Andersen M. Advances in development of biomarkers for brain damage and ischemia. Mol Biol Rep 2024; 51:803. [PMID: 39001884 PMCID: PMC11246271 DOI: 10.1007/s11033-024-09708-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Accepted: 06/06/2024] [Indexed: 07/15/2024]
Abstract
Acquired brain injury is an urgent situation that requires rapid diagnosis and treatment. Magnetic resonance imaging (MRI) and computed tomography (CT) are required for accurate diagnosis. However, these methods are costly and require substantial infrastructure and specialized staff. Circulatory biomarkers of acute brain injury may help in the management of patients with acute cerebrovascular events and prevent poor outcome and mortality. The purpose of this review is to provide an overview of the development of potential biomarkers of brain damage to increase diagnostic possibilities. For this purpose, we searched the PubMed database of studies on the diagnostic potential of brain injury biomarkers. We also accessed information from Clinicaltrials.gov to identify any clinical trials of biomarker measurements for the diagnosis of brain damage. In total, we present 41 proteins, enzymes and hormones that have been considered as biomarkers for brain injury, of which 20 have been studied in clinical trials. Several microRNAs have also emerged as potential clinical biomarkers for early diagnosis. Combining multiple biomarkers in a panel, along with other parameters, is yielding promising outcomes.
Collapse
Affiliation(s)
- Diana Karimova
- Functional Pharmacology and Neuroscience, Department of Surgical Sciences, Uppsala, University, Uppsala, Sweden
| | - Elham Rostami
- Department of Medical Sciences, Section of Neurosurgery, Uppsala University, Uppsala, Sweden
| | - Vladimir N Chubarev
- Advanced Molecular Technology, Limited Liable Company (LLC), Moscow, 354340, Russia
| | - Vadim V Tarasov
- Advanced Molecular Technology, Limited Liable Company (LLC), Moscow, 354340, Russia
| | - Helgi B Schiöth
- Functional Pharmacology and Neuroscience, Department of Surgical Sciences, Uppsala, University, Uppsala, Sweden
| | - Mathias Rask-Andersen
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Uppsala University, Uppsala, Sweden.
| |
Collapse
|
17
|
Jamerson LE, Bradshaw PC. The Roles of White Adipose Tissue and Liver NADPH in Dietary Restriction-Induced Longevity. Antioxidants (Basel) 2024; 13:820. [PMID: 39061889 PMCID: PMC11273496 DOI: 10.3390/antiox13070820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 07/01/2024] [Accepted: 07/03/2024] [Indexed: 07/28/2024] Open
Abstract
Dietary restriction (DR) protocols frequently employ intermittent fasting. Following a period of fasting, meal consumption increases lipogenic gene expression, including that of NADPH-generating enzymes that fuel lipogenesis in white adipose tissue (WAT) through the induction of transcriptional regulators SREBP-1c and CHREBP. SREBP-1c knockout mice, unlike controls, did not show an extended lifespan on the DR diet. WAT cytoplasmic NADPH is generated by both malic enzyme 1 (ME1) and the pentose phosphate pathway (PPP), while liver cytoplasmic NADPH is primarily synthesized by folate cycle enzymes provided one-carbon units through serine catabolism. During the daily fasting period of the DR diet, fatty acids are released from WAT and are transported to peripheral tissues, where they are used for beta-oxidation and for phospholipid and lipid droplet synthesis, where monounsaturated fatty acids (MUFAs) may activate Nrf1 and inhibit ferroptosis to promote longevity. Decreased WAT NADPH from PPP gene knockout stimulated the browning of WAT and protected from a high-fat diet, while high levels of NADPH-generating enzymes in WAT and macrophages are linked to obesity. But oscillations in WAT [NADPH]/[NADP+] from feeding and fasting cycles may play an important role in maintaining metabolic plasticity to drive longevity. Studies measuring the WAT malate/pyruvate as a proxy for the cytoplasmic [NADPH]/[NADP+], as well as studies using fluorescent biosensors expressed in the WAT of animal models to monitor the changes in cytoplasmic [NADPH]/[NADP+], are needed during ad libitum and DR diets to determine the changes that are associated with longevity.
Collapse
Affiliation(s)
| | - Patrick C. Bradshaw
- Department of Biomedical Sciences, James H. Quillen College of Medicine, East Tennessee State University, Johnson City, TN 37614, USA
| |
Collapse
|
18
|
Angelopoulou E, Piperi C. Epigenetics: the missing link between environmental exposures and Parkinson's disease? Epigenomics 2024; 16:921-927. [PMID: 38940212 PMCID: PMC11370972 DOI: 10.1080/17501911.2024.2365615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Accepted: 06/03/2024] [Indexed: 06/29/2024] Open
Affiliation(s)
- Efthalia Angelopoulou
- Department of Neurology, Eginition University Hospital, National & Kapodistrian University of Athens, 11528, Athens, Greece
| | - Christina Piperi
- Department of Biological Chemistry, Medical School, National & Kapodistrian University of Athens, 75 M. Asias Street, 11527, Athens, Greece
| |
Collapse
|
19
|
Aventaggiato M, Arcangeli T, Vernucci E, Barreca F, Sansone L, Pellegrini L, Pontemezzo E, Valente S, Fioravanti R, Russo MA, Mai A, Tafani M. Pharmacological Activation of SIRT3 Modulates the Response of Cancer Cells to Acidic pH. Pharmaceuticals (Basel) 2024; 17:810. [PMID: 38931477 DOI: 10.3390/ph17060810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 06/14/2024] [Accepted: 06/17/2024] [Indexed: 06/28/2024] Open
Abstract
Cancer cells modulate their metabolism, creating an acidic microenvironment that, in turn, can favor tumor progression and chemotherapy resistance. Tumor cells adopt strategies to survive a drop in extracellular pH (pHe). In the present manuscript, we investigated the contribution of mitochondrial sirtuin 3 (SIRT3) to the adaptation and survival of cancer cells to a low pHe. SIRT3-overexpressing and silenced breast cancer cells MDA-MB-231 and human embryonic kidney HEK293 cells were grown in buffered and unbuffered media at pH 7.4 and 6.8 for different times. mRNA expression of SIRT3 and CAVB, was measured by RT-PCR. Protein expression of SIRT3, CAVB and autophagy proteins was estimated by western blot. SIRT3-CAVB interaction was determined by immunoprecipitation and proximity ligation assays (PLA). Induction of autophagy was studied by western blot and TEM. SIRT3 overexpression increases the survival of both cell lines. Moreover, we demonstrated that SIRT3 controls intracellular pH (pHi) through the regulation of mitochondrial carbonic anhydrase VB (CAVB). Interestingly, we obtained similar results by using MC2791, a new SIRT3 activator. Our results point to the possibility of modulating SIRT3 to decrease the response and resistance of tumor cells to the acidic microenvironment and ameliorate the effectiveness of anticancer therapy.
Collapse
Affiliation(s)
- Michele Aventaggiato
- Department of Experimental Medicine, Sapienza University of Rome, Viale Regina Elena 324, 00161 Rome, Italy
| | - Tania Arcangeli
- Department of Experimental Medicine, Sapienza University of Rome, Viale Regina Elena 324, 00161 Rome, Italy
| | - Enza Vernucci
- Department of Experimental Medicine, Sapienza University of Rome, Viale Regina Elena 324, 00161 Rome, Italy
| | - Federica Barreca
- Department of Experimental Medicine, Sapienza University of Rome, Viale Regina Elena 324, 00161 Rome, Italy
| | - Luigi Sansone
- Department of Human Sciences and Promotion of the Quality of Life, San Raffaele Roma Open University, Via di Val Cannuta 247, 00166 Rome, Italy
- Laboratory of Cellular and Molecular Pathology, IRCCS San Raffaele Rome, Via di Val Cannuta 247, 00166 Rome, Italy
| | - Laura Pellegrini
- Department of Experimental Medicine, Sapienza University of Rome, Viale Regina Elena 324, 00161 Rome, Italy
| | - Elena Pontemezzo
- European Hospital, New Fertility Group, Center for Reproductive Medicine, Via Portuense 700, 00149 Rome, Italy
| | - Sergio Valente
- Department of Drug Chemistry and Technologies, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy
| | - Rossella Fioravanti
- Department of Drug Chemistry and Technologies, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy
| | - Matteo Antonio Russo
- Department of Human Sciences and Promotion of the Quality of Life, San Raffaele Roma Open University, Via di Val Cannuta 247, 00166 Rome, Italy
- Laboratory of Cellular and Molecular Pathology, IRCCS San Raffaele Rome, Via di Val Cannuta 247, 00166 Rome, Italy
| | - Antonello Mai
- Department of Drug Chemistry and Technologies, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy
| | - Marco Tafani
- Department of Experimental Medicine, Sapienza University of Rome, Viale Regina Elena 324, 00161 Rome, Italy
| |
Collapse
|
20
|
Kaya SG, Eren G, Massarotti A, Bakar-Ates F, Ozkan E, Gozelle M, Ozkan Y. 2-(Methyl(phenyl)amino)-N-(phenyloxyphenyl)acetamide structural motif representing a framework for selective SIRT2 inhibition. Drug Dev Res 2024; 85:e22224. [PMID: 38867474 DOI: 10.1002/ddr.22224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Accepted: 06/02/2024] [Indexed: 06/14/2024]
Abstract
The mammalian cytoplasmic protein SIRT2, a class III histone deacetylase family member, possesses NAD+-dependent lysine deacetylase/deacylase activity. Dysregulation of SIRT2 has been implicated in the pathogenesis of several diseases, including neurological and metabolic disorders and cancer; thus, SIRT2 emerges as a potential therapeutic target. Herein, we identified a series of diaryl acetamides (ST61-ST90) by the structural optimization of our hit STH2, followed by enhanced SIRT2 inhibitory potency and selectivity. Among them, ST72, ST85, and ST88 selectively inhibited SIRT2 with IC50 values of 9.97, 5.74, and 8.92 μM, respectively. Finally, the entire study was accompanied by in silico prediction of binding modes of docked compounds and the stability of SIRT2-ligand complexes. We hope our findings will provide substantial information for designing selective inhibitors of SIRT2.
Collapse
Affiliation(s)
- Selen Gozde Kaya
- SIRTeam Group, Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Gazi University, Ankara, Türkiye
| | - Gokcen Eren
- SIRTeam Group, Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Gazi University, Ankara, Türkiye
| | - Alberto Massarotti
- Dipartimento di Scienze del Farmaco, Università degli Studi del Piemonte Orientale, "A. Avogadro", Largo Donegani 2, Novara, Italy
| | - Filiz Bakar-Ates
- Department of Biochemistry, Faculty of Pharmacy, Ankara University, Ankara, Türkiye
| | - Erva Ozkan
- Department of Biochemistry, Faculty of Pharmacy, Ankara Medipol University, Ankara, Türkiye
| | - Mahmut Gozelle
- SIRTeam Group, Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Gazi University, Ankara, Türkiye
| | - Yesim Ozkan
- Department of Biochemistry, Faculty of Pharmacy, Gazi University, Ankara, Türkiye
| |
Collapse
|
21
|
Geng A, Sun J, Tang H, Yu Y, Wang X, Zhang J, Wang X, Sun X, Zhou X, Gao N, Tan R, Xu Z, Jiang Y, Mao Z. SIRT2 promotes base excision repair by transcriptionally activating OGG1 in an ATM/ATR-dependent manner. Nucleic Acids Res 2024; 52:5107-5120. [PMID: 38554113 PMCID: PMC11109957 DOI: 10.1093/nar/gkae190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 02/10/2024] [Accepted: 03/11/2024] [Indexed: 04/01/2024] Open
Abstract
Sirtuin 2 (SIRT2) regulates the maintenance of genome integrity by targeting pathways of DNA damage response and homologous recombination repair. However, whether and how SIRT2 promotes base excision repair (BER) remain to be determined. Here, we found that independent of its catalytic activity SIRT2 interacted with the critical glycosylase OGG1 to promote OGG1 recruitment to its own promoter upon oxidative stress, thereby enhancing OGG1 promoter activity and increasing BER efficiency. Further studies revealed that SIRT2 was phosphorylated on S46 and S53 by ATM/ATR upon oxidative stress, and SIRT2 phosphorylation enhanced the SIRT2-OGG1 interaction and mediated the stimulatory effect of SIRT2 on OGG1 promoter activity. We also characterized 37 cancer-derived SIRT2 mutants and found that 5 exhibited the loss of the stimulatory effects on OGG1 transcription. Together, our data reveal that SIRT2 acts as a tumor suppressor by promoting OGG1 transcription and increasing BER efficiency in an ATM/ATR-dependent manner.
Collapse
Affiliation(s)
- Anke Geng
- Shanghai Key Laboratory of Maternal Fetal Medicine, Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China
| | - Jiahui Sun
- Shanghai Key Laboratory of Maternal Fetal Medicine, Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China
| | - Huanyin Tang
- Shanghai Key Laboratory of Maternal Fetal Medicine, Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China
| | - Yang Yu
- Shanghai Key Laboratory of Maternal Fetal Medicine, Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China
| | - Xiyue Wang
- School of Medicine, Tongji University, Shanghai 200092, China
| | - Jingyuan Zhang
- Shanghai Key Laboratory of Maternal Fetal Medicine, Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China
| | - Xiaona Wang
- Shanghai Key Laboratory of Maternal Fetal Medicine, Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China
| | - Xiaoxiang Sun
- Shanghai Key Laboratory of Maternal Fetal Medicine, Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China
| | - Xiaofang Zhou
- Department of Oncology, Xiangya Cancer Center, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Neng Gao
- Shanghai Key Laboratory of Maternal Fetal Medicine, Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China
| | - Rong Tan
- Department of Oncology, Xiangya Cancer Center, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Zhu Xu
- Shanghai Key Laboratory of Maternal Fetal Medicine, Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China
| | - Ying Jiang
- Shanghai Key Laboratory of Maternal Fetal Medicine, Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China
| | - Zhiyong Mao
- Shanghai Key Laboratory of Maternal Fetal Medicine, Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China
- School of Medicine, Tongji University, Shanghai 200092, China
- Shanghai Key Laboratory of Signaling and Disease Research, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China
| |
Collapse
|
22
|
Zhou Y, Zhang X, Baker JS, Davison GW, Yan X. Redox signaling and skeletal muscle adaptation during aerobic exercise. iScience 2024; 27:109643. [PMID: 38650987 PMCID: PMC11033207 DOI: 10.1016/j.isci.2024.109643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/25/2024] Open
Abstract
Redox regulation is a fundamental physiological phenomenon related to oxygen-dependent metabolism, and skeletal muscle is mainly regarded as a primary site for oxidative phosphorylation. Several studies have revealed the importance of reactive oxygen and nitrogen species (RONS) in the signaling process relating to muscle adaptation during exercise. To date, improving knowledge of redox signaling in modulating exercise adaptation has been the subject of comprehensive work and scientific inquiry. The primary aim of this review is to elucidate the molecular and biochemical pathways aligned to RONS as activators of skeletal muscle adaptation and to further identify the interconnecting mechanisms controlling redox balance. We also discuss the RONS-mediated pathways during the muscle adaptive process, including mitochondrial biogenesis, muscle remodeling, vascular angiogenesis, neuron regeneration, and the role of exogenous antioxidants.
Collapse
Affiliation(s)
- Yingsong Zhou
- Faculty of Sports Science, Ningbo University, Ningbo, China
| | - Xuan Zhang
- School of Wealth Management, Ningbo University of Finance and Economics, Ningbo, China
| | - Julien S. Baker
- Centre for Health and Exercise Science Research, Hong Kong Baptist University, Kowloon Tong 999077, Hong Kong
| | - Gareth W. Davison
- Sport and Exercise Sciences Research Institute, Ulster University, Belfast BT15 IED, UK
| | - Xiaojun Yan
- School of Marine Sciences, Ningbo University, Ningbo, China
| |
Collapse
|
23
|
Wei Z, Yang B, Wang H, Lv S, Chen H, Liu D. Caloric restriction, Sirtuins, and cardiovascular diseases. Chin Med J (Engl) 2024; 137:921-935. [PMID: 38527930 PMCID: PMC11046024 DOI: 10.1097/cm9.0000000000003056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Indexed: 03/27/2024] Open
Abstract
ABSTRACT Caloric restriction (CR) is a well-established dietary intervention known to extend healthy lifespan and exert positive effects on aging-related diseases, including cardiovascular conditions. Sirtuins, a family of nicotinamide adenine dinucleotide (NAD + )-dependent histone deacetylases, have emerged as key regulators of cellular metabolism, stress responses, and the aging process, serving as energy status sensors in response to CR. However, the mechanism through which CR regulates Sirtuin function to ameliorate cardiovascular disease remains unclear. This review not only provided an overview of recent research investigating the interplay between Sirtuins and CR, specifically focusing on their potential implications for cardiovascular health, but also provided a comprehensive summary of the benefits of CR for the cardiovascular system mediated directly via Sirtuins. CR has also been shown to have considerable impact on specific metabolic organs, leading to the production of small molecules that enter systemic circulation and subsequently regulate Sirtuin activity within the cardiovascular system. The direct and indirect effects of CR offer a potential mechanism for Sirtuin modulation and subsequent cardiovascular protection. Understanding the interplay between CR and Sirtuins will provide new insights for the development of interventions to prevent and treat cardiovascular diseases.
Collapse
Affiliation(s)
- Ziyu Wei
- State Key Laboratory of Common Mechanism Research for Major Diseases, Department of Biochemistry and Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100005, China
| | - Bo Yang
- State Key Laboratory of Common Mechanism Research for Major Diseases, Department of Biochemistry and Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100005, China
| | - Huiyu Wang
- State Key Laboratory of Common Mechanism Research for Major Diseases, Department of Biochemistry and Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100005, China
| | - Shuangjie Lv
- State Key Laboratory of Common Mechanism Research for Major Diseases, Department of Biochemistry and Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100005, China
| | - Houzao Chen
- State Key Laboratory of Common Mechanism Research for Major Diseases, Department of Biochemistry and Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100005, China
| | - Depei Liu
- State Key Laboratory of Common Mechanism Research for Major Diseases, Department of Biochemistry and Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100005, China
| |
Collapse
|
24
|
You J, Li Y, Chong W. The role and therapeutic potential of SIRTs in sepsis. Front Immunol 2024; 15:1394925. [PMID: 38690282 PMCID: PMC11058839 DOI: 10.3389/fimmu.2024.1394925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2024] [Accepted: 04/03/2024] [Indexed: 05/02/2024] Open
Abstract
Sepsis is a life-threatening organ dysfunction caused by the host's dysfunctional response to infection. Abnormal activation of the immune system and disturbance of energy metabolism play a key role in the development of sepsis. In recent years, the Sirtuins (SIRTs) family has been found to play an important role in the pathogenesis of sepsis. SIRTs, as a class of histone deacetylases (HDACs), are widely involved in cellular inflammation regulation, energy metabolism and oxidative stress. The effects of SIRTs on immune cells are mainly reflected in the regulation of inflammatory pathways. This regulation helps balance the inflammatory response and may lessen cell damage and organ dysfunction in sepsis. In terms of energy metabolism, SIRTs can play a role in immunophenotypic transformation by regulating cell metabolism, improve mitochondrial function, increase energy production, and maintain cell energy balance. SIRTs also regulate the production of reactive oxygen species (ROS), protecting cells from oxidative stress damage by activating antioxidant defense pathways and maintaining a balance between oxidants and reducing agents. Current studies have shown that several potential drugs, such as Resveratrol and melatonin, can enhance the activity of SIRT. It can help to reduce inflammatory response, improve energy metabolism and reduce oxidative stress, showing potential clinical application prospects for the treatment of sepsis. This review focuses on the regulation of SIRT on inflammatory response, energy metabolism and oxidative stress of immune cells, as well as its important influence on multiple organ dysfunction in sepsis, and discusses and summarizes the effects of related drugs and compounds on reducing multiple organ damage in sepsis through the pathway involving SIRTs. SIRTs may become a new target for the treatment of sepsis and its resulting organ dysfunction, providing new ideas and possibilities for the treatment of this life-threatening disease.
Collapse
Affiliation(s)
- Jiaqi You
- Department of Emergency, The First Hospital of China Medical University, Shenyang, China
| | - Yilin Li
- Department of Thoracic Surgery, The First Hospital of China Medical University, Shenyang, China
| | - Wei Chong
- Department of Emergency, The First Hospital of China Medical University, Shenyang, China
| |
Collapse
|
25
|
Yang C, Kang F, Huang X, Wu W, Hou G, Zheng K, Han M, Kan B, Zhang Z, Li J. Spinal sirtuin 2 attenuates bone cancer pain by deacetylating FoxO3a. Biochim Biophys Acta Mol Basis Dis 2024; 1870:167129. [PMID: 38513990 DOI: 10.1016/j.bbadis.2024.167129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 03/13/2024] [Accepted: 03/14/2024] [Indexed: 03/23/2024]
Abstract
Bone cancer pain (BCP) is refractory to currently used analgesics. Recently, sirtuin 2 (SIRT2) was reported to play a vital role in neuropathic pain but its role in BCP remains unknown. It was hypothesized that spinal SIRT2 attenuates BCP by deacetylating FoxO3a and suppressing oxidative stress. The mouse model of BCP established by injecting tumor cells into the intramedullary space of the femur demonstrated that spinal SIRT2 and FoxO3a were downregulated in BCP development. Intrathecal administration of LV-SIRT2 reduced pain hypersensitivity (mechanical and thermal nociception) in BCP mice. Spinal SIRT2 overexpression upregulated FoxO3a and antioxidant genes (SOD2 and catalase) and inhibited FoxO3a acetylation, phosphorylation, and ubiquitination. Moreover, intrathecal administration of SIRT2 shRNA induced pain hypersensitivity in normal mice. Spinal SIRT2 knockdown downregulated FoxO3a and antioxidant genes and increased FoxO3a acetylation, phosphorylation, and ubiquitination. In summary, spinal SIRT2 increases FoxO3a expression in BCP mice and inhibits oxidative stress by deacetylating FoxO3a and further reducing FoxO3a phosphorylation, ubiquitination, and degradation, leading to BCP relief.
Collapse
Affiliation(s)
- Chengwei Yang
- Department of Anesthesiology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
| | - Fang Kang
- Department of Anesthesiology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
| | - Xiang Huang
- Department of Anesthesiology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
| | - Wenjie Wu
- Department of Anesthesiology, Anhui Provincial Hospital Affiliated to Anhui Medical University, Hefei, Anhui, China
| | - Guantao Hou
- Department of Radiology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
| | - Kesong Zheng
- Department of Anesthesiology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
| | - Mingming Han
- Department of Anesthesiology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
| | - Bufan Kan
- Department of Anesthesiology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
| | - Zhi Zhang
- Department of Anesthesiology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China; Department of Biophysics and Neurobiology, Key Laboratory of Brain Function and Disease of Chinese Academy of Sciences, University of Science and Technology of China, Hefei, Anhui, China.
| | - Juan Li
- Department of Anesthesiology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China.
| |
Collapse
|
26
|
Shi L, Yang J, Tao Z, Zheng L, Bui T, Alonso R, Yue F, Cheng Z. Loss of FoxO1 activates an alternate mechanism of mitochondrial quality control for healthy adipose browning. Clin Sci (Lond) 2024; 138:371-385. [PMID: 38469619 PMCID: PMC10932742 DOI: 10.1042/cs20230973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 02/26/2024] [Accepted: 02/27/2024] [Indexed: 03/13/2024]
Abstract
Browning of white adipose tissue is hallmarked by increased mitochondrial density and metabolic improvements. However, it remains largely unknown how mitochondrial turnover and quality control are regulated during adipose browning. In the present study, we found that mice lacking adipocyte FoxO1, a transcription factor that regulates autophagy, adopted an alternate mechanism of mitophagy to maintain mitochondrial turnover and quality control during adipose browning. Post-developmental deletion of adipocyte FoxO1 (adO1KO) suppressed Bnip3 but activated Fundc1/Drp1/OPA1 cascade, concurrent with up-regulation of Atg7 and CTSL. In addition, mitochondrial biogenesis was stimulated via the Pgc1α/Tfam pathway in adO1KO mice. These changes were associated with enhanced mitochondrial homeostasis and metabolic health (e.g., improved glucose tolerance and insulin sensitivity). By contrast, silencing Fundc1 or Pgc1α reversed the changes induced by silencing FoxO1, which impaired mitochondrial quality control and function. Ablation of Atg7 suppressed mitochondrial turnover and function, causing metabolic disorder (e.g., impaired glucose tolerance and insulin sensitivity), regardless of elevated markers of adipose browning. Consistently, suppression of autophagy via CTSL by high-fat diet was associated with a reversal of adO1KO-induced benefits. Our data reveal a unique role of FoxO1 in coordinating mitophagy receptors (Bnip3 and Fundc1) for a fine-tuned mitochondrial turnover and quality control, underscoring autophagic clearance of mitochondria as a prerequisite for healthy browning of adipose tissue.
Collapse
Affiliation(s)
- Limin Shi
- Department of Food Science and Human Nutrition, University of Florida, Gainesville, FL 32611, U.S.A
- Interdisciplinary Nutritional Sciences Doctoral Program, Center for Nutritional Sciences, University of Florida, Gainesville, FL 32611, U.S.A
- Center for Integrative Cardiovascular and Metabolic Diseases, University of Florida, Gainesville, FL 32610, U.S.A
| | - Jinying Yang
- Department of Food Science and Human Nutrition, University of Florida, Gainesville, FL 32611, U.S.A
- Interdisciplinary Nutritional Sciences Doctoral Program, Center for Nutritional Sciences, University of Florida, Gainesville, FL 32611, U.S.A
| | - Zhipeng Tao
- Department of Human Nutrition, Foods, and Exercise, Virginia Tech, Blacksburg, VA 24061, U.S.A
- Cutaneous Biology Research Center, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA 02129, U.S.A
| | - Louise Zheng
- Department of Human Nutrition, Foods, and Exercise, Virginia Tech, Blacksburg, VA 24061, U.S.A
| | - Tyler F. Bui
- Department of Food Science and Human Nutrition, University of Florida, Gainesville, FL 32611, U.S.A
| | - Ramon L. Alonso
- Department of Food Science and Human Nutrition, University of Florida, Gainesville, FL 32611, U.S.A
| | - Feng Yue
- Department of Animal Sciences, University of Florida, Gainesville, FL 32611, U.S.A
| | - Zhiyong Cheng
- Department of Food Science and Human Nutrition, University of Florida, Gainesville, FL 32611, U.S.A
- Interdisciplinary Nutritional Sciences Doctoral Program, Center for Nutritional Sciences, University of Florida, Gainesville, FL 32611, U.S.A
- Center for Integrative Cardiovascular and Metabolic Diseases, University of Florida, Gainesville, FL 32610, U.S.A
- Department of Human Nutrition, Foods, and Exercise, Virginia Tech, Blacksburg, VA 24061, U.S.A
| |
Collapse
|
27
|
Shokeen K, Kumar S. Newcastle disease virus regulates its replication by instigating oxidative stress-driven Sirtuin 7 production. J Gen Virol 2024; 105. [PMID: 38376490 DOI: 10.1099/jgv.0.001961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/21/2024] Open
Abstract
Reactive oxygen species (ROS) accumulation inside the cells instigates oxidative stress, activating stress-responsive genes. The viral strategies for promoting stressful conditions and utilizing the induced host proteins to enhance their replication remain elusive. The present work investigates the impact of oxidative stress responses on Newcastle disease virus (NDV) pathogenesis. Here, we show that the progression of NDV infection varies with intracellular ROS levels. Additionally, the results demonstrate that NDV infection modulates the expression of oxidative stress-responsive genes, majorly sirtuin 7 (SIRT7), a NAD+-dependent deacetylase. The modulation of SIRT7 protein, both through overexpression and knockdown, significantly impacts the replication dynamics of NDV in DF-1 cells. The activation of SIRT7 is found to be associated with the positive regulation of cellular protein deacetylation. Lastly, the results suggested that NDV-driven SIRT7 alters NAD+ metabolism in vitro and in ovo. We concluded that the elevated expression of NDV-mediated SIRT7 protein with enhanced activity metabolizes the NAD+ to deacetylase the host proteins, thus contributing to high virus replication.
Collapse
Affiliation(s)
- Kamal Shokeen
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam 781039, India
| | - Sachin Kumar
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam 781039, India
| |
Collapse
|
28
|
Sola-Sevilla N, Puerta E. SIRT2 as a potential new therapeutic target for Alzheimer's disease. Neural Regen Res 2024; 19:124-131. [PMID: 37488853 PMCID: PMC10479864 DOI: 10.4103/1673-5374.375315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 03/09/2023] [Accepted: 04/04/2023] [Indexed: 07/26/2023] Open
Abstract
Alzheimer's disease is the most common cause of dementia globally with an increasing incidence over the years, bringing a heavy burden to individuals and society due to the lack of an effective treatment. In this context, sirtuin 2, the sirtuin with the highest expression in the brain, has emerged as a potential therapeutic target for neurodegenerative diseases. This review summarizes and discusses the complex roles of sirtuin 2 in different molecular mechanisms involved in Alzheimer's disease such as amyloid and tau pathology, microtubule stability, neuroinflammation, myelin formation, autophagy, and oxidative stress. The role of sirtuin 2 in all these processes highlights its potential implication in the etiology and development of Alzheimer's disease. However, its presence in different cell types and its enormous variety of substrates leads to apparently contradictory conclusions when it comes to understanding its specific functions. Further studies in sirtuin 2 research with selective sirtuin 2 modulators targeting specific sirtuin 2 substrates are necessary to clarify its specific functions under different conditions and to validate it as a novel pharmacological target. This will contribute to the development of new treatment strategies, not only for Alzheimer's disease but also for other neurodegenerative diseases.
Collapse
Affiliation(s)
- Noemi Sola-Sevilla
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, University of Navarra, Navarra Institute for Health Research (IdiSNA), Pamplona, Spain
| | - Elena Puerta
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, University of Navarra, Navarra Institute for Health Research (IdiSNA), Pamplona, Spain
| |
Collapse
|
29
|
Betsinger CN, Justice JL, Tyl MD, Edgar JE, Budayeva HG, Abu YF, Cristea IM. Sirtuin 2 promotes human cytomegalovirus replication by regulating cell cycle progression. mSystems 2023; 8:e0051023. [PMID: 37916830 PMCID: PMC10734535 DOI: 10.1128/msystems.00510-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Accepted: 09/28/2023] [Indexed: 11/03/2023] Open
Abstract
IMPORTANCE This study expands the growing understanding that protein acetylation is a highly regulated molecular toggle of protein function in both host anti-viral defense and viral replication. We describe a pro-viral role for the human enzyme SIRT2, showing that its deacetylase activity supports HCMV replication. By integrating quantitative proteomics, flow cytometry cell cycle assays, microscopy, and functional virology assays, we investigate the temporality of SIRT2 functions and substrates. We identify a pro-viral role for the SIRT2 deacetylase activity via regulation of CDK2 K6 acetylation and the G1-S cell cycle transition. These findings highlight a link between viral infection, protein acetylation, and cell cycle progression.
Collapse
Affiliation(s)
- Cora N. Betsinger
- Department of Molecular Biology, Princeton University, Lewis Thomas Laboratory, Washington Road, Princeton, New Jersey, USA
| | - Joshua L. Justice
- Department of Molecular Biology, Princeton University, Lewis Thomas Laboratory, Washington Road, Princeton, New Jersey, USA
| | - Matthew D. Tyl
- Department of Molecular Biology, Princeton University, Lewis Thomas Laboratory, Washington Road, Princeton, New Jersey, USA
| | - Julia E. Edgar
- Department of Molecular Biology, Princeton University, Lewis Thomas Laboratory, Washington Road, Princeton, New Jersey, USA
| | - Hanna G. Budayeva
- Department of Molecular Biology, Princeton University, Lewis Thomas Laboratory, Washington Road, Princeton, New Jersey, USA
| | - Yaa F. Abu
- Department of Molecular Biology, Princeton University, Lewis Thomas Laboratory, Washington Road, Princeton, New Jersey, USA
| | - Ileana M. Cristea
- Department of Molecular Biology, Princeton University, Lewis Thomas Laboratory, Washington Road, Princeton, New Jersey, USA
| |
Collapse
|
30
|
Li Y, Bie J, Song C, Li Y, Zhang T, Li H, Zhao L, You F, Luo J. SIRT2 negatively regulates the cGAS-STING pathway by deacetylating G3BP1. EMBO Rep 2023; 24:e57500. [PMID: 37870259 PMCID: PMC10702829 DOI: 10.15252/embr.202357500] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 09/25/2023] [Accepted: 10/04/2023] [Indexed: 10/24/2023] Open
Abstract
SIRT2, a cytoplasmic member of the Sirtuin family, has important roles in immunity and inflammation. However, its function in regulating the response to DNA virus infection remains elusive. Here, we find that SIRT2 is a unique regulator among the Sirtuin family that negatively modulates the cGAS-STING-signaling pathway. SIRT2 is down-regulated after Herpes simplex virus-1 (HSV-1) infection, and SIRT2 deficiency markedly elevates the expression levels of type I interferon (IFN). SIRT2 inhibits the DNA binding ability and droplet formation of cGAS by interacting with and deacetylating G3BP1 at K257, K276, and K376, leading to the disassembly of the cGAS-G3BP1 complex, which is critical for cGAS activation. Administration of AGK2, a selective SIRT2 inhibitor, protects mice from HSV-1 infection and increases the expression of IFN and IFN-stimulated genes. Our study shows that SIRT2 negatively regulates cGAS activation through G3BP1 deacetylation, suggesting a potential antiviral strategy by modulating SIRT2 activity.
Collapse
Affiliation(s)
- Yutong Li
- Department of Medical Genetics, Center for Medical Genetics, School of Basic Medical SciencesPeking University Health Science CenterBeijingChina
| | - Juntao Bie
- Department of Medical Genetics, Center for Medical Genetics, School of Basic Medical SciencesPeking University Health Science CenterBeijingChina
| | - Chen Song
- Department of Medical Genetics, Center for Medical Genetics, School of Basic Medical SciencesPeking University Health Science CenterBeijingChina
| | - Yunfei Li
- Department of Immunology, School of Basic Medical Sciences, Beijing Key Laboratory of Tumor Systems BiologyInstitute of Systems Biomedicine, Peking University Health Science CenterBeijingChina
| | - Tianzhuo Zhang
- Department of Medical Genetics, Center for Medical Genetics, School of Basic Medical SciencesPeking University Health Science CenterBeijingChina
| | - Haishuang Li
- Department of Pathology, School of Basic Medical SciencesPeking University Third Hospital, Peking University Health Science CenterBeijingChina
| | - Long Zhao
- Department of Gastroenterological SurgeryPeking University People's HospitalBeijingChina
| | - Fuping You
- Department of Immunology, School of Basic Medical Sciences, Beijing Key Laboratory of Tumor Systems BiologyInstitute of Systems Biomedicine, Peking University Health Science CenterBeijingChina
| | - Jianyuan Luo
- Department of Medical Genetics, Center for Medical Genetics, School of Basic Medical SciencesPeking University Health Science CenterBeijingChina
- Beijing Key Laboratory of Protein Posttranslational Modifications and Cell Function, Department of Biochemistry and Biophysics, School of Basic Medical SciencesPeking University Health Science CenterBeijingChina
| |
Collapse
|
31
|
Garmendia-Berges M, Sola-Sevilla N, Mera-Delgado MC, Puerta E. Age-Associated Changes of Sirtuin 2 Expression in CNS and the Periphery. BIOLOGY 2023; 12:1476. [PMID: 38132302 PMCID: PMC10741187 DOI: 10.3390/biology12121476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Revised: 11/22/2023] [Accepted: 11/27/2023] [Indexed: 12/23/2023]
Abstract
Sirtuin 2 (SIRT2), one of the seven members of the sirtuin family, has emerged as a potential regulator of aging and age-related pathologies since several studies have demonstrated that it shows age-related changes in humans and different animal models. A detailed analysis of the relevant works published to date addressing this topic shows that the changes that occur in SIRT2 with aging seem to be opposite in the brain and in the periphery. On the one hand, aging induces an increase in SIRT2 levels in the brain, which supports the notion that its pharmacological inhibition is beneficial in different neurodegenerative diseases. However, on the other hand, in the periphery, SIRT2 levels are reduced with aging while keeping its expression is protective against age-related peripheral inflammation, insulin resistance, and cardiovascular diseases. Thus, systemic administration of any known modulator of this enzyme would have conflicting outcomes. This review summarizes the currently available information on changes in SIRT2 expression in aging and the underlying mechanisms affected, with the aim of providing evidence to determine whether its pharmacological modulation could be an effective and safe pharmacological strategy for the treatment of age-related diseases.
Collapse
Affiliation(s)
- Maider Garmendia-Berges
- Pharmaceutical Sciences Department, Division of Pharmacology, School of Pharmacy and Nutrition, University of Navarra, 31008 Pamplona, Spain; (M.G.-B.); (N.S.-S.); (M.M.-D.)
| | - Noemi Sola-Sevilla
- Pharmaceutical Sciences Department, Division of Pharmacology, School of Pharmacy and Nutrition, University of Navarra, 31008 Pamplona, Spain; (M.G.-B.); (N.S.-S.); (M.M.-D.)
- Navarra Institute for Health Research (IdiSNA), 31008 Pamplona, Spain
| | - MCarmen Mera-Delgado
- Pharmaceutical Sciences Department, Division of Pharmacology, School of Pharmacy and Nutrition, University of Navarra, 31008 Pamplona, Spain; (M.G.-B.); (N.S.-S.); (M.M.-D.)
| | - Elena Puerta
- Pharmaceutical Sciences Department, Division of Pharmacology, School of Pharmacy and Nutrition, University of Navarra, 31008 Pamplona, Spain; (M.G.-B.); (N.S.-S.); (M.M.-D.)
- Navarra Institute for Health Research (IdiSNA), 31008 Pamplona, Spain
| |
Collapse
|
32
|
Yao W, Pei Z, Zhang X. NAD +: A key metabolic regulator with great therapeutic potential for myocardial infarction via Sirtuins family. Heliyon 2023; 9:e21890. [PMID: 38027748 PMCID: PMC10663897 DOI: 10.1016/j.heliyon.2023.e21890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 07/19/2023] [Accepted: 10/31/2023] [Indexed: 12/01/2023] Open
Abstract
Myocardial infarction (MI) is one of the complex phenotypes of coronary artery disease, which results from the interaction of multiple genetic and environmental factors. Nicotinamide Adenine Dinucleotide (NAD+) is an important cofactor regulating metabolic homeostasis and a rate-limiting substrate for sirtuin (SIRT) deacetylase. Numerous NAD+ studies have shown that it can be used as an anti-MI treatment. However, there have been few systematic reviews of the overall role of NAD+ in treating MI. MI, which has long been a global health problem, still lacks effective treatment till now, and the discovery of NAD+ provides a new perspective on its adjuvant treatment. This review summarizes the role of NAD+ signaling in SIRTs in alleviating MI.
Collapse
Affiliation(s)
- Wei Yao
- Department of Internal Medicine, Affiliated Zhong Shan Hospital of Dalian University, Dalian, 116001, China
| | - Zuowei Pei
- Department of Cardiology, Central Hospital of Dalian University of Technology, Dalian, 116089, China
- Department of Central Laboratory, Central Hospital of Dalian University of Technology, Dalian, 116033, China
- Faculty of Medicine, Dalian University of Technology, Dalian, 116024, China
| | - Xiaoqing Zhang
- Department of Infection, Affiliated Zhongshan Hospital of Dalian University, Dalian, 116001, China
| |
Collapse
|
33
|
Chen Y, Zhou C, Abdelhamid M, Jung CG, Michikawa M. Inhibition of Sirt2 Decreases ApoE Secretion in Astrocytes and Microglial Cells. J Biochem 2023; 174:409-420. [PMID: 37488092 DOI: 10.1093/jb/mvad054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 07/12/2023] [Accepted: 07/14/2023] [Indexed: 07/26/2023] Open
Abstract
Amyloid-β (Aβ) accumulation caused by an imbalance of the production and clearance of Aβ in the brain is associated with the development of Alzheimer's disease (ad). Apolipoprotein E (ApoE) (the strongest genetic risk factor) enhances Aβ clearance, preventing Aβ deposition. Sirtuin 2 (Sirt2) is an NAD+-dependent histone deacetylase and its inhibition has been reported to ameliorate memory impairment in ad-like model mice. However, the role of Sirt2 in ApoE secretion is unknown. Here, we found that inhibition of Sirt2 activity in primary cultured astrocytes and BV2 cells decreased ApoE secretion, resulting in the accumulation of intracellular ApoE and inhibiting extracellular Aβ degradation. However, the reduction of Sirt2 protein level by Sirt2 siRNA decreased ApoE protein level, which ultimately reduces ApoE secretion. In addition, the knockdown of Sirt2 in the HEK293-APP cells also decreased levels of intracellular ApoE leading to reduction of its secretion, which is accompanied by increased Aβ levels without altering APP and APP processing enzymes. Our findings provide a novel role of Sirt2 in ApoE secretion.
Collapse
Key Words
- Alzheimer's disease
- Sirt2Abbreviations: ad, Alzheimer’s disease; ABCA1, ATP-binding cassette protein A1; ADAM10, A disintegrin and metalloproteinase domain-containing protein 10; Aβ, Amyloid-beta; APP, Amyloid precursor protein; ApoE, Apolipoprotein E; BACE1, β-site amyloid precursor protein cleaving enzyme 1; IDE, Insulin degrading enzyme; NEP, Neprilysin; PS1, Presenilin 1; Sirt2, Sirtuin 2
- amyloid-β
- apolipoprotein E
- glial cells
Collapse
Affiliation(s)
- Yuxin Chen
- Department of Biochemistry, Nagoya City University Graduate School of Medical Sciences, 1 Kawasumi, Mizuho-cho, Mizuho-ku, Nagoya, Aichi, 467-8601, Japan
| | - Chunyu Zhou
- Department of Biochemistry, Nagoya City University Graduate School of Medical Sciences, 1 Kawasumi, Mizuho-cho, Mizuho-ku, Nagoya, Aichi, 467-8601, Japan
| | - Mona Abdelhamid
- Department of Biochemistry, Nagoya City University Graduate School of Medical Sciences, 1 Kawasumi, Mizuho-cho, Mizuho-ku, Nagoya, Aichi, 467-8601, Japan
| | - Cha-Gyun Jung
- Department of Biochemistry, Nagoya City University Graduate School of Medical Sciences, 1 Kawasumi, Mizuho-cho, Mizuho-ku, Nagoya, Aichi, 467-8601, Japan
| | - Makoto Michikawa
- Department of Biochemistry, Nagoya City University Graduate School of Medical Sciences, 1 Kawasumi, Mizuho-cho, Mizuho-ku, Nagoya, Aichi, 467-8601, Japan
- Department of Geriatric Medicine School of Life Dentistry at Niigata, The Nippon Dental University, 1-8 Hamaura-cho, Chuo-ku, Niigata, 951-8580, Japan
| |
Collapse
|
34
|
Harrington JS, Ryter SW, Plataki M, Price DR, Choi AMK. Mitochondria in health, disease, and aging. Physiol Rev 2023; 103:2349-2422. [PMID: 37021870 PMCID: PMC10393386 DOI: 10.1152/physrev.00058.2021] [Citation(s) in RCA: 189] [Impact Index Per Article: 94.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 03/28/2023] [Accepted: 03/30/2023] [Indexed: 04/07/2023] Open
Abstract
Mitochondria are well known as organelles responsible for the maintenance of cellular bioenergetics through the production of ATP. Although oxidative phosphorylation may be their most important function, mitochondria are also integral for the synthesis of metabolic precursors, calcium regulation, the production of reactive oxygen species, immune signaling, and apoptosis. Considering the breadth of their responsibilities, mitochondria are fundamental for cellular metabolism and homeostasis. Appreciating this significance, translational medicine has begun to investigate how mitochondrial dysfunction can represent a harbinger of disease. In this review, we provide a detailed overview of mitochondrial metabolism, cellular bioenergetics, mitochondrial dynamics, autophagy, mitochondrial damage-associated molecular patterns, mitochondria-mediated cell death pathways, and how mitochondrial dysfunction at any of these levels is associated with disease pathogenesis. Mitochondria-dependent pathways may thereby represent an attractive therapeutic target for ameliorating human disease.
Collapse
Affiliation(s)
- John S Harrington
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, New York-Presbyterian Hospital/Weill Cornell Medical Center, Weill Cornell Medicine, New York, New York, United States
| | | | - Maria Plataki
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, New York-Presbyterian Hospital/Weill Cornell Medical Center, Weill Cornell Medicine, New York, New York, United States
| | - David R Price
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, New York-Presbyterian Hospital/Weill Cornell Medical Center, Weill Cornell Medicine, New York, New York, United States
| | - Augustine M K Choi
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, New York-Presbyterian Hospital/Weill Cornell Medical Center, Weill Cornell Medicine, New York, New York, United States
| |
Collapse
|
35
|
Eng ZH, Abdul Aziz A, Ng KL, Mat Junit S. Changes in antioxidant status and DNA repair capacity are corroborated with molecular alterations in malignant thyroid tissue of patients with papillary thyroid cancer. Front Mol Biosci 2023; 10:1237548. [PMID: 37692064 PMCID: PMC10484572 DOI: 10.3389/fmolb.2023.1237548] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Accepted: 08/14/2023] [Indexed: 09/12/2023] Open
Abstract
Introduction: Papillary thyroid cancer (PTC) accounts for approximately 80% of all thyroid cancer cases. The mechanism of PTC tumourigenesis is not fully understood, but oxidative imbalance is thought to play a role. To gain further insight, this study evaluated antioxidant status, DNA repair capacity and genetic alterations in individuals diagnosed with benign thyroid lesion in one lobe (BTG) and PTC lesion in another. Methods: Individuals with coexisting BTG and PTC lesions in their thyroid lobes were included in this study. Reactive oxygen species (ROS) level, ABTS radical scavenging activity, ferric reducing antioxidant capacity, glutathione peroxidase and superoxide dismutase activities were measured in the thyroid tissue lysate. The expression of selected genes and proteins associated with oxidative stress defence and DNA repair were analysed through quantitative real-time PCR and Western blotting. Molecular alterations in genomic DNA were analysed through whole-exome sequencing and the potentially pathogenic driver genes filtered through Cancer-Related Analysis of Variants Toolkit (CRAVAT) analysis were subjected to pathway enrichment analysis using Metascape. Results: Significantly higher ROS level was detected in the PTC compared to the BTG lesions. The PTC lesions had significantly higher expression of GPX1, SOD2 and OGG1 but significantly lower expression of CAT and PRDX1 genes than the BTG lesions. Pathway enrichment analysis identified "regulation of MAPK cascade," "positive regulation of ERK1 and ERK2 cascade" and "negative regulation of reactive oxygen species metabolic process" to be significantly enriched in the PTC lesions only. Four pathogenic genetic variants were identified in the PTC lesions; BRAF V600E, MAP2K7-rs2145142862, BCR-rs372013175 and CD24 NM_001291737.1:p.Gln23fs while MAP3K9 and G6PD were among 11 genes that were mutated in both BTG and PTC lesions. Conclusion: Our findings provided further insight into the connection between oxidative stress, DNA damage, and genetic changes associated with BTG-to-PTC transformation. The increased oxidative DNA damage due to the heightened ROS levels could have heralded the BTG-to-PTC transformation, potentially through mutations in the genes involved in the MAPK signalling pathway and stress-activated MAPK/JNK cascade. Further in-vitro functional analyses and studies involving a larger sample size would need to be carried out to validate the findings from this pilot study.
Collapse
Affiliation(s)
- Zing Hong Eng
- Department of Molecular Medicine, Faculty of Medicine, Universiti Malaya, Kuala Lumpur, Malaysia
| | - Azlina Abdul Aziz
- Department of Molecular Medicine, Faculty of Medicine, Universiti Malaya, Kuala Lumpur, Malaysia
| | - Khoon Leong Ng
- Department of Surgery, Faculty of Medicine, Universiti Malaya, Kuala Lumpur, Malaysia
| | - Sarni Mat Junit
- Department of Molecular Medicine, Faculty of Medicine, Universiti Malaya, Kuala Lumpur, Malaysia
| |
Collapse
|
36
|
Cai H, Wang Y, Zhang J, Wei Z, Yan T, Feng C, Xu Z, Zhou A, Wu Y. Discovery of Novel SIRT1/2 Inhibitors with Effective Cytotoxicity against Human Leukemia Cells. J Chem Inf Model 2023; 63:4780-4790. [PMID: 37486605 DOI: 10.1021/acs.jcim.3c00556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/25/2023]
Abstract
The sirtuin enzyme family members, SIRT1 and SIRT2, play both tumor-promoting and tumor-suppressing roles, depending on the context and experimental conditions. Compounds that inhibit either SIRT1 or SIRT2 show promising antitumor effects in several types of cancer models, both in vitro and in vivo. The simultaneous inhibition of SIRT1 and SIRT2 is helpful in treating cancer by completely blocking p53 deacetylation, leading to cell death. However, only a few SIRT1/2 dual inhibitors have been developed. Here, we report the discovery of a novel series of SIRT1/2 dual inhibitors via a rational drug design that involved virtual screening and a substructure search. Eleven of the derived compounds exhibited high inhibitory activities, with IC50 < 5 μM and high specificity for both SIRT1 and SIRT2. Compounds hsa55 and PS9 strongly induced apoptosis and showed antiproliferative effects against human leukemia cell lines, which could be due to their ability to increase of p53 and α-tubulin acetylation, as we observed in MOLM-13 cells. Therefore, the new scaffolds of these compounds and their efficacy in leukemia cell lines provide important clues for the further development of novel anti-leukemia drugs.
Collapse
Affiliation(s)
- Haiyan Cai
- Department of Hematology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200120, China
- Key Laboratory of Cell Differentiation and Apoptosis of the Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Yingying Wang
- Key Laboratory of Cell Differentiation and Apoptosis of the Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
- Hongqiao International Institute of Medicine, Shanghai Tongren Hospital/Faculty of Basic Medicine, Shanghai 200025, China
| | - Jing Zhang
- Key Laboratory of Cell Differentiation and Apoptosis of the Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Zhenquan Wei
- Key Laboratory of Cell Differentiation and Apoptosis of the Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Teng Yan
- Key Laboratory of Cell Differentiation and Apoptosis of the Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Chenxi Feng
- Key Laboratory of Cell Differentiation and Apoptosis of the Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Zhijian Xu
- Drug Discovery and Design Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Aiwu Zhou
- Key Laboratory of Cell Differentiation and Apoptosis of the Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Yingli Wu
- Key Laboratory of Cell Differentiation and Apoptosis of the Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
- Hongqiao International Institute of Medicine, Shanghai Tongren Hospital/Faculty of Basic Medicine, Shanghai 200025, China
| |
Collapse
|
37
|
Akbulut K, Keskin-Aktan A, Abgarmi S, Akbulut H. The role of SIRT2 inhibition on the aging process of brain in male rats. AGING BRAIN 2023; 4:100087. [PMID: 37519449 PMCID: PMC10372168 DOI: 10.1016/j.nbas.2023.100087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2022] [Revised: 07/09/2023] [Accepted: 07/10/2023] [Indexed: 08/01/2023] Open
Abstract
Background Though the exact mechanisms regarding brain aging and its relation to neurodegenerative disorders are not precise, oxidative stress, the key regulators of apoptosis and autophagy, such as bcl-2 and beclin 1, seem to be the potential players in the aging of the cerebral cortex and hippocampus. As a type of nicotinamide adenine dinucleotide (NAD+)-dependent deacetylases, sirtuin 2 (SIRT2) has been associated to age-related diseases. However, the exact role of SIRT2 in brain aging is not well studied. The objective of the current study was to study the role of SIRT2 inhibition on brain aging through the neuroprotective mechanisms. Methods We tested the effects of AGK-2, a SIRT2 inhibitor, on oxidative stress parameters, apoptosis and autophagy regulators including bcl-2, bax, beclin1 in young and old rats. 24 Wistar albino rats (3 months-old and 22 months-old) were divided into four groups; Young-Control (4% DMSO+PBS), Young-AGK-2 (10 µM/bw, ip), Aged-Control, and Aged-AGK-2. Following the 30 days of drug administration period the rats were sacrificed and the cerebral cortex, hippocampus, and cerebellum were isolated. Total antioxidant status (TAS) and total oxidant status (TOS) were measured as oxidative stress parameters in all three brain regions. SIRT2, bcl-2, and bax protein expression levels were measured by western blot and gene expression level of beclin 1, Atg5, and SIRT2 by real-time PCR. Results The bcl-2, bcl-2/bax ratio, beclin 1, and TAS in the cerebral cortex of the aged group were significantly decreased; however, the TOS, oxidative stress index (OSI), and SIRT2 expression in the cerebral cortex and hippocampus increased. SIRT2 inhibition by AGK-2 reduced TOS and OSI levels in all brain regions and increased bcl-2, bcl-2/bax ratio. In aged animals, AGK-2 also increased the beclin 1 levels in the cortex and hippocampus. Conclusion Our results indicate that SIRT2 has an essential role in brain aging. The inhibition of SIRT2 by AGK-2 may increase cell survival and decrease aging related processes in the cerebral cortex and hippocampus via decreasing oxidative stress, and increasing bcl-2 and beclin 1 expression.
Collapse
Affiliation(s)
- K.G. Akbulut
- Department of Physiology, School of Medicine, Gazi University, Ankara, Turkey
| | - A. Keskin-Aktan
- Department of Physiology, School of Medicine, Afyonkarahisar Health Sciences University, Afyonkarahisar, Turkey
| | - S.A. Abgarmi
- Department of Basic Oncology, Cancer Research Institute, Ankara University, Ankara, Turkey
- Department of Medical Oncology, School of Medicine, Ankara University Ankara, Turkey
| | - H. Akbulut
- Department of Basic Oncology, Cancer Research Institute, Ankara University, Ankara, Turkey
- Department of Medical Oncology, School of Medicine, Ankara University Ankara, Turkey
| |
Collapse
|
38
|
Nandave M, Acharjee R, Bhaduri K, Upadhyay J, Rupanagunta GP, Ansari MN. A pharmacological review on SIRT 1 and SIRT 2 proteins, activators, and inhibitors: Call for further research. Int J Biol Macromol 2023; 242:124581. [PMID: 37105251 DOI: 10.1016/j.ijbiomac.2023.124581] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 04/15/2023] [Accepted: 04/20/2023] [Indexed: 04/29/2023]
Abstract
Sirtuins or Sir (Silent information regulator) are NAD+-dependent enzymes playing an important part in the pathogenesis and treatment of various disorders. They have ubiquitously expressed protein deacetylases. They are implicated in several cellular activities like DNA repair, cellular metabolism, mitochondrial function, and inflammation. Deletion of sirtuin protein, SIRT1 in the organs like brain, heart, liver and pancreas can cause inflammation and increases the level of free radical ions causing oxidative stress. Inflammation and oxidative stress are closely associated with pathophysiological events in many chronic diseases, like diabetes, cancer, cardiovascular, osteoporosis, and neurodegenerative diseases. Modulation of SIRT1 gene expression might help in preventing the progression of chronic diseases related to the brain, heart, liver, and pancreas. SIRT2 proteins play an essential role in tumorigenesis, including tumor-suppressing and tumor-promoting functions. Sirtuin activators are molecules that upregulate the activity of Sirtuins in the body. Their multifaceted uses have surprised the global scientific community. They are found to control obesity, lower cardiac risks, battle cancer, etc. This article provides an update on the pharmacological effect of SIRT1 and SIRT 2 proteins, their activators and inhibitors, and their molecular mechanism. It provides novel insights for future research in targeted therapy and drug development.
Collapse
Affiliation(s)
- Mukesh Nandave
- Department of Pharmacology, Delhi Pharmaceutical Sciences and Research University, New Delhi 110017, India
| | - Rituparna Acharjee
- SPP School of Pharmacy and Technology Management, SVKM's NMIMS, Mumbai 400056, India
| | - Kinkini Bhaduri
- SPP School of Pharmacy and Technology Management, SVKM's NMIMS, Mumbai 400056, India
| | - Jyoti Upadhyay
- School of Health Sciences and Technology, UPES, Dehradun 248007, Uttarakhand, India.
| | | | - Mohd Nazam Ansari
- Department of Pharmacology and Toxicology, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Alkharj 11942, Saudi Arabia.
| |
Collapse
|
39
|
Xu H, Mao X, Nie Z, Li Y. Oxr1a prevents the premature ovarian failure by regulating oxidative stress and mitochondrial function in zebrafish. Free Radic Biol Med 2023; 203:102-113. [PMID: 37031846 DOI: 10.1016/j.freeradbiomed.2023.04.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 03/01/2023] [Accepted: 04/03/2023] [Indexed: 04/11/2023]
Abstract
Premature ovarian failure (POF) is characterized as the ovarian dysfunction and defective oocyte development. In POF patients, ROS level is reported to be significantly higher than normal individuals. However, the involvement of oxidative stress in POF and the regulatory mechanisms underlying the antioxidative process in oocyte development remain largely unknown. Here, we discover that oxidation resistance 1a (Oxr1a), the ortholog of mammalian Oxr1, protects the oocytes of female zebrafish against oxidative stress and thus represses the POF phenotype. Oxr1a was widely expressed in oocytes at different developmental stages, of which the mRNA expression levels were significantly upregulated upon follicle activation and oocyte maturation. Oxr1a knockout exacerbated the POF phenotype, as evidenced by the decreased number and quality of oocytes. Moreover, the oocytes of oxr1a knockout zebrafish exhibited excessive ROS, increased mitochondrial DNA damage, reduced mitochondria, and abnormal morphology. Mechanistically, instead of decomposing ROS directly, Oxr1a participated in the process of oxidative stress through regulating the mRNA expression levels of the key antioxidant enzymes Cat and Sod1. Moreover, treatment with antioxidant N-Acetyl-l-cysteine attenuated the mitochondrial oxidative damage and improved the fertility of mutant females, indicating that Oxr1a may mediates the Sod1/Cat pathway to metabolize the intracellular ROS and avoid the mitochondrial oxidative damage, thus ensuring the normal development and maturation of oocytes. Taken together, these findings are useful for the elucidation of molecular mechanisms underlying the oxidative damage in oocytes and beneficial to the clinical therapeutics of POF.
Collapse
Affiliation(s)
- Hao Xu
- Fisheries and Aquaculture Biotechnology Laboratory, College of Fisheries, Southwest University, Chongqing, 400715, China; Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Key Laboratory of Aquatic Science of Chongqing, Southwest University, Chongqing, 400715, China
| | - Xiaoyu Mao
- College of Language Intelligence, Sichuan International Studies University, Chongqing, 400031, China
| | - Zhentao Nie
- Fisheries and Aquaculture Biotechnology Laboratory, College of Fisheries, Southwest University, Chongqing, 400715, China; Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Key Laboratory of Aquatic Science of Chongqing, Southwest University, Chongqing, 400715, China
| | - Yun Li
- Fisheries and Aquaculture Biotechnology Laboratory, College of Fisheries, Southwest University, Chongqing, 400715, China; Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Key Laboratory of Aquatic Science of Chongqing, Southwest University, Chongqing, 400715, China.
| |
Collapse
|
40
|
Bae EJ, Park BH. Multiple Roles of Sirtuin 6 in Adipose Tissue Inflammation. Diabetes Metab J 2023; 47:164-172. [PMID: 36631993 PMCID: PMC10040615 DOI: 10.4093/dmj.2022.0270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Accepted: 11/03/2022] [Indexed: 01/13/2023] Open
Abstract
Adipose tissue (AT) inflammation is strongly associated with obesity-induced insulin resistance. When subjected to metabolic stress, adipocytes become inflamed and secrete a plethora of cytokines and chemokines, which recruit circulating immune cells to AT. Although sirtuin 6 (Sirt6) is known to control genomic stabilization, aging, and cellular metabolism, it is now understood to also play a pivotal role in the regulation of AT inflammation. Sirt6 protein levels are reduced in the AT of obese humans and animals and increased by weight loss. In this review, we summarize the potential mechanism of AT inflammation caused by impaired action of Sirt6 from the immune cells' point of view. We first describe the properties and functions of immune cells in obese AT, with an emphasis on discrete macrophage subpopulations which are central to AT inflammation. We then highlight data that links Sirt6 to functional phenotypes of AT inflammation. Importantly, we discuss in detail the effects of Sirt6 deficiency in adipocytes, macrophages, and eosinophils on insulin resistance or AT browning. In our closing perspectives, we discuss emerging issues in this field that require further investigation.
Collapse
Affiliation(s)
- Eun Ju Bae
- School of Pharmacy, Chonbuk National University, Jeonju, Korea
- Corresponding authors: Eun Ju Bae https://orcid.org/0000-0003-1693-8290 School of Pharmacy, Chonbuk National University, 20 Geonji-ro, Deokjin-gu, Jeonju 54907, Korea E-mail:
| | - Byung-Hyun Park
- Department of Biochemistry and Research Institute for Endocrine Sciences, Chonbuk National University Medical School, Jeonju, Korea
- Byung-Hyun Park https://orcid.org/0000-0003-3768-4285 Department of Biochemistry and Research Institute for Endocrine Sciences, Chonbuk National University Medical School, 20 Geonji-ro, Deokjin-gu, Jeonju 54907, Korea E-mail:
| |
Collapse
|
41
|
Poljšak B, Kovač V, Špalj S, Milisav I. The Central Role of the NAD+ Molecule in the Development of Aging and the Prevention of Chronic Age-Related Diseases: Strategies for NAD+ Modulation. Int J Mol Sci 2023; 24:2959. [PMID: 36769283 PMCID: PMC9917998 DOI: 10.3390/ijms24032959] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2022] [Revised: 01/16/2023] [Accepted: 01/31/2023] [Indexed: 02/05/2023] Open
Abstract
The molecule NAD+ is a coenzyme for enzymes catalyzing cellular redox reactions in several metabolic pathways, encompassing glycolysis, TCA cycle, and oxidative phosphorylation, and is a substrate for NAD+-dependent enzymes. In addition to a hydride and electron transfer in redox reactions, NAD+ is a substrate for sirtuins and poly(adenosine diphosphate-ribose) polymerases and even moderate decreases in its cellular concentrations modify signaling of NAD+-consuming enzymes. Age-related reduction in cellular NAD+ concentrations results in metabolic and aging-associated disorders, while the consequences of increased NAD+ production or decreased degradation seem beneficial. This article reviews the NAD+ molecule in the development of aging and the prevention of chronic age-related diseases and discusses the strategies of NAD+ modulation for healthy aging and longevity.
Collapse
Affiliation(s)
- Borut Poljšak
- Laboratory of Oxidative Stress Research, Faculty of Health Sciences, University of Ljubljana, 1000 Ljubljana, Slovenia
| | - Vito Kovač
- Laboratory of Oxidative Stress Research, Faculty of Health Sciences, University of Ljubljana, 1000 Ljubljana, Slovenia
| | - Stjepan Špalj
- Department of Orthodontics, Faculty of Dental Medicine, University of Rijeka, 51000 Rijeka, Croatia
| | - Irina Milisav
- Laboratory of Oxidative Stress Research, Faculty of Health Sciences, University of Ljubljana, 1000 Ljubljana, Slovenia
- Institute of Pathophysiology, Faculty of Medicine, University of Ljubljana, 1000 Ljubljana, Slovenia
| |
Collapse
|
42
|
Effect of the Ketone Body, D-β-Hydroxybutyrate, on Sirtuin2-Mediated Regulation of Mitochondrial Quality Control and the Autophagy-Lysosomal Pathway. Cells 2023; 12:cells12030486. [PMID: 36766827 PMCID: PMC9914182 DOI: 10.3390/cells12030486] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 01/20/2023] [Accepted: 01/29/2023] [Indexed: 02/05/2023] Open
Abstract
Mitochondrial activity and quality control are essential for neuronal homeostasis as neurons rely on glucose oxidative metabolism. The ketone body, D-β-hydroxybutyrate (D-BHB), is metabolized to acetyl-CoA in brain mitochondria and used as an energy fuel alternative to glucose. We have previously reported that D-BHB sustains ATP production and stimulates the autophagic flux under glucose deprivation in neurons; however, the effects of D-BHB on mitochondrial turnover under physiological conditions are still unknown. Sirtuins (SIRTs) are NAD+-activated protein deacetylases involved in the regulation of mitochondrial biogenesis and mitophagy through the activation of transcription factors FOXO1, FOXO3a, TFEB and PGC1α coactivator. Here, we aimed to investigate the effect of D-BHB on mitochondrial turnover in cultured neurons and the mechanisms involved. Results show that D-BHB increased mitochondrial membrane potential and regulated the NAD+/NADH ratio. D-BHB enhanced FOXO1, FOXO3a and PGC1α nuclear levels in an SIRT2-dependent manner and stimulated autophagy, mitophagy and mitochondrial biogenesis. These effects increased neuronal resistance to energy stress. D-BHB also stimulated the autophagic-lysosomal pathway through AMPK activation and TFEB-mediated lysosomal biogenesis. Upregulation of SIRT2, FOXOs, PGC1α and TFEB was confirmed in the brain of ketogenic diet (KD)-treated mice. Altogether, the results identify SIRT2, for the first time, as a target of D-BHB in neurons, which is involved in the regulation of autophagy/mitophagy and mitochondrial quality control.
Collapse
|
43
|
Chen JL, Feng ZL, Zhou F, Lou RH, Peng C, Ye Y, Lin LG. 14-Deoxygarcinol improves insulin sensitivity in high-fat diet-induced obese mice via mitigating NF-κB/Sirtuin 2-NLRP3-mediated adipose tissue remodeling. Acta Pharmacol Sin 2023; 44:434-445. [PMID: 35945312 PMCID: PMC9889782 DOI: 10.1038/s41401-022-00958-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Accepted: 07/12/2022] [Indexed: 02/04/2023]
Abstract
Interleukin (IL)-1β is a culprit of adipose tissue inflammation, which in turn causes systematic inflammation and insulin resistance in obese individuals. IL-1β is mainly produced in monocytes and macrophages and marginally in adipocytes, through cleavage of the inactive pro-IL-1β precursor by caspase-1, which is activated via the NLRP3 inflammasome complex. The nuclear factor-κB (NF-κB) transcription factor is the master regulator of inflammatory responses. Brindle berry (Garcinia cambogia) has been widely used as health products for treating obesity and related metabolic disorders, but its active principles remain unclear. We previously found a series of polyisoprenylated benzophenones from brindle berry with anti-inflammatory activities. In this study we investigated whether 14-deoxygarcinol (DOG), a major polyisoprenylated benzophenone from brindle berry, alleviated adipose tissue inflammation and insulin sensitivity in high-fat diet fed mice. The mice were administered DOG (2.5, 5 mg · kg-1 · d-1, i.p.) for 4 weeks. We showed that DOG injection dose-dependently improved insulin resistance and hyperlipidemia, but not adiposity in high-fat diet-fed mice. We found that DOG injection significantly alleviated adipose tissue inflammation via preventing macrophage infiltration and pro-inflammatory polarization of macrophages, and adipose tissue fibrosis via reducing the abnormal deposition of extracellular matrix. In LPS plus nigericin-stimulated THP-1 macrophages, DOG (1.25, 2.5, 5 μM) dose-dependently suppressed the activation of NLRP3 inflammasome and NF-κB signaling pathway. We demonstrated that DOG bound to and activated the deacetylase Sirtuin 2, which in turn deacetylated and inactivated NLRP3 inflammasome to reduce IL-1β secretion. Moreover, DOG (1.25, 2.5, 5 μM) dose-dependently mitigated inflammatory responses in macrophage conditioned media-treated adipocytes and suppressed macrophage migration toward adipocytes. Taken together, DOG might be a drug candidate to treat metabolic disorders through modulation of adipose tissue remodeling.
Collapse
Affiliation(s)
- Jia-Li Chen
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, China
| | - Zhe-Ling Feng
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, China
- State Key Laboratory of Drug Research and Natural Products Chemistry Department, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Fei Zhou
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, China
| | - Ruo-Han Lou
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, China
| | - Cheng Peng
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 610075, China
| | - Yang Ye
- State Key Laboratory of Drug Research and Natural Products Chemistry Department, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Li-Gen Lin
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, China.
- Department of Pharmaceutical Sciences, Faculty of Health Sciences, University of Macau, Macao, China.
| |
Collapse
|
44
|
SIRT7 silencing by miR-152-3p confers cell apoptosis and renal functional impairment induced by renal ischaemia/reperfusion injury. Int Urol Nephrol 2023; 55:367-376. [PMID: 35941302 DOI: 10.1007/s11255-022-03330-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Accepted: 07/24/2022] [Indexed: 01/25/2023]
Abstract
PURPOSE Acute kidney injury (AKI) induced by renal ischaemia/reperfusion (I/R) during renal transplantation has been reported to be linked to the regulation of SIRT2, one of the members of SIRTUINS family. Current work is attempted to explore the influence and mechanism of SIRT7 in renal cell apoptosis controlled by miR-152-3p during renal I/R injury. METHODS Three databases were used to select the miRNAs regulating the expression of SIRT7. Overexpression and inhibition of miR-152-3p and Luciferase assay were employed to certify the modulation of miR-152-3p to SIRT7 in cells. RT-qPCR assay was used to measure the mRNA levels. Western blot assay was employed to determine the expression of proteins. TUNEL assay and Flow Cytometry were conducted to analyze cell apoptosis. RESULTS SIRT7 expression decreased in tissues of AKI patients and rats underwent renal I/R, which was associated with enhanced impairment of renal function. SIRT7 downregulation was attributed to the direct inhibition by miR-152-3p due to binding and inhibiting its seed sequence in 3'-UTR of SIRT7 mRNA. Consequently, the upregulation of miR-152-3p led to an inhibition of SIRT7 expression, an increase in expression of extrinsic apoptosis molecules containing FOXO3a, Bim, and caspase3, and apoptotic renal cells; while miR-152-3p inhibition abolished these phenotypes. CONCLUSION SIRT7 downregulation by miR-152-3p is a leading cause of renal cell apoptosis and functional impairment induced by renal I/R. Inhibition of miR-152-3p to restore SIRT7 expression can be a promising strategy against renal I/R injury.
Collapse
|
45
|
Abstract
The silent information regulator (sirtuin) is a family of enzymes involved in epigenetic processes with lysine deacetylase activity, having as substrates histones and other proteins. They participate in a wide range of cellular and pathologic processes, such as gene expression, cell division and motility, oxidative-induced stress management, metabolic control and carcinogenesis, among others, thus presenting as interesting therapeutic targets. In this article, the authors describe the inhibitory mechanisms and binding modes of the human sirtuin 2 (hSIRT2) inhibitors, which had their complexes with the enzyme structurally characterized. The results help pave the way for the rational designing of new hSIRT2 inhibitors and the development of novel therapeutic agents targeting this epigenetic enzyme.
Collapse
|
46
|
Abu-Hijleh HM, Al-Zoubi RM, Zarour A, Al- Ansari A, Bawadi H. The Therapeutic Role of Curcumin in Inflammation and Post-Surgical Outcomes. FOOD REVIEWS INTERNATIONAL 2023. [DOI: 10.1080/87559129.2023.2166525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Affiliation(s)
- Haya M. Abu-Hijleh
- Department of Human Nutrition, college of health Science, QU-health, Qatar University, Doha, Qatar
| | - Raed M. Al-Zoubi
- Department of biomedical Sciences, college of health Science, QU-Health, Qatar University, Doha, Qatar
- Surgical Research Section, Department of Surgery, Hamad Medical Corporation, Doha, Qatar
- Department of Chemistry, Jordan University of Science and Technology, Irbid, Jordan
| | - Ahmed Zarour
- Acute care Surgery Division, Department of Surgery, Hamad Medical Corporation, Doha, Qatar
| | - Abdulla Al- Ansari
- Surgical Research Section, Department of Surgery, Hamad Medical Corporation, Doha, Qatar
- Department of Surgery, Division of Urology/Andrology, Hamad Medical Corporation, Doha, Qatar
| | - Hiba Bawadi
- Department of Human Nutrition, college of health Science, QU-health, Qatar University, Doha, Qatar
| |
Collapse
|
47
|
Zhai J, Kongsberg WH, Pan Y, Hao C, Wang X, Sun J. Caloric restriction induced epigenetic effects on aging. Front Cell Dev Biol 2023; 10:1079920. [PMID: 36712965 PMCID: PMC9880295 DOI: 10.3389/fcell.2022.1079920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Accepted: 12/31/2022] [Indexed: 01/15/2023] Open
Abstract
Aging is the subject of many studies, facilitating the discovery of many interventions. Epigenetic influences numerous life processes by regulating gene expression and also plays a crucial role in aging regulation. Increasing data suggests that dietary changes can alter epigenetic marks associated with aging. Caloric restriction (CR)is considered an intervention to regulate aging and prolong life span. At present, CR has made some progress by regulating signaling pathways associated with aging as well as the mechanism of action of intercellular signaling molecules against aging. In this review, we will focus on autophagy and epigenetic modifications to elaborate the molecular mechanisms by which CR delays aging by triggering autophagy, epigenetic modifications, and the interaction between the two in caloric restriction. In order to provide new ideas for the study of the mechanism of aging and delaying aging.
Collapse
Affiliation(s)
| | | | | | | | | | - Jie Sun
- *Correspondence: Xiaojing Wang, ; Jie Sun,
| |
Collapse
|
48
|
Barzegari A, Omidi Y, Gueguen V, Meddahi-Pellé A, Letourneur D, Pavon-Djavid G. Nesting and fate of transplanted stem cells in hypoxic/ischemic injured tissues: The role of HIF1α/sirtuins and downstream molecular interactions. Biofactors 2023; 49:6-20. [PMID: 32939878 DOI: 10.1002/biof.1674] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Revised: 07/29/2020] [Accepted: 07/31/2020] [Indexed: 12/15/2022]
Abstract
The nesting mechanisms and programming for the fate of implanted stem cells in the damaged tissue have been critical issues in designing and achieving cell therapies. The fracture site can induce senescence or apoptosis based on the surrounding harsh conditions, hypoxia, and oxidative stress (OS). Respiration deficiency, disruption in energy metabolism, and consequently OS induction change the biophysical, biochemical, and cellular components of the native tissue. Additionally, the homeostatic molecular players and cell signaling might be changed. Despite all aforementioned issues, in the native stem cell niche, physiological hypoxia is not toxic; rather, it is vitally required for homing, self-renewal, and differentiation. Hence, the key macromolecular players involved in the support of stem cell survival and re-adaptation to a new dysfunctional niche must be understood for managing the cell therapy outcome. Hypoxia-inducible factor 1-alpha is the master transcriptional regulator, involved in the cell response to hypoxia and the adaptation of stem cells to a new niche. This protein is regulated by interaction with sirtuins. Sirtuins are highly conserved NAD+-dependent enzymes that monitor the cellular energy status and modulate gene transcription, genome stability, and energy metabolism in response to environmental signals to modulate the homing and fate of stem cells. Herein, new insights into the nesting of stem cells in hypoxic-ischemic injured tissues were provided and their programming in a new dysfunctional niche along with the involved complex macromolecular players were critically discussed.
Collapse
Affiliation(s)
- Abolfazl Barzegari
- Research Center for Pharmaceutical Nanotechnology, Biomedicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Yadollah Omidi
- Department of Pharmaceutical Sciences, College of Pharmacy, Nova Southeastern University, Fort Lauderdale, Florida
| | - Virginie Gueguen
- INSERM U1148, Laboratory for Vascular Translational Science, Cardiovascular Bioengineering, Université Sorbonne Paris Nord, Villetaneuse, France
| | - Anne Meddahi-Pellé
- INSERM U1148, Laboratory for Vascular Translational Science, Cardiovascular Bioengineering, Université Sorbonne Paris Nord, Villetaneuse, France
| | - Didier Letourneur
- INSERM U1148, Laboratory for Vascular Translational Science, Cardiovascular Bioengineering, Université Sorbonne Paris Nord, Villetaneuse, France
| | - Graciela Pavon-Djavid
- INSERM U1148, Laboratory for Vascular Translational Science, Cardiovascular Bioengineering, Université Sorbonne Paris Nord, Villetaneuse, France
| |
Collapse
|
49
|
Ziętara P, Dziewięcka M, Augustyniak M. Why Is Longevity Still a Scientific Mystery? Sirtuins-Past, Present and Future. Int J Mol Sci 2022; 24:728. [PMID: 36614171 PMCID: PMC9821238 DOI: 10.3390/ijms24010728] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 12/22/2022] [Accepted: 12/27/2022] [Indexed: 01/03/2023] Open
Abstract
The sirtuin system consists of seven highly conserved regulatory enzymes responsible for metabolism, antioxidant protection, and cell cycle regulation. The great interest in sirtuins is associated with the potential impact on life extension. This article summarizes the latest research on the activity of sirtuins and their role in the aging process. The effects of compounds that modulate the activity of sirtuins were discussed, and in numerous studies, their effectiveness was demonstrated. Attention was paid to the role of a caloric restriction and the risks associated with the influence of careless sirtuin modulation on the organism. It has been shown that low modulators' bioavailability/retention time is a crucial problem for optimal regulation of the studied pathways. Therefore, a detailed understanding of the modulator structure and potential reactivity with sirtuins in silico studies should precede in vitro and in vivo experiments. The latest achievements in nanobiotechnology make it possible to create promising molecules, but many of them remain in the sphere of plans and concepts. It seems that solving the mystery of longevity will have to wait for new scientific discoveries.
Collapse
Affiliation(s)
| | | | - Maria Augustyniak
- Faculty of Natural Sciences, Institute of Biology, Biotechnology and Environmental Protection, University of Silesia in Katowice, ul. Bankowa 9, 40-007 Katowice, Poland
| |
Collapse
|
50
|
Hrelia S, Di Renzo L, Bavaresco L, Bernardi E, Malaguti M, Giacosa A. Moderate Wine Consumption and Health: A Narrative Review. Nutrients 2022; 15:175. [PMID: 36615832 PMCID: PMC9824172 DOI: 10.3390/nu15010175] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 12/21/2022] [Accepted: 12/28/2022] [Indexed: 12/31/2022] Open
Abstract
Although it is clearly established that the abuse of alcohol is seriously harmful to health, much epidemiological and clinical evidence seem to underline the protective role of moderate quantities of alcohol and in particular of wine on health. This narrative review aims to re-evaluate the relationship between the type and dose of alcoholic drink and reduced or increased risk of various diseases, in the light of the most current scientific evidence. In particular, in vitro studies on the modulation of biochemical pathways and gene expression of wine bioactive components were evaluated. Twenty-four studies were selected after PubMed, Scopus and Google Scholar searches for the evaluation of moderate alcohol/wine consumption and health effects: eight studies concerned cardiovascular diseases, three concerned type 2 diabetes, four concerned neurodegenerative diseases, five concerned cancer and four were related to longevity. A brief discussion on viticultural and enological practices potentially affecting the content of bioactive components in wine is included. The analysis clearly indicates that wine differs from other alcoholic beverages and its moderate consumption not only does not increase the risk of chronic degenerative diseases but is also associated with health benefits particularly when included in a Mediterranean diet model. Obviously, every effort must be made to promote behavioral education to prevent abuse, especially among young people.
Collapse
Affiliation(s)
- Silvana Hrelia
- Department for Life Quality Studies, University of Bologna, 47921 Rimini, Italy
| | - Laura Di Renzo
- Section of Clinical Nutrition and Nutrigenomics, Department of Biomedicine and Prevention, University of Tor Vergata, 00133 Rome, Italy
| | - Luigi Bavaresco
- Department of Sustainable Crop Production—Viticulture and Pomology Section, Università Cattolica del Sacro Cuore, 29122 Piacenza, Italy
| | - Elisabetta Bernardi
- Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari “Aldo Moro”, 70121 Bari, Italy
| | - Marco Malaguti
- Department for Life Quality Studies, University of Bologna, 47921 Rimini, Italy
| | - Attilio Giacosa
- Department of Gastroenterology and Clinical Nutrition, Policlinico di Monza, 20900 Monza, Italy
| |
Collapse
|