1
|
Azargoonjahromi A. A systematic review of the association between zinc and anxiety. Nutr Rev 2024; 82:612-621. [PMID: 37364014 DOI: 10.1093/nutrit/nuad076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/28/2023] Open
Abstract
CONTEXT The incidence of anxiety, which stems from both intrinsic and extrinsic factors, has been increasing worldwide. Various methods by which it can be treated or prevented have been reported thus far. One of the most popular and effective treatments is supplementation therapy. Zinc, which is an essential nutrient found in various plants, animal foods, and supplements, has been shown to be a potential nutrient in anxiety reduction by acting on γ-aminobutyric acid (GABA), glutamatergic, serotonergic, neurogenesis, and immune systems. It can also influence important receptors, such as GPR39. Thus, zinc has received considerable attention with respect to its potential role as a therapeutic or detrimental factor for anxiety; yet, the available evidence needs to be analyzed systematically to reach a convergent conclusion. OBJECTIVE The objective was to systematically review any potential connection between adult human anxiety and zinc intake. DATA SOURCES AND EXTRACTION Nine original human studies, of which 2 assessed the relationship between zinc consumption and anxiety (based on a questionnaire) and 7 assessed the relationship between serum zinc levels and anxiety, were included based on specific selection criteria. Studies that had been written in English and published in peer-reviewed publications with no restrictions on the date of publication were searched in the Google Scholar and PubMed databases. This project was also reported according to the PRISMA guidelines. DATA ANALYSIS As per the studies analyzed in this review, there was a noticeable relationship between serum zinc levels and anxiety, which means that patients with anxiety have lower levels of zinc in their serum, as compared with healthy individuals. Furthermore, zinc consumption was inversely associated with anxiety. CONCLUSION The results provide plausible evidence for the positive role of zinc in the treatment of patients afflicted with anxiety, albeit with some limitations.
Collapse
|
2
|
Krall RF, Tzounopoulos T, Aizenman E. The Function and Regulation of Zinc in the Brain. Neuroscience 2021; 457:235-258. [PMID: 33460731 DOI: 10.1016/j.neuroscience.2021.01.010] [Citation(s) in RCA: 61] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Revised: 01/05/2021] [Accepted: 01/08/2021] [Indexed: 12/31/2022]
Abstract
Nearly sixty years ago Fredrich Timm developed a histochemical technique that revealed a rich reserve of free zinc in distinct regions of the brain. Subsequent electron microscopy studies in Timm- stained brain tissue found that this "labile" pool of cellular zinc was highly concentrated at synaptic boutons, hinting a possible role for the metal in synaptic transmission. Although evidence for activity-dependent synaptic release of zinc would not be reported for another twenty years, these initial findings spurred decades of research into zinc's role in neuronal function and revealed a diverse array of signaling cascades triggered or regulated by the metal. Here, we delve into our current understanding of the many roles zinc plays in the brain, from influencing neurotransmission and sensory processing, to activating both pro-survival and pro-death neuronal signaling pathways. Moreover, we detail the many mechanisms that tightly regulate cellular zinc levels, including metal binding proteins and a large array of zinc transporters.
Collapse
Affiliation(s)
- Rebecca F Krall
- Department of Neurobiology, University of Pittsburgh School of Medicine, USA; Department of Otolaryngology, University of Pittsburgh School of Medicine, USA; Pittsburgh Hearing Research Center, University of Pittsburgh School of Medicine, USA; Pittsburgh Institute for Neurodegenerative Diseases, University of Pittsburgh School of Medicine, USA
| | - Thanos Tzounopoulos
- Department of Otolaryngology, University of Pittsburgh School of Medicine, USA; Pittsburgh Hearing Research Center, University of Pittsburgh School of Medicine, USA.
| | - Elias Aizenman
- Department of Neurobiology, University of Pittsburgh School of Medicine, USA; Pittsburgh Hearing Research Center, University of Pittsburgh School of Medicine, USA; Pittsburgh Institute for Neurodegenerative Diseases, University of Pittsburgh School of Medicine, USA.
| |
Collapse
|
3
|
Kouvaros S, Kumar M, Tzounopoulos T. Synaptic Zinc Enhances Inhibition Mediated by Somatostatin, but not Parvalbumin, Cells in Mouse Auditory Cortex. Cereb Cortex 2020; 30:3895-3909. [PMID: 32090251 DOI: 10.1093/cercor/bhaa005] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Revised: 12/23/2019] [Accepted: 01/06/2020] [Indexed: 11/13/2022] Open
Abstract
Cortical inhibition is essential for brain activity and behavior. Yet, the mechanisms that modulate cortical inhibition and their impact on sensory processing remain less understood. Synaptically released zinc, a neuromodulator released by cortical glutamatergic synaptic vesicles, has emerged as a powerful modulator of sensory processing and behavior. Despite the puzzling finding that the vesicular zinc transporter (ZnT3) mRNA is expressed in cortical inhibitory interneurons, the actions of synaptic zinc in cortical inhibitory neurotransmission remain unknown. Using in vitro electrophysiology and optogenetics in mouse brain slices containing the layer 2/3 (L2/3) of auditory cortex, we discovered that synaptic zinc increases the quantal size of inhibitory GABAergic neurotransmission mediated by somatostatin (SOM)- but not parvalbumin (PV)-expressing neurons. Using two-photon imaging in awake mice, we showed that synaptic zinc is required for the effects of SOM- but not PV-mediated inhibition on frequency tuning of principal neurons. Thus, cell-specific zinc modulation of cortical inhibition regulates frequency tuning.
Collapse
Affiliation(s)
- Stylianos Kouvaros
- Department of Otolaryngology, Pittsburgh Hearing Research Center, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Manoj Kumar
- Department of Otolaryngology, Pittsburgh Hearing Research Center, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Thanos Tzounopoulos
- Department of Otolaryngology, Pittsburgh Hearing Research Center, University of Pittsburgh, Pittsburgh, PA 15261, USA
| |
Collapse
|
4
|
Shi Y, Li Y, Yin J, Hu H, Xue M, Li X, Cheng W, Wang Y, Li X, Wang Y, Tan J, Yan S. A novel sympathetic neuronal GABAergic signalling system regulates NE release to prevent ventricular arrhythmias after acute myocardial infarction. Acta Physiol (Oxf) 2019; 227:e13315. [PMID: 31116911 PMCID: PMC6813916 DOI: 10.1111/apha.13315] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2018] [Revised: 05/09/2019] [Accepted: 05/16/2019] [Indexed: 11/30/2022]
Abstract
AIM Overactivation of the sympathetic nerve may lead to severe ventricular arrhythmias (VAs) after myocardial infarction (MI). Thus, targeting sympathetic nerve activity is an effective strategy to prevent VAs clinically. The superior cervical ganglion (SCG), the extracardiac sympathetic ganglion innervating cardiac muscles, has been found to have a GABAergic signalling system, the physiological significance of which is obscure. We aimed to explore the functional significance of SCG post MI and whether the GABAergic signal system is involved in the process. METHODS Adult male Sprague-Dawley rats were divided into seven different groups. Rats in the MI groups underwent ligation of the left anterior descending coronary artery. All animals were used for electrophysiological testing, renal sympathetic nerve activity (RSNA) testing, and ELISA. Primary SCG sympathetic neurons were used for the in vitro study. RESULTS The GABAA receptor agonist muscimol significantly decreased the ATP-induced increase in intracellular Ca2+ (P < 0.05). GABA treatment in MI rats significantly attenuated the level of serum and cardiac norepinephrine (NE; P < 0.05). Sympathetic activity and inducible VAs were also lower in MI + GABA rats than in MI rats (P < 0.05). Knockdown of the GABAA Rs β2 subunit (GABAA Rβ2 ) in the SCG of MI rats increased the NE levels in serum and cardiac tissue, RSNA and inducible VAs compared with vehicle shRNA (P < 0.05). CONCLUSION The GABAergic signalling system is functionally expressed in SCG sympathetic neurons, and activation of this system suppresses sympathetic activity, thereby facilitating cardiac protection and making it a potential target to alleviate VAs.
Collapse
Affiliation(s)
- Yugen Shi
- Department of CardiologyShandong Provincial Qianfoshan Hospital, Shandong UniversityShandongChina
| | - Yan Li
- Medical Research CenterShandong Provincial Qianfoshan Hospital, Shandong UniversityShandongChina
- School of MedicineShandong UniversityShandongChina
| | - Jie Yin
- Department of CardiologyShandong Provincial Qianfoshan Hospital, Shandong UniversityShandongChina
| | - Hesheng Hu
- Department of CardiologyShandong Provincial Qianfoshan Hospital, Shandong UniversityShandongChina
| | - Mei Xue
- Department of CardiologyShandong Provincial Qianfoshan Hospital, Shandong UniversityShandongChina
| | - Xiaolu Li
- Department of CardiologyShandong Provincial Qianfoshan Hospital, Shandong UniversityShandongChina
| | - Wenjuan Cheng
- Department of CardiologyShandong Provincial Qianfoshan Hospital, Shandong UniversityShandongChina
| | - Ye Wang
- Department of CardiologyShandong Provincial Qianfoshan Hospital, Shandong UniversityShandongChina
| | - Xinran Li
- Department of CardiologyShandong Provincial Qianfoshan Hospital, Shandong UniversityShandongChina
| | - Yu Wang
- Department of CardiologyShandong Provincial Qianfoshan Hospital, Shandong UniversityShandongChina
| | - Jiayu Tan
- Department of CardiologyShandong Provincial Qianfoshan Hospital, Shandong UniversityShandongChina
| | - Suhua Yan
- Department of CardiologyShandong Provincial Qianfoshan Hospital, Shandong UniversityShandongChina
| |
Collapse
|
5
|
Claxton DP, Gouaux E. Expression and purification of a functional heteromeric GABAA receptor for structural studies. PLoS One 2018; 13:e0201210. [PMID: 30028870 PMCID: PMC6054424 DOI: 10.1371/journal.pone.0201210] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2018] [Accepted: 07/10/2018] [Indexed: 01/08/2023] Open
Abstract
The GABA-gated chloride channels of the Cys-loop receptor family, known as GABAA receptors, function as the primary gatekeepers of fast inhibitory neurotransmission in the central nervous system. Formed by the pentameric arrangement of five identical or homologous subunits, GABAA receptor subtypes are defined by the subunit composition that shape ion channel properties. An understanding of the structural basis of distinct receptor properties has been hindered by the absence of high resolution structural information for heteromeric assemblies. Robust heterologous expression and purification protocols of high expressing receptor constructs are vital for structural studies. Here, we describe a unique approach to screen for well-behaving and functional GABAA receptor subunit assemblies by using the Xenopus oocyte as an expression host in combination with fluorescence detection size exclusion chromatography (FSEC). To detect receptor expression, GFP fusions were introduced into the α1 subunit isoform. In contrast to expression of α1 alone, co-expression with the β subunit promoted formation of monodisperse assemblies. Mutagenesis experiments suggest that the α and β subunits can tolerate large truncations in the non-conserved M3/M4 cytoplasmic loop without compromising oligomeric assembly or GABA-gated channel activity, although removal of N-linked glycosylation sites is negatively correlated with expression level. Additionally, we report methods to improve GABAA receptor expression in mammalian cell culture that employ recombinant baculovirus transduction. From these methods we have identified a well-behaving minimal functional construct for the α1/β1 GABAA receptor subtype that can be purified in milligram quantities while retaining high affinity agonist binding activity.
Collapse
Affiliation(s)
- Derek P. Claxton
- Vollum Institute, Oregon Health and Science University, Portland, Oregon, United States of America
| | - Eric Gouaux
- Vollum Institute, Oregon Health and Science University, Portland, Oregon, United States of America
- Howard Hughes Medical Institute, Oregon Health and Science University, Portland, Oregon, United States of America
| |
Collapse
|
6
|
Zemková H, Stojilkovic SS. Neurotransmitter receptors as signaling platforms in anterior pituitary cells. Mol Cell Endocrinol 2018; 463:49-64. [PMID: 28684290 PMCID: PMC5752632 DOI: 10.1016/j.mce.2017.07.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/19/2017] [Revised: 06/29/2017] [Accepted: 07/02/2017] [Indexed: 02/07/2023]
Abstract
The functions of anterior pituitary cells are controlled by two major groups of hypothalamic and intrapituitary ligands: one exclusively acts on G protein-coupled receptors and the other activates both G protein-coupled receptors and ligand-gated receptor channels. The second group of ligands operates as neurotransmitters in neuronal cells and their receptors are termed as neurotransmitter receptors. Most information about pituitary neurotransmitter receptors was obtained from secretory studies, RT-PCR analyses of mRNA expression and immunohistochemical and biochemical analyses, all of which were performed using a mixed population of pituitary cells. However, recent electrophysiological and imaging experiments have characterized γ-aminobutyric acid-, acetylcholine-, and ATP-activated receptors and channels in single pituitary cell types, expanding this picture and revealing surprising differences in their expression between subtypes of secretory cells and between native and immortalized pituitary cells. The main focus of this review is on the electrophysiological and pharmacological properties of these receptors and their roles in calcium signaling and calcium-controlled hormone secretion.
Collapse
Affiliation(s)
- Hana Zemková
- Department of Cellular and Molecular Neuroendocrinology, Institute of Physiology, ASCR, Prague, Czech Republic.
| | - Stanko S Stojilkovic
- Sections on Cellular Signaling, Eunice Kennedy Shriver National Institute of Child Health and Human Development, NIH, Bethesda, MD, USA
| |
Collapse
|
7
|
Gong P, Hong H, Perkins EJ. Ionotropic GABA receptor antagonism-induced adverse outcome pathways for potential neurotoxicity biomarkers. Biomark Med 2015; 9:1225-39. [PMID: 26508561 DOI: 10.2217/bmm.15.58] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Antagonism of ionotropic GABA receptors (iGABARs) can occur at three distinct types of receptor binding sites causing chemically induced epileptic seizures. Here we review three adverse outcome pathways, each characterized by a specific molecular initiating event where an antagonist competitively binds to active sites, negatively modulates allosteric sites or noncompetitively blocks ion channel on the iGABAR. This leads to decreased chloride conductance, followed by depolarization of affected neurons, epilepsy-related death and ultimately decreased population. Supporting evidence for causal linkages from the molecular to population levels is presented and differential sensitivity to iGABAR antagonists in different GABA receptors and organisms discussed. Adverse outcome pathways are poised to become important tools for linking mechanism-based biomarkers to regulated outcomes in next-generation risk assessment.
Collapse
Affiliation(s)
- Ping Gong
- Environmental Laboratory, US Army Engineer Research & Development Center, 3909 Halls Ferry Road, Vicksburg, MS 39180, USA
| | - Huixiao Hong
- Division of Bioinformatics & Biostatistics, National Center for Toxicological Research, US Food & Drug Administration, 3900 NCTR Road, Jefferson, AR 72079, USA
| | - Edward J Perkins
- Environmental Laboratory, US Army Engineer Research & Development Center, 3909 Halls Ferry Road, Vicksburg, MS 39180, USA
| |
Collapse
|
8
|
Tyrosine phosphorylation of GABAA receptor γ2-subunit regulates tonic and phasic inhibition in the thalamus. J Neurosci 2013; 33:12718-27. [PMID: 23904608 PMCID: PMC4400286 DOI: 10.1523/jneurosci.0388-13.2013] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
GABA-mediated tonic and phasic inhibition of thalamic relay neurons of the dorsal lateral geniculate nucleus (dLGN) was studied after ablating tyrosine (Y) phosphorylation of receptor γ2-subunits. As phosphorylation of γ2 Y365 and Y367 reduces receptor internalization, to understand their importance for inhibition we created a knock-in mouse in which these residues are replaced by phenylalanines. On comparing wild-type (WT) and γ2(Y365/367F)+/- (HT) animals (homozygotes are not viable in utero), the expression levels of GABAA receptor α4-subunits were increased in the thalamus of female, but not male mice. Raised δ-subunit expression levels were also observed in female γ2(Y365/367F) +/- thalamus. Electrophysiological analyses revealed no difference in the level of inhibition in male WT and HT dLGN, while both the spontaneous inhibitory postsynaptic activity and the tonic current were significantly augmented in female HT relay cells. The sensitivity of tonic currents to the δ-subunit superagonist THIP, and the blocker Zn(2+), were higher in female HT relay cells. This is consistent with upregulation of extrasynaptic GABAA receptors containing α4- and δ-subunits to enhance tonic inhibition. In contrast, the sensitivity of GABAA receptors mediating inhibition in the female γ2(Y356/367F) +/- to neurosteroids was markedly reduced compared with WT. We conclude that disrupting tyrosine phosphorylation of the γ2-subunit activates a sex-specific increase in tonic inhibition, and this most likely reflects a genomic-based compensation mechanism for the reduced neurosteroid sensitivity of inhibition measured in female HT relay neurons.
Collapse
|
9
|
Islam MR, Ahmed MU, Mitu SA, Islam MS, Rahman GKMM, Qusar MMAS, Hasnat A. Comparative analysis of serum zinc, copper, manganese, iron, calcium, and magnesium level and complexity of interelement relations in generalized anxiety disorder patients. Biol Trace Elem Res 2013; 154:21-7. [PMID: 23754591 DOI: 10.1007/s12011-013-9723-7] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/05/2013] [Accepted: 05/31/2013] [Indexed: 10/26/2022]
Abstract
The purpose of the study was to determine the concentration of serum trace and other essential elements of generalized anxiety disorder patients and to find out the relationship between element levels and nutritional status or socioeconomic factors. The study was conducted among 50 generalized anxiety disorder patients and 51 healthy volunteers. Patients were selected and recruited in the study with the help of a clinical psychologist by random sampling. The concentrations of serum trace elements (Zn, Cu, Mn, and Fe) and other two essential elements (Ca and Mg) were determined by graphite furnace and flame atomic absorption spectroscopy. Data were analyzed by independent t test, Pearson's correlation analysis, regression analysis, and analysis of variance. The serum concentrations of Zn, Cu, Mn, Fe, Ca, and Mg in generalized anxiety disorder patients were 1.069 ± 0.40, 1.738 ± 0.544, 1.374 ± 0.750, 3.203 ± 2.065, 108.65 ± 54.455, and 21 ± 4.055 mg/L, while those were 1.292 ± 0.621, 0.972 ± 0.427, 0.704 ± 0.527, 1.605 ± 1.1855, 101.849 ± 17.713, and 21.521 ± 3.659 mg/L in control subjects. Significantly decreased (p < 0.05) serum Zn concentration was found in the patient group compared to the control group while serum level of Cu, Mn, and Fe was significantly (p < 0.05) higher, but the differences of the concentration of Ca and Mg between the patient and control groups were not significant (p > 0.05). Socioeconomic data revealed that most of the patients were in the lower middle class group and middle-aged. Mean BMI of the control group (23.63 ± 3.91 kg/m(2)) and the patient group (23.62 ± 3.77 kg/m(2)) was within the normal range (18.5-25.0 kg/m(2)). The data obtained from different interelement relations in the generalized anxiety disorder patients and control group strongly suggest that there is a disturbance in the element homeostasis. So changes in the serum trace element level in generalized anxiety disorder patients occur independently and they may provide a prognostic tool for the diagnosis and treatment of this disease.
Collapse
Affiliation(s)
- Md Reazul Islam
- Department of Clinical Pharmacy and Pharmacology, Faculty of Pharmacy, University of Dhaka, Dhaka 1000, Bangladesh
| | | | | | | | | | | | | |
Collapse
|
10
|
Abstract
BACKGROUND Zinc deficiency is a significant public health problem in low- and middle-income countries. Zinc is essential for the formation and migration of neurons along with the formation of neuronal synapses. Its deficiency could interfere with the formation of neural pathways and with neurotransmission, thus affecting behavior (for example, attention, activity, engagement, temperament) and development (for example, gross and fine motor skills, social skills). Zinc supplementation provided to infants and children is a possible strategy to improve the mental and motor development of infants and children at high risk of zinc deficiency. OBJECTIVES To assess the effects of zinc supplementation compared to placebo on measures of psychomotor development or cognitive function in children. SEARCH METHODS We searched MEDLINE, PsycINFO, CINAHL and Latin American Database (LILACS) on 1 December 2011. We searched EMBASE and CENTRAL 2011 Issue 12 on 19 January 2012. We searched Dissertation Abstracts International and the metaRegister of Controlled Trials on 30 November 2011. SELECTION CRITERIA Randomized or quasi-randomized placebo-controlled trials involving synthetic zinc supplementation provided to infants or children (less than five years of age) were eligible. DATA COLLECTION AND ANALYSIS Two review authors screened search results, selected studies, assessed the studies for their risk of bias and extracted data. MAIN RESULTS We included 13 trials in this review.Eight studies reported data on the Bayley Scales of Infant Development (BSID) in 2134 participants. We combined the data in a meta-analysis to assess the effect on development as measured by the Mental Development Index (MDI) and Psychomotor Development Index (PDI). There was no significant effect of zinc supplementation: the mean difference between the zinc supplementation and placebo groups on the MDI was -0.50 (95% confidence interval (CI) -2.06 to 1.06; P = 0.53; I(2) = 70%) and the mean difference between the groups for the PDI was 1.54 (95% CI -2.26 to 5.34; P = 0.43; I(2) = 93%). Most studies had low or unclear risk of bias but there was significant heterogeneity, which was not adequately explained by our subgroup analyses. The overall quality of evidence was considered 'moderate'.Two trials provided data on motor milestone attainment. There was no significant difference in the time to attainment of milestones between the placebo group and the zinc supplementation group in either of the studies.No study provided data on cognition score or intelligence quotient (IQ) or on adverse effects of zinc supplementation. AUTHORS' CONCLUSIONS There is no convincing evidence that zinc supplementation to infants or children results in improved motor or mental development.
Collapse
Affiliation(s)
- Siddhartha Gogia
- Department of Pediatrics and Neonatology, Max Hospital, Gurgaon, Haryana, India.
| | | |
Collapse
|
11
|
Affiliation(s)
- Katalin Tóth
- Center de recherche Université Laval Robert Giffard, Quebec City, G1J 2G3 Canada;
| |
Collapse
|
12
|
Nigro MJ, Perin P, Magistretti J. Differential effects of Zn2+ on activation, deactivation, and inactivation kinetics in neuronal voltage-gated Na+ channels. Pflugers Arch 2011; 462:331-47. [PMID: 21590363 DOI: 10.1007/s00424-011-0972-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2010] [Revised: 04/22/2011] [Accepted: 04/25/2011] [Indexed: 11/27/2022]
Abstract
Whole-cell, patch-clamp recordings were carried out in acutely dissociated neurons from entorhinal cortex (EC) layer II to study the effects of Zn(2+) on Na(+) current kinetics and voltage dependence. In the presence of 200 μM extracellular Cd(2+) to abolish voltage-dependent Ca(2+) currents, and 100 mM extracellular Na(+), 1 mM Zn(2+) inhibited the transient Na(+) current, I (NaT), only to a modest degree (~17% on average). A more pronounced inhibition (~36%) was induced by Zn(2+) when extracellular Na(+) was lowered to 40 mM. Zn(2+) also proved to modify I (NaT) voltage-dependent and kinetic properties in multiple ways. Zn(2+) (1 mM) shifted the voltage dependence of I (NaT) activation and that of I (NaT) onset speed in the positive direction by ~5 mV. The voltage dependence of I (NaT) steady-state inactivation and that of I (NaT) inactivation kinetics were markedly less affected by Zn(2+). By contrast, I (NaT) deactivation speed was prominently accelerated, and its voltage dependence was shifted by a significantly greater amount (~8 mV on average) than that of I (NaT) activation. In addition, the kinetics of I (NaT) recovery from inactivation were significantly slowed by Zn(2+). Zn(2+) inhibition of I (NaT) showed no signs of voltage dependence over the explored membrane-voltage window, indicating that the above effects cannot be explained by voltage dependence of Zn(2+)-induced channel-pore block. These findings suggest that the multiple, voltage-dependent state transitions that the Na(+) channel undergoes through its activation path are differentially sensitive to the gating-modifying effects of Zn(2+), thus resulting in differential modifications of the macroscopic current's activation, inactivation, and deactivation. Computer modeling provided support to this hypothesis.
Collapse
Affiliation(s)
- Maximiliano Josè Nigro
- Dipartimento di Fisiologia, Sezione di Fisiologia Generale, Università degli Studi di Pavia, Via Forlanini 6, Pavia, Italy
| | | | | |
Collapse
|
13
|
Nahar Z, Azad MAK, Rahman MA, Rahman MA, Bari W, Islam SN, Islam MS, Hasnat A. Comparative analysis of serum manganese, zinc, calcium, copper and magnesium level in panic disorder patients. Biol Trace Elem Res 2010; 133:284-90. [PMID: 19582379 DOI: 10.1007/s12011-009-8441-7] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/03/2009] [Accepted: 06/22/2009] [Indexed: 10/20/2022]
Abstract
The purpose of the study was to determine the serum concentration of trace elements of panic disorder patients and to find out the relationship between trace element levels and nutritional status or socio-economic factors. The study was conducted among 54 panic disorder patients and 52 healthy volunteers. Patients were recruited from Bangabandhu Sheikh Mujib Medical University by random sampling. Serum trace element concentrations were determined by flame atomic absorption spectroscopy (for Mg, Zn, Ca, and Cu) as well as graphite furnace (for Mn). Data were analyzed by independent t test, Pearson's correlation analysis, regression analysis, and ANOVA. The serum concentration of Mn, Zn, Ca, Cu, and Mg in panic disorder patients were 0.37 +/- 0.30, 0.67 +/- 0.20, 99.91 +/- 15.15, 0.83 +/- 0.23, and 21.14 +/- 3.72 mg/L, while those were 0.4163 +/- 0.2527, 0.86 +/- 0.3, 106.6073 +/- 18.6531, 0.8514 +/- 0.3646, and 21.37 +/- 2.03 mg/L in control subjects, respectively. The serum concentration of Zn decreased significantly (p = 0.001) in patient group. But the differences of the concentration of Mn, Ca, Cu, and Mg between patient and control group were not significant (p = 0.522, p = 0.065, p = 0.800, and p = 0.712, respectively). Socio-economic data reveal that most of the patients were very poor and middle aged. Mean BMIs of the control group (23.74 +/- 2.71 kg/m(2)) and the patient group (22.62 +/- 3.74 kg/m(2)) were within the normal range (18.5-25.0 kg/m(2)). There was no significant relationship between serum zinc level and BMI of patients (r = 0.038; p = 0.809). So the decreased level of serum zinc in panic disorder patients was not because of other reasons, but rather it may provide a prognostic tool for the diagnosis and treatment of this disease.
Collapse
Affiliation(s)
- Zabun Nahar
- Department of Clinical Pharmacy and Pharmacology, University of Dhaka, Dhaka, 1000, Bangladesh
| | | | | | | | | | | | | | | |
Collapse
|
14
|
Miller PS, Smart TG. Binding, activation and modulation of Cys-loop receptors. Trends Pharmacol Sci 2010; 31:161-74. [PMID: 20096941 DOI: 10.1016/j.tips.2009.12.005] [Citation(s) in RCA: 236] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2009] [Revised: 12/17/2009] [Accepted: 12/18/2009] [Indexed: 11/19/2022]
Abstract
It is over forty years since the major neurotransmitters and their protein receptors were identified, and over twenty years since determination of the first amino-acid sequences of the Cys-loop receptors that recognize acetylcholine, serotonin, GABA and glycine. The last decade has seen the first structures of these proteins (and related bacterial and molluscan homologues) determined to atomic resolution. Hopefully over the next decade, more detailed molecular structures of entire Cys-loop receptors in drug-bound and drug-free conformations will become available. These, together with functional studies, will provide a clear picture of how these receptors participate in neurotransmission and how structural variations between receptor subtypes impart their unique characteristics. This insight should facilitate the design of novel and improved therapeutics to treat neurological disorders. This review considers our current understanding about the processes of agonist binding, receptor activation and channel opening, as well as allosteric modulation of the Cys-loop receptor family.
Collapse
Affiliation(s)
- Paul S Miller
- Department of Neuroscience, Physiology & Pharmacology, University College London, Gower Street, London WC1E 6BT, UK
| | | |
Collapse
|
15
|
Gogia S, Sachdev HS. Zinc supplementation for mental and motor development in children. THE COCHRANE DATABASE OF SYSTEMATIC REVIEWS 2009. [DOI: 10.1002/14651858.cd007991] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
16
|
Elsas SM, Hazany S, Gregory WL, Mody I. Hippocampal zinc infusion delays the development of afterdischarges and seizures in a kindling model of epilepsy. Epilepsia 2009; 50:870-9. [PMID: 19175668 PMCID: PMC2861481 DOI: 10.1111/j.1528-1167.2008.01913.x] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
PURPOSE Zinc occurs in high concentration in synaptic vesicles of glutamatergic terminals including hippocampal mossy fibers. This vesicular zinc can be synaptically released during neuronal activity, including seizures. Zinc inhibits certain subtypes of N-methyl-D-aspartate (NMDA) and gamma-aminobutyric acid (GABA)(A) receptors. By blocking NMDA excitation or GABA inhibition, an excess of zinc may alter the excitability of hippocampal circuits, which contribute to the development of seizures. METHODS Twenty-one adult Wistar rats were implanted under anesthesia with Alzet pumps releasing vehicle, 10 microM ZnCl(2) or 1,000 microM ZnCl(2), at a rate of 0.25 microl/h continuously into the hippocampal hilus for 4 weeks. Kindling was performed by daily awake commissural stimulation at 60 Hz and afterdischarges were recorded from a dentate gyrus electrode. Development of behavioral Racine seizure stages was recorded by a blinded investigator. RESULTS The development of behavioral Racine seizure stages was delayed only in rats infused with 1,000 microM ZnCl(2) (p < 0.02). With completion of kindling at stimulation number 20, all groups had reached the same maximum level of behavioral seizures. The expected increased progression of afterdischarge duration was inhibited by both 10 microM ZnCl(2) and 1,000 microM ZnCl(2) infusion compared to control animals (p < 0.01). At stimulation number 18, all groups had reached the same maximum duration of afterdischarges. DISCUSSION We conclude that excess infused zinc delayed the development of behavioral seizures in a kindling model of epilepsy. These data support the hypothesis that zinc synaptically released during seizures may alter hippocampal excitability similar to zinc infused in our experiment.
Collapse
Affiliation(s)
- Siegward-M Elsas
- Department of Neurology, University of California Los Angeles, Los Angeles, California, USA.
| | | | | | | |
Collapse
|
17
|
Rahman A, Azad MAK, Hossain I, Qusar MMAS, Bari W, Begum F, Huq SMI, Hasnat A. Zinc, manganese, calcium, copper, and cadmium level in scalp hair samples of schizophrenic patients. Biol Trace Elem Res 2009; 127:102-8. [PMID: 18810332 DOI: 10.1007/s12011-008-8230-8] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/22/2008] [Accepted: 08/27/2008] [Indexed: 12/26/2022]
Abstract
The purpose of the study was to determine the concentration of trace elements present in scalp hair sample of schizophrenic patients and to find out the relationship between trace elements level and nutritional status or socioeconomic factors. The study was conducted among 30 schizophrenic male patients and 30 healthy male volunteers. Patients were recruited from Bangabandhu Sheikh Mujib Medical University by random sampling. Hair trace element concentrations were determined by flame atomic absorption spectroscopy and analyzed by independent t test, Pearson's correlation analysis, regression analysis, and analysis of variance (ANOVA). Mn, Zn, Ca, Cu, and Cd concentrations of schizophrenic patients were 3.8 +/- 2.31 microg/gm, 171.6 +/- 59.04 microg/gm, 396.23 +/- 157.83 microg/gm, 15.40 +/- 5.68 microg/gm, and 1.14 +/- 0.89 microg/gm of hair sample, while those of control subjects were 4.4 +/- 2.32 microg/gm, 199.16 +/- 27.85 microg/gm, 620.9 +/- 181.55 microg/gm, 12.23 +/- 4.56 microg/gm, and 0.47 +/- 0.32 microg/gm of hair sample, respectively. The hair concentration of Zn and Ca decreased significantly (p = 0.024; p = 0.000, respectively) and the concentration of Cu and Cd increased significantly (p = 0.021; p = 0.000, respectively) in schizophrenic patients while the concentration of Mn (p = 0.321) remain unchanged. Socioeconomic data reveals that most of the patients were poor, middle-aged and divorced. Mean body mass indices (BMIs) of the control group (22.26 +/- 1.91 kg/m(2)) and the patient group (20.42 +/- 3.16 kg/m(2)) were within the normal range (18.5-25.0 kg/m(2)). Pearson's correlation analysis suggested that only Ca concentration of patients had a significant positive correlation with the BMI (r = 0.597; p = 0.000) which was further justified from the regression analysis (R (2) = 44%; t = 3.59; p = 0.002) and one-way ANOVA test (F = 3.62; p = 0.015). A significant decrease in the hair concentration of Zn and Ca as well as a significant increase in the hair concentration of Cu and Cd in schizophrenic patients than that of its control group was observed which may provide prognostic tool for the diagnosis and treatment of this disease. However, further work with larger population is suggested to examine the exact correlation between trace element level and the degree of disorder.
Collapse
Affiliation(s)
- Ashrafur Rahman
- Department of Clinical Pharmacy and Pharmacology, Faculty of Pharmacy, University of Dhaka, Dhaka, 1000, Bangladesh
| | | | | | | | | | | | | | | |
Collapse
|
18
|
Zemkova HW, Bjelobaba I, Tomic M, Zemkova H, Stojilkovic SS. Molecular, pharmacological and functional properties of GABA(A) receptors in anterior pituitary cells. J Physiol 2008; 586:3097-111. [PMID: 18450776 PMCID: PMC2538769 DOI: 10.1113/jphysiol.2008.153148] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2008] [Accepted: 04/28/2008] [Indexed: 11/08/2022] Open
Abstract
Anterior pituitary cells express gamma-aminobutyric acid (GABA)-A receptor-channels, but their structure, distribution within the secretory cell types, and nature of action have not been clarified. Here we addressed these questions using cultured anterior pituitary cells from postpubertal female rats and immortalized alphaT3-1 and GH(3) cells. Our results show that mRNAs for all GABA(A) receptor subunits are expressed in pituitary cells and that alpha1/beta1 subunit proteins are present in all secretory cells. In voltage-clamped gramicidin-perforated cells, GABA induced dose-dependent increases in current amplitude that were inhibited by bicuculline and picrotoxin and facilitated by diazepam and zolpidem in a concentration-dependent manner. In intact cells, GABA and the GABA(A) receptor agonist muscimol caused a rapid and transient increase in intracellular calcium, whereas the GABA(B) receptor agonist baclofen was ineffective, suggesting that chloride-mediated depolarization activates voltage-gated calcium channels. Consistent with this finding, RT-PCR analysis indicated high expression of NKCC1, but not KCC2 cation/chloride transporter mRNAs in pituitary cells. Furthermore, the GABA(A) channel reversal potential for chloride ions was positive to the baseline membrane potential in most cells and the activation of ion channels by GABA resulted in depolarization of cells and modulation of spontaneous electrical activity. These results indicate that secretory pituitary cells express functional GABA(A) receptor-channels that are depolarizing.
Collapse
Affiliation(s)
- Hana W Zemkova
- Section on Cellular Signalling, Program in Developmental Neuroscience, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892-4510, USA
| | | | | | | | | |
Collapse
|
19
|
Galanopoulou AS. GABA(A) receptors in normal development and seizures: friends or foes? Curr Neuropharmacol 2008; 6:1-20. [PMID: 19305785 PMCID: PMC2645547 DOI: 10.2174/157015908783769653] [Citation(s) in RCA: 104] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2007] [Revised: 05/24/2007] [Accepted: 08/05/2007] [Indexed: 12/26/2022] Open
Abstract
GABA(A) receptors have an age-adapted function in the brain. During early development, they mediate excitatory effects resulting in activation of calcium sensitive signaling processes that are important for the differentiation of the brain. In more mature stages of development and in adults, GABA(A) receptors transmit inhibitory signals. The maturation of GABA(A) signaling follows sex-specific patterns, which appear to also be important for the sexual differentiation of the brain. The inhibitory effects of GABA(A) receptor activation have been widely exploited in the treatment of conditions where neuronal silencing is necessary. For instance, drugs that target GABA(A) receptors are the mainstay of treatment of seizures. Recent evidence suggests however that the physiology and function of GABA(A) receptors changes in the brain of a subject that has epilepsy or status epilepticus.This review will summarize the physiology of and the developmental factors regulating the signaling and function of GABA(A) receptors; how these may change in the brain that has experienced prior seizures; what are the implications for the age and sex specific treatment of seizures and status epilepticus. Finally, the implications of these changes for the treatment of certain forms of medically refractory epilepsies and status epilepticus will be discussed.
Collapse
Affiliation(s)
- Aristea S Galanopoulou
- Albert Einstein College of Medicine, Saul R Korey Department of Neurology & Dominick P Purpura, Department of Neuroscience, Bronx NY, USA.
| |
Collapse
|
20
|
Carboni AA, Cullen KJ, Lavelle WG. The effects of zinc on the olfactory neuroepithelium and olfactory bulbs of the Sprague-Dawley rat after oral administration of zinc-gluconate trihydrate. ACTA ACUST UNITED AC 2006; 20:262-8. [PMID: 16871926 DOI: 10.2500/ajr.2006.20.2854] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
BACKGROUND The most frequent causes of upper respiratory infections are human rhinoviruses. The nasopharyngeal area, which includes the respiratory epithelium, mucosa, and the olfactory neuroepithelium (ONe), is a first-line of defense against airborne viruses and allergens, some of which manage to penetrate the nasal mucosa and invade the tissues of the nasal respiratory epithelium. Biochemical evidence from several studies suggests that zinc is an effective cold treatment and that over-the-counter (OTC) zinc-gluconate compounds may provide the high pharmacologic doses of zinc needed to act as an effective means of treating and reducing the duration and severity of symptoms of the common cold. METHODS A series of male Sprague-Dawley rats were fed an oral preparation of zinc-gluconate trihydrate or received the equivalent through drinking water to investigate the potential cytotoxic and/or neurotoxic insult to the olfactory receptor cells and other tissue in the ONe and afferent neuronal pathways. RESULTS Coronal sections of the rat ONe and corresponding olfactory bulbs showed consistent cellular and tissue damage of increasing severity that correlated with the duration of treatment with the zinc compound when compared with the control group animals. CONCLUSION The results of this analysis indicate that the repeated oral administration of such zinc-containing compounds have neurotoxic effects on the ONe and to the mitral cells in the olfactory bulbs of treated rats. These findings point toward the need for increased investigation into the potential deleterious effects of zinc-containing compounds to humans as well.
Collapse
Affiliation(s)
- Anthony A Carboni
- Department of Otolaryngology-Head and Neck Surgery, University of Massachusetts/Memorial Healthcare/University of Massachusetts Medical School, Worcester, Massachusetts, USA.
| | | | | |
Collapse
|
21
|
Wang MD, Rahman M, Zhu D, Bäckström T. Pregnenolone sulphate and Zn2+ inhibit recombinant rat GABA(A) receptor through different channel property. Acta Physiol (Oxf) 2006; 188:153-62. [PMID: 17054655 DOI: 10.1111/j.1748-1716.2006.01617.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
AIMS We compared the antagonistic effects of state-dependent gamma-aminobutyric acid A (GABA(A)) receptor blockers picrotoxin, Zn(2+) and pregnenolone sulphate (PS) on GABA- and pentobarbital-activated currents in recombinant rat GABA(A) receptors in Xenopus oocytes. METHODS Experiments were performed with wild type rat alpha1 beta2 gamma2L and alpha1beta2 receptors, mutants alpha1V256S beta2 gamma2L and alpha1beta2A252Sgamma2L receptors by the two-electrode voltage-clamp technique. RESULTS In contrast to respective 3840- and 56-fold increases in Zn(2+) potencies to inhibit GABA- and pentobarbital-activated currents in the alpha1beta2 receptor, the corresponding potencies of PS remained unchanged in comparison with the alpha1 beta2 gamma2L receptor. A homologous mutation of the residue at 2' position closest to the cytoplasmic end of the M(2) helix to serine on both alpha1 and beta2 subunit, alpha1V256S and beta2A252S, abolished the inhibition of GABA(A) receptor by PS. In comparison with the wild type alpha1beta2gamma2L receptor, mutants alpha1V256S beta2 gamma2L and alpha1beta2 A252S gamma2L receptors did not affect the Zn(2+) inhibition. Furthermore, a significant increase in GABA potency was observed in the mutant alpha1V256S beta2 gamma2L receptor (P < 0.05), but not the mutant alpha1beta2 A252S gamma2L receptor compared with the wild type receptor. CONCLUSIONS Pregnenolone sulphate was a gamma2-subunit independent inhibitor in the GABA(A) receptor, whereas the Zn(2+) antagonism was profoundly influenced by the gamma2-subunit. It is likely that the 2' residue closest to the N-terminus of the protein at M(2) helix on both alpha1 and beta2 subunit are critical to the inhibitory actions of PS and the function of Cl(-) channels. These results are consistent with the hypothesis that PS behaves as a Cl(-) channel blocker that does not share with Zn(2+), the coincident channel property in the GABA(A) receptors.
Collapse
Affiliation(s)
- M-D Wang
- Department of Clinical Science, Obstetrics and Gynecology, Umeå Neurosteroid Research Center, Umeå University, Umeå, Sweden.
| | | | | | | |
Collapse
|
22
|
Mortensen M, Smart TG. Extrasynaptic alphabeta subunit GABAA receptors on rat hippocampal pyramidal neurons. J Physiol 2006; 577:841-56. [PMID: 17023503 PMCID: PMC1890388 DOI: 10.1113/jphysiol.2006.117952] [Citation(s) in RCA: 145] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Extrasynaptic GABA(A) receptors that are tonically activated by ambient GABA are important for controlling neuronal excitability. In hippocampal pyramidal neurons, the subunit composition of these extrasynaptic receptors may include alpha5betagamma and/or alpha4betadelta subunits. Our present studies reveal that a component of the tonic current in the hippocampus is highly sensitive to inhibition by Zn(2+). This component is probably not mediated by either alpha5betagamma or alpha4betadelta receptors, but might be explained by the presence of alphabeta isoforms. Using patch-clamp recording from pyramidal neurons, a small tonic current measured in the absence of exogenous GABA exhibited both high and low sensitivity to Zn(2+) inhibition (IC(50) values, 1.89 and 223 microm, respectively). Using low nanomolar and micromolar GABA concentrations to replicate tonic currents, we identified two components that are mediated by benzodiazepine-sensitive and -insensitive receptors. The latter indicated that extrasynaptic GABA(A) receptors exist that are devoid of gamma2 subunits. To distinguish whether the benzodiazepine-insensitive receptors were alphabeta or alphabetadelta isoforms, we used single-channel recording. Expressing recombinant alpha1beta3gamma2, alpha5beta3gamma2, alpha4beta3delta and alpha1beta3 receptors in human embryonic kidney (HEK) or mouse fibroblast (Ltk) cells, revealed similar openings with high main conductances (approximately 25-28 pS) for gamma2 or delta subunit-containing receptors whereas alphabeta receptors were characterized by a lower main conductance state (approximately 11 pS). Recording from pyramidal cell somata revealed a similar range of channel conductances, indicative of a mixture of GABA(A) receptors in the extrasynaptic membrane. The lowest conductance state (approximately 11 pS) was the most sensitive to Zn(2+) inhibition in accord with the presence of alphabeta receptors. This receptor type is estimated to account for up to 10% of all extrasynaptic GABA(A) receptors on hippocampal pyramidal neurons.
Collapse
Affiliation(s)
- Martin Mortensen
- Department of Pharmacology, University College London, Gower Street, London WC1E 6BT, UK
| | | |
Collapse
|
23
|
Glitsch M. Selective Inhibition of Spontaneous But Not Ca2+-Dependent Release Machinery by Presynaptic Group II mGluRs in Rat Cerebellar Slices. J Neurophysiol 2006; 96:86-96. [PMID: 16611839 DOI: 10.1152/jn.01282.2005] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Two main forms of neurotransmitter release are known: action potential-evoked and spontaneous release. Action potential-evoked release depends on Ca2+entry through voltage-gated Ca2+channels, whereas spontaneous release is thought to be Ca2+-independent. Generally, spontaneous and action potential-evoked release are believed to use the same release machinery to release neurotransmitter. This study shows, using the whole cell patch-clamp technique in rat cerebellar slices, that at the interneuron- Purkinje cell synapse activation of presynaptic group II metabotropic glutamate receptors suppresses spontaneous GABA release through a mechanism independent of voltage-gated Ca2+channels, store-operated Ca2+channels, and Ca2+release from intracellular Ca2+stores, suggesting that the metabotropic receptors target the release machinery directly. Voltage gated Ca2+channel-independent release following increased presynaptic cAMP production is similarly inhibited by these metabotropic receptors. In contrast, both voltage-gated Ca2+channel-dependent and presynaptic N-methyl-d-aspartate receptor-dependent GABA release were unaffected by activation of group II metabotropic glutamate receptors. Hence, the mechanisms underlying spontaneous and Ca2+-dependent GABA release are distinct in that only the former is blocked by group II metabotropic glutamate receptors. Thus the same neurotransmitter, glutamate, can activate or inhibit neurotransmitter release by selecting different receptors that target different release machineries.
Collapse
Affiliation(s)
- Maike Glitsch
- Department of Physiology, Anatomy and Genetics, Oxford University, Oxford OX1 3PT, UK.
| |
Collapse
|
24
|
Downing SS, Lee YT, Farb DH, Gibbs TT. Benzodiazepine modulation of partial agonist efficacy and spontaneously active GABA(A) receptors supports an allosteric model of modulation. Br J Pharmacol 2006; 145:894-906. [PMID: 15912137 PMCID: PMC1576208 DOI: 10.1038/sj.bjp.0706251] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Benzodiazepines (BZDs) have been used extensively for more than 40 years because of their high therapeutic index and low toxicity. Although BZDs are understood to act primarily as allosteric modulators of GABA(A) receptors, the mechanism of modulation is not well understood. The applicability of an allosteric model with two binding sites for gamma-aminobutyric acid (GABA) and one for a BZD-like modulator was investigated. This model predicts that BZDs should enhance the efficacy of partial agonists. Consistent with this prediction, diazepam increased the efficacy of the GABA(A) receptor partial agonist kojic amine in chick spinal cord neurons. To further test the validity of the model, the effects of diazepam, flurazepam, and zolpidem were examined using wild-type and spontaneously active mutant alpha1(L263S)beta3gamma2 GABA(A) receptors expressed in HEK-293 cells. In agreement with the predictions of the allosteric model, all three modulators acted as direct agonists for the spontaneously active receptors. The results indicate that BZD-like modulators enhance the amplitude of the GABA response by stabilizing the open channel active state relative to the inactive state by less than 1 kcal, which is similar to the energy of stabilization conferred by a single hydrogen bond.
Collapse
Affiliation(s)
- Scott S Downing
- Laboratory of Molecular Neurobiology, Department of Pharmacology, Boston University School of Medicine, 715 Albany St, Boston, MA 02118, U.S.A
| | - Yan T Lee
- Laboratory of Molecular Neurobiology, Department of Pharmacology, Boston University School of Medicine, 715 Albany St, Boston, MA 02118, U.S.A
| | - David H Farb
- Laboratory of Molecular Neurobiology, Department of Pharmacology, Boston University School of Medicine, 715 Albany St, Boston, MA 02118, U.S.A
| | - Terrell T Gibbs
- Laboratory of Molecular Neurobiology, Department of Pharmacology, Boston University School of Medicine, 715 Albany St, Boston, MA 02118, U.S.A
- Author for correspondence:
| |
Collapse
|
25
|
Nakagawa T, Yamashita M, Hisashi K, Usami SI, Kakazu Y, Shibata S, Nakashima T, Koike K, Kubo K, Komune S. GABA-induced response in spiral ganglion cells acutely isolated from guinea pig cochlea. Neurosci Res 2005; 53:396-403. [PMID: 16198438 DOI: 10.1016/j.neures.2005.08.011] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2005] [Revised: 08/09/2005] [Accepted: 08/29/2005] [Indexed: 11/21/2022]
Abstract
The physiological and pharmacological properties of gamma-aminobutyric acid (GABA)-induced responses were investigated in acutely isolated spiral ganglion cells (SGCs) of guinea pig by using either a nystatin-perforated patch recording configuration or a conventional whole-cell patch recording mode combined with rapid drug application. GABA and GABA(A) subtype receptor agonist, muscimol, induced inward currents in a concentration-dependent manner in 74% of all cells. The current-voltage relationship for the GABA response indicated the GABA-induced current in SGCs is carried by Cl-. Bicuculline (BIC), strychnine (STR), and picrotoxin (PTX) suppressed the GABA response in a concentration-dependent manner. BIC and STR, and PTX blocked the GABA response in a competitive manner and in a non-competitive manner, respectively. For inorganic antagonists, Cd2+ and Ni2+ also inhibited the GABA response. On the other hand, Zn2+ failed to suppress the GABA response in SGCs. An antibiotic, benzylpenicillin, suppressed the GABA response. The GABA response was augmented by both a barbiturate derivative, pentobarbital (PB), and a benzodiazepine derivative, diazepam. The results suggest clearly that the physiological and pharmacological characteristics of GABA(A) receptor on acutely isolated guinea pig SGCs are quite similar to the common GABA(A) receptor found in other sensory ganglion cells.
Collapse
Affiliation(s)
- Takashi Nakagawa
- Department of Otorhinolaryngology, Faculty of Medicine, Kyushu University, 3-1-1 Maidashi Higashi-ku, Fukuoka 812-8582, Japan.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Smart TG, Hosie AM, Miller PS. Zn2+ ions: modulators of excitatory and inhibitory synaptic activity. Neuroscientist 2005; 10:432-42. [PMID: 15359010 DOI: 10.1177/1073858404263463] [Citation(s) in RCA: 167] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The role of Zn(2+) in the CNS has remained enigmatic for several decades. This divalent cation is accumulated by specific neurons into synaptic vesicles and can be released by stimulation in a Ca(2+)-dependent manner. Using Zn(2+) fluorophores, radiolabeled Zn(2+), and selective chelators, the location of this ion and its release pattern have been established across the brain. Given the distribution and possible release under physiological conditions, Zn(2+) has the potential to act as a modulator of both excitatory and inhibitory neurotransmission. Excitatory N-methyl-D-aspartate (NMDA) receptors are directly inhibited by Zn(2+), whereas non-NMDA receptors appear relatively unaffected. In contrast, inhibitory transmission mediated via GABA(A)receptors can be potentiated via a presynaptic mechanism, influencing transmitter release; however, although some tonic GABAergic inhibition may be suppressed by Zn(2+), most synaptic GABA receptors are unlikely to be modulated directly by this cation. In the spinal cord, glycinergic transmission may also be affected by Zn(2+) causing potentiation. Recently, the penetration of synaptically released Zn(2+) into neurons suggests that this ion has the potential to act as a direct transmitter, by affecting postsynaptic signaling pathways. Taken overall, present studies are broadly supportive of a neuromodulatory role for Zn(2+) at specific excitatory and inhibitory synapses.
Collapse
|
27
|
Wu J, Ellsworth K, Ellsworth M, Schroeder KM, Smith K, Fisher RS. Abnormal benzodiazepine and zinc modulation of GABAA receptors in an acquired absence epilepsy model. Brain Res 2004; 1013:230-40. [PMID: 15193533 DOI: 10.1016/j.brainres.2004.03.075] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/23/2004] [Indexed: 11/19/2022]
Abstract
Brain cholesterol synthesis inhibition (CSI) at a young age in rats has been shown to be a faithful model of acquired absence epilepsy, a devastating condition for which few therapies or models exist. We employed the CSI model to study cellular mechanisms of acquired absence epilepsy in Long-Evans Hooded rats. Patch-clamp, whole-cell recordings were compared from neurons acutely dissociated from the nucleus reticularis of thalamus (nRt) treated and untreated with a cholesterol synthesis inhibitor, U18666A. In U18666A-treated animals, 91% of rats developed EEG spike-waves (SWs). Patchclamp results revealed that although there was no remarkable change in GABAA receptor affinity, both a loss of ability of benzodiazepines to enhance GABAA-receptor responses and an increase of Zn2+ inhibition of GABAA-receptor responses of nRt neurons occurred in Long-Evans Hooded rats previously administered U18666A. This change was specific, since no significant changes were found in neurons exposed to the GABA allosteric modulator, pentobarbital. Taken collectively, these findings provide evidence for abnormalities in benzodiazepine and Zn2+ modulation of GABAA receptors in the CSI model, and suggest that decreased gamma2 subunit expression may underlie important aspects of generation of thalamocortical SWs in atypical absence seizures. The present results are also consistent with recent findings that mutation of the gamma2 subunit of the GABAA receptor changes benzodiazepine modulation in families with generalized epilepsy syndromes.
Collapse
Affiliation(s)
- Jie Wu
- Division of Neurology, Barrow Neurological Institute, St. Joseph's Hospital and Medical Center, 350 West Thomas Road, Phoenix, AZ 85013-4496, USA.
| | | | | | | | | | | |
Collapse
|
28
|
Kao CQ, Goforth PB, Ellis EF, Satin LS. Potentiation of GABAA Currents after Mechanical Injury of Cortical Neurons. J Neurotrauma 2004; 21:259-70. [PMID: 15115601 DOI: 10.1089/089771504322972059] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Numerous studies have implicated glutamate receptors, glutamate neurotoxicity, and hyperexcitation in the pathobiology of traumatic brain injury, yet much less is known about the effects of neurotrauma on inhibitory GABA channels of the brain. Using an in vitro cell injury model, we tested whether mild stretch injury altered the GABA(A) currents of cultured rat cortical neurons. The application of 1-100 microM GABA to single pyramidal neurons voltage clamped to -60 mV activated an inward current that reversed near 0 mV in solutions containing symmetrical [Cl-]. This current was inhibited by bicuculline, consistent with mediation by GABA(A) receptor channels. In injured neurons, 50 microM GABA elicited a peak current density of 41.2 +/- 2.6 pA/pF (n = 82), which was significantly larger than in uninjured control neurons, 20.2 +/- 1.7 pA/pF (n = 69, p < 0.01). The GABA(A) currents of injured neurons did not differ from those of control neurons in their sensitivity to GABA or their reversal potentials, suggesting that GABA current potentiation did not result from changes in the agonist affinity or ionic selectivity of the channels. GABA current potentiation was prevented by injuring neurons in the presence of the NMDA antagonist APV, or the CaMKII inhibitor KN93. These results thus suggest that NMDA receptor activation following neuronal injury may potentiate GABA(A) channels through the activation of CaMKII. The increase in GABA(A) receptor function observed following injury could potentially contribute to dysfunctional synaptic function and information processing as well as unconsciousness and coma following human brain trauma.
Collapse
Affiliation(s)
- Chang-Qing Kao
- Virginia Commonwealth University Medical Center, Richmond, Virginia
| | | | | | | |
Collapse
|
29
|
Akabas MH. GABAA Receptor Structure–Function Studies: A Reexamination in Light of New Acetylcholine Receptor Structures. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2004; 62:1-43. [PMID: 15530567 DOI: 10.1016/s0074-7742(04)62001-0] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- Myles H Akabas
- Department of Physiology and Biophysics, Albert Einstein College of Medicine, Yeshiva University, Bronx, New York 10461, USA
| |
Collapse
|
30
|
Lopantsev V, Wenzel HJ, Cole TB, Palmiter RD, Schwartzkroin PA. Lack of vesicular zinc in mossy fibers does not affect synaptic excitability of CA3 pyramidal cells in zinc transporter 3 knockout mice. Neuroscience 2003; 116:237-48. [PMID: 12535956 DOI: 10.1016/s0306-4522(02)00570-5] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Zinc is found throughout the CNS in synaptic vesicles of glutamatergic neurons and has been suggested to have a modulatory role in the brain because of its interaction with voltage- and ligand-gated ion channels. We took advantage of zinc transporter 3 knockout mice, which lack vesicular zinc, to study the possible physiological role of this heavy metal in hippocampal mossy fiber neurotransmission. We examined postsynaptic responses evoked by mossy fiber activation, recorded in CA3 pyramidal cells in hippocampal slices prepared from zinc transporter 3 knockout and wild-type mice. Field-potential response threshold and amplitude, input-output curves, and paired-pulse evoked responses were the same in slices from zinc transporter 3 knockout and wild-type mice. Furthermore, neither amplitude nor duration of pharmacologically isolated N-methyl-D-aspartate, non-N-methyl-D-aspartate, GABA(A), and GABA(B) receptor-mediated postsynaptic potentials differed between zinc transporter 3 knockout and wild-type mice. There was no difference in the magnitude of epileptiform discharges evoked by repetitive stimulation or kainic acid application. However, in slices from zinc transporter 3 knockout mice, there was greater attenuation of GABA(A)-mediated inhibitory postsynaptic potentials during tetanic stimulation compared with slices from wild-type animals. We conclude that lack of vesicular zinc in mossy fibers does not significantly affect the mossy fiber-associated synaptic excitability of CA3 pyramidal cells; however, zinc may modulate GABAergic synaptic transmission under conditions of intensive activation.
Collapse
Affiliation(s)
- V Lopantsev
- Department of Pharmacology, University of Washington, Box 357280, Seattle, WA 98195-7280, USA.
| | | | | | | | | |
Collapse
|
31
|
Domínguez MI, Blasco-Ibáñez JM, Crespo C, Marqués-Marí AI, Martínez-Guijarro FJ. Zinc chelation during non-lesioning overexcitation results in neuronal death in the mouse hippocampus. Neuroscience 2003; 116:791-806. [PMID: 12573720 DOI: 10.1016/s0306-4522(02)00731-5] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
In the hippocampus, chelatable zinc is accumulated in vesicles of glutamatergic presynaptic terminals, abounding specially in the mossy fibers, from where it is released with activity and can exert a powerful inhibitory action upon N-methyl-D-aspartate receptors. Zinc is therefore in a strategic situation to control overexcitation at the zinc-rich excitatory synapses, and consequently zinc removal during high activity might result in excitotoxic neuronal damage. We analyzed the effect of zinc chelation with sodium dietyldithiocarbamate under overexcitation conditions induced by non-lesioning doses of kainic acid in the mouse hippocampus, to get insight into the role of zinc under overexcitation. Swiss male mice were injected with kainic acid (15 mg/kg, i.p.) 15 min prior to sodium dietyldithiocarbamate (150 mg/kg, i.p.), and left to survive for 6 h, 1 day, 4 days, or 7 days after the treatment. Cell damage was analyzed with the hematoxylin-eosin and acid fuchsin stainings. Neither control animals treated only with kainic acid nor those treated only with sodium dietyldithiocarbamate suffered seizures or neuronal damage. By contrast, the kainic acid+sodium dietyldithiocarbamate-treated animals showed convulsive behavior and cell death involving the hilus, CA3, and CA1 regions. Pretreatment with the N-methyl-D-aspartate receptor antagonist MK801 (1 mg/kg, i.p.) completely prevented neuronal damage. Experiments combining different doses of sodium dietyldithiocarbamate and kainic acid with different administration schedules demonstrated that the overlap of zinc chelation and overexcitation is necessary to trigger the observed effects. Moreover, the treatment with a high dose of sodium dietyldithiocarbamate (1000 mg/kg), which produced a complete bleaching of the Timm staining for approximately 12 h, highly increased the sensitivity of animals to kainic acid. Altogether, our results indicate that the actions of sodium dietyldithiocarbamate are based on a reduction of zinc levels, which under overexcitation conditions induce seizures and neuronal damage. These findings fully support a protective role for synaptically released zinc during high neuronal activity, most probably mediated by its inhibitory actions on N-methyl-D-aspartate receptors, and argue against a direct action of synaptic zinc on the observed neuronal damage.
Collapse
Affiliation(s)
- M I Domínguez
- Departamento de Biología Celular, Unidad de Neurobiología, Facultad de Ciencias Biológicas, Universidad de Valencia, Burjasot 46100, Spain
| | | | | | | | | |
Collapse
|
32
|
Davies PA, Wang W, Hales TG, Kirkness EF. A novel class of ligand-gated ion channel is activated by Zn2+. J Biol Chem 2003; 278:712-7. [PMID: 12381728 DOI: 10.1074/jbc.m208814200] [Citation(s) in RCA: 114] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
In mammals, the superfamily of "Cys loop," ligand-gated ion channels (LGICs), is assembled from a pool of more than 40 homologous subunits. These subunits have been classified into four families representing channels that are gated by acetylcholine, serotonin, gamma-aminobutyric acid, or glycine. By searching anonymous genomic sequence data for exons that encode characteristic motifs of the channel subunits, we have identified a novel LGIC that defines a fifth family member. Putative exons were used to isolate a full-length cDNA that encodes a protein of 411 amino acid residues. This protein (ZAC) contains all of the motifs that are characteristic of Cys loop channel subunits but cannot be assigned to any of the four established families on the basis of sequence similarity. Genes for ZAC are present in human and dog but appear to have been lost from mouse and rat genomes. Transcripts of ZAC subunits were detected in human placenta, trachea, spinal cord, stomach, and fetal brain. Transfection of human embryonic kidney cells with ZAC subunit cDNA caused expression of spontaneous current. By screening with a broad range of potential agonists and antagonists, we determined that tubocurarine inhibits the spontaneous current whereas Zn(2+) activates the expressed receptors. The absence of Zn(2+)-activated channels in rats and mice may explain why this fifth member of the LGIC superfamily has evaded detection until now.
Collapse
Affiliation(s)
- Paul A Davies
- Department of Pharmacology, George Washington University Medical Center, Washington, D. C. 20037, USA
| | | | | | | |
Collapse
|
33
|
Abstract
Redox reagents are thought to modulate gamma-Aminobutyric acid type A (GABA(A)) receptors by regulating the redox state of the N-terminal disulphide bridge. Examining the redox sensitivity of recombinant GABA(A) receptors in human embryonic kidney cells, using whole-cell patch clamp techniques, revealed that alpha1beta2(H267A) and alpha1beta2gamma2 receptors, which are both less sensitive to Zn(2+) and H(+) modulation, ablated the potentiating effect of the reducing agent, dithiothreitol (DTT) seen for alpha1beta2 receptors. This effect could result from disruption to the redox signal transduction pathway or be due to DTT chelating Zn(2+) from its H267 inhibitory binding site, consequently potentiating GABA-activated currents in alpha1beta2 but not alpha1beta2(H267A) or alpha1beta2gamma2 receptors. A Zn(2+) chelating agent, tricine, potentiated GABA currents for the alphabeta constructs and vertically displaced GABA dose-response curves, suggesting that these receptors are subject to some inhibition by basal Zn(2+). Tricine, did not affect the GABA currents of either alpha1beta2(H267A) or alpha1beta2gamma2 receptors but did prevent the potentiation by 2 mM DTT and reduced the potentiation caused by 10 mM DTT on alpha1beta2 receptors. Thus, at low concentrations of DTT, a substantial component of the potentiation probably occurs via Zn(2+) chelation from H267 in the ion channel. In contrast, at higher DTT concentrations, it is more likely to be acting as a redox agent, which modulates both alphabeta and alphabetagamma subunit receptors.
Collapse
Affiliation(s)
- M E Wilkins
- Department of Pharmacology, University College London, Gower Street, London WC1E 6BT, UK
| | | |
Collapse
|
34
|
Barberis A, Petrini EM, Cherubini E, Mozrzymas JW. Allosteric interaction of zinc with recombinant alpha(1)beta(2)gamma(2) and alpha(1)beta(2) GABA(A) receptors. Neuropharmacology 2002; 43:607-18. [PMID: 12367606 DOI: 10.1016/s0028-3908(02)00109-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
In a recent study we have provided evidence that inhibition of native GABA(A) receptors by zinc depends primarily on the allosteric modulation of receptor gating. Both the kinetics and the sensitivity of the GABA(A) receptor to zinc depend on subunit composition, especially on the presence of the gamma(2) subunit. To analyze the mechanism of action of zinc its effects have been tested on recombinant alpha(1)beta(2)gamma(2) and alpha(1)beta(2) receptors expressed in HEK 293 cells. The currents produced by ultrafast application of GABA have been measured to assess the impact of zinc ions on GABA(A) receptor gating with resolution corresponding to the time scale of synaptic currents. While, as expected, zinc markedly reduced the peak amplitude of alpha(1)beta(2)-mediated currents, its effect on kinetics was significantly different from that observed for alpha(1)beta(2)gamma(2). In particular, unlike alpha(1)beta(2)gamma(2), zinc did not affect the onset of alpha(1)beta(2)-mediated responses. Moreover, zinc increased the extent of desensitisation of alpha(1)beta(2)gamma(2) receptors and reduced desensitisation of alpha(1)beta(2) ones. Quantitative analysis suggests that zinc exerts an allosteric modulation on both alpha(1)beta(2)gamma(2) and alpha(1)beta(2) receptors. Zinc effects on alpha(1)beta(2)gamma(2) were qualitatively similar to those reported for native receptors.
Collapse
Affiliation(s)
- A Barberis
- Neuroscience Programme and Istituto Nazionale Fisica della Materia (INFM) Unit, International School for Advanced Studies, Via Beirut 2-4, 34014 Trieste, Italy
| | | | | | | |
Collapse
|
35
|
Dunne EL, Hosie AM, Wooltorton JRA, Duguid IC, Harvey K, Moss SJ, Harvey RJ, Smart TG. An N-terminal histidine regulates Zn(2+) inhibition on the murine GABA(A) receptor beta3 subunit. Br J Pharmacol 2002; 137:29-38. [PMID: 12183328 PMCID: PMC1573463 DOI: 10.1038/sj.bjp.0704835] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
1. Whole-cell currents were recorded from Xenopus laevis oocytes and human embryonic kidney cells expressing GABA(A) receptor beta3 subunit homomers to search for additional residues affecting Zn(2+) inhibition. These residues would complement the previously identified histidine (H267), present just within the external portal of the ion channel, which modulates Zn(2+) inhibition. 2. Zinc inhibited the pentobarbitone-gated current on beta3(H267A) homomers at pH 7.4, but this effect was abolished at pH 5.4. The Zn(2+)-sensitive spontaneous beta3 subunit-mediated conductance was also insensitive to block by Zn(2+) at pH 5.4. 3. Changing external pH enabled the titration of the Zn(2+) sensitive binding site or signal transduction domain. The pK(a) was estimated at 6.8 +/- 0.03 implying the involvement of histidine residues. 4. External histidine residues in the beta3 receptor subunit were substituted with alanine, in addition to the background mutation, H267A, to assess their sensitivity to Zn(2+) inhibition. The Zn(2+) IC(50) was unaffected by either the H119A or H191A mutations. 5. The remaining histidine, H107, the only other candidate likely to participate in Zn(2+) inhibition, was substituted with various residues. Most mutants were expressed at the cell surface but they disrupted functional expression of beta3 homomers. However, H107G was functional and demonstrated a marked reduction in sensitivity to Zn(2+). 6. GABA(A) receptor beta3 subunits form functional ion channels that can be inhibited by Zn(2+). Two histidine residues are largely responsible for this effect, H267 in the pore lining region and H107 residing in the extracellular N-terminal domain.
Collapse
Affiliation(s)
- Emma L Dunne
- The School of Pharmacy, Department of Pharmacology, 29-39 Brunswick Square, London WC1N 1AX
| | - Alastair M Hosie
- The School of Pharmacy, Department of Pharmacology, 29-39 Brunswick Square, London WC1N 1AX
| | - Julian R A Wooltorton
- The School of Pharmacy, Department of Pharmacology, 29-39 Brunswick Square, London WC1N 1AX
| | - Ian C Duguid
- The School of Pharmacy, Department of Pharmacology, 29-39 Brunswick Square, London WC1N 1AX
| | - Kirsten Harvey
- The School of Pharmacy, Department of Pharmacology, 29-39 Brunswick Square, London WC1N 1AX
| | - Stephen J Moss
- MRC Laboratory for Molecular Cell Biology, and Department of Pharmacology, University College, Gower Street, London WC1E 6BT
| | - Robert J Harvey
- The School of Pharmacy, Department of Pharmacology, 29-39 Brunswick Square, London WC1N 1AX
| | - Trevor G Smart
- The School of Pharmacy, Department of Pharmacology, 29-39 Brunswick Square, London WC1N 1AX
- Author for correspondence:
| |
Collapse
|
36
|
Fisher JL. A histidine residue in the extracellular N-terminal domain of the GABA(A) receptor alpha5 subunit regulates sensitivity to inhibition by zinc. Neuropharmacology 2002; 42:922-8. [PMID: 12069902 DOI: 10.1016/s0028-3908(02)00050-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
The divalent cation zinc is abundant in the brain, particularly in the mossy fibers of the hippocampus. Recent evidence suggests that zinc is packaged into some synaptic vesicles in this region and can be co-released with neurotransmitter. Zinc inhibits the activity of GABA(A) receptors and the sensitivity of the receptor to zinc is influenced by its alpha subunit subtype composition. The alpha4, alpha5 and alpha6 subunits confer greater sensitivity to zinc than receptors containing other alpha subunits. The alpha4 and alpha5 subunits are highly expressed in hippocampal neurons, and likely mediate any effects of zinc on GABAergic neurotransmission in this area. The alpha5 subunit contains a unique histidine residue in the N-terminal extracellular domain while the other alpha subunits have an aspartate residue in this location. Point mutations were created to exchange the histidine and aspartate residues of the alpha1 and alpha5 subunits. Receptors containing the mutated alpha5((H195D)) subunit had reduced sensitivity to zinc, while alpha1((D191H))beta3gamma2L receptors had increased sensitivity to zinc, similar to the alpha5beta3gamma2L wild type receptors. These findings indicate that histidine195 of the alpha5 subunit plays an important role in determining the sensitivity of recombinant GABA(A) receptors to zinc.
Collapse
Affiliation(s)
- Janet L Fisher
- University of South Carolina School of Medicine, Department of Pharmacology and Physiology, Columbia, South Carolina, USA.
| |
Collapse
|
37
|
Vizuete ML, Venero JL, Vargas C, Revuelta M, Machado A, Cano J. Potential role of endogenous brain-derived neurotrophic factor in long-term neuronal reorganization of the superior colliculus after bilateral visual deprivation. Neurobiol Dis 2001; 8:866-80. [PMID: 11592854 DOI: 10.1006/nbdi.2001.0424] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The role of the brain-derived neurotrophic factor (BDNF), the BDNF receptor (TrkB), and the glutamic acid decarboxylase (GAD67) after neonatal, bilateral nerve deafferentiation during postnatal development was investigated in the rat superior colliculus (SC). BDNF and GAD67 mRNA expression were significantly increased in optic (Op) and intermediate gray (InG) layers at 5, 8, 15, and 21 days after birth, but not in adult animals. However, TrkB mRNA expression was not modified at any time tested. At 15 days, where changes in BDNF and GAD67 mRNAs were more evident, an upregulation of the NMDAR(1A) mRNA glutamate receptor in the Op and InG, a modification in the pattern of synaptic zinc in the superficial layers of SC, and an increased synaptophysin immunoreactivity in the Op was found. This indicates the existence of a synergic mechanism between BDNF and NMDA to determine refinement of connections after the loss of visual input in SC.
Collapse
MESH Headings
- Animals
- Animals, Newborn
- Blindness/physiopathology
- Brain-Derived Neurotrophic Factor/biosynthesis
- Brain-Derived Neurotrophic Factor/genetics
- Brain-Derived Neurotrophic Factor/physiology
- Eye Enucleation
- Glutamate Decarboxylase/biosynthesis
- Glutamate Decarboxylase/genetics
- In Situ Hybridization
- Isoenzymes/biosynthesis
- Isoenzymes/genetics
- Male
- N-Methylaspartate/physiology
- Nerve Tissue Proteins/analysis
- Nerve Tissue Proteins/biosynthesis
- Nerve Tissue Proteins/genetics
- Nerve Tissue Proteins/physiology
- Neuronal Plasticity/genetics
- Neuronal Plasticity/physiology
- RNA, Messenger/biosynthesis
- RNA, Messenger/genetics
- Rats
- Rats, Wistar
- Receptor, trkB/biosynthesis
- Receptor, trkB/genetics
- Receptor, trkB/physiology
- Receptors, N-Methyl-D-Aspartate/biosynthesis
- Receptors, N-Methyl-D-Aspartate/genetics
- Receptors, N-Methyl-D-Aspartate/physiology
- Signal Transduction
- Superior Colliculi/metabolism
- Synapses/metabolism
- Synapses/ultrastructure
- Synaptophysin/analysis
- Zinc/analysis
Collapse
Affiliation(s)
- M L Vizuete
- Departamento de Bioquímica, Bromatología y Toxicología, Facultad de Farmacia, Universidad de Sevilla, Sevilla, 41012, Spain
| | | | | | | | | | | |
Collapse
|
38
|
Nagaya N, Macdonald RL. Two gamma2L subunit domains confer low Zn2+ sensitivity to ternary GABA(A) receptors. J Physiol 2001; 532:17-30. [PMID: 11283222 PMCID: PMC2278531 DOI: 10.1111/j.1469-7793.2001.0017g.x] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
The sensitivity of GABAA receptors (GABARs) to Zn2+ inhibition depends on subunit composition. The predominant neuronal forms of mammalian GABARs, alpha(beta)gamma and, alpha(beta)delta are differentially sensitive to Zn2+ inhibition; alpha(beta)gamma receptors are substantially less sensitive than alpha(beta)delta receptors. Recently, functional domains involved in Zn2+ sensitivity have been identified in and subunits. Our aim in the present study was to localize functional domains of low Zn2+ sensitivity within gamma2L subunits. Chimeric subunits were constructed by progressively replacing the rat gamma2L subunit sequence with that of the rat delta subunit sequence. Whole-cell currents were recorded from mouse L929 fibroblasts coexpressing wild-type rat alpha1 and beta3 subunits with a chimeric delta-gamma2L subunit. Unlike alpha and beta subunits, the gamma2L subunit was found to contain a determinant of low Zn2+ sensitivity in the N-terminal extracellular region. In addition, we identified determinants in the M2 segment and the M2-M3 loop of the gamma2L subunit that are homologous to those found in beta and alpha subunits. We postulate that the interface between the latter two domains, which may form the outer vestibule of the channel, represents a single functional domain modulating Zn2+ sensitivity. Thus, the Zn2+ sensitivity of ternary GABARs appears to be determined by two functional domains, one in the N-terminal extracellular region and one near the outer mouth of the channel.
Collapse
Affiliation(s)
- N Nagaya
- Department of Neurology, University of Michigan Health System, University of Michigan, Ann Arbor, MI 48104-1687, USA
| | | |
Collapse
|
39
|
Keller KA, Grider A, Coffield JA. Age-dependent influence of dietary zinc restriction on short-term memory in male rats. Physiol Behav 2001; 72:339-48. [PMID: 11274675 DOI: 10.1016/s0031-9384(00)00421-2] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Zinc is an essential micro-nutrient involved in numerous physiological functions. The high content of zinc in the hippocampus, coupled with the integral involvement of the hippocampus in memory, strongly implicates zinc in memory processing. The hypothesis of the current study was that dietary zinc restriction influenced short-term memory in postweaned rats, and this influence was age-dependent. Male rats (43 days to 18 months old) were divided into five experimental groups based on age, and fed zinc-adequate (zinc at 20 mg/kg as zinc chloride) or zinc-deficient (zinc less than 1-2 mg/kg) diets for a minimum of 3 weeks. Short-term memory was assessed using the distal-cue version of the Morris water maze (MWM). All rats fed the zinc-restricted diet exhibited cyclic anorexia, decreased weight gain, and significantly lower liver and femur zinc concentrations compared to age-matched controls. Further, whole brain, hippocampal, and cerebral wet weights were significantly reduced in the zinc-restricted treatment groups of all the age groups. Only zinc-restricted rats that were less than 62 days of age at the start of zinc restriction demonstrated significantly prolonged escape latencies in the water maze, indicating deficits in short-term memory. Regression analyses confirmed that the short-term memory deficits were correlated with significantly lower hippocampal and cerebral zinc concentrations compared to age-matched control and pair-fed rats. These results emphasize the significance of a critical age of influence for dietary zinc in memory processing, and the importance of considering age when studying zinc nutriture and CNS function.
Collapse
Affiliation(s)
- K A Keller
- Department of Physiology and Pharmacology, College of Veterinary Medicine, The University of Georgia, Athens, GA 30602, USA
| | | | | |
Collapse
|
40
|
Feigenspan A, Gustincich S, Raviola E. Pharmacology of GABA(A) receptors of retinal dopaminergic neurons. J Neurophysiol 2000; 84:1697-707. [PMID: 11024062 DOI: 10.1152/jn.2000.84.4.1697] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
When the vertebrate retina is stimulated by light, a class of amacrine or interplexiform cells release dopamine, a modulator responsible for neural adaptation to light. In the intact retina, dopamine release can be pharmacologically manipulated with agonists and antagonists at GABA(A) receptors, and dopaminergic (DA) cells receive input from GABAergic amacrines. Because there are only 450 DA cells in each mouse retina and they cannot be distinguished in the living state from other cells on the basis of their morphology, we used transgenic technology to label DA cells with human placental alkaline phosphatase, an enzyme that resides on the outer surface of the cell membrane. We could therefore identify DA cells in vitro after dissociation of the retina and investigate their activity with whole cell voltage clamp. We describe here the pharmacological properties of the GABA(A) receptors of solitary DA cells. GABA application induces a large inward current carried by chloride ions. The receptors are of the GABA(A) type because the GABA-evoked current is blocked by bicuculline. Their affinity for GABA is very high with an EC(50) value of 7.4 microM. Co-application of benzodiazepine receptor ligands causes a strong increase in the peak current induced by GABA (maximal enhancement: CL-218872 220%; flunitrazepam 214%; zolpidem 348%) proving that DA cells express a type I benzodiazepine-receptor (BZ1). GABA-evoked currents are inhibited by Zn(2+) with an IC(50) of 58.9 +/- 8.9 microM. Furthermore, these receptors are strongly potentiated by the modulator alphaxalone with an EC(50) of 340 +/- 4 nM. The allosteric modulator loreclezole increases GABA receptor currents by 43% (1 microM) and by 107% (10 microM). Using outside-out patches, we measured in single-channel recordings a main conductance (29 pS) and two subconductance (20 and 9 pS) states. We have previously shown by single-cell RT-PCR and immunocytochemistry that DA cells express seven different GABA(A) receptor subunits (alpha1, alpha3, alpha4, beta1, beta3, gamma1, gamma2(S), and gamma2(L)) and by immunocytochemistry that all subunits are expressed in the intact retina. We show here that at least alpha1, beta3 and gamma2 subunits are assembled into functional receptors.
Collapse
Affiliation(s)
- A Feigenspan
- Department of Neurobiology, Harvard Medical School, Boston, Massachusetts 02115, USA
| | | | | |
Collapse
|
41
|
Sharonova IN, Vorobjev VS, Haas HL. Interaction between copper and zinc at GABA(A) receptors in acutely isolated cerebellar Purkinje cells of the rat. Br J Pharmacol 2000; 130:851-6. [PMID: 10864892 PMCID: PMC1572144 DOI: 10.1038/sj.bjp.0703392] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Nanomolar concentrations of Cu(2+) induce a slowly reversible block of GABA(A) receptor-mediated currents which can be removed by chelating substances. The possible interaction of Cu(2+) with the Zn(2+) binding site on the GABA(A) receptor complex was studied in acutely isolated Purkinje cells using whole-cell recording and a fast drug application system. When Zn(2+) was applied together with 2 microM GABA, the Zn(2+)-induced block of GABA-mediated currents was not additive to the Cu(2+)-induced block. In the presence of 0.1 microM Cu(2+) in the bath solution the degree of inhibition of GABA-mediated responses by Zn(2+) was strongly attenuated. Preapplication of 100 microM Zn(2+) during 10 s, terminated 1 s before exposure to 2 microM GABA did not affect the GABA current in Cu(2+)-free solution, but relieved its block by 0.1 microM Cu(2+). This effect of Zn(2+) was concentration-dependent with an EC(50) of 72 microM. When the Cu(2+)-induced block was removed by histidine, preapplication of Zn(2+) did not increase the GABA current, indicating that the relief of Cu(2+) block by Zn(2+) is the result of its ability to actively remove Cu(2+) from the GABA receptor complex. It is proposed that the inhibitory effects of Zn(2+) and Cu(2+) on GABA-induced currents result from an action of these metal ions at distinct, but conformationally linked sites on the GABA(A) receptor protein. Under physiological conditions Zn(2+) would liberate Cu(2+) from the GABA(A) receptor, thus facilitating Cu(2+) turnover and its binding by other endogenous chelating molecules.
Collapse
Affiliation(s)
- Irina N Sharonova
- Brain Research Institute, Russian Academy of Medical Sciences, Moscow, Russia
| | - Vladimir S Vorobjev
- Brain Research Institute, Russian Academy of Medical Sciences, Moscow, Russia
| | - Helmut L Haas
- Department of Neurophysiology, Heinrich-Heine-Universität, POB 101007, D-40001 Düsseldorf, Germany
- Author for correspondence:
| |
Collapse
|
42
|
Hubbard PC, Lummis SC. Zn(2+) enhancement of the recombinant 5-HT(3) receptor is modulated by divalent cations. Eur J Pharmacol 2000; 394:189-97. [PMID: 10771284 DOI: 10.1016/s0014-2999(00)00143-6] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
Abstract
The modulation by Zn(2+) of recombinant murine 5-hydroxytryptamine(3A) (5-HT(3A)) receptor responses and its modification by Ca(2+) or Mg(2+) were studied using whole-cell voltage clamp and radioligand binding techniques. In the absence of other added divalent cations Zn(2+) enhanced the response to 5-HT by increasing maximum peak current (I(max)) to a maximum of 122.5%, decreasing the rate of desensitization (maximum t(1/2)=210%), and decreasing the EC(50) by approximately two fold. In the presence of Ca(2+) or Mg(2+), the effects of Zn(2+) on I(max) and t(1/2) were still manifest, although higher Zn(2+) concentrations were required; however, the effect on EC(50) was abolished. Zn(2+) also enhanced [3H]agonist but not [3H]antagonist binding. We propose there is more than one Zn(2+) binding site on the 5-HT(3) receptor molecule, and that one or more of these sites may also bind Ca(2+) and Mg(2+).
Collapse
Affiliation(s)
- P C Hubbard
- Division of Neurobiology, MRC Laboratory of Molecular Biology, Hills Road, Cambridge, UK
| | | |
Collapse
|
43
|
Gibbs JW, Zhang YF, Shumate MD, Coulter DA. Regionally selective blockade of GABAergic inhibition by zinc in the thalamocortical system: functional significance. J Neurophysiol 2000; 83:1510-21. [PMID: 10712476 DOI: 10.1152/jn.2000.83.3.1510] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The thalamocortical (TC) system is a tightly coupled synaptic circuit in which GABAergic inhibition originating from the nucleus reticularis thalami (NRT) serves to synchronize oscillatory TC rhythmic behavior. Zinc is colocalized within nerve terminals throughout the TC system with dense staining for zinc observed in NRT, neocortex, and thalamus. Whole cell voltage-clamp recordings of GABA-evoked responses were conducted in neurons isolated from ventrobasal thalamus, NRT, and somatosensory cortex to investigate modulation of the GABA-mediated chloride conductance by zinc. Zinc blocked GABA responses in a regionally specific, noncompetitive manner within the TC system. The regional levels of GABA blockade efficacy by zinc were: thalamus > NRT > cortex. The relationship between clonazepam and zinc sensitivity of GABA(A)-mediated responses was examined to investigate possible presence or absence of specific GABA(A) receptor (GABAR) subunits. These properties of GABARs have been hypothesized previously to be dependent on presence or absence of the gamma2 subunit and seem to display an inverse relationship. In cross-correlation plots, thalamic and NRT neurons did not show a statistically significant relationship between clonazepam and zinc sensitivity; however, a statistically significant correlation was observed in cortical neurons. Spontaneous epileptic TC oscillations can be induced in vitro by perfusion of TC slices with an extracellular medium containing no added Mg(2+). Multiple varieties of oscillations are generated, including simple TC burst complexes (sTBCs), which resemble spike-wave discharge activity. A second variant was termed a complex TC burst complex (cTBC), which resembled generalized tonic clonic seizure activity. sTBCs were exacerbated by zinc, whereas cTBCs were blocked completely by zinc. This supported the concept that zinc release may modulate TC rhythms in vivo. Zinc interacts with a variety of ionic conductances, including GABAR currents, N-methyl-D-aspartate (NMDA) receptor currents, and transient potassium (A) currents. D-2-amino-5-phosphonovaleric acid and 4-aminopyridine blocked both s- and cTBCs in TC slices. Therefore NMDA and A current-blocking effects of zinc are insufficient to explain differential zinc sensitivity of these rhythms. This supports a significant role of zinc-induced GABAR modulation in differential TC rhythm effects. Zinc is localized in high levels within the TC system and appears to be released during TC activity. Furthermore application of exogenous zinc modulates TC rhythms and differentially blocks GABARs within the TC system. These data are consistent with the hypothesis that endogenously released zinc may have important neuromodulatory actions impacting generation of TC rhythms, mediated at least in part by effects on GABARs.
Collapse
Affiliation(s)
- J W Gibbs
- Department of Anatomy, Medical College of Virginia of Virginia Commonwealth University, Richmond, Virginia 23298-0599, USA
| | | | | | | |
Collapse
|
44
|
Laube B, Kuhse J, Betz H. Kinetic and mutational analysis of Zn2+ modulation of recombinant human inhibitory glycine receptors. J Physiol 2000; 522 Pt 2:215-30. [PMID: 10639099 PMCID: PMC2269758 DOI: 10.1111/j.1469-7793.2000.t01-1-00215.x] [Citation(s) in RCA: 94] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
1. The effects of Zn2+ on glycine receptor (GlyR) currents were analysed in Xenopus oocytes and human embryonic kidney cells expressing homomeric human wild-type and mutant alpha1 subunit GlyRs. 2. Low concentrations (10 microM) of extracellular Zn2+ converted the partial agonist taurine into a high-efficacy agonist. Concentration-response analysis showed that the EC50 for taurine decreased whereas the Hill coefficient increased under these conditions. In contrast, 50-500 microM Zn2+ showed an increased EC50 value and reduced maximal inducible taurine currents. The potency of competitive antagonists was not affected in the presence of Zn2+. 3. Single-channel recording from outside-out patches revealed different kinetics of glycine- and taurine-gated currents. With both agonists, Zn2+ altered the open probability of the alpha1 GlyR without changing its unitary conductance. Low Zn2+ concentrations (5 microM) increased both the opening frequency and mean burst duration, whereas higher Zn2+ concentrations (> 50 microM) reduced GlyR open probability mainly by decreasing the open frequency and the relative contribution of the longest burst of the single-channel events. 4. Site-directed mutagenesis of the GlyR alpha1 subunit identified aspartate 80 and threonine 112 as important determinants of Zn2+ potentiation and inhibition, respectively, without affecting potentiation by ethanol. 5. Our data support the view that Zn2+ modulates different steps of the receptor binding and gating cycle via specific allosteric high- and low-affinity binding sites in the extracellular N-terminal region of the GlyR alpha1 subunit.
Collapse
Affiliation(s)
- B Laube
- Department of Neurochemistry, Max-Planck-Institute for Brain Research, Deutschordenstrasse 46, 60528 Frankfurt am Main, Germany.
| | | | | |
Collapse
|
45
|
|
46
|
Rosati AM, Traversa U. Mechanisms of inhibitory effects of zinc and cadmium ions on agonist binding to adenosine A1 receptors in rat brain. Biochem Pharmacol 1999; 58:623-32. [PMID: 10413299 DOI: 10.1016/s0006-2952(99)00135-5] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The dose-dependent inhibition of zinc and cadmium ions of agonist binding to A1 adenosine receptors in rat brain is prevented by histidine and cysteine, respectively. In the present study, the possible different mechanisms of Zn2+ and Cd2+ inhibitions were examined. The effects of Zn2+ and Cd2+ on equilibrium binding parameters of the agonists N6-cyclohexyl-[2,8-3H]-adenosine ([3H]CHA) or chloro-N6-cyclopentyl-adenosine ([3H]CCPA) and the antagonist cyclopentyl-1,3-dipropylxanthine ([3H]DPCPX) were compared with those effects of reagents or binding conditions which altered histidyl or cysteinyl residues of the A1 receptor. Zn2+ pretreatment did not change A1 agonist or antagonist affinity, but did reduce the Bmax. The inhibitory effects of Zn2+ pretreatments were also maintained after several membrane washings. Diethylpyrocarbonate, a histidine-specific alkylating reagent, behaved like zinc ions: pretreatment with A1 agonist protected the histidyl residues of the [3H]CHA binding site against modification by Zn2+, while the modification of the protonation state of the nitrogen of the imidazole group of histidines by changing pH indicated that the interactions of Zn2+ with the histidyl residues were feasible with their unprotonated form. These findings suggest the formation of coordination bonds between Zn2+ and histidines critical for [3H]CHA or [3H]DPCPX binding, which may prevent the ligand interaction with the specific sites without modifying the binding kinetics of radioligand to the non-chelated recognition sites. Cd2+ pretreatment reduced the [3H]CCPA affinity, but did not modify the affinity of the antagonist [3H]DPCPX, the Bmax remaining unaffected. As with cadmium effects, the oxidation of the thiol group of cysteine by dithionitrobenzoic acid (DTNB) reduced [3H]CCPA affinity without changing the number of binding sites. The reducing reagent dithiothreitol, which alone was unable to modify [3H]CCPA binding, overcame the inhibiting effects of both Cd2+ and DTNB. These findings suggest that cadmium ions may oxidize SH groups of cysteines localized on the A1 receptor molecule or a cysteine localized in the region of G(i)alpha subunit involved in the coupling with receptors. This mechanism can justify potential conformational modifications of the receptor molecule producing the decrease in affinity.
Collapse
Affiliation(s)
- A M Rosati
- Basic Research and Integrative Neuroscience Centre-Department of Biomedical Sciences, University of Trieste, Italy
| | | |
Collapse
|
47
|
Bencsits E, Ebert V, Tretter V, Sieghart W. A significant part of native gamma-aminobutyric AcidA receptors containing alpha4 subunits do not contain gamma or delta subunits. J Biol Chem 1999; 274:19613-6. [PMID: 10391897 DOI: 10.1074/jbc.274.28.19613] [Citation(s) in RCA: 97] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Using a novel antibody directed against the alpha4 subunit of gamma-aminobutyric acidA (GABAA) receptors, 5% of all [3H]muscimol but only about 2% of all [3H]Ro15-4513 binding sites present in brain membrane extracts could be precipitated. This indicated that part of the alpha4 receptors containing [3H]muscimol binding sites did not contain [3H]Ro15-4513 binding sites. Immunoaffinity purification and Western blot analysis of alpha4 receptors demonstrated that not only alpha1, alpha2, alpha3, beta1, beta2, and beta3 subunits but also gamma1, gamma2, gamma3, and delta subunits can be colocalized with alpha4 subunits in native GABAA receptors. Quantification experiments, however, indicated that only 7, 33, 4, or 7% of all alpha4 receptors contained gamma1, gamma2, gamma3, or delta subunits, respectively. These data not only explain the low percentage of [3H]Ro15-4513 binding sites precipitated by the anti-alpha4 antibody but also indicate that approximately 50% of the alpha4 receptors did not contain gamma1, gamma2, gamma3, or delta subunits. These receptors, thus, either are composed of alpha4 and beta1-3 subunits only, or additionally contain epsilon, pi, or so far unidentified GABAA receptor subunits.
Collapse
Affiliation(s)
- E Bencsits
- Section of Biochemical Psychiatry, University Clinic for Psychiatry, Währinger Gürtel 18-20, 1090 Vienna, Austria
| | | | | | | |
Collapse
|
48
|
Schmid G, Chittolini R, Raiteri L, Bonanno G. Differential effects of zinc on native GABA(A) receptor function in rat hippocampus and cerebellum. Neurochem Int 1999; 34:399-405. [PMID: 10397368 DOI: 10.1016/s0197-0186(99)00043-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Hippocampal noradrenergic and cerebellar glutamatergic granule cell axon terminals possess GABA(A) receptors mediating enhancement of noradrenaline and glutamate release, respectively. The hippocampal receptor is benzodiazepine-sensitive, whereas the cerebellar one is not affected by benzodiazepine agonists, indicating the presence of an alpha6 subunit. We tested here the effects of Zn2+ on these two native GABA(A) receptor subtypes using superfused rat hippocampal and cerebellar synaptosomes. In the cerebellum, zinc ions strongly inhibited (IC50 approximately 1 microM) the potentiation of the K(+)-evoked [3H]D-aspartate release induced by GABA. In contrast, the GABA-evoked release of [3H]noradrenaline from hippocampal synaptosomes was much less sensitive to Zn2+ (IC50 > 30 microM). The effects of Zn2+ were then studied in two rat lines selected for high (ANT) and low (AT) alcohol sensitivity because granule cell GABA(A) receptors in ANT, but not AT, rats respond to benzodiazepine agonists due to a critical mutation in the alpha6 subunit. GABA increased the K(+)-evoked release of [3H]DCNS REGIONS-aspartate from cerebellar synaptosomes of AT and ANT rats, an effect prevented by the GABAA selective antagonist bicuculline. In AT rat cerebellum, the effect of GABA was strongly inhibited by Zn2+ (IC50 < or = 1 microM), whereas in ANT rats, the divalent cation was about 100-fold less potent. Thus, native benzodiazepine-sensitive GABAA receptors appear largely insensitive to functional inhibition by Zn2+ and vice versa. Changes in sensitivity to Zn2+ inhibition consequent to mutations in cerebellar granule cell GABA(A) receptor subunits may lead to changes in glutamate release from parallel fibers onto Purkinje cells and may play important roles in cerebellar dysfunctions.
Collapse
Affiliation(s)
- G Schmid
- Dipartimento di Medicina Sperimentale, Sezione di Farmacologia e Tossicologia, Genova, Italy
| | | | | | | |
Collapse
|
49
|
Strecker GJ, Park WK, Dudek FE. Zinc and flunitrazepam modulation of GABA-mediated currents in rat suprachiasmatic neurons. J Neurophysiol 1999; 81:184-91. [PMID: 9914279 DOI: 10.1152/jn.1999.81.1.184] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The suprachiasmatic nucleus (SCN) of the hypothalamus is responsible for generating circadian rhythms in mammals, and GABA is the predominant neurotransmitter in the SCN. Properties of gamma-aminobutyric acid-A (GABAA) responses in SCN neurons were examined in acutely prepared hypothalamic slices from 3- to 8-wk-old rats with the use of whole cell voltage-clamp techniques. Zn2+ reduced the amplitude of GABAA-mediated spontaneous inhibitory postsynaptic currents (sIPSCs) in a concentration-dependent manner ranging from a reduction of control amplitude to 88% at 10 microM to 27% at 1,000 microM. Zn2+ reduced IPSC amplitude to a similar degree in the presence of tetrodotoxin and also significantly reduced the amplitude of currents evoked by application of exogenous GABA (100 microM, pressure applied). Zn2+ increased the frequency of IPSCs at lower concentrations and decreased it at higher ones. Flunitrazepam (100 nM) usually failed to potentiate the amplitude of sIPSCs, but prolonged sIPSC kinetics. Two exponential components were normally resolved in the sIPSC decay constants, and flunitrazepam significantly increased those two components. Thus flunitrazepam increased the duration of sIPSCs and potentiated the amplitude of currents evoked by pressure application of GABA. Zn2+ and benzodiazepine each modulated the effect of GABA in nearly all cells, suggesting that most SCN neurons have a similar GABAA receptor subunit composition in this respect. Zn2+ also affected sIPSC frequency, which suggests that Zn2+ increased neuronal firing rate at lower concentrations. These results begin to define the cellular roles that these GABAA receptor modulators might play in circadian regulation.
Collapse
Affiliation(s)
- G J Strecker
- Department of Anatomy and Neurobiology, Colorado State University, Fort Collins, Colorado 80523-1670, USA
| | | | | |
Collapse
|
50
|
Christensen MK, Frederickson CJ. Zinc-containing afferent projections to the rat corticomedial amygdaloid complex: a retrograde tracing study. J Comp Neurol 1998; 400:375-90. [PMID: 9779942 DOI: 10.1002/(sici)1096-9861(19981026)400:3<375::aid-cne7>3.0.co;2-5] [Citation(s) in RCA: 46] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The mammalian amygdaloid complex is densely innervated by zinc-containing neurons. The distribution of the terminals throughout the region has been described, but the origins of these zinc-containing fibers have not. The present work describes the origins of one major component of the zinc-containing innervation of the amygdaloid complex, namely, the component that innervates the corticomedial complex. Selective labeling of zinc-containing axons was accomplished by intracerebral microinfusion of selenium anions (SeO3(2-)), a procedure that produces a ZnSe precipitate in zinc-containing axonal boutons with subsequent retrograde transport to the neurons of origin. After infusions of SeO3(2-) into combinations of cortical, medial, or amygdalohippocampal regions, retrogradely labeled zinc-containing somata were found in all amygdaloid nuclei except for the medial and central nuclei, the bed nucleus of the accessory olfactory tract, the nucleus of the lateral olfactory tract, and the anterior amygdaloid area. Extrinsic zinc-containing projections to the same amygdaloid terminal fields were found to originate from the infralimbic, cingulate, piriform, perirhinal and entorhinal cortices, and from the prosubiculum and CA1. Commissural zinc-containing projections were found to originate from the posterolateral and posteromedial cortical nuclei and from the posterior part of the basomedial nucleus. Zinc-containing neurons have been implicated in the pathophysiology of epilepsy, in cell death after seizure or stroke, and in Alzheimer's disease, all clinical conditions that involve the amygdaloid complex. Identification of the zinc-containing pathways is a prerequisite to the elucidation of zinc's role in these disorders.
Collapse
Affiliation(s)
- M K Christensen
- Department of Neurobiology, Institute of Anatomy, University of Aarhus, Denmark.
| | | |
Collapse
|