1
|
Li H, Lin S, Wang Y, Shi Y, Fang X, Wang J, Cui H, Bian Y, Qi X. Immunosenescence: A new direction in anti-aging research. Int Immunopharmacol 2024; 141:112900. [PMID: 39137628 DOI: 10.1016/j.intimp.2024.112900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 07/22/2024] [Accepted: 08/05/2024] [Indexed: 08/15/2024]
Abstract
The immune system is a major regulatory system of the body, that is composed of immune cells, immune organs, and related signaling factors. As an organism ages, observable age-related changes in the function of the immune system accumulate in a process described as 'immune aging. Research has shown that the impact of aging on immunity is detrimental, with various dysregulated responses that affect the function of immune cells at the cellular level. For example, increased aging has been shown to result in the abnormal chemotaxis of neutrophils and decreased phagocytosis of macrophages. Age-related diminished functionality of immune cell types has direct effects on host fitness, leading to poorer responses to vaccination, more inflammation and tissue damage, as well as autoimmune disorders and the inability to control infections. Similarly, age impacts the function of the immune system at the organ level, resulting in decreased hematopoietic function in the bone marrow, a gradual deficiency of catalase in the thymus, and thymic atrophy, resulting in reduced production of related immune cells such as B cells and T cells, further increasing the risk of autoimmune disorders in the elderly. As the immune function of the body weakens, aging cells and inflammatory factors cannot be cleared, resulting in a cycle of increased inflammation that accumulates over time. Cumulatively, the consequences of immune aging increase the likelihood of developing age-related diseases, such as Alzheimer's disease, atherosclerosis, and osteoporosis, among others. Therefore, targeting the age-related changes that occur within cells of the immune system might be an effective anti-aging strategy. In this article, we summarize the relevant literature on immune aging research, focusing on its impact on aging, in hopes of providing new directions for anti-aging research.
Collapse
Affiliation(s)
- Hanzhou Li
- Tianjin University of Traditional Chinese Medicine, Tianjin, China; Tianjin Union Medical Center, Tianjin, China
| | - Shan Lin
- Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Yuming Wang
- Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Yuexuan Shi
- Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Xixing Fang
- College of Traditional Chinese Medicine, Changchun University of Traditional Chinese Medicine, Changchun, China
| | - Jida Wang
- Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Huantian Cui
- Yunnan University of Chinese Medicine, Yunnan, China.
| | - Yuhong Bian
- Tianjin University of Traditional Chinese Medicine, Tianjin, China.
| | - Xin Qi
- Tianjin University of Traditional Chinese Medicine, Tianjin, China; Tianjin Union Medical Center, Tianjin, China.
| |
Collapse
|
2
|
Gao H, Nepovimova E, Adam V, Heger Z, Valko M, Wu Q, Kuca K. Age-associated changes in innate and adaptive immunity: role of the gut microbiota. Front Immunol 2024; 15:1421062. [PMID: 39351234 PMCID: PMC11439693 DOI: 10.3389/fimmu.2024.1421062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Accepted: 08/26/2024] [Indexed: 10/04/2024] Open
Abstract
Aging is generally regarded as an irreversible process, and its intricate relationship with the immune system has garnered significant attention due to its profound implications for the health and well-being of the aging population. As people age, a multitude of alterations occur within the immune system, affecting both innate and adaptive immunity. In the realm of innate immunity, aging brings about changes in the number and function of various immune cells, including neutrophils, monocytes, and macrophages. Additionally, certain immune pathways, like the cGAS-STING, become activated. These alterations can potentially result in telomere damage, the disruption of cytokine signaling, and impaired recognition of pathogens. The adaptive immune system, too, undergoes a myriad of changes as age advances. These include shifts in the number, frequency, subtype, and function of T cells and B cells. Furthermore, the human gut microbiota undergoes dynamic changes as a part of the aging process. Notably, the interplay between immune changes and gut microbiota highlights the gut's role in modulating immune responses and maintaining immune homeostasis. The gut microbiota of centenarians exhibits characteristics akin to those found in young individuals, setting it apart from the microbiota observed in typical elderly individuals. This review delves into the current understanding of how aging impacts the immune system and suggests potential strategies for reversing aging through interventions in immune factors.
Collapse
Affiliation(s)
- Haoyu Gao
- College of Life Science, Yangtze University, Jingzhou, China
| | - Eugenie Nepovimova
- Department of Chemistry, Faculty of Science, University of Hradec Králové, Hradec Králové, Czechia
| | - Vojtech Adam
- Department of Chemistry and Biochemistry, Mendel University in Brno, Brno, Czechia
| | - Zbynek Heger
- Department of Chemistry and Biochemistry, Mendel University in Brno, Brno, Czechia
| | - Marian Valko
- Faculty of Chemical and Food Technology, Slovak University of Technology, Bratislava, Slovakia
| | - Qinghua Wu
- College of Life Science, Yangtze University, Jingzhou, China
- Department of Chemistry, Faculty of Science, University of Hradec Králové, Hradec Králové, Czechia
| | - Kamil Kuca
- Department of Chemistry, Faculty of Science, University of Hradec Králové, Hradec Králové, Czechia
- Andalusian Research Institute in Data Science and Computational Intelligence (DaSCI), University of Granada, Granada, Spain
| |
Collapse
|
3
|
Cinti I, Vezyrgianni K, Denton AE. Unravelling the contribution of lymph node fibroblasts to vaccine responses. Adv Immunol 2024; 164:1-37. [PMID: 39523027 DOI: 10.1016/bs.ai.2024.07.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
Vaccination is one of the most effective medical interventions, saving millions of lives and reducing the morbidity of infections across the lifespan, from infancy to older age. The generation of plasma cells and memory B cells that produce high affinity class switched antibodies is central to this protection, and these cells are the ultimate output of the germinal centre response. Optimal germinal centre responses require different immune cells to interact with one another in the right place and at the right time and this delicate cellular ballet is coordinated by a network of interconnected stromal cells. In this review we will discuss the various types of lymphoid stromal cells and how they coordinate immune cell homeostasis, the induction and maintenance of the germinal centre response, and how this is disorganised in older bodies.
Collapse
Affiliation(s)
- Isabella Cinti
- Department of Immunology and Inflammation, Imperial College London, London, United Kingdom
| | - Kassandra Vezyrgianni
- Department of Immunology and Inflammation, Imperial College London, London, United Kingdom
| | - Alice E Denton
- Department of Immunology and Inflammation, Imperial College London, London, United Kingdom.
| |
Collapse
|
4
|
Fisher JS, Adán‐Barrientos I, Kumar NR, Lancaster JN. The aged microenvironment impairs BCL6 and CD40L induction in CD4 + T follicular helper cell differentiation. Aging Cell 2024; 23:e14140. [PMID: 38481058 PMCID: PMC11296098 DOI: 10.1111/acel.14140] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 02/26/2024] [Accepted: 02/27/2024] [Indexed: 06/13/2024] Open
Abstract
Weakened germinal center responses by the aged immune system result in diminished immunity against pathogens and reduced efficacy of vaccines. Prolonged contacts between activated B cells and CD4+ T cells are crucial to germinal center formation and T follicular helper cell (Tfh) differentiation, but it is unclear how aging impacts the quality of this interaction. Peptide immunization confirmed that aged mice have decreased expansion of antigen-specific germinal center B cells and reduced antibody titers. Furthermore, aging was associated with accumulated Tfh cells, even in naïve mice. Despite increased numbers, aged Tfh had reduced expression of master transcription factor BCL6 and increased expression of the ectonucleotidase CD39. In vitro activation revealed that proliferative capacity was maintained in aged CD4+ T cells, but not the costimulatory molecule CD40L. When activated in vitro by aged antigen-presenting cells, young CD4+ naïve T cells generated reduced numbers of activated cells with upregulated CD40L. To determine the contribution of cell-extrinsic influences on antigen-specific Tfh induction, young, antigen-specific B and CD4+ T cells were adoptively transferred into aged hosts prior to peptide immunization. Transferred cells had reduced expansion and differentiation into germinal center B cell and Tfh and reduced antigen-specific antibody titers when compared to young hosts. Young CD4+ T cells transferred aged hosts differentiated into Tfh cells with reduced PD-1 and BCL6 expression, and increased CD39 expression, though they maintained their mitochondrial capacity. These results highlight the role of the lymphoid microenvironment in modulating CD4+ T cell differentiation, which contributes to impaired establishment and maintenance of germinal centers.
Collapse
Affiliation(s)
| | - Irene Adán‐Barrientos
- Immunobiology LaboratoryCentro Nacional de Investigaciones Cardiovasculares (CNIC)MadridSpain
| | - Naveen R. Kumar
- Department of ImmunologyMayo ClinicScottsdaleArizonaUSA
- School of Life SciencesArizona State UniversityTempeArizonaUSA
| | - Jessica N. Lancaster
- Department of ImmunologyMayo ClinicScottsdaleArizonaUSA
- Robert and Arlene Kogod Center on AgingMayo ClinicRochesterMinnesotaUSA
- Department of Cancer BiologyMayo ClinicScottsdaleArizonaUSA
| |
Collapse
|
5
|
Hou Y, Chen M, Bian Y, Hu Y, Chuan J, Zhong L, Zhu Y, Tong R. Insights into vaccines for elderly individuals: from the impacts of immunosenescence to delivery strategies. NPJ Vaccines 2024; 9:77. [PMID: 38600250 PMCID: PMC11006855 DOI: 10.1038/s41541-024-00874-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Accepted: 03/28/2024] [Indexed: 04/12/2024] Open
Abstract
Immunosenescence increases the risk and severity of diseases in elderly individuals and leads to impaired vaccine-induced immunity. With aging of the global population and the emerging risk of epidemics, developing adjuvants and vaccines for elderly individuals to improve their immune protection is pivotal for healthy aging worldwide. Deepening our understanding of the role of immunosenescence in vaccine efficacy could accelerate research focused on optimizing vaccine delivery for elderly individuals. In this review, we analyzed the characteristics of immunosenescence at the cellular and molecular levels. Strategies to improve vaccination potency in elderly individuals are summarized, including increasing the antigen dose, preparing multivalent antigen vaccines, adding appropriate adjuvants, inhibiting chronic inflammation, and inhibiting immunosenescence. We hope that this review can provide a review of new findings with regards to the impacts of immunosenescence on vaccine-mediated protection and inspire the development of individualized vaccines for elderly individuals.
Collapse
Affiliation(s)
- Yingying Hou
- Department of Pharmacy, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, 610072, China
- Personalized Drug Therapy Key Laboratory of Sichuan Province, School of Medicine, University of Electronic Science and Technology of China, Chengdu, 610072, China
| | - Min Chen
- Department of Pharmacy, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, 610072, China
- Personalized Drug Therapy Key Laboratory of Sichuan Province, School of Medicine, University of Electronic Science and Technology of China, Chengdu, 610072, China
| | - Yuan Bian
- Department of Pharmacy, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, 610072, China
- Personalized Drug Therapy Key Laboratory of Sichuan Province, School of Medicine, University of Electronic Science and Technology of China, Chengdu, 610072, China
| | - Yuan Hu
- Department of Pharmacy, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, 610072, China
- Personalized Drug Therapy Key Laboratory of Sichuan Province, School of Medicine, University of Electronic Science and Technology of China, Chengdu, 610072, China
| | - Junlan Chuan
- Department of Pharmacy, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, 610072, China
- Personalized Drug Therapy Key Laboratory of Sichuan Province, School of Medicine, University of Electronic Science and Technology of China, Chengdu, 610072, China
| | - Lei Zhong
- Department of Pharmacy, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, 610072, China.
- Personalized Drug Therapy Key Laboratory of Sichuan Province, School of Medicine, University of Electronic Science and Technology of China, Chengdu, 610072, China.
| | - Yuxuan Zhu
- Department of Pharmacy, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, 610072, China.
- Personalized Drug Therapy Key Laboratory of Sichuan Province, School of Medicine, University of Electronic Science and Technology of China, Chengdu, 610072, China.
| | - Rongsheng Tong
- Department of Pharmacy, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, 610072, China.
- Personalized Drug Therapy Key Laboratory of Sichuan Province, School of Medicine, University of Electronic Science and Technology of China, Chengdu, 610072, China.
| |
Collapse
|
6
|
Duan L, Yu X. Fibroblasts: New players in the central nervous system? FUNDAMENTAL RESEARCH 2024; 4:262-266. [PMID: 38933505 PMCID: PMC11197739 DOI: 10.1016/j.fmre.2023.01.014] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2022] [Revised: 01/16/2023] [Accepted: 01/18/2023] [Indexed: 03/11/2023] Open
Abstract
Fibroblasts are typically described as cells that produce extracellular matrix, contribute to the formation of connective tissue, and maintain the structural framework of tissues. Fibroblasts are the first cell type to be transdifferentiated into inducible pluripotent stem cells (iPSCs), demonstrating their versatility and reprogrammability. Currently, there is relatively extensive characterization of the anatomical, molecular, and functional diversity of fibroblasts in different peripheral organs and tissues. With recent advances in single cell RNA sequencing, heterogeneity and diversity of fibroblasts in the central nervous system (CNS) have also begun to emerge. Based on their distinct anatomical locations in the meninges, perivascular space, and choroid plexus, as well as their molecular diversity, important roles for fibroblasts in the CNS have been proposed. Here, we draw inspirations from what is known about fibroblasts in peripheral tissues, in combination with their currently identified CNS locations and molecular characterizations, to propose potential functions of CNS fibroblasts in health and disease. Future studies, using a combination of technologies, will be needed to determine the bona fide in vivo functions of fibroblasts in the CNS.
Collapse
Affiliation(s)
- Lihui Duan
- State Key Laboratory of Molecular Development Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiang Yu
- State Key Laboratory of Membrane Biology, School of Life Sciences, Peking University, Beijing 100871, China
- Peking-Tsinghua Center for Life Sciences and Peking University McGovern Institute, Peking University, Beijing 100871, China
- Chinese Institute for Brain Research, Beijing 102206, China
| |
Collapse
|
7
|
Thomas AL, Godarova A, Wayman JA, Miraldi ER, Hildeman DA, Chougnet CA. Accumulation of immune-suppressive CD4 + T cells in aging - tempering inflammaging at the expense of immunity. Semin Immunol 2023; 70:101836. [PMID: 37632992 PMCID: PMC10840872 DOI: 10.1016/j.smim.2023.101836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 08/21/2023] [Accepted: 08/21/2023] [Indexed: 08/28/2023]
Abstract
The 'immune risk profile' has been shown to predict mortality in the elderly, highlighting the need to better understand age-related immune dysfunction. While aging leads to many defects affecting all arms of the immune system, this review is focused on the accrual of immuno-suppressive CD4 + T cell populations, including FoxP3 + regulatory T cells, and subsets of IL-10-producing T follicular helper cells. New data suggest that such accumulations constitute feedback mechanisms to temper the ongoing progressive low-grade inflammation that develops with age, the so-called "inflammaging", and by doing so, how they have the potential to promote healthier aging. However, they also impair effector immune responses, notably to infections, or vaccines. These studies also reinforce the idea that the aged immune system should not be considered as a poorly functional version of the young one, but more as a dynamic system in which CD4 + T cells, and other immune/non-immune subsets, differentiate, interact with their milieu and function differently than in young hosts. A better understanding of these unique interactions is thus needed to improve effector immune responses in the elderly, while keeping inflammaging under control.
Collapse
Affiliation(s)
- Alyssa L Thomas
- Division of Immunobiology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA; Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH 45257, USA; Immunology Graduate Program, Cincinnati Children's Hospital Medical Center and the University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Alzbeta Godarova
- Division of Immunobiology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA; Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH 45257, USA
| | - Joseph A Wayman
- Division of Immunobiology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA; Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH 45257, USA
| | - Emily R Miraldi
- Division of Immunobiology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA; Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH 45257, USA; Immunology Graduate Program, Cincinnati Children's Hospital Medical Center and the University of Cincinnati College of Medicine, Cincinnati, OH, USA; Division of Biomedical Informatics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, 45229, USA
| | - David A Hildeman
- Division of Immunobiology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA; Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH 45257, USA; Immunology Graduate Program, Cincinnati Children's Hospital Medical Center and the University of Cincinnati College of Medicine, Cincinnati, OH, USA.
| | - Claire A Chougnet
- Division of Immunobiology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA; Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH 45257, USA; Immunology Graduate Program, Cincinnati Children's Hospital Medical Center and the University of Cincinnati College of Medicine, Cincinnati, OH, USA.
| |
Collapse
|
8
|
Lancaster JN. Aging of lymphoid stromal architecture impacts immune responses. Semin Immunol 2023; 70:101817. [PMID: 37572552 PMCID: PMC10929705 DOI: 10.1016/j.smim.2023.101817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 08/01/2023] [Accepted: 08/02/2023] [Indexed: 08/14/2023]
Abstract
The secondary lymphoid organs (SLOs) undergo structural changes with age, which correlates with diminishing immune responses against infectious disease. A growing body of research suggests that the aged tissue microenvironment can contribute to decreased immune function, independent of intrinsic changes to hematopoietic cells with age. Stromal cells impart structural integrity, facilitate fluid transport, and provide chemokine and cytokine signals that are essential for immune homeostasis. Mechanisms that drive SLO development have been described, but their roles in SLO maintenance with advanced age are unknown. Disorganization of the fibroblasts of the T cell and B cell zones may reduce the maintenance of naïve lymphocytes and delay immune activation. Reduced lymphatic transport efficiency with age can also delay the onset of the adaptive immune response. This review focuses on recent studies that describe age-associated changes to the stroma of the lymph nodes and spleen. We also review recent investigations into stromal cell biology, which include high-dimensional analysis of the stromal cell transcriptome and viscoelastic testing of lymph node mechanical properties, as they constitute an important framework for understanding aging of the lymphoid tissues.
Collapse
Affiliation(s)
- Jessica N Lancaster
- Department of Immunology, Mayo Clinic, 13400 E. Shea Blvd., Scottsdale, AZ, USA; Department of Cancer Biology, Mayo Clinic, 13400 E. Shea Blvd., Scottsdale, AZ, USA.
| |
Collapse
|
9
|
Sonar SA, Watanabe M, Nikolich JŽ. Disorganization of secondary lymphoid organs and dyscoordination of chemokine secretion as key contributors to immune aging. Semin Immunol 2023; 70:101835. [PMID: 37651849 PMCID: PMC10840697 DOI: 10.1016/j.smim.2023.101835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 08/18/2023] [Accepted: 08/18/2023] [Indexed: 09/02/2023]
Abstract
Aging is characterized by progressive loss of organ and tissue function, and the immune system is no exception to that inevitable principle. Of all the age-related changes in the body, reduction of the size of, and naïve T (Tn) cell output from, the thymus occurs earliest, being prominent already before or by the time of puberty. Therefore, to preserve immunity against new infections, over much of their lives, vertebrates dominantly rely on peripheral maintenance of the Tn cell pool in the secondary lymphoid organs (SLO). However, SLO structure and function subsequently also deteriorate with aging. Several recent studies have made a convincing case that this deterioration is of major importance to the erosion of protective immunity in the last third of life. Specifically, the SLO were found to accumulate multiple degenerative changes with aging. Importantly, the results from adoptive transfer and parabiosis studies teach us that the old microenvironment is the limiting factor for protective immunity in old mice. In this review, we discuss the extent, mechanisms, and potential role of stromal cell aging in the age-related alteration of T cell homeostatic maintenance and immune function decline. We use that discussion to frame the potential strategies to correct the SLO stromal aging defects - in the context of other immune rejuvenation approaches, - to improve functional immune responses and protective immunity in older adults.
Collapse
Affiliation(s)
- Sandip Ashok Sonar
- Department of Immunobiology, University of Arizona College of Medicine-Tucson, Tucson, AZ, USA; The University of Arizona Center on Aging, University of Arizona College of Medicine-Tucson, Tucson, AZ, USA
| | - Makiko Watanabe
- Department of Immunobiology, University of Arizona College of Medicine-Tucson, Tucson, AZ, USA; The University of Arizona Center on Aging, University of Arizona College of Medicine-Tucson, Tucson, AZ, USA
| | - Janko Ž Nikolich
- Department of Immunobiology, University of Arizona College of Medicine-Tucson, Tucson, AZ, USA; The University of Arizona Center on Aging, University of Arizona College of Medicine-Tucson, Tucson, AZ, USA; the Aegis Consortium for Pandemic-free Future, University of Arizona Health Sciences, USA; BIO5 Institute, University of Arizona, Tucson, AZ, USA.
| |
Collapse
|
10
|
Hopkin SJ, Pezhman L, Begum J, Kavanagh D, McGettrick HM, Iqbal AJ, Chimen M. Aging modulates homeostatic leukocyte trafficking to the peritoneal cavity in a sex-specific manner. J Leukoc Biol 2023; 114:301-314. [PMID: 37309034 PMCID: PMC10533226 DOI: 10.1093/jleuko/qiad053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 03/28/2023] [Accepted: 04/28/2023] [Indexed: 06/14/2023] Open
Abstract
Aging is associated with exacerbated systemic inflammation (inflammaging) and the progressive loss of immune system function (immunosenescence). Leukocyte migration is necessary for effective immunity; however, dysregulated trafficking of leukocytes into tissue contributes to inflammaging and the development of age-related inflammatory diseases. Aging modulates leukocyte trafficking under inflammatory conditions; however, whether aging modulates leukocyte trafficking under homeostatic conditions remains to be elucidated. Although immune responses are evidently sexually dimorphic, limited studies have investigated the effect of sex on age-related changes to leukocyte trafficking processes. Here, we investigated age-related and sex-specific changes to the leukocyte populations within the peritoneal cavity of young (3-mo), middle-aged (18-mo) and old (21-mo) male and female wild-type mice in the steady state. We found an age-related increase in the number of leukocytes within the peritoneal cavity of female mice, predominantly B cells, which may reflect increased trafficking through this tissue with age. This was accompanied by an increased inflammatory environment within the aged cavity, including increased levels of chemoattractants, including B cell chemoattractants CXCL13 and CCL21, soluble adhesion molecules, and proinflammatory cytokines, which was more pronounced in aged female mice. Intravital microscopy techniques revealed altered vascular structure and increased vascular permeability within the peritoneal membrane of aged female mice, which may support increased leukocyte trafficking to the cavity with age. Together, these data indicate that aging affects homeostatic leukocyte trafficking processes in a sex-specific fashion.
Collapse
Affiliation(s)
- Sophie J Hopkin
- Institute of Cardiovascular Sciences, University of Birmingham, Birmingham, B15 2TT, United Kingdom
| | - Laleh Pezhman
- Institute of Inflammation and Ageing, University of Birmingham, Birmingham, B15 2TT, United Kingdom
| | - Jenefa Begum
- Institute of Cardiovascular Sciences, University of Birmingham, Birmingham, B15 2TT, United Kingdom
| | - Dean Kavanagh
- Institute of Cardiovascular Sciences, University of Birmingham, Birmingham, B15 2TT, United Kingdom
| | - Helen M McGettrick
- Institute of Inflammation and Ageing, University of Birmingham, Birmingham, B15 2TT, United Kingdom
| | - Asif J Iqbal
- Institute of Cardiovascular Sciences, University of Birmingham, Birmingham, B15 2TT, United Kingdom
| | - Myriam Chimen
- Institute of Inflammation and Ageing, University of Birmingham, Birmingham, B15 2TT, United Kingdom
| |
Collapse
|
11
|
Harper EI, Weeraratna AT. A Wrinkle in TIME: How Changes in the Aging ECM Drive the Remodeling of the Tumor Immune Microenvironment. Cancer Discov 2023; 13:1973-1981. [PMID: 37671471 PMCID: PMC10654931 DOI: 10.1158/2159-8290.cd-23-0505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Revised: 06/20/2023] [Accepted: 07/14/2023] [Indexed: 09/07/2023]
Abstract
SUMMARY Cancer is an age-related disease, with the majority of patients receiving their diagnosis after the age of 60 and most mortality from cancer occurring after this age. The tumor microenvironment changes drastically with age, which in turn affects cancer progression and treatment efficacy. Age-related changes to individual components of the microenvironment have received well-deserved attention over the past few decades, but the effects of aging at the interface of two or more microenvironmental components have been vastly understudied. In this perspective, we discuss the relationship between the aging extracellular matrix and the aging immune system, how they affect the tumor microenvironment, and how these multidisciplinary studies may open avenues for new therapeutics. Cancer is a disease of aging. With a rapidly aging population, we need to better understand the age-related changes that drive tumor progression, ranging from secreted changes to biophysical and immune changes.
Collapse
Affiliation(s)
- Elizabeth I. Harper
- Department of Biochemistry and Molecular Biology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205
| | - Ashani T. Weeraratna
- Department of Biochemistry and Molecular Biology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, 1650 Orleans Street, Room 485, Baltimore, MD 21205
| |
Collapse
|
12
|
Linterman MA. Age-dependent changes in T follicular helper cells shape the humoral immune response to vaccination. Semin Immunol 2023; 69:101801. [PMID: 37379670 DOI: 10.1016/j.smim.2023.101801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Accepted: 06/21/2023] [Indexed: 06/30/2023]
Abstract
Vaccination is an excellent strategy to limit the morbidity and mortality associated with infectious disease. Vaccination creates protective, long-lived antibody-mediated immunity by inducing the germinal centre response, an intricate immune reaction that produces memory B cells and long-lived antibody-secreting plasma cells that provide protection against (re)infection. The magnitude and quality of the germinal centre response declines with age, contributing to poor vaccine-induced immunity in older individuals. T follicular helper cells are essential for the formation and function of the germinal centre response. This review will discuss how age-dependent changes in T follicular helper cells influence the germinal centre response, and the evidence that age-dependent changes need not be a barrier to successful vaccination in the later years of life.
Collapse
Affiliation(s)
- Michelle A Linterman
- Babraham Institute, Babraham Research Campus, Cambridge CB22 3AT, United Kingdom.
| |
Collapse
|
13
|
Li X, Li C, Zhang W, Wang Y, Qian P, Huang H. Inflammation and aging: signaling pathways and intervention therapies. Signal Transduct Target Ther 2023; 8:239. [PMID: 37291105 PMCID: PMC10248351 DOI: 10.1038/s41392-023-01502-8] [Citation(s) in RCA: 306] [Impact Index Per Article: 153.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2022] [Revised: 04/26/2023] [Accepted: 05/15/2023] [Indexed: 06/10/2023] Open
Abstract
Aging is characterized by systemic chronic inflammation, which is accompanied by cellular senescence, immunosenescence, organ dysfunction, and age-related diseases. Given the multidimensional complexity of aging, there is an urgent need for a systematic organization of inflammaging through dimensionality reduction. Factors secreted by senescent cells, known as the senescence-associated secretory phenotype (SASP), promote chronic inflammation and can induce senescence in normal cells. At the same time, chronic inflammation accelerates the senescence of immune cells, resulting in weakened immune function and an inability to clear senescent cells and inflammatory factors, which creates a vicious cycle of inflammation and senescence. Persistently elevated inflammation levels in organs such as the bone marrow, liver, and lungs cannot be eliminated in time, leading to organ damage and aging-related diseases. Therefore, inflammation has been recognized as an endogenous factor in aging, and the elimination of inflammation could be a potential strategy for anti-aging. Here we discuss inflammaging at the molecular, cellular, organ, and disease levels, and review current aging models, the implications of cutting-edge single cell technologies, as well as anti-aging strategies. Since preventing and alleviating aging-related diseases and improving the overall quality of life are the ultimate goals of aging research, our review highlights the critical features and potential mechanisms of inflammation and aging, along with the latest developments and future directions in aging research, providing a theoretical foundation for novel and practical anti-aging strategies.
Collapse
Affiliation(s)
- Xia Li
- Bone Marrow Transplantation Center, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, People's Republic of China
- Liangzhu Laboratory, Zhejiang University Medical Center, 1369 West Wenyi Road, Hangzhou, 311121, China
- Institute of Hematology, Zhejiang University & Zhejiang Engineering Laboratory for Stem Cell and Immunotherapy, Hangzhou, 310058, China
- Zhejiang Province Engineering Laboratory for Stem Cell and Immunity Therapy, Hangzhou, 310058, China
| | - Chentao Li
- Liangzhu Laboratory, Zhejiang University Medical Center, 1369 West Wenyi Road, Hangzhou, 311121, China
- Zhejiang University-University of Edinburgh Institute, Zhejiang University School of Medicine, Zhejiang University, Haining, China
| | - Wanying Zhang
- Zhejiang University-University of Edinburgh Institute, Zhejiang University School of Medicine, Zhejiang University, Haining, China
| | - Yanan Wang
- Zhejiang University-University of Edinburgh Institute, Zhejiang University School of Medicine, Zhejiang University, Haining, China
| | - Pengxu Qian
- Liangzhu Laboratory, Zhejiang University Medical Center, 1369 West Wenyi Road, Hangzhou, 311121, China.
- Institute of Hematology, Zhejiang University & Zhejiang Engineering Laboratory for Stem Cell and Immunotherapy, Hangzhou, 310058, China.
- Zhejiang Province Engineering Laboratory for Stem Cell and Immunity Therapy, Hangzhou, 310058, China.
- Center for Stem Cell and Regenerative Medicine and Bone Marrow Transplantation Center of the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310058, China.
| | - He Huang
- Bone Marrow Transplantation Center, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, People's Republic of China.
- Liangzhu Laboratory, Zhejiang University Medical Center, 1369 West Wenyi Road, Hangzhou, 311121, China.
- Institute of Hematology, Zhejiang University & Zhejiang Engineering Laboratory for Stem Cell and Immunotherapy, Hangzhou, 310058, China.
- Zhejiang Province Engineering Laboratory for Stem Cell and Immunity Therapy, Hangzhou, 310058, China.
| |
Collapse
|
14
|
Soto-Heredero G, Gómez de Las Heras MM, Escrig-Larena JI, Mittelbrunn M. Extremely Differentiated T Cell Subsets Contribute to Tissue Deterioration During Aging. Annu Rev Immunol 2023; 41:181-205. [PMID: 37126417 DOI: 10.1146/annurev-immunol-101721-064501] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
There is a dramatic remodeling of the T cell compartment during aging. The most notorious changes are the reduction of the naive T cell pool and the accumulation of memory-like T cells. Memory-like T cells in older people acquire a phenotype of terminally differentiated cells, lose the expression of costimulatory molecules, and acquire properties of senescent cells. In this review, we focus on the different subsets of age-associated T cells that accumulate during aging. These subsets include extremely cytotoxic T cells with natural killer properties, exhausted T cells with altered cytokine production, and regulatory T cells that gain proinflammatory features. Importantly, all of these subsets lose their lymph node homing capacity and migrate preferentially to nonlymphoid tissues, where they contribute to tissue deterioration and inflammaging.
Collapse
Affiliation(s)
- Gonzalo Soto-Heredero
- Homeostasis de Tejidos y Órganos, Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas (CSIC) and Universidad Autónoma de Madrid, Madrid, Spain
- Departamento de Biología Molecular, Facultad de Ciencias, Universidad Autónoma de Madrid, Madrid, Spain;
- Instituto de Investigación Sanitaria del Hospital 12 de Octubre, Madrid, Spain
| | - Manuel M Gómez de Las Heras
- Homeostasis de Tejidos y Órganos, Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas (CSIC) and Universidad Autónoma de Madrid, Madrid, Spain
- Departamento de Biología Molecular, Facultad de Ciencias, Universidad Autónoma de Madrid, Madrid, Spain;
- Instituto de Investigación Sanitaria del Hospital 12 de Octubre, Madrid, Spain
| | - J Ignacio Escrig-Larena
- Homeostasis de Tejidos y Órganos, Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas (CSIC) and Universidad Autónoma de Madrid, Madrid, Spain
- Departamento de Biología Molecular, Facultad de Ciencias, Universidad Autónoma de Madrid, Madrid, Spain;
| | - María Mittelbrunn
- Homeostasis de Tejidos y Órganos, Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas (CSIC) and Universidad Autónoma de Madrid, Madrid, Spain
- Instituto de Investigación Sanitaria del Hospital 12 de Octubre, Madrid, Spain
| |
Collapse
|
15
|
Torrance BL, Panier HA, Cadar AN, Martin DE, Lorenzo EC, Jellison ER, Bartley JM, Haynes L. Cellular Senescence is a Double-Edged Sword in Regulating Aged Immune Responses to Influenza. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.04.10.536027. [PMID: 37090607 PMCID: PMC10120665 DOI: 10.1101/2023.04.10.536027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/25/2023]
Abstract
Clearance of senescent cells has demonstrated therapeutic potential in the context of chronic age-related diseases. Little is known, however, how clearing senescent cells affects the ability to respond to an acute infection and form quality immunological memory. We aimed to probe the effects of clearing senescent cells in aged mice on the immune response to influenza (flu) infection. We utilized a p16 trimodality reporter mouse model (p16-3MR) to allow for identification and selective deletion of p16-expressing senescent cells upon administration of ganciclovir (GCV). While p16-expressing senescent cells may exacerbate dysfunctional responses to a primary infection, our data suggest they may play a role in fostering memory cell generation. We demonstrate that although deletion of p16-expressing cells enhanced viral clearance, this also severely limited antibody production in the lungs of flu-infected aged mice. 30 days later, there were fewer flu-specific CD8 memory T cells and lower levels of flu-specific antibodies in the lungs of GCV treated mice. GCV treated mice were unable to mount an optimal memory response and demonstrated increased viral load following a heterosubtypic challenge. These results suggest that targeting senescent cells may potentiate primary responses while limiting the ability to form durable and protective immune memory with age.
Collapse
|
16
|
Keilich SR, Cadar AN, Ahern DT, Torrance BL, Lorenzo EC, Martin DE, Haynes L, Bartley JM. Altered T cell infiltration and enrichment of leukocyte regulating pathways within aged skeletal muscle are associated impaired muscle function following influenza infection. GeroScience 2023; 45:1197-1213. [PMID: 36580167 PMCID: PMC9886695 DOI: 10.1007/s11357-022-00715-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Accepted: 12/09/2022] [Indexed: 12/30/2022] Open
Abstract
Older adults have diminished immune responses that increase susceptibility to infectious diseases, such as influenza (flu). In older adults, flu infection can lead to hospitalization, catastrophic disability, and mortality. We previously demonstrated severe and prolonged muscle degradation and atrophy in aged mice during flu infection. Here, we utilized an unbiased transcriptomic analysis to elucidate mechanisms of flu-induced muscular declines in a mouse model. Our results showed age-related gene expression differences including downregulation of genes associated with muscle regeneration and organization and upregulation of genes associated with pro-inflammatory cytokines and migratory immune pathways in aged mice when compared to young. Pathway analysis revealed significant enrichment of leukocyte migration and T cell activation pathways in the aged muscle during infection. Intramuscular CD4 T cells increased in both young and aged mice during infection, while intramuscular CD8 T cells increased exclusively in aged muscle. CD4 T cells in young muscle were regulatory T cells (Treg), while those in aged were T follicular helper (Tfh) and Th2 cells. Correspondingly, IL-33, an important cytokine for Treg accumulation within tissue, increased only in young flu-infected muscle. Conversely, CXCL10 (IP-10) increased only in aged muscle suggesting a continued recruitment of CD8 T cells into the aged muscle during flu infection. Overall, our findings elucidate a link between flu-induced disability and dysregulated intracellular T cell recruitment into flu-injured muscle with aging. Furthermore, we uncovered potential pathways involved that can be targeted to develop preventative and therapeutic interventions to avert disability and maintain independence following infection.
Collapse
Affiliation(s)
- Spencer R Keilich
- UConn Center On Aging, University of Connecticut School of Medicine, Farmington, CT, 06030, USA
- Department of Immunology, University of Connecticut School of Medicine, Farmington, CT, 06030, USA
- Millipore Sigma, 400 Summit Drive, Burlington, MA, 01803, USA
| | - Andreia N Cadar
- UConn Center On Aging, University of Connecticut School of Medicine, Farmington, CT, 06030, USA
- Department of Immunology, University of Connecticut School of Medicine, Farmington, CT, 06030, USA
| | - Darcy T Ahern
- Department of Genetics and Genome Sciences, University of Connecticut School of Medicine, Farmington, CT, 06030, USA
- Intellia Therapeutics, 40 Erie St, Cambridge, MA, 02139, USA
| | - Blake L Torrance
- UConn Center On Aging, University of Connecticut School of Medicine, Farmington, CT, 06030, USA
- Department of Immunology, University of Connecticut School of Medicine, Farmington, CT, 06030, USA
| | - Erica C Lorenzo
- UConn Center On Aging, University of Connecticut School of Medicine, Farmington, CT, 06030, USA
- Department of Immunology, University of Connecticut School of Medicine, Farmington, CT, 06030, USA
| | - Dominique E Martin
- UConn Center On Aging, University of Connecticut School of Medicine, Farmington, CT, 06030, USA
- Department of Immunology, University of Connecticut School of Medicine, Farmington, CT, 06030, USA
| | - Laura Haynes
- UConn Center On Aging, University of Connecticut School of Medicine, Farmington, CT, 06030, USA.
- Department of Immunology, University of Connecticut School of Medicine, Farmington, CT, 06030, USA.
| | - Jenna M Bartley
- UConn Center On Aging, University of Connecticut School of Medicine, Farmington, CT, 06030, USA.
- Department of Immunology, University of Connecticut School of Medicine, Farmington, CT, 06030, USA.
| |
Collapse
|
17
|
Ananya A, Holden KG, Gu Z, Nettleton D, Mallapragada SK, Wannemuehler MJ, Kohut ML, Narasimhan B. "Just right" combinations of adjuvants with nanoscale carriers activate aged dendritic cells without overt inflammation. Immun Ageing 2023; 20:10. [PMID: 36895007 PMCID: PMC9996592 DOI: 10.1186/s12979-023-00332-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Accepted: 02/05/2023] [Indexed: 03/11/2023]
Abstract
BACKGROUND The loss in age-related immunological markers, known as immunosenescence, is caused by a combination of factors, one of which is inflammaging. Inflammaging is associated with the continuous basal generation of proinflammatory cytokines. Studies have demonstrated that inflammaging reduces the effectiveness of vaccines. Strategies aimed at modifying baseline inflammation are being developed to improve vaccination responses in older adults. Dendritic cells have attracted attention as an age-specific target because of their significance in immunization as antigen presenting cells that stimulate T lymphocytes. RESULTS In this study, bone marrow derived dendritic cells (BMDCs) were generated from aged mice and used to investigate the effects of combinations of adjuvants, including Toll-like receptor, NOD2, and STING agonists with polyanhydride nanoparticles and pentablock copolymer micelles under in vitro conditions. Cellular stimulation was characterized via expression of costimulatory molecules, T cell-activating cytokines, proinflammatory cytokines, and chemokines. Our results indicate that multiple TLR agonists substantially increase costimulatory molecule expression and cytokines associated with T cell activation and inflammation in culture. In contrast, NOD2 and STING agonists had only a moderate effect on BMDC activation, while nanoparticles and micelles had no effect by themselves. However, when nanoparticles and micelles were combined with a TLR9 agonist, a reduction in the production of proinflammatory cytokines was observed while maintaining increased production of T cell activating cytokines and enhancing cell surface marker expression. Additionally, combining nanoparticles and micelles with a STING agonist resulted in a synergistic impact on the upregulation of costimulatory molecules and an increase in cytokine secretion from BMDCs linked with T cell activation without excessive secretion of proinflammatory cytokines. CONCLUSIONS These studies provide new insights into rational adjuvant selection for vaccines for older adults. Combining appropriate adjuvants with nanoparticles and micelles may lead to balanced immune activation characterized by low inflammation, setting the stage for designing next generation vaccines that can induce mucosal immunity in older adults.
Collapse
Affiliation(s)
- Ananya Ananya
- Nanovaccine Institute, Iowa State University, Ames, IA, 50011, USA
- Department of Chemical and Biological Engineering, Iowa State University, Ames, IA, 50011, USA
| | - Kaitlyn G Holden
- Nanovaccine Institute, Iowa State University, Ames, IA, 50011, USA
| | - Zhiling Gu
- Department of Statistics, Iowa State University, Ames, IA, 50011, USA
| | - Dan Nettleton
- Department of Statistics, Iowa State University, Ames, IA, 50011, USA
| | - Surya K Mallapragada
- Nanovaccine Institute, Iowa State University, Ames, IA, 50011, USA
- Department of Chemical and Biological Engineering, Iowa State University, Ames, IA, 50011, USA
| | | | - Marian L Kohut
- Nanovaccine Institute, Iowa State University, Ames, IA, 50011, USA
- Department of Kinesiology, Iowa State University, Ames, IA, 50011, USA
| | - Balaji Narasimhan
- Nanovaccine Institute, Iowa State University, Ames, IA, 50011, USA.
- Department of Chemical and Biological Engineering, Iowa State University, Ames, IA, 50011, USA.
| |
Collapse
|
18
|
Krammer C, Yang B, Reichl S, Besson-Girard S, Ji H, Bolini V, Schulte C, Noels H, Schlepckow K, Jocher G, Werner G, Willem M, El Bounkari O, Kapurniotu A, Gokce O, Weber C, Mohanta S, Bernhagen J. Pathways linking aging and atheroprotection in Mif-deficient atherosclerotic mice. FASEB J 2023; 37:e22752. [PMID: 36794636 DOI: 10.1096/fj.202200056r] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 11/30/2022] [Accepted: 12/21/2022] [Indexed: 02/17/2023]
Abstract
Atherosclerosis is a chronic inflammatory condition of our arteries and the main underlying pathology of myocardial infarction and stroke. The pathogenesis is age-dependent, but the links between disease progression, age, and atherogenic cytokines and chemokines are incompletely understood. Here, we studied the chemokine-like inflammatory cytokine macrophage migration inhibitory factor (MIF) in atherogenic Apoe-/- mice across different stages of aging and cholesterol-rich high-fat diet (HFD). MIF promotes atherosclerosis by mediating leukocyte recruitment, lesional inflammation, and suppressing atheroprotective B cells. However, links between MIF and advanced atherosclerosis across aging have not been systematically explored. We compared effects of global Mif-gene deficiency in 30-, 42-, and 48-week-old Apoe-/- mice on HFD for 24, 36, or 42 weeks, respectively, and in 52-week-old mice on a 6-week HFD. Mif-deficient mice exhibited reduced atherosclerotic lesions in the 30/24- and 42/36-week-old groups, but atheroprotection, which in the applied Apoe-/- model was limited to lesions in the brachiocephalic artery and abdominal aorta, was not detected in the 48/42- and 52/6-week-old groups. This suggested that atheroprotection afforded by global Mif-gene deletion differs across aging stages and atherogenic diet duration. To characterize this phenotype and study the underlying mechanisms, we determined immune cells in the periphery and vascular lesions, obtained a multiplex cytokine/chemokine profile, and compared the transcriptome between the age-related phenotypes. We found that Mif deficiency promotes lesional macrophage and T-cell counts in younger but not aged mice, with subgroup analysis pointing toward a role for Trem2+ macrophages. The transcriptomic analysis identified pronounced MIF- and aging-dependent changes in pathways predominantly related to lipid synthesis and metabolism, lipid storage, and brown fat cell differentiation, as well as immunity, and atherosclerosis-relevant enriched genes such as Plin1, Ldlr, Cpne7, or Il34, hinting toward effects on lesional lipids, foamy macrophages, and immune cells. Moreover, Mif-deficient aged mice exhibited a distinct plasma cytokine/chemokine signature consistent with the notion that mediators known to drive inflamm'aging are either not downregulated or even upregulated in Mif-deficient aged mice compared with the corresponding younger ones. Lastly, Mif deficiency favored formation of lymphocyte-rich peri-adventitial leukocyte clusters. While the causative contributions of these mechanistic pillars and their interplay will be subject to future scrutiny, our study suggests that atheroprotection due to global Mif-gene deficiency in atherogenic Apoe-/- mice is reduced upon advanced aging and identifies previously unrecognized cellular and molecular targets that could explain this phenotype shift. These observations enhance our understanding of inflamm'aging and MIF pathways in atherosclerosis and may have implications for translational MIF-directed strategies.
Collapse
Affiliation(s)
- Christine Krammer
- Division of Vascular Biology, Institute for Stroke and Dementia Research (ISD), LMU University Hospital, Ludwig-Maximilians-University (LMU), Munich, Germany
| | - Bishan Yang
- Division of Vascular Biology, Institute for Stroke and Dementia Research (ISD), LMU University Hospital, Ludwig-Maximilians-University (LMU), Munich, Germany
| | - Sabrina Reichl
- Division of Vascular Biology, Institute for Stroke and Dementia Research (ISD), LMU University Hospital, Ludwig-Maximilians-University (LMU), Munich, Germany
| | - Simon Besson-Girard
- Systems Neuroscience Laboratory, Institute for Stroke and Dementia Research (ISD), LMU University Hospital, Munich, Germany.,Graduate School of Systemic Neurosciences (GSN), LMU Munich, Planegg-Martinsried, Germany
| | - Hao Ji
- Systems Neuroscience Laboratory, Institute for Stroke and Dementia Research (ISD), LMU University Hospital, Munich, Germany
| | - Verena Bolini
- Division of Vascular Biology, Institute for Stroke and Dementia Research (ISD), LMU University Hospital, Ludwig-Maximilians-University (LMU), Munich, Germany
| | - Corinna Schulte
- Institute for Molecular Cardiovascular Research (IMCAR), University Hospital Aachen, Rhenish-Westphalian Technical University (RWTH) Aachen University, Aachen, Germany
| | - Heidi Noels
- Institute for Molecular Cardiovascular Research (IMCAR), University Hospital Aachen, Rhenish-Westphalian Technical University (RWTH) Aachen University, Aachen, Germany.,Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, The Netherlands
| | - Kai Schlepckow
- German Center for Neurodegenerative Diseases (DZNE), Munich, Germany
| | - Georg Jocher
- German Center for Neurodegenerative Diseases (DZNE), Munich, Germany
| | - Georg Werner
- Metabolic Biochemistry, Biomedical Center (BMC), Faculty of Medicine, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Michael Willem
- Metabolic Biochemistry, Biomedical Center (BMC), Faculty of Medicine, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Omar El Bounkari
- Division of Vascular Biology, Institute for Stroke and Dementia Research (ISD), LMU University Hospital, Ludwig-Maximilians-University (LMU), Munich, Germany
| | - Aphrodite Kapurniotu
- Division of Peptide Biochemistry, TUM School of Life Sciences, Technical University of Munich (TUM), Munich, Germany
| | - Ozgun Gokce
- Systems Neuroscience Laboratory, Institute for Stroke and Dementia Research (ISD), LMU University Hospital, Munich, Germany.,Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
| | - Christian Weber
- Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, The Netherlands.,Munich Cluster for Systems Neurology (SyNergy), Munich, Germany.,Institute for Cardiovascular Prevention, LMU University Hospital, Ludwig-Maximilians-University (LMU), Munich, Germany.,Munich Heart Alliance, Munich, Germany
| | - Sarajo Mohanta
- Institute for Cardiovascular Prevention, LMU University Hospital, Ludwig-Maximilians-University (LMU), Munich, Germany
| | - Jürgen Bernhagen
- Division of Vascular Biology, Institute for Stroke and Dementia Research (ISD), LMU University Hospital, Ludwig-Maximilians-University (LMU), Munich, Germany.,Munich Cluster for Systems Neurology (SyNergy), Munich, Germany.,Munich Heart Alliance, Munich, Germany
| |
Collapse
|
19
|
McGovern KE, Sonar SA, Watanabe M, Coplen CP, Bradshaw CM, Nikolich JŽ. The aging of the immune system and its implications for transplantation. GeroScience 2023:10.1007/s11357-022-00720-2. [PMID: 36626019 PMCID: PMC9838392 DOI: 10.1007/s11357-022-00720-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Accepted: 12/21/2022] [Indexed: 01/11/2023] Open
Abstract
By the last third of life, most mammals, including humans, exhibit a decline in immune cell numbers, immune organ structure, and immune defense of the organism, commonly known as immunosenescence. This decline leads to clinical manifestations of increased susceptibility to infections, particularly those caused by emerging and reemerging microorganisms, which can reach staggering levels-infection with SARS-CoV-2 has been 270-fold more lethal to older adults over 80 years of age, compared to their 18-39-year-old counterparts. However, while this would be expected to be beneficial to situations where hyporeactivity of the immune system may be desirable, this is not always the case. Here, we discuss the cellular and molecular underpinnings of immunosenescence as they pertain to outcomes of solid organ and hematopoietic transplantation.
Collapse
Affiliation(s)
- Kathryn E McGovern
- Department of Immunobiology, University of Arizona, Tucson, AZ, 85724, USA
- Arizona Center On Aging, The University of Arizona, University of Arizona College of Medicine-Tucson, Tucson, AZ, 85724, USA
- BIO5 Institute, University of Arizona, Tucson, AZ, USA
| | - Sandip A Sonar
- Department of Immunobiology, University of Arizona, Tucson, AZ, 85724, USA
- Arizona Center On Aging, The University of Arizona, University of Arizona College of Medicine-Tucson, Tucson, AZ, 85724, USA
| | - Makiko Watanabe
- Department of Immunobiology, University of Arizona, Tucson, AZ, 85724, USA
- Arizona Center On Aging, The University of Arizona, University of Arizona College of Medicine-Tucson, Tucson, AZ, 85724, USA
| | - Christopher P Coplen
- Department of Immunobiology, University of Arizona, Tucson, AZ, 85724, USA
- Arizona Center On Aging, The University of Arizona, University of Arizona College of Medicine-Tucson, Tucson, AZ, 85724, USA
| | - Christine M Bradshaw
- Department of Immunobiology, University of Arizona, Tucson, AZ, 85724, USA
- Arizona Center On Aging, The University of Arizona, University of Arizona College of Medicine-Tucson, Tucson, AZ, 85724, USA
| | - Janko Ž Nikolich
- Department of Immunobiology, University of Arizona, Tucson, AZ, 85724, USA.
- Arizona Center On Aging, The University of Arizona, University of Arizona College of Medicine-Tucson, Tucson, AZ, 85724, USA.
- BIO5 Institute, University of Arizona, Tucson, AZ, USA.
- The Aegis Consortium for Pandemic-free Future, University of Arizona Health Sciences, University of Arizona, Tucson, 85719, USA.
| |
Collapse
|
20
|
Chen J, Deng JC, Goldstein DR. How aging impacts vaccine efficacy: known molecular and cellular mechanisms and future directions. Trends Mol Med 2022; 28:1100-1111. [PMID: 36216643 PMCID: PMC9691569 DOI: 10.1016/j.molmed.2022.09.008] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 09/05/2022] [Accepted: 09/14/2022] [Indexed: 01/26/2023]
Abstract
Aging leads to a gradual dysregulation of immune functions, one consequence of which is reduced vaccine efficacy. In this review, we discuss several key contributing factors to the age-related decline in vaccine efficacy, such as alterations within the lymph nodes where germinal center (GC) reactions take place, alterations in the B cell compartment, alterations in the T cell compartment, and dysregulation of innate immune pathways. Additionally, we discuss several methods currently used in vaccine development to bolster vaccine efficacy in older adults. This review highlights the multifactorial defects that impair vaccine responses with aging.
Collapse
Affiliation(s)
- Judy Chen
- Department of Internal Medicine, University of Michigan, Ann Arbor, MI 48109, USA; Program in Immunology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Jane C Deng
- Program in Immunology, University of Michigan, Ann Arbor, MI 48109, USA; Division of Pulmonary and Critical Care Medicine, University of Michigan, Ann Arbor, MI 48109, USA; Veterans Affairs Ann Arbor Healthcare System, Ann Arbor, MI 48105, USA
| | - Daniel R Goldstein
- Department of Internal Medicine, University of Michigan, Ann Arbor, MI 48109, USA; Program in Immunology, University of Michigan, Ann Arbor, MI 48109, USA.
| |
Collapse
|
21
|
Burton AR, Guillaume SM, Foster WS, Wheatley AK, Hill DL, Carr EJ, Linterman MA. The memory B cell response to influenza vaccination is impaired in older persons. Cell Rep 2022; 41:111613. [PMID: 36351385 PMCID: PMC9666924 DOI: 10.1016/j.celrep.2022.111613] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 08/22/2022] [Accepted: 10/14/2022] [Indexed: 11/10/2022] Open
Abstract
Influenza infection imparts an age-related increase in mortality and morbidity. The most effective countermeasure is vaccination; however, vaccines offer modest protection in older adults. To investigate how aging impacts the memory B cell response, we track hemagglutinin-specific B cells by indexed flow sorting and single-cell RNA sequencing (scRNA-seq) in 20 healthy adults that were administered the trivalent influenza vaccine. We demonstrate age-related skewing in the memory B cell compartment 6 weeks after vaccination, with younger adults developing hemagglutinin-specific memory B cells with an FcRL5+ "atypical" phenotype, showing evidence of somatic hypermutation and positive selection, which happened to a lesser extent in older persons. We use publicly available scRNA-seq from paired human lymph node and blood samples to corroborate that FcRL5+ atypical memory B cells can derive from germinal center (GC) precursors. Together, this study shows that the aged human GC reaction and memory B cell response following vaccination is defective.
Collapse
Affiliation(s)
- Alice R Burton
- The Babraham Institute, Babraham Research Campus, Cambridge CB22 3AT, UK
| | | | - William S Foster
- The Babraham Institute, Babraham Research Campus, Cambridge CB22 3AT, UK
| | - Adam K Wheatley
- Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity, University of Melbourne, Parkville, VIC 3010, Australia
| | - Danika L Hill
- The Babraham Institute, Babraham Research Campus, Cambridge CB22 3AT, UK; Department of Immunology and Pathology, Monash University, Melbourne, VIC 3004, Australia
| | - Edward J Carr
- The Babraham Institute, Babraham Research Campus, Cambridge CB22 3AT, UK; Department of Medicine, Cambridge Biomedical Campus, University of Cambridge, Hills Road, Cambridge CB2 0QQ, UK; Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK.
| | | |
Collapse
|
22
|
Lee JL, Fra‐Bido SC, Burton AR, Innocentin S, Hill DL, Linterman MA. B cell-intrinsic changes with age do not impact antibody-secreting cell formation but delay B cell participation in the germinal centre reaction. Aging Cell 2022; 21:e13692. [PMID: 35980826 PMCID: PMC9470890 DOI: 10.1111/acel.13692] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 06/28/2022] [Accepted: 07/27/2022] [Indexed: 01/25/2023] Open
Abstract
Vaccines typically protect against (re)infections by generating pathogen-neutralising antibodies. However, as we age, antibody-secreting cell formation and vaccine-induced antibody titres are reduced. Antibody-secreting plasma cells differentiate from B cells either early post-vaccination through the extrafollicular response or from the germinal centre (GC) reaction, which generates long-lived antibody-secreting cells. As the formation of both the extrafollicular antibody response and the GC requires the interaction of multiple cell types, the impaired antibody response in ageing could be caused by B cell intrinsic or extrinsic factors, or a combination of the two. Here, we show that B cells from older people do not have intrinsic defects in their proliferation and differentiation into antibody-secreting cells in vitro compared to those from the younger donors. However, adoptive transfer of B cells from aged mice to young recipient mice showed that differentiation into extrafollicular plasma cells was favoured at the expense of B cells entering the GC during the early stages of GC formation. In contrast, by the peak of the GC response, GC B cells derived from the donor cells of aged mice had expanded to the same extent as those from the younger donors. This indicates that age-related intrinsic B cell changes delay the GC response but are not responsible for the impaired antibody-secreting response or smaller peak GC response in ageing. Collectively, this study shows that B cells from aged individuals are not intrinsically defective in responding to stimulation and becoming antibody-secreting cells, implicating B cell-extrinsic factors as the primary cause of age-associated impairment in the humoral immunity.
Collapse
Affiliation(s)
- Jia Le Lee
- Immunology ProgramBabraham InstituteCambridgeUK
| | | | | | | | - Danika L. Hill
- Immunology ProgramBabraham InstituteCambridgeUK,Department of Immunology and PathologyMonash UniversityMelbourneVictoriaAustralia
| | | |
Collapse
|
23
|
Torrance BL, Haynes L. Cellular senescence is a key mediator of lung aging and susceptibility to infection. Front Immunol 2022; 13:1006710. [PMID: 36119079 PMCID: PMC9473698 DOI: 10.3389/fimmu.2022.1006710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Accepted: 08/16/2022] [Indexed: 12/05/2022] Open
Abstract
Aging results in systemic changes that leave older adults at much higher risk for adverse outcomes following respiratory infections. Much work has been done over the years to characterize and describe the varied changes that occur with aging from the molecular/cellular up to the organismal level. In recent years, the systemic accumulation of senescent cells has emerged as a key mediator of many age-related declines and diseases of aging. Many of these age-related changes can impair the normal function of the respiratory system and its capability to respond appropriately to potential pathogens that are encountered daily. In this review, we aim to establish the effects of cellular senescence on the disruption of normal lung function with aging and describe how these effects compound to leave an aged respiratory system at great risk when exposed to a pathogen. We will also discuss the role cellular senescence may play in the inability of most vaccines to confer protection against respiratory infections when administered to older adults. We posit that cellular senescence may be the point of convergence of many age-related immunological declines. Enhanced investigation into this area could provide much needed insight to understand the aging immune system and how to effectively ameliorate responses to pathogens that continue to disproportionately harm this vulnerable population.
Collapse
Affiliation(s)
| | - Laura Haynes
- UConn Center on Aging and Department of Immunology, School of Medicine, University of Connecticut, Farmington, CT, United States
| |
Collapse
|
24
|
Wang Y, Dong C, Han Y, Gu Z, Sun C. Immunosenescence, aging and successful aging. Front Immunol 2022; 13:942796. [PMID: 35983061 PMCID: PMC9379926 DOI: 10.3389/fimmu.2022.942796] [Citation(s) in RCA: 52] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Accepted: 07/08/2022] [Indexed: 12/24/2022] Open
Abstract
Aging induces a series of immune related changes, which is called immunosenescence, playing important roles in many age-related diseases, especially neurodegenerative diseases, tumors, cardiovascular diseases, autoimmune diseases and coronavirus disease 2019(COVID-19). However, the mechanism of immunosenescence, the association with aging and successful aging, and the effects on diseases are not revealed obviously. In order to provide theoretical basis for preventing or controlling diseases effectively and achieve successful aging, we conducted the review and found that changes of aging-related phenotypes, deterioration of immune organ function and alterations of immune cell subsets participated in the process of immunosenescence, which had great effects on the occurrence and development of age-related diseases.
Collapse
Affiliation(s)
- Yunan Wang
- Department of Rheumatology, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong, China
| | - Chen Dong
- Department of Rheumatology, Affiliated Hospital of Nantong University, Nantong, China
| | - Yudian Han
- Information Center, The First People’s Hospital of Nantong City, Nantong, China
| | - Zhifeng Gu
- Department of Rheumatology, Affiliated Hospital of Nantong University, Nantong, China
- *Correspondence: Zhifeng Gu, ; Chi Sun,
| | - Chi Sun
- Department of Geriatrics, Affiliated Hospital of Nantong University, Nantong, China
- *Correspondence: Zhifeng Gu, ; Chi Sun,
| |
Collapse
|
25
|
Howard FHN, Kwan A, Winder N, Mughal A, Collado-Rojas C, Muthana M. Understanding Immune Responses to Viruses-Do Underlying Th1/Th2 Cell Biases Predict Outcome? Viruses 2022; 14:1493. [PMID: 35891472 PMCID: PMC9324514 DOI: 10.3390/v14071493] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2022] [Revised: 07/04/2022] [Accepted: 07/06/2022] [Indexed: 12/15/2022] Open
Abstract
Emerging and re-emerging viral diseases have increased in number and geographical extent during the last decades. Examples include the current COVID-19 pandemic and the recent epidemics of the Chikungunya, Ebola, and Zika viruses. Immune responses to viruses have been well-characterised within the innate and adaptive immunity pathways with the outcome following viral infection predominantly attributed to properties of the virus and circumstances of the infection. Perhaps the belief that the immune system is often considered as a reactive component of host defence, springing into action when a threat is detected, has contributed to a poorer understanding of the inherent differences in an individual's immune system in the absence of any pathology. In this review, we focus on how these host factors (age, ethnicity, underlying pathologies) may skew the T helper cell response, thereby influencing the outcome following viral infection but also whether we can use these inherent biases to predict patients at risk of a deviant response and apply strategies to avoid or overcome them.
Collapse
Affiliation(s)
- Faith H. N. Howard
- Department of Oncology and Metabolism, University of Sheffield, Sheffield S10 2RX, UK; (A.K.); (N.W.); (A.M.); (C.C.-R.); (M.M.)
| | | | | | | | | | | |
Collapse
|
26
|
Zhou L, Kong G, Palmisano I, Cencioni MT, Danzi M, De Virgiliis F, Chadwick JS, Crawford G, Yu Z, De Winter F, Lemmon V, Bixby J, Puttagunta R, Verhaagen J, Pospori C, Lo Celso C, Strid J, Botto M, Di Giovanni S. Reversible CD8 T cell-neuron cross-talk causes aging-dependent neuronal regenerative decline. Science 2022; 376:eabd5926. [PMID: 35549409 DOI: 10.1126/science.abd5926] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Aging is associated with increased prevalence of axonal injuries characterized by poor regeneration and disability. However, the underlying mechanisms remain unclear. In our experiments, RNA sequencing of sciatic dorsal root ganglia (DRG) revealed significant aging-dependent enrichment in T cell signaling both before and after sciatic nerve injury (SNI) in mice. Lymphotoxin activated the transcription factor NF-κB, which induced expression of the chemokine CXCL13 by neurons. This in turn recruited CXCR5+CD8+ T cells to injured DRG neurons overexpressing major histocompatibility complex class I. CD8+ T cells repressed the axonal regeneration of DRG neurons via caspase 3 activation. CXCL13 neutralization prevented CXCR5+CD8+ T cell recruitment to the DRG and reversed aging-dependent regenerative decline, thereby promoting neurological recovery after SNI. Thus, axonal regeneration can be facilitated by antagonizing cross-talk between immune cells and neurons.
Collapse
Affiliation(s)
- Luming Zhou
- Division of Neuroscience, Department of Brain Sciences, Imperial College London, London, UK
| | - Guiping Kong
- Division of Neuroscience, Department of Brain Sciences, Imperial College London, London, UK
| | - Ilaria Palmisano
- Division of Neuroscience, Department of Brain Sciences, Imperial College London, London, UK
| | - Maria Teresa Cencioni
- Division of Neurology, Department of Brain Sciences, Imperial College London, London, UK
| | - Matt Danzi
- Miami Project to Cure Paralysis, Department of Neurological Surgery, Miller School of Medicine, University of Miami, Miami, FL, USA
| | - Francesco De Virgiliis
- Division of Neuroscience, Department of Brain Sciences, Imperial College London, London, UK
| | - Jessica S Chadwick
- Division of Neuroscience, Department of Brain Sciences, Imperial College London, London, UK
| | - Greg Crawford
- Department of Immunology and Inflammation, Imperial College London, London, UK
| | - Zicheng Yu
- Division of Neuroscience, Department of Brain Sciences, Imperial College London, London, UK
| | - Fred De Winter
- Netherlands Institute for Neuroscience, Royal Academy of Arts and Sciences, Amsterdam, Netherlands
| | - Vance Lemmon
- Miami Project to Cure Paralysis, Department of Neurological Surgery, Miller School of Medicine, University of Miami, Miami, FL, USA
| | - John Bixby
- Miami Project to Cure Paralysis, Department of Neurological Surgery, Miller School of Medicine, University of Miami, Miami, FL, USA
| | - Radhika Puttagunta
- Spinal Cord Injury Center, Heidelberg University Hospital, Heidelberg, Germany
| | - Joost Verhaagen
- Netherlands Institute for Neuroscience, Royal Academy of Arts and Sciences, Amsterdam, Netherlands
| | - Constandina Pospori
- Haematopoietic Stem Cell Laboratory, Francis Crick Institute, London, UK
- Department of Life Sciences, Imperial College London, South Kensington Campus, London, UK
| | - Cristina Lo Celso
- Haematopoietic Stem Cell Laboratory, Francis Crick Institute, London, UK
- Department of Life Sciences, Imperial College London, South Kensington Campus, London, UK
| | - Jessica Strid
- Department of Immunology and Inflammation, Imperial College London, London, UK
| | - Marina Botto
- Department of Immunology and Inflammation, Imperial College London, London, UK
| | - Simone Di Giovanni
- Division of Neuroscience, Department of Brain Sciences, Imperial College London, London, UK
| |
Collapse
|
27
|
Denton AE, Dooley J, Cinti I, Silva-Cayetano A, Fra-Bido S, Innocentin S, Hill DL, Carr EJ, McKenzie ANJ, Liston A, Linterman MA. Targeting TLR4 during vaccination boosts MAdCAM-1 + lymphoid stromal cell activation and promotes the aged germinal center response. Sci Immunol 2022; 7:eabk0018. [PMID: 35522725 PMCID: PMC7612953 DOI: 10.1126/sciimmunol.abk0018] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The failure to generate enduring humoral immunity after vaccination is a hallmark of advancing age. This can be attributed to a reduction in the germinal center (GC) response, which generates long-lived antibody-secreting cells that protect against (re)infection. Despite intensive investigation, the primary cellular defect underlying impaired GCs in aging has not been identified. Here, we used heterochronic parabiosis to demonstrate that GC formation was dictated by the age of the lymph node (LN) microenvironment rather than the age of the immune cells. Lymphoid stromal cells are a key determinant of the LN microenvironment and are also an essential component underpinning GC structure and function. Using mouse models, we demonstrated that mucosal adressin cell adhesion molecule-1 (MAdCAM-1)-expressing lymphoid stromal cells were among the first cells to respond to NP-KLH + Alum immunization, proliferating and up-regulating cell surface proteins such as podoplanin and cell adhesion molecules. This response was essentially abrogated in aged mice. By targeting TLR4 using adjuvants, we improved the MAdCAM-1+ stromal cell response to immunization. This correlated with improved GC responses in both younger adult and aged mice, suggesting a link between stromal cell responses to immunization and GC initiation. Using bone marrow chimeras, we also found that MAdCAM-1+ stromal cells could respond directly to TLR4 ligands. Thus, the age-associated defect in GC and stromal cell responses to immunization can be targeted to improve vaccines in older people.
Collapse
Affiliation(s)
- Alice E Denton
- Immunology Programme, Babraham Institute, Cambridge UK
- Department of Immunology and Inflammation, Imperial College London, London UK
| | - James Dooley
- Immunology Programme, Babraham Institute, Cambridge UK
- Adaptive Immunology Laboratory, VIB and University of Leuven, Leuven Belgium
| | - Isabella Cinti
- Department of Immunology and Inflammation, Imperial College London, London UK
| | | | | | | | - Danika L Hill
- Immunology Programme, Babraham Institute, Cambridge UK
- Department of Immunology and Pathology, Central Clinical School, Monash University and Alfred Hospital, Melbourne, Victoria, Australia
| | - Edward J Carr
- Immunology Programme, Babraham Institute, Cambridge UK
- Department of Medicine, University of Cambridge, Cambridge UK
- The Francis Crick Institute, London UK
| | - Andrew NJ McKenzie
- Medical Research Council, Laboratory of Molecular Biology, Cambridge, UK
| | - Adrian Liston
- Immunology Programme, Babraham Institute, Cambridge UK
- Adaptive Immunology Laboratory, VIB and University of Leuven, Leuven Belgium
| | | |
Collapse
|
28
|
Eapen AA, Parameswaran S, Forney C, Edsall LE, Miller D, Donmez O, Dunn K, Lu X, Granitto M, Rowden H, Magier AZ, Pujato M, Chen X, Kaufman K, Bernstein DI, Devonshire AL, Rothenberg ME, Weirauch MT, Kottyan LC. Epigenetic and transcriptional dysregulation in CD4+ T cells in patients with atopic dermatitis. PLoS Genet 2022; 18:e1009973. [PMID: 35576187 PMCID: PMC9135339 DOI: 10.1371/journal.pgen.1009973] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 05/26/2022] [Accepted: 04/20/2022] [Indexed: 12/30/2022] Open
Abstract
Atopic dermatitis (AD) is one of the most common skin disorders among children. Disease etiology involves genetic and environmental factors, with 29 independent AD risk loci enriched for risk allele-dependent gene expression in the skin and CD4+ T cell compartments. We investigated the potential epigenetic mechanisms responsible for the genetic susceptibility of CD4+ T cells. To understand the differences in gene regulatory activity in peripheral blood T cells in AD, we measured chromatin accessibility (an assay based on transposase-accessible chromatin sequencing, ATAC-seq), nuclear factor kappa B subunit 1 (NFKB1) binding (chromatin immunoprecipitation with sequencing, ChIP-seq), and gene expression levels (RNA-seq) in stimulated CD4+ T cells from subjects with active moderate-to-severe AD, as well as in age-matched non-allergic controls. Open chromatin regions in stimulated CD4+ T cells were highly enriched for AD genetic risk variants, with almost half of the AD risk loci overlapping AD-dependent ATAC-seq peaks. AD-specific open chromatin regions were strongly enriched for NF-κB DNA-binding motifs. ChIP-seq identified hundreds of NFKB1-occupied genomic loci that were AD- or control-specific. As expected, the AD-specific ChIP-seq peaks were strongly enriched for NF-κB DNA-binding motifs. Surprisingly, control-specific NFKB1 ChIP-seq peaks were not enriched for NFKB1 motifs, but instead contained motifs for other classes of human transcription factors, suggesting a mechanism involving altered indirect NFKB1 binding. Using DNA sequencing data, we identified 63 instances of altered genotype-dependent chromatin accessibility at 36 AD risk variant loci (30% of AD risk loci) that might lead to genotype-dependent gene expression. Based on these findings, we propose that CD4+ T cells respond to stimulation in an AD-specific manner, resulting in disease- and genotype-dependent chromatin accessibility alterations involving NFKB1 binding.
Collapse
Affiliation(s)
- Amy A. Eapen
- Division of Allergy and Immunology, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, United States of America
- Division of Allergy and Clinical Immunology, Henry Ford Health System, Detroit, Michigan, United States of America
- Center for Autoimmune Genomics and Etiology, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, United States of America
| | - Sreeja Parameswaran
- Center for Autoimmune Genomics and Etiology, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, United States of America
| | - Carmy Forney
- Center for Autoimmune Genomics and Etiology, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, United States of America
| | - Lee E. Edsall
- Center for Autoimmune Genomics and Etiology, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, United States of America
| | - Daniel Miller
- Center for Autoimmune Genomics and Etiology, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, United States of America
| | - Omer Donmez
- Center for Autoimmune Genomics and Etiology, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, United States of America
| | - Katelyn Dunn
- Center for Autoimmune Genomics and Etiology, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, United States of America
| | - Xiaoming Lu
- Center for Autoimmune Genomics and Etiology, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, United States of America
| | - Marissa Granitto
- Center for Autoimmune Genomics and Etiology, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, United States of America
| | - Hope Rowden
- Center for Autoimmune Genomics and Etiology, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, United States of America
| | - Adam Z. Magier
- Division of Allergy and Immunology, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, United States of America
| | - Mario Pujato
- Center for Autoimmune Genomics and Etiology, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, United States of America
| | - Xiaoting Chen
- Center for Autoimmune Genomics and Etiology, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, United States of America
| | - Kenneth Kaufman
- Center for Autoimmune Genomics and Etiology, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, United States of America
- Divisions of Biomedical Informatics and Developmental Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, United States of America
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio, United States of America
- Cincinnati Veterans Administration, Cincinnati, Ohio, United States of America
| | - David I. Bernstein
- Division of Immunology, Allergy, and Rheumatology, University of Cincinnati, College of Medicine, Cincinnati, Ohio, United States of America
| | - Ashley L. Devonshire
- Division of Allergy and Immunology, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, United States of America
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio, United States of America
| | - Marc E. Rothenberg
- Division of Allergy and Immunology, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, United States of America
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio, United States of America
| | - Matthew T. Weirauch
- Center for Autoimmune Genomics and Etiology, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, United States of America
- Divisions of Biomedical Informatics and Developmental Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, United States of America
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio, United States of America
| | - Leah C. Kottyan
- Division of Allergy and Immunology, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, United States of America
- Center for Autoimmune Genomics and Etiology, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, United States of America
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio, United States of America
| |
Collapse
|
29
|
Marfella R, Sardu C, D'Onofrio N, Prattichizzo F, Scisciola L, Messina V, La Grotta R, Balestrieri ML, Maggi P, Napoli C, Ceriello A, Paolisso G. Glycaemic control is associated with SARS-CoV-2 breakthrough infections in vaccinated patients with type 2 diabetes. Nat Commun 2022; 13:2318. [PMID: 35484164 PMCID: PMC9051134 DOI: 10.1038/s41467-022-30068-2] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Accepted: 04/11/2022] [Indexed: 12/15/2022] Open
Abstract
Patients with type 2 diabetes (T2D) are characterized by blunted immune responses, which are affected by glycaemic control. Whether glycaemic control influences the response to COVID-19 vaccines and the incidence of SARS-CoV-2 breakthrough infections is unknown. Here we show that poor glycaemic control, assessed as mean HbA1c in the post-vaccination period, is associated with lower immune responses and an increased incidence of SARS-CoV-2 breakthrough infections in T2D patients vaccinated with mRNA-BNT162b2. We report data from a prospective observational study enroling healthcare and educator workers with T2D receiving the mRNA-BNT162b2 vaccine in Campania (Italy) and followed for one year (5 visits, follow-up 346 ± 49 days) after one full vaccination cycle. Considering the 494 subjects completing the study, patients with good glycaemic control (HbA1c one-year mean < 7%) show a higher virus-neutralizing antibody capacity and a better CD4 + T/cytokine response, compared with those with poor control (HbA1c one-year mean ≥ 7%). The one-year mean of HbA1c is linearly associated with the incidence of breakthrough infections (Beta = 0.068; 95% confidence interval [CI], 0.032-0.103; p < 0.001). The comparison of patients with poor and good glycaemic control through Cox regression also show an increased risk for patients with poor control (adjusted hazard ratio [HR], 0.261; 95% CI, 0.097-0.700; p = 0.008). Among other factors, only smoking (HR = 0.290, CI 0.146-0.576 for non-smokers; p < 0.001) and sex (HR = 0.105, CI 0.035-0.317 for females; p < 0.001) are significantly associated with the incidence of breakthrough infections. In this study, Marfella et al. show that patients with diabetes and poor glycaemic control have a blunted response to COVID-19 vaccine and are more prone to develop breakthrough infections, with further analysis suggesting smoking and male sex as potential risk factors to get COVID-19 despite vaccination.
Collapse
Affiliation(s)
- Raffaele Marfella
- Università degli Studi della Campania "Luigi Vanvitelli", Piazza Luigi Miraglia 2, 80138, Naples, Italy. .,Mediterranea Cardiocentro, 80122, Naples, Italy.
| | - Celestino Sardu
- Università degli Studi della Campania "Luigi Vanvitelli", Piazza Luigi Miraglia 2, 80138, Naples, Italy
| | - Nunzia D'Onofrio
- Università degli Studi della Campania "Luigi Vanvitelli", Piazza Luigi Miraglia 2, 80138, Naples, Italy
| | | | - Lucia Scisciola
- Università degli Studi della Campania "Luigi Vanvitelli", Piazza Luigi Miraglia 2, 80138, Naples, Italy
| | | | | | - Maria Luisa Balestrieri
- Università degli Studi della Campania "Luigi Vanvitelli", Piazza Luigi Miraglia 2, 80138, Naples, Italy
| | - Paolo Maggi
- Università degli Studi della Campania "Luigi Vanvitelli", Piazza Luigi Miraglia 2, 80138, Naples, Italy
| | - Claudio Napoli
- Università degli Studi della Campania "Luigi Vanvitelli", Piazza Luigi Miraglia 2, 80138, Naples, Italy
| | | | - Giuseppe Paolisso
- Università degli Studi della Campania "Luigi Vanvitelli", Piazza Luigi Miraglia 2, 80138, Naples, Italy.,Mediterranea Cardiocentro, 80122, Naples, Italy
| |
Collapse
|
30
|
Nicoli F, Mantelli B, Gallerani E, Telatin V, Squarzon L, Masiero S, Gavioli R, Palù G, Barzon L, Caputo A. Effects of the age of vaccination on the humoral responses to a human papillomavirus vaccine. NPJ Vaccines 2022; 7:37. [PMID: 35292655 PMCID: PMC8924199 DOI: 10.1038/s41541-022-00458-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Accepted: 02/11/2022] [Indexed: 11/11/2022] Open
Abstract
Adult vaccination programs are receiving increasing attention however, little is known regarding the impact of age on the maintenance of the immune response. We investigated this issue in the context of a human papillomavirus (HPV) vaccination program collecting real-world data on the durability of humoral immunity in 315 female subjects stratified according to vaccination age (adolescents and adults) and sampled at early or late time points after the last vaccine dose. HPV-specific IgGs, but not memory B cells, were induced and maintained at higher levels in subjects vaccinated during adolescence. Nonetheless, antibody functions waned over time to a similar degree in adolescents and adults. To shed light on this phenomena, we analyzed quantitative and qualitative properties of lymphocytes. Similar biochemical features were observed between B-cell subsets from individuals belonging to the two age groups. Long term humoral responses toward vaccines administered at an earlier age were comparably maintained between adolescents and adults. The percentages of naïve B and CD4+ T cells were significantly higher in adolescents, and the latter directly correlated with IgG titers against 3 out of 4 HPV types. Our results indicate that age-specific HPV vaccine responsiveness is mostly due to quantitative differences of immune cell precursors rather than qualitative defects in B cells. In addition, our results indicate that adults also have a good humoral immunogenic profile, suggesting that their inclusion in catch-up programmes is desirable.
Collapse
Affiliation(s)
- Francesco Nicoli
- Department of Chemical, Pharmaceutical and Agricultural Sciences, University of Ferrara, 44121, Ferrara, Italy
- Department of Molecular Medicine, University of Padova, 35121, Padova, Italy
| | - Barbara Mantelli
- Department of Molecular Medicine, University of Padova, 35121, Padova, Italy
| | - Eleonora Gallerani
- Department of Chemical, Pharmaceutical and Agricultural Sciences, University of Ferrara, 44121, Ferrara, Italy
| | - Valentina Telatin
- Department of Molecular Medicine, University of Padova, 35121, Padova, Italy
| | - Laura Squarzon
- Department of Molecular Medicine, University of Padova, 35121, Padova, Italy
| | - Serena Masiero
- Department of Molecular Medicine, University of Padova, 35121, Padova, Italy
| | - Riccardo Gavioli
- Department of Chemical, Pharmaceutical and Agricultural Sciences, University of Ferrara, 44121, Ferrara, Italy
| | - Giorgio Palù
- Department of Molecular Medicine, University of Padova, 35121, Padova, Italy
| | - Luisa Barzon
- Department of Molecular Medicine, University of Padova, 35121, Padova, Italy
| | - Antonella Caputo
- Department of Chemical, Pharmaceutical and Agricultural Sciences, University of Ferrara, 44121, Ferrara, Italy.
- Department of Molecular Medicine, University of Padova, 35121, Padova, Italy.
| |
Collapse
|
31
|
Dassarma B, Tripathy S, Chabalala M, Matsabisa MG. Challenges in Establishing Vaccine Induced Herd Immunity through Age Specific Community Vaccinations. Aging Dis 2022; 13:29-36. [PMID: 35111360 PMCID: PMC8782562 DOI: 10.14336/ad.2021.0611] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Accepted: 06/11/2021] [Indexed: 12/24/2022] Open
Abstract
Presently, the second wave of COVID-19 pandemic is driving the world towards a devastating total failure of the healthcare system. The purpose of the review is to search for the studies reporting on the implication of herd immunity into a naïve population through age specific mass vaccination. This review is based on selected publications on the effect herd immunity to COVID 19 in communities. We searched published scientific articles, review articles, reports, published in 2020 as well as read some basic, cult publications related to establishment of indirect immunity to a population. We have focused on use of application of vaccine induced herd immunity into community to confer indirect immunity against COVID-19 and searched on electronic databases, including PubMed (http://www.pubmed.com), Scopus (http://www.scopus.com), Google Scholar (http://www.scholar.google.com), Web of Science (www.webofscience.com) and Science Direct by using key words such as Herd immunity, indirect or passive immunization, Coronavirus disease 2019 (COVID-19), severe acute respiratory syndrome, coronavirus 2 (SARS-CoV-2), and immune-technique. This review proposes the implication of mass vaccination-induced herd immunity in a population to curb the infection, and to every individual in a given population irrespective of their age.
Collapse
Affiliation(s)
- Barsha Dassarma
- Department of Pharmacology, School of Clinical Medicine, Faculty of Health Sciences, University of the Free State, Bloemfontein9300, SA
| | - Satyajit Tripathy
- Department of Pharmacology, School of Clinical Medicine, Faculty of Health Sciences, University of the Free State, Bloemfontein9300, SA
| | - Matimbha Chabalala
- Department of Pharmacology, School of Clinical Medicine, Faculty of Health Sciences, University of the Free State, Bloemfontein9300, SA
| | - Motlalepula Gilbert Matsabisa
- Department of Pharmacology, School of Clinical Medicine, Faculty of Health Sciences, University of the Free State, Bloemfontein9300, SA
| |
Collapse
|
32
|
Lee JL, Linterman MA. Mechanisms underpinning poor antibody responses to vaccines in ageing. Immunol Lett 2022; 241:1-14. [PMID: 34767859 PMCID: PMC8765414 DOI: 10.1016/j.imlet.2021.11.001] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 10/29/2021] [Accepted: 11/08/2021] [Indexed: 12/13/2022]
Abstract
Vaccines are a highly effective intervention for conferring protection against infections and reducing the associated morbidity and mortality in vaccinated individuals. However, ageing is often associated with a functional decline in the immune system that results in poor antibody production in older individuals after vaccination. A key contributing factor of this age-related decline in vaccine efficacy is the reduced size and function of the germinal centre (GC) response. GCs are specialised microstructures where B cells undergo affinity maturation and diversification of their antibody genes, before differentiating into long-lived antibody-secreting plasma cells and memory B cells. The GC response requires the coordinated interaction of many different cell types, including B cells, T follicular helper (Tfh) cells, T follicular regulatory (Tfr) cells and stromal cell subsets like follicular dendritic cells (FDCs). This review discusses how ageing affects different components of the GC reaction that contribute to its limited output and ultimately impaired antibody responses in older individuals after vaccination. An understanding of the mechanisms underpinning the age-related decline in the GC response is crucial in informing strategies to improve vaccine efficacy and extend the healthy lifespan amongst older people.
Collapse
Affiliation(s)
- Jia Le Lee
- Immunology Program, Babraham Institute, Babraham Research Campus, Cambridge CB22 3AT, UK.
| | - Michelle A Linterman
- Immunology Program, Babraham Institute, Babraham Research Campus, Cambridge CB22 3AT, UK.
| |
Collapse
|
33
|
Lorenzo EC, Torrance BL, Keilich SR, Al‐Naggar I, Harrison A, Xu M, Bartley JM, Haynes L. Senescence-induced changes in CD4 T cell differentiation can be alleviated by treatment with senolytics. Aging Cell 2022; 21:e13525. [PMID: 34962049 PMCID: PMC8761018 DOI: 10.1111/acel.13525] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 11/08/2021] [Accepted: 11/13/2021] [Indexed: 12/30/2022] Open
Abstract
Aging and senescence impact CD4 T helper cell (Th) subset differentiation during influenza infection. In the lungs of infected aged mice, there were significantly greater percentages of Th cells expressing the transcription factor FoxP3, indicative of regulatory CD4 T cells (Treg), when compared to young. TGF‐beta levels, which drive FoxP3 expression, were also higher in the bronchoalveolar lavage of aged mice and blocking TGF‐beta reduced the percentage of FoxP3+ Th in aged lungs during influenza infection. Since TGF‐beta can be the product of senescent cells, these were targeted by treatment with senolytic drugs. Treatment of aged mice with senolytics prior to influenza infection restored the differentiation of Th cells in those aged mice to a more youthful phenotype with fewer Th cells expressing FoxP3. In addition, treatment with senolytic drugs induced differentiation of aged Th toward a healing Type 2 phenotype, which promotes a return to homeostasis. These results suggest that senescent cells, via production of cytokines such as TGF‐beta, have a significant impact on Th differentiation.
Collapse
Affiliation(s)
- Erica C. Lorenzo
- UConn Center on Aging University of Connecticut School of Medicine Farmington Connecticut USA
| | - Blake L. Torrance
- UConn Center on Aging University of Connecticut School of Medicine Farmington Connecticut USA
- Department of Immunology University of Connecticut School of Medicine Farmington Connecticut USA
| | - Spencer R. Keilich
- UConn Center on Aging University of Connecticut School of Medicine Farmington Connecticut USA
- Department of Immunology University of Connecticut School of Medicine Farmington Connecticut USA
| | - Iman Al‐Naggar
- UConn Center on Aging University of Connecticut School of Medicine Farmington Connecticut USA
| | - Andrew Harrison
- Department of Immunology University of Connecticut School of Medicine Farmington Connecticut USA
| | - Ming Xu
- UConn Center on Aging University of Connecticut School of Medicine Farmington Connecticut USA
| | - Jenna M. Bartley
- UConn Center on Aging University of Connecticut School of Medicine Farmington Connecticut USA
- Department of Immunology University of Connecticut School of Medicine Farmington Connecticut USA
| | - Laura Haynes
- UConn Center on Aging University of Connecticut School of Medicine Farmington Connecticut USA
- Department of Immunology University of Connecticut School of Medicine Farmington Connecticut USA
| |
Collapse
|
34
|
Makris S, de Winde CM, Horsnell HL, Cantoral-Rebordinos JA, Finlay RE, Acton SE. Immune function and dysfunction are determined by lymphoid tissue efficacy. Dis Model Mech 2022; 15:dmm049256. [PMID: 35072206 PMCID: PMC8807573 DOI: 10.1242/dmm.049256] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Lymphoid tissue returns to a steady state once each immune response is resolved, and although this occurs multiple times throughout life, its structural integrity and functionality remain unaffected. Stromal cells orchestrate cellular interactions within lymphoid tissue, and any changes to the microenvironment can have detrimental outcomes and drive disease. A breakdown in lymphoid tissue homeostasis can lead to a loss of tissue structure and function that can cause aberrant immune responses. This Review highlights recent advances in our understanding of lymphoid tissue function and remodelling in adaptive immunity and in disease states. We discuss the functional role of lymphoid tissue in disease progression and explore the changes to lymphoid tissue structure and function driven by infection, chronic inflammatory conditions and cancer. Understanding the role of lymphoid tissues in immune responses to a wide range of pathologies allows us to take a fuller systemic view of disease progression.
Collapse
Affiliation(s)
- Spyridon Makris
- Stromal Immunology Group, MRC Laboratory for Molecular Cell Biology, University College London, Gower Street, London WC1E 6BT, UK
| | - Charlotte M. de Winde
- Department for Molecular Cell Biology and Immunology, Amsterdam UMC, location VUmc, De Boelelaan 1108, 1081 HZ Amsterdam, Netherlands
| | - Harry L. Horsnell
- Stromal Immunology Group, MRC Laboratory for Molecular Cell Biology, University College London, Gower Street, London WC1E 6BT, UK
| | - Jesús A. Cantoral-Rebordinos
- Stromal Immunology Group, MRC Laboratory for Molecular Cell Biology, University College London, Gower Street, London WC1E 6BT, UK
| | - Rachel E. Finlay
- Division of Immunology, Immunity to Infection and Respiratory Medicine, School of Biological Sciences, The University of Manchester, Manchester M13 9PL, UK
| | - Sophie E. Acton
- Stromal Immunology Group, MRC Laboratory for Molecular Cell Biology, University College London, Gower Street, London WC1E 6BT, UK
| |
Collapse
|
35
|
Cakala-Jakimowicz M, Kolodziej-Wojnar P, Puzianowska-Kuznicka M. Aging-Related Cellular, Structural and Functional Changes in the Lymph Nodes: A Significant Component of Immunosenescence? An Overview. Cells 2021; 10:cells10113148. [PMID: 34831371 PMCID: PMC8621398 DOI: 10.3390/cells10113148] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 11/08/2021] [Accepted: 11/10/2021] [Indexed: 12/11/2022] Open
Abstract
Aging affects all tissues and organs. Aging of the immune system results in the severe disruption of its functions, leading to an increased susceptibility to infections, an increase in autoimmune disorders and cancer incidence, and a decreased response to vaccines. Lymph nodes are precisely organized structures of the peripheral lymphoid organs and are the key sites coordinating innate and long-term adaptive immune responses to external antigens and vaccines. They are also involved in immune tolerance. The aging of lymph nodes results in decreased cell transport to and within the nodes, a disturbance in the structure and organization of nodal zones, incorrect location of individual immune cell types and impaired intercellular interactions, as well as changes in the production of adequate amounts of chemokines and cytokines necessary for immune cell proliferation, survival and function, impaired naïve T- and B-cell homeostasis, and a diminished long-term humoral response. Understanding the causes of these stromal and lymphoid microenvironment changes in the lymph nodes that cause the aging-related dysfunction of the immune system can help to improve long-term immune responses and the effectiveness of vaccines in the elderly.
Collapse
Affiliation(s)
- Marta Cakala-Jakimowicz
- Department of Human Epigenetics, Mossakowski Medical Research Institute, Polish Academy of Sciences, 02-106 Warsaw, Poland;
- Correspondence: (M.C.-J.); (M.P.-K.)
| | - Paulina Kolodziej-Wojnar
- Department of Human Epigenetics, Mossakowski Medical Research Institute, Polish Academy of Sciences, 02-106 Warsaw, Poland;
| | - Monika Puzianowska-Kuznicka
- Department of Human Epigenetics, Mossakowski Medical Research Institute, Polish Academy of Sciences, 02-106 Warsaw, Poland;
- Department of Geriatrics and Gerontology, Medical Centre of Postgraduate Education, 01-813 Warsaw, Poland
- Correspondence: (M.C.-J.); (M.P.-K.)
| |
Collapse
|
36
|
Budamagunta V, Foster TC, Zhou D. Cellular senescence in lymphoid organs and immunosenescence. Aging (Albany NY) 2021; 13:19920-19941. [PMID: 34382946 PMCID: PMC8386533 DOI: 10.18632/aging.203405] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Accepted: 08/02/2021] [Indexed: 02/07/2023]
Abstract
Immunosenescence is a multi-faceted phenomenon at the root of age-associated immune dysfunction. It can lead to an array of pathological conditions, including but not limited to a decreased capability to surveil and clear senescent cells (SnCs) and cancerous cells, an increased autoimmune responses leading to tissue damage, a reduced ability to tackle pathogens, and a decreased competence to illicit a robust response to vaccination. Cellular senescence is a phenomenon by which oncogene-activated, stressed or damaged cells undergo a stable cell cycle arrest. Failure to efficiently clear SnCs results in their accumulation in an organism as it ages. SnCs actively secrete a myriad of molecules, collectively called senescence-associated secretory phenotype (SASP), which are factors that cause dysfunction in the neighboring tissue. Though both cellular senescence and immunosenescence have been studied extensively and implicated in various pathologies, their relationship has not been greatly explored. In the wake of an ongoing pandemic (COVID-19) that disproportionately affects the elderly, immunosenescence as a function of age has become a topic of great importance. The goal of this review is to explore the role of cellular senescence in age-associated lymphoid organ dysfunction and immunosenescence, and provide a framework to explore therapies to rejuvenate the aged immune system.
Collapse
Affiliation(s)
- Vivekananda Budamagunta
- Genetics and Genomics Graduate Program, Genetics Institute, College of Medicine, University of Florida, Gainesville, FL 32610, USA.,Department of Neuroscience, McKnight Brain Institute, College of Medicine, University of Florida, Gainesville, FL 32610, USA.,Department of Pharmacodynamics, College of Pharmacy, University of Florida, Gainesville, FL 32610, USA
| | - Thomas C Foster
- Genetics and Genomics Graduate Program, Genetics Institute, College of Medicine, University of Florida, Gainesville, FL 32610, USA.,Department of Neuroscience, McKnight Brain Institute, College of Medicine, University of Florida, Gainesville, FL 32610, USA
| | - Daohong Zhou
- Genetics and Genomics Graduate Program, Genetics Institute, College of Medicine, University of Florida, Gainesville, FL 32610, USA.,Department of Pharmacodynamics, College of Pharmacy, University of Florida, Gainesville, FL 32610, USA
| |
Collapse
|
37
|
Regulatory T cells and vaccine effectiveness in older adults. Challenges and prospects. Int Immunopharmacol 2021; 96:107761. [PMID: 34162139 DOI: 10.1016/j.intimp.2021.107761] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2021] [Revised: 04/24/2021] [Accepted: 05/04/2021] [Indexed: 12/21/2022]
Abstract
Since the discovery of lymphocytes with immunosuppressive activity, increasing interest has arisen in their possible influence on the immune response induced by vaccines. Regulatory T cells (Tregs) are essential for maintaining peripheral tolerance, preventing autoimmune diseases, and limiting chronic inflammatory diseases. However, they also limit beneficial immune responses by suppressing anti-infectious and anti-tumor immunity. Mounting evidence suggests that Tregs are involved, at least in part, in the low effectiveness of immunization against various diseases where it has been difficult to obtain protective vaccines. Interestingly, increased activity of Tregs is associated with aging, suggesting a key role for these cells in the lower vaccine effectiveness observed in older people. In this review, we analyze the impact of Tregs on vaccination, with a focus on older adults. Finally, we address an overview of current strategies for Tregs modulation with potential application to improve the effectiveness of future vaccines targeting older populations.
Collapse
|
38
|
Cinti I, Denton AE. Lymphoid stromal cells-more than just a highway to humoral immunity. OXFORD OPEN IMMUNOLOGY 2021; 2:iqab011. [PMID: 36845565 PMCID: PMC9914513 DOI: 10.1093/oxfimm/iqab011] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 05/17/2021] [Accepted: 05/18/2021] [Indexed: 12/30/2022] Open
Abstract
The generation of high-affinity long-lived antibody responses is dependent on the differentiation of plasma cells and memory B cells, which are themselves the product of the germinal centre (GC) response. The GC forms in secondary lymphoid organs in response to antigenic stimulation and is dependent on the coordinated interactions between many types of leucocytes. These leucocytes are brought together on an interconnected network of specialized lymphoid stromal cells, which provide physical and chemical guidance to immune cells that are essential for the GC response. In this review we will highlight recent advancements in lymphoid stromal cell immunobiology and their role in regulating the GC, and discuss the contribution of lymphoid stromal cells to age-associated immunosenescence.
Collapse
Affiliation(s)
- Isabella Cinti
- Department of Immunology and Inflammation, Centre for Inflammatory Disease, Imperial College London W12 0NN, UK
| | - Alice E Denton
- Department of Immunology and Inflammation, Centre for Inflammatory Disease, Imperial College London W12 0NN, UK,Correspondence address. Alice E. Denton, Department of Immunology and Inflammation, Centre for Inflammatory Disease, Imperial College, London W12 0NN, UK. Tel:+44 (0)20 3313 8213. E-mail:
| |
Collapse
|
39
|
Bellomo A, Gentek R, Golub R, Bajénoff M. Macrophage-fibroblast circuits in the spleen. Immunol Rev 2021; 302:104-125. [PMID: 34028841 DOI: 10.1111/imr.12979] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 04/30/2021] [Accepted: 04/30/2021] [Indexed: 12/22/2022]
Abstract
Macrophages are an integral part of all organs in the body, where they contribute to immune surveillance, protection, and tissue-specific homeostatic functions. This is facilitated by so-called niches composed of macrophages and their surrounding stroma. These niches structurally anchor macrophages and provide them with survival factors and tissue-specific signals that imprint their functional identity. In turn, macrophages ensure appropriate functioning of the niches they reside in. Macrophages thus form reciprocal, mutually beneficial circuits with their cellular niches. In this review, we explore how this concept applies to the spleen, a large secondary lymphoid organ whose primary functions are to filter the blood and regulate immunity. We first outline the splenic micro-anatomy, the different populations of splenic fibroblasts and macrophages and their respective contribution to protection of and key physiological processes occurring in the spleen. We then discuss firmly established and potential cellular circuits formed by splenic macrophages and fibroblasts, with an emphasis on the molecular cues underlying their crosstalk and their relevance to splenic functionality. Lastly, we conclude by considering how these macrophage-fibroblast circuits might be impaired by aging, and how understanding these changes might help identify novel therapeutic avenues with the potential of restoring splenic functions in the elderly.
Collapse
Affiliation(s)
- Alicia Bellomo
- CIRI, Inserm, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, École Normale Supérieure de Lyon, Univ Lyon, Lyon, France
| | - Rebecca Gentek
- Centre for Inflammation Research & Centre for Reproductive Health, The Queen's Medical Research Institute, University of Edinburgh, Edinburgh, UK
| | - Rachel Golub
- Inserm U1223, Institut Pasteur, Paris, France.,Lymphopoiesis Unit, Institut Pasteur, Paris, France
| | - Marc Bajénoff
- Aix Marseille Univ, CNRS, INSERM, CIML, Marseille, France
| |
Collapse
|
40
|
Galletti JG, de Paiva CS. The ocular surface immune system through the eyes of aging. Ocul Surf 2021; 20:139-162. [PMID: 33621658 PMCID: PMC8113112 DOI: 10.1016/j.jtos.2021.02.007] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 02/04/2021] [Accepted: 02/16/2021] [Indexed: 02/06/2023]
Abstract
Since the last century, advances in healthcare, housing, and education have led to an increase in life expectancy. Longevity is accompanied by a higher prevalence of age-related diseases, such as cancer, autoimmunity, diabetes, and infection, and part of this increase in disease incidence relates to the significant changes that aging brings about in the immune system. The eye is not spared by aging either, presenting with age-related disorders of its own, and interestingly, many of these diseases have immune pathophysiology. Being delicate organs that must be exposed to the environment in order to capture light, the eyes are endowed with a mucosal environment that protects them, the so-called ocular surface. As in other mucosal sites, immune responses at the ocular surface need to be swift and potent to eliminate threats but are at the same time tightly controlled to prevent excessive inflammation and bystander damage. This review will detail how aging affects the mucosal immune response of the ocular surface as a whole and how this process relates to the higher incidence of ocular surface disease in the elderly.
Collapse
Affiliation(s)
- Jeremias G Galletti
- Innate Immunity Laboratory, Institute of Experimental Medicine (IMEX), CONICET-National Academy of Medicine, Buenos Aires, Argentina.
| | - Cintia S de Paiva
- Ocular Surface Center, Cullen Eye Institute, Department of Ophthalmology, Baylor College of Medicine, Houston, TX, 77030, USA.
| |
Collapse
|
41
|
Martinez F, Novarino J, Mejía JE, Fazilleau N, Aloulou M. Ageing of T-dependent B cell responses. Immunol Lett 2021; 233:97-103. [PMID: 33811941 DOI: 10.1016/j.imlet.2021.03.012] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Revised: 03/24/2021] [Accepted: 03/29/2021] [Indexed: 12/16/2022]
Abstract
The human immune system is in continuous interaction with environmental factors (pathogens, exercise, stress, pollutants, diet, vaccines, and therapeutics) that condition its efficiency by promoting or moderating multiple immune mechanisms. While the deleterious impact of external factors can be avoided or limited, the immune system itself grows weaker with age. Immune cells persist in the elderly, and the observed decline of cellular immunity is related to cellular senescence. Immunosenescence, which affects both T and B cells, erodes lymphocyte-dependent responses to vaccines and pathogens. Germinal centers (GCs), the organized lymphoid structures where B cells engage in affinity maturation, are regulated by follicular helper (Tfh) and follicular regulatory (Tfr) T cells, the major T cell components of GCs. This review discusses how age-related changes affect Tfh and Tfr cells as key components of B cell immunity, and how they ultimately shape the response of the ageing immune system to vaccines and infectious challenges.
Collapse
Affiliation(s)
- Fanny Martinez
- Infinity, Toulouse Institute for Infectious and Inflammatory Diseases, University of Toulouse, Inserm U1291, CNRS U5051, Toulouse, France
| | - Julien Novarino
- Infinity, Toulouse Institute for Infectious and Inflammatory Diseases, University of Toulouse, Inserm U1291, CNRS U5051, Toulouse, France
| | - José Enrique Mejía
- Infinity, Toulouse Institute for Infectious and Inflammatory Diseases, University of Toulouse, Inserm U1291, CNRS U5051, Toulouse, France
| | - Nicolas Fazilleau
- Infinity, Toulouse Institute for Infectious and Inflammatory Diseases, University of Toulouse, Inserm U1291, CNRS U5051, Toulouse, France.
| | - Meryem Aloulou
- Infinity, Toulouse Institute for Infectious and Inflammatory Diseases, University of Toulouse, Inserm U1291, CNRS U5051, Toulouse, France.
| |
Collapse
|
42
|
A booster dose enhances immunogenicity of the COVID-19 vaccine candidate ChAdOx1 nCoV-19 in aged mice. MED 2021; 2:243-262.e8. [PMID: 33521747 PMCID: PMC7833318 DOI: 10.1016/j.medj.2020.12.006] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Revised: 11/20/2020] [Accepted: 12/02/2020] [Indexed: 01/10/2023]
Abstract
BACKGROUND The spread of SARS-CoV-2 has caused a worldwide pandemic that has affected almost every aspect of human life. The development of an effective COVID-19 vaccine could limit the morbidity and mortality caused by infection and may enable the relaxation of social-distancing measures. Age is one of the most significant risk factors for poor health outcomes after SARS-CoV-2 infection; therefore, it is desirable that any new vaccine candidates elicit a robust immune response in older adults. METHODS Here, we use in-depth immunophenotyping to characterize the innate and adaptive immune response induced upon intramuscular administration of the adenoviral vectored ChAdOx1 nCoV-19 (AZD-1222) COVID-19 vaccine candidate in mice. FINDINGS A single vaccination generates spike-specific Th1 cells, Th1-like Foxp3+ regulatory T cells, polyfunctional spike-specific CD8+ T cells. and granzyme-B-producing CD8 effectors. Spike-specific IgG and IgM are generated from both the early extrafollicular antibody response and the T follicular helper cell-supported germinal center reaction, which is associated with the production of virus-neutralizing antibodies. A single dose of this vaccine generated a similar type of immune response in aged mice but of a reduced magnitude than in younger mice. We report that a second dose enhances the immune response to this vaccine in aged mice. CONCLUSIONS This study shows that ChAdOx1 nCoV-19 induces both cellular and humoral immunity in adult and aged mice and suggests a prime-boost strategy is a rational approach to enhance immunogenicity in older persons. FUNDING This study was supported by BBSRC, Lister institute of Preventative Medicine, EPSRC VaxHub, and Innovate UK.
Collapse
|
43
|
Webb LMC, Fra‐Bido S, Innocentin S, Matheson LS, Attaf N, Bignon A, Novarino J, Fazilleau N, Linterman MA. Ageing promotes early T follicular helper cell differentiation by modulating expression of RBPJ. Aging Cell 2021; 20:e13295. [PMID: 33387451 PMCID: PMC7811847 DOI: 10.1111/acel.13295] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2020] [Revised: 11/17/2020] [Accepted: 12/05/2020] [Indexed: 12/12/2022] Open
Abstract
Ageing profoundly changes our immune system and is thought to be a driving factor in the morbidity and mortality associated with infectious disease in older people. We have previously shown that the impaired immunity to vaccination that occurs in aged individuals is partly attributed to the effect of age on T follicular helper (Tfh) cell formation. In this study, we examined how age intrinsically affects Tfh cell formation in both mice and humans. We show increased formation of Tfh precursors (pre-Tfh) but no associated increase in germinal centre (GC)-Tfh cells in aged mice, suggesting age-driven promotion of only early Tfh cell differentiation. Mechanistically, we show that ageing alters TCR signalling which drives expression of the Notch-associated transcription factor, RBPJ. Genetic or chemical modulation of RBPJ or Notch rescues this age-associated early Tfh cell differentiation, and increased intrinsic Notch activity recapitulates this phenomenon in younger mice. Our data offer mechanistic insight into the age-induced changes in T-cell activation that affects the differentiation and ultimately the function of effector T cells.
Collapse
Affiliation(s)
- Louise M. C. Webb
- Laboratory of Lymphocyte Signalling and DevelopmentBabraham InstituteBabrahamUK
| | - Sigrid Fra‐Bido
- Laboratory of Lymphocyte Signalling and DevelopmentBabraham InstituteBabrahamUK
| | - Silvia Innocentin
- Laboratory of Lymphocyte Signalling and DevelopmentBabraham InstituteBabrahamUK
| | - Louise S. Matheson
- Laboratory of Lymphocyte Signalling and DevelopmentBabraham InstituteBabrahamUK
| | - Noudjoud Attaf
- Toulouse Institute for Infectious and Inflammatory Diseases (Infinity)Inserm U1291University of ToulouseToulouse, FCNRS U5282France
| | - Alexandre Bignon
- Laboratory of Lymphocyte Signalling and DevelopmentBabraham InstituteBabrahamUK
| | - Julien Novarino
- Toulouse Institute for Infectious and Inflammatory Diseases (Infinity)Inserm U1291University of ToulouseToulouse, FCNRS U5282France
| | - Nicolas Fazilleau
- Toulouse Institute for Infectious and Inflammatory Diseases (Infinity)Inserm U1291University of ToulouseToulouse, FCNRS U5282France
| | | |
Collapse
|
44
|
Moskalec OV. Characteristics of the Immunoresponse in Elderly People and Autoimmunity. ADVANCES IN GERONTOLOGY 2020. [DOI: 10.1134/s2079057020040153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
45
|
Quan Y, Liang F, Wu D, Yao X, Hu Z, Zhu Y, Chen Y, Wu A, Tang D, Huang B, Xu R, Lyu Z, Yan Q, Luo L, Ning Z, Li Y, Xiong J. Blood Cell DNA Methylation of Aging-Related Ubiquitination Gene DZIP3 Can Predict the Onset of Early Stage Colorectal Cancer. Front Oncol 2020; 10:544330. [PMID: 33330022 PMCID: PMC7729090 DOI: 10.3389/fonc.2020.544330] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2020] [Accepted: 10/28/2020] [Indexed: 12/27/2022] Open
Abstract
There is a body of evidence that the aging immune system is linked to cancer. In this study, with aging- and immune-related DNA methylation data, we investigated the DNA methylation regulation changes in promoters with other regions of genes during aging and their association with the immune-cell proportion in the circulating whole blood of individuals. The analyses for aging- and CD4+ T cell proportion-derived differential genes showed that ubiquitination plays an important role in the aging immune system and tumorigenesis. Therefore, starting from a set of pre-annotated ubiquitination genes, we found that among the differentially ubiquitinated genes, DZIP3, an E3 ubiquitin ligase with no reports on its function in immune cells and tumorigenesis, was significantly associated with both aging (P-value = 3.86e-06) and CD4+ T cell proportion (P-value = 1.97e-05) in circulating blood. By collecting a cohort of 100 colon cancer patients and 50 healthy individuals, we validated that the 1st exon DNA methylation of DZIP3 could predict the onset of early stage (AUC = 0.833, OR = 8.82) and all pTNM stages of colorectal cancer (AUC = 0.782, OR = 5.70). Thus, the epigenetically regulated ubiquitination machine plays an important role in immune aging and tumorigenesis.
Collapse
Affiliation(s)
- Yuan Quan
- School of Computer Science and Technology, Harbin Institute of Technology Shenzhen Graduate School, Shenzhen, China
- Lab of Epigenetics and Advanced Health Technology, Space Science and Technology Institute (Shenzhen), Shenzhen, China
| | - Fengji Liang
- Lab of Epigenetics and Advanced Health Technology, Space Science and Technology Institute (Shenzhen), Shenzhen, China
- State Key Laboratory of Space Medicine Fundamentals and Application, China Astronaut Research and Training Center, Beijing, China
| | - Deqing Wu
- Department of General Surgery, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Xueqing Yao
- Department of General Surgery, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Zhihuang Hu
- Department of Medical Oncology, Fudan University Shanghai Cancer Center, Shanghai, China
| | - Yuexing Zhu
- Lab of Epigenetics and Advanced Health Technology, Space Science and Technology Institute (Shenzhen), Shenzhen, China
| | - Ying Chen
- Lab of Epigenetics and Advanced Health Technology, Space Science and Technology Institute (Shenzhen), Shenzhen, China
| | - Andong Wu
- Lab of Epigenetics and Advanced Health Technology, Space Science and Technology Institute (Shenzhen), Shenzhen, China
| | - Danian Tang
- Gastro-Intestinal Surgery Department, Beijing Hospital, Beijing, China
| | - Bingyang Huang
- Department of Cardiothoracic Surgery, Strategic Support Force Medical Center of PLA. No. 9, Beijing, China
| | - Ruifeng Xu
- School of Computer Science and Technology, Harbin Institute of Technology Shenzhen Graduate School, Shenzhen, China
| | - Zejian Lyu
- Department of General Surgery, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Qian Yan
- Department of General Surgery, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Lang Luo
- Shenzhen Taikontek Health Technology Co., Ltd, Shenzhen, China
| | - Zhengzhi Ning
- Shenzhen Taikontek Health Technology Co., Ltd, Shenzhen, China
| | - Yong Li
- Department of General Surgery, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Jianghui Xiong
- Lab of Epigenetics and Advanced Health Technology, Space Science and Technology Institute (Shenzhen), Shenzhen, China
- State Key Laboratory of Space Medicine Fundamentals and Application, China Astronaut Research and Training Center, Beijing, China
| |
Collapse
|
46
|
Hassan QN, Queen NJ, Cao L. Regulation of aging and cancer by enhanced environmental activation of a hypothalamic-sympathoneural-adipocyte axis. Transl Cancer Res 2020; 9:5687-5699. [PMID: 33134111 PMCID: PMC7595574 DOI: 10.21037/tcr.2020.02.39] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Accepted: 02/11/2020] [Indexed: 12/20/2022]
Abstract
Social and environmental factors impact cancer and energy balance profoundly. Years ago, our lab established the existence of a novel brain-fat interaction we termed the "hypothalamic-sympathoneural-adipocyte (HSA) axis", through which complex environmental stimuli provided by an enriched environment regulate body composition, energy balance, and development of cancer. We have spent a significant portion of the past decade to further characterize the broad health benefits of an enriched environment (for example, leanness, enhanced immune function, and cancer resistance), and to identify mediators in the brain and periphery along the HSA axis. This review summarizes our recent work regarding the interface between endocrinology, immunology, cancer biology, aging, and neuroscience. We will discuss the interplay between these systemic phenomena and how the HSA axis can be targeted for regulation of cancer and aging.
Collapse
Affiliation(s)
- Quais N. Hassan
- Department of Cancer Biology and Genetics, College of Medicine, The Ohio State University, Columbus, OH, USA
- The Ohio State University Comprehensive Cancer Center, Columbus, OH, USA
- Medical Scientist Training Program, College of Medicine, The Ohio State University, Columbus, OH, USA
| | - Nicholas J. Queen
- Department of Cancer Biology and Genetics, College of Medicine, The Ohio State University, Columbus, OH, USA
- The Ohio State University Comprehensive Cancer Center, Columbus, OH, USA
| | - Lei Cao
- Department of Cancer Biology and Genetics, College of Medicine, The Ohio State University, Columbus, OH, USA
- The Ohio State University Comprehensive Cancer Center, Columbus, OH, USA
| |
Collapse
|
47
|
Masters AR, Hall A, Bartley JM, Keilich SR, Lorenzo EC, Jellison ER, Puddington L, Haynes L. Assessment of Lymph Node Stromal Cells as an Underlying Factor in Age-Related Immune Impairment. J Gerontol A Biol Sci Med Sci 2020; 74:1734-1743. [PMID: 30721932 DOI: 10.1093/gerona/glz029] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Accepted: 01/29/2019] [Indexed: 01/04/2023] Open
Abstract
Aging negatively impacts immunity, resulting in inefficient responses to vaccinations and infections. Fibroblastic reticular cells (FRCs) are the major stromal cell subset in lymph nodes (LNs) and play an intricate role in the orchestration and control of adaptive immune responses. Although stromal cells have a major impact on immune responses, the impact of aging on LN stromal cells remains unclear. Quantitative analysis of LN stromal cells by flow cytometry revealed that there are no significant differences in the number of stromal cells in young and aged LN at steady state but after influenza infection aged FRCs have delayed expansion as a result of reduced proliferation. Aged LNs also produce reduced levels of homeostatic chemokines, which correlates with reduced homing of naive T cells. Image analysis reveals that young and aged T-cell zone FRCs have similar morphology at steady state and after infection. Furthermore, aged FRCs did not appear to be a contributing factor in the reduced proliferation of young T cells transferred into aged LNs after influenza infection. These results demonstrate that aging alters LN stromal cell response to challenge and these age-related changes may be an underlying contributor to impaired immune responses in the elderly people.
Collapse
Affiliation(s)
- April R Masters
- Department of Immunology, University of Connecticut School of Medicine, Farmington.,Center on Aging, University of Connecticut School of Medicine, Farmington
| | - Alexxus Hall
- University of Saint Joseph, West Hartford, Connecticut
| | - Jenna M Bartley
- Department of Immunology, University of Connecticut School of Medicine, Farmington.,Center on Aging, University of Connecticut School of Medicine, Farmington
| | - Spencer R Keilich
- Department of Immunology, University of Connecticut School of Medicine, Farmington.,Center on Aging, University of Connecticut School of Medicine, Farmington
| | - Erica C Lorenzo
- Department of Immunology, University of Connecticut School of Medicine, Farmington.,Center on Aging, University of Connecticut School of Medicine, Farmington
| | - Evan R Jellison
- Department of Immunology, University of Connecticut School of Medicine, Farmington
| | - Lynn Puddington
- Department of Immunology, University of Connecticut School of Medicine, Farmington
| | - Laura Haynes
- Department of Immunology, University of Connecticut School of Medicine, Farmington.,Center on Aging, University of Connecticut School of Medicine, Farmington
| |
Collapse
|
48
|
Frasca D, Blomberg BB, Garcia D, Keilich SR, Haynes L. Age-related factors that affect B cell responses to vaccination in mice and humans. Immunol Rev 2020; 296:142-154. [PMID: 32484934 DOI: 10.1111/imr.12864] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2020] [Revised: 04/16/2020] [Accepted: 04/27/2020] [Indexed: 12/12/2022]
Abstract
Aging significantly changes the ability to respond to vaccinations and infections. In this review, we summarize published results on age-related changes in response to infection with the influenza virus and on the factors known to increase influenza risk infection leading to organ failure and death. We also summarize how aging affects the response to the influenza vaccine with a special focus on B cells, which have been shown to be less responsive in the elderly. We show the cellular and molecular mechanisms contributing to the dysfunctional immune response of the elderly to the vaccine against influenza. These include a defective interaction of helper T cells (CD4+) with B cells in germinal centers, changes in the microenvironment, and the generation of immune cells with a senescence-associated phenotype. Finally, we discuss the effects of aging on metabolic pathways and we show how metabolic complications associated with aging lead to immune dysfunction.
Collapse
Affiliation(s)
- Daniela Frasca
- Department of Microbiology and Immunology, University of Miami Miller School of Medicine, Miami, FL, USA.,Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Bonnie B Blomberg
- Department of Microbiology and Immunology, University of Miami Miller School of Medicine, Miami, FL, USA.,Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Denisse Garcia
- Department of Microbiology and Immunology, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Spencer R Keilich
- UConn Center on Aging, Department of Immunology, University of Connecticut School of Medicine, Farmington, CT, USA
| | - Laura Haynes
- UConn Center on Aging, Department of Immunology, University of Connecticut School of Medicine, Farmington, CT, USA
| |
Collapse
|
49
|
Mao CC, Cai X. Nanomaterials and Aging. Curr Stem Cell Res Ther 2020; 16:57-65. [PMID: 32321409 DOI: 10.2174/1574888x15666200422103916] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2019] [Revised: 01/07/2020] [Accepted: 01/16/2020] [Indexed: 02/08/2023]
Abstract
As the proportion of the elderly population increases, more and more people suffer from aging-related diseases. Even if aging is inevitable, prolonging the time of healthy aging, delaying the progression of aging-related diseases, and the incidence of morbidity can greatly alleviate the pressure on individuals and society. Current research and exploration in the field of materials related to aging are expanding tremendously. Here, we present a summary of recent research in the field of nanomaterials relevant to aging. Some nanomaterials, such as silica nanomaterials (NMs) and carbon nanotubes, cause damage to the cells similar to aging processes. Other nanomaterials such as fullerenes and metalbased nanomaterials can protect the body from endogenous and exogenous harmful substances such as ROS by virtue of their excellent reducing properties. Another new type of nucleic acid nanomaterial, tetrahedral framework nucleic acids, works effectively against cell damage. This material selectively clears existing senescent cells in the tissue and thus prevents the development of the chronic inflammatory environment caused by senescent cells secreting senescence-associated secretory phenotype to the surroundings. We believe that nanomaterials have tremendous potential to advance the understanding and treatment of aging-related disorders, and today's research only represents the beginning stages.
Collapse
Affiliation(s)
- Chen-Chen Mao
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Xiaoxiao Cai
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| |
Collapse
|
50
|
Stebegg M, Bignon A, Hill DL, Silva-Cayetano A, Krueger C, Vanderleyden I, Innocentin S, Boon L, Wang J, Zand MS, Dooley J, Clark J, Liston A, Carr E, Linterman MA. Rejuvenating conventional dendritic cells and T follicular helper cell formation after vaccination. eLife 2020; 9:52473. [PMID: 32204792 PMCID: PMC7093110 DOI: 10.7554/elife.52473] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2019] [Accepted: 03/12/2020] [Indexed: 12/22/2022] Open
Abstract
Germinal centres (GCs) are T follicular helper cell (Tfh)-dependent structures that form in response to vaccination, producing long-lived antibody secreting plasma cells and memory B cells that protect against subsequent infection. With advancing age the GC and Tfh cell response declines, resulting in impaired humoral immunity. We sought to discover what underpins the poor Tfh cell response in ageing and whether it is possible to correct it. Here, we demonstrate that older people and aged mice have impaired Tfh cell differentiation upon vaccination. This deficit is preceded by poor activation of conventional dendritic cells type 2 (cDC2) due to reduced type 1 interferon signalling. Importantly, the Tfh and cDC2 cell response can be boosted in aged mice by treatment with a TLR7 agonist. This demonstrates that age-associated defects in the cDC2 and Tfh cell response are not irreversible and can be enhanced to improve vaccine responses in older individuals.
Collapse
Affiliation(s)
- Marisa Stebegg
- Laboratory of Lymphocyte Signalling and Development, Babraham Institute, Cambridge, United Kingdom
| | - Alexandre Bignon
- Laboratory of Lymphocyte Signalling and Development, Babraham Institute, Cambridge, United Kingdom
| | - Danika Lea Hill
- Laboratory of Lymphocyte Signalling and Development, Babraham Institute, Cambridge, United Kingdom
| | - Alyssa Silva-Cayetano
- Laboratory of Lymphocyte Signalling and Development, Babraham Institute, Cambridge, United Kingdom
| | - Christel Krueger
- Epigenetics Programme, Babraham Institute, Cambridge, United Kingdom
| | - Ine Vanderleyden
- Laboratory of Lymphocyte Signalling and Development, Babraham Institute, Cambridge, United Kingdom
| | - Silvia Innocentin
- Laboratory of Lymphocyte Signalling and Development, Babraham Institute, Cambridge, United Kingdom
| | | | - Jiong Wang
- Division of Nephrology, Department of Medicine and Clinical and Translational Science Institute, University of Rochester Medical Center, Rochester, United States
| | - Martin S Zand
- Division of Nephrology, Department of Medicine and Clinical and Translational Science Institute, University of Rochester Medical Center, Rochester, United States
| | - James Dooley
- Autoimmune Genetics Laboratory, VIB and University of Leuven, Leuven, Belgium
| | - Jonathan Clark
- Biological Chemistry, Babraham Institute, Cambridge, United Kingdom
| | - Adrian Liston
- Laboratory of Lymphocyte Signalling and Development, Babraham Institute, Cambridge, United Kingdom
| | - Edward Carr
- Laboratory of Lymphocyte Signalling and Development, Babraham Institute, Cambridge, United Kingdom.,Department of Medicine, University of Cambridge, Cambridge, United Kingdom
| | - Michelle A Linterman
- Laboratory of Lymphocyte Signalling and Development, Babraham Institute, Cambridge, United Kingdom
| |
Collapse
|