1
|
Abboussi O, Khan ZA, Ibork H, Zulu SS, Daniels W, Taghzouti K, Hales TG. CB2 agonist mitigates cocaine-induced reinstatement of place preference and modulates the inflammatory response in mice. Behav Pharmacol 2024; 35:26-35. [PMID: 38085651 DOI: 10.1097/fbp.0000000000000759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/21/2024]
Abstract
Chronic exposure to cocaine is known to have profound effects on the brain, leading to the dysregulation of inflammatory signalling pathways, the activation of microglia, and the manifestation of cognitive and motivational behavioural impairments. The endocannabinoid system has emerged as a potential mediator of cocaine's deleterious effects. In this study, we sought to investigate the therapeutic potential of the cannabinoid CB2 receptor agonist, JWH-133, in mitigating cocaine-induced inflammation and associated motivational behavioural alterations in an in vivo model. Our research uncovered compelling evidence that JWH-133, a selective CB2 receptor agonist, exerts a significant dampening effect on the reinstatement of cocaine-induced conditioned place preference. This effect was accompanied by notable changes in the neurobiological landscape. Specifically, JWH-133 administration was found to upregulate Δ-FOSB expression in the nucleus accumbens (Nac), elevate CX3CL1 levels in both the ventral tegmental area and prefrontal cortex (PFC), and concurrently reduce IL-1β expression in the PFC and NAc among cocaine-treated animals. These findings highlight the modulatory role of CB2 cannabinoid receptor activation in altering the reward-seeking behaviour induced by cocaine. Moreover, they shed light on the intricate interplay between the endocannabinoid system and cocaine-induced neurobiological changes, paving the way for potential therapeutic interventions targeting CB2 receptors in the context of cocaine addiction and associated behavioural deficits.
Collapse
Affiliation(s)
- Oualid Abboussi
- Physiology and Physiopathology Team, Faculty of Sciences, Genomic of Human Pathologies Research Centre, Mohammed V University in Rabat, Rabat, Morocco
| | - Zmarak Ahmad Khan
- Institute of Academic Anaesthesia, Ninewells Hospital and Medical School, University of Dundee, Dundee, UK
| | - Hind Ibork
- Physiology and Physiopathology Team, Faculty of Sciences, Genomic of Human Pathologies Research Centre, Mohammed V University in Rabat, Rabat, Morocco
| | - Simo S Zulu
- Department of Human Biology, Faculty of Health Sciences, Nelson Mandela University, Port Elisabeth
| | - William Daniels
- School of Physiology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Khalid Taghzouti
- Physiology and Physiopathology Team, Faculty of Sciences, Genomic of Human Pathologies Research Centre, Mohammed V University in Rabat, Rabat, Morocco
| | - Tim G Hales
- Institute of Academic Anaesthesia, Ninewells Hospital and Medical School, University of Dundee, Dundee, UK
| |
Collapse
|
2
|
Han QW, Shao QH, Wang XT, Ma KL, Chen NH, Yuan YH. CB2 receptor activation inhibits the phagocytic function of microglia through activating ERK/AKT-Nurr1 signal pathways. Acta Pharmacol Sin 2022; 43:2253-2266. [PMID: 35132190 PMCID: PMC9433450 DOI: 10.1038/s41401-021-00853-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2021] [Accepted: 12/23/2021] [Indexed: 12/12/2022] Open
Abstract
Neuroinflammation is closely related to the pathogenesis of neurodegenerative diseases. Activation of microglia, the resident immune cells in CNS, induces inflammatory responses, resulting in the release of neurotoxic molecules, which favors neuronal death and neurodegeneration. Nuclear receptor-related 1 (Nurr1) protein, one of the orphan nuclear receptor superfamilies, is an emerging target for neuroprotective therapy. In addition, the anti-inflammatory function of cannabinoid (CB) receptors has attracted increasing interest. As both CB receptors (especially CB2 receptor) and Nurr1 exist in microglia, and regulate a number of same molecular points such as NF-κB, we herein explored the interplay between the CB2 receptor and Nurr1 as well as the regulatory mechanisms in microglial cells. We showed that the application of CB2 receptor agonists JWH015 (1, 10 μM) significantly increased the nuclear Nurr1 protein in BV-2 cells and primary midbrain microglia. Overexpression of Nurr1 or application of Nurr1 agonist C-DIM12 (10 μM) significantly increased the mRNA level of CB2 receptor in BV-2 cells, suggesting that positive expression feedback existing between the CB2 receptor and Nurr1. After 2-AG and JWH015 activated the CB2 receptors, the levels of p-ERK, p-AKT, p-GSK-3β in BV-2 cells were significantly increased. Using ERK1/2 inhibitor U0126 and PI3K/AKT inhibitor LY294002, we revealed that the amount of Nurr1 in the nucleus was upregulated through β-arrestin2/ERK1/2 and PI3K/AKT/GSK-3β signaling pathways. With these inhibitors, we found a cross-talk interaction between the two pathways, and the ERK1/2 signaling pathway played a more dominant regulatory role. Furthermore, we demonstrated that when the CB2 receptor was activated, the phagocytic function of BV-2 cells was significantly weakened; the activation of Nurr1 also inhibited the phagocytic function of BV-2 cells. Pretreatment with the signaling pathway inhibitors, especially U0126, reversed the inhibitory effect of 2-AG on phagocytosis, suggesting that CB2 receptor may regulate the phagocytic function of microglia by activating Nurr1. In conclusion, CB2 receptor or/and Nurr1-mediated signal pathways play instrumental roles in the progress of phagocytosis, which are expected to open up new treatment strategies for neurodegenerative diseases.
Collapse
Affiliation(s)
- Qi-Wen Han
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica & Neuroscience Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China
| | - Qian-Hang Shao
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica & Neuroscience Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China
| | - Xiao-Tong Wang
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica & Neuroscience Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China
| | - Kai-Li Ma
- Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Kunming, 650118, China
| | - Nai-Hong Chen
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica & Neuroscience Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China.
| | - Yu-He Yuan
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica & Neuroscience Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China.
| |
Collapse
|
3
|
Morris G, Walder K, Berk M, Carvalho AF, Marx W, Bortolasci CC, Yung AR, Puri BK, Maes M. Intertwined associations between oxidative and nitrosative stress and endocannabinoid system pathways: Relevance for neuropsychiatric disorders. Prog Neuropsychopharmacol Biol Psychiatry 2022; 114:110481. [PMID: 34826557 DOI: 10.1016/j.pnpbp.2021.110481] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 10/19/2021] [Accepted: 11/21/2021] [Indexed: 12/12/2022]
Abstract
The endocannabinoid system (ECS) appears to regulate metabolic, cardiovascular, immune, gastrointestinal, lung, and reproductive system functions, as well as the central nervous system. There is also evidence that neuropsychiatric disorders are associated with ECS abnormalities as well as oxidative and nitrosative stress pathways. The goal of this mechanistic review is to investigate the mechanisms underlying the ECS's regulation of redox signalling, as well as the mechanisms by which activated oxidative and nitrosative stress pathways may impair ECS-mediated signalling. Cannabinoid receptor (CB)1 activation and upregulation of brain CB2 receptors reduce oxidative stress in the brain, resulting in less tissue damage and less neuroinflammation. Chronically high levels of oxidative stress may impair CB1 and CB2 receptor activity. CB1 activation in peripheral cells increases nitrosative stress and inducible nitric oxide (iNOS) activity, reducing mitochondrial activity. Upregulation of CB2 in the peripheral and central nervous systems may reduce iNOS, nitrosative stress, and neuroinflammation. Nitrosative stress may have an impact on CB1 and CB2-mediated signalling. Peripheral immune activation, which frequently occurs in response to nitro-oxidative stress, may result in increased expression of CB2 receptors on T and B lymphocytes, dendritic cells, and macrophages, reducing the production of inflammatory products and limiting the duration and intensity of the immune and oxidative stress response. In conclusion, high levels of oxidative and nitrosative stress may compromise or even abolish ECS-mediated redox pathway regulation. Future research in neuropsychiatric disorders like mood disorders and deficit schizophrenia should explore abnormalities in these intertwined signalling pathways.
Collapse
Affiliation(s)
- Gerwyn Morris
- Deakin University, IMPACT - the Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Barwon Health, Geelong, Australia
| | - Ken Walder
- Deakin University, IMPACT - the Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Barwon Health, Geelong, Australia.
| | - Michael Berk
- Deakin University, IMPACT - the Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Barwon Health, Geelong, Australia; Orygen, Parkville, Victoria, Australia; Centre for Youth Mental Health, The University of Melbourne, Parkville, Victoria, Australia.
| | - Andre F Carvalho
- Deakin University, IMPACT - the Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Barwon Health, Geelong, Australia
| | - Wolf Marx
- Deakin University, IMPACT - the Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Barwon Health, Geelong, Australia.
| | - Chiara C Bortolasci
- Deakin University, IMPACT - the Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Barwon Health, Geelong, Australia.
| | - Alison R Yung
- Deakin University, IMPACT - the Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Barwon Health, Geelong, Australia; Orygen, Parkville, Victoria, Australia; Centre for Youth Mental Health, The University of Melbourne, Parkville, Victoria, Australia; School of Health Science, University of Manchester, UK.
| | - Basant K Puri
- University of Winchester, UK, and C.A.R., Cambridge, UK.
| | - Michael Maes
- Deakin University, IMPACT - the Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Barwon Health, Geelong, Australia; Department of Psychiatry, Faculty of Medicine, King Chulalongkorn Memorial Hospital, Bangkok, Thailand; Department of Psychiatry, Medical University of Plovdiv, Plovdiv, Bulgaria.
| |
Collapse
|
4
|
Hu T, Zheng G, Xue D, Zhao S, Li F, Zhou F, Zhao F, Xie L, Tian C, Hua T, Zhao S, Xu Y, Zhong G, Liu ZJ, Makriyannis A, Stevens RC, Tao H. Rational Remodeling of Atypical Scaffolds for the Design of Photoswitchable Cannabinoid Receptor Tools. J Med Chem 2021; 64:13752-13765. [PMID: 34477367 DOI: 10.1021/acs.jmedchem.1c01088] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Azobenzene-embedded photoswitchable ligands are the widely used chemical tools in photopharmacological studies. Current approaches to azobenzene introduction rely mainly on the isosteric replacement of typical azologable groups. However, atypical scaffolds may offer more opportunities for photoswitch remodeling, which are chemically in an overwhelming majority. Herein, we investigate the rational remodeling of atypical scaffolds for azobenzene introduction, as exemplified in the development of photoswitchable ligands for the cannabinoid receptor 2 (CB2). Based on the analysis of residue-type clusters surrounding the binding pocket, we conclude that among the three representative atypical arms of the CB2 antagonist, AM10257, the adamantyl arm is the most appropriate for azobenzene remodeling. The optimizing spacer length and attachment position revealed AzoLig 9 with excellent thermal bistability, decent photopharmacological switchability between its two configurations, and high subtype selectivity. This structure-guided approach gave new impetus in the extension of new chemical spaces for tool customization for increasingly diversified photo-pharmacological studies and beyond.
Collapse
Affiliation(s)
- Tao Hu
- iHuman Institute, ShanghaiTech University, Pudong, Shanghai 201210, China.,School of Life Science and Technology, ShanghaiTech University, Pudong, Shanghai 201210, China.,CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Guoxun Zheng
- iHuman Institute, ShanghaiTech University, Pudong, Shanghai 201210, China
| | - Dongxiang Xue
- iHuman Institute, ShanghaiTech University, Pudong, Shanghai 201210, China
| | - Simeng Zhao
- iHuman Institute, ShanghaiTech University, Pudong, Shanghai 201210, China
| | - Fei Li
- iHuman Institute, ShanghaiTech University, Pudong, Shanghai 201210, China
| | - Fang Zhou
- iHuman Institute, ShanghaiTech University, Pudong, Shanghai 201210, China
| | - Fei Zhao
- iHuman Institute, ShanghaiTech University, Pudong, Shanghai 201210, China
| | - Linshan Xie
- iHuman Institute, ShanghaiTech University, Pudong, Shanghai 201210, China.,School of Life Science and Technology, ShanghaiTech University, Pudong, Shanghai 201210, China
| | - Cuiping Tian
- iHuman Institute, ShanghaiTech University, Pudong, Shanghai 201210, China
| | - Tian Hua
- iHuman Institute, ShanghaiTech University, Pudong, Shanghai 201210, China.,School of Life Science and Technology, ShanghaiTech University, Pudong, Shanghai 201210, China
| | - Suwen Zhao
- iHuman Institute, ShanghaiTech University, Pudong, Shanghai 201210, China.,School of Life Science and Technology, ShanghaiTech University, Pudong, Shanghai 201210, China
| | - Yueming Xu
- iHuman Institute, ShanghaiTech University, Pudong, Shanghai 201210, China
| | - Guisheng Zhong
- iHuman Institute, ShanghaiTech University, Pudong, Shanghai 201210, China.,School of Life Science and Technology, ShanghaiTech University, Pudong, Shanghai 201210, China
| | - Zhi-Jie Liu
- iHuman Institute, ShanghaiTech University, Pudong, Shanghai 201210, China.,School of Life Science and Technology, ShanghaiTech University, Pudong, Shanghai 201210, China
| | - Alexandros Makriyannis
- Center for Drug Discovery, Department of Pharmaceutical Sciences and Department of Chemistry and Chemical Biology, Northeastern University, Boston, Massachusetts 02115, United States
| | - Raymond C Stevens
- iHuman Institute, ShanghaiTech University, Pudong, Shanghai 201210, China.,School of Life Science and Technology, ShanghaiTech University, Pudong, Shanghai 201210, China.,Departments of Biological Sciences and Chemistry, Bridge Institute, USC Michelson Center for Convergent Bioscience, University of Southern California, Los Angeles, California 90089, United States
| | - Houchao Tao
- iHuman Institute, ShanghaiTech University, Pudong, Shanghai 201210, China
| |
Collapse
|
5
|
Reusch N, Ravichandran KA, Olabiyi BF, Komorowska-Müller JA, Hansen JN, Ulas T, Beyer M, Zimmer A, Schmöle AC. Cannabinoid receptor 2 is necessary to induce toll-like receptor-mediated microglial activation. Glia 2021; 70:71-88. [PMID: 34499767 DOI: 10.1002/glia.24089] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 08/25/2021] [Accepted: 08/26/2021] [Indexed: 01/17/2023]
Abstract
The tight regulation of microglia activity is key for precise responses to potential threats, while uncontrolled and exacerbated microglial activity is neurotoxic. Microglial toll-like receptors (TLRs) are indispensable for sensing different types of assaults and triggering an innate immune response. Cannabinoid receptor 2 (CB2) signaling is a key pathway to control microglial homeostasis and activation, and its activation is connected to changes in microglial activity. We aimed to investigate how CB2 signaling impacts TLR-mediated microglial activation. Here, we demonstrate that deletion of CB2 causes a dampened transcriptional response to prototypic TLR ligands in microglia. Loss of CB2 results in distinct microglial gene expression profiles, morphology, and activation. We show that the CB2-mediated attenuation of TLR-induced microglial activation is mainly p38 MAPK-dependent. Taken together, we demonstrate that CB2 expression and signaling are necessary to fine-tune TLR-induced activation programs in microglia.
Collapse
Affiliation(s)
- Nico Reusch
- Systems Medicine, German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany.,Genomics and Immunoregulation, Life and Medical Sciences Institute (LIMES), Bonn, Germany
| | | | | | - Joanna Agnieszka Komorowska-Müller
- Institute for Molecular Psychiatry, Medical Faculty, University of Bonn, Bonn, Germany.,International Max Planck Research School for Brain and Behavior, University of Bonn, Bonn, Germany
| | - Jan N Hansen
- Institute of Innate Immunity, Biophysical Imaging, Medical Faculty, University of Bonn, Bonn, Germany
| | - Thomas Ulas
- Systems Medicine, German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany.,Genomics and Immunoregulation, Life and Medical Sciences Institute (LIMES), Bonn, Germany.,Platform for Single Cell Genomics and Epigenomics (PRECISE), German Center for Neurodegenerative Diseases (DZNE), University of Bonn, Bonn, Germany
| | - Marc Beyer
- Platform for Single Cell Genomics and Epigenomics (PRECISE), German Center for Neurodegenerative Diseases (DZNE), University of Bonn, Bonn, Germany.,Molecular Immunology in Neurodegeneration, German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
| | - Andreas Zimmer
- Institute for Molecular Psychiatry, Medical Faculty, University of Bonn, Bonn, Germany
| | - Anne-Caroline Schmöle
- Institute for Molecular Psychiatry, Medical Faculty, University of Bonn, Bonn, Germany
| |
Collapse
|
6
|
Morris G, Walder K, Kloiber S, Amminger P, Berk M, Bortolasci CC, Maes M, Puri BK, Carvalho AF. The endocannabinoidome in neuropsychiatry: Opportunities and potential risks. Pharmacol Res 2021; 170:105729. [PMID: 34119623 DOI: 10.1016/j.phrs.2021.105729] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Revised: 05/31/2021] [Accepted: 06/09/2021] [Indexed: 02/08/2023]
Abstract
The endocannabinoid system (ECS) comprises two cognate endocannabinoid receptors referred to as CB1R and CB2R. ECS dysregulation is apparent in neurodegenerative/neuro-psychiatric disorders including but not limited to schizophrenia, major depressive disorder and potentially bipolar disorder. The aim of this paper is to review mechanisms whereby both receptors may interact with neuro-immune and neuro-oxidative pathways, which play a pathophysiological role in these disorders. CB1R is located in the presynaptic terminals of GABAergic, glutamatergic, cholinergic, noradrenergic and serotonergic neurons where it regulates the retrograde suppression of neurotransmission. CB1R plays a key role in long-term depression, and, to a lesser extent, long-term potentiation, thereby modulating synaptic transmission and mediating learning and memory. Optimal CB1R activity plays an essential neuroprotective role by providing a defense against the development of glutamate-mediated excitotoxicity, which is achieved, at least in part, by impeding AMPA-mediated increase in intracellular calcium overload and oxidative stress. Moreover, CB1R activity enables optimal neuron-glial communication and the function of the neurovascular unit. CB2R receptors are detected in peripheral immune cells and also in central nervous system regions including the striatum, basal ganglia, frontal cortex, hippocampus, amygdala as well as the ventral tegmental area. CB2R upregulation inhibits the presynaptic release of glutamate in several brain regions. CB2R activation also decreases neuroinflammation partly by mediating the transition from a predominantly neurotoxic "M1" microglial phenotype to a more neuroprotective "M2" phenotype. CB1R and CB2R are thus novel drug targets for the treatment of neuro-immune and neuro-oxidative disorders including schizophrenia and affective disorders.
Collapse
Affiliation(s)
- Gerwyn Morris
- Deakin University, IMPACT - the Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Barwon Health, Geelong, Australia
| | - Ken Walder
- Deakin University, IMPACT - the Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Barwon Health, Geelong, Australia; Deakin University, Centre for Molecular and Medical Research, School of Medicine, Geelong, Australia
| | - Stefan Kloiber
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, 33 Ursula Franklin Street, Toronto, ON, Canada; Department of Psychiatry, University of Toronto, Toronto, ON, Canada
| | - Paul Amminger
- Orygen, Parkville, Victoria, Australia; Centre for Youth Mental Health, The University of Melbourne, Parkville, Victoria, Australia
| | - Michael Berk
- Deakin University, IMPACT - the Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Barwon Health, Geelong, Australia; Orygen, The National Centre of Excellence in Youth Mental Health, Centre for Youth Mental Health, Florey Institute for Neuroscience and Mental Health and the Department of Psychiatry, The University of Melbourne, Melbourne, Australia
| | - Chiara C Bortolasci
- Deakin University, IMPACT - the Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Barwon Health, Geelong, Australia
| | - Michael Maes
- Deakin University, IMPACT - the Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Barwon Health, Geelong, Australia; Department of Psychiatry, Faculty of Medicine, King Chulalongkorn Memorial Hospital, Bangkok, Thailand; Department of Psychiatry, Medical University of Plovdiv, Plovdiv, Bulgaria
| | | | - Andre F Carvalho
- Deakin University, IMPACT - the Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Barwon Health, Geelong, Australia.
| |
Collapse
|
7
|
Haspula D, Clark MA. Cannabinoid Receptors: An Update on Cell Signaling, Pathophysiological Roles and Therapeutic Opportunities in Neurological, Cardiovascular, and Inflammatory Diseases. Int J Mol Sci 2020; 21:E7693. [PMID: 33080916 PMCID: PMC7590033 DOI: 10.3390/ijms21207693] [Citation(s) in RCA: 71] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2020] [Revised: 10/14/2020] [Accepted: 10/15/2020] [Indexed: 12/16/2022] Open
Abstract
The identification of the human cannabinoid receptors and their roles in health and disease, has been one of the most significant biochemical and pharmacological advancements to have occurred in the past few decades. In spite of the major strides made in furthering endocannabinoid research, therapeutic exploitation of the endocannabinoid system has often been a challenging task. An impaired endocannabinoid tone often manifests as changes in expression and/or functions of type 1 and/or type 2 cannabinoid receptors. It becomes important to understand how alterations in cannabinoid receptor cellular signaling can lead to disruptions in major physiological and biological functions, as they are often associated with the pathogenesis of several neurological, cardiovascular, metabolic, and inflammatory diseases. This review focusses mostly on the pathophysiological roles of type 1 and type 2 cannabinoid receptors, and it attempts to integrate both cellular and physiological functions of the cannabinoid receptors. Apart from an updated review of pre-clinical and clinical studies, the adequacy/inadequacy of cannabinoid-based therapeutics in various pathological conditions is also highlighted. Finally, alternative strategies to modulate endocannabinoid tone, and future directions are also emphasized.
Collapse
Affiliation(s)
- Dhanush Haspula
- Molecular Signaling Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, MD 20892, USA;
| | - Michelle A. Clark
- Department of Pharmaceutical Sciences, College of Pharmacy, Nova Southeastern University, Fort Lauderdale, FL 33314, USA
| |
Collapse
|
8
|
Abidi AH, Alghamdi SS, Dabbous MK, Tipton DA, Mustafa SM, Moore BM. Cannabinoid type-2 receptor agonist, inverse agonist, and anandamide regulation of inflammatory responses in IL-1β stimulated primary human periodontal ligament fibroblasts. J Periodontal Res 2020; 55:762-783. [PMID: 32562275 DOI: 10.1111/jre.12765] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Revised: 04/08/2020] [Accepted: 04/24/2020] [Indexed: 02/06/2023]
Abstract
OBJECTIVE The aim of this study is to understand the role of cannabinoid type 2 receptor (CB2R) during periodontal inflammation and to identify anti-inflammatory agents for the development of drugs to treat periodontitis (PD). BACKGROUND Cannabinoid type 2 receptor is found in periodontal tissue at sites of inflammation/infection. Our previous study demonstrated anti-inflammatory responses in human periodontal ligament fibroblasts (hPDLFs) via CB2R ligands. METHODS Anandamide (AEA), HU-308 (agonist), and SMM-189 (inverse agonist) were tested for effects on IL-1β-stimulated cytokines, chemokines, and angiogenic and vascular markers expressed by hPDLFs using Mesoscale Discovery V-Plex Kits. Signal transduction pathways (p-c-Jun, p-ERK, p-p-38, p-JNK, p-CREB, and p-NF-kB) were investigated using Cisbio HTRF kits. ACTOne and Tango™ -BLA functional assays were used to measure cyclic AMP (cAMP) and β-arrestin activity. RESULTS IL-1β stimulated hPDLF production of 18/39 analytes, which were downregulated by the CB2R agonist and the inverse agonist. AEA exhibited pro-inflammatory and anti-inflammatory effects. IL-1β increased phosphoproteins within the first hour except p-JNK. CB2R ligands attenuated p-p38 and p-NFĸB, but a late rise in p-38 was seen with HU-308. As p-ERK levels declined, a significant increase in p-ERK was observed later in the time course by synthetic CB2R ligands. P-JNK was significantly affected by SMM-189 only, while p-CREB was elevated significantly by CB2R ligands at 180 minutes. HU-308 affected both cAMP and β-arrestin pathway. SMM-189 only stimulated cAMP. CONCLUSION The findings that CB2R agonist and inverse agonist may potentially regulate inflammation suggest that development of CB2R therapeutics could improve on current treatments for PD and other oral inflammatory pathologies.
Collapse
Affiliation(s)
- Ammaar H Abidi
- College of Dentistry, The University of Tennessee Health Science Center, Memphis, TN, USA.,Department of Bioscience Research, The University of Tennessee Health Science Center, Memphis, TN, USA
| | - Sahar S Alghamdi
- Department of Pharmaceutical Sciences, The University of Tennessee Health Science Center, Memphis, TN, USA
| | - Mustafa Kh Dabbous
- College of Dentistry, The University of Tennessee Health Science Center, Memphis, TN, USA.,Department of Bioscience Research, The University of Tennessee Health Science Center, Memphis, TN, USA.,College of Medicine, The University of Tennessee Health Science Center, Memphis, TN, USA.,Department of Microbiology, Immunology and Biochemistry, The University of Tennessee Health Science Center, Memphis, TN, USA
| | - David A Tipton
- College of Dentistry, The University of Tennessee Health Science Center, Memphis, TN, USA.,Department of Bioscience Research, The University of Tennessee Health Science Center, Memphis, TN, USA
| | - Suni M Mustafa
- Department of Pharmaceutical Sciences, The University of Tennessee Health Science Center, Memphis, TN, USA
| | - Bob M Moore
- Department of Pharmaceutical Sciences, The University of Tennessee Health Science Center, Memphis, TN, USA
| |
Collapse
|
9
|
Zhou H, Peng X, Hou T, Zhao N, Qiu M, Zhang X, Liang X. Identification of novel phytocannabinoids from Ganoderma by label-free dynamic mass redistribution assay. JOURNAL OF ETHNOPHARMACOLOGY 2020; 246:112218. [PMID: 31494202 DOI: 10.1016/j.jep.2019.112218] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Revised: 08/15/2019] [Accepted: 09/02/2019] [Indexed: 06/10/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Located throughout the body, cannabinoid receptors (CB1 and CB2) are therapeutic targets for obesity/metabolic diseases, neurological/mental disorders, and immune modulation. Phytocannabinoids are greatly important for the development of new medicines with high efficacy and/or minor side effects. Plants and fungi are used in traditional medicine for beneficial effects to mental and immune system. The current research studied five fungi from the genus Ganoderma and five plants: Ganoderma hainanense J.D. Zhao, L.W. Hsu & X.Q. Zhang; Ganoderma capense (Lloyd) Teng, Zhong Guo De Zhen Jun; Ganoderma cochlear (Blume & T. Nees) Bres., Hedwigia; Ganoderma resinaceum Boud.; Ganoderma applanatum (Pers.) Pat.; Carthamus tinctorius L. (Compositae); Cynanchum otophyllum C. K. Schneid. (Asclepiadaceae); Coffea arabica L. (Rubiaceae); Prinsepia utilis Royle (Rosaceae); Lepidium meyenii Walp. (Brassicaceae). They show immunoregulation, promotion of longevity and maintenance of vitality, stimulant effects on the central nervous system, hormone balance and other beneficial effects. However, it remains unclear whether cannabinoid receptors are involved in these effects. AIM OF THE STUDY This work aimed to identify components working on CB1 and CB2 from the above plants and fungi, as novel phytocannabinoids, and to investigate mechanisms of how these compounds affected the cells. By analyzing the structure-activity relationship, we could identify the core structure for future development. MATERIALS AND METHODS Eighty-two natural compounds were screened on stably transfected Chinese hamster ovary (CHO) cell lines, CHO-CB1 and CHO-CB2, with application of a label-free dynamic mass redistribution (DMR) technology that measured cellular responses to compounds. CP55,940 and WIN55,212-2 were agonist probe molecules, and SR141716A and SR144528 were antagonist probes. Pertussis toxin, cholera toxin, LY294002 and U73122 were signaling pathway inhibitors. The DMR data were acquired by Epic Imager software (Corning, NY), processed by Imager Beta 3.7 (Corning), and analyzed by GraphPad Prism 6 (GraphPad Software, San Diego, CA). RESULTS Transfected CHO-CB1 and CHO-CB2 cell lines were established and characterized. Seven compounds induced responses/activities in the cells. Among the seven compounds, four were purified from two Ganoderma species with potencies between 20 and 35 μM. Three antagonists: Kfb68 antagonized both receptors with a better desensitizing effect on CB2 to WIN55,212-2 over CP55,940. Kga1 and Kfb28 were antagonists selective to CB1 and CB2, respectively. Kfb77 was a special agonist and it stimulated CB1 in a mechanism different from that of CP55,940. Another three active compounds, derived from the Lepidium meyenii Walp. (Brassicaceae), were also identified but their effects were mediated through mechanisms much related to the signaling transduction pathways, especially through the stimulatory Gs protein. CONCLUSIONS We identified four natural cannabinoids that exhibited structural and functional diversities. Our work confirms the presence of active ingredients in the Ganoderma species to CB1 and CB2, and this finding establishes connections between the fungi and the cannabinoid receptors, which will serve as a starting point to connect their beneficial effects to the endocannabinoid system. This research will also enrich the inventory of cannabinoids and phytocannabinoids from fungi. Yet due to some limitations, further structure-activity relationship studies and mechanism investigation are warranted in future.
Collapse
Affiliation(s)
- Han Zhou
- Key Lab of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China.
| | - Xingrong Peng
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China; Yunnan Key Laboratory of Natural Medicinal Chemistry, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China.
| | - Tao Hou
- Key Lab of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China.
| | - Nan Zhao
- Pharmacology Department, University College London, London, WC1E 6BT, UK.
| | - Minghua Qiu
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China; Yunnan Key Laboratory of Natural Medicinal Chemistry, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China.
| | - Xiuli Zhang
- Key Lab of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China; College of Pharmaceutical Sciences, Soochow University, Suzhou, 215123, China.
| | - Xinmiao Liang
- Key Lab of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China.
| |
Collapse
|
10
|
Da Silva T, Hafizi S, Watts JJ, Weickert CS, Meyer JH, Houle S, Rusjan P, Mizrahi R. In Vivo Imaging of Translocator Protein in Long-term Cannabis Users. JAMA Psychiatry 2019; 76:1305-1313. [PMID: 31532458 PMCID: PMC6751758 DOI: 10.1001/jamapsychiatry.2019.2516] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
IMPORTANCE Cannabis is the most commonly used illicit drug in the world. Cannabinoids have been shown to modulate immune responses; however, the association of cannabis with neuroimmune function has never been investigated in vivo in the human brain. OBJECTIVE To investigate neuroimmune activation or 18-kDa translocator protein (TSPO) levels in long-term cannabis users, and to evaluate the association of brain TSPO levels with behavioral measures and inflammatory blood biomarkers. DESIGN, SETTING, AND PARTICIPANTS This cross-sectional study based in Toronto, Ontario, recruited individuals from January 1, 2015, to October 30, 2018. Participants included long-term cannabis users (n = 24) and non-cannabis-using controls (n = 27). Cannabis users were included if they had a positive urine drug screen for only cannabis and if they used cannabis at least 4 times per week for the past 12 months and/or met the criteria for cannabis use disorder. All participants underwent a positron emission tomography scan with [18F]FEPPA, or fluorine F 18-labeled N-(2-(2-fluoroethoxy)benzyl)-N-(4-phenoxypyridin-3-yl)acetamide. MAIN OUTCOMES AND MEASURES Total distribution volume was quantified across regions of interest. Stress and anxiety as well as peripheral measures of inflammatory cytokines and C-reactive protein levels were also measured. RESULTS In total, 24 long-term cannabis users (mean [SD] age, 23.1 [3.8] years; 15 men [63%]) and 27 non-cannabis-using controls (mean [SD] age, 23.6 [4.2] years; 18 women [67%]) were included and completed all study procedures. Compared with the controls, cannabis users had higher [18F]FEPPA total distribution volume (main group effect: F1,48 = 6.5 [P = .01]; ROI effect: F1,200 = 28.4 [P < .001]; Cohen d = 0.6; 23.3% higher), with a more prominent implication for the cannabis use disorder subgroup (n = 15; main group effect: F1,39 = 8.5 [P = .006]; ROI effect: F1,164 = 19.3 [P < .001]; Cohen d = 0.8; 31.5% higher). Greater TSPO levels in the brain were associated with stress and anxiety and with higher circulating C-reactive protein levels in cannabis users. CONCLUSIONS AND RELEVANCE The results of this study suggest that TSPO levels in cannabis users, particularly in those with cannabis use disorder, are higher than those in non-cannabis-using controls. The findings emphasize the need for more complementary preclinical systems for a better understanding of the role of cannabinoids and TSPO in neuroimmune signaling.
Collapse
Affiliation(s)
- Tania Da Silva
- Research Imaging Centre, Centre for Addiction and Mental Health, Toronto, Ontario, Canada
| | - Sina Hafizi
- Research Imaging Centre, Centre for Addiction and Mental Health, Toronto, Ontario, Canada
| | - Jeremy J. Watts
- Research Imaging Centre, Centre for Addiction and Mental Health, Toronto, Ontario, Canada,Department of Pharmacology and Toxicology, University of Toronto, Toronto, Ontario, Canada
| | - Cynthia Shannon Weickert
- Schizophrenia Research Laboratory, Neuroscience Research Australia, Randwick, New South Wales, Australia,School of Psychiatry, Faculty of Medicine, University of New South Wales, Sydney, New South Wales, Australia,Department of Neuroscience and Physiology, Upstate Medical University, Syracuse, New York
| | - Jeffrey H. Meyer
- Research Imaging Centre, Centre for Addiction and Mental Health, Toronto, Ontario, Canada,Department of Pharmacology and Toxicology, University of Toronto, Toronto, Ontario, Canada,Department of Psychiatry, University of Toronto, Toronto, Ontario, Canada,Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, Ontario, Canada
| | - Sylvain Houle
- Research Imaging Centre, Centre for Addiction and Mental Health, Toronto, Ontario, Canada,Department of Psychiatry, University of Toronto, Toronto, Ontario, Canada,Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, Ontario, Canada
| | - Pablo Rusjan
- Research Imaging Centre, Centre for Addiction and Mental Health, Toronto, Ontario, Canada,Department of Psychiatry, University of Toronto, Toronto, Ontario, Canada,Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, Ontario, Canada
| | - Romina Mizrahi
- Research Imaging Centre, Centre for Addiction and Mental Health, Toronto, Ontario, Canada,Department of Pharmacology and Toxicology, University of Toronto, Toronto, Ontario, Canada,Department of Psychiatry, University of Toronto, Toronto, Ontario, Canada,Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, Ontario, Canada
| |
Collapse
|
11
|
Kita M, Ano Y, Inoue A, Aoki J. Identification of P2Y receptors involved in oleamide-suppressing inflammatory responses in murine microglia and human dendritic cells. Sci Rep 2019; 9:3135. [PMID: 30816271 PMCID: PMC6395661 DOI: 10.1038/s41598-019-40008-8] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Accepted: 02/07/2019] [Indexed: 12/15/2022] Open
Abstract
Microglia, a type of immune cell in the central nervous system, are involved in inflammation leading to neurodegenerative diseases. We previously identified oleamide from fermented dairy products as a neuroprotective compound suppressing microglial inflammation. Oleamide is an endocannabinoid and displays anti-inflammatory activity via the cannabinoid-2 (CB2) receptor; however, the mechanism underlying this anti-inflammatory activity has not been fully elucidated. Here, we found that the suppressive effect of oleamide on microglial tumor necrosis factor-α (TNF-α) production was canceled by inhibitors of G-protein-coupled receptor (GPCR) downstream signaling but not by a CB2 antagonist, suggesting that GPCRs other than CB2 are involved in the anti-inflammatory effects of oleamide. An extensive screen for GPCRs using a transforming growth factor-α shedding assay system identified P2Y1, P2Y4, P2Y6, P2Y10, and P2Y11 as candidates for the oleamide target. P2Y1 and P2Y10 agonists suppressed microglial TNF-α production, while a pan P2 receptor antagonist canceled the suppressive effect. Furthermore, we observed a relationship between the P2Y1 agonistic activities and the suppressive activities of oleamide and its analogs. Taken together, our results suggest that, in addition to CB2, P2Y type receptors are the potential targets of oleamide, and P2Y1 plays a role in the suppression of microglial inflammatory responses by oleamide. (200/200 words)
Collapse
Affiliation(s)
- Masahiro Kita
- Research Laboratories for Health Science & Food Technologies, Kirin Company Ltd, 1-13-5 Fukuura Kanazawa-ku, Yokohama-shi, Kanagawa, 236-0004, Japan.
| | - Yasuhisa Ano
- Research Laboratories for Health Science & Food Technologies, Kirin Company Ltd, 1-13-5 Fukuura Kanazawa-ku, Yokohama-shi, Kanagawa, 236-0004, Japan
| | - Asuka Inoue
- Graduate School of Pharmaceutical Sciences, Tohoku University, 6-3, Aoba, Aramaki, Aoba-ku, Sendai City, Miyagi, 980-8578, Japan
| | - Junken Aoki
- Graduate School of Pharmaceutical Sciences, Tohoku University, 6-3, Aoba, Aramaki, Aoba-ku, Sendai City, Miyagi, 980-8578, Japan
| |
Collapse
|
12
|
Kwon JH, Gaire BP, Park SJ, Shin DY, Choi JW. Identifying lysophosphatidic acid receptor subtype 1 (LPA 1) as a novel factor to modulate microglial activation and their TNF-α production by activating ERK1/2. Biochim Biophys Acta Mol Cell Biol Lipids 2018; 1863:1237-1245. [PMID: 30071304 DOI: 10.1016/j.bbalip.2018.07.015] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2018] [Revised: 07/24/2018] [Accepted: 07/29/2018] [Indexed: 11/29/2022]
Abstract
Microglia regulate immune responses in the brain, and their activation is key to the pathogenesis of diverse neurological diseases. Receptor-mediated lysophosphatidic acid (LPA) signaling has been known to regulate microglial biology, but it is still unclear which receptor subtypes guide the biology, particularly, microglial activation. Here, we investigated the pathogenic aspects of LPA receptor subtype 1 (LPA1) in microglial activation using a systemic lipopolysaccharide (LPS) administration-induced septic mouse model in vivo and LPS-stimulated rat primary microglia in vitro. LPA1 knockdown in the brain with its specific shRNA lentivirus attenuated the sepsis-induced microglia activation, morphological transformation, and proliferation. LPA1 knockdown also resulted in the downregulation of TNF-α, at both mRNA and protein levels in septic brains, but not IL-1β or IL-6. In rat primary microglia, genetic or pharmacological blockade of LPA1 attenuated gene upregulation and secretion of TNF-α in LPS-stimulated cells. In particular, the latter was associated with the suppressed TNF-α converting enzyme (TACE) activity. We reaffirmed these biological aspects using a BV2 microglial cell line in which LPA1 expression was negligible. LPA1 overexpression in BV2 cells led to significant increments in TNF-α production upon stimulation with LPS, whereas inhibiting LPA1 reversed the production. We further identified ERK1/2, but not p38 MAPK or Akt, as the underlying effector pathway after LPA1 activation in both septic brains and stimulated microglia. The current findings of the novel role of LPA1 in microglial activation along with its mechanistic aspects could be applied to understanding the pathogenesis of diverse neurological diseases that involve microglial activation.
Collapse
Affiliation(s)
- Jin Hyun Kwon
- College of Pharmacy and Gachon Institute of Pharmaceutical Sciences, Gachon University, Incheon 406-799, Republic of Korea
| | - Bhakta Prasad Gaire
- College of Pharmacy and Gachon Institute of Pharmaceutical Sciences, Gachon University, Incheon 406-799, Republic of Korea
| | - Se Jin Park
- School of Natural Resources and Environmental Sciences, Kangwon National University, Chuncheon 24341, Republic of Korea
| | - Dong-Yoon Shin
- College of Pharmacy and Gachon Institute of Pharmaceutical Sciences, Gachon University, Incheon 406-799, Republic of Korea
| | - Ji Woong Choi
- College of Pharmacy and Gachon Institute of Pharmaceutical Sciences, Gachon University, Incheon 406-799, Republic of Korea.
| |
Collapse
|
13
|
Paloczi J, Varga ZV, Hasko G, Pacher P. Neuroprotection in Oxidative Stress-Related Neurodegenerative Diseases: Role of Endocannabinoid System Modulation. Antioxid Redox Signal 2018; 29:75-108. [PMID: 28497982 PMCID: PMC5984569 DOI: 10.1089/ars.2017.7144] [Citation(s) in RCA: 71] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
SIGNIFICANCE Redox imbalance may lead to overproduction of reactive oxygen and nitrogen species (ROS/RNS) and subsequent oxidative tissue damage, which is a critical event in the course of neurodegenerative diseases. It is still not fully elucidated, however, whether oxidative stress is the primary trigger or a consequence in the process of neurodegeneration. Recent Advances: Increasing evidence suggests that oxidative stress is involved in the propagation of neuronal injury and consequent inflammatory response, which in concert promote development of pathological alterations characteristic of most common neurodegenerative diseases. CRITICAL ISSUES Accumulating recent evidence also suggests that there is an important interplay between the lipid endocannabinoid system [ECS; comprising the main cannabinoid 1 and 2 receptors (CB1 and CB2), endocannabinoids, and their synthetic and metabolizing enzymes] and various key inflammatory and redox-dependent processes. FUTURE DIRECTIONS Targeting the ECS to modulate redox state-dependent cell death and to decrease consequent or preceding inflammatory response holds therapeutic potential in a multitude of oxidative stress-related acute or chronic neurodegenerative disorders from stroke and traumatic brain injury to Alzheimer's and Parkinson's diseases and multiple sclerosis, just to name a few, which will be discussed in this overview. Antioxid. Redox Signal. 29, 75-108.
Collapse
Affiliation(s)
- Janos Paloczi
- 1 Laboratory of Cardiovascular Physiology and Tissue Injury (LCPTI), National Institute on Alcohol Abuse and Alcoholism (NIAAA), National Institutes of Health (NIH) , Bethesda, Maryland
| | - Zoltan V Varga
- 1 Laboratory of Cardiovascular Physiology and Tissue Injury (LCPTI), National Institute on Alcohol Abuse and Alcoholism (NIAAA), National Institutes of Health (NIH) , Bethesda, Maryland
| | - George Hasko
- 2 Department of Surgery, Rutgers New Jersey Medical School , Newark, New Jersey
| | - Pal Pacher
- 1 Laboratory of Cardiovascular Physiology and Tissue Injury (LCPTI), National Institute on Alcohol Abuse and Alcoholism (NIAAA), National Institutes of Health (NIH) , Bethesda, Maryland
| |
Collapse
|
14
|
Zhang X, Thayer SA. Monoacylglycerol lipase inhibitor JZL184 prevents HIV-1 gp120-induced synapse loss by altering endocannabinoid signaling. Neuropharmacology 2018; 128:269-281. [PMID: 29061509 PMCID: PMC5752128 DOI: 10.1016/j.neuropharm.2017.10.023] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2017] [Revised: 10/16/2017] [Accepted: 10/19/2017] [Indexed: 12/22/2022]
Abstract
Monoacylglycerol lipase (MGL) hydrolyzes 2-arachidonoylglycerol to arachidonic acid and glycerol. Inhibition of MGL may attenuate neuroinflammation by enhancing endocannabinoid signaling and decreasing prostaglandin (PG) production. Almost half of HIV infected individuals are afflicted with HIV-associated neurocognitive disorder (HAND), a neuroinflammatory disease in which cognitive decline correlates with synapse loss. HIV infected cells shed the envelope protein gp120 which is a potent neurotoxin that induces synapse loss. Here, we tested whether inhibition of MGL, using the selective inhibitor JZL184, would prevent synapse loss induced by gp120. The number of synapses between rat hippocampal neurons in culture was quantified by imaging clusters of a GFP-tagged antibody-like protein that selectively binds to the postsynaptic scaffolding protein, PSD95. JZL184 completely blocked gp120-induced synapse loss. Inhibition of MGL decreased gp120-induced interleukin-1β (IL-1β) production and subsequent potentiation of NMDA receptor-mediated calcium influx. JZL184-mediated protection of synapses was reversed by a selective cannabinoid type 2 receptor (CB2R) inverse agonist/antagonist. JZL184 also reduced gp120-induced prostaglandin E2 (PGE2) production; PG signaling was required for gp120-induced IL-1β expression and synapse loss. Inhibition of MGL prevented gp120-induced synapse loss by activating CB2R resulting in decreased production of the inflammatory cytokine IL-1β. Because PG signaling was required for gp120-induced synapse loss, JZL184-induced decreases in PGE2 levels may also protect synapses. MGL presents a promising target for preventing synapse loss in neuroinflammatory conditions such as HAND.
Collapse
Affiliation(s)
- Xinwen Zhang
- Department of Pharmacology, University of Minnesota Medical School, Minneapolis, MN, USA
| | - Stanley A Thayer
- Department of Pharmacology, University of Minnesota Medical School, Minneapolis, MN, USA.
| |
Collapse
|
15
|
Abidi AH, Presley CS, Dabbous M, Tipton DA, Mustafa SM, Moore BM. Anti-inflammatory activity of cannabinoid receptor 2 ligands in primary hPDL fibroblasts. Arch Oral Biol 2017; 87:79-85. [PMID: 29274621 DOI: 10.1016/j.archoralbio.2017.12.005] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2017] [Revised: 12/01/2017] [Accepted: 12/04/2017] [Indexed: 01/29/2023]
Abstract
OBJECTIVES Approximately 65 million adults in the US have periodontitis, causing tooth loss and decreased quality of life. Cannabinoids modulate immune responses, and endocannabinoids are prevalent during oral cavity inflammation. Targets for intervention in periodontal inflammation are cannabinoid type 1 and 2 receptors (CB1R, CB2R), particularly CB2R because its levels increase during inflammation. We previously demonstrated that SMM-189 (CB2R inverse agonist) decreased pro-inflammatory cytokine production in primary microglial cells. The hypothesis of this study was that cannabinoids anandamide (AEA), HU-308 (CB2R selective agonist), and SMM-189 decrease pro-inflammatory IL-6 and MCP-1 production by primary human periodontal ligament fibroblasts (hPDLFs) stimulated with P. gingivalis LPS, TNF-α, or IL-1β. DESIGN Cytotoxic effects of cannabinoid compounds (10-4-10-6.5 M), LPS (1-1000 ng/ml), TNFα (10 ng/ml) and IL-1β (1 ng/ml) were assessed by measuring effects on cellular dehydrogenase activity. IL-6 and MCP-1 production were measured using Mesoscale Discovery (MSD) Human Pro-Inflammatory IL-6 and MSD Human Chemokine MCP-1 kits and analyzed using MSD Sector 2400 machine. RESULTS EC50 values for AEA, SMM-189, and HU-308 were 16 μM, 13 μM, and 7.3 μM respectively. LPS (1 μg/ml), TNF-α (10 ng/ml), and IL-1β (1 ng/ml) increased IL-6 and MCP-1 production, which were inhibited by AEA, SMM-189, and HU-308. AEA alone significantly increased IL-6, but not MCP-1 levels, but the other cannabinoids alone had no effect. CONCLUSION The effective inhibition of LPS, TNF-α, IL-1β stimulated IL-6 and MCP-1 production by CB2R ligands in hPDLFs suggests that targeting the endocannabinoid system may lead to development of novel drugs for periodontal therapy, aiding strategies to improve oral health.
Collapse
Affiliation(s)
- Ammaar H Abidi
- Department of General Practice Dentistry, College of Dentistry, The University of Tennessee Health Science Center, Memphis, TN, United States; Department of Pharmaceutical Sciences, College of Pharmacy, The University of Tennessee Health Science Center, Memphis, TN, United States
| | - Chaela S Presley
- Department of Pharmaceutical Sciences, College of Pharmacy, The University of Tennessee Health Science Center, Memphis, TN, United States
| | - Mustafa Dabbous
- Department of Bioscience Research, College of Dentistry, The University of Tennessee Health Science Center, Memphis, TN, United States; Department of Microbiology, Immunology and Biochemistry, College of Medicine, The University of Tennessee Health Science Center, Memphis, TN, United States
| | - David A Tipton
- Department of Bioscience Research, College of Dentistry, The University of Tennessee Health Science Center, Memphis, TN, United States
| | - Suni M Mustafa
- Department of Pharmaceutical Sciences, College of Pharmacy, The University of Tennessee Health Science Center, Memphis, TN, United States
| | - Bob M Moore
- Department of Pharmaceutical Sciences, College of Pharmacy, The University of Tennessee Health Science Center, Memphis, TN, United States.
| |
Collapse
|
16
|
Retracted: Cannabinoid CB(2) receptors modulate ERK-1/2 kinase signalling and NO release in microglial cells stimulated with bacterial lipopolysaccharide, by S Merighi, S Gessi, K Varani, C Simioni, D Fazzi, P Mirandola and P A Borea. British Journal of Pharmacology, volume 165(6): 1773-1788, published in March 2012; DOI 10.1111/j.1476-5381.2011.01673.x. Br J Pharmacol 2017; 174:2609. [PMID: 28718196 DOI: 10.1111/bph.13915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
The above article, published by the British Journal of Pharmacology in March 2012 (http://onlinelibrary.wiley.com/doi/10.1111/j.1476-5381.2011.01673.x/full), has been retracted by agreement between the authors, the Journal Editor in Chief and John Wiley & Sons Ltd. The authors wish to state that in preparation of the original manuscript errors occurred resulting in duplication. This issue relates specifically to Figures 2A and 2B, lanes 3-5 of the pJNK1/2 in Figure 3B and lanes 1-3 of the pJNK1/2 blot from Figure 3C. In addition, duplication has occurred in lanes 1-9 of the total MEK1/2 blot (left) and lanes 1-9 of the tubulin blot from Figure 6G JBC 280 (right). The authors apologize for the mistake. Unfortunately, the authors are not able to provide the original data for these figures.
Collapse
|
17
|
Kelly MEM, Lehmann C, Zhou J. The Endocannabinoid System in Local and Systemic Inflammation. ACTA ACUST UNITED AC 2017. [DOI: 10.4199/c00151ed1v01y201702isp074] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
18
|
Abstract
An agonist that acts through a single receptor can activate numerous signaling pathways. Recent studies have suggested that different ligands can differentially activate these pathways by stabilizing a limited range of receptor conformations, which in turn preferentially drive different downstream signaling cascades. This concept, termed "biased signaling" represents an exciting therapeutic opportunity to target specific pathways that elicit only desired effects, while avoiding undesired effects mediated by different signaling cascades. The cannabinoid receptors CB1 and CB2 each activate multiple pathways, and evidence is emerging for bias within these pathways. This review will summarize the current evidence for biased signaling through cannabinoid receptor subtypes CB1 and CB2.
Collapse
Affiliation(s)
- Mikkel Søes Ibsen
- Department of Pharmacology, School of Medical Sciences, University of Auckland, Auckland, New Zealand
| | - Mark Connor
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, 2 Technology Place, Macquarie University, New South Wales, Australia
| | - Michelle Glass
- Department of Pharmacology, School of Medical Sciences, University of Auckland, Auckland, New Zealand
| |
Collapse
|
19
|
Giacoppo S, Gugliandolo A, Trubiani O, Pollastro F, Grassi G, Bramanti P, Mazzon E. Cannabinoid CB2 receptors are involved in the protection of RAW264.7 macrophages against the oxidative stress: an in vitro study. Eur J Histochem 2017; 61:2749. [PMID: 28348416 PMCID: PMC5289301 DOI: 10.4081/ejh.2017.2749] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2016] [Revised: 12/20/2016] [Accepted: 12/21/2016] [Indexed: 01/06/2023] Open
Abstract
Research in the last decades has widely investigated the anti-oxidant properties of natural products as a therapeutic approach for the prevention and the treatment of oxidative-stress related disorders. In this context, several studies were aimed to evaluate the therapeutic potential of phytocannabinoids, the bioactive compounds of Cannabis sativa. Here, we examined the anti-oxidant ability of Cannabigerol (CBG), a non-psychotropic cannabinoid, still little known, into counteracting the hydrogen peroxide (H2O2)-induced oxidative stress in murine RAW264.7 macrophages. In addition, we tested selective receptor antagonists for cannabinoid receptors and specifically CB1R (SR141716A) and CB2R (AM630) in order to investigate through which CBG may exert its action. Taken together, our in vitro results showed that CBG is able to counteract oxidative stress by activation of CB2 receptors. CB2 antagonist pre-treatment indeed blocked the protective effects of CBG in H2O2 stimulated macrophages, while CB1R was not involved. Specifically, CBG exhibited a potent action in inhibiting oxidative stress, by down-regulation of the main oxidative markers (iNOS, nitrotyrosine and PARP-1), by preventing IκB-α phosphorylation and translocation of the nuclear factor-κB (NF-κB) and also via the modulation of MAP kinases pathway. On the other hand, CBG was found to increase anti-oxidant defense of cells by modulating superoxide dismutase-1 (SOD-1) expression and thus inhibiting cell death (results focused on balance between Bax and Bcl-2). Based on its anti-oxidant activities, CBG may hold great promise as an anti-oxidant agent and therefore used in clinical practice as a new approach in oxidative-stress related disorders.
Collapse
|
20
|
Turcotte C, Blanchet MR, Laviolette M, Flamand N. The CB 2 receptor and its role as a regulator of inflammation. Cell Mol Life Sci 2016; 73:4449-4470. [PMID: 27402121 PMCID: PMC5075023 DOI: 10.1007/s00018-016-2300-4] [Citation(s) in RCA: 359] [Impact Index Per Article: 39.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2016] [Revised: 06/20/2016] [Accepted: 06/27/2016] [Indexed: 12/12/2022]
Abstract
The CB2 receptor is the peripheral receptor for cannabinoids. It is mainly expressed in immune tissues, highlighting the possibility that the endocannabinoid system has an immunomodulatory role. In this respect, the CB2 receptor was shown to modulate immune cell functions, both in cellulo and in animal models of inflammatory diseases. In this regard, numerous studies have reported that mice lacking the CB2 receptor have an exacerbated inflammatory phenotype. This suggests that therapeutic strategies aiming at modulating CB2 signaling could be promising for the treatment of various inflammatory conditions. Herein, we review the pharmacology of the CB2 receptor, its expression pattern, and the signaling pathways induced by its activation. We next examine the regulation of immune cell functions by the CB2 receptor and the evidence obtained from primary human cells, immortalized cell lines, and animal models of inflammation. Finally, we discuss the possible therapies targeting the CB2 receptor and the questions that remain to be addressed to determine whether this receptor could be a potential target to treat inflammatory disease.
Collapse
Affiliation(s)
- Caroline Turcotte
- Centre de recherche de l'Institut universitaire de cardiologie et de pneumologie de Québec, Département de médecine, Faculté de médecine, Université Laval, Quebec, QC, G1V 4G5, Canada
| | - Marie-Renée Blanchet
- Centre de recherche de l'Institut universitaire de cardiologie et de pneumologie de Québec, Département de médecine, Faculté de médecine, Université Laval, Quebec, QC, G1V 4G5, Canada
| | - Michel Laviolette
- Centre de recherche de l'Institut universitaire de cardiologie et de pneumologie de Québec, Département de médecine, Faculté de médecine, Université Laval, Quebec, QC, G1V 4G5, Canada
| | - Nicolas Flamand
- Centre de recherche de l'Institut universitaire de cardiologie et de pneumologie de Québec, Département de médecine, Faculté de médecine, Université Laval, Quebec, QC, G1V 4G5, Canada.
| |
Collapse
|
21
|
Abstract
OPINION STATEMENT Despite the political and social controversy affiliated with it, the medical community must come to the realization that cannabinoids exist as a ubiquitous signaling system in many organ systems. Our understanding of cannabinoids and how they relate not only to homeostasis but also in disease states must be furthered through research, both clinically and in the laboratory. The identification of the cannabinoid receptors in the early 1990s have provided us with the perfect target of translational research. Already, much has been done with cannabinoids and the nervous system. Here, we explore the implications it has for the gastrointestinal tract. Most therapeutics currently on the market presently target only one aspect of the cannabinoid system. Our main purpose here is to highlight areas of research and potential avenues of discovery that the cannabinoid system has yet to reveal.
Collapse
Affiliation(s)
- Zachary Wilmer Reichenbach
- Center for Substance Abuse Research (CSAR), Lewis Katz School of Medicine, Temple University, Philadelphia, PA, USA.,Section of Gastroenterology, Department of Medicine, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, USA
| | - Ron Schey
- Section of Gastroenterology, Department of Medicine, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, USA.
| |
Collapse
|
22
|
Interaction between Cannabinoid System and Toll-Like Receptors Controls Inflammation. Mediators Inflamm 2016; 2016:5831315. [PMID: 27597805 PMCID: PMC4997072 DOI: 10.1155/2016/5831315] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2016] [Revised: 07/01/2016] [Accepted: 07/14/2016] [Indexed: 02/08/2023] Open
Abstract
Since the discovery of the endocannabinoid system consisting of cannabinoid receptors, endogenous ligands, and biosynthetic and metabolizing enzymes, interest has been renewed in investigating the promise of cannabinoids as therapeutic agents. Abundant evidence indicates that cannabinoids modulate immune responses. An inflammatory response is triggered when innate immune cells receive a danger signal provided by pathogen- or damage-associated molecular patterns engaging pattern-recognition receptors. Toll-like receptor family members are prominent pattern-recognition receptors expressed on innate immune cells. Cannabinoids suppress Toll-like receptor-mediated inflammatory responses. However, the relationship between the endocannabinoid system and innate immune system may not be one-sided. Innate immune cells express cannabinoid receptors and produce endogenous cannabinoids. Hence, innate immune cells may play a role in regulating endocannabinoid homeostasis, and, in turn, the endocannabinoid system modulates local inflammatory responses. Studies designed to probe the interaction between the innate immune system and the endocannabinoid system may identify new potential molecular targets in developing therapeutic strategies for chronic inflammatory diseases. This review discusses the endocannabinoid system and Toll-like receptor family and evaluates the interaction between them.
Collapse
|
23
|
Gessi S, Borea PA, Bencivenni S, Fazzi D, Varani K, Merighi S. The activation of μ-opioid receptor potentiates LPS-induced NF-kB promoting an inflammatory phenotype in microglia. FEBS Lett 2016; 590:2813-26. [PMID: 27427408 DOI: 10.1002/1873-3468.12313] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2016] [Revised: 07/04/2016] [Accepted: 07/04/2016] [Indexed: 12/30/2022]
Affiliation(s)
- Stefania Gessi
- Department of Medical Sciences; University of Ferrara; Italy
| | | | | | - Debora Fazzi
- Department of Medical Sciences; University of Ferrara; Italy
| | - Katia Varani
- Department of Medical Sciences; University of Ferrara; Italy
| | | |
Collapse
|
24
|
Aghazadeh Tabrizi M, Baraldi PG, Borea PA, Varani K. Medicinal Chemistry, Pharmacology, and Potential Therapeutic Benefits of Cannabinoid CB2 Receptor Agonists. Chem Rev 2016; 116:519-60. [PMID: 26741146 DOI: 10.1021/acs.chemrev.5b00411] [Citation(s) in RCA: 80] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Mojgan Aghazadeh Tabrizi
- Department of Chemical and Pharmaceutical Sciences and ‡Department of Medical Science, Pharmacology Section, University of Ferrara , Ferrara 44121, Italy
| | - Pier Giovanni Baraldi
- Department of Chemical and Pharmaceutical Sciences and ‡Department of Medical Science, Pharmacology Section, University of Ferrara , Ferrara 44121, Italy
| | - Pier Andrea Borea
- Department of Chemical and Pharmaceutical Sciences and ‡Department of Medical Science, Pharmacology Section, University of Ferrara , Ferrara 44121, Italy
| | - Katia Varani
- Department of Chemical and Pharmaceutical Sciences and ‡Department of Medical Science, Pharmacology Section, University of Ferrara , Ferrara 44121, Italy
| |
Collapse
|
25
|
Henry RJ, Kerr DM, Finn DP, Roche M. For whom the endocannabinoid tolls: Modulation of innate immune function and implications for psychiatric disorders. Prog Neuropsychopharmacol Biol Psychiatry 2016; 64:167-80. [PMID: 25794989 DOI: 10.1016/j.pnpbp.2015.03.006] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/11/2015] [Revised: 03/03/2015] [Accepted: 03/03/2015] [Indexed: 12/21/2022]
Abstract
Toll-like receptors (TLRs) mediate the innate immune response to pathogens and are critical in the host defence, homeostasis and response to injury. However, uncontrolled and aberrant TLR activation can elicit potent effects on neurotransmission and neurodegenerative cascades and has been proposed to trigger the onset of certain neurodegenerative disorders and elicit detrimental effects on the progression and outcome of established disease. Over the past decade, there has been increasing evidence demonstrating that the endocannabinoid system can elicit potent modulatory effects on inflammatory processes, with clinical and preclinical evidence demonstrating beneficial effects on disease severity and symptoms in several inflammatory conditions. This review examines the evidence supporting a modulatory effect of endocannabinoids on TLR-mediated immune responses both peripherally and centrally, and the implications for psychiatric disorders such as depression and schizophrenia.
Collapse
Affiliation(s)
- Rebecca J Henry
- Physiology, School of Medicine, National University of Ireland, Galway, Ireland; Galway Neuroscience Centre and Centre for Pain Research, NCBES, National University of Ireland, Galway, Ireland
| | - Daniel M Kerr
- Physiology, School of Medicine, National University of Ireland, Galway, Ireland; Pharmacology and Therapeutics, School of Medicine, National University of Ireland, Galway, Ireland; Galway Neuroscience Centre and Centre for Pain Research, NCBES, National University of Ireland, Galway, Ireland
| | - David P Finn
- Pharmacology and Therapeutics, School of Medicine, National University of Ireland, Galway, Ireland; Galway Neuroscience Centre and Centre for Pain Research, NCBES, National University of Ireland, Galway, Ireland
| | - Michelle Roche
- Physiology, School of Medicine, National University of Ireland, Galway, Ireland; Galway Neuroscience Centre and Centre for Pain Research, NCBES, National University of Ireland, Galway, Ireland.
| |
Collapse
|
26
|
Presley C, Abidi A, Suryawanshi S, Mustafa S, Meibohm B, Moore BM. Preclinical evaluation of SMM-189, a cannabinoid receptor 2-specific inverse agonist. Pharmacol Res Perspect 2015. [PMID: 26196013 PMCID: PMC4506688 DOI: 10.1002/prp2.159] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Cannabinoid receptor 2 agonists and inverse agonists are emerging as new therapeutic options for a spectrum of autoimmune-related disease. Of particular interest, is the ability of CB2 ligands to regulate microglia function in neurodegenerative diseases and traumatic brain injury. We have previously reported the receptor affinity of 3',5'-dichloro-2,6-dihydroxy-biphenyl-4-yl)-phenyl-methanone (SMM-189) and the characterization of the beneficial effects of SMM-189 in the mouse model of mild traumatic brain injury. Herein, we report the further characterization of SMM-189 as a potent and selective CB2 inverse agonist, which acts as a noncompetitive inhibitor of CP 55,940. The ability of SMM-189 to regulate microglial activation, in terms of chemokine expression and cell morphology, has been determined. Finally, we have determined that SMM-189 possesses acceptable biopharmaceutical properties indicating that the triaryl class of CB2 inverse agonists are viable compounds for continued preclinical development for the treatment of neurodegenerative disorders and traumatic brain injury.
Collapse
Affiliation(s)
- Chaela Presley
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center Memphis, Tennessee
| | - Ammaar Abidi
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center Memphis, Tennessee
| | - Satyendra Suryawanshi
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center Memphis, Tennessee
| | - Suni Mustafa
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center Memphis, Tennessee
| | - Bernd Meibohm
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center Memphis, Tennessee
| | - Bob M Moore
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center Memphis, Tennessee
| |
Collapse
|
27
|
Tahamtan A, Tavakoli-Yaraki M, Rygiel TP, Mokhtari-Azad T, Salimi V. Effects of cannabinoids and their receptors on viral infections. J Med Virol 2015; 88:1-12. [DOI: 10.1002/jmv.24292] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/01/2015] [Indexed: 12/14/2022]
Affiliation(s)
- Alireza Tahamtan
- Departmentof Virology; School of Public Health; Tehran University of Medical Sciences; Tehran Iran
| | - Masoumeh Tavakoli-Yaraki
- Department of Biochemistry; Faculty of Medicine; Iran University of Medical Sciences; Tehran Iran
| | - Tomasz P. Rygiel
- Department of Immunology; Medical University of Warsaw; Center of Biostructure Research; Warsaw Poland
| | - Talat Mokhtari-Azad
- Departmentof Virology; School of Public Health; Tehran University of Medical Sciences; Tehran Iran
| | - Vahid Salimi
- Departmentof Virology; School of Public Health; Tehran University of Medical Sciences; Tehran Iran
| |
Collapse
|
28
|
Promising cannabinoid-based therapies for Parkinson's disease: motor symptoms to neuroprotection. Mol Neurodegener 2015; 10:17. [PMID: 25888232 PMCID: PMC4404240 DOI: 10.1186/s13024-015-0012-0] [Citation(s) in RCA: 86] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2015] [Accepted: 03/23/2015] [Indexed: 11/27/2022] Open
Abstract
Parkinson’s disease (PD) is a slow insidious neurological disorder characterized by a loss of dopaminergic neurons in the midbrain. Although several recent preclinical advances have proposed to treat PD, there is hardly any clinically proved new therapeutic for its cure. Increasing evidence suggests a prominent modulatory function of the cannabinoid signaling system in the basal ganglia. Hence, use of cannabinoids as a new therapeutic target has been recommended as a promising therapy for PD. The elements of the endocannabinoid system are highly expressed in the neural circuit of basal ganglia wherein they bidirectionally interact with dopaminergic, glutamatergic, and GABAergic signaling systems. As the cannabinoid signaling system undergoes a biphasic pattern of change during progression of PD, it explains the motor inhibition typically observed in patients with PD. Cannabinoid agonists such as WIN-55,212-2 have been demonstrated experimentally as neuroprotective agents in PD, with respect to their ability to suppress excitotoxicity, glial activation, and oxidative injury that causes degeneration of dopaminergic neurons. Additional benefits provided by cannabinoid related compounds including CE-178253, oleoylethanolamide, nabilone and HU-210 have been reported to possess efficacy against bradykinesia and levodopa-induced dyskinesia in PD. Despite promising preclinical studies for PD, use of cannabinoids has not been studied extensively at the clinical level. In this review, we reassess the existing evidence suggesting involvement of the endocannabinoid system in the cause, symptomatology, and treatment of PD. We will try to identify future threads of research that will help in the understanding of the potential therapeutic benefits of the cannabinoid system for treating PD.
Collapse
|
29
|
Nimczick M, Decker M. New Approaches in the Design and Development of Cannabinoid Receptor Ligands: Multifunctional and Bivalent Compounds. ChemMedChem 2015; 10:773-86. [DOI: 10.1002/cmdc.201500041] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2015] [Indexed: 12/22/2022]
|
30
|
Ma L, Jia J, Liu X, Bai F, Wang Q, Xiong L. Activation of murine microglial N9 cells is attenuated through cannabinoid receptor CB2 signaling. Biochem Biophys Res Commun 2015; 458:92-7. [PMID: 25637536 DOI: 10.1016/j.bbrc.2015.01.073] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2015] [Accepted: 01/17/2015] [Indexed: 11/25/2022]
Abstract
Inhibition of microglial activation is effective in treating various neurological disorders. Activation of microglial cannabinoid CB2 receptor induces anti-inflammatory effects, and the mechanism, however, is still elusive. Microglia could be activated into the classic activated state (M1 state) or the alternative activated state (M2 state), the former is cytotoxic, and the latter is neurotrophic. In this study, we used lipopolysaccharide (LPS) plus interferon-γ (IFNγ) to activate N9 microglia and hypothesized the pretreatment with cannabinoid CB2 receptor agonist AM1241 attenuates microglial activation by shifting microglial M1 to M2 state. We found that pretreatment with 5 μM AM1241 at 1 h before microglia were exposed to LPS plus IFNγ decreased the expression of inducible nitric oxide synthase (iNOS) and the release of pro-inflammatory factors, increased the expression of arginase 1 (Arg-1) and the release of anti-inflammatory and neurotrophic factors in microglia. However, these effects induced by AM1241 pretreatment were significantly reversed in the presence of 10 μM cannabinoid CB2 receptor antagonist AM630 or 10 μM protein kinase C (PKC) inhibitor chelerythrine. These findings indicated that AM1241 pretreatment attenuates microglial activation by shifting M1 to M2 activated state via CB2 receptor, and the AM1241-induced anti-inflammatory effects may be mediated by PKC.
Collapse
Affiliation(s)
- Lei Ma
- Department of Anesthesiology, Xijing Hospital, The Fourth Military Medical University, Xi'an, Shaanxi 710032, China
| | - Ji Jia
- Department of Anesthesiology, Xijing Hospital, The Fourth Military Medical University, Xi'an, Shaanxi 710032, China
| | - Xiangyu Liu
- Department of Plastic Surgery, Xijing Hospital, The Fourth Military Medical University, Xi'an, Shaanxi 710032, China
| | - Fuhai Bai
- Department of Anesthesiology, Xijing Hospital, The Fourth Military Medical University, Xi'an, Shaanxi 710032, China
| | - Qiang Wang
- Department of Anesthesiology, Xijing Hospital, The Fourth Military Medical University, Xi'an, Shaanxi 710032, China.
| | - Lize Xiong
- Department of Anesthesiology, Xijing Hospital, The Fourth Military Medical University, Xi'an, Shaanxi 710032, China.
| |
Collapse
|
31
|
Abstract
OBJECTIVE Substance dependence disorder is a chronically relapsing condition characterised by neurobiological changes leading to loss of control in restricting a substance intake, compulsion and withdrawal syndrome. In the past few years, (endo)cannabinoids have been raised as a possible target in the aetiology of drug addiction. On the other hand, although the exact mechanisms of the genesis of addiction remain poorly understood, it is possible that neuroinflammation might also play a role in the pathophysiology of this condition. Studies demonstrated that (endo)cannabinoids act as immunomodulators by inhibiting cytokines production and microglial cell activation. Thus, in the present review, we explore the possible role of neuroinflammation on the therapeutic effects of cannabinoids on drug addiction. METHODS We conducted an evidence-based review of the literature in order to assess the role of cannabinoids on the neuroinflammatory hypothesis of addiction (terms: addiction, cannabinoids and inflammation). We searched PubMed and BioMedCentral databases up to April 2014 with no date restrictions. RESULTS In all, 165 eligible articles were included in the present review. Existing evidence suggests that disruption in cannabinoid signalling during the drug addiction process leads to microglial activation and neuroinflammation. CONCLUSION The literature showed that inflammation and changes in endocannabinod signalling occur in drug abuse; however, it remains uncertain whether these changes are causally or coincidentally associated with addiction. Additional studies, therefore, are needed to elucidate the contribution of neuroinflammation on the behavioural and neuroprotective effects of cannabinoids on drug addiction.
Collapse
|
32
|
Dhopeshwarkar A, Mackie K. CB2 Cannabinoid receptors as a therapeutic target-what does the future hold? Mol Pharmacol 2014; 86:430-7. [PMID: 25106425 DOI: 10.1124/mol.114.094649] [Citation(s) in RCA: 198] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
The past decades have seen an exponential rise in our understanding of the endocannabinoid system, comprising CB1 and CB2 cannabinoid receptors, endogenous cannabinoids (endocannabinoids), and the enzymes that synthesize and degrade endocannabinoids. The primary focus of this review is the CB2 receptor. CB2 receptors have been the subject of considerable attention, primarily due to their promising therapeutic potential for treating various pathologies while avoiding the adverse psychotropic effects that can accompany CB1 receptor-based therapies. With the appreciation that CB2-selective ligands show marked functional selectivity, there is a renewed opportunity to explore this promising area of research from both a mechanistic as well as a therapeutic perspective. In this review, we summarize our present knowledge of CB2 receptor signaling, localization, and regulation. We discuss the availability of genetic tools (and their limitations) to study CB2 receptors and also provide an update on preclinical data on CB2 agonists in pain models. Finally, we suggest possible reasons for the failure of CB2 ligands in clinical pain trials and offer possible ways to move the field forward in a way that can help reconcile the inconsistencies between preclinical and clinical data.
Collapse
Affiliation(s)
- Amey Dhopeshwarkar
- Department of Psychological and Brain Sciences and Gill Center, Indiana University, Bloomington, Indiana
| | - Ken Mackie
- Department of Psychological and Brain Sciences and Gill Center, Indiana University, Bloomington, Indiana
| |
Collapse
|
33
|
Suárez-Pinilla P, López-Gil J, Crespo-Facorro B. Immune system: a possible nexus between cannabinoids and psychosis. Brain Behav Immun 2014; 40:269-82. [PMID: 24509089 DOI: 10.1016/j.bbi.2014.01.018] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/28/2013] [Revised: 01/29/2014] [Accepted: 01/29/2014] [Indexed: 11/28/2022] Open
Abstract
BACKGROUND Endocannabinoid system is involved in the regulation of the brain-immune axis. Cannabis consumption is related with the development, course, and severity of psychosis. The epidemiological evidence for increased occurrence of immunological alterations in patients with psychosis has not been sufficiently addressed. The aim of this review is to establish whether there is any scientific evidence of the influence of cannabinoids on aspects of immunity that affect susceptibility to psychotic disorder induction. METHODS A comprehensive search of PubMed/MEDLINE, EMBASE and ISI Web of Knowledge was performed using combinations of key terms distributed into three blocks: "immune", "cannabinoid", and "endocannabinoid receptor". Studies were considered to be eligible for the review if they were original articles, they reported a quantitative or qualitative relation between cannabinoid ligands, their receptors, and immune system, and they were carried out in vitro or in mammals, included humans. All the information was systematically extracted and evaluated. RESULTS We identified 122 articles from 446 references. Overall, endocannabinoids enhanced immune response, whereas exogenous cannabinoids had immunosuppressant effects. A general change in the immune response from Th1 to Th2 was also demonstrated for cannabinoid action. Endogenous and synthetic cannabinoids also modulated microglia function and neurotransmitter secretion. CONCLUSION The actions of cannabinoids through the immune system are quite regular and predictable in the peripheral but remain fuzzy in the central nervous system. Despite this uncertainty, it may be hypothesized that exposure to exocannabinoids, in particular during adolescence might prompt immunological dysfunctions that potentially cause a latent vulnerability to psychosis. Further investigations are warranted to clarify the relationship between the immunological effects of cannabis and psychosis.
Collapse
Affiliation(s)
- Paula Suárez-Pinilla
- University Hospital Marqués de Valdecilla, Department of Psychiatry, School of Medicine, University of Cantabria, Santander, Spain; CIBERSAM, Biomedical Research Network on Mental Health Area, Madrid, Spain; IDIVAL, Valdecilla Biomedical Research Institute, Santander, Spain.
| | - José López-Gil
- University Hospital Marqués de Valdecilla, Department of Psychiatry, School of Medicine, University of Cantabria, Santander, Spain
| | - Benedicto Crespo-Facorro
- University Hospital Marqués de Valdecilla, Department of Psychiatry, School of Medicine, University of Cantabria, Santander, Spain; CIBERSAM, Biomedical Research Network on Mental Health Area, Madrid, Spain; IDIVAL, Valdecilla Biomedical Research Institute, Santander, Spain
| |
Collapse
|
34
|
Zeng KW, Wang S, Dong X, Jiang Y, Tu PF. Sesquiterpene dimer (DSF-52) from Artemisia argyi inhibits microglia-mediated neuroinflammation via suppression of NF-κB, JNK/p38 MAPKs and Jak2/Stat3 signaling pathways. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2014; 21:298-306. [PMID: 24055519 DOI: 10.1016/j.phymed.2013.08.016] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2013] [Accepted: 08/09/2013] [Indexed: 06/02/2023]
Abstract
Microglia-involved neuroinflammation is thought to promote brain damage in various neurodegenerative disorders. Therefore, novel therapeutics suppressing microglia over-activation could prove useful for neuroprotection in inflammation-mediated neurodegenerative diseases. DSF-52 is a novel sesquiterpene dimer compound isolated from medical plant Artemisia argyi by our group. In this study, we investigated whether DSF-52 inhibited the neuroinflammatory responses in lipopolysaccharide (LPS)-activated microglia. Our findings showed that DSF-52 inhibited the production of nitric oxide (NO), prostaglandin E2 (PGE2), tumor necrosis factor-α (TNF-α), as well as mRNA expression of inducible nitric oxide synthase (iNOS), cyclooxygenase 2 (COX-2), interleukin-1β (IL-1β), granulocyte-macrophage colony-stimulating factor (GM-CSF) and macrophage inflammatory protein-1α (MIP-1α) in LPS-activated BV-2 microglia. Moreover, DSF-52 markedly up-regulated mRNA levels of anti-inflammatory cytokine IL-10. Mechanism study indicated that DSF-52 suppressed Akt/IκB/NF-κB inflammation pathway against LPS treatment. Also, DSF-52 down-regulated the phosphorylation levels of JNK and p38 MAPKs, but not ERK. Furthermore, DSF-52 blocked Jak2/Stat3 dependent inflammation pathway through inhibiting Jak2 and Stat3 phosphorylation, as well as Stat3 nuclear translocation. We concluded that the inhibitory ability of DSF-52 on microglia-mediated neuroinflammation may offer a novel neuroprotective modality and could be potentially useful in inflammation-mediated neurodegenerative diseases.
Collapse
Affiliation(s)
- Ke-Wu Zeng
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University Health Science Center, Beijing 100191, China
| | - Shu Wang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University Health Science Center, Beijing 100191, China; Department of Medicinal Chemistry and Pharmaceutical Analysis, Logistics College of Chinese People's Armed Police Forces, Tianjin 300162, China
| | - Xin Dong
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University Health Science Center, Beijing 100191, China
| | - Yong Jiang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University Health Science Center, Beijing 100191, China
| | - Peng-Fei Tu
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University Health Science Center, Beijing 100191, China.
| |
Collapse
|
35
|
Morphine mediates a proinflammatory phenotype via μ-opioid receptor–PKCɛ–Akt–ERK1/2 signaling pathway in activated microglial cells. Biochem Pharmacol 2013; 86:487-96. [DOI: 10.1016/j.bcp.2013.05.027] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2013] [Revised: 05/28/2013] [Accepted: 05/31/2013] [Indexed: 11/18/2022]
|
36
|
Rom S, Persidsky Y. Cannabinoid receptor 2: potential role in immunomodulation and neuroinflammation. J Neuroimmune Pharmacol 2013; 8:608-20. [PMID: 23471521 PMCID: PMC3663904 DOI: 10.1007/s11481-013-9445-9] [Citation(s) in RCA: 167] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2012] [Accepted: 02/18/2013] [Indexed: 01/02/2023]
Abstract
An accumulating body of evidence suggests that endocannabinoids and cannabinoid receptors type 1 and 2 (CB(1), CB(2)) play a significant role in physiologic and pathologic processes, including cognitive and immune functions. While the addictive properties of marijuana, an extract from the Cannabis plant, are well recognized, there is growing appreciation of the therapeutic potential of cannabinoids in multiple pathologic conditions involving chronic inflammation (inflammatory bowel disease, arthritis, autoimmune disorders, multiple sclerosis, HIV-1 infection, stroke, Alzheimer's disease to name a few), mainly mediated by CB(2) activation. Development of CB(2) agonists as therapeutic agents has been hampered by the complexity of their intracellular signaling, relative paucity of highly selective compounds and insufficient data regarding end effects in the target cells and organs. This review attempts to summarize recent advances in studies of CB(2) activation in the setting of neuroinflammation, immunomodulation and HIV-1 infection.
Collapse
Affiliation(s)
- Slava Rom
- Department of Pathology and Laboratory Medicine, Temple University School of Medicine, Philadelphia PA (USA)
| | - Yuri Persidsky
- Department of Pathology and Laboratory Medicine, Temple University School of Medicine, Philadelphia PA (USA)
| |
Collapse
|
37
|
Vincenzi F, Targa M, Corciulo C, Tabrizi MA, Merighi S, Gessi S, Saponaro G, Baraldi PG, Borea PA, Varani K. Antinociceptive effects of the selective CB2 agonist MT178 in inflammatory and chronic rodent pain models. Pain 2013; 154:864-73. [DOI: 10.1016/j.pain.2013.02.007] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2012] [Revised: 01/07/2013] [Accepted: 02/19/2013] [Indexed: 11/25/2022]
|
38
|
Merighi S, Gessi S, Varani K, Fazzi D, Mirandola P, Borea PA. Cannabinoid CB(2) receptor attenuates morphine-induced inflammatory responses in activated microglial cells. Br J Pharmacol 2012; 166:2371-85. [PMID: 22428664 DOI: 10.1111/j.1476-5381.2012.01948.x] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
BACKGROUND AND PURPOSE Among several pharmacological properties, analgesia is the most common feature shared by either opioid or cannabinoid systems. Cannabinoids and opioids are distinct drug classes that have been historically used separately or in combination to treat different pain states. In the present study, we characterized the signal transduction pathways mediated by cannabinoid CB(2) and µ-opioid receptors in quiescent and LPS-stimulated murine microglial cells. EXPERIMENTAL APPROACH We examined the effects of µ-opioid and CB(2) receptor stimulation on phosphorylation of MAPKs and Akt and on IL-1β, TNF-α, IL-6 and NO production in primary mouse microglial cells. KEY RESULTS Morphine enhanced release of the proinflammatory cytokines, IL-1β, TNF-α, IL-6, and of NO via µ-opioid receptor in activated microglial cells. In contrast, CB(2) receptor stimulation attenuated morphine-induced microglial proinflammatory mediator increases, interfering with morphine action by acting on the Akt-ERK1/2 signalling pathway. CONCLUSIONS AND IMPLICATIONS Because glial activation opposes opioid analgesia and enhances opioid tolerance and dependence, we suggest that CB(2) receptors, by inhibiting microglial activity, may be potential targets to increase clinical efficacy of opioids.
Collapse
Affiliation(s)
- Stefania Merighi
- Department of Clinical and Experimental Medicine, Pharmacology Section and Interdisciplinary Center for the Study of Inflammation, University of Ferrara, Ferrara, Italy
| | | | | | | | | | | |
Collapse
|
39
|
Linoleoyl ethanolamide reduces lipopolysaccharide-induced inflammation in macrophages and ameliorates 2,4-dinitrofluorobenzene-induced contact dermatitis in mice. Eur J Pharmacol 2012. [PMID: 23201070 DOI: 10.1016/j.ejphar.2012.11.030] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
In our previous study, it was found that linoleoyl ethanolamide (LE) is present in sake lees, which are produced as a byproduct during the making of Japanese sake. LE is a fatty acid ethanolamide, which have been demonstrated to exert a variety of biological functions, and in this study, the anti-inflammatory effects of LE were examined using in vitro cell culture and in vivo animal experiments. In mouse RAW264.7 macrophages, LE suppressed the lipopolysaccharide (LPS)-induced expression of pro-inflammatory cytokines, such as tumor necrosis factor-α (TNF-α), interleukin (IL)-1β, and IL-6. In addition, LE inhibited LPS-induced increases in the levels of cyclooxygenase enzyme-2 and prostaglandin E(2), which are indicators of inflammation. The inhibitory effect of LE on the release of TNF-α was stronger than that of dipotassium glycyrrhizinate, which is widely used in external human skin care treatments. LE also suppressed the LPS-induced activation of Toll-like receptor 4 signaling and nuclear translocation of nuclear factor-κB (NF-κB) p65. In a contact dermatitis animal model, applying LE to affected ear skin ameliorated 2,4-dinitrofluorobenzene-induced contact dermatitis and pro-inflammatory cytokine expression at inflamed sites. These results indicate that LE exerts anti-inflammatory effects by inhibiting NF-κB signaling, and LE is proposed to be a useful therapeutic agent against contact dermatitis.
Collapse
|
40
|
Merighi S, Gessi S, Varani K, Fazzi D, Borea PA. Hydrogen sulfide modulates the release of nitric oxide and VEGF in human keratinocytes. Pharmacol Res 2012; 66:428-36. [DOI: 10.1016/j.phrs.2012.07.002] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/11/2012] [Revised: 07/09/2012] [Accepted: 07/09/2012] [Indexed: 10/28/2022]
|
41
|
The CB2-preferring agonist JWH015 also potently and efficaciously activates CB1 in autaptic hippocampal neurons. Pharmacol Res 2012; 66:437-42. [PMID: 22921769 DOI: 10.1016/j.phrs.2012.08.002] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/06/2012] [Revised: 08/07/2012] [Accepted: 08/07/2012] [Indexed: 11/22/2022]
Abstract
The G protein coupled receptors CB(1) and CB(2) are targets for the psychoactive constituents of cannabis, chief among them Δ(9)-THC. They are also key components of the multifunctional endogenous cannabinoid signaling system. CB(1) and CB(2) receptors modulate a wide variety of physiological systems including analgesia, memory, mood, reward, appetite and immunity. Identification and characterization of selective CB(1) and CB(2) receptor agonists and antagonists will facilitate understanding the precise physiological and pathophysiological roles of cannabinoid receptors in these systems. This is particularly necessary in the case of CB(2) because these receptors are sparsely expressed and problematic to detect using traditional immunocytochemical approaches. 1-Propyl-2-methyl-3-(1-naphthoyl)indole (JWH015) is an aminoalkylindole that has been employed as a "CB(2)-selective" agonist in more than 40 published papers. However, we have found that JWH015 potently and efficaciously activates CB(1) receptors in neurons. Using murine autaptic hippocampal neurons, which express CB(1), but not CB(2) receptors, we find that JWH015 inhibits excitatory postsynaptic currents with an EC50 of 216nM. JWH015 inhibition is absent in neurons from CB(1)(-/-) cultures and is reversed by the CB(1) antagonist, SR141716 [200nM]. Furthermore, JWH015 partially occludes CB(1)-mediated DSE (∼35% remaining), an action reversed by the CB(2) antagonist, AM630 [1 and 3μM], suggesting that high concentrations of AM630 also antagonize CB(1) receptors. We conclude that while JWH015 is a CB(2)-preferring agonist, it also activates CB(1) receptors at experimentally encountered concentrations. Thus, CB(1) agonism of JWH015 needs to be considered in the design and interpretation of experiments that use JWH015 to probe CB(2)-signaling.
Collapse
|
42
|
Gessi S, Merighi S, Stefanelli A, Mirandola P, Bonfatti A, Fini S, Sensi A, Marci R, Varani K, Borea PA, Vesce F. Downregulation of A(1) and A(2B) adenosine receptors in human trisomy 21 mesenchymal cells from first-trimester chorionic villi. Biochim Biophys Acta Mol Basis Dis 2012; 1822:1660-70. [PMID: 22867902 DOI: 10.1016/j.bbadis.2012.07.013] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2012] [Revised: 07/18/2012] [Accepted: 07/24/2012] [Indexed: 12/11/2022]
Abstract
Human reproduction is complex and prone to failure. Though causes of miscarriage remain unclear, adenosine, a proangiogenic nucleoside, may help determine pregnancy outcome. Although adenosine receptor (AR) expression has been characterized in euploid pregnancies, no information is available for aneuploidies, which, as prone to spontaneous abortion (SA), are a potential model for shedding light on the mechanism regulating this event. AR expression was investigated in 71 first-trimester chorionic villi (CV) samples and cultured mesenchymal cells (MC) from euploid and TR21 pregnancies, one of the most frequent autosomal aneuploidy, with a view to elucidating their potential role in the modulation of vascular endothelial growth factor (VEGF) and nitric oxide (NO). Compared to euploid cells, reduced A(1) and A(2B) expression was revealed in TR21 CV and MCs. The non-selective adenosine agonist 5'-N-ethylcarboxamidoadenosine (NECA) increased NO, by activating, predominantly, A(1)AR and A(2A)AR through a molecular pathway involving hypoxia-inducible-factor-1 (HIF-1α), and increased VEGF, mainly through A(2B). In conclusion the adenosine transduction cascade appears to be disturbed in TR21 through reduced expression of A(2B) and A(1)ARs. These anomalies may be implicated in complications such as fetal growth restriction, malformation and/or SA, well known features of aneuploid pregnancies. Therefore A(1) and A(2B)ARs could be potential biomarkers able to provide an early indication of SA risk and their stimulation may turn out to improve fetoplacental perfusion by increasing NO and VEGF.
Collapse
Affiliation(s)
- Stefania Gessi
- Department of Clinical and Experimental Medicine, Pharmacology Unit and Interdisciplinary Center for the Study of Inflammation, University of Ferrara, Via Fossato di Mortara 17-19, 44100 Ferrara, Italy
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|