1
|
Mishra A, Sobha D, Patel D, Suresh PS. Intermittent fasting in health and disease. Arch Physiol Biochem 2024; 130:755-767. [PMID: 37828854 DOI: 10.1080/13813455.2023.2268301] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Accepted: 09/29/2023] [Indexed: 10/14/2023]
Abstract
CONTEXT Intermittent fasting, a new-age dietary concept derived from an age-old tradition, involves repetitive cycles of fasting/calorie restriction and eating. OBJECTIVE We aim to take a deep dive into the biological responses to intermittent fasting, delineate the disease-modifying and cognitive effects of intermittent fasting, and also shed light on the possible side effects. METHODS Numerous in vitro and in vivo studies were reviewed, followed by an in-depth analysis, and compilation of their implications in health and disease. RESULTS Intermittent fasting improves the body's stress tolerance, which is further amplified with exercise. It impacts various pathological conditions like cancer, obesity, diabetes, cardiovascular disease, and neurodegenerative diseases. CONCLUSION During dietary restriction, the human body experiences a metabolic switch due to the depletion of liver glycogen, which promotes a shift towards utilising fatty acids and ketones in the system, thereby significantly impacting adiposity, ageing and the immune response to various diseases.
Collapse
Affiliation(s)
- Anubhav Mishra
- School of Biotechnology, National Institute of Technology, Calicut, Calicut, India
| | - Devika Sobha
- School of Biotechnology, National Institute of Technology, Calicut, Calicut, India
| | - Dimple Patel
- School of Biotechnology, National Institute of Technology, Calicut, Calicut, India
| | - Padmanaban S Suresh
- School of Biotechnology, National Institute of Technology, Calicut, Calicut, India
| |
Collapse
|
2
|
Masson SWC, Cutler HB, James DE. Unlocking metabolic insights with mouse genetic diversity. EMBO J 2024; 43:4814-4821. [PMID: 39284908 PMCID: PMC11535531 DOI: 10.1038/s44318-024-00221-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 07/30/2024] [Accepted: 08/01/2024] [Indexed: 11/06/2024] Open
Abstract
As part of EMBO Journal’s 2024 metabolism methods series, this commentary revisits the impact of genetics on metabolic studies, enabling dissection of novel mechanisms and phenotypes.
Collapse
Affiliation(s)
- Stewart W C Masson
- School of Life and Environmental Sciences, The University of Sydney, Sydney, NSW, Australia
- Charles Perkins Centre, The University of Sydney, Sydney, NSW, Australia
| | - Harry B Cutler
- School of Life and Environmental Sciences, The University of Sydney, Sydney, NSW, Australia
- Charles Perkins Centre, The University of Sydney, Sydney, NSW, Australia
| | - David E James
- School of Life and Environmental Sciences, The University of Sydney, Sydney, NSW, Australia.
- Charles Perkins Centre, The University of Sydney, Sydney, NSW, Australia.
- School of Medical Sciences, The University of Sydney, Sydney, NSW, Australia.
| |
Collapse
|
3
|
Di Francesco A, Deighan AG, Litichevskiy L, Chen Z, Luciano A, Robinson L, Garland G, Donato H, Vincent M, Schott W, Wright KM, Raj A, Prateek GV, Mullis M, Hill WG, Zeidel ML, Peters LL, Harding F, Botstein D, Korstanje R, Thaiss CA, Freund A, Churchill GA. Dietary restriction impacts health and lifespan of genetically diverse mice. Nature 2024; 634:684-692. [PMID: 39385029 PMCID: PMC11485257 DOI: 10.1038/s41586-024-08026-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Accepted: 09/05/2024] [Indexed: 10/11/2024]
Abstract
Caloric restriction extends healthy lifespan in multiple species1. Intermittent fasting, an alternative form of dietary restriction, is potentially more sustainable in humans, but its effectiveness remains largely unexplored2-8. Identifying the most efficacious forms of dietary restriction is key for developing interventions to improve human health and longevity9. Here we performed an extensive assessment of graded levels of caloric restriction (20% and 40%) and intermittent fasting (1 and 2 days fasting per week) on the health and survival of 960 genetically diverse female mice. We show that caloric restriction and intermittent fasting both resulted in lifespan extension in proportion to the degree of restriction. Lifespan was heritable and genetics had a larger influence on lifespan than dietary restriction. The strongest trait associations with lifespan included retention of body weight through periods of handling-an indicator of stress resilience, high lymphocyte proportion, low red blood cell distribution width and high adiposity in late life. Health effects differed between interventions and exhibited inconsistent relationships with lifespan extension. 40% caloric restriction had the strongest lifespan extension effect but led to a loss of lean mass and changes in the immune repertoire that could confer susceptibility to infections. Intermittent fasting did not extend the lifespan of mice with high pre-intervention body weight, and two-day intermittent fasting was associated with disruption of erythroid cell populations. Metabolic responses to dietary restriction, including reduced adiposity and lower fasting glucose, were not associated with increased lifespan, suggesting that dietary restriction does more than just counteract the negative effects of obesity. Our findings indicate that improving health and extending lifespan are not synonymous and raise questions about which end points are the most relevant for evaluating aging interventions in preclinical models and clinical trials.
Collapse
Affiliation(s)
| | | | - Lev Litichevskiy
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Department of Biostatistics, Epidemiology and Informatics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Zhenghao Chen
- Calico Life Sciences LLC, South San Francisco, CA, USA
| | | | | | | | | | | | | | - Kevin M Wright
- Calico Life Sciences LLC, South San Francisco, CA, USA
- Actio Biosciences, San Diego, CA, USA
| | - Anil Raj
- Calico Life Sciences LLC, South San Francisco, CA, USA
| | - G V Prateek
- Calico Life Sciences LLC, South San Francisco, CA, USA
| | - Martin Mullis
- Calico Life Sciences LLC, South San Francisco, CA, USA
| | - Warren G Hill
- Division of Nephrology, Department of Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA, USA
| | - Mark L Zeidel
- Division of Nephrology, Department of Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA, USA
| | | | - Fiona Harding
- Calico Life Sciences LLC, South San Francisco, CA, USA
| | | | | | - Christoph A Thaiss
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Adam Freund
- Calico Life Sciences LLC, South San Francisco, CA, USA
- Arda Therapeutics, San Carlos, CA, USA
| | | |
Collapse
|
4
|
Smith DL, Mitchell SE, Johnson MS, Gibbs VK, Dickinson S, Henschel B, Li R, Kaiser KA, Chusyd DE, Brown AW, Allison DB, Speakman JR, Nagy TR. Benefits of calorie restriction in mice are mediated via energy imbalance, not absolute energy or protein intake. GeroScience 2024; 46:4809-4826. [PMID: 38850387 PMCID: PMC11336014 DOI: 10.1007/s11357-024-01166-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Accepted: 04/10/2024] [Indexed: 06/10/2024] Open
Abstract
Caloric restriction (CR) results in reduced energy and protein intake, raising questions about protein restriction's contribution to CR longevity benefits. We kept ad libitum (AL)-fed male C57BL/6J mice at 27°C (AL27) and pair-fed (PF) mice at 22°C (22(PF27)). The 22(PF27) group was fed to match AL27 while restricted for calories due to cold-induced metabolism. The 22(PF27) mice had significantly lower body weight, lean mass, fat mass, leptin, IGF-1, and TNF-α levels than AL27 mice (p<0.001 for all). Manipulations over ~11 weeks resulted in significant differences in body temperature, physical activity, and expression of key genes linked to hunger in the hypothalamus. Survival was significantly greater in 22(PF27) compared to AL27 overall (p<0.001). CR in the context of equivalent energy and protein intake resulted in hormonal, metabolic, and physiological benefits and extended longevity. Hence, energy imbalance, rather than low energy or protein intake per se, mediates the benefits of CR.
Collapse
Affiliation(s)
- Daniel L Smith
- Department of Nutrition Sciences, University of Alabama at Birmingham, Birmingham, AL, USA
- Nutrition Obesity Research Center, University of Alabama at Birmingham, Birmingham, AL, USA
- Integrative Center for Aging Research, University of Alabama at Birmingham, Birmingham, AL, USA
- Nathan Shock Center of Excellence in the Basic Biology of Aging, University of Alabama at Birmingham, Birmingham, AL, USA
- Diabetes Research Center, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Sharon E Mitchell
- School of Biological Sciences, University of Aberdeen, Aberdeen Scotland, Scotland, UK
| | - Maria S Johnson
- Department of Nutrition Sciences, University of Alabama at Birmingham, Birmingham, AL, USA
- Nutrition Obesity Research Center, University of Alabama at Birmingham, Birmingham, AL, USA
- Nathan Shock Center of Excellence in the Basic Biology of Aging, University of Alabama at Birmingham, Birmingham, AL, USA
- Diabetes Research Center, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Victoria K Gibbs
- Department of Nutrition Sciences, University of Alabama at Birmingham, Birmingham, AL, USA
- Department of Clinical and Diagnostic Sciences, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Stephanie Dickinson
- Department of Epidemiology and Biostatistics, School of Public Health-Bloomington, Indiana University, Bloomington, IN, USA
| | - Beate Henschel
- Department of Epidemiology and Biostatistics, School of Public Health-Bloomington, Indiana University, Bloomington, IN, USA
| | - Rui Li
- Department of Epidemiology and Biostatistics, School of Public Health-Bloomington, Indiana University, Bloomington, IN, USA
| | - Kathryn A Kaiser
- Nutrition Obesity Research Center, University of Alabama at Birmingham, Birmingham, AL, USA
- Department of Health Behavior, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Daniella E Chusyd
- Department of Nutrition Sciences, University of Alabama at Birmingham, Birmingham, AL, USA
- Department of Environmental and Occupational Health, School of Public Health-Bloomington, Indiana University, Bloomington, IN, USA
| | - Andrew W Brown
- Department of Applied Health Science, Indiana University School of Public Health-Bloomington, Bloomington, IN, USA
- Department of Biostatistics, University of Arkansas for Medical Sciences, Little Rock, AR, USA; Arkansas Children's Research Institute, Little Rock, AR, USA
| | - David B Allison
- Department of Nutrition Sciences, University of Alabama at Birmingham, Birmingham, AL, USA.
- Nutrition Obesity Research Center, University of Alabama at Birmingham, Birmingham, AL, USA.
- Integrative Center for Aging Research, University of Alabama at Birmingham, Birmingham, AL, USA.
- Nathan Shock Center of Excellence in the Basic Biology of Aging, University of Alabama at Birmingham, Birmingham, AL, USA.
- Department of Epidemiology and Biostatistics, School of Public Health-Bloomington, Indiana University, Bloomington, IN, USA.
| | - John R Speakman
- School of Biological Sciences, University of Aberdeen, Aberdeen Scotland, Scotland, UK.
- Shenzhen Key Laboratory for Metabolic Health, Center for Energy Metabolism and Reproduction, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China.
- Institute of Health Sciences, China Medical University, Shenyang, Liaoning, China.
- Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China.
| | - Tim R Nagy
- Department of Nutrition Sciences, University of Alabama at Birmingham, Birmingham, AL, USA.
- Nutrition Obesity Research Center, University of Alabama at Birmingham, Birmingham, AL, USA.
- Integrative Center for Aging Research, University of Alabama at Birmingham, Birmingham, AL, USA.
- Nathan Shock Center of Excellence in the Basic Biology of Aging, University of Alabama at Birmingham, Birmingham, AL, USA.
- Diabetes Research Center, University of Alabama at Birmingham, Birmingham, AL, USA.
| |
Collapse
|
5
|
Sánchez-Mendoza LM, Pérez-Sánchez C, García-Caballero C, Pérez-Rodríguez M, Calero-Rodríguez P, Vellón-García B, Moreno JA, Burón MI, de Cabo R, González-Reyes JA, Villalba JM. CYB5R3 overexpression exhibits sexual dimorphism: Mitochondrial and metabolic adaptations in transgenic female mice during calorie restriction. Free Radic Biol Med 2024; 223:69-86. [PMID: 39069267 DOI: 10.1016/j.freeradbiomed.2024.07.034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 06/21/2024] [Accepted: 07/25/2024] [Indexed: 07/30/2024]
Abstract
There is a pressing need to develop new strategies for enhancing health in the elderly and preventing the rise in age-related diseases. Calorie restriction without malnutrition (CR) stands among the different antiaging interventions. Lifelong CR leads to increased expression and activity of plasma membrane CYB5R3, and male mice overexpressing CYB5R3 exhibit some beneficial adaptations that are also seen with CR. However, the mechanisms involved in both interventions could be independent since key aspects of energy metabolism and tissue lipid profile do not coincide, and many of the changes induced by CR in mitochondrial abundance and dynamics in the liver and skeletal muscle could be counteracted by CYB5R3 overexpression. In this study, we sought to elucidate the impact of CR on key markers of metabolic status, mitochondrial function, and pro-oxidant/antioxidant balance in transgenic (TG) female mice overexpressing CYB5R3 compared to their WT littermates. In females fed ad libitum, CYB5R3 overexpression decreased fat mass, led to a preferred utilization of fatty acids as an energy source, upregulated key antioxidant enzymes, and boosted respiration both in skeletal muscle and liver mitochondria, supporting that CYB5R3 overexpression is phenotypic closer to CR in females than in males. Whereas some markers of mitochondrial biogenesis and dynamics were found decreased in TG females on CR, as also found for the levels of Estrogen Receptor α, mitochondrial abundance and activity were maintained both in skeletal muscle and in liver. Our results reveal overlapping metabolic adaptations resulting from the overexpression of CYB5R3 and CR in females, but a specific crosstalk occurs when both interventions are combined, differing from the adaptations observed in TG males.
Collapse
Affiliation(s)
- Luz Marina Sánchez-Mendoza
- Departamento de Biología Celular, Fisiología e Inmunología, Universidad de Córdoba, Campus de Excelencia Internacional Agroalimentario, CeiA3, Córdoba, Spain.
| | - Carlos Pérez-Sánchez
- Departamento de Biología Celular, Fisiología e Inmunología, Universidad de Córdoba, Campus de Excelencia Internacional Agroalimentario, CeiA3, Córdoba, Spain; Rheumatology Service, Reina Sofia Hospital/ Maimonides Institute for Research in Biomedicine of Cordoba (IMIBIC)/University of Cordoba, Cordoba, Spain.
| | - Cristina García-Caballero
- Maimonides Biomedical Research Institute of Cordoba (IMIBIC), Hospital Universitario Reina Sofía, Córdoba, Spain.
| | - Miguel Pérez-Rodríguez
- Departamento de Biología Celular, Fisiología e Inmunología, Universidad de Córdoba, Campus de Excelencia Internacional Agroalimentario, CeiA3, Córdoba, Spain.
| | - Pilar Calero-Rodríguez
- Departamento de Biología Celular, Fisiología e Inmunología, Universidad de Córdoba, Campus de Excelencia Internacional Agroalimentario, CeiA3, Córdoba, Spain.
| | - Beatriz Vellón-García
- Departamento de Biología Celular, Fisiología e Inmunología, Universidad de Córdoba, Campus de Excelencia Internacional Agroalimentario, CeiA3, Córdoba, Spain; Rheumatology Service, Reina Sofia Hospital/ Maimonides Institute for Research in Biomedicine of Cordoba (IMIBIC)/University of Cordoba, Cordoba, Spain.
| | - Juan Antonio Moreno
- Departamento de Biología Celular, Fisiología e Inmunología, Universidad de Córdoba, Campus de Excelencia Internacional Agroalimentario, CeiA3, Córdoba, Spain; Maimonides Biomedical Research Institute of Cordoba (IMIBIC), Hospital Universitario Reina Sofía, Córdoba, Spain.
| | - M Isabel Burón
- Departamento de Biología Celular, Fisiología e Inmunología, Universidad de Córdoba, Campus de Excelencia Internacional Agroalimentario, CeiA3, Córdoba, Spain.
| | - Rafael de Cabo
- Experimental Gerontology Section, Translational Gerontology Branch, National Institute on Aging, National Institutes of Health, Baltimore, MD, 21224, USA.
| | - José A González-Reyes
- Departamento de Biología Celular, Fisiología e Inmunología, Universidad de Córdoba, Campus de Excelencia Internacional Agroalimentario, CeiA3, Córdoba, Spain.
| | - José M Villalba
- Departamento de Biología Celular, Fisiología e Inmunología, Universidad de Córdoba, Campus de Excelencia Internacional Agroalimentario, CeiA3, Córdoba, Spain.
| |
Collapse
|
6
|
Klinaki E, Ogrodnik M. In the land of not-unhappiness: On the state-of-the-art of targeting aging and age-related diseases by biomedical research. Mech Ageing Dev 2024; 219:111929. [PMID: 38561164 DOI: 10.1016/j.mad.2024.111929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 03/12/2024] [Accepted: 03/23/2024] [Indexed: 04/04/2024]
Abstract
The concept of the Land of Not-Unhappiness refers to the potential achievement of eliminating the pathologies of the aging process. To inform of how close we are to settling in the land, we summarize and review the achievements of research on anti-aging interventions over the last hundred years with a specific focus on strategies that slow down metabolism, compensate for aging-related losses, and target a broad range of age-related diseases. We critically evaluate the existing interventions labeled as "anti-aging," such as calorie restriction, exercise, stem cell administration, and senolytics, to provide a down-to-earth evaluation of their current applicability in counteracting aging. Throughout the text, we have maintained a light tone to make it accessible to non-experts in biogerontology, and provide a broad overview for those considering conducting studies, research, or seeking to understand the scientific basis of anti-aging medicine.
Collapse
Affiliation(s)
- Eirini Klinaki
- Ludwig Boltzmann Research Group Senescence and Healing of Wounds, Vienna 1200, Austria; Ludwig Boltzmann Institute for Traumatology, The Research Centre in Cooperation with AUVA, Vienna 1200, Austria; Austrian Cluster for Tissue Regeneration, Vienna, Austria
| | - Mikolaj Ogrodnik
- Ludwig Boltzmann Research Group Senescence and Healing of Wounds, Vienna 1200, Austria; Ludwig Boltzmann Institute for Traumatology, The Research Centre in Cooperation with AUVA, Vienna 1200, Austria; Austrian Cluster for Tissue Regeneration, Vienna, Austria.
| |
Collapse
|
7
|
Ruparelia AA, Salavaty A, Barlow CK, Lu Y, Sonntag C, Hersey L, Eramo MJ, Krug J, Reuter H, Schittenhelm RB, Ramialison M, Cox A, Ryan MT, Creek DJ, Englert C, Currie PD. The African killifish: A short-lived vertebrate model to study the biology of sarcopenia and longevity. Aging Cell 2024; 23:e13862. [PMID: 37183563 PMCID: PMC10776123 DOI: 10.1111/acel.13862] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2022] [Revised: 04/13/2023] [Accepted: 04/18/2023] [Indexed: 05/16/2023] Open
Abstract
Sarcopenia, the age-related decline in muscle function, places a considerable burden on health-care systems. While the stereotypic hallmarks of sarcopenia are well characterized, their contribution to muscle wasting remains elusive, which is partly due to the limited availability of animal models. Here, we have performed cellular and molecular characterization of skeletal muscle from the African killifish-an extremely short-lived vertebrate-revealing that while many characteristics deteriorate with increasing age, supporting the use of killifish as a model for sarcopenia research, some features surprisingly reverse to an "early-life" state in the extremely old stages. This suggests that in extremely old animals, there may be mechanisms that prevent further deterioration of skeletal muscle, contributing to an extension of life span. In line with this, we report a reduction in mortality rates in extremely old killifish. To identify mechanisms for this phenomenon, we used a systems metabolomics approach, which revealed that during aging there is a striking depletion of triglycerides, mimicking a state of calorie restriction. This results in the activation of mitohormesis, increasing Sirt1 levels, which improves lipid metabolism and maintains nutrient homeostasis in extremely old animals. Pharmacological induction of Sirt1 in aged animals was sufficient to induce a late life-like metabolic profile, supporting its role in life span extension in vertebrate populations that are naturally long-lived. Collectively, our results demonstrate that killifish are not only a novel model to study the biological processes that govern sarcopenia, but they also provide a unique vertebrate system to dissect the regulation of longevity.
Collapse
Affiliation(s)
- Avnika A. Ruparelia
- Australian Regenerative Medicine Institute, Monash UniversityClaytonAustralia
- Department of Anatomy and Physiology, School of Biomedical Sciences, Faculty of Medicine Dentistry and Health SciencesUniversity of MelbourneMelbourneAustralia
- Centre for Muscle Research, Department of Anatomy and PhysiologyUniversity of MelbourneMelbourneAustralia
| | - Adrian Salavaty
- Australian Regenerative Medicine Institute, Monash UniversityClaytonAustralia
- Systems Biology Institute Australia, Monash UniversityClaytonAustralia
| | - Christopher K. Barlow
- Department of Biochemistry and Molecular BiologyMonash UniversityClaytonAustralia
- Monash Proteomics and Metabolomics FacilityMonash Biomedicine Discovery Institute, Monash UniversityClaytonAustralia
| | - Yansong Lu
- Australian Regenerative Medicine Institute, Monash UniversityClaytonAustralia
| | - Carmen Sonntag
- Australian Regenerative Medicine Institute, Monash UniversityClaytonAustralia
| | - Lucy Hersey
- Australian Regenerative Medicine Institute, Monash UniversityClaytonAustralia
| | - Matthew J. Eramo
- Department of Biochemistry and Molecular BiologyMonash Biomedicine Discovery Institute, Monash UniversityClaytonAustralia
| | - Johannes Krug
- Leibniz Institute on Aging—Fritz Lipmann Institute (FLI)JenaGermany
| | - Hanna Reuter
- Leibniz Institute on Aging—Fritz Lipmann Institute (FLI)JenaGermany
| | - Ralf B. Schittenhelm
- Department of Biochemistry and Molecular BiologyMonash UniversityClaytonAustralia
- Monash Proteomics and Metabolomics FacilityMonash Biomedicine Discovery Institute, Monash UniversityClaytonAustralia
| | - Mirana Ramialison
- Australian Regenerative Medicine Institute, Monash UniversityClaytonAustralia
- Systems Biology Institute Australia, Monash UniversityClaytonAustralia
| | - Andrew Cox
- Peter MacCallum Cancer CentreMelbourneAustralia
- Department of Biochemistry and PharmacologyThe University of MelbourneMelbourneAustralia
| | - Michael T. Ryan
- Department of Biochemistry and Molecular BiologyMonash Biomedicine Discovery Institute, Monash UniversityClaytonAustralia
| | - Darren J. Creek
- Monash Proteomics and Metabolomics FacilityMonash Biomedicine Discovery Institute, Monash UniversityClaytonAustralia
- Drug Delivery, Disposition and DynamicsMonash Institute of Pharmaceutical Sciences, Monash UniversityParkvilleAustralia
| | - Christoph Englert
- Leibniz Institute on Aging—Fritz Lipmann Institute (FLI)JenaGermany
- Institute of Biochemistry and Biophysics, Friedrich‐Schiller‐University JenaJenaGermany
| | - Peter D. Currie
- Australian Regenerative Medicine Institute, Monash UniversityClaytonAustralia
- EMBL Australia, Victorian NodeMonash UniversityClaytonAustralia
| |
Collapse
|
8
|
Shimokawa I. Mechanisms underlying retardation of aging by dietary energy restriction. Pathol Int 2023; 73:579-592. [PMID: 37975408 PMCID: PMC11551835 DOI: 10.1111/pin.13387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Accepted: 10/19/2023] [Indexed: 11/19/2023]
Abstract
Moderate restriction of dietary energy intake, referred to here as dietary restriction (DR), delays aging and extends lifespan in experimental animals compared with a diet of ad libitum feeding (AL) control animals. Basic knowledge of the mechanisms underlying the effects of DR could be applicable to extending the healthspan in humans. This review highlights the importance of forkhead box O (FoxO) transcription factors downstream of the growth hormone-insulin-like growth factor 1 signaling in the effects of DR. Our lifespan studies in mice with heterozygous Foxo1 or Foxo3 gene knockout indicated differential roles of FoxO1 and FoxO3 in the tumor-inhibiting and life-extending effects of DR. Subsequent studies suggested a critical role of FoxO3 in metabolic and mitochondrial bioenergetic adaptation to DR. Our studies also verified hypothalamic neuropeptide Y (Npy) as a vital neuropeptide showing pleiotropic and sexually dimorphic effects for extending the healthspan in the context of nutritional availability. Npy was necessary for DR to exert its effects in male and female mice; meanwhile, under AL conditions, the loss of Npy prevented obesity and insulin resistance only in female mice. Overnutrition disrupts FoxO- and Npy-associated metabolic and mitochondrial bioenergetic adaptive processes, causing the acceleration of aging and related diseases.
Collapse
Affiliation(s)
- Isao Shimokawa
- Department of Pathology INagasaki University School of Medicine and Graduate School of Biomedical SciencesNagasakiJapan
- SAGL, LLCFukuokaJapan
| |
Collapse
|
9
|
Mitchell SE, Togo J, Green CL, Derous D, Hambly C, Speakman JR. The Effects of Graded Levels of Calorie Restriction: XX. Impact of Long-Term Graded Calorie Restriction on Survival and Body Mass Dynamics in Male C57BL/6J Mice. J Gerontol A Biol Sci Med Sci 2023; 78:1953-1963. [PMID: 37354128 PMCID: PMC10613020 DOI: 10.1093/gerona/glad152] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Indexed: 06/26/2023] Open
Abstract
Calorie restriction (CR) typically promotes a reduction in body mass, which correlates with increased lifespan. We evaluated the overall changes in survival, body mass dynamics, and body composition following long-term graded CR (580 days/19 months) in male C57BL/6J mice. Control mice (0% restriction) were fed ad libitum in the dark phase only (12-hour ad libitum [12AL]). CR groups were restricted by 10%-40% of their baseline food intake (10CR, 20CR, 30CR, and 40CR). Body mass was recorded daily, and body composition was measured at 8 time points. At 728 days/24 months, all surviving mice were culled. A gradation in survival rate over the CR groups was found. The pattern of body mass loss differed over the graded CR groups. Whereas the lower CR groups rapidly resumed an energy balance with no significant loss of fat or fat-free mass, changes in the 30 and 40CR groups were attributed to higher fat-free mass loss and protection of fat mass. Day-to-day changes in body mass were less variable under CR than for the 12AL group. There was no indication that body mass was influenced by external factors. Partial autocorrelation analysis examined the relationship between daily changes in body masses. A negative correlation between mass on Day 0 and Day +1 declined with age in the 12AL but not the CR groups. A reduction in the correlation with age suggested body mass homeostasis is a marker of aging that declines at the end of life and is protected by CR.
Collapse
Affiliation(s)
| | - Jacques Togo
- School of Biological Sciences, University of Aberdeen, Aberdeen, UK
| | - Cara L Green
- School of Biological Sciences, University of Aberdeen, Aberdeen, UK
| | - Davina Derous
- School of Biological Sciences, University of Aberdeen, Aberdeen, UK
| | - Catherine Hambly
- School of Biological Sciences, University of Aberdeen, Aberdeen, UK
| | - John R Speakman
- School of Biological Sciences, University of Aberdeen, Aberdeen, UK
- Shenzhen Key Laboratory of Metabolic Health, Center for Energy Metabolism and Reproduction, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, P.R. China
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, P.R. China
- China Medical University, Shenyang, Liaoning, P.R. China
| |
Collapse
|
10
|
Papsdorf K, Miklas JW, Hosseini A, Cabruja M, Morrow CS, Savini M, Yu Y, Silva-García CG, Haseley NR, Murphy LM, Yao P, de Launoit E, Dixon SJ, Snyder MP, Wang MC, Mair WB, Brunet A. Lipid droplets and peroxisomes are co-regulated to drive lifespan extension in response to mono-unsaturated fatty acids. Nat Cell Biol 2023; 25:672-684. [PMID: 37127715 PMCID: PMC10185472 DOI: 10.1038/s41556-023-01136-6] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Accepted: 03/23/2023] [Indexed: 05/03/2023]
Abstract
Dietary mono-unsaturated fatty acids (MUFAs) are linked to longevity in several species. But the mechanisms by which MUFAs extend lifespan remain unclear. Here we show that an organelle network involving lipid droplets and peroxisomes is critical for MUFA-induced longevity in Caenorhabditis elegans. MUFAs upregulate the number of lipid droplets in fat storage tissues. Increased lipid droplet number is necessary for MUFA-induced longevity and predicts remaining lifespan. Lipidomics datasets reveal that MUFAs also modify the ratio of membrane lipids and ether lipids-a signature associated with decreased lipid oxidation. In agreement with this, MUFAs decrease lipid oxidation in middle-aged individuals. Intriguingly, MUFAs upregulate not only lipid droplet number but also peroxisome number. A targeted screen identifies genes involved in the co-regulation of lipid droplets and peroxisomes, and reveals that induction of both organelles is optimal for longevity. Our study uncovers an organelle network involved in lipid homeostasis and lifespan regulation, opening new avenues for interventions to delay aging.
Collapse
Affiliation(s)
| | - Jason W Miklas
- Department of Genetics, Stanford University, Stanford, CA, USA
| | - Amir Hosseini
- Department of Genetics, Stanford University, Stanford, CA, USA
| | - Matias Cabruja
- Department of Genetics, Stanford University, Stanford, CA, USA
| | - Christopher S Morrow
- Department of Molecular Metabolism, Harvard T. H. Chan School of Public Health, Boston, MA, USA
| | - Marzia Savini
- Department of Molecular and Human Genetics, Huffington Center on Aging, Baylor College of Medicine, Houston, TX, USA
| | - Yong Yu
- Department of Molecular and Human Genetics, Huffington Center on Aging, Baylor College of Medicine, Houston, TX, USA
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen, China
| | - Carlos G Silva-García
- Department of Molecular Metabolism, Harvard T. H. Chan School of Public Health, Boston, MA, USA
| | | | | | - Pallas Yao
- Department of Molecular Metabolism, Harvard T. H. Chan School of Public Health, Boston, MA, USA
| | | | - Scott J Dixon
- Department of Biology, Stanford University, Stanford, CA, USA
| | | | - Meng C Wang
- Department of Molecular and Human Genetics, Huffington Center on Aging, Baylor College of Medicine, Houston, TX, USA
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, USA
| | - William B Mair
- Department of Molecular Metabolism, Harvard T. H. Chan School of Public Health, Boston, MA, USA
| | - Anne Brunet
- Department of Genetics, Stanford University, Stanford, CA, USA.
- Glenn Laboratories for the Biology of Aging, Stanford University, Stanford, CA, USA.
- Wu Tsai Institute of Neurosciences, Stanford University, Stanford, CA, USA.
| |
Collapse
|
11
|
Jurrjens AW, Seldin MM, Giles C, Meikle PJ, Drew BG, Calkin AC. The potential of integrating human and mouse discovery platforms to advance our understanding of cardiometabolic diseases. eLife 2023; 12:e86139. [PMID: 37000167 PMCID: PMC10065800 DOI: 10.7554/elife.86139] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Accepted: 03/15/2023] [Indexed: 04/01/2023] Open
Abstract
Cardiometabolic diseases encompass a range of interrelated conditions that arise from underlying metabolic perturbations precipitated by genetic, environmental, and lifestyle factors. While obesity, dyslipidaemia, smoking, and insulin resistance are major risk factors for cardiometabolic diseases, individuals still present in the absence of such traditional risk factors, making it difficult to determine those at greatest risk of disease. Thus, it is crucial to elucidate the genetic, environmental, and molecular underpinnings to better understand, diagnose, and treat cardiometabolic diseases. Much of this information can be garnered using systems genetics, which takes population-based approaches to investigate how genetic variance contributes to complex traits. Despite the important advances made by human genome-wide association studies (GWAS) in this space, corroboration of these findings has been hampered by limitations including the inability to control environmental influence, limited access to pertinent metabolic tissues, and often, poor classification of diseases or phenotypes. A complementary approach to human GWAS is the utilisation of model systems such as genetically diverse mouse panels to study natural genetic and phenotypic variation in a controlled environment. Here, we review mouse genetic reference panels and the opportunities they provide for the study of cardiometabolic diseases and related traits. We discuss how the post-GWAS era has prompted a shift in focus from discovery of novel genetic variants to understanding gene function. Finally, we highlight key advantages and challenges of integrating complementary genetic and multi-omics data from human and mouse populations to advance biological discovery.
Collapse
Affiliation(s)
- Aaron W Jurrjens
- Baker Heart and Diabetes Institute, Melbourne, Australia
- Central Clinical School, Monash University, Melbourne, Australia
| | - Marcus M Seldin
- Department of Biological Chemistry and Center for Epigenetics and Metabolism, University of California, Irvine, Irvine, United States
| | - Corey Giles
- Baker Heart and Diabetes Institute, Melbourne, Australia
- Baker Department of Cardiometabolic Health, University of Melbourne, Melbourne, Australia
- Baker Department of Cardiovascular Research Translation and Implementation, La Trobe University, Bundoora, Australia
| | - Peter J Meikle
- Baker Heart and Diabetes Institute, Melbourne, Australia
- Central Clinical School, Monash University, Melbourne, Australia
- Baker Department of Cardiometabolic Health, University of Melbourne, Melbourne, Australia
- Baker Department of Cardiovascular Research Translation and Implementation, La Trobe University, Bundoora, Australia
| | - Brian G Drew
- Baker Heart and Diabetes Institute, Melbourne, Australia
- Central Clinical School, Monash University, Melbourne, Australia
- Baker Department of Cardiometabolic Health, University of Melbourne, Melbourne, Australia
| | - Anna C Calkin
- Baker Heart and Diabetes Institute, Melbourne, Australia
- Central Clinical School, Monash University, Melbourne, Australia
- Baker Department of Cardiometabolic Health, University of Melbourne, Melbourne, Australia
| |
Collapse
|
12
|
Duan H, Li J, Yu L, Fan L. The road ahead of dietary restriction on anti-aging: focusing on personalized nutrition. Crit Rev Food Sci Nutr 2022; 64:891-908. [PMID: 35950606 DOI: 10.1080/10408398.2022.2110034] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Dietary restriction (DR), including caloric restriction (CR), intermittent fasting (IF), and restriction of specific food compositions, can delay aging, and the main mechanisms include regulation of nutrient-sensing pathways and gut microbiota. However, the effects of DR regimens on longevity remain controversial, as some studies have demonstrated that IF, rather than CR or diet composition, influences longevity, while other studies have shown that the restricted-carbohydrate or -protein diets, rather than CR, determine health and longevity. Many factors, including DR-related factors (carbohydrate or protein composition, degree and duration of DR), and individual differences (health status, sex, genotype, and age of starting DR), would be used to explain the controversial anti-aging effects of DR, thus highlighting the necessity of precise DR intervention for anti-aging. Personalized DR intervention in humans is challenging because of the lack of accurate aging molecular biomarkers and vast individual variability. Using machine learning to build a predictive model based on the data set of clinical features, gut microbiome and metabolome, may be a good method to achieve precise DR intervention. Therefore, this review analyzed the anti-aging effects of various DR regimens, summarized their mechanisms and influencing factors, and proposed a future research direction for achieving personalized DR regimens for slowing aging.
Collapse
Affiliation(s)
- Hui Duan
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China
- School of Food Science and Technology, Jiangnan University, Wuxi, China
- National Engineering Research Center for Functional Food, Jiangnan University, Wuxi, China
| | - Jinwei Li
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China
- School of Food Science and Technology, Jiangnan University, Wuxi, China
- National Engineering Research Center for Functional Food, Jiangnan University, Wuxi, China
| | - Leilei Yu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China
- School of Food Science and Technology, Jiangnan University, Wuxi, China
- International Joint Research Laboratory for Probiotics at, Jiangnan University, Wuxi, China
| | - Liuping Fan
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China
- School of Food Science and Technology, Jiangnan University, Wuxi, China
- National Engineering Research Center for Functional Food, Jiangnan University, Wuxi, China
| |
Collapse
|
13
|
Wright KM, Deighan AG, Di Francesco A, Freund A, Jojic V, Churchill GA, Raj A. Age and diet shape the genetic architecture of body weight in diversity outbred mice. eLife 2022; 11:64329. [PMID: 35838135 PMCID: PMC9286741 DOI: 10.7554/elife.64329] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Accepted: 05/20/2022] [Indexed: 12/26/2022] Open
Abstract
Understanding how genetic variation shapes a complex trait relies on accurately quantifying both the additive genetic and genotype–environment interaction effects in an age-dependent manner. We used a linear mixed model to quantify diet-dependent genetic contributions to body weight measured through adulthood in diversity outbred female mice under five diets. We observed that heritability of body weight declined with age under all diets, except the 40% calorie restriction diet. We identified 14 loci with age-dependent associations and 19 loci with age- and diet-dependent associations, with many diet-dependent loci previously linked to neurological function and behavior in mice or humans. We found their allelic effects to be dynamic with respect to genomic background, age, and diet, identifying several loci where distinct alleles affect body weight at different ages. These results enable us to more fully understand and predict the effectiveness of dietary intervention on overall health throughout age in distinct genetic backgrounds. Body weight is one trait influenced by genes, age and environmental factors. Both internal and external environmental pressures are known to affect genetic variation over time. However, it is largely unknown how all factors – including age – interact to shape metabolism and bodyweight. Wright et al. set out to quantify the interactions between genes and diet in ageing mice and found that the effect of genetics on mouse body weight changes with age. In the experiments, Wright et al. weighed 960 female mice with diverse genetic backgrounds, starting at two months of age into adulthood. The animals were randomized to different diets at six months of age. Some mice had unlimited food access, others received 20% or 40% less calories than a typical mouse diet, and some fasted one or two days per week. Variations in their genetic background explained about 80% of differences in mice’s weight, but the influence of genetics relative to non-genetic factors decreased as they aged. Mice on the 40% calorie restriction diet were an exception to this rule and genetics accounted for 80% of their weight throughout adulthood, likely due to reduced influence from diet and reduced interactions between diet and genes. Several genes involved in metabolism, neurological function, or behavior, were associated with mouse weight. The experiments highlight the importance of considering interactions between genetics, environment, and age in determining complex traits like body weight. The results and the approaches used by Wright et al. may help other scientists learn more about how the genetic predisposition to disease changes with environmental stimuli and age.
Collapse
Affiliation(s)
- Kevin M Wright
- Calico Life Sciences LLC, South San Francisco, United States
| | | | | | - Adam Freund
- Calico Life Sciences LLC, South San Francisco, United States
| | - Vladimir Jojic
- Calico Life Sciences LLC, South San Francisco, United States
| | | | - Anil Raj
- Calico Life Sciences LLC, South San Francisco, United States
| |
Collapse
|
14
|
Phillips D, Mathers H, Mitchell SE, Speakman JR. The effects of graded levels of calorie restriction XVIII: tissue specific changes in cell size and number in response to calorie restriction. J Gerontol A Biol Sci Med Sci 2022; 77:1994-2001. [PMID: 35639808 PMCID: PMC9536453 DOI: 10.1093/gerona/glac110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Indexed: 11/12/2022] Open
Abstract
Calorie restriction (CR) without malnutrition increases the health- and lifespan of diverse taxa. The mechanism(s) behind CR are debated but may be directly linked to body composition changes that maintain energy balance. During a deficit, energy is primarily obtained from white adipose tissue (WAT; utilized) whilst other tissues remain unchanged (protected) or grow (invested) relative to body mass. The changes in mass of 6 tissues from 48 male C57BL/6 mice following 3-months graded (10, 20, 30, or 40%) CR or fed ad libitum for 12 or 24hr a day were related to cell size (hypo/hypertrophy) and/or number (hypo/hyperplasia). Tissues studied were: retroperitoneal and subcutaneous WAT, brown adipose tissue (BAT) (utilized); lungs (protected), and stomach and caecum (invested). Methodology was based on number of nuclei/ tissue equalling the number of cells. Extracted DNA was quantified and used to estimate cell numbers (Total DNA/DNA per diploid nucleus) and size (Tissue mass/nuclei number). WAT utilization was caused solely by hypotrophy whereas BAT utilization resulted from reduced cell number and size. WAT cell size positively correlated with circulating hormones related to energy balance and BAT cell number and size positively correlated with body temperature. No changes were found in the lungs, consistent with their protected status, whereas hyperplasia appeared to be the dominant mechanism for invested alimentary-tract tissues. These findings indicate the pattern of change of cell size and number across increasing levels of short-term CR is tissue-specific.
Collapse
Affiliation(s)
- Daniel Phillips
- School of Biological Sciences, University of Aberdeen, Aberdeen, UK
| | - Hayleigh Mathers
- School of Biological Sciences, University of Aberdeen, Aberdeen, UK
| | | | - John R Speakman
- School of Biological Sciences, University of Aberdeen, Aberdeen, UK.,Shenzhen key laboratory of metabolic health, Center for Energy metabolism and reproduction, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| |
Collapse
|
15
|
Zhao Z, Cao J, Niu C, Bao M, Xu J, Huo D, Liao S, Liu W, Speakman JR. Body temperature is a more important modulator of lifespan than metabolic rate in two small mammals. Nat Metab 2022; 4:320-326. [PMID: 35288719 DOI: 10.1038/s42255-022-00545-5] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Accepted: 02/03/2022] [Indexed: 11/09/2022]
Abstract
The relationships between metabolic rate, body temperature (Tb), body composition and ageing are complex, and not fully resolved. In particular, Tb and metabolic rate often change in parallel, making disentangling their effects difficult. Here we show that in both sexes of mice and hamsters exposure to a temperature of 32.5 °C leads to a reduced lifespan, coincident with lowered metabolic rate and elevated Tb with no change in body composition. We exploit the unique situation that when small mammals are exposed to hot ambient temperatures their Tb goes up, at the same time that their metabolic rate goes down, allowing us to experimentally separate the impacts of Tb and metabolic rate on lifespan. The impact of ambient temperature on lifespan can be reversed by exposing the animals to elevated heat loss by forced convection, which reverses the effect on Tb but does not affect metabolic rate, demonstrating the causal effect of Tb on lifespan under laboratory conditions for these models. The impact of manipulations such as calorie restriction that increase lifespan may be mediated via effects on Tb, and measuring Tb may be a useful screening tool for putative therapeutics to extend the human lifespan.
Collapse
Affiliation(s)
- Zhijun Zhao
- School of Life and Environmental Sciences, Wenzhou University, Wenzhou, China.
- School of Agricultural Science, Liaocheng University, Liaocheng, China.
| | - Jing Cao
- School of Life and Environmental Sciences, Wenzhou University, Wenzhou, China
- School of Agricultural Science, Liaocheng University, Liaocheng, China
| | - Chaoqun Niu
- Shenzhen Key Laboratory of Metabolic Health, Center for Energy Metabolism and Reproduction, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
- Institute of Biological and Environmental Sciences, University of Aberdeen, Aberdeen, UK
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Menghuan Bao
- School of Life and Environmental Sciences, Wenzhou University, Wenzhou, China
| | - Jiaqi Xu
- School of Life and Environmental Sciences, Wenzhou University, Wenzhou, China
| | - Daliang Huo
- School of Life and Environmental Sciences, Wenzhou University, Wenzhou, China
| | - Shasha Liao
- School of Life and Environmental Sciences, Wenzhou University, Wenzhou, China
| | - Wei Liu
- School of Life and Environmental Sciences, Wenzhou University, Wenzhou, China
| | - John R Speakman
- Shenzhen Key Laboratory of Metabolic Health, Center for Energy Metabolism and Reproduction, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China.
- Institute of Biological and Environmental Sciences, University of Aberdeen, Aberdeen, UK.
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|
16
|
Rubio-Tomás T, Rueda-Robles A, Plaza-Díaz J, Álvarez-Mercado AI. Nutrition and cellular senescence in obesity-related disorders. J Nutr Biochem 2022; 99:108861. [PMID: 34517097 DOI: 10.1016/j.jnutbio.2021.108861] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Revised: 05/29/2021] [Accepted: 08/10/2021] [Indexed: 02/06/2023]
Abstract
Adequate nutrition is vital for immune homeostasis. However, the incidence of obesity is increasing worldwide due to the adoption of the Western diet and a sedentary lifestyle. Obesity is associated with chronic inflammation which alters the function of adipose tissue, liver, pancreas, and the nervous system. Inflammation is related to cellular senescence, distinguished by irreversible cell cycle arrest. Senescent cells secrete the senescence-associated secretory phenotype (SASP) which contains pro-inflammatory factors. Targeting processes in senescence might have a salutary approach to obesity. The present review highlights the impact of an unhealthy diet on tissues affected by obesity, and the mechanisms that promote the consequent inflammation and senescence.
Collapse
Affiliation(s)
- Teresa Rubio-Tomás
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain; School of Medicine, University of Crete, Herakleion, Crete, Greece
| | - Ascensión Rueda-Robles
- Institute of Nutrition and Food Technology "José Mataix", Center of Biomedical Research, University of Granada, Armilla, Granada, Spain
| | - Julio Plaza-Díaz
- Children's Hospital of Eastern Ontario Research Institute, Ottawa, ON Canada; Department of Biochemistry and Molecular Biology II, School of Pharmacy, University of Granada, Granada, Spain; Instituto de Investigación Biosanitaria ibs.GRANADA, Complejo Hospitalario Universitario de Granada, Granada Spain.
| | - Ana I Álvarez-Mercado
- Institute of Nutrition and Food Technology "José Mataix", Center of Biomedical Research, University of Granada, Armilla, Granada, Spain; Department of Biochemistry and Molecular Biology II, School of Pharmacy, University of Granada, Granada, Spain; Instituto de Investigación Biosanitaria ibs.GRANADA, Complejo Hospitalario Universitario de Granada, Granada Spain.
| |
Collapse
|
17
|
Igwe O, Sone M, Matveychuk D, Baker GB, Dursun SM. A review of effects of calorie restriction and fasting with potential relevance to depression. Prog Neuropsychopharmacol Biol Psychiatry 2021; 111:110206. [PMID: 33316333 DOI: 10.1016/j.pnpbp.2020.110206] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/06/2020] [Revised: 11/21/2020] [Accepted: 12/04/2020] [Indexed: 02/06/2023]
Abstract
In recent years, there has been a great deal of interest in the effects of calorie reduction (calorie restriction) and fasting on depression. In the current paper, we have reviewed the literature in this area, with discussion of the possible neurobiological mechanisms involved in calorie restriction and intermittent fasting. Factors which may play a role in the effects of these dietary manipulations on health include changes involving free fatty acids, ketone bodies, neurotransmitters, cyclic adenosine monophosphate response element binding protein (CREB), brain-derived neurotrophic factor (BDNF), cytokines, orexin, ghrelin, leptin, reactive oxygen species and autophagy. Several of these factors are potential contributors to improving symptoms of depression. Challenges encountered in research on calorie restriction and intermittent fasting are also discussed. Although much is now known about the acute effects of calorie restriction and intermittent fasting, further long term clinical studies are warranted.
Collapse
Affiliation(s)
- Ogechi Igwe
- Neurochemical Research Unit, Department of Psychiatry, University of Alberta, Edmonton, AB, Canada
| | - Mari Sone
- Neurochemical Research Unit, Department of Psychiatry, University of Alberta, Edmonton, AB, Canada
| | - Dmitriy Matveychuk
- Neurochemical Research Unit, Department of Psychiatry, University of Alberta, Edmonton, AB, Canada
| | - Glen B Baker
- Neurochemical Research Unit, Department of Psychiatry, University of Alberta, Edmonton, AB, Canada
| | - Serdar M Dursun
- Neurochemical Research Unit, Department of Psychiatry, University of Alberta, Edmonton, AB, Canada.
| |
Collapse
|
18
|
Palliyaguru DL, Shiroma EJ, Nam JK, Duregon E, Vieira Ligo Teixeira C, Price NL, Bernier M, Camandola S, Vaughan KL, Colman RJ, Deighan A, Korstanje R, Peters LL, Dickinson SL, Ejima K, Simonsick EM, Launer LJ, Chia CW, Egan J, Allison DB, Churchill GA, Anderson RM, Ferrucci L, Mattison JA, de Cabo R. Fasting blood glucose as a predictor of mortality: Lost in translation. Cell Metab 2021; 33:2189-2200.e3. [PMID: 34508697 PMCID: PMC9115768 DOI: 10.1016/j.cmet.2021.08.013] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 01/24/2021] [Accepted: 08/18/2021] [Indexed: 12/25/2022]
Abstract
Aging leads to profound changes in glucose homeostasis, weight, and adiposity, which are considered good predictors of health and survival in humans. Direct evidence that these age-associated metabolic alterations are recapitulated in animal models is lacking, impeding progress to develop and test interventions that delay the onset of metabolic dysfunction and promote healthy aging and longevity. We compared longitudinal trajectories, rates of change, and mortality risks of fasting blood glucose, body weight, and fat mass in mice, nonhuman primates, and humans throughout their lifespans and found similar trajectories of body weight and fat in the three species. In contrast, fasting blood glucose decreased late in life in mice but increased over the lifespan of nonhuman primates and humans. Higher glucose was associated with lower mortality in mice but higher mortality in nonhuman primates and humans, providing a cautionary tale for translating age-associated metabolic changes from mice to humans.
Collapse
Affiliation(s)
- Dushani L Palliyaguru
- Translational Gerontology Branch, National Institute on Aging, Baltimore, MD 21224, USA
| | - Eric J Shiroma
- Laboratory of Epidemiology and Population Sciences, National Institute on Aging, Baltimore, MD 21224, USA
| | - John K Nam
- Translational Gerontology Branch, National Institute on Aging, Baltimore, MD 21224, USA
| | - Eleonora Duregon
- Translational Gerontology Branch, National Institute on Aging, Baltimore, MD 21224, USA
| | | | - Nathan L Price
- Translational Gerontology Branch, National Institute on Aging, Baltimore, MD 21224, USA; Vascular Biology and Therapeutics Program, Integrative Cell Signaling and Neurobiology of Metabolism Program, Department of Comparative Medicine, Department of Pathology, Yale University School of Medicine, New Haven, CT 06510, USA
| | - Michel Bernier
- Translational Gerontology Branch, National Institute on Aging, Baltimore, MD 21224, USA
| | - Simonetta Camandola
- Translational Gerontology Branch, National Institute on Aging, Baltimore, MD 21224, USA
| | - Kelli L Vaughan
- Translational Gerontology Branch, National Institute on Aging, Baltimore, MD 21224, USA
| | - Ricki J Colman
- Wisconsin National Primate Research Center, University of Wisconsin-Madison, Madison, WI 53715, USA
| | | | | | | | | | - Keisuke Ejima
- School of Public Health, Indiana University, Bloomington, IN 47405, USA
| | - Eleanor M Simonsick
- Translational Gerontology Branch, National Institute on Aging, Baltimore, MD 21224, USA
| | - Lenore J Launer
- Laboratory of Epidemiology and Population Sciences, National Institute on Aging, Baltimore, MD 21224, USA
| | - Chee W Chia
- Laboratory of Clinical Investigation, National Institute on Aging, Baltimore, MD 21224, USA
| | - Josephine Egan
- Laboratory of Clinical Investigation, National Institute on Aging, Baltimore, MD 21224, USA
| | - David B Allison
- School of Public Health, Indiana University, Bloomington, IN 47405, USA
| | | | - Rozalyn M Anderson
- Department of Medicine, University of Wisconsin-Madison and Geriatric Research Education and Clinical Center, William S. Middleton Memorial Veterans Hospital, Madison, WI 53705, USA
| | - Luigi Ferrucci
- Translational Gerontology Branch, National Institute on Aging, Baltimore, MD 21224, USA
| | - Julie A Mattison
- Translational Gerontology Branch, National Institute on Aging, Baltimore, MD 21224, USA
| | - Rafael de Cabo
- Translational Gerontology Branch, National Institute on Aging, Baltimore, MD 21224, USA.
| |
Collapse
|
19
|
Wilson KA, Chamoli M, Hilsabeck TA, Pandey M, Bansal S, Chawla G, Kapahi P. Evaluating the beneficial effects of dietary restrictions: A framework for precision nutrigeroscience. Cell Metab 2021; 33:2142-2173. [PMID: 34555343 PMCID: PMC8845500 DOI: 10.1016/j.cmet.2021.08.018] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 08/17/2021] [Accepted: 08/30/2021] [Indexed: 12/12/2022]
Abstract
Dietary restriction (DR) has long been viewed as the most robust nongenetic means to extend lifespan and healthspan. Many aging-associated mechanisms are nutrient responsive, but despite the ubiquitous functions of these pathways, the benefits of DR often vary among individuals and even among tissues within an individual, challenging the aging research field. Furthermore, it is often assumed that lifespan interventions like DR will also extend healthspan, which is thus often ignored in aging studies. In this review, we provide an overview of DR as an intervention and discuss the mechanisms by which it affects lifespan and various healthspan measures. We also review studies that demonstrate exceptions to the standing paradigm of DR being beneficial, thus raising new questions that future studies must address. We detail critical factors for the proposed field of precision nutrigeroscience, which would utilize individualized treatments and predict outcomes using biomarkers based on genotype, sex, tissue, and age.
Collapse
Affiliation(s)
| | - Manish Chamoli
- The Buck Institute for Research on Aging, Novato, CA 94945, USA
| | - Tyler A Hilsabeck
- The Buck Institute for Research on Aging, Novato, CA 94945, USA; Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA 90089, USA
| | - Manish Pandey
- Regional Centre for Biotechnology, Faridabad, Haryana 121001, India
| | - Sakshi Bansal
- Regional Centre for Biotechnology, Faridabad, Haryana 121001, India
| | - Geetanjali Chawla
- Regional Centre for Biotechnology, Faridabad, Haryana 121001, India.
| | - Pankaj Kapahi
- The Buck Institute for Research on Aging, Novato, CA 94945, USA; Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA 90089, USA.
| |
Collapse
|
20
|
Wolf AM. Rodent diet aids and the fallacy of caloric restriction. Mech Ageing Dev 2021; 200:111584. [PMID: 34673082 DOI: 10.1016/j.mad.2021.111584] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Revised: 10/01/2021] [Accepted: 10/05/2021] [Indexed: 12/14/2022]
Abstract
Understanding the molecular mechanisms of normal aging is a prerequisite to significantly improving human health span. Caloric restriction (CR) can delay aging and has served as a yardstick to evaluate interventions extending life span. However, mice given unlimited access to food suffer severe obesity. Health gains from CR depend on control mice being sufficiently overweight and less obese mouse strains benefit far less from CR. Pharmacologic interventions that increase life span, including resveratrol, rapamycin, nicotinamide mononucleotide and metformin, also reduce body weight. In primates, CR does not delay aging unless the control group is eating enough to suffer from obesity-related disease. Human survival is optimal at a body mass index achievable without CR, and the above interventions are merely diet aids that shouldn't slow aging in healthy weight individuals. CR in humans of optimal weight can safely be declared useless, since there is overwhelming evidence that hunger, underweight and starvation reduce fitness, survival, and quality of life. Against an obese control, CR does, however, truly delay aging through a mechanism laid out in the following tumor suppression theory of aging.
Collapse
Affiliation(s)
- Alexander M Wolf
- Laboratory for Morphological and Biomolecular Imaging, Faculty of Medicine, Nippon Medical School, Japan.
| |
Collapse
|
21
|
Mulvey L, Wilkie SE, Borland G, Griffiths K, Sinclair A, McGuinness D, Watson DG, Selman C. Strain-specific metabolic responses to long-term caloric restriction in female ILSXISS recombinant inbred mice. Mol Cell Endocrinol 2021; 535:111376. [PMID: 34246728 PMCID: PMC8417819 DOI: 10.1016/j.mce.2021.111376] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 06/23/2021] [Accepted: 06/28/2021] [Indexed: 12/15/2022]
Abstract
The role that genetic background may play in the responsiveness of organisms to interventions such as caloric restriction (CR) is underappreciated but potentially important. We investigated the impact of genetic background on a suite of metabolic parameters in female recombinant inbred ILSXISS mouse strains previously reported to show divergent lifespan responses to 40% CR (TejJ89-lifespan extension; TejJ48-lifespan unaffected; TejJ114-lifespan shortening). Body mass was reduced across all strains following 10 months of 40% CR, although this loss (relative to ad libitum controls) was greater in TejJ114 relative to the other strains. Gonadal white adipose tissue (gWAT) mass was similarly reduced across all strains following 40% CR, but brown adipose tissue (BAT) mass increased only in strains TejJ89 and TejJ48. Surprisingly, glucose tolerance was improved most notably by CR in TejJ114, while both strains TejJ89 and TejJ114 were hyperinsulinemic following CR relative to their AL controls. We subsequently undertook an unbiased metabolomic approach in gWAT and BAT tissue derived from strains TejJ89 and TejJ114 mice under AL and 40% CR. In gWAT from TejJ89 a significant reduction in several long chain unsaturated fatty acids was observed following 40% CR, but gWAT from TejJ114 appeared relatively unresponsive to CR with far fewer metabolites changing. Phosphatidylethanoloamine lipids within the BAT were typically elevated in TejJ89 following CR, while some phosphatidylglycerol lipids were decreased. However, BAT from strain TejJ114 again appeared unresponsive to CR. These data highlight strain-specific metabolic differences exist in ILSXISS mice following 40% CR. We suggest that precisely how different fat depots respond dynamically to CR may be an important factor in the variable longevity under 40% CR reported in these mice.
Collapse
Affiliation(s)
- Lorna Mulvey
- Institute of Biodiversity, Animal Health and Comparative Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, G12 8QQ, UK
| | - Stephen E Wilkie
- Institute of Biodiversity, Animal Health and Comparative Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, G12 8QQ, UK
| | - Gillian Borland
- Institute of Biodiversity, Animal Health and Comparative Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, G12 8QQ, UK
| | - Kate Griffiths
- Institute of Biodiversity, Animal Health and Comparative Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, G12 8QQ, UK
| | - Amy Sinclair
- Institute of Biodiversity, Animal Health and Comparative Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, G12 8QQ, UK
| | - Dagmara McGuinness
- Wellcome Centre for Integrative Parasitology, College of Medical, Veterinary and Life Sciences, Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow, G12 8TA, UK
| | - David G Watson
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, The John Arbuthnott Building, 161 Cathedral Street, Glasgow, G4 0RE, UK
| | - Colin Selman
- Institute of Biodiversity, Animal Health and Comparative Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, G12 8QQ, UK.
| |
Collapse
|
22
|
Sheng Y, Xia F, Chen L, Lv Y, Lv S, Yu J, Liu J, Ding G. Differential Responses of White Adipose Tissue and Brown Adipose Tissue to Calorie Restriction During Aging. J Gerontol A Biol Sci Med Sci 2021; 76:393-399. [PMID: 32222773 DOI: 10.1093/gerona/glaa070] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Indexed: 01/15/2023] Open
Abstract
Age-related adipose tissue dysfunction is potentially important in the development of insulin resistance and metabolic disorder. Caloric restriction (CR) is a robust intervention to reduce adiposity, improve metabolic health, and extend healthy life span. Both white adipose tissue (WAT) and brown adipose tissue (BAT) are involved in energy homeostasis. CR triggers the beiging of WAT in young mice; however, the effects of CR on beiging of WAT and function of BAT during aging are unclear. This study aimed to investigate how age and CR impact the beiging of WAT, the function of BAT, and metabolic health in mice. C57BL/6 mice were fed CR diet (40% less than the ad libitum [AL] diet) for 3 months initiated in young (3 months), middle-aged (12 months), and old (19 months) stage. We found age-related changes in different types of adipose tissue, including adipocyte enlargement, declined beiging of WAT, and declined thermogenic and β-oxidational function of BAT. Moreover, CR attenuated age-associated adipocyte enlargement and prevented the age-related decline in beiging potential of WAT. These protective effects on the beiging potential were significant in inguinal WAT at all three ages, which were significant in epididymal WAT at young and old age. In contrast, thermogenic and β-oxidational function of BAT further declined after CR in the young age group. In conclusion, our findings reveal the contribution of WAT beiging decline to age-related metabolic disorder and suggest nutritional intervention, specifically targeting WAT beiging, as an effective approach to metabolic health during aging.
Collapse
Affiliation(s)
- Yunlu Sheng
- Division of Geriatric Endocrinology, the First Affiliated Hospital of Nanjing Medical University, People's Republic of China
| | - Fan Xia
- Division of Geriatric Endocrinology, the First Affiliated Hospital of Nanjing Medical University, People's Republic of China
| | - Lei Chen
- Division of Geriatric Respiratory, the First Affiliated Hospital of Nanjing Medical University, People's Republic of China
| | - Yifan Lv
- Division of Geriatric Endocrinology, the First Affiliated Hospital of Nanjing Medical University, People's Republic of China
| | - Shan Lv
- Division of Geriatric Endocrinology, the First Affiliated Hospital of Nanjing Medical University, People's Republic of China
| | - Jing Yu
- Division of Geriatric Endocrinology, the First Affiliated Hospital of Nanjing Medical University, People's Republic of China
| | - Juan Liu
- Division of Geriatric Endocrinology, the First Affiliated Hospital of Nanjing Medical University, People's Republic of China
| | - Guoxian Ding
- Division of Geriatric Endocrinology, the First Affiliated Hospital of Nanjing Medical University, People's Republic of China
| |
Collapse
|
23
|
Sadie-Van Gijsen H. Is Adipose Tissue the Fountain of Youth? The Impact of Adipose Stem Cell Aging on Metabolic Homeostasis, Longevity, and Cell-Based Therapies. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1286:225-250. [PMID: 33725357 DOI: 10.1007/978-3-030-55035-6_16] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Aging is driven by four interlinked processes: (1) low-grade sterile inflammation; (2) macromolecular and organelle dysfunction, including DNA damage, telomere erosion, and mitochondrial dysfunction; (3) stem cell dysfunction; and (4) an accumulation of senescent cells in tissues. Adipose tissue is not immune to the effects of time, and all four of these processes contribute to a decline of adipose tissue function with advanced age. This decline is associated with an increase in metabolic disorders. Conversely, optimally functioning adipose tissue generates signals that promote longevity. As tissue-resident progenitor cells that actively participate in adipose tissue homeostasis and dysregulation, adipose stem cells (ASCs) have emerged as a key feature in the relationship between age and adipose tissue function. This review will give a mechanistic overview of the myriad ways in which age affects ASC function and, conversely, how ASC function contribute to healthspan and lifespan. A central mediator in this relationship is the degree of resilience of ASCs to maintain stemness into advanced age and the consequent preservation of adipose tissue function, in particular subcutaneous fat. The last sections of this review will discuss therapeutic options that target senescent ASCs to extend healthspan and lifespan, as well as ASC-based therapies that can be used to treat age-related pathologies, and collectively, these therapeutic applications may transform the way we age.
Collapse
Affiliation(s)
- Hanél Sadie-Van Gijsen
- Centre for Cardiometabolic Research in Africa (CARMA), Division of Medical Physiology, Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Stellenbosch University, Tygerberg Campus, Parow, South Africa.
| |
Collapse
|
24
|
Dorling JL, Martin CK, Redman LM. Calorie restriction for enhanced longevity: The role of novel dietary strategies in the present obesogenic environment. Ageing Res Rev 2020; 64:101038. [PMID: 32109603 DOI: 10.1016/j.arr.2020.101038] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Revised: 01/13/2020] [Accepted: 02/23/2020] [Indexed: 12/12/2022]
Abstract
Calorie restriction (CR) is a potent modulator of longevity in multiple species. A growing body of evidence shows that sustained periods of CR without malnutrition improves risk factors involved in the pathophysiology of type 2 diabetes, cardiovascular diseases, cancer, and neurological disorders in humans. Innovative dietary strategies such as intermittent fasting and protein restriction have recently emerged as alternative approaches that improve markers of aging. Some of these newer strategies might provide benefits for healthy aging with little to no CR and therefore, compared to traditional CR, may be easier to follow. Further to providing an update of CR studies in humans, the present narrative review appraises the influence of these contemporary dietary strategies on mechanisms posited to drive CR-induced longevity in humans, including those involving energy metabolism, oxidative damage, inflammation, glucose homeostasis, and functional changes in the neuroendocrine systems. The review also discusses the utilization of these diets for populations in the current obesogenic environment, and comments on whether current research can inform an optimal diet that attenuates aging, can be easily followed, and promises to improve longevity in humans.
Collapse
Affiliation(s)
- James L Dorling
- Pennington Biomedical Research Center, 6400 Perkins Rd., Baton Rouge, LA, 70808, USA
| | - Corby K Martin
- Pennington Biomedical Research Center, 6400 Perkins Rd., Baton Rouge, LA, 70808, USA
| | - Leanne M Redman
- Pennington Biomedical Research Center, 6400 Perkins Rd., Baton Rouge, LA, 70808, USA.
| |
Collapse
|
25
|
Wilhelmi de Toledo F, Grundler F, Sirtori CR, Ruscica M. Unravelling the health effects of fasting: a long road from obesity treatment to healthy life span increase and improved cognition. Ann Med 2020; 52:147-161. [PMID: 32519900 PMCID: PMC7877980 DOI: 10.1080/07853890.2020.1770849] [Citation(s) in RCA: 63] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
In recent years a revival of interest has emerged in the health benefits of intermittent fasting and long-term fasting, as well as of other related nutritional strategies. In addition to meal size and composition a new focus on time and frequency of meals has gained attention. The present review will investigate the effects of the main forms of fasting, activating the metabolic switch from glucose to fat and ketones (G-to-K), starting 12-16 h after cessation or strong reduction of food intake. During fasting the deactivation of mTOR regulated nutrient signalling pathways and activation of the AMP protein kinase trigger cell repair and inhibit anabolic processes. Clinical and animal studies have clearly indicated that modulating diet and meal frequency, as well as application of fasting patterns, e.g. intermittent fasting, periodic fasting, or long-term fasting are part of a new lifestyle approach leading to increased life and health span, enhanced intrinsic defences against oxidative and metabolic stresses, improved cognition, as well as a decrease in cardiovascular risk in both obese and non-obese subjects. Finally, in order to better understand the mechanisms beyond fasting-related changes, human studies as well as non-human models closer to human physiology may offer useful clues.KEY-MESSAGESBiochemical changes during fasting are characterised by a glucose to ketone switch, leading to a rise of ketones, advantageously used for brain energy, with consequent improved cognition.Ketones reduce appetite and help maintain effective fasting.Application of fasting patterns increases healthy life span and defences against oxidative and metabolic stresses.Today's strategies for the use of therapeutic fasting are based on different protocols, generally relying on intermittent fasting, of different duration and calorie intake.Long-term fasting, with durations between 5 and 21 days can be successfully repeated in the course of a year.
Collapse
Affiliation(s)
| | - Franziska Grundler
- Buchinger Wilhelmi Clinic, Wilhelm-Beck-Straße 27, Überlingen, Germany.,Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Cesare R Sirtori
- Dyslipidemia Center, A.S.S.T. Grande Ospedale Metropolitano Niguarda, Milan, Italy
| | - Massimiliano Ruscica
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, Milan, Italy
| |
Collapse
|
26
|
Jin K, Wilson KA, Beck JN, Nelson CS, Brownridge GW, Harrison BR, Djukovic D, Raftery D, Brem RB, Yu S, Drton M, Shojaie A, Kapahi P, Promislow D. Genetic and metabolomic architecture of variation in diet restriction-mediated lifespan extension in Drosophila. PLoS Genet 2020; 16:e1008835. [PMID: 32644988 PMCID: PMC7347105 DOI: 10.1371/journal.pgen.1008835] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Accepted: 05/06/2020] [Indexed: 01/08/2023] Open
Abstract
In most organisms, dietary restriction (DR) increases lifespan. However, several studies have found that genotypes within the same species vary widely in how they respond to DR. To explore the mechanisms underlying this variation, we exposed 178 inbred Drosophila melanogaster lines to a DR or ad libitum (AL) diet, and measured a panel of 105 metabolites under both diets. Twenty four out of 105 metabolites were associated with the magnitude of the lifespan response. These included proteinogenic amino acids and metabolites involved in α-ketoglutarate (α-KG)/glutamine metabolism. We confirm the role of α-KG/glutamine synthesis pathways in the DR response through genetic manipulations. We used covariance network analysis to investigate diet-dependent interactions between metabolites, identifying the essential amino acids threonine and arginine as “hub” metabolites in the DR response. Finally, we employ a novel metabolic and genetic bipartite network analysis to reveal multiple genes that influence DR lifespan response, some of which have not previously been implicated in DR regulation. One of these is CCHa2R, a gene that encodes a neuropeptide receptor that influences satiety response and insulin signaling. Across the lines, variation in an intronic single nucleotide variant of CCHa2R correlated with variation in levels of five metabolites, all of which in turn were correlated with DR lifespan response. Inhibition of adult CCHa2R expression extended DR lifespan of flies, confirming the role of CCHa2R in lifespan response. These results provide support for the power of combined genomic and metabolomic analysis to identify key pathways underlying variation in this complex quantitative trait. Dietary restriction extends lifespan across most organisms in which it has been tested. However, several studies have now demonstrated that this effect can vary dramatically across different genotypes within a population. Within a population, dietary restriction might be beneficial for some, yet detrimental for others. Here, we measure the metabolome of 178 genetically characterized fly strains on fully fed and restricted diets. The fly strains vary widely in their lifespan response to dietary restriction. We then use information about each strain’s genome and metabolome (a measure of small molecules circulating in flies) to pinpoint cellular pathways that govern this variation in response. We identify a novel pathway involving the gene CCHa2R, which encodes a neuropeptide receptor that has not previously been implicated in dietary restriction or age-related signaling pathways. This study demonstrates the power of leveraging systems biology and network biology methods to understand how and why different individuals vary in their response to health and lifespan-extending interventions.
Collapse
Affiliation(s)
- Kelly Jin
- Department of Pathology, University of Washington School of Medicine, Seattle, Washington, United States of America
| | - Kenneth A. Wilson
- Buck Institute for Research on Aging, Novato, California, United States of America
- Davis School of Gerontology, University of Southern California, University Park, Los Angeles, California, United States of America
| | - Jennifer N. Beck
- Buck Institute for Research on Aging, Novato, California, United States of America
| | | | - George W. Brownridge
- Buck Institute for Research on Aging, Novato, California, United States of America
- Dominican University of California, San Rafael, California, United States of America
| | - Benjamin R. Harrison
- Department of Pathology, University of Washington School of Medicine, Seattle, Washington, United States of America
| | - Danijel Djukovic
- Northwest Metabolomics Research Center, Department of Anesthesiology and Pain Medicine, University of Washington, Seattle, Washington, United States of America
| | - Daniel Raftery
- Northwest Metabolomics Research Center, Department of Anesthesiology and Pain Medicine, University of Washington, Seattle, Washington, United States of America
| | - Rachel B. Brem
- Buck Institute for Research on Aging, Novato, California, United States of America
- Davis School of Gerontology, University of Southern California, University Park, Los Angeles, California, United States of America
- Department of Plant and Microbial Biology, University of California, Berkeley, Berkeley, California, United States of America
| | - Shiqing Yu
- Department of Statistics, University of Washington, Seattle, Washington, United States of America
| | - Mathias Drton
- Department of Mathematics, Technical University of Munich, Munich, Germany
| | - Ali Shojaie
- Department of Biostatistics, University of Washington, Seattle, Washington, United States of America
| | - Pankaj Kapahi
- Buck Institute for Research on Aging, Novato, California, United States of America
- Davis School of Gerontology, University of Southern California, University Park, Los Angeles, California, United States of America
| | - Daniel Promislow
- Department of Pathology, University of Washington School of Medicine, Seattle, Washington, United States of America
- Department of Biology, University of Washington, Seattle, Washington, United States of America
- * E-mail:
| |
Collapse
|
27
|
Fafián-Labora JA, Rodríguez-Navarro JA, O'Loghlen A. Small Extracellular Vesicles Have GST Activity and Ameliorate Senescence-Related Tissue Damage. Cell Metab 2020; 32:71-86.e5. [PMID: 32574561 PMCID: PMC7342013 DOI: 10.1016/j.cmet.2020.06.004] [Citation(s) in RCA: 112] [Impact Index Per Article: 22.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Revised: 05/04/2020] [Accepted: 06/03/2020] [Indexed: 02/07/2023]
Abstract
Aging is a process of cellular and tissue dysfunction characterized by different hallmarks, including cellular senescence. However, there is proof that certain features of aging and senescence can be ameliorated. Here, we provide evidence that small extracellular vesicles (sEVs) isolated from primary fibroblasts of young human donors ameliorate certain biomarkers of senescence in cells derived from old and Hutchinson-Gilford progeria syndrome donors. Importantly, sEVs from young cells ameliorate senescence in a variety of tissues in old mice. Mechanistically, we identified sEVs to have intrinsic glutathione-S-transferase activity partially due to the high levels of expression of the glutathione-related protein (GSTM2). Transfection of recombinant GSTM2 into sEVs derived from old fibroblasts restores their antioxidant capacity. sEVs increase the levels of reduced glutathione and decrease oxidative stress and lipid peroxidation both in vivo and in vitro. Altogether, our data provide an indication of the potential of sEVs as regenerative therapy in aging.
Collapse
Affiliation(s)
- Juan Antonio Fafián-Labora
- Epigenetics & Cellular Senescence Group, Blizard Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, 4 Newark Street, London E1 2AT, UK
| | - Jose Antonio Rodríguez-Navarro
- Instituto Ramón y Cajal de Investigaciones Sanitarias, Neurobiología-Investigación, Hospital Ramón y Cajal, Ctra Colmenar km 9.1, 28034 Madrid, Spain.
| | - Ana O'Loghlen
- Epigenetics & Cellular Senescence Group, Blizard Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, 4 Newark Street, London E1 2AT, UK.
| |
Collapse
|
28
|
Mori MA. Aging: a New Perspective on an Old Issue. AN ACAD BRAS CIENC 2020; 92:e20200437. [PMID: 32638871 DOI: 10.1590/0001-3765202020200437] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2020] [Accepted: 05/21/2020] [Indexed: 12/23/2022] Open
Abstract
The world is undergoing a profound demographic change with a rapid increase in the prevalence of aged individuals. The finitude of life, the burden of senescence and the search for strategies to prolong human life span have troubled humanity since ancient times. However, only in the past few decades we started to understand how organisms age and how life span can be manipulated. Here I give an historical perspective of the aging field and conclude with the notion that aging is controlled by signals from the adipose tissue which are tightly controlled by small non-coding RNAs such as miRNAs.
Collapse
Affiliation(s)
- Marcelo A Mori
- Laboratory of Aging Biology (LaBE), Universidade Estadual de Campinas/UNICAMP, Campinas, SP, Brazil
| |
Collapse
|
29
|
Wilson KA, Beck JN, Nelson CS, Hilsabeck TA, Promislow D, Brem RB, Kapahi P. GWAS for Lifespan and Decline in Climbing Ability in Flies upon Dietary Restriction Reveal decima as a Mediator of Insulin-like Peptide Production. Curr Biol 2020; 30:2749-2760.e3. [PMID: 32502405 DOI: 10.1016/j.cub.2020.05.020] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Revised: 03/17/2020] [Accepted: 05/06/2020] [Indexed: 12/16/2022]
Abstract
Dietary restriction (DR) is the most robust means to extend lifespan and delay age-related diseases across species. An underlying assumption in the aging field is that DR enhances both lifespan and physical activity through similar mechanisms, but this has not been rigorously tested in different genetic backgrounds. Furthermore, nutrient response genes responsible for lifespan extension or age-related decline in functionality remain underexplored in natural populations. To address this, we measured nutrient-dependent changes in lifespan and age-related decline in climbing ability in the Drosophila Genetic Reference Panel fly strains. On average, DR extended lifespan and delayed decline in climbing ability, but there was a lack of correlation between these traits across individual strains, suggesting that distinct genetic factors modulate these traits independently and that genotype determines response to diet. Only 50% of strains showed positive response to DR for both lifespan and climbing ability, 14% showed a negative response for one trait but not both, and 35% showed no change in one or both traits. Through GWAS, we uncovered a number of genes previously not known to be diet responsive nor to influence lifespan or climbing ability. We validated decima as a gene that alters lifespan and daedalus as one that influences age-related decline in climbing ability. We found that decima influences insulin-like peptide transcription in the GABA receptor neurons downstream of short neuropeptide F precursor (sNPF) signaling. Modulating these genes produced independent effects on lifespan and physical activity decline, which suggests that these age-related traits can be regulated through distinct mechanisms.
Collapse
Affiliation(s)
- Kenneth A Wilson
- Buck Institute for Research on Aging, 8001 Redwood Blvd., Novato, CA 94945, USA; Davis School of Gerontology, University of Southern California, University Park, Los Angeles, CA 90007, USA
| | - Jennifer N Beck
- Buck Institute for Research on Aging, 8001 Redwood Blvd., Novato, CA 94945, USA; Department of Urology, University of California, San Francisco, 400 Parnassus Avenue, Room A-632, San Francisco, CA 94143, USA
| | | | - Tyler A Hilsabeck
- Buck Institute for Research on Aging, 8001 Redwood Blvd., Novato, CA 94945, USA; Davis School of Gerontology, University of Southern California, University Park, Los Angeles, CA 90007, USA
| | - Daniel Promislow
- Department of Pathology, University of Washington, Seattle, WA 98195, USA; Department of Biology, University of Washington, Seattle, WA 98195, USA
| | - Rachel B Brem
- Buck Institute for Research on Aging, 8001 Redwood Blvd., Novato, CA 94945, USA; Davis School of Gerontology, University of Southern California, University Park, Los Angeles, CA 90007, USA; Department of Plant and Microbial Biology, University of California, Berkeley, 111 Koshland Hall, Berkeley, CA 94720, USA.
| | - Pankaj Kapahi
- Buck Institute for Research on Aging, 8001 Redwood Blvd., Novato, CA 94945, USA; Davis School of Gerontology, University of Southern California, University Park, Los Angeles, CA 90007, USA; Department of Urology, University of California, San Francisco, 400 Parnassus Avenue, Room A-632, San Francisco, CA 94143, USA.
| |
Collapse
|
30
|
Pomatto LCD, Dill T, Carboneau B, Levan S, Kato J, Mercken EM, Pearson KJ, Bernier M, de Cabo R. Deletion of Nrf2 shortens lifespan in C57BL6/J male mice but does not alter the health and survival benefits of caloric restriction. Free Radic Biol Med 2020; 152:650-658. [PMID: 31953150 PMCID: PMC7382945 DOI: 10.1016/j.freeradbiomed.2020.01.005] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Revised: 01/02/2020] [Accepted: 01/05/2020] [Indexed: 12/18/2022]
Abstract
Caloric restriction (CR) is the leading non-pharmaceutical dietary intervention to improve health- and lifespan in most model organisms. A wide array of cellular pathways is induced in response to CR and CR-mimetics, including the transcriptional activator Nuclear factor erythroid-2-related factor 2 (Nrf2), which is essential in the upregulation of multiple stress-responsive and mitochondrial enzymes. Nrf2 is necessary in tumor protection but is not essential for the lifespan extending properties of CR in outbred mice. Here, we sought to study Nrf2-knockout (KO) mice and littermate controls in male C57BL6/J, an inbred mouse strain. Deletion of Nrf2 resulted in shortened lifespan compared to littermate controls only under ad libitum conditions. CR-mediated lifespan extension and physical performance improvements did not require Nrf2. Metabolic and protein homeostasis and activation of tissue-specific cytoprotective proteins were dependent on Nrf2 expression. These results highlight an important contribution of Nrf2 for normal lifespan and stress response.
Collapse
Affiliation(s)
- Laura C D Pomatto
- Translational Gerontology Branch, National Institute on Aging, National Institute of Health, Baltimore, MD, 21224, USA; National Institute on General Medical Sciences, National Institute of Health, Bethesda, MD, 20892, USA
| | - Theresa Dill
- Translational Gerontology Branch, National Institute on Aging, National Institute of Health, Baltimore, MD, 21224, USA
| | - Bethany Carboneau
- Translational Gerontology Branch, National Institute on Aging, National Institute of Health, Baltimore, MD, 21224, USA
| | - Sophia Levan
- Translational Gerontology Branch, National Institute on Aging, National Institute of Health, Baltimore, MD, 21224, USA
| | - Jonathan Kato
- Translational Gerontology Branch, National Institute on Aging, National Institute of Health, Baltimore, MD, 21224, USA
| | - Evi M Mercken
- Translational Gerontology Branch, National Institute on Aging, National Institute of Health, Baltimore, MD, 21224, USA
| | - Kevin J Pearson
- Translational Gerontology Branch, National Institute on Aging, National Institute of Health, Baltimore, MD, 21224, USA
| | - Michel Bernier
- Translational Gerontology Branch, National Institute on Aging, National Institute of Health, Baltimore, MD, 21224, USA
| | - Rafael de Cabo
- Translational Gerontology Branch, National Institute on Aging, National Institute of Health, Baltimore, MD, 21224, USA.
| |
Collapse
|
31
|
Wilkie SE, Mulvey L, Sands WA, Marcu DE, Carter RN, Morton NM, Hine C, Mitchell JR, Selman C. Strain-specificity in the hydrogen sulphide signalling network following dietary restriction in recombinant inbred mice. GeroScience 2020; 42:801-812. [PMID: 32162209 PMCID: PMC7205779 DOI: 10.1007/s11357-020-00168-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Accepted: 02/11/2020] [Indexed: 02/07/2023] Open
Abstract
Modulation of the ageing process by dietary restriction (DR) across multiple taxa is well established. While the exact mechanism through which DR acts remains elusive, the gasotransmitter hydrogen sulphide (H2S) may play an important role. We employed a comparative-type approach using females from three ILSXISS recombinant inbred mouse strains previously reported to show differential lifespan responses following 40% DR. Following long-term (10 months) 40% DR, strain TejJ89-reported to show lifespan extension under DR-exhibited elevated hepatic H2S production relative to its strain-specific ad libitum (AL) control. Strain TejJ48 (no reported lifespan effect following 40% DR) exhibited significantly reduced hepatic H2S production, while H2S production was unaffected by DR in strain TejJ114 (shortened lifespan reported following 40% DR). These differences in H2S production were reflected in highly divergent gene and protein expression profiles of the major H2S production and disposal enzymes across strains. Increased hepatic H2S production in TejJ89 mice was associated with elevation of the mitochondrial H2S-producing enzyme 3-mercaptopyruvate sulfurtransferase (MPST). Our findings further support the potential role of H2S in DR-induced longevity and indicate the presence of genotypic-specificity in the production and disposal of hepatic H2S in response to 40% DR in mice.
Collapse
Affiliation(s)
- Stephen E Wilkie
- Glasgow Ageing Research Network (GARNER), Institute of Biodiversity, Animal Health and Comparative Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, G12 8QQ, UK
| | - Lorna Mulvey
- Glasgow Ageing Research Network (GARNER), Institute of Biodiversity, Animal Health and Comparative Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, G12 8QQ, UK
| | - William A Sands
- Glasgow Ageing Research Network (GARNER), Institute of Biodiversity, Animal Health and Comparative Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, G12 8QQ, UK
| | - Diana E Marcu
- Glasgow Ageing Research Network (GARNER), Institute of Biodiversity, Animal Health and Comparative Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, G12 8QQ, UK
| | - Roderick N Carter
- Molecular Metabolism Group, University/BHF Centre for Cardiovascular Sciences, Queens Medical Research Institute, University of Edinburgh, Edinburgh, EH16 4TJ, UK
| | - Nicholas M Morton
- Molecular Metabolism Group, University/BHF Centre for Cardiovascular Sciences, Queens Medical Research Institute, University of Edinburgh, Edinburgh, EH16 4TJ, UK
| | - Christopher Hine
- Department of Cardiovascular and Metabolic Sciences, Cleveland Clinic Lerner Research Institute, Cleveland, OH, 44195, USA
| | - James R Mitchell
- Department of Genetics and Complex Diseases, Harvard T.H. Chan School of Public Health, Boston, MA, 02115, USA
| | - Colin Selman
- Glasgow Ageing Research Network (GARNER), Institute of Biodiversity, Animal Health and Comparative Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, G12 8QQ, UK.
| |
Collapse
|
32
|
Affiliation(s)
- Rafael de Cabo
- From the Translational Gerontology Branch (R.C.) and the Laboratory of Neurosciences (M.P.M.), Intramural Research Program, National Institute on Aging, National Institutes of Health, and the Department of Neuroscience, Johns Hopkins University School of Medicine (M.P.M.) - both in Baltimore
| | - Mark P Mattson
- From the Translational Gerontology Branch (R.C.) and the Laboratory of Neurosciences (M.P.M.), Intramural Research Program, National Institute on Aging, National Institutes of Health, and the Department of Neuroscience, Johns Hopkins University School of Medicine (M.P.M.) - both in Baltimore
| |
Collapse
|
33
|
Capurso C, Bellanti F, Lo Buglio A, Vendemiale G. The Mediterranean Diet Slows Down the Progression of Aging and Helps to Prevent the Onset of Frailty: A Narrative Review. Nutrients 2019; 12:nu12010035. [PMID: 31877702 PMCID: PMC7019245 DOI: 10.3390/nu12010035] [Citation(s) in RCA: 66] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Revised: 12/10/2019] [Accepted: 12/18/2019] [Indexed: 02/05/2023] Open
Abstract
The aging population is rapidly increasing all over the world. This results in significant implications for the planning and provision of health and social care. Aging is physiologically characterized by a decrease in lean mass, bone mineral density and, to a lesser extent, fat mass. The onset of sarcopenia leads to weakness and a further decrease in physical activity. An insufficient protein intake, which we often observe in patients of advanced age, certainly accelerates the progression of sarcopenia. In addition, many other factors (e.g., insulin resistance, impaired protein digestion and absorption of amino acids) reduce the stimulation of muscle protein synthesis in the elderly, even if the protein intake is adequate. Inadequate intake of foods can also cause micronutrient deficiencies that contribute to the development of frailty. We know that a healthy eating style in middle age predisposes to so-called "healthy and successful" aging, which is the condition of the absence of serious chronic diseases or of an important decline in cognitive or physical functions, or mental health. The Mediterranean diet is recognized to be a "healthy food" dietary pattern; high adherence to this dietary pattern is associated with a lower incidence of chronic diseases and lower physical impairment in old age. The aim of our review was to analyze observational studies (cohort and case-control studies) that investigated the effects of following a healthy diet, and especially the effect of adherence to a Mediterranean diet (MD), on the progression of aging and on onset of frailty.
Collapse
|
34
|
Mechanisms of Calorie Restriction: A Review of Genes Required for the Life-Extending and Tumor-Inhibiting Effects of Calorie Restriction. Nutrients 2019; 11:nu11123068. [PMID: 31888201 PMCID: PMC6950657 DOI: 10.3390/nu11123068] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2019] [Revised: 12/12/2019] [Accepted: 12/13/2019] [Indexed: 12/30/2022] Open
Abstract
This review focuses on mechanisms of calorie restriction (CR), particularly the growth hormone (GH)/insulin-like growth factor-1 (IGF-1) axis as an evolutionary conserved signal that regulates aging and lifespan, underlying the effects of CR in mammals. Topics include (1) the relation of the GH-IGF-1 signal with chronic low-level inflammation as one of the possible causative factors of aging, that is, inflammaging, (2) the isoform specificity of the forkhead box protein O (FoxO) transcription factors in CR-mediated regulation of cancer and lifespan, (3) the role for FoxO1 in the tumor-inhibiting effect of CR, (4) pleiotropic roles for FoxO1 in the regulation of disorders, and (5) sirtuin (Sirt) as a molecule upstream of FoxO. From the evolutionary view, the necessity of neuropeptide Y (Npy) for the effects of CR and the pleiotropic roles for Npy in life stages are also emphasized. Genes for mediating the effects of CR and regulating aging are context-dependent, particularly depending on nutritional states.
Collapse
|
35
|
Diaz-Ruiz A, Di Francesco A, Carboneau BA, Levan SR, Pearson KJ, Price NL, Ward TM, Bernier M, de Cabo R, Mercken EM. Benefits of Caloric Restriction in Longevity and Chemical-Induced Tumorigenesis Are Transmitted Independent of NQO1. J Gerontol A Biol Sci Med Sci 2019; 74:155-162. [PMID: 29733330 DOI: 10.1093/gerona/gly112] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2017] [Accepted: 05/02/2018] [Indexed: 12/22/2022] Open
Abstract
Caloric restriction (CR) is the most potent nonpharmacological intervention known to both protect against carcinogenesis and delay aging in laboratory animals. There is a growing number of anticarcinogens and CR mimetics that activate NAD(P)H:quinone oxidoreductase 1 (NQO1). We have previously shown that NQO1, an antioxidant enzyme that acts as an energy sensor through modulation of intracellular redox and metabolic state, is upregulated by CR. Here, we used NQO1-knockout (KO) mice to investigate the role of NQO1 in both the aging process and tumor susceptibility, specifically in the context of CR. We found that NQO1 is not essential for the beneficial effects of CR on glucose homeostasis, physical performance, metabolic flexibility, life-span extension, and (unlike our previously observation with Nrf2) chemical-induced tumorigenesis.
Collapse
Affiliation(s)
- Alberto Diaz-Ruiz
- Translational Gerontology Branch, National Institute on Aging, National Institutes of Health, Baltimore, Maryland.,Nutritional Interventions Group, Precision Nutrition and Aging, Institute IMDEA Food, Madrid, Spain
| | - Andrea Di Francesco
- Translational Gerontology Branch, National Institute on Aging, National Institutes of Health, Baltimore, Maryland
| | - Bethany A Carboneau
- Translational Gerontology Branch, National Institute on Aging, National Institutes of Health, Baltimore, Maryland
| | - Sophia R Levan
- Translational Gerontology Branch, National Institute on Aging, National Institutes of Health, Baltimore, Maryland
| | - Kevin J Pearson
- Department of Pharmacology and Nutritional Sciences, University of Kentucky, Lexington
| | - Nathan L Price
- Vascular Biology and Therapeutics Program, Yale University School of Medicine, New Haven, CT.,Integrative Cell Signaling and Neurobiology of Metabolism Program, Department of Comparative Medicine, Yale University School of Medicine, New Haven, CT
| | - Theresa M Ward
- Translational Gerontology Branch, National Institute on Aging, National Institutes of Health, Baltimore, Maryland
| | - Michel Bernier
- Translational Gerontology Branch, National Institute on Aging, National Institutes of Health, Baltimore, Maryland
| | - Rafael de Cabo
- Translational Gerontology Branch, National Institute on Aging, National Institutes of Health, Baltimore, Maryland.,Nutritional Interventions Group, Precision Nutrition and Aging, Institute IMDEA Food, Madrid, Spain
| | - Evi M Mercken
- Translational Gerontology Branch, National Institute on Aging, National Institutes of Health, Baltimore, Maryland
| |
Collapse
|
36
|
Hahn O, Drews LF, Nguyen A, Tatsuta T, Gkioni L, Hendrich O, Zhang Q, Langer T, Pletcher S, Wakelam MJO, Beyer A, Grönke S, Partridge L. A nutritional memory effect counteracts benefits of dietary restriction in old mice. Nat Metab 2019; 1:1059-1073. [PMID: 31742247 PMCID: PMC6861129 DOI: 10.1038/s42255-019-0121-0] [Citation(s) in RCA: 71] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Dietary restriction (DR) during adulthood can greatly extend lifespan and improve metabolic health in diverse species. However, whether DR in mammals is still effective when applied for the first time at old age remains elusive. Here, we report results of a late-life DR switch experiment employing 800 mice, in which 24 months old female mice were switched from ad libitum (AL) to DR or vice versa. Strikingly, the switch from DR-to-AL acutely increases mortality, whereas the switch from AL-to-DR causes only a weak and gradual increase in survival, suggesting a memory of earlier nutrition. RNA-seq profiling in liver, brown (BAT) and white adipose tissue (WAT) demonstrate a largely refractory transcriptional and metabolic response to DR after AL feeding in fat tissue, particularly in WAT, and a proinflammatory signature in aged preadipocytes, which is prevented by chronic DR feeding. Our results provide evidence for a nutritional memory as a limiting factor for DR-induced longevity and metabolic remodeling of WAT in mammals.
Collapse
Affiliation(s)
- Oliver Hahn
- Max Planck Institute for Biology of Ageing, Cologne, Germany
- Cellular Networks and Systems Biology, CECAD, University of Cologne, Cologne, Germany
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA, USA
| | - Lisa F Drews
- Max Planck Institute for Biology of Ageing, Cologne, Germany
| | - An Nguyen
- Inositide lab, The Babraham Institute, Cambridge, UK
| | - Takashi Tatsuta
- Max Planck Institute for Biology of Ageing, Cologne, Germany
| | - Lisonia Gkioni
- Max Planck Institute for Biology of Ageing, Cologne, Germany
| | - Oliver Hendrich
- Max Planck Institute for Biology of Ageing, Cologne, Germany
| | - Qifeng Zhang
- Inositide lab, The Babraham Institute, Cambridge, UK
| | - Thomas Langer
- Max Planck Institute for Biology of Ageing, Cologne, Germany
| | - Scott Pletcher
- Department of Molecular & Integrative Physiology and the Geriatrics Center, University of Michigan, Ann Arbor, USA
| | | | - Andreas Beyer
- Cellular Networks and Systems Biology, CECAD, University of Cologne, Cologne, Germany.
- Center for Molecular Medicine Cologne, University of Cologne, Cologne, Germany.
| | | | - Linda Partridge
- Max Planck Institute for Biology of Ageing, Cologne, Germany.
- Department of Genetics, Evolution and Environment, Institute of Healthy Ageing, University College London, London, UK.
| |
Collapse
|
37
|
Yoshida M, Satoh A, Lin JB, Mills KF, Sasaki Y, Rensing N, Wong M, Apte RS, Imai SI. Extracellular Vesicle-Contained eNAMPT Delays Aging and Extends Lifespan in Mice. Cell Metab 2019; 30:329-342.e5. [PMID: 31204283 PMCID: PMC6687560 DOI: 10.1016/j.cmet.2019.05.015] [Citation(s) in RCA: 244] [Impact Index Per Article: 40.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/27/2018] [Revised: 03/02/2019] [Accepted: 05/17/2019] [Indexed: 01/07/2023]
Abstract
Aging is a significant risk factor for impaired tissue functions and chronic diseases. Age-associated decline in systemic NAD+ availability plays a critical role in regulating the aging process across many species. Here, we show that the circulating levels of extracellular nicotinamide phosphoribosyltransferase (eNAMPT) significantly decline with age in mice and humans. Increasing circulating eNAMPT levels in aged mice by adipose-tissue-specific overexpression of NAMPT increases NAD+ levels in multiple tissues, thereby enhancing their functions and extending healthspan in female mice. Interestingly, eNAMPT is carried in extracellular vesicles (EVs) through systemic circulation in mice and humans. EV-contained eNAMPT is internalized into cells and enhances NAD+ biosynthesis. Supplementing eNAMPT-containing EVs isolated from young mice significantly improves wheel-running activity and extends lifespan in aged mice. Our findings have revealed a novel EV-mediated delivery mechanism for eNAMPT, which promotes systemic NAD+ biosynthesis and counteracts aging, suggesting a potential avenue for anti-aging intervention in humans.
Collapse
Affiliation(s)
- Mitsukuni Yoshida
- Department of Developmental Biology, Washington University School of Medicine, St. Louis, MO 63110, USA; MD-PhD Program, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Akiko Satoh
- Sleep and Aging Research Regulation Project Team, National Center for Geriatrics and Gerontology, Aichi, Japan
| | - Jonathan B Lin
- Department of Ophthalmology & Visual Sciences, Washington University School of Medicine, St. Louis, MO 63110, USA; MD-PhD Program, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Kathryn F Mills
- Department of Developmental Biology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Yo Sasaki
- Department of Genetics, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Nicholas Rensing
- Department of Neurology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Michael Wong
- Department of Neurology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Rajendra S Apte
- Department of Developmental Biology, Washington University School of Medicine, St. Louis, MO 63110, USA; Department of Ophthalmology & Visual Sciences, Washington University School of Medicine, St. Louis, MO 63110, USA; Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Shin-Ichiro Imai
- Department of Developmental Biology, Washington University School of Medicine, St. Louis, MO 63110, USA; Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA; Department of Gerontology, Laboratory of Molecular Life Science, Institute of Biomedical Research and Innovation, Kobe, Japan.
| |
Collapse
|
38
|
Transcriptional profiling identifies strain-specific effects of caloric restriction and opposite responses in human and mouse white adipose tissue. Aging (Albany NY) 2019; 10:701-746. [PMID: 29708498 PMCID: PMC5940131 DOI: 10.18632/aging.101424] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Accepted: 04/20/2018] [Indexed: 12/13/2022]
Abstract
Caloric restriction (CR) has been extensively studied in rodents as an intervention to improve lifespan and healthspan. However, effects of CR can be strain- and species-specific. This study used publically available microarray data to analyze expression responses to CR in males from 7 mouse strains (C57BL/6J, BALB/c, C3H, 129, CBA, DBA, B6C3F1) and 4 tissues (epididymal white adipose tissue (eWAT), muscle, heart, cortex). In each tissue, the largest number of strain-specific CR responses was identified with respect to the C57BL/6 strain. In heart and cortex, CR responses in C57BL/6 mice were negatively correlated with responses in other strains. Strain-specific CR responses involved genes associated with olfactory receptors (Olfr1184, Olfr910) and insulin/IGF-1 signaling (Igf1, Irs2). In each strain, CR responses in eWAT were negatively correlated with those in human subcutaneous WAT (scWAT). In human scWAT, CR increased expression of genes associated with stem cell maintenance and vascularization. However, orthologous genes linked to these processes were down-regulated in mouse. These results identify strain-specific CR responses limiting generalization across mouse strains. Differential CR responses in mouse versus human WAT may be due to differences in the depots examined and/or the presence of “thrifty genes” in humans that resist adipose breakdown despite caloric deficit.
Collapse
|
39
|
Park S, Mori R, Shimokawa I. The fat regulator neuropeptide Y and caloric restriction. Aging (Albany NY) 2019; 9:2243-2244. [PMID: 29207376 PMCID: PMC5723684 DOI: 10.18632/aging.101338] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2017] [Accepted: 11/29/2017] [Indexed: 12/13/2022]
Affiliation(s)
- Seongjoon Park
- Department of Pathology, Nagasaki University School of Medicine, Graduate School of Biomedical Sciences, Nagasaki City 852-8523, Japan
| | - Ryoichi Mori
- Department of Pathology, Nagasaki University School of Medicine, Graduate School of Biomedical Sciences, Nagasaki City 852-8523, Japan
| | - Isao Shimokawa
- Department of Pathology, Nagasaki University School of Medicine, Graduate School of Biomedical Sciences, Nagasaki City 852-8523, Japan
| |
Collapse
|
40
|
Derous D, Mitchell SE, Green CL, Wang Y, Han JDJ, Chen L, Promislow DEL, Lusseau D, Douglas A, Speakman JR. The Effects of Graded Levels of Calorie Restriction: X. Transcriptomic Responses of Epididymal Adipose Tissue. J Gerontol A Biol Sci Med Sci 2019; 73:279-288. [PMID: 28575190 PMCID: PMC5861923 DOI: 10.1093/gerona/glx101] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2017] [Accepted: 05/23/2017] [Indexed: 02/06/2023] Open
Abstract
Calorie restriction (CR) leads to a remarkable decrease in adipose tissue mass and increases longevity in many taxa. Since the discovery of leptin, the secretory abilities of adipose tissue have gained prominence in the responses to CR. We quantified transcripts of epididymal white adipose tissue of male C57BL/6 mice exposed to graded levels of CR (0–40% CR) for 3 months. The numbers of differentially expressed genes (DEGs) involved in NF-κB, HIF1-α, and p53 signaling increased with increasing levels of CR. These pathways were all significantly downregulated at 40% CR relative to 12 h ad libitum feeding. In addition, graded CR had a substantial impact on DEGs associated with pathways involved in angiogenesis. Of the 497 genes differentially expressed with graded CR, 155 of these genes included a signal peptide motif. These putative signaling proteins were involved in the response to ketones, TGF-β signaling, negative regulation of insulin secretion, and inflammation. This accords with the previously established effects of graded CR on glucose homeostasis in the same mice. Overall these data suggest reduced levels of adipose tissue under CR may contribute to the protective impact of CR in multiple ways linked to changes in a large population of secreted proteins.
Collapse
Affiliation(s)
- Davina Derous
- Institute of Biological and Environmental Sciences, University of Aberdeen, UK
- Centre for Genome Enabled Biology and Medicine, University of Aberdeen, UK
| | - Sharon E Mitchell
- Institute of Biological and Environmental Sciences, University of Aberdeen, UK
| | - Cara L Green
- Institute of Biological and Environmental Sciences, University of Aberdeen, UK
| | - Yingchun Wang
- State Key laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Chaoyang, Beijing, China
| | - Jing Dong J Han
- Chinese Academy of Sciences Key Laboratory of Computational Biology, Chinese Academy of Sciences, Max Planck Partner Institute for Computational Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, China
| | - Luonan Chen
- Key laboratory of Systems Biology, Innovation Center for Cell Signalling Network, Institute of Biochemistry and Cell Biology, Shanghai Institute of Biological Sciences, Chinese Academy of Sciences, China
| | - Daniel E L Promislow
- Department of Pathology, University of Washington, Seattle
- Department of Biology, University of Washington, Seattle
| | - David Lusseau
- Institute of Biological and Environmental Sciences, University of Aberdeen, UK
| | - Alex Douglas
- Institute of Biological and Environmental Sciences, University of Aberdeen, UK
- Centre for Genome Enabled Biology and Medicine, University of Aberdeen, UK
| | - John R Speakman
- Institute of Biological and Environmental Sciences, University of Aberdeen, UK
- State Key laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Chaoyang, Beijing, China
- Address correspondence to: John R. Speakman, PhD, DSc, Institute of Biological and Environmental Sciences, University of Aberdeen, Aberdeen, UK. E-mail:
| |
Collapse
|
41
|
Abstract
Nutrient composition and caloric intake have traditionally been used to devise optimized diets for various phases of life. Adjustment of meal size and frequency have emerged as powerful tools to ameliorate and postpone the onset of disease and delay aging, whereas periods of fasting, with or without reduced energy intake, can have profound health benefits. The underlying physiological processes involve periodic shifts of metabolic fuel sources, promotion of repair mechanisms, and the optimization of energy utilization for cellular and organismal health. Future research endeavors should be directed to the integration of a balanced nutritious diet with controlled meal size and patterns and periods of fasting to develop better strategies to prevent, postpone, and treat the socioeconomical burden of chronic diseases associated with aging.
Collapse
Affiliation(s)
- Andrea Di Francesco
- Translational Gerontology Branch, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224, USA
| | - Clara Di Germanio
- Translational Gerontology Branch, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224, USA
| | - Michel Bernier
- Translational Gerontology Branch, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224, USA
| | - Rafael de Cabo
- Translational Gerontology Branch, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224, USA.
| |
Collapse
|
42
|
Ishaq A, Dufour D, Cameron K, von Zglinicki T, Saretzki G. Metabolic memory of dietary restriction ameliorates DNA damage and adipocyte size in mouse visceral adipose tissue. Exp Gerontol 2018; 113:228-236. [PMID: 30312736 DOI: 10.1016/j.exger.2018.10.008] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2018] [Revised: 09/24/2018] [Accepted: 10/08/2018] [Indexed: 11/30/2022]
Abstract
Dietary restriction (DR) is thought to exert its beneficial effects on healthspan at least partially by a senolytic and senostatic action, i.e. by reducing frequencies of cells with markers of DNA damage and senescence in multiple tissues. Due to its importance in metabolic and inflammation regulation, fat is a prime tissue for health span determination as well as a prime target for DR. We aimed to determine here whether the beneficial effects of DR would be retained over a subsequent period of ad libitum (AL) feeding. Male mice were kept under either 40% DR or AL feeding regimes from 3 to 12 months of age and then either switched back to the opposite feeding regimen or kept in the same state for another 3 months. Visceral adipose tissue from 4 to 5 mice per group for all conditions was analysed for markers of senescence (adipocyte size, γH2A.X, p16, p21) and inflammation (e.g. IL-6, TNFα, IL-1β) using immuno-staining or qPCR. Macrophages were detected by immunohistochemistry. We found that both 9 and 12 months DR (long term) as well as 3 month (short term, mid-life onset) DR reduced the number of cells harbouring DNA damage and adipocyte size (area and perimeter) in visceral adipocytes with similar efficiency. Importantly, beneficial health markers induced by DR such as small adipocyte size and low DNA damage were maintained for at least 3 month after termination of DR, demonstrating that the previously identified 'metabolic memory' of the DR state in male mice extends to senescence markers in visceral fat.
Collapse
Affiliation(s)
- Abbas Ishaq
- The Ageing Biology Centre, Newcastle Institute for Ageing, Institute for Cell and Molecular Biosciences, Campus of Ageing and Vitality, Newcastle upon Tyne, UK
| | - Damien Dufour
- The Ageing Biology Centre, Newcastle Institute for Ageing, Institute for Cell and Molecular Biosciences, Campus of Ageing and Vitality, Newcastle upon Tyne, UK
| | - Kerry Cameron
- The Ageing Biology Centre, Newcastle Institute for Ageing, Institute for Cell and Molecular Biosciences, Campus of Ageing and Vitality, Newcastle upon Tyne, UK
| | - Thomas von Zglinicki
- The Ageing Biology Centre, Newcastle Institute for Ageing, Institute for Cell and Molecular Biosciences, Campus of Ageing and Vitality, Newcastle upon Tyne, UK
| | - Gabriele Saretzki
- The Ageing Biology Centre, Newcastle Institute for Ageing, Institute for Cell and Molecular Biosciences, Campus of Ageing and Vitality, Newcastle upon Tyne, UK.
| |
Collapse
|
43
|
Le Couteur DG, Simpson SJ. 90th Anniversary Commentary: Caloric Restriction Effects on Aging. J Nutr 2018; 148:1656-1659. [PMID: 30281103 DOI: 10.1093/jn/nxy146] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2018] [Accepted: 06/20/2018] [Indexed: 11/13/2022] Open
Affiliation(s)
- David G Le Couteur
- Charles Perkins Centre, The University of Sydney, Sydney, New South Wales, Australia.,Centre for Education and Research on Aging and ANZAC Research Institute, The University of Sydney and Concord Hospital, Sydney, New South Wales, Australia
| | - Stephen J Simpson
- Charles Perkins Centre, The University of Sydney, Sydney, New South Wales, Australia
| |
Collapse
|
44
|
Felthaus O, Schön T, Schiltz D, Aung T, Kühlmann B, Jung F, Anker A, Klein S, Prantl L. Adipose tissue-derived stem cells from affected and unaffected areas in patients with multiple symmetric lipomatosis show differential regulation of mTOR pathway genes. Clin Hemorheol Microcirc 2018; 69:141-151. [PMID: 29758934 DOI: 10.3233/ch-189107] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
BACKGROUND Multiple symmetric lipomatosis is a rare disease characterized by the excessive growth of uncapsulated masses of adipose tissue. Although the etiology has yet to be elucidated, a connection to brown adipose tissue has been proposed recently. The mTOR pathway which is found to be regulated in lipomatous tissue as well as associated with brown adipose tissue can be inhibited by a compound called rapamycin. METHODS We isolated adipose tissue derived stem cells from both affected and unaffected tissue and treated these cells with different concentrations of rapamycin. RESULTS The differences in both proliferation and differentiation between adipose tissue derived stem cells (ASCs) from lipomatous and normal tissue decreased after mTOR pathway inhibition. In some patients regulation of mTOR genes was opposed in the ASCs from the two different tissues. CONCLUSIONS Treatment with rapamycin might be a novel therapeutical approach for patients suffering from multiple symmetric lipomatosis.
Collapse
Affiliation(s)
- Oliver Felthaus
- Department of Plastic-, Hand-, and Reconstructive Surgery, University Hospital Regensburg, Regensburg, Germany
| | - Teresa Schön
- Department of Plastic-, Hand-, and Reconstructive Surgery, University Hospital Regensburg, Regensburg, Germany
| | - Daniel Schiltz
- Department of Plastic-, Hand-, and Reconstructive Surgery, University Hospital Regensburg, Regensburg, Germany
| | - Thiha Aung
- Department of Plastic-, Hand-, and Reconstructive Surgery, University Hospital Regensburg, Regensburg, Germany
| | - Britta Kühlmann
- Department of Plastic-, Hand-, and Reconstructive Surgery, University Hospital Regensburg, Regensburg, Germany
| | - Friedrich Jung
- Institute of Biomaterial Science and Berlin-Brandenburg Centre for Regenerative Therapies, Helmholtz-Zentrum Geesthacht, Kantstrasse, Teltow, Germany
| | - Alexandra Anker
- Department of Plastic-, Hand-, and Reconstructive Surgery, University Hospital Regensburg, Regensburg, Germany
| | - Silvan Klein
- Department of Plastic-, Hand-, and Reconstructive Surgery, University Hospital Regensburg, Regensburg, Germany
| | - Lukas Prantl
- Department of Plastic-, Hand-, and Reconstructive Surgery, University Hospital Regensburg, Regensburg, Germany
| |
Collapse
|
45
|
Gogulamudi VR, Cai J, Lesniewski LA. Reversing age-associated arterial dysfunction: insight from preclinical models. J Appl Physiol (1985) 2018; 125:1860-1870. [PMID: 29745797 DOI: 10.1152/japplphysiol.00086.2018] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Cardiovascular diseases (CVDs) remain the leading causes of death in the United States, and advancing age is a primary risk factor. Impaired endothelium-dependent dilation and increased stiffening of the arteries with aging are independent predictors of CVD. Increased tissue and systemic oxidative stress and inflammation underlie this age-associated arterial dysfunction. Calorie restriction (CR) is the most powerful intervention known to increase life span and improve age-related phenotypes, including arterial dysfunction. However, the translatability of long-term CR to clinical populations is limited, stimulating interest in the pursuit of pharmacological CR mimetics to reproduce the beneficial effects of CR. The energy-sensing pathways, mammalian target of rapamycin, AMPK, and sirtuin-1 have all been implicated in the beneficial effects of CR on longevity and/or physiological function and, as such, have emerged as potential targets for therapeutic intervention as CR mimetics. Although manipulation of each of these pathways has CR-like benefits on arterial function, the magnitude and/or mechanisms can be disparate from that of CR. Nevertheless, targeting these pathways in older individuals may provide some benefits against arterial dysfunction and CVD. The goal of this review is to provide a brief discussion of the mechanisms and pathways underlying age-associated dysfunction in large arteries, explain how these are impacted by CR, and to present the available evidence, suggesting that targets for energy-sensing pathways may act as vascular CR mimetics.
Collapse
Affiliation(s)
| | - Jinjin Cai
- Department of Internal Medicine-Division of Geriatrics, University of Utah , Salt Lake City, Utah
| | - Lisa A Lesniewski
- Department of Internal Medicine-Division of Geriatrics, University of Utah , Salt Lake City, Utah.,Geriatrics Research Education and Clinical Center, Veteran's Affairs Medical Center-Salt Lake City, Salt Lake City, Utah.,Department of Nutrition and Integrative Physiology, University of Utah , Salt Lake City, Utah
| |
Collapse
|
46
|
Bentley RA, Ross CN, O'Brien MJ. Obesity, Metabolism, and Aging: A Multiscalar Approach. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2018; 155:25-42. [PMID: 29653680 DOI: 10.1016/bs.pmbts.2017.11.016] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Obesity contributes to the aging process through the alteration of metabolic pathways evidenced biochemically in the relationship between caloric restriction and longevity. Humans have entered into an era of metabolism and aging entirely unprecedented in their evolution, with a diet that, for many, contains a majority of calories as sugar and yields an expected lifespan of over 80years in industrialized nations. Deeply embedded in the complex issue of obesity are questions of behavior, causality versus correlation, and appropriate models. For example, are primates a better reference than mice for studying metabolic connections between obesity and aging? We consider those issues from the standpoint of life-history theory, especially implications of the interplay of refined sugar and socioeconomic disparities for the future of human health.
Collapse
Affiliation(s)
| | - Corinna N Ross
- Texas A&M University-San Antonio, San Antonio, TX, United States
| | | |
Collapse
|
47
|
Karunakaran S, Clee SM. Genetics of metabolic syndrome: potential clues from wild-derived inbred mouse strains. Physiol Genomics 2018; 50:35-51. [DOI: 10.1152/physiolgenomics.00059.2017] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The metabolic syndrome (MetS) is a complex constellation of metabolic abnormalities including obesity, abnormal glucose metabolism, dyslipidemia, and elevated blood pressure that together substantially increase risk for cardiovascular disease and Type 2 diabetes. Both genetic and environmental factors contribute to the development of MetS, but this process is still far from understood. Human studies have revealed only part of the underlying basis. Studies in mice offer many strengths that can complement human studies to help elucidate the etiology and pathophysiology of MetS. Here we review the ways mice can contribute to MetS research. In particular, we focus on the information that can be obtained from studies of the inbred strains, with specific focus on the phenotypes of the wild-derived inbred strains. These are newly derived inbred strains that were created from wild-caught mice. They contain substantial genetic variation that is not present in the classical inbred strains, have phenotypes of relevance for MetS, and various mouse strain resources have been created to facilitate the mining of this new genetic variation. Thus studies using wild-derived inbred strains hold great promise for increasing our understanding of MetS.
Collapse
Affiliation(s)
- Subashini Karunakaran
- Department of Cellular and Physiological Sciences, Life Sciences Institute, University of British Columbia, Vancouver, British Columbia, Canada
| | - Susanne M. Clee
- Department of Cellular and Physiological Sciences, Life Sciences Institute, University of British Columbia, Vancouver, British Columbia, Canada
| |
Collapse
|
48
|
Moatt JP, Hambly C, Heap E, Kramer A, Moon F, Speakman JR, Walling CA. Body macronutrient composition is predicted by lipid and not protein content of the diet. Ecol Evol 2017; 7:10056-10065. [PMID: 29238536 PMCID: PMC5723615 DOI: 10.1002/ece3.3529] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2017] [Revised: 08/29/2017] [Accepted: 09/28/2017] [Indexed: 11/23/2022] Open
Abstract
Diet is an important determinant of fitness-related traits including growth, reproduction, and survival. Recent work has suggested that variation in protein:lipid ratio and particularly the amount of protein in the diet is a key nutritional parameter. However, the traits that mediate the link between dietary macronutrient ratio and fitness-related traits are less well understood. An obvious candidate is body composition, given its well-known link to health. Here, we investigate the relationship between dietary and body macronutrient composition using a first-generation laboratory population of a freshwater fish, the three-spine stickleback (Gasterosteus aculeatus). Carbohydrate is relatively unimportant in the diet of predatory fish, facilitating the exploration of how dietary protein-to-lipid ratio affects their relative deposition in the body. We find a significant effect of lipid intake, rather than protein, on body protein:lipid ratio. Importantly, this was not a result of absorbing macronutrients in relation to their relative abundance in the diet, as the carcass protein:lipid ratios differed from those of the diets, with ratios usually lower in the body than in the diet. This indicates that individuals can moderate their utilization, or uptake, of ingested macronutrients to reach a target balance within the body. We found no effect of diet on swimming endurance, activity, or testes size. However, there was an effect of weight on testes size, with larger males having larger testes. Our results provide evidence for the adjustment of body protein:lipid ratio away from that of the diet. As dietary lipid intake was the key determinant of body composition, we suggest this occurs via metabolism of excess protein, which conflicts with the predictions of the protein leverage hypothesis. These results could imply that the conversion and excretion of protein is one of the causes of the survival costs associated with high-protein diets.
Collapse
Affiliation(s)
- Joshua P. Moatt
- School of Biological SciencesInstitute of Evolutionary BiologyUniversity of EdinburghEdinburghUK
| | - Catherine Hambly
- Institute of Biological and Environmental SciencesUniversity of AberdeenAberdeenUK
| | - Elizabeth Heap
- Edinburgh GenomicsRoslin InstituteUniversity of EdinburghEdinburghUK
| | - Anna Kramer
- School of Biological SciencesInstitute of Evolutionary BiologyUniversity of EdinburghEdinburghUK
| | - Fiona Moon
- School of Biological SciencesInstitute of Evolutionary BiologyUniversity of EdinburghEdinburghUK
| | - John R. Speakman
- Institute of Biological and Environmental SciencesUniversity of AberdeenAberdeenUK
- State Key Laboratory of Molecular Developmental BiologyInstitute of Genetics and Developmental BiologyChinese Academy of SciencesGuangzhou ShiChina
| | - Craig A. Walling
- School of Biological SciencesInstitute of Evolutionary BiologyUniversity of EdinburghEdinburghUK
| |
Collapse
|
49
|
Parikh I, Guo J, Chuang KH, Zhong Y, Rempe RG, Hoffman JD, Armstrong R, Bauer B, Hartz AMS, Lin AL. Caloric restriction preserves memory and reduces anxiety of aging mice with early enhancement of neurovascular functions. Aging (Albany NY) 2017; 8:2814-2826. [PMID: 27829242 PMCID: PMC5191872 DOI: 10.18632/aging.101094] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2016] [Accepted: 10/15/2016] [Indexed: 01/01/2023]
Abstract
Neurovascular integrity plays an important role in protecting cognitive and mental health in aging. Lifestyle interventions that sustain neurovascular integrity may thus be critical on preserving brain functions in aging and reducing the risk for age-related neurodegenerative disorders. Here we show that caloric restriction (CR) had an early effect on neurovascular enhancements, and played a critical role in preserving vascular, cognitive and mental health in aging. In particular, we found that CR significantly enhanced cerebral blood flow (CBF) and blood-brain barrier function in young mice at 5-6 months of age. The neurovascular enhancements were associated with reduced mammalian target of rapamycin expression, elevated endothelial nitric oxide synthase signaling, and increased ketone bodies utilization. With age, CR decelerated the rate of decline in CBF. The preserved CBF in hippocampus and frontal cortex were highly correlated with preserved memory and learning, and reduced anxiety, of the aging mice treated with CR (18-20 months of age). Our results suggest that dietary intervention started in the early stage (e.g., young adults) may benefit cognitive and mental reserve in aging. Understanding nutritional effects on neurovascular functions may have profound implications in human brain aging and age-related neurodegenerative disorders.
Collapse
Affiliation(s)
- Ishita Parikh
- Sanders-Brown Center on Aging, University of Kentucky, Lexington, KY 40536, USA.,Department of Pharmacology and Nutritional Sciences, University of Kentucky, Lexington, KY 40536, USA
| | - Janet Guo
- Sanders-Brown Center on Aging, University of Kentucky, Lexington, KY 40536, USA
| | - Kai-Hsiang Chuang
- Queensland Brain Institute and Centre for Advanced Imaging, University of Queensland, Brisbane, QLD 4072, Australia
| | - Yu Zhong
- Sanders-Brown Center on Aging, University of Kentucky, Lexington, KY 40536, USA
| | - Ralf G Rempe
- Department of Pharmaceutical Sciences, University of Kentucky, Lexington, KY 40536, USA
| | - Jared D Hoffman
- Sanders-Brown Center on Aging, University of Kentucky, Lexington, KY 40536, USA.,Department of Pharmacology and Nutritional Sciences, University of Kentucky, Lexington, KY 40536, USA
| | - Rachel Armstrong
- Sanders-Brown Center on Aging, University of Kentucky, Lexington, KY 40536, USA
| | - Björn Bauer
- Department of Pharmaceutical Sciences, University of Kentucky, Lexington, KY 40536, USA
| | - Anika M S Hartz
- Sanders-Brown Center on Aging, University of Kentucky, Lexington, KY 40536, USA.,Department of Pharmacology and Nutritional Sciences, University of Kentucky, Lexington, KY 40536, USA
| | - Ai-Ling Lin
- Sanders-Brown Center on Aging, University of Kentucky, Lexington, KY 40536, USA.,Department of Pharmacology and Nutritional Sciences, University of Kentucky, Lexington, KY 40536, USA.,Department of Biomedical Engineering, University of Kentucky, Lexington, KY 40506, USA
| |
Collapse
|
50
|
Calorie restriction in rodents: Caveats to consider. Ageing Res Rev 2017; 39:15-28. [PMID: 28610949 DOI: 10.1016/j.arr.2017.05.008] [Citation(s) in RCA: 90] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2017] [Revised: 05/30/2017] [Accepted: 05/31/2017] [Indexed: 02/08/2023]
Abstract
The calorie restriction paradigm has provided one of the most widely used and most useful tools for investigating mechanisms of aging and longevity. By far, rodent models have been employed most often in these endeavors. Over decades of investigation, claims have been made that the paradigm produces the most robust demonstration that aging is malleable. In the current review of the rodent literature, we present arguments that question the robustness of the paradigm to increase lifespan and healthspan. Specifically, there are several questions to consider as follows: (1) At what age does CR no longer produce benefits? (2) Does CR attenuate cognitive decline? (3) Are there negative effects of CR, including effects on bone health, wound healing, and response to infection? (4) How important is schedule of feeding? (5) How long does CR need to be imposed to be effective? (6) How do genotype and gender influence CR? (7) What role does dietary composition play? Consideration of these questions produce many caveats that should guide future investigations to move the field forward.
Collapse
|