1
|
Gao H, Nepovimova E, Adam V, Heger Z, Valko M, Wu Q, Kuca K. Age-associated changes in innate and adaptive immunity: role of the gut microbiota. Front Immunol 2024; 15:1421062. [PMID: 39351234 PMCID: PMC11439693 DOI: 10.3389/fimmu.2024.1421062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Accepted: 08/26/2024] [Indexed: 10/04/2024] Open
Abstract
Aging is generally regarded as an irreversible process, and its intricate relationship with the immune system has garnered significant attention due to its profound implications for the health and well-being of the aging population. As people age, a multitude of alterations occur within the immune system, affecting both innate and adaptive immunity. In the realm of innate immunity, aging brings about changes in the number and function of various immune cells, including neutrophils, monocytes, and macrophages. Additionally, certain immune pathways, like the cGAS-STING, become activated. These alterations can potentially result in telomere damage, the disruption of cytokine signaling, and impaired recognition of pathogens. The adaptive immune system, too, undergoes a myriad of changes as age advances. These include shifts in the number, frequency, subtype, and function of T cells and B cells. Furthermore, the human gut microbiota undergoes dynamic changes as a part of the aging process. Notably, the interplay between immune changes and gut microbiota highlights the gut's role in modulating immune responses and maintaining immune homeostasis. The gut microbiota of centenarians exhibits characteristics akin to those found in young individuals, setting it apart from the microbiota observed in typical elderly individuals. This review delves into the current understanding of how aging impacts the immune system and suggests potential strategies for reversing aging through interventions in immune factors.
Collapse
Affiliation(s)
- Haoyu Gao
- College of Life Science, Yangtze University, Jingzhou, China
| | - Eugenie Nepovimova
- Department of Chemistry, Faculty of Science, University of Hradec Králové, Hradec Králové, Czechia
| | - Vojtech Adam
- Department of Chemistry and Biochemistry, Mendel University in Brno, Brno, Czechia
| | - Zbynek Heger
- Department of Chemistry and Biochemistry, Mendel University in Brno, Brno, Czechia
| | - Marian Valko
- Faculty of Chemical and Food Technology, Slovak University of Technology, Bratislava, Slovakia
| | - Qinghua Wu
- College of Life Science, Yangtze University, Jingzhou, China
- Department of Chemistry, Faculty of Science, University of Hradec Králové, Hradec Králové, Czechia
| | - Kamil Kuca
- Department of Chemistry, Faculty of Science, University of Hradec Králové, Hradec Králové, Czechia
- Andalusian Research Institute in Data Science and Computational Intelligence (DaSCI), University of Granada, Granada, Spain
| |
Collapse
|
2
|
Lorefice L, Pitzalis M, Zoledziewska M. Intermittent and periodic fasting - Evidence and perspectives in multiple sclerosis. Mult Scler Relat Disord 2024; 88:105744. [PMID: 38914047 DOI: 10.1016/j.msard.2024.105744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 05/16/2024] [Accepted: 06/20/2024] [Indexed: 06/26/2024]
Abstract
Multiple sclerosis (MS) is a complex neurological disease characterized by great variability in clinical presentation, including the radiological features, and degree of disability. Both genetics and environment contribute to disease etiopathogenesis. Because MS is more common in Western countries, and diet has been proposed among the etiologic factors. However, based on the several studies published thus far, principally involving small cohorts, there is no described diet-protocol to be applied in clinical practice as a supplement to the standard immunomodulatory treatment of MS. Diet is an easily changeable factor thus the research on the diet importance in MS has been exploded in last years. Starting from the notions that diet can change lifespan and quality of life in general, and its improvement could be one of many contributing factors with effects on disease evolution, this review examines the evidence of the effects of intermittent fasting in a mouse model of MS; the evidence derived from clinical trials; and future perspectives.
Collapse
Affiliation(s)
- Lorena Lorefice
- Multiple Sclerosis Center, ASL Cagliari, Department of Medical Sciences and Public Health, Binaghi Hospital, University of Cagliari, via Is Guadazzonis 2, Cagliari 09126
| | - Maristella Pitzalis
- Institute of Genetic and Biomedical Research (IRGB), Italian National Research Council (CNR), Monserrato 09042, Sardinia, Italy
| | - Magdalena Zoledziewska
- Institute of Genetic and Biomedical Research (IRGB), Italian National Research Council (CNR), Monserrato 09042, Sardinia, Italy.
| |
Collapse
|
3
|
De Luca SN, Kivivali L, Chong K, Kirby A, Lawther AJ, Nguyen JCD, Hale MW, Kent S. Calorie restriction partially attenuates sickness behavior induced by viral mimetic poly I:C. Behav Brain Res 2024; 457:114715. [PMID: 37838243 DOI: 10.1016/j.bbr.2023.114715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 09/28/2023] [Accepted: 10/11/2023] [Indexed: 10/16/2023]
Abstract
Calorie restriction (CR) has been shown to extend the mean and maximum lifespan in both preclinical and clinical settings. We have previously demonstrated that CR attenuates lipopolysaccharide (LPS)-induced fever and sickness behavior. CR also leads to reductions in pro-inflammatory and increases in anti-inflammatory profiles. LPS is a bacterial mimetic; however, few studies have explored this phenomenon utilizing a viral mimetic, such as polyinosinic:polycytidylic acid (poly I:C). Dose-dependently, poly I:C induced an increase in core body temperature (Tb), with the largest dose (5000 µg/kg) resulting in a 1.62 °C ( ± 0.23 °C) Tb increase at 7 h post-injection in ad libitum mice and was associated with reduced home-cage locomotor activity. We then investigated the effect of 50% CR for 28 days to attenuate fever and sickness behavior induced by a poly I:C (5000 µg/kg) viral immune challenge. CR resulted in the partial attenuation of fever and sickness behavior measures post-poly I:C. The freely fed, control mice demonstrated a 2.02 °C ( ± 0.22 °C) increase in Tb at 7 h post-injection compared to the CR poly I:C group which demonstrated an increase in Tb of 0.94 °C ( ± 0.27 °C). Locomotor patterns post-injection were different, CR mice displayed a reduction in activity during the light phase, and the control group displayed a reduction during the dark phase. CR moderately attenuated the neuroinflammatory response with a reduction in microglial density in the ventromedial nucleus of the hypothalamus. The fever and sickness behavior attenuation seen after CR may be driven by similar anti-inflammatory processes as after LPS; however, further investigation is required.
Collapse
Affiliation(s)
- Simone N De Luca
- School of Psychology & Public Health, La Trobe University, Melbourne, VIC, Australia; Centre for Respiratory Science & Health, School of Health and Biomedical Sciences, RMIT University, Melbourne, VIC, Australia
| | - Leah Kivivali
- School of Psychology & Public Health, La Trobe University, Melbourne, VIC, Australia
| | - Ken Chong
- School of Psychology & Public Health, La Trobe University, Melbourne, VIC, Australia
| | - Alice Kirby
- School of Psychology & Public Health, La Trobe University, Melbourne, VIC, Australia
| | - Adam J Lawther
- School of Psychology & Public Health, La Trobe University, Melbourne, VIC, Australia
| | - Jason C D Nguyen
- School of Psychology & Public Health, La Trobe University, Melbourne, VIC, Australia.
| | - Matthew W Hale
- School of Psychology & Public Health, La Trobe University, Melbourne, VIC, Australia
| | - Stephen Kent
- School of Psychology & Public Health, La Trobe University, Melbourne, VIC, Australia
| |
Collapse
|
4
|
Fujimori S, Ohigashi I. The role of thymic epithelium in thymus development and age-related thymic involution. THE JOURNAL OF MEDICAL INVESTIGATION 2024; 71:29-39. [PMID: 38735722 DOI: 10.2152/jmi.71.29] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/14/2024]
Abstract
The establishment of an adaptive immune system is critical for protecting our bodies from neoplastic cancers and invading pathogens such as viruses and bacteria. As a primary lymphoid organ, the thymus generates lymphoid T cells that play a major role in the adaptive immune system. T cell generation in the thymus is controlled by interactions between thymocytes and other thymic cells, primarily thymic epithelial cells. Thus, the normal development and function of thymic epithelial cells are important for the generation of immunocompetent and self-tolerant T cells. On the other hand, the degeneration of the thymic epithelium due to thymic aging causes thymic involution, which is associated with the decline of adaptive immune function. Herein we summarize basic and current knowledge of the development and function of thymic epithelial cells and the mechanism of thymic involution. J. Med. Invest. 71 : 29-39, February, 2024.
Collapse
Affiliation(s)
- Sayumi Fujimori
- Division of Experimental Immunology, Institute of Advanced Medical Sciences, Tokushima University, Tokushima, Japan
| | - Izumi Ohigashi
- Division of Experimental Immunology, Institute of Advanced Medical Sciences, Tokushima University, Tokushima, Japan
| |
Collapse
|
5
|
Rissanen J, Nyckees D, Will T, Helanterä H, Freitak D. Formica fusca ants use aphid supplemented foods to alleviate effects during the acute phase of a fungal infection. Biol Lett 2023; 19:20230415. [PMID: 37964577 PMCID: PMC10646462 DOI: 10.1098/rsbl.2023.0415] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Accepted: 10/24/2023] [Indexed: 11/16/2023] Open
Abstract
The modulation of nutritional intake by animals to combat pathogens is a behaviour that is receiving increasing attention. Ant studies using isolated compounds or nutrients in artificial diets have revealed a lot of the dynamics of the behaviour, but natural sources of medicine are yet to be confirmed. Here we explored whether Formica fusca ants exposed to a fungal pathogen can use an artificial diet containing foods spiked with different concentrations of crushed aphids for a medicinal benefit. We show that pathogen exposed colonies adjusted their diet to include more aphid supplemented foods during the acute phase of the infection, reducing the mortality caused by the disease. However, the benefit was only attained when having access to a varied diet, suggesting that while aphids contain nutrients or compounds beneficial against infection, it is a part of a complex nutritional system where costs and benefits of compounds and nutrients need to be moderated.
Collapse
Affiliation(s)
- Jason Rissanen
- Institute of Biology, University of Graz, Graz, Styria 8010, Austria
- Tvärminne Zoological Station, University of Helsinki, Hanko 10900, Finland
| | - Danaë Nyckees
- Laboratory of Entomology, Wageningen University, Wageningen 6700, The Netherlands
| | - Torsten Will
- Institute for Resistance Research and Stress Tolerance, Julius Kühn Institute (JKI) – Federal Research Centre for Cultivated Plants, Quedlinburg 06484, Germany
| | - Heikki Helanterä
- Tvärminne Zoological Station, University of Helsinki, Hanko 10900, Finland
- Ecology and Genetics Research Unit, University of Oulu, Oulu 90014, Finland
| | - Dalial Freitak
- Institute of Biology, University of Graz, Graz, Styria 8010, Austria
- Tvärminne Zoological Station, University of Helsinki, Hanko 10900, Finland
| |
Collapse
|
6
|
Ryu S, Spadaro O, Sidorov S, Lee AH, Caprio S, Morrison C, Smith SR, Ravussin E, Shchukina I, Artyomov MN, Youm YH, Dixit VD. Reduction of SPARC protects mice against NLRP3 inflammasome activation and obesity. J Clin Invest 2023; 133:e169173. [PMID: 37781916 PMCID: PMC10541189 DOI: 10.1172/jci169173] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Accepted: 08/01/2023] [Indexed: 10/03/2023] Open
Abstract
The comprehensive assessment of long-term effects of reducing intake of energy (CALERIE-II; NCT00427193) clinical trial established that caloric restriction (CR) in humans lowers inflammation. The identity and mechanism of endogenous CR-mimetics that can be deployed to control obesity-associated inflammation and diseases are not well understood. Our studies have found that 2 years of 14% sustained CR in humans inhibits the expression of the matricellular protein, secreted protein acidic and rich in cysteine (SPARC), in adipose tissue. In mice, adipose tissue remodeling caused by weight loss through CR and low-protein diet feeding decreased, while high-fat diet-induced (HFD-induced) obesity increased SPARC expression in adipose tissue. Inducible SPARC downregulation in adult mice mimicked CR's effects on lowering adiposity by regulating energy expenditure. Deletion of SPARC in adipocytes was sufficient to protect mice against HFD-induced adiposity, chronic inflammation, and metabolic dysfunction. Mechanistically, SPARC activates the NLRP3 inflammasome at the priming step and downregulation of SPARC lowers macrophage inflammation in adipose tissue, while excess SPARC activated macrophages via JNK signaling. Collectively, reduction of adipocyte-derived SPARC confers CR-like metabolic and antiinflammatory benefits in obesity by serving as an immunometabolic checkpoint of inflammation.
Collapse
Affiliation(s)
- Seungjin Ryu
- Department of Pathology and
- Department of Immunobiology, Yale School of Medicine, New Haven, Connecticut, USA
- Department of Pharmacology, College of Medicine, Hallym University, Chuncheon, Gangwon, South Korea
| | - Olga Spadaro
- Department of Pathology and
- Department of Immunobiology, Yale School of Medicine, New Haven, Connecticut, USA
| | - Sviatoslav Sidorov
- Department of Pathology and
- Department of Immunobiology, Yale School of Medicine, New Haven, Connecticut, USA
| | - Aileen H. Lee
- Department of Pathology and
- Department of Immunobiology, Yale School of Medicine, New Haven, Connecticut, USA
| | - Sonia Caprio
- Department of Pediatrics, Yale School of Medicine, New Haven, Connecticut, USA
| | | | - Steven R. Smith
- Translational Research Institute for Metabolism and Diabetes, AdventHealth, Orlando, Florida, USA
| | - Eric Ravussin
- Pennington Biomedical Research Center, Baton Rouge, Louisiana, USA
| | - Irina Shchukina
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Maxim N. Artyomov
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Yun-Hee Youm
- Department of Pathology and
- Department of Immunobiology, Yale School of Medicine, New Haven, Connecticut, USA
| | - Vishwa Deep Dixit
- Department of Pathology and
- Department of Immunobiology, Yale School of Medicine, New Haven, Connecticut, USA
- Yale Center for Research on Aging, Yale School of Medicine, New Haven, Connecticut, USA
| |
Collapse
|
7
|
Schädel P, Wichmann-Costaganna M, Czapka A, Gebert N, Ori A, Werz O. Short-Term Caloric Restriction and Subsequent Re-Feeding Compromise Liver Health and Associated Lipid Mediator Signaling in Aged Mice. Nutrients 2023; 15:3660. [PMID: 37630850 PMCID: PMC10458887 DOI: 10.3390/nu15163660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 08/03/2023] [Accepted: 08/17/2023] [Indexed: 08/27/2023] Open
Abstract
Aging is characterized by alterations in the inflammatory microenvironment, which is tightly regulated by a complex network of inflammatory mediators. Excessive calorie consumption contributes to age- and lifestyle-associated diseases like obesity, type 2 diabetes, cardiovascular disorders, and cancer, while limited nutrient availability may lead to systemic health-promoting adaptations. Geroprotective effects of short-term caloric restriction (CR) can beneficially regulate innate immune receptors and interferon signaling in the liver of aged mice, but how CR impacts the hepatic release of immunomodulatory mediators like cytokines and lipid mediators (LM) is elusive. Here, we investigated the impact of aging on the inflammatory microenvironment in the liver and its linkage to calorie consumption. The livers of female young and aged C57BL/6JRj mice, as well as of aged mice after caloric restriction (CR) up to 28 days, with and without subsequent re-feeding (2 days), were evaluated. Surprisingly, despite differences in the hepatic proteome of young and old mice, aging did not promote a pro-inflammatory environment in the liver, but it reduced lipoxygenase-mediated formation of LM from polyunsaturated fatty acids without affecting the expression of the involved lipoxygenases and related oxygenases. Moreover, CR failed to ameliorate the secretion of pro-inflammatory cytokines but shifted the LM production to the formation of monohydroxylated LM with inflammation-resolving features. Unexpectedly, re-feeding after CR even further decreased the inflammatory response as LM species were markedly downregulated. Our findings raise the question of how short-term CR is indeed beneficial as a nutritional intervention for healthy elderly subjects and further stress the necessity to address tissue-specific inflammatory states.
Collapse
Affiliation(s)
- Patrick Schädel
- Department of Pharmaceutical/Medicinal Chemistry, Institute of Pharmacy, Friedrich Schiller University, D-07743 Jena, Germany; (P.S.); (M.W.-C.); (A.C.)
| | - Mareike Wichmann-Costaganna
- Department of Pharmaceutical/Medicinal Chemistry, Institute of Pharmacy, Friedrich Schiller University, D-07743 Jena, Germany; (P.S.); (M.W.-C.); (A.C.)
| | - Anna Czapka
- Department of Pharmaceutical/Medicinal Chemistry, Institute of Pharmacy, Friedrich Schiller University, D-07743 Jena, Germany; (P.S.); (M.W.-C.); (A.C.)
- Leibniz Institute for Natural Product Research and Infection Biology, Hans Knöll Institute, D-07745 Jena, Germany
| | - Nadja Gebert
- Leibniz Institute on Aging—Fritz Lipmann Institute, D-07745 Jena, Germany; (N.G.); (A.O.)
| | - Alessandro Ori
- Leibniz Institute on Aging—Fritz Lipmann Institute, D-07745 Jena, Germany; (N.G.); (A.O.)
| | - Oliver Werz
- Department of Pharmaceutical/Medicinal Chemistry, Institute of Pharmacy, Friedrich Schiller University, D-07743 Jena, Germany; (P.S.); (M.W.-C.); (A.C.)
| |
Collapse
|
8
|
Mihaylova MM, Chaix A, Delibegovic M, Ramsey JJ, Bass J, Melkani G, Singh R, Chen Z, Ja WW, Shirasu-Hiza M, Latimer MN, Mattison JA, Thalacker-Mercer AE, Dixit VD, Panda S, Lamming DW. When a calorie is not just a calorie: Diet quality and timing as mediators of metabolism and healthy aging. Cell Metab 2023; 35:1114-1131. [PMID: 37392742 PMCID: PMC10528391 DOI: 10.1016/j.cmet.2023.06.008] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 05/07/2023] [Accepted: 06/13/2023] [Indexed: 07/03/2023]
Abstract
An epidemic of obesity has affected large portions of the world, increasing the risk of developing many different age-associated diseases, including cancer, cardiovascular disease, and diabetes. In contrast with the prevailing notion that "a calorie is just a calorie," there are clear differences, within and between individuals, in the metabolic response to different macronutrient sources. Recent findings challenge this oversimplification; calories from different macronutrient sources or consumed at different times of day have metabolic effects beyond their value as fuel. Here, we summarize discussions conducted at a recent NIH workshop that brought together experts in calorie restriction, macronutrient composition, and time-restricted feeding to discuss how dietary composition and feeding schedule impact whole-body metabolism, longevity, and healthspan. These discussions may provide insights into the long-sought molecular mechanisms engaged by calorie restriction to extend lifespan, lead to novel therapies, and potentially inform the development of a personalized food-as-medicine approach to healthy aging.
Collapse
Affiliation(s)
- Maria M Mihaylova
- Department of Biological Chemistry and Pharmacology, College of Medicine, The Ohio State University, Columbus, OH, USA; The Ohio State University, Comprehensive Cancer Center, Wexner Medical Center, Arthur G. James Cancer Hospital, Columbus, OH, USA.
| | - Amandine Chaix
- Department of Nutrition and Integrative Physiology, University of Utah, Salt Lake City, UT 84112, USA
| | - Mirela Delibegovic
- Aberdeen Cardiovascular and Diabetes Centre, Institute of Medical Sciences, University of Aberdeen, Foresterhill Health Campus, Aberdeen, UK
| | - Jon J Ramsey
- Department of Molecular Biosciences, School of Veterinary Medicine, University of California, Davis, Davis, CA, USA
| | - Joseph Bass
- Department of Medicine, Division of Endocrinology, Metabolism, and Molecular Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Girish Melkani
- Department of Pathology, Division of Molecular and Cellular Pathology, Heersink School of Medicine, The University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Rajat Singh
- Department of Medicine, Vatche and Tamar Manoukian Division of Digestive Diseases, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - Zheng Chen
- Department of Biochemistry and Molecular Biology, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - William W Ja
- Department of Neuroscience, The Herbert Wertheim UF Scripps Institute for Biomedical Innovation & Technology, Jupiter, FL, USA
| | - Michele Shirasu-Hiza
- Department of Genetics and Development, Columbia University Medical Center, New York, NY, USA
| | - Mary N Latimer
- Division of Cardiovascular Disease, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Julie A Mattison
- Translational Gerontology Branch, National Institute on Aging, National Institutes of Health, Baltimore, MD, USA
| | - Anna E Thalacker-Mercer
- Department of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Vishwa Deep Dixit
- Department of Pathology, Yale School of Medicine, New Haven, CT, USA; Department of Comparative Medicine, Yale School of Medicine, New Haven, CT, USA; Department of Immunobiology, Yale School of Medicine, New Haven, CT, USA; Yale Center for Research on Aging, Yale School of Medicine, New Haven, CT, USA
| | - Satchidananda Panda
- Regulatory Biology Lab, Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Dudley W Lamming
- Department of Medicine, University of Wisconsin-Madison, Madison, WI, USA; William S. Middleton Memorial Veterans Hospital, Madison, WI, USA.
| |
Collapse
|
9
|
Jaimes MSV, Liao C, Chen MM, Czosseck A, Lee T, Chou Y, Chen Y, Lin S, Lai JJ, Lundy DJ. Assessment of circulating extracellular vesicles from calorie-restricted mice and humans in ischaemic injury models. JOURNAL OF EXTRACELLULAR BIOLOGY 2023; 2:e86. [PMID: 38938283 PMCID: PMC11080834 DOI: 10.1002/jex2.86] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 03/23/2023] [Accepted: 04/11/2023] [Indexed: 06/29/2024]
Abstract
Calorie restriction (CR) and fasting affect lifespan, disease susceptibility and response to acute injury across multiple animal models, including ischaemic injuries such as myocardial infarction or kidney hypoxia. The cargo and function of circulating extracellular vesicles (EV) respond to changes in host physiology, including exercise, injury, and other interventions. Thus, we hypothesised that EVs induced following CR may reflect some of the beneficial properties of CR itself. In a pilot study, EVs were isolated from mice following 21 days of 30 % CR, and from eight human donors after 72 h water-only fasting. EV size, concentration and morphology were profiled by NTA, western blot and cryoEM, and their function was assessed using multiple assays related to ischaemic diseases. We found that EVs from post-fasting samples better protected cardiac cells from hypoxia/reperfusion (H/R) injury compared to pre-fasting EVs. However, there was no difference when used to treat H/R-injured kidney epithelial cells. Post-fasting derived EVs slowed the rate of fibroblast migration and slightly reduced macrophage inflammatory gene expression compared to pre-fasting derived EVs. Lastly, we compared miRNA cargos of pre- and post-fasting human serum EVs and found significant changes in a small number of miRNAs. We conclude that fasting appears to influence EV cargo and function, with varied effects worthy of further exploration.
Collapse
Affiliation(s)
- Manuel S. V. Jaimes
- Graduate Institute of Biomedical Materials & Tissue EngineeringTaipei Medical UniversityTaipeiTaiwan
| | - Chia‐Te Liao
- Division of NephrologyDepartment of Internal MedicineShuang Ho HospitalTaipei Medical UniversityNew TaipeiTaiwan
- Division of NephrologyDepartment of Internal MedicineSchool of MedicineCollege of MedicineTaipei Medical UniversityTaipeiTaiwan
- TMU Research Center of Urology and Kidney (TMU‐RCUK)Taipei Medical UniversityTaipeiTaiwan
| | - Max M. Chen
- Graduate Institute of Biomedical Materials & Tissue EngineeringTaipei Medical UniversityTaipeiTaiwan
| | - Andreas Czosseck
- Graduate Institute of Biomedical Materials & Tissue EngineeringTaipei Medical UniversityTaipeiTaiwan
| | - Tsung‐Lin Lee
- Division of NephrologyDepartment of Internal MedicineShuang Ho HospitalTaipei Medical UniversityNew TaipeiTaiwan
| | - Yu‐Hsiang Chou
- Division of NephrologyDepartment of Internal MedicineNational Taiwan University HospitalCollege of MedicineNational Taiwan UniversityTaipeiTaiwan
| | - Yung‐Ming Chen
- Division of NephrologyDepartment of Internal MedicineNational Taiwan University HospitalCollege of MedicineNational Taiwan UniversityTaipeiTaiwan
| | - Shuei‐Liong Lin
- Division of NephrologyDepartment of Internal MedicineNational Taiwan University HospitalCollege of MedicineNational Taiwan UniversityTaipeiTaiwan
- Graduate Institute of PhysiologyCollege of MedicineNational Taiwan UniversityTaipeiTaiwan
| | - James J. Lai
- Department of BioengineeringUniversity of WashingtonSeattleWashingtonUSA
- Department of Materials Science and EngineeringNational Taiwan University of Science and TechnologyTaipeiTaiwan
| | - David J. Lundy
- Graduate Institute of Biomedical Materials & Tissue EngineeringTaipei Medical UniversityTaipeiTaiwan
- International PhD Program in Biomedical EngineeringTaipei Medical UniversityTaipeiTaiwan
- Center for Cell TherapyTaipei Medical University HospitalTaipeiTaiwan
| |
Collapse
|
10
|
Hahm JH, Nirmala FS, Choi PG, Seo HD, Ha TY, Jung CH, Ahn J. The innate immune signaling component FBXC-58 mediates dietary restriction effects on healthy aging in Caenorhabditis elegans. Aging (Albany NY) 2023; 15:21-36. [PMID: 36622277 PMCID: PMC9876644 DOI: 10.18632/aging.204477] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Accepted: 12/29/2022] [Indexed: 01/08/2023]
Abstract
Dietary restriction (DR) is a highly effective and reproducible intervention that prolongs longevity in many organisms. The molecular mechanism of action of DR is tightly connected with the immune system; however, the detailed mechanisms and effective downstream factors of immunity that mediate the beneficial effects of DR on aging remain unknown. Here, to investigate the immune signaling that mediates DR effects, we used Caenorhabditis elegans, which has been widely used in research, to understand the underlying molecular mechanisms of aging and immunity. We found that the F-box gene, fbxc-58, a regulator of the innate immune response, is a novel mediator of DR effects on extending the health span of C. elegans. fbxc-58 is upregulated by DR and is necessary for DR-induced lifespan extension and physical health improvement in C. elegans. Furthermore, through DR, fbxc-58 prevents disintegration of the mitochondrial network in body wall muscle during aging. We found that fbxc-58 is a downstream target of the ZIP-2 and PHA-4 transcription factors, the well-known DR mediator, and fbxc-58 extends longevity in DR through an S6 kinase-dependent pathway. We propose that the novel DR effector, fbxc-58, could provide a new mechanistic understanding of the effects of DR on healthy aging and elucidate the signaling mechanisms that link immunity and DR effects with aging.
Collapse
Affiliation(s)
- Jeong-Hoon Hahm
- Aging and Metabolism Research Group, Korea Food Research Institute, Wanju-gun 55365, South Korea
| | - Farida S. Nirmala
- Aging and Metabolism Research Group, Korea Food Research Institute, Wanju-gun 55365, South Korea
- Department of Food Biotechnology, University of Science and Technology, Daejeon-si 34113, South Korea
| | - Pyeong Geun Choi
- Aging and Metabolism Research Group, Korea Food Research Institute, Wanju-gun 55365, South Korea
- Department of Food Biotechnology, University of Science and Technology, Daejeon-si 34113, South Korea
| | - Hyo-Deok Seo
- Aging and Metabolism Research Group, Korea Food Research Institute, Wanju-gun 55365, South Korea
| | - Tae Youl Ha
- Aging and Metabolism Research Group, Korea Food Research Institute, Wanju-gun 55365, South Korea
- Department of Food Biotechnology, University of Science and Technology, Daejeon-si 34113, South Korea
| | - Chang Hwa Jung
- Aging and Metabolism Research Group, Korea Food Research Institute, Wanju-gun 55365, South Korea
- Department of Food Biotechnology, University of Science and Technology, Daejeon-si 34113, South Korea
| | - Jiyun Ahn
- Aging and Metabolism Research Group, Korea Food Research Institute, Wanju-gun 55365, South Korea
- Department of Food Biotechnology, University of Science and Technology, Daejeon-si 34113, South Korea
| |
Collapse
|
11
|
Frasca D. Several areas of overlap between obesity and aging indicate obesity as a biomarker of accelerated aging of human B cell function and antibody responses. Immun Ageing 2022; 19:48. [PMID: 36289515 PMCID: PMC9598013 DOI: 10.1186/s12979-022-00301-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Accepted: 09/19/2022] [Indexed: 11/10/2022]
Abstract
Aging and obesity are high risk factors for several conditions and diseases. They are both associated with systemic inflammation and they are both ameliorated by a healthy life style, suggesting that they may share cellular and molecular pathways and underlying mechanisms. A close relationship between aging and obesity is also supported by the observation that the aging overweight/obese population is increasing worldwide, and mechanisms involved will be presented here. A focus of our work is to evaluate if obesity may be considered a good biomarker of accelerated aging of human antibody responses. We will summarize our published results showing the effects of obesity in accelerating age defects in the peripheral B cell pool and how these lead to dysfunctional humoral immunity.
Collapse
Affiliation(s)
- Daniela Frasca
- Department of Microbiology and Immunology and Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, RMSB 3153, 1600 NW 10th Ave, Miami, FL, 33136, USA.
| |
Collapse
|
12
|
Kosenko A, Salame TM, Friedlander G, Barash I. Macrophage-Secreted CSF1 Transmits a Calorie Restriction-Induced Self-Renewal Signal to Mammary Epithelial Stem Cells. Cells 2022; 11:cells11182923. [PMID: 36139499 PMCID: PMC9496835 DOI: 10.3390/cells11182923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2022] [Revised: 09/04/2022] [Accepted: 09/12/2022] [Indexed: 11/16/2022] Open
Abstract
Calorie restriction enhances stem cell self-renewal in various tissues, including the mammary gland. We hypothesized that similar to their intestinal counterparts, mammary epithelial stem cells are insulated from sensing changes in energy supply, depending instead on niche signaling. The latter was investigated by subjecting cultures of mammary epithelial stem cells for 8 days to in vivo paracrine calorie-restriction signals collected from a 4-day-conditioned medium of individual mammary cell populations. Conditioned medium from calorie-restricted non-epithelial cells induced latent cell propagation and mammosphere formation—established markers of stem cell self-renewal. Combined RNA-Seq, immunohistochemistry and immunofluorescence analyses of the non-epithelial population identified macrophages and secreted CSF1 as the energy sensor and paracrine signal, respectively. Calorie restriction-induced pStat6 expression in macrophages suggested that skewing to the M2 phenotype contributes to the sensing mechanism. Enhancing CSF1 signaling with recombinant protein and interrupting the interaction with its highly expressed receptor in the epithelial stem cells by neutralizing antibodies were both affected stem cell self-renewal. In conclusion, combined in vivo, in vitro and in silico studies identified macrophages and secreted CSF1 as the energy sensor and paracrine transmitter, respectively, of the calorie restriction-induced effect on mammary stem cell self-renewal.
Collapse
Affiliation(s)
- Anna Kosenko
- The Volcani Center, Agricultural Research Organization, Institute of Animal Science, Bet Dagan 50250, Israel
- The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Jerusalem 9190501, Israel
| | - Tomer Meir Salame
- Life Sciences Core Facilities, Weizmann Institute of Science, Rehovot 7632706, Israel
| | - Gilgi Friedlander
- The Mantoux Bioinformatics Institute of the Nancy and Stephen Grand Israel National Center for Personalized Medicine, Weizmann Institute of Science, Rehovot 7632706, Israel
| | - Itamar Barash
- The Volcani Center, Agricultural Research Organization, Institute of Animal Science, Bet Dagan 50250, Israel
- Correspondence:
| |
Collapse
|
13
|
Tao S, Wang Y, Yu C, Qiu R, Jiang Y, Jia J, Tao Z, Zhang L, Zou B, Tang D. Gut microbiota mediates the inhibition of lymphopoiesis in dietary-restricted mice by suppressing glycolysis. Gut Microbes 2022; 14:2117509. [PMID: 36049025 PMCID: PMC9450896 DOI: 10.1080/19490976.2022.2117509] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Dietary restriction (DR) is one of the most robust interventions shown to extend health-span and remains on the forefront of anti-aging intervention studies, though conflicting results have been shown on its effect on lifespan both in rodents and primates. The severe inhibitory effects on the lymphoid lineage by DR remains one of its major negative downsides which reduces its overall beneficial effects on organismal health. Yet, the underlying mechanism of how DR suppresses the lymphoid system remains to be explored. Here, we show that antibiotic ablation of gut microbiota significantly rescued the inhibition of lymphopoiesis by DR. Interestingly, glycolysis in lymphocytes was significantly down-regulated in DR mice and pharmacological inhibition of glycolysis reverted this rescue effect of lymphopoiesis in DR mice with ablated gut microbiota. Furthermore, DR remarkably reconstructed gut microbiota with a significant increase in butyrate-producing bacterial taxa and in expression of But, a key gene involved in butyrate synthesis. Moreover, supplemental butyrate feeding in AL mice suppressed glycolysis in lymphoid cells and mimicked the inhibition of lymphopoiesis in AL mice. Together, our study reveals that gut microbiota mediates the inhibition on lymphopoiesis via down-regulation of glycolysis under DR conditions, which is associated with increased butyrate-synthesis. Our study uncovered a candidate that could potentially be targeted for ameliorating the negative effects of DR on lymphopoiesis, and therefore may have important implications for the wider application of DR and promoting healthy aging.
Collapse
Affiliation(s)
- Si Tao
- Jiangxi Key Laboratory of Clinical and Translational Cancer Research, Department of Oncology, The Second Affiliated Hospital of Nanchang University, Jiangxi, China,Department of Oncology, The Second Affiliated Hospital of Nanchang University, Jiangxi, China
| | - Yiting Wang
- Department of Hematology, The Second Affiliated Hospital of Nanchang University, Jiangxi, China
| | - Chenghui Yu
- Department of Hematology, The Second Affiliated Hospital of Nanchang University, Jiangxi, China
| | - Rongrong Qiu
- Jiangxi Key Laboratory of Clinical and Translational Cancer Research, Department of Oncology, The Second Affiliated Hospital of Nanchang University, Jiangxi, China,Department of Oncology, The Second Affiliated Hospital of Nanchang University, Jiangxi, China
| | - Yanjun Jiang
- Department of Hematology, The Second Affiliated Hospital of Nanchang University, Jiangxi, China
| | - Jie Jia
- Jiangxi Key Laboratory of Clinical and Translational Cancer Research, Department of Oncology, The Second Affiliated Hospital of Nanchang University, Jiangxi, China,Department of Oncology, The Second Affiliated Hospital of Nanchang University, Jiangxi, China
| | - Zhendong Tao
- Department of Medical Laboratory Medicine, Jiangxi Province Hospital of Integrated Chinese & Western Medicine, Jiangxi, China
| | - Liu Zhang
- Intensive Care Unit, Peking University People’s Hospital, Beijing, China
| | - Bing Zou
- Jiangxi Key Laboratory of Clinical and Translational Cancer Research, Department of Oncology, The Second Affiliated Hospital of Nanchang University, Jiangxi, China,Department of Oncology, The Second Affiliated Hospital of Nanchang University, Jiangxi, China
| | - Duozhuang Tang
- Department of Hematology, The Second Affiliated Hospital of Nanchang University, Jiangxi, China,CONTACT Duozhuang Tang Department of Hematology, The Second Affiliated Hospital of Nanchang University, Min-De Road. 1, Nanchang, Jiangxi Province330006, China
| |
Collapse
|
14
|
Di Tano M, Longo VD. Fasting and cancer: from yeast to mammals. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2022; 373:81-106. [PMID: 36283768 DOI: 10.1016/bs.ircmb.2022.02.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Fasting and fasting mimicking diets extend lifespan and healthspan in mouse models and decrease risk factors for cancer and other age-related pathologies in humans. Normal cells respond to fasting and the consequent decrease in nutrients by down-regulating proto-oncogene pathways to enter a stress-resistant mode, which protects them from different cancer therapies. In contrast, oncogene mutations and the constitutive activation of pathways including RAS, AKT, and PKA allow cancer cells to disobey fasting-dependent anti-growth signal. Importantly, in different tumor types, fasting potentiates the toxicity of various therapies by increasing reactive oxygen species and oxidative stress, which ultimately leads to DNA damage and cell death. This effect is not limited to chemotherapy, since periodic fasting/FMD cycles potentiate the effects of tyrosine kinase inhibitors, hormone therapy, radiotherapy, and pharmacological doses of vitamin C. In addition, the anticancer effects of fasting/FMD can also be tumor-independent and involve an immunotherapy-like activation of T cell-dependent attack of tumor cells. Supported by a range of pre-clinical studies, clinical trials are beginning to confirm the safety and efficacy of fasting/FMD cycles in improving the potential of different cancer therapies, while decreasing side effects to healthy cells and tissues.
Collapse
Affiliation(s)
- Maira Di Tano
- IFOM, FIRC Institute of Molecular Oncology, Milan, Italy
| | - Valter D Longo
- IFOM, FIRC Institute of Molecular Oncology, Milan, Italy; Longevity Institute, Leonard Davis School of Gerontology and Department of Biological Sciences, University of Southern California, Los Angeles, CA, United States.
| |
Collapse
|
15
|
Spadaro O, Youm Y, Shchukina I, Ryu S, Sidorov S, Ravussin A, Nguyen K, Aladyeva E, Predeus AN, Smith SR, Ravussin E, Galban C, Artyomov MN, Dixit VD. Caloric restriction in humans reveals immunometabolic regulators of health span. Science 2022; 375:671-677. [PMID: 35143297 PMCID: PMC10061495 DOI: 10.1126/science.abg7292] [Citation(s) in RCA: 143] [Impact Index Per Article: 47.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The extension of life span driven by 40% caloric restriction (CR) in rodents causes trade-offs in growth, reproduction, and immune defense that make it difficult to identify therapeutically relevant CR-mimetic targets. We report that about 14% CR for 2 years in healthy humans improved thymopoiesis and was correlated with mobilization of intrathymic ectopic lipid. CR-induced transcriptional reprogramming in adipose tissue implicated pathways regulating mitochondrial bioenergetics, anti-inflammatory responses, and longevity. Expression of the gene Pla2g7 encoding platelet activating factor acetyl hydrolase (PLA2G7) is inhibited in humans undergoing CR. Deletion of Pla2g7 in mice showed decreased thymic lipoatrophy, protection against age-related inflammation, lowered NLRP3 inflammasome activation, and improved metabolic health. Therefore, the reduction of PLA2G7 may mediate the immunometabolic effects of CR and could potentially be harnessed to lower inflammation and extend the health span.
Collapse
Affiliation(s)
- O Spadaro
- Department of Pathology, Yale School of Medicine, New Haven, CT, USA
- Department of Immunobiology, Yale School of Medicine, New Haven, CT, USA
- Department of Comparative Medicine, Yale School of Medicine, New Haven, CT, USA
| | - Y Youm
- Department of Pathology, Yale School of Medicine, New Haven, CT, USA
- Department of Immunobiology, Yale School of Medicine, New Haven, CT, USA
- Department of Comparative Medicine, Yale School of Medicine, New Haven, CT, USA
| | - I Shchukina
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, USA
| | - S Ryu
- Department of Pathology, Yale School of Medicine, New Haven, CT, USA
- Department of Immunobiology, Yale School of Medicine, New Haven, CT, USA
- Department of Comparative Medicine, Yale School of Medicine, New Haven, CT, USA
| | - S Sidorov
- Department of Pathology, Yale School of Medicine, New Haven, CT, USA
- Department of Immunobiology, Yale School of Medicine, New Haven, CT, USA
- Department of Comparative Medicine, Yale School of Medicine, New Haven, CT, USA
| | - A Ravussin
- Department of Pathology, Yale School of Medicine, New Haven, CT, USA
- Department of Immunobiology, Yale School of Medicine, New Haven, CT, USA
- Department of Comparative Medicine, Yale School of Medicine, New Haven, CT, USA
| | - K Nguyen
- Department of Pathology, Yale School of Medicine, New Haven, CT, USA
- Department of Immunobiology, Yale School of Medicine, New Haven, CT, USA
- Department of Comparative Medicine, Yale School of Medicine, New Haven, CT, USA
| | - E Aladyeva
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, USA
| | - A N Predeus
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, USA
| | - S R Smith
- Translational Research Institute for Metabolism and Diabetes, AdventHealth, Orlando, FL, USA
| | - E Ravussin
- Pennington Biomedical Research Center, LSU, Baton Rouge, LA, USA
| | - C Galban
- Department of Radiology, Michigan Medicine, University of Michigan, Ann Arbor, MI, USA
| | - M N Artyomov
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, USA
| | - V D Dixit
- Department of Pathology, Yale School of Medicine, New Haven, CT, USA
- Department of Immunobiology, Yale School of Medicine, New Haven, CT, USA
- Department of Comparative Medicine, Yale School of Medicine, New Haven, CT, USA
- Yale Center for Molecular and Systems Metabolism, Yale School of Medicine, New Haven, CT, USA
- Yale Center for Research on Aging, Yale School of Medicine, New Haven, CT, USA
| |
Collapse
|
16
|
Krams IA, Jõers P, Luoto S, Trakimas G, Lietuvietis V, Krams R, Kaminska I, Rantala MJ, Krama T. The Obesity Paradox Predicts the Second Wave of COVID-19 to Be Severe in Western Countries. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:ijerph18031029. [PMID: 33503828 PMCID: PMC7908102 DOI: 10.3390/ijerph18031029] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 01/12/2021] [Accepted: 01/22/2021] [Indexed: 12/31/2022]
Abstract
While COVID-19 infection and mortality rates are soaring in Western countries, Southeast Asian countries have successfully avoided the second wave of the SARS-CoV-2 pandemic despite high population density. We provide a biochemical hypothesis for the connection between low COVID-19 incidence, mortality rates, and high visceral adiposity in Southeast Asian populations. The SARS-CoV-2 virus uses angiotensin-converting enzyme 2 (ACE2) as a gateway into the human body. Although the highest expression levels of ACE2 are found in people’s visceral adipose tissue in Southeast Asia, this does not necessarily make them vulnerable to COVID-19. Hypothetically, high levels of visceral adiposity cause systemic inflammation, thus decreasing the ACE2 amount on the surface of both visceral adipocytes and alveolar epithelial type 2 cells in the lungs. Extra weight gained during the pandemic is expected to increase visceral adipose tissue in Southeast Asians, further decreasing the ACE2 pool. In contrast, weight gain can increase local inflammation in fat depots in Western people, leading to worse COVID-related outcomes. Because of the biological mechanisms associated with fat accumulation, inflammation, and their differential expression in Southeast Asian and Western populations, the second wave of the pandemic may be more severe in Western countries, while Southeast Asians may benefit from their higher visceral fat depots.
Collapse
Affiliation(s)
- Indrikis A. Krams
- Department of Biotechnology, Daugavpils University, LV5401 Daugavpils, Latvia; (R.K.); (T.K.)
- Institute of Ecology and Earth Sciences, University of Tartu, EE51014 Tartu, Estonia
- Department of Zoology and Animal Ecology, Faculty of Biology, University of Latvia, LV1004 Riga, Latvia
- Correspondence:
| | - Priit Jõers
- Institute of Molecular and Cell Biology, University of Tartu, EE51010 Tartu, Estonia;
| | - Severi Luoto
- School of Psychology, University of Auckland, 1142 Auckland, New Zealand;
| | - Giedrius Trakimas
- Institute of Biosciences, Vilnius University, 10257 Vilnius, Lithuania;
| | - Vilnis Lietuvietis
- Department of Surgery, Riga Stradins University, LV1007 Riga, Latvia;
- Riga East Clinical University Hospital, LV1010 Riga, Latvia
| | - Ronalds Krams
- Department of Biotechnology, Daugavpils University, LV5401 Daugavpils, Latvia; (R.K.); (T.K.)
- Department of Anatomy and Physiology, Daugavpils University, LV5401 Daugavpils, Latvia;
| | - Irena Kaminska
- Department of Anatomy and Physiology, Daugavpils University, LV5401 Daugavpils, Latvia;
| | - Markus J. Rantala
- Department of Biology, Section of Ecology, University of Turku, FI-20014 Turku, Finland;
| | - Tatjana Krama
- Department of Biotechnology, Daugavpils University, LV5401 Daugavpils, Latvia; (R.K.); (T.K.)
| |
Collapse
|
17
|
|
18
|
Wilson K, Holdbrook R, Reavey CE, Randall JL, Tummala Y, Ponton F, Simpson SJ, Smith JA, Cotter SC. Osmolality as a Novel Mechanism Explaining Diet Effects on the Outcome of Infection with a Blood Parasite. Curr Biol 2020; 30:2459-2467.e3. [DOI: 10.1016/j.cub.2020.04.058] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Revised: 03/19/2020] [Accepted: 04/22/2020] [Indexed: 12/30/2022]
|
19
|
Lazic D, Tesic V, Jovanovic M, Brkic M, Milanovic D, Zlokovic BV, Kanazir S, Perovic M. Every-other-day feeding exacerbates inflammation and neuronal deficits in 5XFAD mouse model of Alzheimer's disease. Neurobiol Dis 2020; 136:104745. [PMID: 31931140 DOI: 10.1016/j.nbd.2020.104745] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Revised: 11/22/2019] [Accepted: 01/09/2020] [Indexed: 02/04/2023] Open
Abstract
Food restriction has been widely associated with beneficial effects on brain aging and age-related neurodegenerative diseases such as Alzheimer's disease. However, previous studies on the effects of food restriction on aging- or pathology-related cognitive decline are controversial, emphasizing the importance of the type, onset and duration of food restriction. In the present study, we assessed the effects of preventive every-other-day (EOD) feeding regimen on neurodegenerative phenotype in 5XFAD transgenic mice, a commonly used mouse model of Alzheimer's disease. EOD feeding regimen was introduced to transgenic female mice at the age of 2 months and the effects on amyloid-β (Aβ) accumulation, gliosis, synaptic plasticity, and blood-brain barrier breakdown were analyzed in cortical tissue of 6-month-old animals. Surprisingly, significant increase of inflammation in the cortex of 5XFAD fed EOD mice was observed, reflected by the expression of microglial and astrocytic markers. This increase in reactivity and/or proliferation of glial cells was accompanied by an increase in proinflammatory cytokine TNF-α, p38 MAPK and EAAT2, and a decrease in GAD67. NMDA receptor subunit 2B, related to glutamate excitotoxicity, was increased in the cortex of 5XFAD-EOD mice indicating additional alterations in glutamatergic signaling. Furthermore, 4 months of EOD feeding regimen had led to synaptic plasticity proteins reduction and neuronal injury in 5XFAD mice. However, EOD feeding regimen did not affect Aβ load and blood-brain barrier permeability in the cortex of 5XFAD mice. Our results demonstrate that EOD feeding regimen exacerbates Alzheimer's disease-like neurodegenerative and neuroinflammatory changes irrespective of Aβ pathology in 5XFAD mice, suggesting that caution should be paid when using food restrictions in the prodromal phase of this neurodegenerative disease.
Collapse
Affiliation(s)
- Divna Lazic
- Department of Neurobiology, Institute for Biological Research "Siniša Stanković"- National Institute of Republic of Serbia, University of Belgrade, Bul. despota Stefana 142, 11000 Belgrade, Serbia; Zilkha Neurogenetic Institute, Keck School of Medicine, University of Southern California, 1501 San Pablo St, 90033 Los Angeles, CA, USA; Department of Physiology and Neuroscience, Keck School of Medicine, University of Southern California, 1501 San Pablo St, 90033 Los Angeles, CA, USA.
| | - Vesna Tesic
- Department of Neurobiology, Institute for Biological Research "Siniša Stanković"- National Institute of Republic of Serbia, University of Belgrade, Bul. despota Stefana 142, 11000 Belgrade, Serbia.
| | - Mirna Jovanovic
- Department of Neurobiology, Institute for Biological Research "Siniša Stanković"- National Institute of Republic of Serbia, University of Belgrade, Bul. despota Stefana 142, 11000 Belgrade, Serbia.
| | - Marjana Brkic
- Department of Neurobiology, Institute for Biological Research "Siniša Stanković"- National Institute of Republic of Serbia, University of Belgrade, Bul. despota Stefana 142, 11000 Belgrade, Serbia.
| | - Desanka Milanovic
- Department of Neurobiology, Institute for Biological Research "Siniša Stanković"- National Institute of Republic of Serbia, University of Belgrade, Bul. despota Stefana 142, 11000 Belgrade, Serbia.
| | - Berislav V Zlokovic
- Zilkha Neurogenetic Institute, Keck School of Medicine, University of Southern California, 1501 San Pablo St, 90033 Los Angeles, CA, USA; Department of Physiology and Neuroscience, Keck School of Medicine, University of Southern California, 1501 San Pablo St, 90033 Los Angeles, CA, USA.
| | - Selma Kanazir
- Department of Neurobiology, Institute for Biological Research "Siniša Stanković"- National Institute of Republic of Serbia, University of Belgrade, Bul. despota Stefana 142, 11000 Belgrade, Serbia.
| | - Milka Perovic
- Department of Neurobiology, Institute for Biological Research "Siniša Stanković"- National Institute of Republic of Serbia, University of Belgrade, Bul. despota Stefana 142, 11000 Belgrade, Serbia.
| |
Collapse
|
20
|
Negri R, Trinchese G, Carbone F, Caprio MG, Stanzione G, di Scala C, Micillo T, Perna F, Tarotto L, Gelzo M, Cavaliere G, Spagnuolo MI, Corso G, Mattace Raso G, Matarese G, Mollica MP, Greco L, Iorio R. Randomised Clinical Trial: Calorie Restriction Regimen with Tomato Juice Supplementation Ameliorates Oxidative Stress and Preserves a Proper Immune Surveillance Modulating Mitochondrial Bioenergetics of T-Lymphocytes in Obese Children Affected by Non-Alcoholic Fatty Liver Disease (NAFLD). J Clin Med 2020; 9:jcm9010141. [PMID: 31947953 PMCID: PMC7019306 DOI: 10.3390/jcm9010141] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Revised: 12/23/2019] [Accepted: 01/01/2020] [Indexed: 12/27/2022] Open
Abstract
Fatty liver disease is a serious complication of childhood obesity. Calorie-restricted regimen (RCR) is one of the effective therapy for this condition. Aim of the study was to evaluate the effect of lycopene-rich tomato sauce with oregano and basil extracts in obese children with fatty liver on RCR. 61 obese children with fatty liver were enrolled, 52 completed the study. A randomized cross over clinical trial was performed. Participants were assigned to RCR alone or with a supplement of lycopene-rich tomato juice for 60 days; subsequently, the groups were switched to the alternative regimen for the next 60 days. Reduction in BMI, HOMA-IR, cholesterol, triglycerides, liver size, and steatosis was more profound in tomato-supplemented group. Leptin decreased in both groups whereas adiponectin raised only after tomato supplementation. RCR is associated with the impaired engagement of T-cells glycolysis and proliferation, tomato-supplementation resulted in glycolytic metabolic activation of T-cells. Tomato juice ameliorates glucose and lipid metabolism in obese children, improve oxidative and inflammatory state and modulates the mitochondrial metabolism of T-cells contributing to a maintenance of a proper immune surveillance in children, impaired by RCR. The addition of tomato to RCR could be considered a protective and preventive support to obese child.
Collapse
Affiliation(s)
- Rossella Negri
- European Laboratory for the Study of Food Induced Diseases (ELFID), 80131 Naples, Italy; (R.N.); (M.I.S.); (L.G.); (R.I.)
- Department of Translational Medical Sciences, Section of Paediatrics, University of Naples Federico II, 80131 Naples, Italy; (G.S.); (C.d.S.)
| | - Giovanna Trinchese
- Department of Biology, University of Naples Federico II, 80126 Naples, Italy; (G.T.); (T.M.); (G.C.)
| | - Fortunata Carbone
- Institute for Experimental Endocrinology and Oncology, National Research Council (IEOS-CNR), 80131 Naples, Italy; (F.C.); (G.M.)
- Neuroimmunology Unit, IRCCS Fondazione Santa Lucia, 00143 Rome, Italy
| | | | - Giovanna Stanzione
- Department of Translational Medical Sciences, Section of Paediatrics, University of Naples Federico II, 80131 Naples, Italy; (G.S.); (C.d.S.)
| | - Carmen di Scala
- Department of Translational Medical Sciences, Section of Paediatrics, University of Naples Federico II, 80131 Naples, Italy; (G.S.); (C.d.S.)
| | - Teresa Micillo
- Department of Biology, University of Naples Federico II, 80126 Naples, Italy; (G.T.); (T.M.); (G.C.)
| | - Francesco Perna
- Department of Clinical Medicine and Surgery, University of Naples Federico II, 80131 Naples, Italy;
| | - Luca Tarotto
- Department of Advanced Biomedical Sciences, University of Naples Federico II, 80131 Naples, Italy;
| | - Monica Gelzo
- CEINGE- Biotecnologie Avanzate S.c.a r.l., 80145 Naples, Italy;
| | - Gina Cavaliere
- Department of Biology, University of Naples Federico II, 80126 Naples, Italy; (G.T.); (T.M.); (G.C.)
| | - Maria Immacolata Spagnuolo
- European Laboratory for the Study of Food Induced Diseases (ELFID), 80131 Naples, Italy; (R.N.); (M.I.S.); (L.G.); (R.I.)
| | - Gaetano Corso
- Department of Clinical and Experimental Medicine, University of Foggia, 71122 Foggia, Italy;
| | | | - Giuseppe Matarese
- Institute for Experimental Endocrinology and Oncology, National Research Council (IEOS-CNR), 80131 Naples, Italy; (F.C.); (G.M.)
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, 80131 Naples, Italy
| | - Maria Pina Mollica
- Department of Biology, University of Naples Federico II, 80126 Naples, Italy; (G.T.); (T.M.); (G.C.)
- Correspondence: ; Tel.: +39-081-253-5083, Fax: +39-081-679-233
| | - Luigi Greco
- European Laboratory for the Study of Food Induced Diseases (ELFID), 80131 Naples, Italy; (R.N.); (M.I.S.); (L.G.); (R.I.)
- Department of Translational Medical Sciences, Section of Paediatrics, University of Naples Federico II, 80131 Naples, Italy; (G.S.); (C.d.S.)
| | - Raffaele Iorio
- European Laboratory for the Study of Food Induced Diseases (ELFID), 80131 Naples, Italy; (R.N.); (M.I.S.); (L.G.); (R.I.)
| |
Collapse
|
21
|
Wensveen FM, Šestan M, Turk Wensveen T, Polić B. 'Beauty and the beast' in infection: How immune-endocrine interactions regulate systemic metabolism in the context of infection. Eur J Immunol 2019; 49:982-995. [PMID: 31106860 DOI: 10.1002/eji.201847895] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2019] [Revised: 03/28/2019] [Accepted: 05/17/2019] [Indexed: 02/07/2023]
Abstract
The immune and endocrine systems ensure two vital functions in the body. The immune system protects us from lethal pathogens, whereas the endocrine system ensures proper metabolic function of peripheral organs by regulating systemic homeostasis. These two systems were long thought to operate independently. The immune system uses cytokines and immune receptors, whereas the endocrine system uses hormones to regulate metabolism. However, recent findings show that the immune and endocrine systems closely interact, especially regarding regulation of glucose metabolism. In response to pathogen encounter, cytokines modify responsiveness of peripheral organs to endocrine signals, resulting in altered levels of blood hormones such as insulin, which promotes the ability of the body to fight infection. Here we provide an overview of recent literature describing various mechanisms, which the immune system utilizes to modify endocrine regulation of systemic metabolism. Moreover, we will describe how these immune-endocrine interactions derail in the context of obesity. From a clinical perspective we will elaborate how infection and obesity aggravate the development of metabolic diseases such as diabetes mellitus type 2 in humans. In summary, this review provides a comprehensive overview of immune-induced changes in systemic metabolism following infection, with a focus on regulation of glucose metabolism.
Collapse
Affiliation(s)
- Felix M Wensveen
- Department of Histology and Embryology, University of Rijeka School of Medicine, Rijeka, Croatia
| | - Marko Šestan
- Department of Histology and Embryology, University of Rijeka School of Medicine, Rijeka, Croatia
| | - Tamara Turk Wensveen
- Department of Endocrinology, Diabetes and Metabolic Diseases, Clinical hospital center Rijeka, Rijeka, Croatia
| | - Bojan Polić
- Department of Histology and Embryology, University of Rijeka School of Medicine, Rijeka, Croatia
| |
Collapse
|
22
|
Maurya R, Bhattacharya P, Dey R, Nakhasi HL. Leptin Functions in Infectious Diseases. Front Immunol 2018; 9:2741. [PMID: 30534129 PMCID: PMC6275238 DOI: 10.3389/fimmu.2018.02741] [Citation(s) in RCA: 79] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2018] [Accepted: 11/07/2018] [Indexed: 01/26/2023] Open
Abstract
Leptin, a pleiotropic protein has long been recognized to play an important role in the regulation of energy homeostasis, metabolism, neuroendocrine function, and other physiological functions through its effects on the central nervous system (CNS) and peripheral tissues. Leptin is secreted by adipose tissue and encoded by the obese (ob) gene. Leptin acts as a central mediator which regulates immunity as well as nutrition. Importantly, leptin can modulate both innate and adaptive immune responses. Leptin deficiency/resistance is associated with dysregulation of cytokine production, increased susceptibility toward infectious diseases, autoimmune disorders, malnutrition and inflammatory responses. Malnutrition induces a state of immunodeficiency and an inclination to death from communicable diseases. Infectious diseases are the disease of poor who invariably suffer from malnutrition that could result from reduced serum leptin levels. Thus, leptin has been placed at the center of many interrelated functions in various pathogenic conditions, such as bacterial, viruses and parasitic infections. We review herein, the recent advances on the role of leptin in malnutrition in pathogenesis of infectious diseases with a particular emphasis on parasitic diseases such as Leishmaniasis, Trypanosomiasis, Amoebiasis, and Malaria.
Collapse
Affiliation(s)
- Radheshyam Maurya
- Department of Animal Biology, School of Life Science, University of Hyderabad, Hyderabad, India
| | - Parna Bhattacharya
- Division of Emerging and Transfusion Transmitted Diseases, Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, MD, United States
| | - Ranadhir Dey
- Division of Emerging and Transfusion Transmitted Diseases, Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, MD, United States
| | - Hira L. Nakhasi
- Division of Emerging and Transfusion Transmitted Diseases, Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, MD, United States
| |
Collapse
|
23
|
Karabulutoglu M, Finnon R, Imaoka T, Friedl AA, Badie C. Influence of diet and metabolism on hematopoietic stem cells and leukemia development following ionizing radiation exposure. Int J Radiat Biol 2018; 95:452-479. [PMID: 29932783 DOI: 10.1080/09553002.2018.1490042] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
PURPOSE The review aims to discuss the prominence of dietary and metabolic regulators in maintaining hematopoietic stem cell (HSC) function, long-term self-renewal, and differentiation. RESULTS Most adult stem cells are preserved in a quiescent, nonmotile state in vivo which acts as a "protective state" for stem cells to reduce endogenous stress provoked by DNA replication and cellular respiration as well as exogenous environmental stress. The dynamic balance between quiescence, self-renewal and differentiation is critical for supporting a functional blood system throughout life of an organism. Stress-conditions, for example ionizing radiation exposure can trigger the blood forming HSCs to proliferate and migrate through extramedullary tissues to expand the number of HSCs and increase hematopoiesis. In addition, a wealth of investigation validated that deregulation of this balance plays a critical pathogenic role in various different hematopoietic diseases including the leukemia development. CONCLUSION The review summarizes the current knowledge on how alterations in dietary and metabolic factors could alter the risk of leukemia development following ionizing radiation exposure by inhibiting or even reversing the leukemic progression. Understanding the influence of diet, metabolism, and epigenetics on radiation-induced leukemogenesis may lead to the development of practical interventions to reduce the risk in exposed populations.
Collapse
Affiliation(s)
- Melis Karabulutoglu
- a Cancer Mechanisms and Biomarkers group, Biological Effects Department, Centre for Radiation, Chemical and Environmental Hazards , Public Health England , Didcot , UK.,b CRUK & MRC Oxford Institute for Radiation Oncology, Department of Oncology , University of Oxford , Oxford , UK
| | - Rosemary Finnon
- a Cancer Mechanisms and Biomarkers group, Biological Effects Department, Centre for Radiation, Chemical and Environmental Hazards , Public Health England , Didcot , UK
| | - Tatsuhiko Imaoka
- c Department of Radiation Effects Research, National Institute of Radiological Sciences , National Institutes for Quantum and Radiological Science and Technology , Chiba , Japan
| | - Anna A Friedl
- d Department of Radiation Oncology , University Hospital, LMU Munich , Munich , Germany
| | - Christophe Badie
- a Cancer Mechanisms and Biomarkers group, Biological Effects Department, Centre for Radiation, Chemical and Environmental Hazards , Public Health England , Didcot , UK
| |
Collapse
|
24
|
Cuervo PF, Beldomenico PM, Sánchez A, Pietrobon E, Valdez SR, Racca AL. Chronic exposure to environmental stressors enhances production of natural and specific antibodies in rats. JOURNAL OF EXPERIMENTAL ZOOLOGY PART 2018; 329:536-546. [DOI: 10.1002/jez.2218] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2018] [Revised: 06/14/2018] [Accepted: 07/04/2018] [Indexed: 01/13/2023]
Affiliation(s)
- Pablo Fernando Cuervo
- Laboratorio de Ecología de Enfermedades, Instituto de Ciencias Veterinarias del Litoral, Universidad Nacional del Litoral/Consejo Nacional de Investigaciones Científicas y Técnicas; Esperanza Argentina
| | - Pablo Martín Beldomenico
- Laboratorio de Ecología de Enfermedades, Instituto de Ciencias Veterinarias del Litoral, Universidad Nacional del Litoral/Consejo Nacional de Investigaciones Científicas y Técnicas; Esperanza Argentina
- Facultad de Ciencias Veterinarias, Universidad Nacional del Litoral; Esperanza Argentina
| | - Amorina Sánchez
- Facultad de Ciencias Veterinarias, Universidad Nacional del Litoral; Esperanza Argentina
| | - Elisa Pietrobon
- Laboratorio de Reproducción y Lactancia, Instituto de Medicina y Biología Experimental de Cuyo, Consejo Nacional de Investigaciones Científicas y Técnicas; Mendoza Argentina
| | - Susana Ruth Valdez
- Laboratorio de Reproducción y Lactancia, Instituto de Medicina y Biología Experimental de Cuyo, Consejo Nacional de Investigaciones Científicas y Técnicas; Mendoza Argentina
| | - Andrea Laura Racca
- Laboratorio de Ecología de Enfermedades, Instituto de Ciencias Veterinarias del Litoral, Universidad Nacional del Litoral/Consejo Nacional de Investigaciones Científicas y Técnicas; Esperanza Argentina
- Facultad de Ciencias Veterinarias, Universidad Nacional del Litoral; Esperanza Argentina
| |
Collapse
|
25
|
Salinari G, Ruiu G. The effect of disease burden on the speed of aging: an analysis of the Sardinian mortality transition. GENUS 2018; 74:9. [PMID: 30147125 PMCID: PMC6097800 DOI: 10.1186/s41118-018-0028-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2017] [Accepted: 01/15/2018] [Indexed: 01/09/2023] Open
Abstract
According to the constant senescence hypothesis, senescence cannot be accelerated or decelerated by exogenous factors. Two contrasting theories have been proposed in the literature. According to the inflammaging theory, those individuals who have experienced a higher antigenic load will experience more rapid senescence. Instead, the calorie restriction theory stresses that excessive daily calorie intake can produce an acceleration in senescence. To test these theories, this paper analyzes the evolution of the rate of aging in Sardinia (Italy). In this population, the epidemiological transition started without any substantial modification in nutritional levels. This allows us to test the constant senescence hypothesis against the inflammaging theory, without the possible confounding effect produced by the nutrition transition. To accomplish this aim, the longitudinal life tables from 80 years onwards for Sardinian cohorts born between 1866 and 1908 were reconstituted. They were then used to estimate the rate of aging by means of the Gamma-Gompertz model. Coherently with the inflammaging theory, the results show that the Sardinian population experienced a dramatic decrease in the rate of aging that coincided with the onset of the epidemiological transition.
Collapse
Affiliation(s)
- Giambattista Salinari
- Department of Economics and Business, University of Sassari, Via Muroni 25, 07100 Sassari, Italy
| | - Gabriele Ruiu
- Department of Economics and Business, University of Sassari, Via Muroni 25, 07100 Sassari, Italy
| |
Collapse
|
26
|
Contreras NA, Fontana L, Tosti V, Nikolich-Žugich J. Calorie restriction induces reversible lymphopenia and lymphoid organ atrophy due to cell redistribution. GeroScience 2018; 40:279-291. [PMID: 29804201 DOI: 10.1007/s11357-018-0022-2] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2018] [Accepted: 05/09/2018] [Indexed: 12/29/2022] Open
Abstract
Calorie restriction (CR) without malnutrition increases life span and health span in multiple model organisms. In non-human and human primates, CR causes changes that protect against several age-related pathologies, reduces inflammation, and preserves or improves cell-mediated immunity. However, CR has also been shown to exhibit adverse effects on certain organs and systems, including the immune system, and to impact genetically different organisms of the same species differentially. Alternately, short periods of fasting followed by refeeding may result in the proliferation of bone marrow stem cells, suggesting a potential rejuvenation effect that could impact the hematopoietic compartment. However, the global consequences of CR followed by refeeding on the immune system have not been carefully investigated. Here, we show that individuals practicing long-term CR with adequate nutrition have markedly lower circulating levels of total leukocytes, neutrophils, lymphocytes, and monocytes. In 10-month-old mice, short-term CR lowered lymphocyte cellularity in multiple lymphoid tissues, but not in bone marrow, which appears to be a site of influx, or a "safe haven" for B, NK, and T cells during CR. Cellular loss and redistribution was reversed within the first week of refeeding. Based on BrdU incorporation and Ki67 expression assays, repopulating T cells exhibited high proliferation in the refeeding group following CR. Finally, we demonstrated that the thymus was not essential for T cell repopulation following refeeding. These findings are of potential relevance to strategies to rejuvenate the immune system in mammals and warrant further investigation.
Collapse
Affiliation(s)
- Nico A Contreras
- Department of Immunobiology, College of Medicine, The University of Arizona, Tucson, AZ, USA
| | - Luigi Fontana
- Division of Geriatrics and Nutritional Science, Washington University School of Medicine, St. Louis, MO, USA. .,Department of Experimental and Clinical Sciences, Brescia University, Brescia, Italy.
| | - Valeria Tosti
- Division of Geriatrics and Nutritional Science, Washington University School of Medicine, St. Louis, MO, USA
| | - Janko Nikolich-Žugich
- Department of Immunobiology, College of Medicine, The University of Arizona, Tucson, AZ, USA. .,Arizona Center on Aging, College of Medicine, The University of Arizona, Tucson, AZ, USA.
| |
Collapse
|
27
|
Abstract
Human obesity has a large genetic component, yet has many serious negative consequences. How this state of affairs has evolved has generated wide debate. The thrifty gene hypothesis was the first attempt to explain obesity as a consequence of adaptive responses to an ancient environment that in modern society become disadvantageous. The idea is that genes (or more precisely, alleles) predisposing to obesity may have been selected for by repeated exposure to famines. However, this idea has many flaws: for instance, selection of the supposed magnitude over the duration of human evolution would fix any thrifty alleles (famines kill the old and young, not the obese) and there is no evidence that hunter-gatherer populations become obese between famines. An alternative idea (called thrifty late) is that selection in famines has only happened since the agricultural revolution. However, this is inconsistent with the absence of strong signatures of selection at single nucleotide polymorphisms linked to obesity. In parallel to discussions about the origin of obesity, there has been much debate regarding the regulation of body weight. There are three basic models: the set-point, settling point and dual-intervention point models. Selection might act against low and high levels of adiposity because food unpredictability and the risk of starvation selects against low adiposity whereas the risk of predation selects against high adiposity. Although evidence for the latter is quite strong, evidence for the former is relatively weak. The release from predation ∼2-million years ago is suggested to have led to the upper intervention point drifting in evolutionary time, leading to the modern distribution of obesity: the drifty gene hypothesis. Recent critiques of the dual-intervention point/drifty gene idea are flawed and inconsistent with known aspects of energy balance physiology. Here, I present a new formulation of the dual-intervention point model. This model includes the novel suggestion that food unpredictability and starvation are insignificant factors driving fat storage, and that the main force driving up fat storage is the risk of disease and the need to survive periods of pathogen-induced anorexia. This model shows why two independent intervention points are more likely to evolve than a single set point. The molecular basis of the lower intervention point is likely based around the leptin pathway signalling. Determining the molecular basis of the upper intervention point is a crucial key target for future obesity research. A potential definitive test to separate the different models is also described.
Collapse
Affiliation(s)
- John R Speakman
- Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China .,Institute of Biological and Environmental Sciences, University of Aberdeen, Aberdeen, Scotland, UK
| |
Collapse
|
28
|
Meydani SN, Das SK, Pieper CF, Lewis MR, Klein S, Dixit VD, Gupta AK, Villareal DT, Bhapkar M, Huang M, Fuss PJ, Roberts SB, Holloszy JO, Fontana L. Long-term moderate calorie restriction inhibits inflammation without impairing cell-mediated immunity: a randomized controlled trial in non-obese humans. Aging (Albany NY) 2017; 8:1416-31. [PMID: 27410480 PMCID: PMC4993339 DOI: 10.18632/aging.100994] [Citation(s) in RCA: 149] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2016] [Accepted: 06/20/2016] [Indexed: 12/15/2022]
Abstract
Calorie restriction (CR) inhibits inflammation and slows aging in many animal species, but in rodents housed in pathogen-free facilities, CR impairs immunity against certain pathogens. However, little is known about the effects of long-term moderate CR on immune function in humans. In this multi-center, randomized clinical trial to determine CR's effect on inflammation and cell-mediated immunity, 218 healthy non-obese adults (20-50 y), were assigned 25% CR (n=143) or an ad-libitum (AL) diet (n=75), and outcomes tested at baseline, 12, and 24 months of CR. CR induced a 10.4% weight loss over the 2-y period. Relative to AL group, CR reduced circulating inflammatory markers, including total WBC and lymphocyte counts, ICAM-1 and leptin. Serum CRP and TNF-α concentrations were about 40% and 50% lower in CR group, respectively. CR had no effect on the delayed-type hypersensitivity skin response or antibody response to vaccines, nor did it cause difference in clinically significant infections. In conclusion, long-term moderate CR without malnutrition induces a significant and persistent inhibition of inflammation without impairing key in vivo indicators of cell-mediated immunity. Given the established role of these pro-inflammatory molecules in the pathogenesis of multiple chronic diseases, these CR-induced adaptations suggest a shift toward a healthy phenotype.
Collapse
Affiliation(s)
- Simin N Meydani
- The Jean Mayer USDA Human Nutrition Research Center on Aging at Tufts University, Boston, MA 02111, USA
| | - Sai K Das
- The Jean Mayer USDA Human Nutrition Research Center on Aging at Tufts University, Boston, MA 02111, USA
| | - Carl F Pieper
- Duke University Medical Center, Durham, NC 27705, USA
| | | | - Sam Klein
- Department of Medicine, Washington University School of Medicine, St Louis, MO 63110, USA
| | - Vishwa D Dixit
- Comparative Medicine and Department of Immunobiology, Yale University School of Medicine, New Haven, CT 06510, USA
| | - Alok K Gupta
- Pennington Biomedical Research Center, Baton Rouge, LA 70808, USA
| | - Dennis T Villareal
- Baylor College of Medicine and Michael E DeBakey VA Medical Center, Houston, TX 77030, USA
| | | | - Megan Huang
- Duke University Medical Center, Durham, NC 27705, USA
| | - Paul J Fuss
- The Jean Mayer USDA Human Nutrition Research Center on Aging at Tufts University, Boston, MA 02111, USA
| | - Susan B Roberts
- The Jean Mayer USDA Human Nutrition Research Center on Aging at Tufts University, Boston, MA 02111, USA
| | - John O Holloszy
- Department of Medicine, Washington University School of Medicine, St Louis, MO 63110, USA
| | - Luigi Fontana
- Department of Medicine, Washington University School of Medicine, St Louis, MO 63110, USA.,Department of Clinical and Experimental Sciences, Brescia University School of Medicine, Brescia, Italy.,CEINGE Biotecnologie Avanzate, Napoli, Italy
| |
Collapse
|
29
|
Calorie restriction in rodents: Caveats to consider. Ageing Res Rev 2017; 39:15-28. [PMID: 28610949 DOI: 10.1016/j.arr.2017.05.008] [Citation(s) in RCA: 90] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2017] [Revised: 05/30/2017] [Accepted: 05/31/2017] [Indexed: 02/08/2023]
Abstract
The calorie restriction paradigm has provided one of the most widely used and most useful tools for investigating mechanisms of aging and longevity. By far, rodent models have been employed most often in these endeavors. Over decades of investigation, claims have been made that the paradigm produces the most robust demonstration that aging is malleable. In the current review of the rodent literature, we present arguments that question the robustness of the paradigm to increase lifespan and healthspan. Specifically, there are several questions to consider as follows: (1) At what age does CR no longer produce benefits? (2) Does CR attenuate cognitive decline? (3) Are there negative effects of CR, including effects on bone health, wound healing, and response to infection? (4) How important is schedule of feeding? (5) How long does CR need to be imposed to be effective? (6) How do genotype and gender influence CR? (7) What role does dietary composition play? Consideration of these questions produce many caveats that should guide future investigations to move the field forward.
Collapse
|
30
|
Rao S, Schieber AMP, O'Connor CP, Leblanc M, Michel D, Ayres JS. Pathogen-Mediated Inhibition of Anorexia Promotes Host Survival and Transmission. Cell 2017; 168:503-516.e12. [PMID: 28129542 DOI: 10.1016/j.cell.2017.01.006] [Citation(s) in RCA: 121] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2016] [Revised: 11/21/2016] [Accepted: 01/06/2017] [Indexed: 01/06/2023]
Abstract
Sickness-induced anorexia is a conserved behavior induced during infections. Here, we report that an intestinal pathogen, Salmonella Typhimurium, inhibits anorexia by manipulating the gut-brain axis. Inhibition of inflammasome activation by the S. Typhimurium effector, SlrP, prevented anorexia caused by IL-1β-mediated signaling to the hypothalamus via the vagus nerve. Rather than compromising host defenses, pathogen-mediated inhibition of anorexia increased host survival. SlrP-mediated inhibition of anorexia prevented invasion and systemic infection by wild-type S. Typhimurium, reducing virulence while increasing transmission to new hosts, suggesting that there are trade-offs between transmission and virulence. These results clarify the complex and contextual role of anorexia in host-pathogen interactions and suggest that microbes have evolved mechanisms to modulate sickness-induced behaviors to promote health of their host and their transmission at the expense of virulence.
Collapse
Affiliation(s)
- Sheila Rao
- Nomis Center for Immunobiology and Microbial Pathogenesis, The Salk Institute for Biological Studies, La Jolla, CA 92037, USA
| | - Alexandria M Palaferri Schieber
- Nomis Center for Immunobiology and Microbial Pathogenesis, The Salk Institute for Biological Studies, La Jolla, CA 92037, USA
| | - Carolyn P O'Connor
- Flow Cytometry Core Facility, The Salk Institute for Biological Studies, La Jolla, CA 92037, USA
| | - Mathias Leblanc
- Gene Expression Laboratory, The Salk Institute for Biological Studies, La Jolla, CA 92037, USA
| | - Daniela Michel
- Nomis Center for Immunobiology and Microbial Pathogenesis, The Salk Institute for Biological Studies, La Jolla, CA 92037, USA
| | - Janelle S Ayres
- Nomis Center for Immunobiology and Microbial Pathogenesis, The Salk Institute for Biological Studies, La Jolla, CA 92037, USA.
| |
Collapse
|
31
|
White MJ, Beaver CM, Goodier MR, Bottomley C, Nielsen CM, Wolf ASFM, Boldrin L, Whitmore C, Morgan J, Pearce DJ, Riley EM. Calorie Restriction Attenuates Terminal Differentiation of Immune Cells. Front Immunol 2017; 7:667. [PMID: 28127296 PMCID: PMC5226962 DOI: 10.3389/fimmu.2016.00667] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2016] [Accepted: 12/19/2016] [Indexed: 12/20/2022] Open
Abstract
Immune senescence is a natural consequence of aging and may contribute to frailty and loss of homeostasis in later life. Calorie restriction increases healthy life-span in C57BL/6J (but not DBA/2J) mice, but whether this is related to preservation of immune function, and how it interacts with aging, is unclear. We compared phenotypic and functional characteristics of natural killer (NK) cells and T cells, across the lifespan, of calorie-restricted (CR) and control C57BL/6 and DBA/2 mice. Calorie restriction preserves a naïve T cell phenotype and an immature NK cell phenotype as mice age. The splenic T cell populations of CR mice had higher proportions of CD11a-CD44lo cells, lower expression of TRAIL, KLRG1, and CXCR3, and higher expression of CD127, compared to control mice. Similarly, splenic NK cells from CR mice had higher proportions of less differentiated CD11b-CD27+ cells and correspondingly lower proportions of highly differentiated CD11b+CD27-NK cells. Within each of these subsets, cells from CR mice had higher expression of CD127, CD25, TRAIL, NKG2A/C/E, and CXCR3 and lower expression of KLRG1 and Ly49 receptors compared to controls. The effects of calorie restriction on lymphoid cell populations in lung, liver, and lymph nodes were identical to those seen in the spleen, indicating that this is a system-wide effect. The impact of calorie restriction on NK cell and T cell maturation is much more profound than the effect of aging and, indeed, calorie restriction attenuates these age-associated changes. Importantly, the effects of calorie restriction on lymphocyte maturation were more marked in C57BL/6 than in DBA/2J mice indicating that delayed lymphocyte maturation correlates with extended lifespan. These findings have implications for understanding the interaction between nutritional status, immunity, and healthy lifespan in aging populations.
Collapse
Affiliation(s)
- Matthew J White
- Department of Immunology and Infection, London School of Hygiene and Tropical Medicine , London , UK
| | - Charlotte M Beaver
- UCL Institute of Healthy Ageing, University College London , London , UK
| | - Martin R Goodier
- Department of Immunology and Infection, London School of Hygiene and Tropical Medicine , London , UK
| | - Christian Bottomley
- Department of Infectious Disease Epidemiology, London School of Hygiene and Tropical Medicine , London , UK
| | - Carolyn M Nielsen
- Department of Immunology and Infection, London School of Hygiene and Tropical Medicine , London , UK
| | - Asia-Sophia F M Wolf
- Department of Immunology and Infection, London School of Hygiene and Tropical Medicine , London , UK
| | - Luisa Boldrin
- Dubowitz Neuromuscular Centre, Developmental Neurosciences Programme, Molecular Neurosciences Section, Institute of Child Health, University College London , London , UK
| | - Charlotte Whitmore
- Dubowitz Neuromuscular Centre, Developmental Neurosciences Programme, Molecular Neurosciences Section, Institute of Child Health, University College London , London , UK
| | - Jennifer Morgan
- Dubowitz Neuromuscular Centre, Developmental Neurosciences Programme, Molecular Neurosciences Section, Institute of Child Health, University College London , London , UK
| | - Daniel J Pearce
- UCL Institute of Healthy Ageing, University College London , London , UK
| | - Eleanor M Riley
- Department of Immunology and Infection, London School of Hygiene and Tropical Medicine , London , UK
| |
Collapse
|
32
|
Schieber AMP, Ayres JS. Thermoregulation as a disease tolerance defense strategy. Pathog Dis 2016; 74:ftw106. [PMID: 27815313 PMCID: PMC5975229 DOI: 10.1093/femspd/ftw106] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Revised: 04/03/2016] [Accepted: 11/02/2016] [Indexed: 12/28/2022] Open
Abstract
Physiological responses that occur during infection are most often thought of in terms of effectors of microbial destruction through the execution of resistance mechanisms, due to a direct action of the microbe, or are maladaptive consequences of host-pathogen interplay. However, an examination of the cellular and organ-level consequences of one such response, thermoregulation that leads to fever or hypothermia, reveals that these actions cannot be readily explained within the traditional paradigms of microbial killing or maladaptive consequences of host-pathogen interactions. In this review, the concept of disease tolerance is applied to thermoregulation during infection, inflammation and trauma, and we discuss the physiological consequences of thermoregulation during disease including tissue susceptibility to damage, inflammation, behavior and toxin neutralization.
Collapse
Affiliation(s)
- Alexandria M Palaferri Schieber
- The Salk Institute for Biological Studies, Immunobiology and Microbial Pathogenesis, 10010 North Torrey Pines Road, San DIego CA, USA
| | - Janelle S Ayres
- The Salk Institute for Biological Studies, Immunobiology and Microbial Pathogenesis, 10010 North Torrey Pines Road, San DIego CA, USA
| |
Collapse
|
33
|
Conroy TJ, Palmer-Young EC, Irwin RE, Adler LS. Food Limitation Affects Parasite Load and Survival of Bombus impatiens (Hymenoptera: Apidae) Infected With Crithidia (Trypanosomatida: Trypanosomatidae). ENVIRONMENTAL ENTOMOLOGY 2016; 45:1212-1219. [PMID: 27523087 DOI: 10.1093/ee/nvw099] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2016] [Accepted: 07/17/2016] [Indexed: 06/06/2023]
Abstract
Bumble bees (genus Bombus) are globally important insect pollinators, and several species have experienced marked declines in recent years. Both nutritional limitation and pathogens may have contributed to these declines. While each of these factors may be individually important, there may also be synergisms where nutritional stress could decrease pathogen resistance. Understanding interactions between bumble bees, their parasites, and food availability may provide new insight into the causes of declines. In this study, we examined the combined impacts of pollen and nectar limitation on Crithidia, a common gut parasite in Bombus impatiens Cresson. Individual worker bees were inoculated with Crithidia and then assigned in a factorial design to two levels of pollen availability (pollen or no pollen) and two nectar sugar concentrations (high [30%] or low [15%] sucrose). We found that lack of pollen and low nectar sugar both reduced Crithidia cell counts, with the most dramatic effect from lack of pollen. Both pollen availability and nectar sugar concentration were also important for bee survival. The proportion of bees that died after seven days of infection was ∼25% lower in bees with access to pollen and high nectar sugar concentration than any other treatment. Thus, nectar and pollen availability are both important for bee survival, but may come at a cost of higher parasite loads. Our results illustrate the importance of understanding environmental context, such as resource availability, when examining a host-parasite interaction.
Collapse
Affiliation(s)
- Taylor J Conroy
- Department of Biology, 221 Morrill Science Center, University of Massachusetts Amherst, 611 N. Pleasant St, Amherst, MA 01003 (; ; )
| | - Evan C Palmer-Young
- Department of Biology, 221 Morrill Science Center, University of Massachusetts Amherst, 611 N. Pleasant St, Amherst, MA 01003 (; ; )
| | - Rebecca E Irwin
- Department of Applied Ecology, David Clark Labs, North Carolina State University, Raleigh, NC 27695
| | - Lynn S Adler
- Department of Biology, 221 Morrill Science Center, University of Massachusetts Amherst, 611 N. Pleasant St, Amherst, MA 01003 (; ; )
| |
Collapse
|
34
|
Huffman DM, Schafer MJ, LeBrasseur NK. Energetic interventions for healthspan and resiliency with aging. Exp Gerontol 2016; 86:73-83. [PMID: 27260561 DOI: 10.1016/j.exger.2016.05.012] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2016] [Revised: 05/03/2016] [Accepted: 05/24/2016] [Indexed: 12/16/2022]
Abstract
Several behavioral and pharmacological strategies improve longevity, which is indicative of delayed organismal aging, with the most effective interventions extending both life- and healthspan. In free living creatures, maintaining health and function into old age requires resilience against a multitude of stressors. Conversely, in experimental settings, conventional housing of rodents limits exposure to such challenges, thereby obscuring an accurate assessment of resilience. Caloric restriction (CR) and exercise, as well as pharmacologic strategies (resveratrol, rapamycin, metformin, senolytics), are well established to improve indices of health and aging, but some paradoxical effects have been observed on resilience. For instance, CR potently retards the onset of age-related diseases, and improves lifespan to a greater extent than exercise in a variety of models. However, exercise has proven more consistently beneficial to organismal resilience against a broad array of stressors, including infections, surgery, wound healing and frailty. CR can improve cellular stress defenses and protect from frailty, but also impairs the response to infections, bed rest and healing. How an intervention will impact not only longevity, health and function, but also resiliency, is critical to better understanding translational implications. Thus, organismal robustness represents a critical, albeit understudied aspect of aging, which needs more careful attention in order to better inform on how putative age-delaying strategies will impact preservation of health and function in response to stressors with aging in humans.
Collapse
Affiliation(s)
- Derek M Huffman
- Department of Molecular Pharmacology and Medicine, Albert Einstein College of Medicine, Bronx, NY, USA; Institute for Aging Research, Albert Einstein College of Medicine, Bronx, NY, USA.
| | - Marissa J Schafer
- Robert and Arlene Kogod Center on Aging, Mayo Clinic, Rochester, MN, USA
| | | |
Collapse
|
35
|
Luoma RL, Butler MW, Stahlschmidt ZR. Plasticity of immunity in response to eating. ACTA ACUST UNITED AC 2016; 219:1965-8. [PMID: 27099367 DOI: 10.1242/jeb.138123] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2016] [Accepted: 03/29/2016] [Indexed: 01/27/2023]
Abstract
Following a meal, an animal can exhibit dramatic shifts in physiology and morphology, as well as a substantial increase in metabolic rate associated with the energetic costs of processing a meal (i.e. specific dynamic action, SDA). However, little is known about the effects of digestion on another important physiological and energetically costly trait: immune function. Thus, we tested two competing hypotheses. (1) Digesting animals up-regulate their immune systems (putatively in response to the increased microbial exposure associated with ingested food). (2) Digesting animals down-regulate their immune systems (presumably to allocate energy to the breakdown of food). We assayed innate immunity (lytic capacity and agglutination) in cornsnakes (Pantherophis guttatus) during and after meal digestion. Lytic capacity was higher in females, and (in support of our first hypothesis) agglutination was higher during absorption. Given its potential energetic cost, immune up-regulation may contribute to SDA.
Collapse
Affiliation(s)
- Rachel L Luoma
- Department of Biology, Georgia Southern University, Statesboro, GA 30460, USA University of Georgia College of Veterinary Medicine, Athens, GA 30602, USA
| | | | - Zachary R Stahlschmidt
- Department of Biology, Georgia Southern University, Statesboro, GA 30460, USA Department of Biological Sciences, University of the Pacific, Stockton, CA 95211, USA
| |
Collapse
|
36
|
Tang D, Tao S, Chen Z, Koliesnik IO, Calmes PG, Hoerr V, Han B, Gebert N, Zörnig M, Löffler B, Morita Y, Rudolph KL. Dietary restriction improves repopulation but impairs lymphoid differentiation capacity of hematopoietic stem cells in early aging. J Exp Med 2016; 213:535-53. [PMID: 26951333 PMCID: PMC4821645 DOI: 10.1084/jem.20151100] [Citation(s) in RCA: 91] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2015] [Accepted: 01/26/2016] [Indexed: 12/21/2022] Open
Abstract
Dietary restriction (DR) improves health, delays tissue aging, and elongates survival in flies and worms. However, studies on laboratory mice and nonhuman primates revealed ambiguous effects of DR on lifespan despite improvements in health parameters. In this study, we analyzed consequences of adult-onset DR (24 h to 1 yr) on hematopoietic stem cell (HSC) function. DR ameliorated HSC aging phenotypes, such as the increase in number of HSCs and the skewing toward myeloid-biased HSCs during aging. Furthermore, DR increased HSC quiescence and improved the maintenance of the repopulation capacity of HSCs during aging. In contrast to these beneficial effects, DR strongly impaired HSC differentiation into lymphoid lineages and particularly inhibited the proliferation of lymphoid progenitors, resulting in decreased production of peripheral B lymphocytes and impaired immune function. The study shows that DR-dependent suppression of growth factors and interleukins mediates these divergent effects caused by DR. Supplementation of insulin-like growth factor 1 partially reverted the DR-induced quiescence of HSCs, whereas IL-6/IL-7 substitutions rescued the impairment of B lymphopoiesis exposed to DR. Together, these findings delineate positive and negative effects of long-term DR on HSC functionality involving distinct stress and growth signaling pathways.
Collapse
Affiliation(s)
- Duozhuang Tang
- Leibniz Institute on Aging, Fritz Lipmann Institute (FLI), 07745 Jena, Germany
| | - Si Tao
- Leibniz Institute on Aging, Fritz Lipmann Institute (FLI), 07745 Jena, Germany
| | - Zhiyang Chen
- Leibniz Institute on Aging, Fritz Lipmann Institute (FLI), 07745 Jena, Germany
| | | | | | - Verena Hoerr
- Institute of Medical Microbiology, Jena University Hospital, 07743 Jena, Germany
| | - Bing Han
- Leibniz Institute on Aging, Fritz Lipmann Institute (FLI), 07745 Jena, Germany
| | - Nadja Gebert
- Leibniz Institute on Aging, Fritz Lipmann Institute (FLI), 07745 Jena, Germany
| | - Martin Zörnig
- Georg Speyer Haus, Institute for Tumor Biology and Experimental Therapy, 60596 Frankfurt am Main, Germany
| | - Bettina Löffler
- Institute of Medical Microbiology, Jena University Hospital, 07743 Jena, Germany
| | - Yohei Morita
- Leibniz Institute on Aging, Fritz Lipmann Institute (FLI), 07745 Jena, Germany
| | - Karl Lenhard Rudolph
- Leibniz Institute on Aging, Fritz Lipmann Institute (FLI), 07745 Jena, Germany Faculty of Medicine, Friedrich Schiller University, 07743 Jena, Germany
| |
Collapse
|
37
|
Kangassalo K, Valtonen TM, Roff D, Pölkki M, Dubovskiy IM, Sorvari J, Rantala MJ. Intra- and trans-generational effects of larval diet on susceptibility to an entomopathogenic fungus, Beauveria bassiana
, in the greater wax moth, Galleria mellonella. J Evol Biol 2015; 28:1453-64. [DOI: 10.1111/jeb.12666] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2014] [Accepted: 05/11/2015] [Indexed: 11/30/2022]
Affiliation(s)
- K. Kangassalo
- Department of Biology; Section of Ecology; University of Turku; Turku Finland
| | - T. M. Valtonen
- Department of Biology; Section of Ecology; University of Turku; Turku Finland
| | - D. Roff
- Department of Biology; University of California; Riverside CA USA
| | - M. Pölkki
- Department of Biology; Section of Ecology; University of Turku; Turku Finland
| | - I. M. Dubovskiy
- Institute of Animal Systematics and Ecology; Siberian Branch of Russian Academy of Science; Novosibirsk Russia
| | - J. Sorvari
- Department of Environmental Science; University of Eastern Finland; Kuopio Finland
| | - M. J. Rantala
- Department of Biology; Section of Ecology; University of Turku; Turku Finland
- Turku Brain and Mind Center; University of Turku; Turku Finland
| |
Collapse
|
38
|
Goldberg EL, Romero‐Aleshire MJ, Renkema KR, Ventevogel MS, Chew WM, Uhrlaub JL, Smithey MJ, Limesand KH, Sempowski GD, Brooks HL, Nikolich‐Žugich J. Lifespan-extending caloric restriction or mTOR inhibition impair adaptive immunity of old mice by distinct mechanisms. Aging Cell 2015; 14:130-8. [PMID: 25424641 PMCID: PMC4326902 DOI: 10.1111/acel.12280] [Citation(s) in RCA: 72] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/19/2014] [Indexed: 12/05/2022] Open
Abstract
Aging of the world population and a concomitant increase in age-related diseases and disabilities mandates the search for strategies to increase healthspan, the length of time an individual lives healthy and productively. Due to the age-related decline of the immune system, infectious diseases remain among the top 5–10 causes of mortality and morbidity in the elderly, and improving immune function during aging remains an important aspect of healthspan extension. Calorie restriction (CR) and more recently rapamycin (rapa) feeding have both been used to extend lifespan in mice. Preciously few studies have actually investigated the impact of each of these interventions upon in vivo immune defense against relevant microbial challenge in old organisms. We tested how rapa and CR each impacted the immune system in adult and old mice. We report that each intervention differentially altered T-cell development in the thymus, peripheral T-cell maintenance, T-cell function and host survival after West Nile virus infection, inducing distinct but deleterious consequences to the aging immune system. We conclude that neither rapa feeding nor CR, in the current form/administration regimen, may be optimal strategies for extending healthy immune function and, with it, lifespan.
Collapse
Affiliation(s)
- Emily L. Goldberg
- Departments of Immunobiology and the Arizona Center on Aging University of Arizona College of Medicine Tucson AZ USA
- Department of Nutritional Sciences College of Agriculture and Life Sciences University of Arizona Tucson AZ USA
| | | | - Kristin R. Renkema
- Departments of Immunobiology and the Arizona Center on Aging University of Arizona College of Medicine Tucson AZ USA
| | | | - Wade M. Chew
- Arizona Cancer Center University of Arizona College of Medicine Tucson AZ USA
| | - Jennifer L. Uhrlaub
- Departments of Immunobiology and the Arizona Center on Aging University of Arizona College of Medicine Tucson AZ USA
| | - Megan J. Smithey
- Departments of Immunobiology and the Arizona Center on Aging University of Arizona College of Medicine Tucson AZ USA
| | - Kirsten H. Limesand
- Department of Nutritional Sciences College of Agriculture and Life Sciences University of Arizona Tucson AZ USA
- Arizona Cancer Center University of Arizona College of Medicine Tucson AZ USA
| | | | - Heddwen L. Brooks
- Department of Physiology University of Arizona College of Medicine Tucson AZ USA
| | - Janko Nikolich‐Žugich
- Departments of Immunobiology and the Arizona Center on Aging University of Arizona College of Medicine Tucson AZ USA
- Department of Nutritional Sciences College of Agriculture and Life Sciences University of Arizona Tucson AZ USA
- Arizona Cancer Center University of Arizona College of Medicine Tucson AZ USA
| |
Collapse
|
39
|
Hofmann JW, Zhao X, De Cecco M, Peterson AL, Pagliaroli L, Manivannan J, Hubbard GB, Ikeno Y, Zhang Y, Feng B, Li X, Serre T, Qi W, Van Remmen H, Miller RA, Bath KG, de Cabo R, Xu H, Neretti N, Sedivy JM. Reduced expression of MYC increases longevity and enhances healthspan. Cell 2015; 160:477-88. [PMID: 25619689 DOI: 10.1016/j.cell.2014.12.016] [Citation(s) in RCA: 213] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2014] [Revised: 10/21/2014] [Accepted: 12/03/2014] [Indexed: 01/18/2023]
Abstract
MYC is a highly pleiotropic transcription factor whose deregulation promotes cancer. In contrast, we find that Myc haploinsufficient (Myc(+/-)) mice exhibit increased lifespan. They show resistance to several age-associated pathologies, including osteoporosis, cardiac fibrosis, and immunosenescence. They also appear to be more active, with a higher metabolic rate and healthier lipid metabolism. Transcriptomic analysis reveals a gene expression signature enriched for metabolic and immune processes. The ancestral role of MYC as a regulator of ribosome biogenesis is reflected in reduced protein translation, which is inversely correlated with longevity. We also observe changes in nutrient and energy sensing pathways, including reduced serum IGF-1, increased AMPK activity, and decreased AKT, TOR, and S6K activities. In contrast to observations in other longevity models, Myc(+/-) mice do not show improvements in stress management pathways. Our findings indicate that MYC activity has a significant impact on longevity and multiple aspects of mammalian healthspan.
Collapse
Affiliation(s)
- Jeffrey W Hofmann
- Department of Molecular Biology, Cell Biology and Biochemistry, Brown University, Providence, RI 02912, USA
| | - Xiaoai Zhao
- Department of Molecular Biology, Cell Biology and Biochemistry, Brown University, Providence, RI 02912, USA
| | - Marco De Cecco
- Department of Molecular Biology, Cell Biology and Biochemistry, Brown University, Providence, RI 02912, USA
| | - Abigail L Peterson
- Department of Molecular Biology, Cell Biology and Biochemistry, Brown University, Providence, RI 02912, USA
| | - Luca Pagliaroli
- Department of Molecular Biology, Cell Biology and Biochemistry, Brown University, Providence, RI 02912, USA
| | - Jayameenakshi Manivannan
- Department of Molecular Biology, Cell Biology and Biochemistry, Brown University, Providence, RI 02912, USA
| | - Gene B Hubbard
- Department of Cellular and Structural Biology, Barshop Institute for Longevity and Aging Studies, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA
| | - Yuji Ikeno
- Department of Cellular and Structural Biology, Barshop Institute for Longevity and Aging Studies, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA
| | - Yongqing Zhang
- Translational Gerontology Branch, National Institute on Aging, 251 Bayview Boulevard, Suite 100, Baltimore, MD 21224, USA
| | - Bin Feng
- Hallett Center for Diabetes and Endocrinology, Rhode Island Hospital, Warren Alpert Medical School of Brown University, Providence, RI 02903, USA
| | - Xiaxi Li
- Department of Cognitive, Linguistic, and Psychological Sciences, Brown University, Providence, RI 02912, USA
| | - Thomas Serre
- Department of Cognitive, Linguistic, and Psychological Sciences, Brown University, Providence, RI 02912, USA
| | - Wenbo Qi
- Department of Cellular and Structural Biology, Barshop Institute for Longevity and Aging Studies, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA
| | - Holly Van Remmen
- Department of Cellular and Structural Biology, Barshop Institute for Longevity and Aging Studies, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA
| | - Richard A Miller
- Department of Pathology and Geriatrics Center, University of Michigan, Ann Arbor, MI 48109, USA
| | - Kevin G Bath
- Department of Cognitive, Linguistic, and Psychological Sciences, Brown University, Providence, RI 02912, USA
| | - Rafael de Cabo
- Translational Gerontology Branch, National Institute on Aging, 251 Bayview Boulevard, Suite 100, Baltimore, MD 21224, USA
| | - Haiyan Xu
- Hallett Center for Diabetes and Endocrinology, Rhode Island Hospital, Warren Alpert Medical School of Brown University, Providence, RI 02903, USA
| | - Nicola Neretti
- Department of Molecular Biology, Cell Biology and Biochemistry, Brown University, Providence, RI 02912, USA
| | - John M Sedivy
- Department of Molecular Biology, Cell Biology and Biochemistry, Brown University, Providence, RI 02912, USA.
| |
Collapse
|
40
|
Bartke A, Sun LY, Longo V. Somatotropic signaling: trade-offs between growth, reproductive development, and longevity. Physiol Rev 2013; 93:571-98. [PMID: 23589828 PMCID: PMC3768106 DOI: 10.1152/physrev.00006.2012] [Citation(s) in RCA: 214] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Growth hormone (GH) is a key determinant of postnatal growth and plays an important role in the control of metabolism and body composition. Surprisingly, deficiency in GH signaling delays aging and remarkably extends longevity in laboratory mice. In GH-deficient and GH-resistant animals, the "healthspan" is also extended with delays in cognitive decline and in the onset of age-related disease. The role of hormones homologous to insulin-like growth factor (IGF, an important mediator of GH actions) in the control of aging and lifespan is evolutionarily conserved from worms to mammals with some homologies extending to unicellular yeast. The combination of reduced GH, IGF-I, and insulin signaling likely contributes to extended longevity in GH or GH receptor-deficient organisms. Diminutive body size and reduced fecundity of GH-deficient and GH-resistant mice can be viewed as trade-offs for extended longevity. Mechanisms responsible for delayed aging of GH-related mutants include enhanced stress resistance and xenobiotic metabolism, reduced inflammation, improved insulin signaling, and various metabolic adjustments. Pathological excess of GH reduces life expectancy in men as well as in mice, and GH resistance or deficiency provides protection from major age-related diseases, including diabetes and cancer, in both species. However, there is yet no evidence of increased longevity in GH-resistant or GH-deficient humans, possibly due to non-age-related deaths. Results obtained in GH-related mutant mice provide striking examples of mutations of a single gene delaying aging, reducing age-related disease, and extending lifespan in a mammal and providing novel experimental systems for the study of mechanisms of aging.
Collapse
Affiliation(s)
- Andrzej Bartke
- Southern Illinois University School of Medicine, Department of Internal Medicine, Geriatric Research, Springfield, Illinois 62703, USA.
| | | | | |
Collapse
|
41
|
Ponton F, Wilson K, Holmes AJ, Cotter SC, Raubenheimer D, Simpson SJ. Integrating nutrition and immunology: a new frontier. JOURNAL OF INSECT PHYSIOLOGY 2013; 59:130-7. [PMID: 23159523 DOI: 10.1016/j.jinsphys.2012.10.011] [Citation(s) in RCA: 98] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2012] [Revised: 10/09/2012] [Accepted: 10/09/2012] [Indexed: 05/20/2023]
Abstract
Nutrition is critical to immune defence and parasite resistance, which not only affects individual organisms, but also has profound ecological and evolutionary consequences. Nutrition and immunity are complex traits that interact via multiple direct and indirect pathways, including the direct effects of nutrition on host immunity but also indirect effects mediated by the host's microbiota and pathogen populations. The challenge remains, however, to capture the complexity of the network of interactions that defines nutritional immunology. The aim of this paper is to discuss the recent findings in nutritional research in the context of immunological studies. By taking examples from the entomological literature, we argue that insects provide a powerful tool for examining the network of interactions between nutrition and immunity due to their tractability, short lifespan and ethical considerations. We describe the relationships between dietary composition, immunity, disease and microbiota in insects, and highlight the importance of adopting an integrative and multi-dimensional approach to nutritional immunology.
Collapse
Affiliation(s)
- Fleur Ponton
- School of Biological Sciences, The University of Sydney, Sydney, New South Wales 2006, Australia.
| | | | | | | | | | | |
Collapse
|
42
|
Marchal J, Perret M, Aujard F. [Caloric restriction in primates: how efficient as an anti-aging approach?]. Med Sci (Paris) 2012; 28:1081-6. [PMID: 23290408 DOI: 10.1051/medsci/20122812018] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Caloric restriction (CR) is the only non-genetic intervention known to date to slow the onset of age-related diseases and increase average and maximum lifespan in several species. Its interest is continually growing, particularly for the identification of mechanisms involved in increasing longevity. Unlike studies in invertebrate and rodent models have provided some indication about the mechanisms of the CR, the efficacy of CR as an anti-aging protocol in primates has not yet been fully established. In this review we present the advantages of using non human primates as relevant models to the study of human aging in general and specifically in the context of therapeutic interventions applicable to humans, such as CR. Through the longitudinal findings in the Grey Mouse Lemur (Microcebus murinus), we stress the importance of primate studies in the context of research on aging and their potential to advance the development of molecules which can mimic the beneficial effects of CR, already observed in some species, without imposing a reduced calorie diet.
Collapse
Affiliation(s)
- Julia Marchal
- CNRS UMR 7179, mécanismes adaptatifs (des organismes aux communautés), Muséum national d'histoire naturelle, 1, avenue du Petit Château, 91800 Brunoy, France.
| | | | | |
Collapse
|
43
|
Clinthorne JF, Beli E, Duriancik DM, Gardner EM. NK cell maturation and function in C57BL/6 mice are altered by caloric restriction. THE JOURNAL OF IMMUNOLOGY 2012; 190:712-22. [PMID: 23241894 DOI: 10.4049/jimmunol.1201837] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
NK cells are a heterogenous population of innate lymphocytes with diverse functional attributes critical for early protection from viral infections. We have previously reported a decrease in influenza-induced NK cell cytotoxicity in 6-mo-old C57BL/6 calorically restricted (CR) mice. In the current study, we extend our findings on the influence of CR on NK cell phenotype and function in the absence of infection. We demonstrate that reduced mature NK cell subsets result in increased frequencies of CD127(+) NK cells in CR mice, skewing the function of the total NK cell pool. NK cells from CR mice produced TNF-α and GM-CSF at a higher level, whereas IFN-γ production was impaired following IL-2 plus IL-12 or anti-NK1.1 stimulation. NK cells from CR mice were highly responsive to stimulation with YAC-1 cells such that CD27(-)CD11b(+) NK cells from CR mice produced granzyme B and degranulated at a higher frequency than CD27(-)CD11b(+) NK cells from ad libitum fed mice. CR has been shown to be a potent dietary intervention, yet the mechanisms by which the CR increases life span have yet to be fully understood. To our knowledge, these findings are the first in-depth analysis of the effects of caloric intake on NK cell phenotype and function and provide important implications regarding potential ways in which CR alters NK cell function prior to infection or cancer.
Collapse
Affiliation(s)
- Jonathan F Clinthorne
- Department of Food Science and Human Nutrition, Michigan State University, East Lansing, MI 48824, USA
| | | | | | | |
Collapse
|
44
|
Impact of caloric restriction on health and survival in rhesus monkeys from the NIA study. Nature 2012; 489:318-21. [PMID: 22932268 DOI: 10.1038/nature11432] [Citation(s) in RCA: 746] [Impact Index Per Article: 57.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2011] [Accepted: 07/23/2012] [Indexed: 12/31/2022]
Abstract
Calorie restriction (CR), a reduction of 10–40% in intake of a nutritious diet, is often reported as the most robust non-genetic mechanism to extend lifespan and healthspan. CR is frequently used as a tool to understand mechanisms behind ageing and age-associated diseases. In addition to and independently of increasing lifespan, CR has been reported to delay or prevent the occurrence of many chronic diseases in a variety of animals. Beneficial effects of CR on outcomes such as immune function, motor coordination and resistance to sarcopenia in rhesus monkeys have recently been reported. We report here that a CR regimen implemented in young and older age rhesus monkeys at the National Institute on Aging (NIA) has not improved survival outcomes. Our findings contrast with an ongoing study at the Wisconsin National Primate Research Center (WNPRC), which reported improved survival associated with 30% CR initiated in adult rhesus monkeys (7–14 years) and a preliminary report with a small number of CR monkeys. Over the years, both NIA and WNPRC have extensively documented beneficial health effects of CR in these two apparently parallel studies. The implications of the WNPRC findings were important as they extended CR findings beyond the laboratory rodent and to a long-lived primate. Our study suggests a separation between health effects, morbidity and mortality, and similar to what has been shown in rodents, study design, husbandry and diet composition may strongly affect the life-prolonging effect of CR in a long-lived nonhuman primate.
Collapse
|
45
|
Libert S, Guarente L. Metabolic and neuropsychiatric effects of calorie restriction and sirtuins. Annu Rev Physiol 2012; 75:669-84. [PMID: 23043250 DOI: 10.1146/annurev-physiol-030212-183800] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Most living organisms, including humans, age. Over time the ability to do physical and intellectual work deteriorates, and susceptibility to infectious, metabolic, and neurodegenerative diseases increases, which leads to general fitness decline and ultimately to death. Work in model organisms has demonstrated that genetic and environmental manipulations can prevent numerous age-associated diseases, improve health at advanced age, and increase life span. Calorie restriction (CR) (consumption of a diet with fewer calories but containing all the essential nutrients) is the most robust manipulation, genetic or environmental, to extend longevity and improve health parameters in laboratory animals. However, outside of the protected laboratory environment, the effects of CR are much less certain. Understanding the molecular mechanisms of CR may lead to the development of novel therapies to combat diseases of aging and to improve the quality of life. Sirtuins, a family of NAD(+)-dependent enzymes, mediate a number of metabolic and behavioral responses to CR and are intriguing targets for pharmaceutical interventions. We review the molecular understanding of CR; the role of sirtuins in CR; and the effects of sirtuins on physiology, mood, and behavior.
Collapse
Affiliation(s)
- Sergiy Libert
- Glenn Laboratory for the Science of Aging, Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA.
| | | |
Collapse
|
46
|
Athanasiadou S. Nutritional deficiencies and parasitic disease: Lessons and advancements from rodent models. Vet Parasitol 2012; 189:97-103. [DOI: 10.1016/j.vetpar.2012.03.038] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
47
|
Le Bourg É. Restriction de nourriture, longévité et vieillissement. CAHIERS DE NUTRITION ET DE DIÉTÉTIQUE 2012. [DOI: 10.1016/j.cnd.2011.11.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
48
|
|
49
|
McCaskey SJ, Rondini EA, Langohr IM, Fenton JI. Differential effects of energy balance on experimentally-induced colitis. World J Gastroenterol 2012; 18:627-36. [PMID: 22363133 PMCID: PMC3281219 DOI: 10.3748/wjg.v18.i7.627] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/14/2011] [Revised: 04/09/2011] [Accepted: 04/16/2011] [Indexed: 02/06/2023] Open
Abstract
AIM: To characterize the influence of diet-induced changes in body fat on colitis severity in SMAD3-/- mice.
METHODS: SMAD3-/- mice (6-8 wk of age) were randomly assigned to receive a calorie restricted (30% of control; CR), control (CON), or high fat (HF) diet for 20 wk and were gavaged with sterile broth or with Helicobacter hepaticus (H. hepaticus) to induce colitis. Four weeks after infection, mice were sacrificed and the cecum and colons were processed for histological evaluation.
RESULTS: Dietary treatment significantly influenced body composition prior to infection (P < 0.05), with CR mice having less (14% ± 2%) and HF-fed mice more body fat (32% ± 7%) compared to controls (22% ± 4%). Differences in body composition were associated with alterations in plasma levels of leptin (HF > CON > CR) and adiponectin (CON > HF ≥ CR) (P < 0.05). There were no significant differences in colitis scores between CON and HF-fed mice 4 wk post-infection. Consistent with this, differences in proliferation and inflammation markers (COX-2, iNOS), and infiltrating cell types (CD3+ T lymphocytes, macrophages) were not observed. Unexpectedly, only 40% of CR mice survived infection with H. hepaticus, with mortality observed as early as 1 wk following induction of colitis.
CONCLUSION: Increased adiposity does not influence colitis severity in SMAD3-/- mice. Importantly, caloric restriction negatively impacts survival following pathogen challenge, potentially due to an impaired immune response.
Collapse
|
50
|
Gavrilova NS, Gavrilov LA. Comments on dietary restriction, Okinawa diet and longevity. Gerontology 2011; 58:221-3; discussion 224-6. [PMID: 21893946 DOI: 10.1159/000329894] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2011] [Accepted: 06/08/2011] [Indexed: 01/27/2023] Open
Abstract
Longevity in Okinawa is considered to be a result of traditional low calorie diet. Le Bourg suggests that Okinawa is an example of severe malnutrition, which is harmful for later generations. We believe that current loss of longevity advantage in Okinawa is a result of diet westernization and that the dietary restriction is a valid way of life extension in humans.
Collapse
Affiliation(s)
- Natalia S Gavrilova
- Center on Aging, NORC and the University of Chicago, Chicago, IL 60637, USA.
| | | |
Collapse
|