1
|
Gregory KJ, Goudet C. International Union of Basic and Clinical Pharmacology. CXI. Pharmacology, Signaling, and Physiology of Metabotropic Glutamate Receptors. Pharmacol Rev 2020; 73:521-569. [PMID: 33361406 DOI: 10.1124/pr.119.019133] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Metabotropic glutamate (mGlu) receptors respond to glutamate, the major excitatory neurotransmitter in the mammalian brain, mediating a modulatory role that is critical for higher-order brain functions such as learning and memory. Since the first mGlu receptor was cloned in 1992, eight subtypes have been identified along with many isoforms and splice variants. The mGlu receptors are transmembrane-spanning proteins belonging to the class C G protein-coupled receptor family and represent attractive targets for a multitude of central nervous system disorders. Concerted drug discovery efforts over the past three decades have yielded a wealth of pharmacological tools including subtype-selective agents that competitively block or mimic the actions of glutamate or act allosterically via distinct sites to enhance or inhibit receptor activity. Herein, we review the physiologic and pathophysiological roles for individual mGlu receptor subtypes including the pleiotropic nature of intracellular signal transduction arising from each. We provide a comprehensive analysis of the in vitro and in vivo pharmacological properties of prototypical and commercially available orthosteric agonists and antagonists as well as allosteric modulators, including ligands that have entered clinical trials. Finally, we highlight emerging areas of research that hold promise to facilitate rational design of highly selective mGlu receptor-targeting therapeutics in the future. SIGNIFICANCE STATEMENT: The metabotropic glutamate receptors are attractive therapeutic targets for a range of psychiatric and neurological disorders. Over the past three decades, intense discovery efforts have yielded diverse pharmacological tools acting either competitively or allosterically, which have enabled dissection of fundamental biological process modulated by metabotropic glutamate receptors and established proof of concept for many therapeutic indications. We review metabotropic glutamate receptor molecular pharmacology and highlight emerging areas that are offering new avenues to selectively modulate neurotransmission.
Collapse
Affiliation(s)
- Karen J Gregory
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences and Department of Pharmacology, Monash University, Parkville, Victoria, Australia (K.J.G.) and Institut de Génomique Fonctionnelle (IGF), University of Montpellier, Centre National de la Recherche Scientifique (CNRS), Institut National de la Sante et de la Recherche Medicale (INSERM), Montpellier, France (C.G.)
| | - Cyril Goudet
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences and Department of Pharmacology, Monash University, Parkville, Victoria, Australia (K.J.G.) and Institut de Génomique Fonctionnelle (IGF), University of Montpellier, Centre National de la Recherche Scientifique (CNRS), Institut National de la Sante et de la Recherche Medicale (INSERM), Montpellier, France (C.G.)
| |
Collapse
|
2
|
Yuan Xiang P, Janc O, Grochowska KM, Kreutz MR, Reymann KG. Dopamine agonists rescue Aβ-induced LTP impairment by Src-family tyrosine kinases. Neurobiol Aging 2016; 40:98-102. [PMID: 26973108 DOI: 10.1016/j.neurobiolaging.2016.01.008] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2015] [Revised: 01/13/2016] [Accepted: 01/14/2016] [Indexed: 11/17/2022]
Abstract
Soluble forms of oligomeric amyloid beta (AβO) are involved in the loss of synaptic plasticity and memory, especially in early phases of Alzheimer's disease. Stimulation of dopamine D1/D5 receptors (D1R/D5R) is known to increase surface expression of synaptic α-amino-3-hydroxyl-5-methyl-4-isoxazole-propionate subtype glutamate and N-methyl-D-aspartate subtype glutamate receptors and facilitates the induction of the late phase of long-term potentiation (LTP), probably via a related mechanism. In this study, we show that the D1/D5R agonist SKF38393 protects LTP of hippocampal CA1 synapses from the deleterious action of oligomeric amyloid beta. Unexpectedly, the D1R/D5R-mediated recovery of LTP is independent of protein kinase A or phospholipase C pathways. Instead, we found that the inhibition of Src-family tyrosine kinases completely abolished the protective effects of D1R/D5R stimulation in a cellular model of learning and memory.
Collapse
Affiliation(s)
- PingAn Yuan Xiang
- Research Group Neuroplasticity, Leibniz Institute for Neurobiology, Magdeburg, Germany
| | - Oliwia Janc
- RG Neuropharmacology, Leibniz Institute for Neurobiology, Magdeburg, Germany
| | | | - Michael R Kreutz
- Research Group Neuroplasticity, Leibniz Institute for Neurobiology, Magdeburg, Germany; Leibniz Group 'Dendritic Organelles and Synaptic Function', Center for Molecular Neurobiology, ZMNH, University Medical Center Hamburg-Eppendorf, Hamburg, Germany; German Center for Neurodegenerative Diseases, Magdeburg, Germany.
| | - Klaus G Reymann
- RG Neuropharmacology, Leibniz Institute for Neurobiology, Magdeburg, Germany; German Center for Neurodegenerative Diseases, Magdeburg, Germany.
| |
Collapse
|
3
|
Kritis AA, Stamoula EG, Paniskaki KA, Vavilis TD. Researching glutamate - induced cytotoxicity in different cell lines: a comparative/collective analysis/study. Front Cell Neurosci 2015; 9:91. [PMID: 25852482 PMCID: PMC4362409 DOI: 10.3389/fncel.2015.00091] [Citation(s) in RCA: 246] [Impact Index Per Article: 24.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2015] [Accepted: 02/26/2015] [Indexed: 12/21/2022] Open
Abstract
Although glutamate is one of the most important excitatory neurotransmitters of the central nervous system, its excessive extracellular concentration leads to uncontrolled continuous depolarization of neurons, a toxic process called, excitotoxicity. In excitotoxicity glutamate triggers the rise of intracellular Ca2+ levels, followed by up regulation of nNOS, dysfunction of mitochondria, ROS production, ER stress, and release of lysosomal enzymes. Excessive calcium concentration is the key mediator of glutamate toxicity through over activation of ionotropic and metabotropic receptors. In addition, glutamate accumulation can also inhibit cystine (CySS) uptake by reversing the action of the CySS/glutamate antiporter. Reversal of the antiporter action reinforces the aforementioned events by depleting neurons of cysteine and eventually glutathione’s reducing potential. Various cell lines have been employed in the pursuit to understand the mechanism(s) by which excitotoxicity affects the cells leading them ultimately to their demise. In some cell lines glutamate toxicity is exerted mainly through over activation of NMDA, AMPA, or kainate receptors whereas in other cell lines lacking such receptors, the toxicity is due to glutamate induced oxidative stress. However, in the greatest majority of the cell lines ionotropic glutamate receptors are present, co-existing to CySS/glutamate antiporters and metabotropic glutamate receptors, supporting the assumption that excitotoxicity effect in these cells is accumulative. Different cell lines differ in their responses when exposed to glutamate. In this review article the responses of PC12, SH-SY5Y, HT-22, NT-2, OLCs, C6, primary rat cortical neurons, RGC-5, and SCN2.2 cell systems are systematically collected and analyzed.
Collapse
Affiliation(s)
- Aristeidis A Kritis
- Laboratory of Physiology, Department of Physiology and Pharmacology, School of Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, Thessaloniki Greece
| | - Eleni G Stamoula
- Laboratory of Physiology, Department of Physiology and Pharmacology, School of Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, Thessaloniki Greece
| | - Krystallenia A Paniskaki
- Laboratory of Physiology, Department of Physiology and Pharmacology, School of Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, Thessaloniki Greece
| | - Theofanis D Vavilis
- Laboratory of Physiology, Department of Physiology and Pharmacology, School of Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, Thessaloniki Greece
| |
Collapse
|
4
|
Rahman S, Neuman RS. Action of 5-hydroxytryptamine in facilitating N-methyl-D-aspartate depolarization of cortical neurones mimicked by calcimycin, cyclopiazonic acid and thapsigargin. Br J Pharmacol 2012. [DOI: https://doi.org/10.1111/j.1476-5381.1996.tb15754.x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
|
5
|
Weber JT. Altered calcium signaling following traumatic brain injury. Front Pharmacol 2012; 3:60. [PMID: 22518104 PMCID: PMC3324969 DOI: 10.3389/fphar.2012.00060] [Citation(s) in RCA: 143] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2012] [Accepted: 03/24/2012] [Indexed: 01/10/2023] Open
Abstract
Cell death and dysfunction after traumatic brain injury (TBI) is caused by a primary phase, related to direct mechanical disruption of the brain, and a secondary phase which consists of delayed events initiated at the time of the physical insult. Arguably, the calcium ion contributes greatly to the delayed cell damage and death after TBI. A large, sustained influx of calcium into cells can initiate cell death signaling cascades, through activation of several degradative enzymes, such as proteases and endonucleases. However, a sustained level of intracellular free calcium is not necessarily lethal, but the specific route of calcium entry may couple calcium directly to cell death pathways. Other sources of calcium, such as intracellular calcium stores, can also contribute to cell damage. In addition, calcium-mediated signal transduction pathways in neurons may be perturbed following injury. These latter types of alterations may contribute to abnormal physiology in neurons that do not necessarily die after a traumatic episode. This review provides an overview of experimental evidence that has led to our current understanding of the role of calcium signaling in death and dysfunction following TBI.
Collapse
Affiliation(s)
- John T. Weber
- School of Pharmacy and Division of BioMedical Sciences, Faculty of Medicine, Memorial University of NewfoundlandSt. John’s, NL, Canada
| |
Collapse
|
6
|
Lamont MG, Weber JT. The role of calcium in synaptic plasticity and motor learning in the cerebellar cortex. Neurosci Biobehav Rev 2012; 36:1153-62. [DOI: 10.1016/j.neubiorev.2012.01.005] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2011] [Revised: 01/13/2012] [Accepted: 01/20/2012] [Indexed: 01/16/2023]
|
7
|
Kato H, Narita M, Miyatake M, Yajima Y, Suzuki T. Role of neuronal NR2B subunit-containing NMDA receptor-mediated Ca2+ influx and astrocytic activation in cultured mouse cortical neurons and astrocytes. Synapse 2006; 59:10-7. [PMID: 16235228 DOI: 10.1002/syn.20213] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The excitatory neurotransmitter glutamate has been shown to mediate such bidirectional communication between neurons and astrocytes. In the present study, we determined the role of N-methyl-D-aspartate (NMDA) receptors on glutamate-evoked Ca(2+) influx into neurons and astrocytes. Either a nonselective NMDA receptor antagonist (5R,10S)-(+)-5-methyl-10,11-dihydro-5H-dibenzo[a,d]cyclohepten-5,10-imine hydrogen maleate (MK-801) or selective NR2B subunit-containing NMDA receptor antagonists ifenprodil and (R,S)-alpha-(4-hydroxyphenyl)-beta-methyl-4-(phenylmethyl)-1-piperid inepropanol (Ro25-6981) significantly inhibited the glutamate-evoked Ca(2+) influx into neurons, but not into astrocytes. Furthermore, we investigated whether NR2B subunit-containing NMDA receptor antagonists could suppress the astrocytic activation, as detected by glial fibrillary acidic protein (GFAP; as a specific marker of astrocyte)-like immunoreactivities in mouse cortical astrocytes. Here, we demonstrated that the increases in the level of GFAP-like immunoreactivities induced by glutamate were markedly suppressed by cotreatment with ifenprodil in cortical neuron/glia cocultures, but not in purified astrocytes. These results suggest that NR2B subunit-containing NMDA receptor plays a critical role in not only glutamate-evoked Ca(2+) influx into neurons, but also glutamate-induced astrocytic activation. Thus, glutamate-mediated pathway via NR2B subunit-containing NMDA receptor may, at least in part, contribute to neuron-to-astrocyte signaling.
Collapse
Affiliation(s)
- Hideaki Kato
- Department of Toxicology, Hoshi University School of Pharmacy and Pharmaceutical Sciences, Shinagawa-ku, Tokyo, Japan
| | | | | | | | | |
Collapse
|
8
|
Slemmer JE, De Zeeuw CI, Weber JT. Don't get too excited: mechanisms of glutamate-mediated Purkinje cell death. PROGRESS IN BRAIN RESEARCH 2005; 148:367-90. [PMID: 15661204 DOI: 10.1016/s0079-6123(04)48029-7] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Purkinje cells (PCs) present a unique cellular profile in both the cerebellum and the brain. Because they represent the only output cell of the cerebellar cortex, they play a vital role in the normal function of the cerebellum. Interestingly, PCs are highly susceptible to a variety of pathological conditions that may involve glutamate-mediated 'excitotoxicity', a term coined to describe an excessive release of glutamate, and a subsequent over-activation of excitatory amino acid (NMDA, AMPA, and kainite) receptors. Mature PCs, however, lack functional NMDA receptors, the means by which Ca(2+) enters the cell in classic hippocampal and cortical models of excitotoxicity. In PCs, glutamate predominantly mediates its effects, first via a rapid influx of Ca(2+)through voltage-gated calcium channels, caused by the depolarization of the membrane after AMPA receptor activation (and through Ca(2+)-permeable AMPA receptors themselves), and second, via a delayed release of Ca(2+) from intracellular stores. Although physiological levels of intracellular free Ca(2+) initiate vital second messenger signaling pathways in PCs, excessive Ca(2+) influx can detrimentally alter dendritic spine morphology via interactions with the neuronal cytoskeleton, and thus can perturb normal synaptic function. PCs possess various calcium-binding proteins, such as calbindin-D28K and parvalbumin, and glutamate transporters, in order to prevent glutamate from exerting deleterious effects. Bergmann glia are gaining recognition as key players in the clearance of extracellular glutamate; these cells are also high in S-100beta, a protein with both neurodegenerative and neuroprotective abilities. In this review, we discuss PC-specific mechanisms of glutamate-mediated excitotoxic cell death, the relationship between Ca(2+) and cytoskeleton, and the implications of glutamate, and S-100beta for pathological conditions, such as traumatic brain injury.
Collapse
Affiliation(s)
- Jennifer E Slemmer
- Department of Neuroscience, Erasmus Medical Center, Dr. Molenwaterplein 50, P.O. Box 1738, 3000 DR Rotterdam, The Netherlands
| | | | | |
Collapse
|
9
|
Holohean AM, Hackman JC. Mechanisms intrinsic to 5-HT2B receptor-induced potentiation of NMDA receptor responses in frog motoneurones. Br J Pharmacol 2004; 143:351-60. [PMID: 15339859 PMCID: PMC1575347 DOI: 10.1038/sj.bjp.0705935] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
In the presence of NMDA receptor open-channel blockers [Mg(2+); (+)-5-methyl-10,11-dihydro-5H-dibenzo[a,d]cyclohepten-5,10-imine maleate (MK-801); 1-amino-3,5-dimethyladamantane (memantine)] and TTX, high concentrations (30-100 microm) of either 5-hydroxytryptamine (5-HT) or alpha-methyl-5-hydroxytryptamine (alpha-Me-5-HT) significantly potentiated NMDA-induced depolarizations of frog spinal cord motoneurones. Potentiation was blocked by LY-53,857 (10-30 microm), SB 206553 (10 microm), and SB 204741 (30 microm), but not by spiroxatrine (10 microm), WAY 100,635 (1-30 microm), ketanserin (10 microm), RS 102221 (10 microm), or RS 39604 (10-20 microm). Therefore, alpha-Me-5-HT's facilitatory effects appear to involve 5-HT(2B) receptors. These effects were G-protein dependent as they were prevented by prior treatment with guanylyl-5'-imidodiphosphate (GMP-PNP, 100 microm) and H-Arg-Pro-Lys-Pro-Gln-Gln-D-Trp-Phe-D-Trp-D-Trp-Met-NH(2) (GP antagonist 2A, 3-6 microm), but not by pertussis toxin (PTX, 3-6 ng ml(-1), 48 h preincubation). This potentiation was not reduced by protein kinase C inhibition with staurosporine (2.0 microm), U73122 (10 microm) or N-(2-aminoethyl)-5-isoquinolinesulfonamide HCl (H9) (77 microm) or by intracellular Ca(2+) depletion with thapsigargin (0.1 microm) (which inhibits Ca(2+)/ATPase). Exposure of the spinal cord to the L-type Ca(2+) channel blockers nifedipine (10 microm), KN-62 (5 microm) or gallopamil (100 microm) eliminated alpha-Me-5-HT's effects. The calmodulin antagonist N-(6-aminohexyl)-5-chloro-1-naphtalenesulfonamide (W7) (100 microm) diminished the potentiation. However, the calcium/calmodulin-dependent protein kinase II (CaM Kinase II) blocker KN-93 (10 microm) did not block the 5-HT enhancement of the NMDA responses. In summary, activation of 5-HT(2B) receptors by alpha-Me-5-HT facilitates NMDA-depolarizations of frog motoneurones via a G-protein, a rise in [Ca(2+)](i) from the entry of extracellular Ca(2+) through L-type Ca(2+) channels, the binding of Ca(2+) to calmodulin and a lessening of the Mg(2+) -produced open-channel block of the NMDA receptor.
Collapse
Affiliation(s)
- Alice M Holohean
- Spinal Cord Pharmacology Laboratory, Veterans Affairs Medical Center, Miami, FL 33101, U.S.A
| | - John C Hackman
- Spinal Cord Pharmacology Laboratory, Veterans Affairs Medical Center, Miami, FL 33101, U.S.A
- Department of Neurology (D4-5), PO Box 016960, University of Miami School of Medicine, Miami, FL 33101, U.S.A
- Author for correspondence:
| |
Collapse
|
10
|
Two distinct signaling pathways upregulate NMDA receptor responses via two distinct metabotropic glutamate receptor subtypes. J Neurosci 2002. [PMID: 12427823 DOI: 10.1523/jneurosci.22-22-09679.2002] [Citation(s) in RCA: 141] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Molecular processes regulating the gain of NMDA receptors modulate diverse physiological and pathological responses in the CNS. Group I metabotropic glutamate receptors (mGluRs), which neighbor NMDA receptors and which can be coactivated by synaptically released glutamate, couple to several different second messenger pathways, each of which could target NMDA receptors. In CA3 pyramidal cells we show that the activation of mGluR1 potentiates NMDA current via a G-protein-independent mechanism involving Src kinase activation. In contrast, mGluR5-mediated enhancement of NMDA current requires G-protein activation, triggering a signaling cascade including protein kinase C and Src. These results indicate that one neurotransmitter, glutamate, can activate two distinct and independent signaling systems to target the same effector. These two pathways are likely to contribute significantly to the highly differentiated control of NMDA receptor function.
Collapse
|
11
|
Benquet P, Gee CE, Gerber U. Two distinct signaling pathways upregulate NMDA receptor responses via two distinct metabotropic glutamate receptor subtypes. J Neurosci 2002; 22:9679-86. [PMID: 12427823 PMCID: PMC6757830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/27/2023] Open
Abstract
Molecular processes regulating the gain of NMDA receptors modulate diverse physiological and pathological responses in the CNS. Group I metabotropic glutamate receptors (mGluRs), which neighbor NMDA receptors and which can be coactivated by synaptically released glutamate, couple to several different second messenger pathways, each of which could target NMDA receptors. In CA3 pyramidal cells we show that the activation of mGluR1 potentiates NMDA current via a G-protein-independent mechanism involving Src kinase activation. In contrast, mGluR5-mediated enhancement of NMDA current requires G-protein activation, triggering a signaling cascade including protein kinase C and Src. These results indicate that one neurotransmitter, glutamate, can activate two distinct and independent signaling systems to target the same effector. These two pathways are likely to contribute significantly to the highly differentiated control of NMDA receptor function.
Collapse
Affiliation(s)
- Pascal Benquet
- Brain Research Institute, University of Zurich, CH-8057 Zurich, Switzerland
| | | | | |
Collapse
|
12
|
Interaction between metabotropic and NMDA subtypes of glutamate receptors in sprout suppression at young synapses. J Neurosci 2002. [PMID: 11756506 DOI: 10.1523/jneurosci.22-01-00226.2002] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Recently, NMDA receptors (NMDARs) have been implicated in a cell contact-dependent suppression of sprouting in cultured Xenopus tectal neurons during an early period when neither AMPA/kainate (KA) receptors nor action potentials play a prominent role in cell-cell communication. We asked how the NMDA receptors function in the absence of the depolarizing effect of AMPA/KA receptor activity. We show that type II metabotropic glutamate receptors (mGluRs) can operate synergistically with NMDA receptors in the absence of AMPA/KA receptor function to suppress an early neurite sprouting response of the tectal neurons. Calcium imaging with fluo-3 AM and morphological analyses after exposure to glutamate receptor antagonists show that a combination of AMPA/KA receptor and type II mGluR blockers mimics the decrease in intracellular free calcium in response to glutamate and the structural effects produced by NMDA receptor antagonists in these cultures. Patch-clamp analyses confirmed a decrease in NMDA receptor-mediated currents with type II mGluR blockade, and 8-bromo cAMP application produced a decrease in NMDA receptor-mediated calcium influx. These data suggest that type II mGluRs potentiate NMDA receptor function by decreasing cAMP levels in tectal neurons. We also show that NMDARs exhibit low magnesium sensitivity in tectal neurons during the first few days in culture. Thus both metabotropic and ionotropic glutamate receptors can play a role in the contact-mediated suppression of ongoing sprouting at early neuron-neuron contacts before action potential activity.
Collapse
|
13
|
Renger JJ, Hartman KN, Tsuchimoto Y, Yokoi M, Nakanishi S, Hensch TK. Experience-dependent plasticity without long-term depression by type 2 metabotropic glutamate receptors in developing visual cortex. Proc Natl Acad Sci U S A 2002; 99:1041-6. [PMID: 11805343 PMCID: PMC117426 DOI: 10.1073/pnas.022618799] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Synaptic depression is thought to underlie the loss of cortical responsiveness to an eye deprived of vision. Here, we establish a fundamental role for type 2 metabotropic glutamate receptors (mGluR2) in long-term depression (LTD) of synaptic transmission within primary visual cortex. Direct mGluR2 activation by (2S,2'R,3'R-2-(2',3'-dicarboxycyclopropyl)glycine (DCG-IV) persistently depressed layer 2/3 field potentials in slices of mouse binocular zone when stimulated concomitantly. Chemical LTD was independent of N-methyl-d-aspartate (NMDA) receptors but occluded conventional LTD by low-frequency stimulation, indicating shared downstream events. Antagonists or targeted disruption of mGluR2 conversely prevented LTD induction by electrical low-frequency stimulation to layer 4. In contrast, Schaeffer collateral synapses did not exhibit chemical LTD, revealing hippocampal area CA1, naturally devoid of mGluR2, to be an inappropriate model for neocortical plasticity. Moreover, monocular deprivation remained effective in mice lacking mGluR2, and receptor expression levels were unchanged during the critical period in wild-type mice, indicating that experience-dependent plasticity is independent of LTD induction in visual cortex. Short-term depression that was unaffected by mGluR2 deletion may better reflect circuit refinement in vivo.
Collapse
Affiliation(s)
- John J Renger
- Laboratory for Neuronal Circuit Development, Institute of Physical and Chemical Research (RIKEN), Brain Science Institute, 2-1 Hirosawa, Wako-shi, Saitama 351-0198, Japan
| | | | | | | | | | | |
Collapse
|
14
|
Miskevich F, Lu W, Lin SY, Constantine-Paton M. Interaction between metabotropic and NMDA subtypes of glutamate receptors in sprout suppression at young synapses. J Neurosci 2002; 22:226-38. [PMID: 11756506 PMCID: PMC6757613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/23/2023] Open
Abstract
Recently, NMDA receptors (NMDARs) have been implicated in a cell contact-dependent suppression of sprouting in cultured Xenopus tectal neurons during an early period when neither AMPA/kainate (KA) receptors nor action potentials play a prominent role in cell-cell communication. We asked how the NMDA receptors function in the absence of the depolarizing effect of AMPA/KA receptor activity. We show that type II metabotropic glutamate receptors (mGluRs) can operate synergistically with NMDA receptors in the absence of AMPA/KA receptor function to suppress an early neurite sprouting response of the tectal neurons. Calcium imaging with fluo-3 AM and morphological analyses after exposure to glutamate receptor antagonists show that a combination of AMPA/KA receptor and type II mGluR blockers mimics the decrease in intracellular free calcium in response to glutamate and the structural effects produced by NMDA receptor antagonists in these cultures. Patch-clamp analyses confirmed a decrease in NMDA receptor-mediated currents with type II mGluR blockade, and 8-bromo cAMP application produced a decrease in NMDA receptor-mediated calcium influx. These data suggest that type II mGluRs potentiate NMDA receptor function by decreasing cAMP levels in tectal neurons. We also show that NMDARs exhibit low magnesium sensitivity in tectal neurons during the first few days in culture. Thus both metabotropic and ionotropic glutamate receptors can play a role in the contact-mediated suppression of ongoing sprouting at early neuron-neuron contacts before action potential activity.
Collapse
Affiliation(s)
- Frank Miskevich
- Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139-4307, USA
| | | | | | | |
Collapse
|
15
|
De Vry J, Horváth E, Schreiber R. Neuroprotective and behavioral effects of the selective metabotropic glutamate mGlu(1) receptor antagonist BAY 36-7620. Eur J Pharmacol 2001; 428:203-14. [PMID: 11675037 DOI: 10.1016/s0014-2999(01)01296-1] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
This study characterized the neuroprotective and behavioral effects of (3aS,6aS)-6a-naphtalen-2-ylmethyl-5-methyliden-hexahydro-cyclopenta[c]furan-1-on (BAY 36-7620), a novel, selective and systemically active metabotropic glutamate (mGlu)(1) receptor antagonist. In the rat, neuroprotective effects were obtained in the acute subdural hematoma model (efficacy of 40-50% at 0.01 and 0.03 mg/kg/h, i.v. infusion during the 4 h following surgery); whereas in the middle cerebral artery occlusion model, a trend for a neuroprotective effect was obtained after triple i.v. bolus application of 0.03-3 mg/kg, given immediately, 2 and 4 h after occlusion. Hypothermic effects were mild and only obtained at doses which were considerably higher than those at which maximal neuroprotective efficacy was obtained, indicating that the neuroprotective effects are not a consequence of hypothermia. BAY 36-7620 protected against pentylenetetrazole-induced convulsions in the mouse (MED: 10 mg/kg, i.v.). As assessed in rats, BAY 36-7620 was devoid of the typical side-effects of the ionotropic glutamate (iGlu) receptor antagonists phencyclidine and (+)-5-methyl-10,11-dihydroxy-5H-dibenzo(a,d)cyclohepten-5,10-imine (MK-801). Thus, BAY 36-7620 did not disrupt sensorimotor gating, induce phencyclidine-like discriminative effects or stereotypical behavior, or facilitate intracranial self-stimulation behavior. Although behavioral stereotypies and disruption of sensorimotor gating induced by amphetamine or apomorphine were not affected by BAY 36-7620, the compound attenuated some behavioral effects of iGlu receptor antagonists, such as excessive grooming or licking, and their facilitation of intracranial self-stimulation behavior. It is concluded that mGlu(1) receptor antagonism results in neuroprotective and anticonvulsive effects in the absence of the typical side-effects resulting from antagonism of iGlu receptors.
Collapse
Affiliation(s)
- J De Vry
- CNS Research, Bayer AG, Aprather Weg 18a, D-42096, Wuppertal, Germany.
| | | | | |
Collapse
|
16
|
Allen JW, Vicini S, Faden AI. Exacerbation of neuronal cell death by activation of group I metabotropic glutamate receptors: role of NMDA receptors and arachidonic acid release. Exp Neurol 2001; 169:449-60. [PMID: 11358458 DOI: 10.1006/exnr.2001.7672] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Both ionotropic and metabotropic glutamate receptors have been implicated in the pathogenesis of neuronal injury. Activation of group I metabotropic glutamate receptors (mGluR) exacerbates neuronal cell death, whereas inhibition is neuroprotective. However, the mechanisms involved remain unknown. Activation of group I mGluR modulates multiple signal transduction pathways including stimulation of phosphoinositide hydrolysis, potentiation of NMDA receptor activity, and release of arachidonic acid. Here we demonstrate that whereas activation of group I mGluR by (S)-3,5-dihydroxyphenylglycine (DHPG) potentiates NMDA-induced currents and intracellular calcium increases in rat cortical neuronal cultures, partial effects of group I mGluR activation or inhibition on neuronal injury induced by oxygen-glucose deprivation remain despite NMDA receptor blockade. DHPG stimulation also increases basal arachidonic acid release from rat neuronal-glial cultures and potentiates injury-induced arachidonic acid release in these cultures. Thus, activation of group I mGluR may exacerbate neuronal injury through multiple mechanisms, which include positive modulation of NMDA receptors and enhanced release of arachidonic acid.
Collapse
MESH Headings
- Animals
- Animals, Newborn
- Arachidonic Acid/metabolism
- Calcium/metabolism
- Cell Death/drug effects
- Cell Hypoxia/physiology
- Cells, Cultured
- Cerebral Cortex/cytology
- Cerebral Cortex/physiology
- Coculture Techniques
- Dizocilpine Maleate/pharmacology
- Embryo, Mammalian
- Gene Expression Regulation
- Glucose/metabolism
- Kinetics
- Methoxyhydroxyphenylglycol/analogs & derivatives
- Methoxyhydroxyphenylglycol/pharmacology
- N-Methylaspartate/pharmacology
- Neuroglia/cytology
- Neuroglia/drug effects
- Neuroglia/physiology
- Neurons/cytology
- Neurons/drug effects
- Neurons/physiology
- RNA, Messenger/analysis
- RNA, Messenger/genetics
- Rats
- Rats, Sprague-Dawley
- Receptors, Metabotropic Glutamate/drug effects
- Receptors, Metabotropic Glutamate/genetics
- Receptors, Metabotropic Glutamate/physiology
- Receptors, N-Methyl-D-Aspartate/physiology
- Reverse Transcriptase Polymerase Chain Reaction
- Transcription, Genetic
Collapse
Affiliation(s)
- J W Allen
- Institute for Cognitive and Computational Sciences, Department of Neuroscience, Georgetown University, 3970 Reservoir Road NW, Washington, DC 20007, USA
| | | | | |
Collapse
|
17
|
Bandrowski AE, Ashe JH, Crawford CA. Tetanic stimulation and metabotropic glutamate receptor agonists modify synaptic responses and protein kinase activity in rat auditory cortex. Brain Res 2001; 894:218-32. [PMID: 11251195 DOI: 10.1016/s0006-8993(01)02052-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
We investigated whether tetanic-stimulation and activation of metabotropic glutamate receptors (mGluRs) can modify field-synaptic-potentials and protein kinase activity in rat auditory cortex, specifically protein kinase A (PKA) and protein kinase C (PKC). Tetanic stimulation (50 Hz, 1 s) increases PKA and PKC activity only if the CNQX-sensitive field-EPSP (f-EPSP) is also potentiated. If the f-EPSP is unchanged, then PKA and PKC activity remains unchanged. Tetanic stimulation decreases a bicuculline-sensitive field-IPSP (f-IPSP), and this occurs whether the f-EPSP is potentiated or not. Potentiation of the f-EPSP is blocked by antagonists of mGluRs (MCPG) and PKC (calphostin-C, tamoxifen), suggesting that the potentiation of the f-EPSP is dependent on mGluRs and PKC. PKC antagonists block the rise in PKC and PKA activity, which suggests that these may be coupled. In contrast, ACPD (agonist at mGluRs) decreases both the f-EPSP and the f-IPSP, but increases PKC and PKA activity. Quisqualate (group I mGluR agonist), decreases the f-IPSP, and increases PKA activity, suggesting that the increase in PKA activity is a result of activation of group I mGluRs. Additionally, the increase in PKC and PKA activity appears to be independent of the decrease of the f-EPSP and f-IPSP, because PKC antagonists block the increase in PKC and PKA activity levels but do not block ACPD's effect on the f-EPSP or f-IPSP. These data suggest that group I mGluRs are involved in potentiating the f-EPSP by a PKC and possibly PKA dependent mechanism which is separate from the mechanism that decreases the f-EPSP and f-IPSP.
Collapse
Affiliation(s)
- A E Bandrowski
- Department of Psychology, University of California-Riverside, 92521, USA
| | | | | |
Collapse
|
18
|
Kovács AD, Cebers G, Cebere A, Moreira T, Liljequist S. Cortical and striatal neuronal cultures of the same embryonic origin show intrinsic differences in glutamate receptor expression and vulnerability to excitotoxicity. Exp Neurol 2001; 168:47-62. [PMID: 11170720 DOI: 10.1006/exnr.2000.7576] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Cortical and striatal cultures were prepared from the same embryonic rat brains and maintained in identical culture conditions. In this way, the intrinsic, genetically imprinted differences determine the responses of cortical and striatal neurons in comparative studies. Cortical and striatal neurons differed in their sensitivity to glutamate receptor-mediated neurotoxicity as measured by the MTT cell viability assay. On the 8th day in vitro, striatal cultures were less sensitive to N-methyl-d-aspartate (NMDA)-induced toxicity than cortical, although both cultures were equally vulnerable to alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionate (AMPA)- or kainate-induced toxicity. The AMPA receptor-mediated cell death in cortical cultures, however, was much more dependent on preventing AMPA receptor desensitization than in striatal cultures. Furthermore, glutamate-induced neurotoxicity was primarily mediated by NMDA receptors in cortical cultures, while blockade of either NMDA or AMPA receptors gave almost complete protection against glutamate in striatal cultures. To elucidate the molecular mechanisms responsible for the observed differences, we analyzed the expression of NMDA receptor subunits (NR1, NR2A-C) at the mRNA and the protein level in cortical and striatal cultures as well as in standard cerebellar granule cell cultures. The lowest expression level of NMDA receptor subunits was found in striatal cultures, thereby providing a possible explanation for their lower sensitivity to NMDA. Remarkable differences were found between the relative rates of mRNA and protein expression for NR1 and NR2B in the three cultures, indicative of intrinsic differences in the posttranscriptional regulation of NMDA receptor subunit expression in cultures from various brain regions.
Collapse
Affiliation(s)
- A D Kovács
- Department of Clinical Neuroscience, Karolinska Institutet, SE-17176 Stockholm, Sweden
| | | | | | | | | |
Collapse
|
19
|
Interaction between metabotropic and ionotropic glutamate receptors regulates neuronal network activity. J Neurosci 2000. [PMID: 10884323 DOI: 10.1523/jneurosci.20-14-05382.2000] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Experimental and computational techniques have been used to investigate the group I metabotropic glutamate receptor (mGluR)-mediated increase in the frequency of spinal cord network activity underlying locomotion in the lamprey. Group I mGluR activation potentiated the amplitude of NMDA-induced currents in identified motoneurons and crossed caudally projecting network interneurons. Group I mGluRs also potentiated NMDA-induced calcium responses. This effect was blocked by a group I mGluR-specific antagonist, but not by blockers of protein kinase A, C, or G. The effect of group I mGluRs activation was also tested on NMDA-induced oscillations known to occur during fictive locomotion. Activation of these receptors increased the duration of the plateau phase and decreased the duration of the hyperpolarizing phase. These effects were blocked by a group I mGluR antagonist. To determine its role in the modulation of NMDA-induced oscillations and the locomotor burst frequency, the potentiation of NMDA receptors by mGluRs was simulated using computational techniques. Simulating the interaction between these receptors reproduced the modulation of the plateau and hyperpolarized phases of NMDA-induced oscillations, and the increase in the frequency of the locomotor rhythm. Our results thus show a postsynaptic interaction between group I mGluRs and NMDA receptors in lamprey spinal cord neurons, which can account for the regulation of the locomotor network output by mGluRs.
Collapse
|
20
|
Krieger P, Hellgren-Kotaleski J, Kettunen P, El Manira AJ. Interaction between metabotropic and ionotropic glutamate receptors regulates neuronal network activity. J Neurosci 2000; 20:5382-91. [PMID: 10884323 PMCID: PMC6772344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2023] Open
Abstract
Experimental and computational techniques have been used to investigate the group I metabotropic glutamate receptor (mGluR)-mediated increase in the frequency of spinal cord network activity underlying locomotion in the lamprey. Group I mGluR activation potentiated the amplitude of NMDA-induced currents in identified motoneurons and crossed caudally projecting network interneurons. Group I mGluRs also potentiated NMDA-induced calcium responses. This effect was blocked by a group I mGluR-specific antagonist, but not by blockers of protein kinase A, C, or G. The effect of group I mGluRs activation was also tested on NMDA-induced oscillations known to occur during fictive locomotion. Activation of these receptors increased the duration of the plateau phase and decreased the duration of the hyperpolarizing phase. These effects were blocked by a group I mGluR antagonist. To determine its role in the modulation of NMDA-induced oscillations and the locomotor burst frequency, the potentiation of NMDA receptors by mGluRs was simulated using computational techniques. Simulating the interaction between these receptors reproduced the modulation of the plateau and hyperpolarized phases of NMDA-induced oscillations, and the increase in the frequency of the locomotor rhythm. Our results thus show a postsynaptic interaction between group I mGluRs and NMDA receptors in lamprey spinal cord neurons, which can account for the regulation of the locomotor network output by mGluRs.
Collapse
Affiliation(s)
- P Krieger
- Nobel Institute for Neurophysiology, Department of Neuroscience, Karolinska Institute, S-171 77 Stockholm, Sweden.
| | | | | | | |
Collapse
|
21
|
Weber JT, Rzigalinski BA, Willoughby KA, Moore SF, Ellis EF. Alterations in calcium-mediated signal transduction after traumatic injury of cortical neurons. Cell Calcium 1999; 26:289-99. [PMID: 10668567 DOI: 10.1054/ceca.1999.0082] [Citation(s) in RCA: 71] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Calcium influx and elevation of intracellular free calcium ([Ca2+]i), with subsequent activation of degradative enzymes, is hypothesized to cause cell injury and death after traumatic brain injury. We examined the effects of mild-to-severe stretch-induced traumatic injury on [Ca2+]i dynamics in cortical neurons cultured on silastic membranes. [Ca2+]i was rapidly elevated after injury, however, the increase was transient with neuronal [Ca2+]i returning to basal levels by 3 h after injury, except in the most severely injured cells. Despite a return of [Ca2+]i to basal levels, there were persistent alterations in calcium-mediated signal transduction through 24 h after injury. [Ca2+]i elevation in response to glutamate or NMDA was enhanced after injury. We also found novel alterations in intracellular calcium store-mediated signaling. Neuronal calcium stores failed to respond to a stimulus 15 min after injury and exhibited potentiated responses to stimuli at 3 and 24 h post-injury. Thus, changes in calcium-mediated cellular signaling may contribute to the pathology that is observed after traumatic brain injury.
Collapse
Affiliation(s)
- J T Weber
- Department of Pharmacology and Toxicology, Medical College of Virginia of Virginia Commonwealth University, Richmond, USA
| | | | | | | | | |
Collapse
|
22
|
Pellegrini-Giampietro DE, Cozzi A, Peruginelli F, Leonardi P, Meli E, Pellicciari R, Moroni F. 1-Aminoindan-1,5-dicarboxylic acid and (S)-(+)-2-(3'-carboxybicyclo[1.1.1] pentyl)-glycine, two mGlu1 receptor-preferring antagonists, reduce neuronal death in in vitro and in vivo models of cerebral ischaemia. Eur J Neurosci 1999; 11:3637-47. [PMID: 10564371 DOI: 10.1046/j.1460-9568.1999.00786.x] [Citation(s) in RCA: 97] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Metabotropic glutamate (mGlu) receptors have been implicated in a number of physiological and pathological responses to glutamate, but the exact role of group I mGlu receptors in causing postischaemic injury is not yet clear. In this study, we examined whether the recently-characterized and relatively selective mGlu1 receptor antagonists 1-aminoindan-1,5-dicarboxylic acid (AIDA) and (S)-(+)-2-(3'-carboxybicyclo[1.1.1]pentyl)-glycine (CBPG) could reduce neuronal death in vitro, following oxygen-glucose deprivation (OGD) in murine cortical cell and rat organotypic hippocampal cultures, and in vivo, after global ischaemia in gerbils. When present in the incubation medium during the OGD insult and the subsequent 24 h recovery period, AIDA and CBPG significantly reduced neuronal death in vitro. The extent of protection was similar to that observed with the nonselective mGlu receptor antagonist (+)-alpha-methyl-4-carboxyphenylglycine [(+)MCPG] and with typical ionotropic glutamate (iGlu) receptor antagonists. Neuroprotection was also observed when AIDA or CBPG were added only after the OGD insult was terminated. Neuronal injury was not attenuated by the inactive isomer (-)MCPG, but was significantly enhanced by the nonselective mGlu receptor agonist (1S,3R)-1-aminocyclopentane-1, 3-dicarboxylic acid [(1S,3R)-ACPD] and the group I mGlu receptor agonist 3,5-dihydroxyphenylglycine (3,5-DHPG). The antagonists (+)MCPG, AIDA and CBPG were also neuroprotective in vivo, because i. c.v. administration reduced CA1 pyramidal cell degeneration examined 7 days following transient carotid occlusion in gerbils. Our results point to a role of mGlu1 receptors in the pathological mechanisms responsible for postischaemic neuronal death and propose a new target for neuroprotection.
Collapse
|
23
|
Ugolini A, Corsi M, Bordi F. Potentiation of NMDA and AMPA responses by the specific mGluR5 agonist CHPG in spinal cord motoneurons. Neuropharmacology 1999; 38:1569-76. [PMID: 10530818 DOI: 10.1016/s0028-3908(99)00095-7] [Citation(s) in RCA: 88] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
The specific metabotropic glutamate receptor (mGluR)5 agonist (RS)-2-chloro-5-hydroxyphenylglycine (CHPG) is able to potentiate NMDA and AMPA responses recorded from ventral roots of the isolated hemisected baby rat spinal cord. Previously we have demonstrated that activation of group I mGluRs (mGluR1 and mGluR5) with the broad spectrum mGluR agonist 1S,3R-1-amino-1,3-cyclopentanedicarboxylate (ACPD) produced potentiation of ionotropic glutamate responses. In contrast to ACPD-induced potentiation, however, no evidence for an involvement of protein kinase C (PKC) is found in the CHPG-induced potentiation of both NMDA and AMPA depolarization because the PKC blockers chelerythrine chloride or calphostin C did not antagonize this effect. Moreover, in the absence of Ca2+ in the perfusing medium or depleting intracellular Ca2+ stores with thapsigargin or dantrolene did not modify the CHPG-induced enhancement of NMDA depolarizations. Phorbol-12,13-diacetate (PDA), on the other hand, was able to attenuate this effect, which was reversed by chelerythrine chloride. These results suggest that both mGluR5 and mGluR1 may act to enhance ionotropic glutamate responses but the two types of mGluRs may have different intracellular mechanisms of action.
Collapse
Affiliation(s)
- A Ugolini
- Pharmacology Department, GlaxoWellcome Medicines Research Centre, Verona, Italy
| | | | | |
Collapse
|
24
|
Pellegrini-Giampietro DE, Peruginelli F, Meli E, Cozzi A, Albani-Torregrossa S, Pellicciari R, Moroni F. Protection with metabotropic glutamate 1 receptor antagonists in models of ischemic neuronal death: time-course and mechanisms. Neuropharmacology 1999; 38:1607-19. [PMID: 10530822 DOI: 10.1016/s0028-3908(99)00097-0] [Citation(s) in RCA: 117] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
In order to study the role of metabotropic glutamate 1 (mGlu1) receptors in ischemic neuronal death, we examined the effects of the recently characterized and relatively selective mGlu1 receptor antagonists 1-aminoindan-1,5-dicarboxylic acid (AIDA) and (S)-(+)-2-(3'-carboxybicyclo[1.1.1]pentyl)-glycine (CBPG) in murine cortical cell cultures and rat organotypic hippocampal slices exposed to oxygen glucose deprivation (OGD) and in vivo, following transient global ischemia in gerbils. AIDA and CBPG significantly reduced neuronal death when added to the incubation medium during the OGD insult and the subsequent recovery period. Neuroprotection was observed even when these compounds were added up to 60 min (in cortical neurons) or 30 min (in hippocampal slices) after OGD. In vivo, i.c.v. administration of AIDA and CBPG reduced hippocampal CA1 pyramidal cell injury following transient global ischemia. Neuroprotection was also observed when AIDA was added to the hippocampal perfusion fluid in microdialysis experiments, and this effect was associated with an increase in the basal output of GABA. These findings demonstrate that AIDA and CBPG are neuroprotective when administered during the maturation of ischemic damage and that different mechanisms are likely to be involved in mediating their effects following blockade of mGlu1 receptors in cortical and hippocampal neurons.
Collapse
|
25
|
Abstract
Glutamate is the major excitatory neurotransmitter in the brain and plays a unique role in a variety of central nervous system (CNS) functions. The discovery of the metabotropic receptors (mGluRs), a family of G-protein coupled receptors than can be activated by glutamate, has led to an impressive number of studies in recent years aimed at understanding their biochemical, physiological and pharmacological characteristics. The eight mGluRs now known are divided into three groups according to their sequence homology, signal transduction mechanisms, and agonist selectivity. Group I mGluRs include mGluR1 and mGluR5, which are linked to the activation of phospholipase C; Groups II and III include all others and are negatively coupled to adenylyl cyclases. The availability in recent years of agents selective for Group I mGluRs has made possible the study of the physiological roles of these receptors in the CNS. In addition to mediating glutamatergic neurotransmission, Group I mGluRs can modulate other neurotransmitter receptors, including GABA and the ionotropic glutamate receptors. Group I mGluRs are involved in many CNS functions and may participate in a variety of disorders such as pain, epilepsy, ischemia, and chronic neurodegenerative diseases. This class of receptor may provide important pharmacological therapeutic targets and elucidating its functions will be relevant to develop new treatments for neurological and psychiatric disorders in which glutamatergic neurotransmission is abnormally regulated. In this review anatomical, physiological and pharmacological results are presented with a special emphasis on the role of Group I mGluRs in functional and pathological processes.
Collapse
Affiliation(s)
- F Bordi
- Pharmacology Department, GlaxoWellcome Medicine Research Centre, Verona, Italy.
| | | |
Collapse
|
26
|
Neugebauer V, Chen PS, Willis WD. Role of metabotropic glutamate receptor subtype mGluR1 in brief nociception and central sensitization of primate STT cells. J Neurophysiol 1999; 82:272-82. [PMID: 10400956 DOI: 10.1152/jn.1999.82.1.272] [Citation(s) in RCA: 115] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
G-protein coupled metabotropic glutamate receptors (mGluRs) are important modulators of synaptic transmission in the mammalian CNS and have been implicated in various forms of neuroplasticity and nervous system disorders. Increasing evidence also suggests an involvement of mGluRs in nociception and pain behavior although the contribution of individual mGluR subtypes is not yet clear. Subtypes mGluR1 and mGluR5 are classified as group I mGluRs and share the ability to stimulate phosphoinositide hydrolysis and activate protein kinase C. The present study examined the role of group I mGluRs in nociceptive processing and capsaicin-induced central sensitization of primate spinothalamic tract (STT) cells in vivo. In 10 anesthetized male monkeys (Macaca fascicularis) extracellular recordings were made from 20 STT cells in the lumbar dorsal horn. Responses to brief (15 s) cutaneous stimuli of innocuous (BRUSH) and barely and substantially noxious (PRESS and PINCH, respectively) intensity were recorded before, during, and after the infusion of group I mGluR agonists and antagonists into the dorsal horn by microdialysis. Cumulative concentration-response relationships were obtained by applying different concentrations for at least 20 min each (at 5 microl/min). The actual concentrations reached in the tissue are 2-3 orders of magnitude lower than those in the microdialysis fibers (values in this paper refer to the latter). The group I antagonists were also applied at 10-25 min after capsaicin injection. S-DHPG, a group I agonist at both mGluR1 and mGluR5, potentiated the responses to innocuous and noxious stimuli (BRUSH > PRESS > PINCH) at low concentrations (10-100 microM; n = 5) but had inhibitory effects at higher concentrations (1-10 mM; n = 5). The mGluR5 agonist CHPG (1 microM-100 mM; n = 5) did not potentiate but inhibited all responses (10-100 mM; n = 5). AIDA (1 microM-100 mM), a mGluR1-selective antagonist, dose-dependently depressed the responses to PINCH and PRESS but not to BRUSH (n = 6). The group I (mGluR1 > mGluR5) antagonist CPCCOEt (1 microM-100 mM) had similar effects (n = 6). Intradermal injections of capsaicin sensitized the STT cells to cutaneous mechanical stimuli. The enhancement of the responses by capsaicin resembled the potentiation by the group I mGluR agonist S-DHPG (BRUSH > PRESS > PINCH). CPCCOEt (1 mM) reversed the capsaicin-induced sensitization when given as posttreatment (n = 5). After washout of CPCCOEt, the sensitization resumed. Similarly, AIDA (1 mM; n = 7) reversed the capsaicin-induced sensitization and also blocked the potentiation by S-DHPG (n = 5). These data suggest that the mGluR1 subtype is activated endogenously during brief high-intensity cutaneous stimuli (PRESS, PINCH) and is critically involved in capsaicin-induced central sensitization.
Collapse
Affiliation(s)
- V Neugebauer
- Department of Anatomy and Neurosciences and Marine Biomedical Institute, The University of Texas Medical Branch, Galveston, Texas 77555-1069, USA
| | | | | |
Collapse
|
27
|
Holohean AM, Hackman JC, Davidoff RA. Mechanisms involved in the metabotropic glutamate receptor-enhancement of NMDA-mediated motoneurone responses in frog spinal cord. Br J Pharmacol 1999; 126:333-41. [PMID: 10051153 PMCID: PMC1565774 DOI: 10.1038/sj.bjp.0702263] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
1. The metabotropic glutamate receptor (mGluR) agonist trans-(+/-)-1-amino-1,3-cyclopentanedicarboxylic acid (trans-ACPD) (10-100 microM) depolarized isolated frog spinal cord motoneurones, a process sensitive to kynurenate (1.0 mM) and tetrodotoxin (TTX) (0.783 microM). 2. In the presence of NMDA open channel blockers [Mg2+; (+)-5-methyl-10,11-dihydro-5H-dibenzo[a,d]cyclohepten-5,10-imine hydrogen maleate (MK801); 3,5-dimethyl-1-adamantanamine hydrochloride (memantine)] and TTX, trans-ACPD significantly potentiated NMDA-induced motoneurone depolarizations, but not alpha-amino-3-hydroxy-5-methylisoxazole-4-proprionate (AMPA)- or kainate-induced depolarizations. 3. NMDA potentiation was blocked by (RS)-alpha-methyl-4-carboxyphenylglycine (MCPG) (240 microM), but not by alpha-methyl-(2S,3S,4S)-alpha-(carboxycyclopropyl)-glycine (MCCG) (290 microM) or by alpha-methyl-(S)-2-amino-4-phosphonobutyrate (L-MAP4) (250 microM), and was mimicked by 3,5-dihydroxyphenylglycine (DHPG) (30 microM), but not by L(+)-2-amino-4-phosphonobutyrate (L-AP4) (100 microM). Therefore, trans-ACPD's facilitatory effects appear to involve group I mGluRs. 4. Potentiation was prevented by the G-protein decoupling agent pertussis toxin (3-6 ng ml(-1), 36 h preincubation). The protein kinase C inhibitors staurosporine (2.0 microM) and N-(2-aminoethyl)-5-isoquinolinesulphonamide HCI (H9) (77 microM) did not significantly reduce enhanced NMDA responses. Protein kinase C activation with phorbol-12-myristate 13-acetate (5.0 microM) had no effect. 5. Intracellular Ca2+ depletion with thapsigargin (0.1 microM) (which inhibits Ca2+/ATPase), 1,2-bis(O-aminophenoxy)ethane-N,N,N',N'-tetracetic acid acetyl methyl ester (BAPTA-AM) (50 microM) (which buffers elevations of [Ca2+]i), and bathing spinal cords in nominally Ca2+-free medium all reduced trans-ACPD's effects. 6. The calmodulin antagonists N-(6-aminohexyl)-5-chloro-1-naphthalenesulphonamide (W7) (100 microM) and chlorpromazine (100 microM) diminished the potentiation. 7. In summary, group I mGluRs selectively facilitate NMDA-depolarization of frog motoneurones via a G-protein, a rise in [Ca2+]i from the presumed generation of phosphoinositides, binding of Ca2+ to calmodulin, and lessening of the Mg2+-produced channel block of the NMDA receptor.
Collapse
Affiliation(s)
- Alice M Holohean
- Neurophysiology Laboratory, Veterans Affairs Medical Center, PO Box 016960, University of Miami School of Medicine, Miami, Florida 33101, U.S.A
- Department of Neurology (D4-5), PO Box 016960, University of Miami School of Medicine, Miami, Florida 33101, U.S.A
| | - John C Hackman
- Neurophysiology Laboratory, Veterans Affairs Medical Center, PO Box 016960, University of Miami School of Medicine, Miami, Florida 33101, U.S.A
- Spinal Cord Pharmacology Laboratory, Veterans Affairs Medical Center, PO Box 016960, University of Miami School of Medicine, Miami, Florida 33101, U.S.A
- Department of Neurology (D4-5), PO Box 016960, University of Miami School of Medicine, Miami, Florida 33101, U.S.A
| | - Robert A Davidoff
- Neurophysiology Laboratory, Veterans Affairs Medical Center, PO Box 016960, University of Miami School of Medicine, Miami, Florida 33101, U.S.A
- Department of Neurology (D4-5), PO Box 016960, University of Miami School of Medicine, Miami, Florida 33101, U.S.A
- Author for correspondence: .
| |
Collapse
|
28
|
Anwyl R. Metabotropic glutamate receptors: electrophysiological properties and role in plasticity. BRAIN RESEARCH. BRAIN RESEARCH REVIEWS 1999; 29:83-120. [PMID: 9974152 DOI: 10.1016/s0165-0173(98)00050-2] [Citation(s) in RCA: 657] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Electrophysiological research on mGluRs is now very extensive, and it is clear that activation of mGluRs results in a large number of diverse cellular actions. Studies of mGluRs and on ionic channels has clearly demonstrated that mGluR activation has a widespread and potent inhibitory action on both voltage-gated Ca2+ channels and K+ channels. Inhibition of N-type Ca2+ channels, and inhibition of Ca(++)-dependent K+ current, IAHP, and IM being particularly prominent. Potentiation of activation of both Ca2+ and K+ channels has also been observed, although less prominently than inhibition, but mGluR-mediated activation of non-selective cationic channels is widespread. In a small number of studies, generation of an mGluR-mediated slow excitatory postsynaptic potential has been demonstrated as a consequence of the effect of mGluR activation on ion channels, such as activation of a non-selective cationic channels. Although certain mGluR-modulation of channels is a consequence of direct G-protein-linked action, for example, inhibition of Ca2+ channels, many other effects occur as a result of activation of intracellular messenger pathways, but at present, little progress has been made on the identification of the messengers. The field of study of the involvement of mGluRs in synaptic plasticity is very large. Evidence for the involvement of mGluRs in one form of LTD induction in the cerebellum and hippocampus is now particularly impressive. However, the role of mGluRs in LTP induction continues to be a source of dispute, and resolution of the question of the exact involvement of mGluRs in the induction of LTP will have to await the production of more selective ligands and of selective gene knockouts.
Collapse
Affiliation(s)
- R Anwyl
- Department of Physiology, Trinity College, Dublin, Ireland.
| |
Collapse
|
29
|
Schrader L, Friedlander MJ. Developmental regulation of synaptic mechanisms that may contribute to learning and memory. ACTA ACUST UNITED AC 1999. [DOI: 10.1002/(sici)1098-2779(1999)5:1<60::aid-mrdd7>3.0.co;2-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
30
|
Wang XF, Daw NW, Jin X. The effect of ACPD on the responses to NMDA and AMPA varies with layer in slices of rat visual cortex. Brain Res 1998; 812:186-92. [PMID: 9813318 DOI: 10.1016/s0006-8993(98)01000-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The effect of 1S,3R-aminocyclopentane dicarboxylic acid (ACPD) was measured on cells from various layers in slices of the rat visual cortex using whole-cell recording techniques. The position of the recorded cell was estimated by distance from pia to the layer VI/white matter boundary, and verified in 34/97 cells by staining with biocytin. Potentiation or depression of the responses to NMDA and AMPA by the metabotropic glutamate agonist ACPD was examined by iontophoresis of the drugs close to the cell body. Iontophoresis of ACPD had different effects in different layers. In layer VI, ACPD produced a substantial depolarization, which augmented the responses to NMDA and AMPA. In layer V, ACPD did not produce a significant depolarization, but potentiated the response to NMDA and AMPA. In layer IV, ACPD produced a small hyperpolarization, and depressed the response to NMDA. In layers II and III, the results were small and variable. Most recordings from stained cells were from pyramidal cells. Where recordings from non-pyramidal cells were obtained (3/34), results were the same as from pyramidal cells in the same layer. The same results were obtained when tetrodotoxin was in the bath solution. We conclude that the potentiation or depression of the response to NMDA and AMPA by ACPD varies with layer in rat visual cortex.
Collapse
Affiliation(s)
- X F Wang
- Department of Ophthalmology and Visual Science, Yale University School of Medicine, 330 Cedar Street, New Haven, CT 06520-8061, USA
| | | | | |
Collapse
|
31
|
Martin G, Nie Z, Siggins GR. Metabotropic glutamate receptors regulate N-methyl-D-aspartate-mediated synaptic transmission in nucleus accumbens. J Neurophysiol 1997; 78:3028-38. [PMID: 9405522 DOI: 10.1152/jn.1997.78.6.3028] [Citation(s) in RCA: 48] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
We recorded intracellularly from core nucleus accumbens (NAcc) neurons in brain slices to study the regulation by metabotropic glutamate receptors (mGluRs) of pharmacologically isolated N-methyl--aspartate-mediated excitatory postsynaptic currents (NMDA-EPSCs). Monosynaptic NMDA-EPSCs, evoked by local stimulation, were isolated by superfusion of the non-NMDA and gamma-aminobutyric acid-A (GABAA) receptor antagonists, 6-cyano-7-nitroquinoxaline-2,3-dione (CNQX; 10 microM) and bicuculline (15 microM), respectively. Trans-1-aminocyclopentane-1,3-decarboxylic acid (trans-ACPD; 50 microM), a nonspecific group 1 and 2 mGluR agonist, had no effect on resting membrane potential (RMP) or input resistance of NAcc neurons. However, it consistently decreased NMDA-EPSC areas (time integrals) dose dependently (1-100 microM; EC50 = 8 microM) and reversibly. The specific group 1 mGluR agonists quisqualate (1-4 microM) and (RS)-3, 5-dihydroxyphenylglycine (DHPG; 100 microM) did not mimic the trans-ACPD effect on NMDA-EPSCs, nor did exposure of the slice to the group 1 mGluR antagonist (+)-2-amino-3-phosphonopropionic acid (-AP3, 0.4 mM) inhibit the trans-ACPD effect. The putative mGluR1 and mGluR2 antagonist (+)-alpha-methyl-4-carboxyphenylglycine (MCPG) at 0.5 mM failed to antagonize trans-ACPD effects but at 1 mM blocked them. Both the group 2 mGluR agonist (2S,3S, 4S)-alpha-(carboxycyclopropyl)-glycine (-CCG-I, 2 microM) and the group 3 mGluR specific agonist (+)-2-amino-4-phosphonobutyric acid (-AP4, 20 microM) attenuated NMDA-EPSC areas; the effect of -AP4 was blocked by the group 3 antagonist (S)-2-amino-2-methyl-4-phosphonobutanoic acid (MAP4; 0.5 mM). Exogenously applied NMDA, in the presence of tetrodotoxin to prevent presynaptic effects, induced inward currents that were decreased by 20 microM -AP4 but not by 10 microM trans-ACPD. These findings suggest that NMDA receptor-mediated neurotransmission in NAcc is under dual inhibitory regulation by group 2 and 3 metabotropic receptor subtypes: -AP4-sensitive receptors located postsynaptically and those sensitive to trans-ACPD located presynaptically.
Collapse
Affiliation(s)
- G Martin
- The Scripps Research Institute, Department of Neuropharmacology, La Jolla, California 92037, USA
| | | | | |
Collapse
|
32
|
Ugolini A, Corsi M, Bordi F. Potentiation of NMDA and AMPA responses by group I mGluR in spinal cord motoneurons. Neuropharmacology 1997; 36:1047-55. [PMID: 9294969 DOI: 10.1016/s0028-3908(97)00103-2] [Citation(s) in RCA: 69] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Application of the metabotropic glutamate receptor (mGluR) agonist (1S,3R)-1-aminocyclopentane-1,3-dicarboxylic acid (1S,3R-ACPD) and the Group I selective mGluR agonist (RS)-3,5-dihydroxyphenylglycine (DHPG) potentiated NMDA- and AMPA-induced potential changes recorded from ventral roots of the isolated hemisected baby rat spinal cord. Potentiation produced by 1S,3R-ACPD was completely abolished by the Group I selective mGluR antagonists (S)-4-carboxyphenylglycine (4CPG) or (+)-alpha-methyl-4-carboxyphenylglycine (MCPG). In addition, the protein kinase C (PKC) blockers staurosporine or chelerythrine chloride were able to antagonize the 1S,3R-ACPD-induced potentiation of both NMDA and AMPA response, suggesting that the enhancing effect induced by Group I mGluRs is modulated by a PKC-mediated mechanism. The mGluRs-induced potentiation of NMDA and AMPA responses may be important in modulating various forms of synaptic plasticity and nociceptive processes.
Collapse
Affiliation(s)
- A Ugolini
- Pharmacology Dept, GlaxoWellcome Medicines Research Centre, Verona, Italy
| | | | | |
Collapse
|
33
|
A postsynaptic interaction between dopamine D1 and NMDA receptors promotes presynaptic inhibition in the rat nucleus accumbens via adenosine release. J Neurosci 1997. [PMID: 9204911 DOI: 10.1523/jneurosci.17-14-05271.1997] [Citation(s) in RCA: 140] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The mechanism underlying dopamine D1 receptor-mediated attenuation of glutamatergic synaptic input to nucleus accumbens (NAcc) neurons was investigated in slices of rat forebrain, using whole-cell patch-clamp recording. The depression by dopamine of EPSCs evoked by single-shock cortical stimulation was stimulus-dependent. Synaptic activation of NMDA-type glutamate receptors was critical for this effect, because dopamine-induced EPSC depressions were blocked by the competitive NMDA receptor antagonist D/L-2-amino-5-phosphonopentanoate (AP5). Application of NMDA also depressed the EPSC, and both this effect and the dopamine depressions were blocked by the A1 receptor antagonist 8-cyclopentyl-1,3-dipropylxanthine (DPCPX), implicating adenosine release in the EPSC depression. A1 receptor agonists also depressed EPSCs by a presynaptic action, causing increased paired-pulse facilitation, but this was insensitive to AP5. Activation of D1 receptors enhanced both postsynaptic inward currents evoked by NMDA application and the isolated NMDA receptor-mediated component of synaptic transmission. The biochemical processes underlying the dopamine-induced EPSC depression did not involve either protein kinase A or the production of cAMP and its metabolites, because this effect was resistant to the protein kinase inhibitors H89 and H7 and the cAMP-specific phosphodiesterase inhibitor rolipram. We conclude that activation of postsynaptic D1 receptors enhances the synaptic activation of NMDA receptors in nucleus accumbens neurons, thereby promoting a transsynaptic feedback inhibition of glutamatergic synaptic transmission via release of adenosine. Unusually for D1 receptors, this phenomenon occurs independently of adenylyl cyclase stimulation. This process may contribute to the locomotor stimulant action of dopaminergic agents in the NAcc.
Collapse
|
34
|
Harvey J, Lacey MG. A postsynaptic interaction between dopamine D1 and NMDA receptors promotes presynaptic inhibition in the rat nucleus accumbens via adenosine release. J Neurosci 1997; 17:5271-80. [PMID: 9204911 PMCID: PMC6793812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
The mechanism underlying dopamine D1 receptor-mediated attenuation of glutamatergic synaptic input to nucleus accumbens (NAcc) neurons was investigated in slices of rat forebrain, using whole-cell patch-clamp recording. The depression by dopamine of EPSCs evoked by single-shock cortical stimulation was stimulus-dependent. Synaptic activation of NMDA-type glutamate receptors was critical for this effect, because dopamine-induced EPSC depressions were blocked by the competitive NMDA receptor antagonist D/L-2-amino-5-phosphonopentanoate (AP5). Application of NMDA also depressed the EPSC, and both this effect and the dopamine depressions were blocked by the A1 receptor antagonist 8-cyclopentyl-1,3-dipropylxanthine (DPCPX), implicating adenosine release in the EPSC depression. A1 receptor agonists also depressed EPSCs by a presynaptic action, causing increased paired-pulse facilitation, but this was insensitive to AP5. Activation of D1 receptors enhanced both postsynaptic inward currents evoked by NMDA application and the isolated NMDA receptor-mediated component of synaptic transmission. The biochemical processes underlying the dopamine-induced EPSC depression did not involve either protein kinase A or the production of cAMP and its metabolites, because this effect was resistant to the protein kinase inhibitors H89 and H7 and the cAMP-specific phosphodiesterase inhibitor rolipram. We conclude that activation of postsynaptic D1 receptors enhances the synaptic activation of NMDA receptors in nucleus accumbens neurons, thereby promoting a transsynaptic feedback inhibition of glutamatergic synaptic transmission via release of adenosine. Unusually for D1 receptors, this phenomenon occurs independently of adenylyl cyclase stimulation. This process may contribute to the locomotor stimulant action of dopaminergic agents in the NAcc.
Collapse
Affiliation(s)
- J Harvey
- Department of Pharmacology, The Medical School, University of Birmingham, Edgbaston, Birmingham B15 2TT, United Kingdom
| | | |
Collapse
|
35
|
Payne GW, Neuman RS. Effects of hypomagnesia on histamine H1 receptor-mediated facilitation of NMDA responses. Br J Pharmacol 1997; 121:199-204. [PMID: 9154328 PMCID: PMC1564679 DOI: 10.1038/sj.bjp.0701123] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
1. The ability of histamine to facilitate the N-methyl-D-aspartate (NMDA) induced depolarization of cortical projection neurones was examined by use of grease-gap recording. 2. Histamine (1 to 15 microM) reversibly facilitated the NMDA-induced depolarization yielding a bellshaped concentration-response relationship. The peak enhancement was 167% above the control at 10 microM histamine. Desensitization was present in 4 out of 5 slices on second exposure 40 min following the first exposure. 3. Histamine did not alter the depolarization induced by 10 microM kainate. 4. The histamine-induced facilitation persisted in the presence of tetrodotoxin, but was reduced in a concentration-dependent manner by diphenhydramine (IC50 = 7.6 nM). Cyproheptadine (10 nM) also reduced the facilitation, whereas ranitidine (200 nM) and thioperamide (10 nM) were ineffective in this regard. 5. Histamine (10 microM) facilitated the NMDA (25 microM)-induced depolarization in nominally Mg(2+)-free medium. The magnitude of the facilitation was smaller than that observed in Mg(2+)-containing medium (17% above the control) and desensitization was not observed. This facilitation was not reduced by cyproheptadine (10 nM) or diphenhydramine (1 microM). 6. We conclude that histamine facilitates the NMDA depolarization at cortical neurones via two distinct mechanisms. One mechanism involves activation of the histamine H1 receptor and is sensitive to Mg2+. The second mechanism is independent of histamine cell surface receptor activation and may reflect a direct action of histamine at the NMDA receptor.
Collapse
Affiliation(s)
- G W Payne
- Faculty of Medicine, Memorial University, St. John's, Newfoundland, Canada
| | | |
Collapse
|
36
|
Pisani A, Calabresi P, Centonze D, Bernardi G. Enhancement of NMDA responses by group I metabotropic glutamate receptor activation in striatal neurones. Br J Pharmacol 1997; 120:1007-14. [PMID: 9134210 PMCID: PMC1564563 DOI: 10.1038/sj.bjp.0700999] [Citation(s) in RCA: 169] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
1. The interactions between N-methyl-D-aspartate (NMDA) and metabotropic glutamate receptors (mGluRs) were investigated in striatal slices, by utilizing intracellular recordings, both in current- and voltage-clamp mode. 2. Bath-application (50 microM) or focal application of NMDA induced a transient membrane depolarization, while in the voltage-clamp mode, NMDA (50 microM) caused a transient inward current. Following bath-application of the non-selective mGluR agonist 1S,3R-aminocyclopentane-1,3-dicarboxylic acid (1S,3R-ACPD, 10 microM), NMDA responses were reversibly potentiated both in current (197 +/- 15% of control) and voltage-clamp experiments (200 +/- 18% of control). 3. Bath-application of the group I mGluR agonist (RS)-3,5-dihydroxyphenylglycine (3,5-DHPG, 10-300 microM) resulted in a dose-dependent potentiation of NMDA-induced membrane depolarization (up to 400 +/- 33% of control). This potentiation was either prevented by preincubation with (RS)-alpha-methyl-4-carboxyphenylglycine (RS-alpha-MCPG, 300 microM), or blocked when applied immediately after 3,5-DHPG wash-out. 4. Neither (2S,1'S,2'S)2-(2'-carboxycyclopropyl)glycine (L-CCG I, up to 100 microM) nor (2S,1'R,2'R,3'R)-2-(2,3-dicarboxycyclopropyl)-glycine (DCG-IV, 1 microM), agonists for group II mGluRs caused any change in NMDA responses. Likewise, L-serine-O-phosphate (L-SOP, 30 microM), agonist for group III mGluRs, did not affect the NMDA-induced depolarization. 5. The enhancement of the NMDA responses was mimicked by phorbol-12,13-diacetate (PDAc, 1 microM) which activates protein kinase C (PKC). The 3,5-DHPG-mediated potentiation of the NMDA-induced depolarization was prevented by preincubation with staurosporine (100 nM) or calphostin C (1 microM), antagonists of PKC. 6. Electrophysiological responses to alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionate (AMPA) receptor activation were not affected by agonists for the three-classes of mGluRs. 7. The present data suggest that group I mGluRs exert a positive modulatory action on NMDA responses, probably through activation of PKC. This functional interaction in the striatum appears of crucial importance in the understanding of physiological and pathological events, such as synaptic plasticity and neuronal death, respectively.
Collapse
Affiliation(s)
- A Pisani
- Clinica Neurologica, Dip. Sanità, Università di Roma or Vergata, Rome, Italy
| | | | | | | |
Collapse
|
37
|
Abstract
In the mid to late 1980s, studies were published that provided the first evidence for the existence of glutamate receptors that are not ligand-gated cation channels but are coupled to effector systems through GTP-binding proteins. Since those initial reports, tremendous progress has been made in characterizing these metabotropic glutamate receptors (mGluRs), including cloning and characterization of cDNA that encodes a family of eight mGluR subtypes, several of which have multiple splice variants. Also, tremendous progress has been made in developing new highly selective mGluR agonists and antagonists and toward determining the physiologic roles of the mGluRs in mammalian brain. These findings have exciting implications for drug development and suggest that the mGluRs provide a novel target for development of therepeutic agents that could have a significant impact on neuropharmacology.
Collapse
Affiliation(s)
- P J Conn
- Department of Pharmacology, Emory University School of Medicine, Atlanta, Georgia 30322, USA.
| | | |
Collapse
|
38
|
Rahman S, Neuman RS. Action of 5-hydroxytryptamine in facilitating N-methyl-D-aspartate depolarization of cortical neurones mimicked by calcimycin, cyclopiazonic acid and thapsigargin. Br J Pharmacol 1996; 119:877-84. [PMID: 8922735 PMCID: PMC1915930 DOI: 10.1111/j.1476-5381.1996.tb15754.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
1. The ability of calcimycin, cyclopiazonic acid and thapsigargin to facilitate the N-methyl-D-aspartate (NMDA)-mediated depolarization of cortical projection neurones was investigated by use of grease-gap recording and the results compared with the facilitation that results from activation of 5-hydroxytryptamine2A receptors. 2. Calcimycin (0.25 to 3 microM), cyclopiazonic acid (5 to 30 microM), and thapsigargin (10 to 300 nM) reversibly facilitated the NMDA (50 microM)-induced depolarization in the presence of tetrodotoxin. The concentration-response relationships were bell-shaped with a mean enhancement of 550% for calcimycin (1 microM) and approximately 400% for cyclopiazonic acid (20 microM) and thapsigargin (100 nM). At the highest concentration of each agent tested, no facilitation was observed. 3. Chlorpromazine (1 microM) partially restored a facilitation at 3 microM calcimycin and 300 nM thapsigargin. Myo-inositol (10 mM) and 100 nM staurosporine were both ineffective in this regard. 4. The depolarization elicited by 10 microM quisqualate or 5 microM kainate was not facilitated by 10 microM cyclopiazonic acid. 5. Calcimycin (0.5 microM), cyclopiazonic acid (20 microM), and thapsigargin (100 nM) elicited a significant facilitation in the presence of an antagonist cocktail consisting of D,L-2-amino-3-phosphonopropionic acid, prazosin, ritanserin, and scopolamine, although the magnitude of the facilitation was reduced. 6. Facilitation of the NMDA depolarization elicited by both 30 microM 5-hydroxytryptamine and 10 microM phenylephrine was eliminated in nominally Mg(2+)-free medium. In contrast, the facilitation induced by 0.5 microM calcimycin remained intact. 7. Bis-(o-aminophenoxy)-ethane-N,N,N,N, tetraacetic acid aminoethoxy (50 microM) or perfusion with nominally Ca(2+)-free medium eliminated facilitation of the NMDA depolarization induced by 30 microM 5-hydroxytryptamine and 100 nM thapsigargin. 8. The facilitation induced by both 30 microM 5-hydroxytryptamine and 1 microM calcimycin was reduced in a concentration-dependent manner by nifedipine (1 to 10 microM). 9. Calcimycin, cyclopiazonic acid and thapsigargin facilitate the NMDA depolarization in a manner which closely mimics the facilitation induced by 5-hydroxytryptamine. It is concluded that enhancement of the NMDA depolarization at cortical projection neurones results from an elevation of Ca2+ in the cytosol and that several sources of Ca2+ contribute to the facilitation.
Collapse
Affiliation(s)
- S Rahman
- Faculty of Medicine, Memorial University, St. John's, Newfoundland, Canada
| | | |
Collapse
|