1
|
Ramos-Moreno T, Cifra A, Litsa NL, Melin E, Ahl M, Christiansen SH, Gøtzsche CR, Cescon M, Bonaldo P, van Loo K, Borger V, Jasper JA, Becker A, van Vliet EA, Aronica E, Woldbye DP, Kokaia M. Collagen VI: Role in synaptic transmission and seizure-related excitability. Exp Neurol 2024; 380:114911. [PMID: 39094767 DOI: 10.1016/j.expneurol.2024.114911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 07/05/2024] [Accepted: 07/30/2024] [Indexed: 08/04/2024]
Abstract
Collagen VI (Col-VI) is an extracellular matrix protein primarily known for its bridging role in connective tissues that has been suggested to play a neuroprotective role. In the present study we report increased mRNA and protein expression of Col-VI in the hippocampus and cortex at a late stage of epileptogenesis in a post-status epilepticus (SE) model of epilepsy and in brain tissue from patients with epilepsy. We further present a novel finding that exposure of mouse hippocampal slices to Col-VI augments paired-pulse facilitation in Schaffer collateral-CA1 excitatory synapses indicating decreased release probability of glutamate. In line with this finding, lack of Col-VI expression in the knock-out mice show paired-pulse depression in these synapses, suggesting increased release probability of glutamate. In addition, we observed dynamic changes in Col-VI blood plasma levels in rats after Kainate-induced SE, and increased levels of Col-VI mRNA and protein in autopsy or postmortem brain of humans suffering from epilepsy. Thus, our data indicate that elevated levels of ColVI following seizures leads to attenuated glutamatergic transmission, ultimately resulting in less overall network excitability. Presumably, increased Col-VI may act as part of endogenous compensatory mechanism against enhanced excitability during epileptogenic processes in the hippocampus, and could be further investigated as a potential functional biomarker of epileptogenesis, and/or a novel target for therapeutic intervention.
Collapse
Affiliation(s)
- Tania Ramos-Moreno
- Epilepsy Centre, Department of Clinical Sciences, Lund University, 221 84 Lund, Sweden
| | - Alexandra Cifra
- Epilepsy Centre, Department of Clinical Sciences, Lund University, 221 84 Lund, Sweden
| | - Nikitidou Ledri Litsa
- Epilepsy Centre, Department of Clinical Sciences, Lund University, 221 84 Lund, Sweden
| | - Esbjörn Melin
- Epilepsy Centre, Department of Clinical Sciences, Lund University, 221 84 Lund, Sweden
| | - Matilda Ahl
- Epilepsy Centre, Department of Clinical Sciences, Lund University, 221 84 Lund, Sweden
| | - Sören H Christiansen
- Laboratory of Neural Plasticity, Department of Neuroscience and Pharmacology, University of Copenhagen, 1165 Copenhagen, Denmark
| | - Casper R Gøtzsche
- Laboratory of Neural Plasticity, Department of Neuroscience and Pharmacology, University of Copenhagen, 1165 Copenhagen, Denmark
| | - Matilde Cescon
- Department of Molecular Medicine, University of Padova, I-35131 Padova, Italy
| | - Paolo Bonaldo
- Department of Molecular Medicine, University of Padova, I-35131 Padova, Italy
| | - Karen van Loo
- Institut für Neuropathologie, Universitätsklinikum Bonn, Bonn, Germany
| | - Valeri Borger
- Institut für Neuropathologie, Universitätsklinikum Bonn, Bonn, Germany
| | - J Anink Jasper
- Amsterdam UMC, Location University of Amsterdam, Department of (Neuro)Pathology, Amsterdam Neuroscience, Meibergdreef 9, Amsterdam, the Netherlands
| | - Albert Becker
- Institut für Neuropathologie, Universitätsklinikum Bonn, Bonn, Germany
| | - Erwin A van Vliet
- Amsterdam UMC, Location University of Amsterdam, Department of (Neuro)Pathology, Amsterdam Neuroscience, Meibergdreef 9, Amsterdam, the Netherlands; Swammerdam Institute for Life Sciences, Center for Neuroscience, University of Amsterdam, Amsterdam, the Netherlands
| | - Eleonora Aronica
- Amsterdam UMC, Location University of Amsterdam, Department of (Neuro)Pathology, Amsterdam Neuroscience, Meibergdreef 9, Amsterdam, the Netherlands; Stichting Epilepsie Instellingen Nederland (SEIN), Heemstede, the Netherlands
| | - David P Woldbye
- Laboratory of Neural Plasticity, Department of Neuroscience and Pharmacology, University of Copenhagen, 1165 Copenhagen, Denmark
| | - Merab Kokaia
- Epilepsy Centre, Department of Clinical Sciences, Lund University, 221 84 Lund, Sweden.
| |
Collapse
|
2
|
Zawar I, Kapur J, Mattos MK, Aldridge CM, Manning C, Quigg M. Association of Seizure Control With Cognition in People With Normal Cognition and Mild Cognitive Impairment. Neurology 2024; 103:e209820. [PMID: 39173101 PMCID: PMC11343585 DOI: 10.1212/wnl.0000000000209820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Accepted: 07/01/2024] [Indexed: 08/24/2024] Open
Abstract
BACKGROUND AND OBJECTIVES Seizures are common in dementia and associated with accelerated cognitive decline. However, the impact of active vs remote seizures on cognition remains understudied. This study aimed to investigate the impact of active vs remote seizures on cognition in people with normal cognition and mild cognitive impairment (MCI). METHODS This longitudinal, multicenter cohort is based on National Alzheimer's Coordinating Center data of participants recruited from 39 Alzheimer's Disease Centers in the United States from September 2005 to December 2021. All participants with normal cognition and MCI and at least 2 visits were included. Primary outcome, that is, cognitive decline, was determined using Clinical Dementia Rating (CDR) from (1) normal-to-impaired (CDR ≥0.5) and (2) MCI-to-dementia (CDR ≥1) groups. The effect of active seizures (over the preceding 12 months), remote seizures (previous seizures but none over the preceding 12 months), and no seizures (controls) on cognition was assessed. Subgroups of chronic seizures at enrollment and new-onset seizures were further analyzed. Cox regression models assessed the risk of all-cause MCI and/or dementia. All models were adjusted for age, sex, education, race, hypertension, and diabetes. RESULTS Of the 13,726 participants with normal cognition at enrollment (9,002 [66%] female; median age 71 years), 118 had active seizures and 226 had remote seizures. Of the 11,372 participants with MCI at enrollment (5,605 [49%] female; median age 73 years), 197 had active seizures and 226 had remote seizures. Active seizures were associated with 2.1 times higher risk of cognitive impairment (adjusted hazard ratio [aHR] 2.13, 95% CI 1.60-2.84, p < 0.001) in cognitively healthy adults (median years to decline: active seizures = ∼1, remote seizures = ∼3, no seizures = ∼3) and 1.6 times higher risk of dementia (aHR 1.58, 95% CI 1.24-2.01, p < 0.001) in those with MCI (median years to decline: active seizures = ∼1, remote seizures = ∼2, controls = ∼2). This risk was not observed with remote seizures. DISCUSSION In this study, active seizures but not remote seizures were associated with earlier cognitive decline in both cognitively normal adults and those with MCI, independent of other dementia risk factors. Therefore, early identification and management of seizures may present a path to mitigation of cognitive decline in the aging epileptic population. A limitation is that causality cannot be confirmed in our observational longitudinal study.
Collapse
Affiliation(s)
- Ifrah Zawar
- From the Department of Neurology (I.Z., J.K., C.M.A., C.M., M.Q.), and School of Nursing (M.K.M.), University of Virginia, Charlottesville
| | - Jaideep Kapur
- From the Department of Neurology (I.Z., J.K., C.M.A., C.M., M.Q.), and School of Nursing (M.K.M.), University of Virginia, Charlottesville
| | - Meghan K Mattos
- From the Department of Neurology (I.Z., J.K., C.M.A., C.M., M.Q.), and School of Nursing (M.K.M.), University of Virginia, Charlottesville
| | - Chad M Aldridge
- From the Department of Neurology (I.Z., J.K., C.M.A., C.M., M.Q.), and School of Nursing (M.K.M.), University of Virginia, Charlottesville
| | - Carol Manning
- From the Department of Neurology (I.Z., J.K., C.M.A., C.M., M.Q.), and School of Nursing (M.K.M.), University of Virginia, Charlottesville
| | - Mark Quigg
- From the Department of Neurology (I.Z., J.K., C.M.A., C.M., M.Q.), and School of Nursing (M.K.M.), University of Virginia, Charlottesville
| |
Collapse
|
3
|
Cretin B. Epileptic variant in the spectrum of Alzheimer's disease - practical implications. Seizure 2024:S1059-1311(24)00263-2. [PMID: 39343706 DOI: 10.1016/j.seizure.2024.09.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Revised: 09/11/2024] [Accepted: 09/20/2024] [Indexed: 10/01/2024] Open
Abstract
Alzheimer's disease (AD) is known to be associated with an increased risk of epilepsy, which is not exclusively related to the late stage of the disease - when a major cognitive impairment is observed, previously known as the dementia stage - but also to its prodromal stage (mild cognitive impairment). Moreover, published case reports and cohorts have shown that epilepsy may occur even earlier, at the preclinical stage of AD: Epileptic seizures may therefore be the sole objective manifestation of the disease. Such a situation is called the epileptic variant of AD (evAD). EvAD is one of the etiologies of late-onset epilepsy, which means that it carries a risk of later progression to dementia and that it can only be diagnosed by assessing amyloid and tau biomarkers. However, evAD is a window of therapeutic opportunity that is probably optimal for preventing, through antiseizure medication treatment, the accelerated cognitive decline associated with AD-related brain hyperexcitability (manifested by seizures or interictal epileptiform activities).
Collapse
Affiliation(s)
- Benjamin Cretin
- Centre Mémoire, de Ressources et de Recherche de Strasbourg, France; Unité de Neuropsychologie, Service de Neurologie des Hôpitaux Universitaires de Strasbourg, Strasbourg, France; University of Strasbourg and CNRS, ICube laboratory UMR 7357 and FMTS (Fédération de Médecine Translationnelle de Strasbourg), team IMIS/Neurocrypto Strasbourg, France; Centre de Compétences des démences rares des Hôpitaux Universitaires de Strasbourg, France.
| |
Collapse
|
4
|
Putra M, Rao NS, Gardner C, Liu G, Trommater J, Bunney M, Gage M, Bassuk AG, Hefti M, Lee G, Thippeswamy T. Enhanced Fyn-tau and NR2B-PSD95 interactions in epileptic foci in experimental models and human epilepsy. Brain Commun 2024; 6:fcae327. [PMID: 39355003 PMCID: PMC11444080 DOI: 10.1093/braincomms/fcae327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 08/25/2024] [Accepted: 09/17/2024] [Indexed: 10/03/2024] Open
Abstract
Epilepsy and Alzheimer's disease share some common pathologies such as neurodegeneration, seizures and impaired cognition. However, the molecular mechanisms of these changes are still largely unknown. Fyn, a Src-family non-receptor tyrosine kinase (SFK), and its interaction with tau in mediating brain pathology in epilepsy and Alzheimer's disease can be a potential therapeutic target for disease modification. Although Fyn and tau pathology occurs in both Alzheimer's disease and epilepsy, the dynamics of Fyn-tau and PSD95-NR2B interactions affected by seizures and their impact on brain pathology in epilepsy have not been investigated. In this study, we demonstrate a significant increase of Fyn-tau interactions following seizure induction by kainate in both acute and chronic rodent models and in human epilepsy. In the early phase of epileptogenesis, we show increased Fyn/tau/NR2B/PSD95/neuronal nitric oxide synthase complexes after status epilepticus and a postsynaptic increase of phosphorylated tau (pY18 and AT8), Fyn (pSFK-Y416), NMDAR (pNR2B-Y1472) and neuronal nitric oxide synthase. Hippocampal proximity ligation assay and co-immunoprecipitation revealed a sustained increase of Fyn-tau and NR2B-PSD95 complexes/binding in rat chronic epilepsy at 3 months post-status epilepticus. Enhanced Fyn-tau complexes strongly correlated with the frequency of spontaneously recurring convulsive seizures and epileptiform spikes in the chronic epilepsy model. In human epileptic brains, we also identified increased Fyn-tau and NR2B-PSD95 complexes, tau phosphorylation (pY18 and AT8) and Fyn activation (pSFK-Y416), implying the translational and therapeutic potential of these molecular interactions. In tau knockout mice and in rats treated with a Fyn/SFK inhibitor saracatinib, we found a significant reduction of phosphorylated Fyn, tau (AT8 in saracatinib-treated), NR2B and neuronal nitric oxide synthase and their interactions (Fyn-tau and NR2B-PSD95 in saracatinib-treated group; NR2B-PSD95 in tau knockout group). The reduction of Fyn-tau and NR2B-PSD95 interactions in the saracatinib-treated group, in contrast to the vehicle-treated group, correlated with the modification in seizure progression in the rat chronic epilepsy model. These findings from animal models and human epilepsy provide evidence for the role of Fyn-tau and NR2B-PSD95 interactions in seizure-induced brain pathology and suggest that blocking such interactions could modify the progression of epilepsy.
Collapse
Affiliation(s)
- Marson Putra
- Department of Biomedical Sciences, College of Veterinary Medicine, Iowa State University, Ames, IA 50010, USA
| | - Nikhil S Rao
- Department of Biomedical Sciences, College of Veterinary Medicine, Iowa State University, Ames, IA 50010, USA
| | - Cara Gardner
- Department of Biomedical Sciences, College of Veterinary Medicine, Iowa State University, Ames, IA 50010, USA
| | - Guanghao Liu
- Department of Internal Medicine, Carver College of Medicine, Carver College of Medicine University of Iowa, Iowa City, IA 52242, USA
| | - Jordan Trommater
- Department of Biomedical Sciences, College of Veterinary Medicine, Iowa State University, Ames, IA 50010, USA
| | - Michael Bunney
- Department of Biomedical Sciences, College of Veterinary Medicine, Iowa State University, Ames, IA 50010, USA
| | - Meghan Gage
- Department of Biomedical Sciences, College of Veterinary Medicine, Iowa State University, Ames, IA 50010, USA
| | - Alexander G Bassuk
- Department of Pediatrics, The University of Iowa Stead Family, Iowa City, IA 52242, USA
- Department of Neurology, The University of Iowa Stead Family, Iowa City, IA 52242, USA
- Iowa Neuroscience Institute (INI), College of Medicine, University of Iowa Carver, Iowa City, IA 52242, USA
| | - Marco Hefti
- Department of Pathology, Carver College of Medicine, University of Iowa, Iowa City, IA 52240, USA
| | - Gloria Lee
- Department of Internal Medicine, Carver College of Medicine, Carver College of Medicine University of Iowa, Iowa City, IA 52242, USA
| | - Thimmasettappa Thippeswamy
- Department of Biomedical Sciences, College of Veterinary Medicine, Iowa State University, Ames, IA 50010, USA
| |
Collapse
|
5
|
Mukhtar I. Unravelling the critical role of neuroinflammation in epilepsy-associated neuropsychiatric comorbidities: A review. Prog Neuropsychopharmacol Biol Psychiatry 2024; 136:111135. [PMID: 39237022 DOI: 10.1016/j.pnpbp.2024.111135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/01/2024] [Revised: 09/01/2024] [Accepted: 09/01/2024] [Indexed: 09/07/2024]
Abstract
Epilepsy is a complex neurological disorder characterized not only by seizures but also by significant neuropsychiatric comorbidities, affecting approximately one-third of those diagnosed. This review explores the intricate relationship between epilepsy and its associated psychiatric and cognitive disturbances, with a focus on the role of inflammation. Recent definitions of epilepsy emphasize its multifaceted nature, linking it to neurobiological, psychiatric, cognitive, and social deficits. Inflammation has emerged as a critical factor influencing both seizure activity and neuropsychiatric outcomes in epilepsy patients. This paper critically examines how dysregulated inflammatory pathways disrupt neurotransmitter transmission and contribute to depression, mood disorders, and anxiety prevalent among individuals with epilepsy. It also evaluates current therapeutic approaches and underscores the potential of anti-inflammatory therapies in managing epilepsy and related neuropsychiatric conditions. Additionally, the review highlights the importance of the anti-inflammatory effects of anti-seizure medications, antidepressants, and antipsychotics and their therapeutic implications for mood disorders. Also, the role of ketogenic diet in managing epilepsy and its psychiatric comorbidities is briefly presented. Furthermore, it briefly discusses the role of the gut-brain axis in maintaining neurological health and how its dysregulation is associated with epilepsy. The review concludes that inflammation plays a pivotal role in linking epilepsy with its neuropsychiatric comorbidities, suggesting that targeted anti-inflammatory interventions may offer promising therapeutic strategies. Future research should focus on longitudinal studies comparing outcomes between epileptic patients with and without neuropsychiatric comorbidities, the development of diagnostic tools, and the exploration of novel anti-inflammatory treatments to better manage these complex interactions.
Collapse
Affiliation(s)
- Iqra Mukhtar
- Faculty of Pharmacy, Iqra University, Karachi, Pakistan.
| |
Collapse
|
6
|
Buchanan RA, Wang Y, May JM, Harrison FE. Ascorbate insufficiency disrupts glutamatergic signaling and alters electroencephalogram phenotypes in a mouse model of Alzheimer's disease. Neurobiol Dis 2024; 199:106602. [PMID: 39004234 DOI: 10.1016/j.nbd.2024.106602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 07/08/2024] [Accepted: 07/09/2024] [Indexed: 07/16/2024] Open
Abstract
Clinical studies have reported that increased epileptiform and subclinical epileptiform activity can be detected in many patients with an Alzheimer's disease (AD) diagnosis using electroencephalogram (EEG) and this may correlate with poorer cognition. Ascorbate may have a specific role as a neuromodulator in AD as it is released concomitantly with glutamate reuptake following excitatory neurotransmission. Insufficiency may therefore result in an exacerbated excitatory/inhibitory imbalance in neuronal signaling. Using a mouse model of AD that requires dietary ascorbate (Gulo-/-APPswe/PSEN1dE9), EEG was recorded at baseline and during 4 weeks of ascorbate depletion in young (5-month-old) and aged (20-month-old) animals. Data were scored for changes in quantity of spike trains, individual spikes, sleep-wake rhythms, sleep fragmentation, and brainwave power bands during light periods each week. We found an early increase in neuronal spike discharges with age and following ascorbate depletion in AD model mice and not controls, which did not correlate with brain amyloid load. Our data also show more sleep fragmentation with age and with ascorbate depletion. Additionally, changes in brain wave activity were observed within different vigilance states in both young and aged mice, where Gulo-/-APPswe/PSEN1dE9 mice had shifts towards higher frequency bands (alpha, beta, and gamma) and ascorbate depletion resulted in shifts towards lower frequency bands (delta and theta). Microarray data supported ascorbate insufficiency altering glutamatergic transmission through the decreased expression of glutamate related genes, however no changes in protein expression of glutamate reuptake transporters were observed. These data suggest that maintaining optimal brain ascorbate levels may support normal brain electrical activity and sleep patterns, particularly in AD patient populations where disruptions are observed.
Collapse
Affiliation(s)
- Rebecca A Buchanan
- Vanderbilt Brain Institute, Vanderbilt University, Nashville, TN, United States
| | - Yuhan Wang
- Division of Diabetes, Endocrinology, and Metabolism, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, United States
| | - James M May
- Division of Diabetes, Endocrinology, and Metabolism, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, United States
| | - Fiona E Harrison
- Vanderbilt Brain Institute, Vanderbilt University, Nashville, TN, United States; Division of Diabetes, Endocrinology, and Metabolism, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, United States.
| |
Collapse
|
7
|
De Paolis ML, Paoletti I, Zaccone C, Capone F, D'Amelio M, Krashia P. Transcranial alternating current stimulation (tACS) at gamma frequency: an up-and-coming tool to modify the progression of Alzheimer's Disease. Transl Neurodegener 2024; 13:33. [PMID: 38926897 PMCID: PMC11210106 DOI: 10.1186/s40035-024-00423-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Accepted: 05/24/2024] [Indexed: 06/28/2024] Open
Abstract
The last decades have witnessed huge efforts devoted to deciphering the pathological mechanisms underlying Alzheimer's Disease (AD) and to testing new drugs, with the recent FDA approval of two anti-amyloid monoclonal antibodies for AD treatment. Beyond these drug-based experimentations, a number of pre-clinical and clinical trials are exploring the benefits of alternative treatments, such as non-invasive stimulation techniques on AD neuropathology and symptoms. Among the different non-invasive brain stimulation approaches, transcranial alternating current stimulation (tACS) is gaining particular attention due to its ability to externally control gamma oscillations. Here, we outline the current knowledge concerning the clinical efficacy, safety, ease-of-use and cost-effectiveness of tACS on early and advanced AD, applied specifically at 40 Hz frequency, and also summarise pre-clinical results on validated models of AD and ongoing patient-centred trials.
Collapse
Affiliation(s)
- Maria Luisa De Paolis
- Department of Medicine and Surgery, Università Campus Bio-Medico Di Roma, Via Alvaro del Portillo, 21 - 00128, Rome, Italy
| | - Ilaria Paoletti
- Department of Medicine and Surgery, Università Campus Bio-Medico Di Roma, Via Alvaro del Portillo, 21 - 00128, Rome, Italy
| | - Claudio Zaccone
- Department of Medicine and Surgery, Università Campus Bio-Medico Di Roma, Via Alvaro del Portillo, 21 - 00128, Rome, Italy
| | - Fioravante Capone
- Department of Medicine and Surgery, Università Campus Bio-Medico Di Roma, Via Alvaro del Portillo, 21 - 00128, Rome, Italy
- Fondazione Policlinico Universitario Campus Bio-Medico, Via Alvaro del Portillo, 200 - 00128, Rome, Italy
| | - Marcello D'Amelio
- Department of Medicine and Surgery, Università Campus Bio-Medico Di Roma, Via Alvaro del Portillo, 21 - 00128, Rome, Italy.
- Department of Experimental Neurosciences, IRCCS Santa Lucia Foundation, Via del Fosso Di Fiorano, 64 - 00143, Rome, Italy.
| | - Paraskevi Krashia
- Department of Experimental Neurosciences, IRCCS Santa Lucia Foundation, Via del Fosso Di Fiorano, 64 - 00143, Rome, Italy
- Department of Sciences and Technologies for Sustainable Development and One Health, Università Campus Bio-Medico Di Roma, Via Alvaro del Portillo, 21 - 00128, Rome, Italy
| |
Collapse
|
8
|
Rácz A, Galvis-Montes DS, Borger V, Becker AJ, Pitsch J. Focused review: Clinico-neuropathological aspects of late onset epilepsies: Pathogenesis. Seizure 2024:S1059-1311(24)00182-1. [PMID: 38918105 DOI: 10.1016/j.seizure.2024.06.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 05/21/2024] [Accepted: 06/19/2024] [Indexed: 06/27/2024] Open
Abstract
The aim of the present study was to review the current knowledge on the neuropathological spectrum of late onset epilepsies. Several terms including 'neuropathology*' AND 'late onset epilepsy' (LOE) combined with distinct neuropathological diagnostic terms were used to search PubMed until November 15, 2023. We report on the relevance of definitional aspects of LOE with implications for the diagnostic spectrum of epilepsies. The neuropathological spectrum in patients with LOE is described and includes vascular lesions, low-grade neuroepithelial neoplasms and focal cortical dysplasias (FCD). Among the latter, the frequency of the FCD subtypes appears to differ between LOE patients and those with seizure onset at a younger age. Neurodegenerative neuropathological changes in the seizure foci of LOE patients require careful interdisciplinary interpretation with respect to the differential diagnosis of primary neurodegenerative changes or epilepsy-related changes. Innate and adaptive neuroinflammation represents an important cause of LOE with intriguing therapeutic options.
Collapse
Affiliation(s)
- Attila Rácz
- Department of Epileptology, University Hospital Bonn, Bonn, Germany
| | | | - Valeri Borger
- Department of Neurosurgery, University Hospital Bonn, Bonn, Germany
| | - Albert J Becker
- Section for Translational Epilepsy Research, Department of Neuropathology, University Hospital Bonn, Bonn, Germany
| | - Julika Pitsch
- Department of Epileptology, University Hospital Bonn, Bonn, Germany.
| |
Collapse
|
9
|
Leitch B. Parvalbumin Interneuron Dysfunction in Neurological Disorders: Focus on Epilepsy and Alzheimer's Disease. Int J Mol Sci 2024; 25:5549. [PMID: 38791587 PMCID: PMC11122153 DOI: 10.3390/ijms25105549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 05/11/2024] [Accepted: 05/16/2024] [Indexed: 05/26/2024] Open
Abstract
Parvalbumin expressing (PV+) GABAergic interneurons are fast spiking neurons that provide powerful but relatively short-lived inhibition to principal excitatory cells in the brain. They play a vital role in feedforward and feedback synaptic inhibition, preventing run away excitation in neural networks. Hence, their dysfunction can lead to hyperexcitability and increased susceptibility to seizures. PV+ interneurons are also key players in generating gamma oscillations, which are synchronized neural oscillations associated with various cognitive functions. PV+ interneuron are particularly vulnerable to aging and their degeneration has been associated with cognitive decline and memory impairment in dementia and Alzheimer's disease (AD). Overall, dysfunction of PV+ interneurons disrupts the normal excitatory/inhibitory balance within specific neurocircuits in the brain and thus has been linked to a wide range of neurodevelopmental and neuropsychiatric disorders. This review focuses on the role of dysfunctional PV+ inhibitory interneurons in the generation of epileptic seizures and cognitive impairment and their potential as targets in the design of future therapeutic strategies to treat these disorders. Recent research using cutting-edge optogenetic and chemogenetic technologies has demonstrated that they can be selectively manipulated to control seizures and restore the balance of neural activity in the brains of animal models. This suggests that PV+ interneurons could be important targets in developing future treatments for patients with epilepsy and comorbid disorders, such as AD, where seizures and cognitive decline are directly linked to specific PV+ interneuron deficits.
Collapse
Affiliation(s)
- Beulah Leitch
- Department of Anatomy, School of Biomedical Sciences, Brain Health Research Centre, University of Otago, Dunedin 9016, New Zealand
| |
Collapse
|
10
|
Spoleti E, La Barbera L, Cauzzi E, De Paolis ML, Saba L, Marino R, Sciamanna G, Di Lazzaro V, Keller F, Nobili A, Krashia P, D'Amelio M. Dopamine neuron degeneration in the Ventral Tegmental Area causes hippocampal hyperexcitability in experimental Alzheimer's Disease. Mol Psychiatry 2024; 29:1265-1280. [PMID: 38228889 PMCID: PMC11189820 DOI: 10.1038/s41380-024-02408-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 12/17/2023] [Accepted: 01/02/2024] [Indexed: 01/18/2024]
Abstract
Early and progressive dysfunctions of the dopaminergic system from the Ventral Tegmental Area (VTA) have been described in Alzheimer's Disease (AD). During the long pre-symptomatic phase, alterations in the function of Parvalbumin interneurons (PV-INs) are also observed, resulting in cortical hyperexcitability represented by subclinical epilepsy and aberrant gamma-oscillations. However, it is unknown whether the dopaminergic deficits contribute to brain hyperexcitability in AD. Here, using the Tg2576 mouse model of AD, we prove that reduced hippocampal dopaminergic innervation, due to VTA dopamine neuron degeneration, impairs PV-IN firing and gamma-waves, weakens the inhibition of pyramidal neurons and induces hippocampal hyperexcitability via lower D2-receptor-mediated activation of the CREB-pathway. These alterations coincide with reduced PV-IN numbers and Perineuronal Net density. Importantly, L-DOPA and the selective D2-receptor agonist quinpirole rescue p-CREB levels and improve the PV-IN-mediated inhibition, thus reducing hyperexcitability. Moreover, similarly to quinpirole, sumanirole - another D2-receptor agonist and a known anticonvulsant - not only increases p-CREB levels in PV-INs but also restores gamma-oscillations in Tg2576 mice. Conversely, blocking the dopaminergic transmission with sulpiride (a D2-like receptor antagonist) in WT mice reduces p-CREB levels in PV-INs, mimicking what occurs in Tg2576. Overall, these findings support the hypothesis that the VTA dopaminergic system integrity plays a key role in hippocampal PV-IN function and survival, disclosing a relevant contribution of the reduced dopaminergic tone to aberrant gamma-waves, hippocampal hyperexcitability and epileptiform activity in early AD.
Collapse
Affiliation(s)
- Elena Spoleti
- Department of Medicine and Surgery, Università Campus Bio-Medico di Roma, 00128, Rome, Italy
| | - Livia La Barbera
- Department of Medicine and Surgery, Università Campus Bio-Medico di Roma, 00128, Rome, Italy
- Department of Experimental Neurosciences, IRCCS Santa Lucia Foundation, 00143, Rome, Italy
| | - Emma Cauzzi
- Department of Systems Medicine, University of Rome Tor Vergata, 00133, Rome, Italy
| | - Maria Luisa De Paolis
- Department of Medicine and Surgery, Università Campus Bio-Medico di Roma, 00128, Rome, Italy
| | - Luana Saba
- Department of Medicine and Surgery, Università Campus Bio-Medico di Roma, 00128, Rome, Italy
- Department of Experimental Neurosciences, IRCCS Santa Lucia Foundation, 00143, Rome, Italy
| | - Ramona Marino
- Department of Medicine and Surgery, Università Campus Bio-Medico di Roma, 00128, Rome, Italy
| | - Giuseppe Sciamanna
- Department of Experimental Neurosciences, IRCCS Santa Lucia Foundation, 00143, Rome, Italy
- UniCamillus International University of Health Sciences, 00131, Rome, Italy
| | - Vincenzo Di Lazzaro
- Department of Medicine and Surgery, Università Campus Bio-Medico di Roma, 00128, Rome, Italy
- Operative Research Unit of Neurology, Fondazione Policlinico Universitario Campus Bio-Medico, 00128, Rome, Italy
| | - Flavio Keller
- Department of Medicine and Surgery, Università Campus Bio-Medico di Roma, 00128, Rome, Italy
| | - Annalisa Nobili
- Department of Medicine and Surgery, Università Campus Bio-Medico di Roma, 00128, Rome, Italy
- Department of Experimental Neurosciences, IRCCS Santa Lucia Foundation, 00143, Rome, Italy
| | - Paraskevi Krashia
- Department of Experimental Neurosciences, IRCCS Santa Lucia Foundation, 00143, Rome, Italy
- Department of Sciences and Technologies for Sustainable Development and One Health, Università Campus Bio-Medico di Roma, 00128, Rome, Italy
| | - Marcello D'Amelio
- Department of Medicine and Surgery, Università Campus Bio-Medico di Roma, 00128, Rome, Italy.
- Department of Experimental Neurosciences, IRCCS Santa Lucia Foundation, 00143, Rome, Italy.
| |
Collapse
|
11
|
Alcantara-Gonzalez D, Kennedy M, Criscuolo C, Botterill J, Scharfman HE. Increased excitability of dentate gyrus mossy cells occurs early in life in the Tg2576 model of Alzheimer's disease. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.09.579729. [PMID: 38645244 PMCID: PMC11027210 DOI: 10.1101/2024.02.09.579729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/23/2024]
Abstract
INTRODUCTION Hyperexcitability in Alzheimer's disease (AD) emerge early and contribute to disease progression. The dentate gyrus (DG) is implicated in hyperexcitability in AD. We hypothesized that mossy cells (MCs), regulators of DG excitability, contribute to early hyperexcitability in AD. Indeed, MCs generate hyperexcitability in epilepsy. METHODS Using the Tg2576 model and WT mice (∼1month-old), we compared MCs electrophysiologically, assessed c-Fos activity marker, Aβ expression and mice performance in a hippocampal-dependent memory task. RESULTS Tg2576 MCs exhibit increased spontaneous excitatory events and decreased inhibitory currents, increasing the charge transfer excitation/inhibition ratio. Tg2576 MC intrinsic excitability was enhanced, and showed higher c-Fos, intracellular Aβ expression, and axon sprouting. Granule cells only showed changes in synaptic properties, without intrinsic changes. The effects occurred before a memory task is affected. DISCUSSION Early electrophysiological and morphological alterations in Tg2576 MCs are consistent with enhanced excitability, suggesting an early role in DG hyperexcitability and AD pathophysiology. HIGHLIGHTS ∘ MCs from 1 month-old Tg2576 mice had increased spontaneous excitatory synaptic input. ∘ Tg2576 MCs had reduced spontaneous inhibitory synaptic input. ∘ Several intrinsic properties were abnormal in Tg2576 MCs. ∘ Tg2576 GCs had enhanced synaptic excitation but no changes in intrinsic properties. ∘ Tg2576 MCs exhibited high c-Fos expression, soluble Aβ and axonal sprouting.
Collapse
|
12
|
Niere F, Uneri A, McArdle CJ, Deng Z, Egido-Betancourt HX, Cacheaux LP, Namjoshi SV, Taylor WC, Wang X, Barth SH, Reynoldson C, Penaranda J, Stierer MP, Heaney CF, Craft S, Keene CD, Ma T, Raab-Graham KF. Aberrant DJ-1 expression underlies L-type calcium channel hypoactivity in dendrites in tuberous sclerosis complex and Alzheimer's disease. Proc Natl Acad Sci U S A 2023; 120:e2301534120. [PMID: 37903257 PMCID: PMC10636362 DOI: 10.1073/pnas.2301534120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Accepted: 09/25/2023] [Indexed: 11/01/2023] Open
Abstract
L-type voltage-gated calcium (Ca2+) channels (L-VGCC) dysfunction is implicated in several neurological and psychiatric diseases. While a popular therapeutic target, it is unknown whether molecular mechanisms leading to disrupted L-VGCC across neurodegenerative disorders are conserved. Importantly, L-VGCC integrate synaptic signals to facilitate a plethora of cellular mechanisms; however, mechanisms that regulate L-VGCC channel density and subcellular compartmentalization are understudied. Herein, we report that in disease models with overactive mammalian target of rapamycin complex 1 (mTORC1) signaling (or mTORopathies), deficits in dendritic L-VGCC activity are associated with increased expression of the RNA-binding protein (RBP) Parkinsonism-associated deglycase (DJ-1). DJ-1 binds the mRNA coding for the alpha and auxiliary Ca2+ channel subunits CaV1.2 and α2δ2, and represses their mRNA translation, only in the disease states, specifically preclinical models of tuberous sclerosis complex (TSC) and Alzheimer's disease (AD). In agreement, DJ-1-mediated repression of CaV1.2/α2δ2 protein synthesis in dendrites is exaggerated in mouse models of AD and TSC, resulting in deficits in dendritic L-VGCC calcium activity. Finding of DJ-1-regulated L-VGCC activity in dendrites in TSC and AD provides a unique signaling pathway that can be targeted in clinical mTORopathies.
Collapse
Affiliation(s)
- Farr Niere
- Department of Physiology and Pharmacology, Wake Forest University School of Medicine, Winston-Salem, NC27157
- Department of Biology, North Carolina Agricultural and Technical State University, Greensboro, NC27411
| | - Ayse Uneri
- Department of Physiology and Pharmacology, Wake Forest University School of Medicine, Winston-Salem, NC27157
| | - Colin J. McArdle
- Department of Physiology and Pharmacology, Wake Forest University School of Medicine, Winston-Salem, NC27157
| | - Zhiyong Deng
- Department of Physiology and Pharmacology, Wake Forest University School of Medicine, Winston-Salem, NC27157
| | - Hailey X. Egido-Betancourt
- Department of Physiology and Pharmacology, Wake Forest University School of Medicine, Winston-Salem, NC27157
| | - Luisa P. Cacheaux
- Department of Physiology and Pharmacology, Wake Forest University School of Medicine, Winston-Salem, NC27157
| | - Sanjeev V. Namjoshi
- Department of Physiology and Pharmacology, Wake Forest University School of Medicine, Winston-Salem, NC27157
| | - William C. Taylor
- Department of Physiology and Pharmacology, Wake Forest University School of Medicine, Winston-Salem, NC27157
| | - Xin Wang
- Department of Internal Medicine, Gerontology and Geriatric Medicine, Wake Forest University School of Medicine, Winston-Salem, NC27157
| | - Samuel H. Barth
- Department of Physiology and Pharmacology, Wake Forest University School of Medicine, Winston-Salem, NC27157
| | - Cameron Reynoldson
- Department of Physiology and Pharmacology, Wake Forest University School of Medicine, Winston-Salem, NC27157
| | - Juan Penaranda
- Department of Physiology and Pharmacology, Wake Forest University School of Medicine, Winston-Salem, NC27157
| | - Michael P. Stierer
- Department of Physiology and Pharmacology, Wake Forest University School of Medicine, Winston-Salem, NC27157
| | - Chelcie F. Heaney
- Department of Physiology and Pharmacology, Wake Forest University School of Medicine, Winston-Salem, NC27157
| | - Suzanne Craft
- Department of Internal Medicine, Gerontology and Geriatric Medicine, Wake Forest University School of Medicine, Winston-Salem, NC27157
- Wake Forest Alzheimer’s Disease Research Center, Wake Forest University School of Medicine, Winston-Salem, NC27157
| | - C. Dirk Keene
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA98104
| | - Tao Ma
- Department of Physiology and Pharmacology, Wake Forest University School of Medicine, Winston-Salem, NC27157
- Department of Internal Medicine, Gerontology and Geriatric Medicine, Wake Forest University School of Medicine, Winston-Salem, NC27157
| | - Kimberly F. Raab-Graham
- Department of Physiology and Pharmacology, Wake Forest University School of Medicine, Winston-Salem, NC27157
| |
Collapse
|
13
|
Lu O, Kouser T, Skylar-Scott IA. Alzheimer's disease and epilepsy: shared neuropathology guides current and future treatment strategies. Front Neurol 2023; 14:1241339. [PMID: 37936917 PMCID: PMC10626492 DOI: 10.3389/fneur.2023.1241339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Accepted: 09/12/2023] [Indexed: 11/09/2023] Open
Abstract
Epilepsy is a cause of profound disability in patients with Alzheimer's disease (AD). The risk of being diagnosed with AD increases the risk for epilepsy, and in parallel, a history of epilepsy increases the likelihood of the development of AD. This bi-directional relationship may be due to underlying shared pathophysiologic hallmarks, including decreased cerebrospinal fluid amyloid beta 42 (Aβ42), increased hyperphosphorylated tau protein, and hippocampal hyperexcitability. Additionally, there are practical treatment considerations in patients with co-morbid AD and epilepsy-namely, there is a higher risk of seizures associated with medications commonly prescribed for Alzheimer's disease patients, including antidepressants and antipsychotics such as trazodone, serotonin norepinephrine reuptake inhibitors (SNRIs), and first-generation neuroleptics. Anti-amyloid antibodies like aducanumab and lecanemab present new and unique considerations in patients with co-morbid AD and epilepsy given the risk of seizures associated with amyloid-related imaging abnormalities (ARIA) seen with this drug class. Finally, we identify and detail five active studies, including two clinical trials of levetiracetam in the respective treatment of cognition and neuropsychiatric features of AD, a study characterizing the prevalence of epilepsy in AD via prolonged EEG monitoring, a study characterizing AD biomarkers in late-onset epilepsy, and a study evaluating hyperexcitability in AD. These ongoing trials may guide future clinical decision-making and the development of novel therapeutics.
Collapse
Affiliation(s)
- Olivia Lu
- Stanford Neuroscience Clinical Research Group, Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Palo Alto, CA, United States
| | - Taimur Kouser
- Stanford University School of Medicine, Palo Alto, CA, United States
| | - Irina A. Skylar-Scott
- Memory Disorders Division, Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Palo Alto, CA, United States
| |
Collapse
|
14
|
Tombini M, Boscarino M, Di Lazzaro V. Tackling seizures in patients with Alzheimer's disease. Expert Rev Neurother 2023; 23:1131-1145. [PMID: 37946507 DOI: 10.1080/14737175.2023.2278487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Accepted: 10/30/2023] [Indexed: 11/12/2023]
Abstract
INTRODUCTION In past years, a possible bidirectional link between epilepsy and Alzheimer's disease (AD) has been proposed: if AD patients are more likely to develop epilepsy, people with late-onset epilepsy evidence an increased risk of dementia. Furthermore, current research suggested that subclinical epileptiform discharges may be more frequent in patients with AD and network hyperexcitability may hasten cognitive impairment. AREAS COVERED In this narrative review, the authors discuss the recent evidence linking AD and epilepsy as well as seizures semeiology and epileptiform activity observed in patients with AD. Finally, anti-seizure medications (ASMs) and therapeutic trials to tackle seizures and network hyperexcitability in this clinical scenario have been summarized. EXPERT OPINION There is growing experimental evidence demonstrating a strong connection between seizures, neuronal hyperexcitability, and AD. Epilepsy in AD has shown a good response to ASMs both at the late and prodromal stages. The new generation ASMs with fewer cognitive adverse effects seem to be a preferable option. Data on the possible effects of network hyperexcitability and ASMs on AD progression are still inconclusive. Further clinical trials are mandatory to identify clear guidelines about treatment of subclinical epileptiform discharges in patients with AD without seizures.
Collapse
Affiliation(s)
- Mario Tombini
- Unit of Neurology, Neurophysiology, Neurobiology, Department of Medicine, University Campus Bio-Medico, Rome, Italy
| | - Marilisa Boscarino
- Unit of Neurology, Neurophysiology, Neurobiology, Department of Medicine, University Campus Bio-Medico, Rome, Italy
- Istituti Clinici Scientifici Maugeri IRCCS, Neurorehabilitation Department, Milan, Italy
| | - Vincenzo Di Lazzaro
- Unit of Neurology, Neurophysiology, Neurobiology, Department of Medicine, University Campus Bio-Medico, Rome, Italy
| |
Collapse
|
15
|
Hautecloque-Raysz G, Sellal F, Bousiges O, Phillipi N, Blanc F, Cretin B. Epileptic Prodromal Alzheimer's Disease Treated with Antiseizure Medications: Medium-Term Outcome of Seizures and Cognition. J Alzheimers Dis 2023:JAD221197. [PMID: 37355889 DOI: 10.3233/jad-221197] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/26/2023]
Abstract
BACKGROUND The medium term outcome (over more than one year) of epileptic prodromal AD (epAD) patients treated with antiseizure medications (ASMs) is unknown in terms of seizure response, treatment tolerability, and cognitive and functional progression. OBJECTIVE To describe such medium term outcome over a mean of 5.1±2.1 years. METHODS We retrospectively compared 19 epAD patients with 16 non-epileptic prodromal AD (nepAD) patients: 1) at baseline for demographics, medical history, cognitive fluctuations (CFs), psychotropic medications, MMSE scores, visually rated hippocampal atrophy, CSF neurodegenerative biomarkers, and standard EEG recordings; 2) during follow-up (FU) for psychotropic medications, MMSE progression, and conversion to dementia. In the epAD group, we analyzed baseline and FU types of seizures as well as each line of ASM with the corresponding efficacy and tolerability. RESULTS At baseline, the epAD group had more CFs than the nepAD group (58% versus 20%, p = 0.03); focal impaired awareness seizures were the most common type (n = 12, 63.1%), occurring at a monthly to quarterly frequency (89.5%), and were well controlled with monotherapy in 89.5% of cases (including 63.1% seizure-free individuals). During FU, treated epAD patients did not differ significantly from nepAD patients in MMSE progression or in conversion to dementia. CONCLUSION Epilepsy is commonly controlled with ASMs over the medium term in epAD patients, with similar functional and cognitive outcomes to nepAD patients. Pathophysiologically, epilepsy is likely to be an ASM-modifiable cognitive aggravating factor at this stage of AD.
Collapse
Affiliation(s)
- Geoffroy Hautecloque-Raysz
- Centre Mémoire, de Ressources et de Recherche d'Alsace (Strasbourg-Colmar), France
- Service de Neurologie, Hospices Civils de Colmar, France
| | - François Sellal
- Centre Mémoire, de Ressources et de Recherche d'Alsace (Strasbourg-Colmar), France
- Service de Neurologie, Hospices Civils de Colmar, France
- Unité INSERM U-1118, Faculté de Médecine de Strasbourg, France
| | - Olivier Bousiges
- Service de Neurologie, Hospices Civils de Colmar, France
- University Hospital of Strasbourg, Laboratory of Biochemistry and Molecular Biology, and CNRS, Laboratoire de Neurosciences Cognitives et Adaptatives (LNCA), UMR7364, Strasbourg, France
| | - Nathalie Phillipi
- Centre Mémoire, de Ressources et de Recherche d'Alsace (Strasbourg-Colmar), France
- Unité de Neuropsychologie, Service de Neurologie des Hôpitaux Universitaires de Strasbourg, Strasbourg, France
- University of Strasbourg and CNRS, ICube laboratory UMR 7357 and FMTS (Fédération de Médecine Translationnelle de Strasbourg), team IMIS/Neurocrypto Strasbourg, France
- Centre de Compétences des démences rares des Hôpitaux Universitaires de Strasbourg, Strasbourg, France
| | - Frédéric Blanc
- Centre Mémoire, de Ressources et de Recherche d'Alsace (Strasbourg-Colmar), France
- Unité de Neuropsychologie, Service de Neurologie des Hôpitaux Universitaires de Strasbourg, Strasbourg, France
- University of Strasbourg and CNRS, ICube laboratory UMR 7357 and FMTS (Fédération de Médecine Translationnelle de Strasbourg), team IMIS/Neurocrypto Strasbourg, France
- Centre de Compétences des démences rares des Hôpitaux Universitaires de Strasbourg, Strasbourg, France
| | - Benjamin Cretin
- Centre Mémoire, de Ressources et de Recherche d'Alsace (Strasbourg-Colmar), France
- Unité de Neuropsychologie, Service de Neurologie des Hôpitaux Universitaires de Strasbourg, Strasbourg, France
- University of Strasbourg and CNRS, ICube laboratory UMR 7357 and FMTS (Fédération de Médecine Translationnelle de Strasbourg), team IMIS/Neurocrypto Strasbourg, France
- Centre de Compétences des démences rares des Hôpitaux Universitaires de Strasbourg, Strasbourg, France
| |
Collapse
|
16
|
Possemato E, La Barbera L, Nobili A, Krashia P, D'Amelio M. The role of dopamine in NLRP3 inflammasome inhibition: Implications for neurodegenerative diseases. Ageing Res Rev 2023; 87:101907. [PMID: 36893920 DOI: 10.1016/j.arr.2023.101907] [Citation(s) in RCA: 20] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 02/10/2023] [Accepted: 03/06/2023] [Indexed: 03/09/2023]
Abstract
In the Central Nervous System (CNS), neuroinflammation orchestrated by microglia and astrocytes is an innate immune response to counteract stressful and dangerous insults. One of the most important and best characterized players in the neuroinflammatory response is the NLRP3 inflammasome, a multiproteic complex composed by NOD-like receptor family Pyrin domain containing 3 (NLRP3), apoptosis-associated speck-like protein (ASC) and pro-caspase-1. Different stimuli mediate NLRP3 activation, resulting in the NLRP3 inflammasome assembly and the pro-inflammatory cytokine (IL-1β and IL-18) maturation and secretion. The persistent and uncontrolled NLRP3 inflammasome activation has a leading role during the pathophysiology of neuroinflammation in age-related neurodegenerative diseases such as Parkinson's (PD) and Alzheimer's (AD). The neurotransmitter dopamine (DA) is one of the players that negatively modulate NLRP3 inflammasome activation through DA receptors expressed in both microglia and astrocytes. This review summarizes recent findings linking the role of DA in the modulation of NLRP3-mediated neuroinflammation in PD and AD, where early deficits of the dopaminergic system are well characterized. Highlighting the relationship between DA, its glial receptors and the NLRP3-mediated neuroinflammation can provide insights to novel diagnostic strategies in early disease phases and new pharmacological tools to delay the progression of these diseases.
Collapse
Affiliation(s)
- Elena Possemato
- Department of Sciences and Technologies for Humans and Environment, Università Campus Bio-Medico di Roma, Via Álvaro del Portillo, 21, 00128 Rome, Italy
| | - Livia La Barbera
- Department of Sciences and Technologies for Humans and Environment, Università Campus Bio-Medico di Roma, Via Álvaro del Portillo, 21, 00128 Rome, Italy; Department of Experimental Neurosciences, IRCCS Santa Lucia Foundation, Via del Fosso di Fiorano, 64, 00143 Rome, Italy
| | - Annalisa Nobili
- Department of Sciences and Technologies for Humans and Environment, Università Campus Bio-Medico di Roma, Via Álvaro del Portillo, 21, 00128 Rome, Italy; Department of Experimental Neurosciences, IRCCS Santa Lucia Foundation, Via del Fosso di Fiorano, 64, 00143 Rome, Italy
| | - Paraskevi Krashia
- Department of Sciences and Technologies for Humans and Environment, Università Campus Bio-Medico di Roma, Via Álvaro del Portillo, 21, 00128 Rome, Italy; Department of Experimental Neurosciences, IRCCS Santa Lucia Foundation, Via del Fosso di Fiorano, 64, 00143 Rome, Italy
| | - Marcello D'Amelio
- Department of Experimental Neurosciences, IRCCS Santa Lucia Foundation, Via del Fosso di Fiorano, 64, 00143 Rome, Italy; Department of Medicine and Surgery, Università Campus Bio-Medico di Roma, Via Álvaro del Portillo, 21, 00128 Rome, Italy.
| |
Collapse
|
17
|
Scaduto P, Lauterborn JC, Cox CD, Fracassi A, Zeppillo T, Gutierrez BA, Keene CD, Crane PK, Mukherjee S, Russell WK, Taglialatela G, Limon A. Functional excitatory to inhibitory synaptic imbalance and loss of cognitive performance in people with Alzheimer's disease neuropathologic change. Acta Neuropathol 2023; 145:303-324. [PMID: 36538112 PMCID: PMC9925531 DOI: 10.1007/s00401-022-02526-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 11/12/2022] [Accepted: 11/27/2022] [Indexed: 12/24/2022]
Abstract
Individuals at distinct stages of Alzheimer's disease (AD) show abnormal electroencephalographic activity, which has been linked to network hyperexcitability and cognitive decline. However, whether pro-excitatory changes at the synaptic level are observed in brain areas affected early in AD, and if they are emergent in MCI, is not clearly known. Equally important, it is not known whether global synaptic E/I imbalances correlate with the severity of cognitive impairment in the continuum of AD. Measuring the amplitude of ion currents of human excitatory and inhibitory synaptic receptors microtransplanted from the hippocampus and temporal cortex of cognitively normal, mildly cognitively impaired and AD individuals into surrogate cells, we found regional differences in pro-excitatory shifts of the excitatory to inhibitory (E/I) current ratio that correlates positively with toxic proteins and degree of pathology, and impinges negatively on cognitive performance scores. Using these data with electrophysiologically anchored analysis of the synapto-proteome in the same individuals, we identified a group of proteins sustaining synaptic function and those related to synaptic toxicity. We also found an uncoupling between the function and expression of proteins for GABAergic signaling in the temporal cortex underlying larger E/I and worse cognitive performance. Further analysis of transcriptomic and in situ hybridization datasets from an independent cohort across the continuum of AD confirm regional differences in pro-excitatory shifts of the E/I balance that correlate negatively with the most recent calibrated composite scores for memory, executive function, language and visuospatial abilities, as well as overall cognitive performance. These findings indicate that early shifts of E/I balance may contribute to loss of cognitive capabilities in the continuum of AD clinical syndrome.
Collapse
Affiliation(s)
- Pietro Scaduto
- Department of Neurology, Mitchell Center for Neurodegenerative Diseases, University of Texas Medical Branch at Galveston, Galveston, TX, USA
| | - Julie C Lauterborn
- Department of Anatomy and Neurobiology, University of California Irvine, Irvine, CA, USA
| | - Conor D Cox
- Department of Anatomy and Neurobiology, University of California Irvine, Irvine, CA, USA
| | - Anna Fracassi
- Department of Neurology, Mitchell Center for Neurodegenerative Diseases, University of Texas Medical Branch at Galveston, Galveston, TX, USA
| | - Tommaso Zeppillo
- Department of Neurology, Mitchell Center for Neurodegenerative Diseases, University of Texas Medical Branch at Galveston, Galveston, TX, USA
| | - Berenice A Gutierrez
- Department of Neurology, Mitchell Center for Neurodegenerative Diseases, University of Texas Medical Branch at Galveston, Galveston, TX, USA
| | - C Dirk Keene
- Department of Laboratory Medicine and Pathology, University of Washington School of Medicine, Seattle, WA, USA
| | - Paul K Crane
- Department of Medicine, University of Washington, Seattle, WA, USA
| | | | - William K Russell
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch at Galveston, Galveston, USA
| | - Giulio Taglialatela
- Department of Neurology, Mitchell Center for Neurodegenerative Diseases, University of Texas Medical Branch at Galveston, Galveston, TX, USA
| | - Agenor Limon
- Department of Neurology, Mitchell Center for Neurodegenerative Diseases, University of Texas Medical Branch at Galveston, Galveston, TX, USA.
| |
Collapse
|
18
|
Hong N, Kim HJ, Kang K, Park JO, Mun S, Kim HG, Kang BH, Chung PS, Lee MY, Ahn JC. Photobiomodulation improves the synapses and cognitive function and ameliorates epileptic seizure by inhibiting downregulation of Nlgn3. Cell Biosci 2023; 13:8. [PMID: 36635704 PMCID: PMC9837965 DOI: 10.1186/s13578-022-00949-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Accepted: 12/21/2022] [Indexed: 01/13/2023] Open
Abstract
BACKGROUND Temporal lobe epilepsy (TLE) remains one of the most drug-resistant focal epilepsies. Glutamate excitotoxicity and neuroinflammation which leads to loss of synaptic proteins and neuronal death appear to represent a pathogen that characterizes the neurobiology of TLE. Photobiomodulation (PBM) is a rapidly growing therapy for the attenuation of neuronal degeneration harboring non-invasiveness benefits. However, the detailed effects of PBM on excitotoxicity or neuroinflammation remain unclear. We investigated whether tPBM exerts neuroprotective effects on hippocampal neurons in epilepsy mouse model by regulating synapse and synapse-related genes. METHODS In an in vitro study, we performed imaging analysis and western blot in primary hippocampal neurons from embryonic (E17) rat pups. In an in vivo study, RNA sequencing was performed to identify the gene regulatory by PBM. Histological stain and immunohistochemistry analyses were used to assess synaptic connections, neuroinflammation and neuronal survival. Behavioral tests were used to evaluate the effects of PBM on cognitive functions. RESULTS PBM was upregulated synaptic connections in an in vitro. In addition, it was confirmed that transcranial PBM reduced synaptic degeneration, neuronal apoptosis, and neuroinflammation in an in vivo. These effects of PBM were supported by RNA sequencing results showing the relation of PBM with gene regulatory networks of neuronal functions. Specifically, Nlgn3 showed increase after PBM and silencing the Nlgn3 reversed the positive effect of PBM in in vitro. Lastly, behavioral alterations including hypoactivity, anxiety and impaired memory were recovered along with the reduction of seizure score in PBM-treated mice. CONCLUSIONS Our findings demonstrate that PBM attenuates epileptic excitotoxicity, neurodegeneration and cognitive decline induced by TLE through inhibition of the Nlgn3 gene decrease induced by excitotoxicity.
Collapse
Affiliation(s)
- Namgue Hong
- grid.411982.70000 0001 0705 4288Medical Laser Research Center, Dankook University, Cheonan, Republic of Korea ,grid.411982.70000 0001 0705 4288Department of Biomedical Science, College of Medicine, Dankook University, Cheonan, Republic of Korea
| | - Hee Jung Kim
- grid.411982.70000 0001 0705 4288Department of Physiology, College of Medicine, Dankook University, Cheonan, Republic of Korea
| | - Keunsoo Kang
- grid.411982.70000 0001 0705 4288Department of Microbiology, College of Science & Technology, Dankook University, Cheonan, Republic of Korea
| | - Ji On Park
- grid.411982.70000 0001 0705 4288Department of Medicine, Graduate School of Dankook University, Dankook University, Cheonan, Republic of Korea
| | - Seyoung Mun
- grid.411982.70000 0001 0705 4288Department of Microbiology, College of Science & Technology, Dankook University, Cheonan, Republic of Korea ,grid.411982.70000 0001 0705 4288Center for Bio-Medical Engineering Core Facility, Dankook University, Cheonan, Republic of Korea
| | - Hyung-Gun Kim
- grid.411982.70000 0001 0705 4288Department of Pharmacology, College of Medicine, Dankook University, Cheonan, Republic of Korea
| | - Bong Hui Kang
- grid.411982.70000 0001 0705 4288Department of Neurology, Dankook University Hospital, Dankook University, Cheonan, Republic of Korea
| | - Phil-Sang Chung
- grid.411982.70000 0001 0705 4288Beckman Laser Institute Korea, Dankook University Hospital, Dankook University, Cheonan, Republic of Korea ,grid.411982.70000 0001 0705 4288Department of Otolaryngology-Head & Neck Surgery, College of Medicine, Dankook University Hospital, Dankook University, Cheonan, Republic of Korea
| | - Min Young Lee
- grid.411982.70000 0001 0705 4288Medical Laser Research Center, Dankook University, Cheonan, Republic of Korea ,grid.411982.70000 0001 0705 4288Department of Biomedical Science, College of Medicine, Dankook University, Cheonan, Republic of Korea ,grid.411982.70000 0001 0705 4288Beckman Laser Institute Korea, Dankook University Hospital, Dankook University, Cheonan, Republic of Korea ,grid.411982.70000 0001 0705 4288Department of Otolaryngology-Head & Neck Surgery, College of Medicine, Dankook University Hospital, Dankook University, Cheonan, Republic of Korea
| | - Jin-Chul Ahn
- grid.411982.70000 0001 0705 4288Medical Laser Research Center, Dankook University, Cheonan, Republic of Korea ,grid.411982.70000 0001 0705 4288Department of Biomedical Science, College of Medicine, Dankook University, Cheonan, Republic of Korea ,grid.411982.70000 0001 0705 4288Beckman Laser Institute Korea, Dankook University Hospital, Dankook University, Cheonan, Republic of Korea
| |
Collapse
|
19
|
Samudra N, Ranasinghe K, Kirsch H, Rankin K, Miller B. Etiology and Clinical Significance of Network Hyperexcitability in Alzheimer's Disease: Unanswered Questions and Next Steps. J Alzheimers Dis 2023; 92:13-27. [PMID: 36710680 DOI: 10.3233/jad-220983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Cortical network hyperexcitability related to synaptic dysfunction in Alzheimer's disease (AD) is a potential target for therapeutic intervention. In recent years, there has been increased interest in the prevalence of silent seizures and interictal epileptiform discharges (IEDs, or seizure tendency), with both entities collectively termed "subclinical epileptiform activity" (SEA), on neurophysiologic studies in AD patients. SEA has been demonstrated to be common in AD, with prevalence estimates ranging between 22-54%. Converging lines of basic and clinical evidence imply that modifying a hyperexcitable state results in an improvement in cognition. In particular, though these results require further confirmation, post-hoc findings from a recent phase II clinical trial suggest a therapeutic effect with levetiracetam administration in patients with AD and IEDs. Here, we review key unanswered questions as well as potential clinical trial avenues. Specifically, we discuss postulated mechanisms and treatment of hyperexcitability in patients with AD, which are of interest in designing future disease-modifying therapies. Criteria to prompt screening and optimal screening methodology for hyperexcitability have yet to be defined, as does timing and personalization of therapeutic intervention.
Collapse
Affiliation(s)
- Niyatee Samudra
- Memory and Aging Center, University of California, San Francisco, San Francisco, CA, USA
| | - Kamalini Ranasinghe
- Memory and Aging Center, University of California, San Francisco, San Francisco, CA, USA
| | - Heidi Kirsch
- University of California, San Francisco Comprehensive Epilepsy Center, San Francisco, CA, USA
| | - Katherine Rankin
- Memory and Aging Center, University of California, San Francisco, San Francisco, CA, USA
| | - Bruce Miller
- Memory and Aging Center, University of California, San Francisco, San Francisco, CA, USA
| |
Collapse
|
20
|
La Barbera L, Nobili A, Cauzzi E, Paoletti I, Federici M, Saba L, Giacomet C, Marino R, Krashia P, Melone M, Keller F, Mercuri NB, Viscomi MT, Conti F, D’Amelio M. Upregulation of Ca 2+-binding proteins contributes to VTA dopamine neuron survival in the early phases of Alzheimer's disease in Tg2576 mice. Mol Neurodegener 2022; 17:76. [PMID: 36434727 PMCID: PMC9700939 DOI: 10.1186/s13024-022-00580-6] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Accepted: 10/31/2022] [Indexed: 11/27/2022] Open
Abstract
BACKGROUND Recent clinical and experimental studies have highlighted the involvement of Ventral Tegmental Area (VTA) dopamine (DA) neurons for the early pathogenesis of Alzheimer's Disease (AD). We have previously described a progressive and selective degeneration of these neurons in the Tg2576 mouse model of AD, long before amyloid-beta plaque formation. The degenerative process in DA neurons is associated with an autophagy flux impairment, whose rescue can prevent neuronal loss. Impairments in autophagy can be the basis for accumulation of damaged mitochondria, leading to disturbance in calcium (Ca2+) homeostasis, and to functional and structural deterioration of DA neurons. METHODS In Tg2576 mice, we performed amperometric recordings of DA levels and analysis of dopaminergic fibers in the Nucleus Accumbens - a major component of the ventral striatum precociously affected in AD patients - together with retrograde tracing, to identify the most vulnerable DA neuron subpopulations in the VTA. Then, we focused on these neurons to analyze mitochondrial integrity and Apoptosis-inducing factor (AIF) localization by electron and confocal microscopy, respectively. Stereological cell count was also used to evaluate degeneration of DA neuron subpopulations containing the Ca2+-binding proteins Calbindin-D28K and Calretinin. The expression levels for these proteins were analyzed by western blot and confocal microscopy. Lastly, using electrophysiology and microfluorometry we analyzed VTA DA neuron intrinsic properties and cytosolic free Ca2+ levels. RESULTS We found a progressive degeneration of mesolimbic DA neurons projecting to the ventral striatum, located in the paranigral nucleus and parabrachial pigmented subnucleus of the VTA. At the onset of degeneration (3 months of age), the vulnerable DA neurons in the Tg2576 accumulate damaged mitochondria, while AIF translocates from the mitochondria to the nucleus. Although we describe an age-dependent loss of the DA neurons expressing Calbindin-D28K or Calretinin, we observed that the remaining cells upregulate the levels of Ca2+-binding proteins, and the free cytosolic levels of Ca2+ in these neurons are significantly decreased. Coherently, TUNEL-stained Tg2576 DA neurons express lower levels of Calbindin-D28K when compared with non-apoptotic cells. CONCLUSION Overall, our results suggest that the overexpression of Ca2+-binding proteins in VTA DA neurons might be an attempt of cells to survive by increasing their ability to buffer free Ca2+. Exploring strategies to overexpress Ca2+-binding proteins could be fundamental to reduce neuronal suffering and improve cognitive and non-cognitive functions in AD.
Collapse
Affiliation(s)
- Livia La Barbera
- grid.9657.d0000 0004 1757 5329Department of Medicine and Surgery, Università Campus Bio-Medico di Roma, 00128 Rome, Italy ,grid.417778.a0000 0001 0692 3437Department of Experimental Neurosciences, IRCCS Santa Lucia Foundation, 00143 Rome, Italy
| | - Annalisa Nobili
- grid.9657.d0000 0004 1757 5329Department of Medicine and Surgery, Università Campus Bio-Medico di Roma, 00128 Rome, Italy ,grid.417778.a0000 0001 0692 3437Department of Experimental Neurosciences, IRCCS Santa Lucia Foundation, 00143 Rome, Italy
| | - Emma Cauzzi
- grid.417778.a0000 0001 0692 3437Department of Experimental Neurosciences, IRCCS Santa Lucia Foundation, 00143 Rome, Italy ,grid.6530.00000 0001 2300 0941Department of Systems Medicine, University of Rome Tor Vergata, 00133 Rome, Italy
| | - Ilaria Paoletti
- grid.9657.d0000 0004 1757 5329Department of Medicine and Surgery, Università Campus Bio-Medico di Roma, 00128 Rome, Italy
| | - Mauro Federici
- grid.417778.a0000 0001 0692 3437Department of Experimental Neurosciences, IRCCS Santa Lucia Foundation, 00143 Rome, Italy
| | - Luana Saba
- grid.9657.d0000 0004 1757 5329Department of Medicine and Surgery, Università Campus Bio-Medico di Roma, 00128 Rome, Italy ,grid.417778.a0000 0001 0692 3437Department of Experimental Neurosciences, IRCCS Santa Lucia Foundation, 00143 Rome, Italy
| | - Cecilia Giacomet
- grid.6530.00000 0001 2300 0941Department of Systems Medicine, University of Rome Tor Vergata, 00133 Rome, Italy
| | - Ramona Marino
- grid.9657.d0000 0004 1757 5329Department of Medicine and Surgery, Università Campus Bio-Medico di Roma, 00128 Rome, Italy
| | - Paraskevi Krashia
- grid.417778.a0000 0001 0692 3437Department of Experimental Neurosciences, IRCCS Santa Lucia Foundation, 00143 Rome, Italy ,grid.9657.d0000 0004 1757 5329Department of Sciences and Technologies for Humans and Environment, Università Campus Bio-Medico di Roma, 00128 Rome, Italy
| | - Marcello Melone
- grid.7010.60000 0001 1017 3210Section of Neuroscience and Cell Biology, Department of Experimental and Clinical Medicine, Università Politecnica delle Marche (UNIVPM), 60020 Ancona, Italy ,Center for Neurobiology of Aging, IRCCS Istituto Nazionale Ricovero e Cura Anziani (INRCA), 60020 Ancona, Italy
| | - Flavio Keller
- grid.9657.d0000 0004 1757 5329Department of Medicine and Surgery, Università Campus Bio-Medico di Roma, 00128 Rome, Italy
| | - Nicola Biagio Mercuri
- grid.417778.a0000 0001 0692 3437Department of Experimental Neurosciences, IRCCS Santa Lucia Foundation, 00143 Rome, Italy ,grid.6530.00000 0001 2300 0941Department of Systems Medicine, University of Rome Tor Vergata, 00133 Rome, Italy
| | - Maria Teresa Viscomi
- grid.8142.f0000 0001 0941 3192Department of Life Science and Public Health; Section of Histology and Embryology, Università Cattolica del Sacro Cuore, 00168 Rome, Italy ,grid.414603.4Fondazione Policlinico Universitario “A. Gemelli”, IRCCS, 00168 Rome, Italy
| | - Fiorenzo Conti
- grid.7010.60000 0001 1017 3210Section of Neuroscience and Cell Biology, Department of Experimental and Clinical Medicine, Università Politecnica delle Marche (UNIVPM), 60020 Ancona, Italy ,Center for Neurobiology of Aging, IRCCS Istituto Nazionale Ricovero e Cura Anziani (INRCA), 60020 Ancona, Italy ,grid.7010.60000 0001 1017 3210Foundation for Molecular Medicine, Università Politecnica delle Marche, 60020 Ancona, Italy
| | - Marcello D’Amelio
- grid.9657.d0000 0004 1757 5329Department of Medicine and Surgery, Università Campus Bio-Medico di Roma, 00128 Rome, Italy ,grid.417778.a0000 0001 0692 3437Department of Experimental Neurosciences, IRCCS Santa Lucia Foundation, 00143 Rome, Italy
| |
Collapse
|
21
|
Early death in a mouse model of Alzheimer's disease exacerbated by microglial loss of TAM receptor signaling. Proc Natl Acad Sci U S A 2022; 119:e2204306119. [PMID: 36191221 PMCID: PMC9564325 DOI: 10.1073/pnas.2204306119] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Recurrent seizure is a common comorbidity in early-stage Alzheimer's disease (AD) and may contribute to AD pathogenesis and cognitive decline. Similarly, many mouse models of Alzheimer's disease that overproduce amyloid beta are prone to epileptiform seizures that may result in early sudden death. We studied one such model, designated APP/PS1, and found that mutation of the TAM receptor tyrosine kinase (RTK) Mer or its ligand Gas6 greatly exacerbated early death. Lethality was tied to violent seizures that appeared to initiate in the dentate gyrus (DG) of the hippocampus, where Mer plays an essential role in the microglial phagocytosis of both apoptotic and newborn cells normally generated during adult neurogenesis. We found that newborn DG neurons and excitatory synapses between the DG and the cornu ammonis field 3 (CA3) field of the hippocampus were increased in TAM-deficient mice, and that premature death and adult neurogenesis in these mice were coincident. In contrast, the incidence of lethal seizures and the deposition of dense-core amyloid plaques were strongly anticorrelated. Together, these results argue that TAM-mediated phagocytosis sculpts synaptic connectivity in the hippocampus, and that seizure-inducing amyloid beta polymers are present prior to the formation of dense-core plaques.
Collapse
|
22
|
Zhang D, Chen S, Xu S, Wu J, Zhuang Y, Cao W, Chen X, Li X. The clinical correlation between Alzheimer's disease and epilepsy. Front Neurol 2022; 13:922535. [PMID: 35937069 PMCID: PMC9352925 DOI: 10.3389/fneur.2022.922535] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Accepted: 06/30/2022] [Indexed: 11/17/2022] Open
Abstract
Alzheimer's disease and epilepsy are common nervous system diseases in older adults, and their incidence rates tend to increase with age. Patients with mild cognitive impairment and Alzheimer's disease are more prone to have seizures. In patients older than 65 years, neurodegenerative conditions accounted for ~10% of all late-onset epilepsy cases, most of which are Alzheimer's disease. Epilepsy and seizure can occur in the early and late stages of Alzheimer's disease, leading to functional deterioration and behavioral alterations. Seizures promote amyloid-β and tau deposits, leading to neurodegenerative processes. Thus, there is a bi-directional association between Alzheimer's disease and epilepsy. Epilepsy is a risk factor for Alzheimer's disease and, in turn, Alzheimer's disease is an independent risk factor for developing epilepsy in old age. Many studies have evaluated the shared pathogenesis and clinical relevance of Alzheimer's disease and epilepsy. In this review, we discuss the clinical associations between Alzheimer's disease and epilepsy, including their incidence, clinical features, and electroencephalogram abnormalities. Clinical studies of the two disorders in recent years are summarized, and new antiepileptic drugs used for treating Alzheimer's disease are reviewed.
Collapse
|
23
|
Mechanisms Involved in Epileptogenesis in Alzheimer's Disease and Their Therapeutic Implications. Int J Mol Sci 2022; 23:ijms23084307. [PMID: 35457126 PMCID: PMC9030029 DOI: 10.3390/ijms23084307] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2022] [Revised: 04/09/2022] [Accepted: 04/11/2022] [Indexed: 12/22/2022] Open
Abstract
Epilepsy and Alzheimer's disease (AD) incidence increases with age. There are reciprocal relationships between epilepsy and AD. Epilepsy is a risk factor for AD and, in turn, AD is an independent risk factor for developing epilepsy in old age, and abnormal AD biomarkers in PET and/or CSF are frequently found in late-onset epilepsies of unknown etiology. Accordingly, epilepsy and AD share pathophysiological processes, including neuronal hyperexcitability and an early excitatory-inhibitory dysregulation, leading to dysfunction in the inhibitory GABAergic and excitatory glutamatergic systems. Moreover, both β-amyloid and tau protein aggregates, the anatomopathological hallmarks of AD, have proepileptic effects. Finally, these aggregates have been found in the resection material of refractory temporal lobe epilepsies, suggesting that epilepsy leads to amyloid and tau aggregates. Some epileptic syndromes, such as medial temporal lobe epilepsy, share structural and functional neuroimaging findings with AD, leading to overlapping symptomatology, such as episodic memory deficits and toxic synergistic effects. In this respect, the existence of epileptiform activity and electroclinical seizures in AD appears to accelerate the progression of cognitive decline, and the presence of cognitive decline is much more prevalent in epileptic patients than in elderly patients without epilepsy. Notwithstanding their clinical significance, the diagnosis of clinical seizures in AD is a challenge. Most are focal and manifest with an altered level of consciousness without motor symptoms, and are often interpreted as cognitive fluctuations. Finally, despite the frequent association of epilepsy and AD dementia, there is a lack of clinical trials to guide the use of antiseizure medications (ASMs). There is also a potential role for ASMs to be used as disease-modifying drugs in AD.
Collapse
|
24
|
B. Szabo A, Cretin B, Gérard F, Curot J, J. Barbeau E, Pariente J, Dahan L, Valton L. Sleep: The Tip of the Iceberg in the Bidirectional Link Between Alzheimer's Disease and Epilepsy. Front Neurol 2022; 13:836292. [PMID: 35481265 PMCID: PMC9035794 DOI: 10.3389/fneur.2022.836292] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Accepted: 02/14/2022] [Indexed: 11/13/2022] Open
Abstract
The observation that a pathophysiological link might exist between Alzheimer's disease (AD) and epilepsy dates back to the identification of the first cases of the pathology itself and is now strongly supported by an ever-increasing mountain of literature. An overwhelming majority of data suggests not only a higher prevalence of epilepsy in Alzheimer's disease compared to healthy aging, but also that AD patients with a comorbid epileptic syndrome, even subclinical, have a steeper cognitive decline. Moreover, clinical and preclinical investigations have revealed a marked sleep-related increase in the frequency of epileptic activities. This characteristic might provide clues to the pathophysiological pathways underlying this comorbidity. Furthermore, the preferential sleep-related occurrence of epileptic events opens up the possibility that they might hasten cognitive decline by interfering with the delicately orchestrated synchrony of oscillatory activities implicated in sleep-related memory consolidation. Therefore, we scrutinized the literature for mechanisms that might promote sleep-related epileptic activity in AD and, possibly dementia onset in epilepsy, and we also aimed to determine to what degree and through which processes such events might alter the progression of AD. Finally, we discuss the implications for patient care and try to identify a common basis for methodological considerations for future research and clinical practice.
Collapse
Affiliation(s)
- Anna B. Szabo
- Centre de Recherches sur la Cognition Animale, Centre de Biologie Intégrative, Université de Toulouse, CNRS, UPS, Toulouse, France
- Centre de Recherche Cerveau & Cognition (CerCo), UMR 5549, CNRS-UPS, Toulouse, France
- *Correspondence: Anna B. Szabo
| | - Benjamin Cretin
- Clinical Neuropsychology Unit, Neurology Department, CM2R (Memory Resource and Research Centre), University Hospital of Strasbourg, Strasbourg, France
- CNRS, ICube Laboratory, UMR 7357 and FMTS (Fédération de Médecine Translationnelle de Strasbourg), Team IMIS, University of Strasbourg, Strasbourg, France
- CMRR d'Alsace, Service de Neurologie des Hôpitaux Universitaires de Strasbourg, Pôle Tête et Cou, Strasbourg, France
| | - Fleur Gérard
- Centre de Recherche Cerveau & Cognition (CerCo), UMR 5549, CNRS-UPS, Toulouse, France
- Neurology Department, Hôpital Purpan Centre Hospitalier Universitaire de Toulouse, Toulouse, France
| | - Jonathan Curot
- Centre de Recherche Cerveau & Cognition (CerCo), UMR 5549, CNRS-UPS, Toulouse, France
- Neurology Department, Hôpital Purpan Centre Hospitalier Universitaire de Toulouse, Toulouse, France
| | - Emmanuel J. Barbeau
- Centre de Recherche Cerveau & Cognition (CerCo), UMR 5549, CNRS-UPS, Toulouse, France
| | - Jérémie Pariente
- Neurology Department, Hôpital Purpan Centre Hospitalier Universitaire de Toulouse, Toulouse, France
- Toulouse NeuroImaging Center (ToNIC), INSERM-University of Toulouse Paul Sabatier, Toulouse, France
| | - Lionel Dahan
- Centre de Recherches sur la Cognition Animale, Centre de Biologie Intégrative, Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Luc Valton
- Centre de Recherche Cerveau & Cognition (CerCo), UMR 5549, CNRS-UPS, Toulouse, France
- Neurology Department, Hôpital Purpan Centre Hospitalier Universitaire de Toulouse, Toulouse, France
- Luc Valton
| |
Collapse
|
25
|
Hanke JM, Schindler KA, Seiler A. On the relationships between epilepsy, sleep, and Alzheimer's disease: A narrative review. Epilepsy Behav 2022; 129:108609. [PMID: 35176650 DOI: 10.1016/j.yebeh.2022.108609] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 02/01/2022] [Accepted: 02/01/2022] [Indexed: 12/21/2022]
Abstract
Epilepsy, sleep, and Alzheimer's disease (AD) are tightly and potentially causally interconnected. The aim of our review was to investigate current research directions on these relationships. Our hope is that they may indicate preventive measures and new treatment options for early neurodegeneration. We included articles that assessed all three topics and were published during the last ten years. We found that this literature corroborates connections on various pathophysiological levels, including sleep-stage-related epileptiform activity in AD, the negative consequences of different sleep disorders on epilepsy and cognition, common biochemical pathways as well as network dysfunctions. Here we provide a detailed overview of these topics and we discuss promising diagnostic and therapeutic consequences.
Collapse
Affiliation(s)
- Julie M Hanke
- Department of Neurology, Inselspital, Sleep-Wake-Epilepsy-Center, Bern University Hospital, University Bern, Bern, Switzerland
| | - Kaspar A Schindler
- Department of Neurology, Inselspital, Sleep-Wake-Epilepsy-Center, Bern University Hospital, University Bern, Bern, Switzerland
| | - Andrea Seiler
- Department of Neurology, Inselspital, Sleep-Wake-Epilepsy-Center, Bern University Hospital, University Bern, Bern, Switzerland.
| |
Collapse
|
26
|
Das R, Luczak A. Epileptic seizures and link to memory processes. AIMS Neurosci 2022; 9:114-127. [PMID: 35434278 PMCID: PMC8941196 DOI: 10.3934/neuroscience.2022007] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Revised: 02/17/2022] [Accepted: 03/01/2022] [Indexed: 12/02/2022] Open
Abstract
Epileptogenesis is a complex and not well understood phenomenon. Here, we explore the hypothesis that epileptogenesis could be "hijacking" normal memory processes, and how this hypothesis may provide new directions for epilepsy treatment. First, we review similarities between the hypersynchronous circuits observed in epilepsy and memory consolidation processes involved in strengthening neuronal connections. Next, we describe the kindling model of seizures and its relation to long-term potentiation model of synaptic plasticity. We also examine how the strengthening of epileptic circuits is facilitated during the physiological slow wave sleep, similarly as episodic memories. Furthermore, we present studies showing that specific memories can directly trigger reflex seizures. The neuronal hypersynchrony in early stages of Alzheimer's disease, and the use of anti-epileptic drugs to improve the cognitive symptoms in this disease also suggests a connection between memory systems and epilepsy. Given the commonalities between memory processes and epilepsy, we propose that therapies for memory disorders might provide new avenues for treatment of epileptic patients.
Collapse
Affiliation(s)
- Ritwik Das
- Department of Neuroscience, Canadian Centre for Behavioural Neuroscience, University of Lethbridge, Lethbridge, AB, Canada
| | - Artur Luczak
- Department of Neuroscience, Canadian Centre for Behavioural Neuroscience, University of Lethbridge, Lethbridge, AB, Canada
| |
Collapse
|
27
|
Dun C, Zhang Y, Yin J, Su B, Peng X, Liu L. Bi-directional associations of epilepsy with dementia and Alzheimer's disease: a systematic review and meta-analysis of longitudinal studies. Age Ageing 2022; 51:6548793. [PMID: 35290432 DOI: 10.1093/ageing/afac010] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Indexed: 01/03/2023] Open
Abstract
OBJECTIVE To assess the bi-directional associations of epilepsy with dementia and Alzheimer's disease (AD). METHODS We searched PubMed, Embase and the Cochrane Library for longitudinal studies assessing the associations of epilepsy with dementia and AD up to 4 August 2021. Two authors independently extracted study characteristics, exposures, outcomes and covariates. Summary hazard ratios (HRs) and 95% confidence intervals (CIs) were pooled using a random effects model. RESULTS From 8,545 articles identified in the initial research, 27 publications describing 20 longitudinal studies were included in the final analyses. There were 10 studies on epilepsy predicting risk of dementia, 5 studies on epilepsy predicting risk of AD, 11 studies on dementia predicting risk of epilepsy, and 6 studies on AD predicting risk of epilepsy. Baseline epilepsy was associated with higher risk of dementia (pooled HR 2.00; 95% CI 1.73-2.33) and AD (pooled HR 1.81; 95% CI 1.19-2.75). The pooled HRs for epilepsy associated with baseline dementia and AD were 2.91 (95% CI) 2.11-4.01) and 3.11 (95% CI 2.47-3.90), respectively. These positive associations persisted in sensitivity and subgroup analyses. CONCLUSIONS Our findings suggested positive and bi-directional associations of epilepsy with dementia and AD. However, these associations should be carefully interpreted due to the presence of substantial heterogeneity, and they need to be verified in additional high-quality studies.
Collapse
Affiliation(s)
- Changchang Dun
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
- Ministry of Education Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Yaqi Zhang
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
- Ministry of Education Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Jiawei Yin
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
- Ministry of Education Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Binbin Su
- PKU-APEC Health Science Academy, Institute of Population Research, Peking University, Beijing 100000, China
| | - Xiaobo Peng
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
- Ministry of Education Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Liegang Liu
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
- Ministry of Education Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| |
Collapse
|
28
|
Beyond Seizure Control: Treating Comorbidities in Epilepsy via Targeting of the P2X7 Receptor. Int J Mol Sci 2022; 23:ijms23042380. [PMID: 35216493 PMCID: PMC8875404 DOI: 10.3390/ijms23042380] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2022] [Revised: 02/17/2022] [Accepted: 02/18/2022] [Indexed: 12/17/2022] Open
Abstract
Epilepsy is one of the most common chronic diseases of the central nervous system (CNS). Treatment of epilepsy remains, however, a clinical challenge with over 30% of patients not responding to current pharmacological interventions. Complicating management of treatment, epilepsy comes with multiple comorbidities, thereby further reducing the quality of life of patients. Increasing evidence suggests purinergic signalling via extracellularly released ATP as shared pathological mechanisms across numerous brain diseases. Once released, ATP activates specific purinergic receptors, including the ionotropic P2X7 receptor (P2X7R). Among brain diseases, the P2X7R has attracted particular attention as a therapeutic target. The P2X7R is an important driver of inflammation, and its activation requires high levels of extracellular ATP to be reached under pathological conditions. Suggesting the therapeutic potential of drugs targeting the P2X7R for epilepsy, P2X7R expression increases following status epilepticus and during epilepsy, and P2X7R antagonism modulates seizure severity and epilepsy development. P2X7R antagonism has, however, also been shown to be effective in treating conditions most commonly associated with epilepsy such as psychiatric disorders and cognitive deficits, which suggests that P2X7R antagonisms may provide benefits beyond seizure control. This review summarizes the evidence suggesting drugs targeting the P2X7R as a novel treatment strategy for epilepsy with a particular focus of its potential impact on epilepsy-associated comorbidities.
Collapse
|
29
|
Huffels CFM, Osborn LM, Hulshof LA, Kooijman L, Henning L, Steinhäuser C, Hol EM. Amyloid-β plaques affect astrocyte Kir4.1 protein expression but not function in the dentate gyrus of APP/PS1 mice. Glia 2022; 70:748-767. [PMID: 34981861 PMCID: PMC9306581 DOI: 10.1002/glia.24137] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 12/16/2021] [Accepted: 12/17/2021] [Indexed: 01/09/2023]
Abstract
Alzheimer pathology is accompanied by astrogliosis. Reactive astrocytes surrounding amyloid plaques may directly affect neuronal communication, and one of the mechanisms by which astrocytes impact neuronal function is by affecting K+ homeostasis. Here we studied, using hippocampal slices from 9‐month‐old Alzheimer mice (APP/PS1) and wild‐type littermates, whether astrocyte function is changed by analyzing Kir4.1 expression and function and astrocyte coupling in astrocytes surrounding amyloid‐β plaques. Immunohistochemical analysis of Kir4.1 protein in the dentate gyrus revealed localized increases in astrocytes surrounding amyloid‐β plaque deposits. We subsequently focused on changes in astrocyte function by using patch‐clamp slice electrophysiology on both plaque‐ and non‐plaque associated astrocytes to characterize general membrane properties. We found that Ba2+‐sensitive Kir4.1 conductance in astrocytes surrounding plaques was not affected by changes in Kir4.1 protein expression. Additional analysis of astrocyte gap junction coupling efficiency in the dentate gyrus revealed no apparent changes. Quantification of basic features of glutamatergic transmission to granule cells did not indicate disturbed neuronal communication in the dentate gyrus of APP/PS1 mice. Together, these results suggest that astrocytes in the dentate gyrus of APP/PS1 mice maintain their ability to buffer extracellular K+ and attempt to rectify imbalances in K+ concentration to maintain normal neuronal and synaptic function, possibly by localized increases in Kir4.1 protein expression. Our earlier transcriptomic data indicated that chronically activated astrocytes lose their neuronal support function. Here we show that, despite localized increased Kir4.1 protein expression, astrocyte Kir4.1 channel dysfunction is likely not involved in the pathogenesis of Alzheimer's disease.
Collapse
Affiliation(s)
- Christiaan F. M. Huffels
- Department of Translational Neuroscience, University Medical Center Utrecht Brain CenterUtrecht UniversityUtrechtThe Netherlands
| | - Lana M. Osborn
- Swammerdam Institute for Life Sciences, Center for NeuroscienceUniversity of AmsterdamAmsterdamThe Netherlands
| | - Lianne A. Hulshof
- Department of Translational Neuroscience, University Medical Center Utrecht Brain CenterUtrecht UniversityUtrechtThe Netherlands
| | - Lieneke Kooijman
- Swammerdam Institute for Life Sciences, Center for NeuroscienceUniversity of AmsterdamAmsterdamThe Netherlands
| | - Lukas Henning
- Institute of Cellular Neurosciences, Medical FacultyUniversity of BonnBonnGermany
| | | | - Elly M. Hol
- Department of Translational Neuroscience, University Medical Center Utrecht Brain CenterUtrecht UniversityUtrechtThe Netherlands
| |
Collapse
|
30
|
Yu T, Liu X, Wu J, Wang Q. Electrophysiological Biomarkers of Epileptogenicity in Alzheimer's Disease. Front Hum Neurosci 2021; 15:747077. [PMID: 34916917 PMCID: PMC8669481 DOI: 10.3389/fnhum.2021.747077] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2021] [Accepted: 11/01/2021] [Indexed: 11/13/2022] Open
Abstract
Cortical network hyperexcitability is an inextricable feature of Alzheimer’s disease (AD) that also might accelerate its progression. Seizures are reported in 10–22% of patients with AD, and subclinical epileptiform abnormalities have been identified in 21–42% of patients with AD without seizures. Accurate identification of hyperexcitability and appropriate intervention to slow the compromise of cognitive functions of AD might open up a new approach to treatment. Based on the results of several studies, epileptiform discharges, especially those with specific features (including high frequency, robust morphology, right temporal location, and occurrence during awake or rapid eye movement states), frequent small sharp spikes (SSSs), temporal intermittent rhythmic delta activities (TIRDAs), and paroxysmal slow wave events (PSWEs) recorded in long-term scalp electroencephalogram (EEG) provide sufficient sensitivity and specificity in detecting cortical network hyperexcitability and epileptogenicity of AD. In addition, magnetoencephalogram (MEG), foramen ovale (FO) electrodes, and computational approaches help to find subclinical seizures that are invisible on scalp EEGs. We performed a comprehensive analysis of the aforementioned electrophysiological biomarkers of AD-related seizures.
Collapse
Affiliation(s)
- Tingting Yu
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.,China National Clinical Research Center for Neurological Diseases, Beijing, China
| | - Xiao Liu
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.,China National Clinical Research Center for Neurological Diseases, Beijing, China
| | - Jianping Wu
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.,China National Clinical Research Center for Neurological Diseases, Beijing, China.,Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, China
| | - Qun Wang
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.,China National Clinical Research Center for Neurological Diseases, Beijing, China.,Collaborative Innovation Center for Brain Disorders, Beijing Institute of Brain Disorders, Capital Medical University, Beijing, China
| |
Collapse
|
31
|
Faught E. Restoring EEG to its Rightful Place in Alzheimer Disease Care. Epilepsy Curr 2021; 21:175-176. [PMID: 34867098 PMCID: PMC8609586 DOI: 10.1177/1535759721998656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Association of Epileptiform Abnormalities and Seizures in Alzheimer Disease Lam AD, Sarkis RA, Pellerin KR, et al. Neurology. 2020;95(16):e2259-e2270. doi:10.1212/WNL.0000000000010612 Objective: To examine the relationship between scalp electroencephalography (EEG) biomarkers of hyperexcitability in Alzheimer disease (AD) and to determine how these electric biomarkers relate to the clinical expression of seizures in AD. Methods: In this cross-sectional study, we performed 24-hour ambulatory scalp EEGs on 43 cognitively normal elderly healthy controls (HC), 41 participants with early-stage AD with no history or risk factors for epilepsy (AD-NoEp), and 15 participants with early-stage AD with late-onset epilepsy related to AD (AD-Ep). Two epileptologists blinded to diagnosis visually reviewed all EEGs and annotated all potential epileptiform abnormalities. A panel of 9 epileptologists blinded to diagnosis was then surveyed to generate a consensus interpretation of epileptiform abnormalities in each EEG. Results: Epileptiform abnormalities were seen in 53% of AD-Ep, 22% of AD-NoEp, and 4.7% of HC. Specific features of epileptiform discharges, including high frequency, robust morphology, right temporal location, and occurrence during wakefulness and rapid eye movement (REM), were associated with clinical seizures in AD. Multiple EEG biomarkers concordantly demonstrated a pattern of left temporal lobe hyperexcitability in early stages of AD, whereas clinical seizures in AD were often associated with bitemporal hyperexcitability. Frequent small sharp spikes were specifically associated with epileptiform EEGs and thus identified as a potential biomarker of hyperexcitability in AD. Conclusion: Epileptiform abnormalities are common in AD but not all equivalent. Specific features of epileptiform discharges are associated with clinical seizures in AD. Given the difficulty recognizing clinical seizures in AD, these EEG features could provide guidance on which patients with AD are at high risk of clinical seizures.
Collapse
|
32
|
Teplyshova AM, Datieva VK. [Alzheimer disease and epilepsy]. Zh Nevrol Psikhiatr Im S S Korsakova 2021; 121:23-29. [PMID: 34870910 DOI: 10.17116/jnevro202112110223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Alzheimer Disease (AD) is a progressive neurodegenerative disorder characterized by loss of memory, difficulty in thinking, changes in behavior and personality disorders. The risk of developing epileptic seizures (ES) in patients with AD increases significantly. Animal and human studies have shown a close relationship between the pathogenesis of ES and AD. The exact prevalence of ES in AD remains unclear due to methodological difficulties, in particular, detection of ES in patients with cognitive impairment. EP types differ in sporadic and hereditary forms of AD. Antiepileptic therapy in AD has its own characteristics. Certain antiepileptic drugs can have a positive effect on cognitive function.
Collapse
Affiliation(s)
| | - V K Datieva
- State Outpatient Clinic No 62, Moscow, Russia
| |
Collapse
|
33
|
Giesers NK, Wirths O. Loss of Hippocampal Calretinin and Parvalbumin Interneurons in the 5XFAD Mouse Model of Alzheimer's Disease. ASN Neuro 2021; 12:1759091420925356. [PMID: 32423230 PMCID: PMC7238451 DOI: 10.1177/1759091420925356] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
The deposition of amyloid-β peptides in the form of extracellular plaques
and neuronal degeneration belong to the hallmark features of
Alzheimer’s disease (AD). In addition, impaired calcium homeostasis
and altered levels in calcium-binding proteins seem to be associated
with the disease process. In this study, calretinin- (CR) and
parvalbumin- (PV) positive gamma-aminobutyric acid-producing
(GABAergic) interneurons were quantified in different hippocampal
subfields of 12-month-old wild-type mice, as well as in the transgenic
AD mouse models 5XFAD and Tg4-42. While, in comparison with wild-type
mice, CR-positive interneurons were mainly reduced in the CA1 and
CA2/3 regions in plaque-bearing 5XFAD mice, PV-positive interneurons
were reduced in all analyzed subfields including the dentate gyrus. No
reduction in CR- and PV-positive interneuron numbers was detected in
the non-plaque-forming Tg4-42 mouse, although this model has been
previously demonstrated to harbor a massive loss of CA1 pyramidal
neurons. These results provide information about hippocampal
interneuron numbers in two relevant AD mouse models, suggesting that
interneuron loss in this brain region may be related to extracellular
amyloid burden.
Collapse
Affiliation(s)
- Naomi K Giesers
- Department of Psychiatry and Psychotherapy, Molecular Psychiatry, University Medical Center (UMG), Georg-August-University, Göttingen, Germany
| | - Oliver Wirths
- Department of Psychiatry and Psychotherapy, Molecular Psychiatry, University Medical Center (UMG), Georg-August-University, Göttingen, Germany
| |
Collapse
|
34
|
Tok S, Ahnaou A, Drinkenburg W. Functional Neurophysiological Biomarkers of Early-Stage Alzheimer's Disease: A Perspective of Network Hyperexcitability in Disease Progression. J Alzheimers Dis 2021; 88:809-836. [PMID: 34420957 PMCID: PMC9484128 DOI: 10.3233/jad-210397] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Network hyperexcitability (NH) has recently been suggested as a potential neurophysiological indicator of Alzheimer’s disease (AD), as new, more accurate biomarkers of AD are sought. NH has generated interest as a potential indicator of certain stages in the disease trajectory and even as a disease mechanism by which network dysfunction could be modulated. NH has been demonstrated in several animal models of AD pathology and multiple lines of evidence point to the existence of NH in patients with AD, strongly supporting the physiological and clinical relevance of this readout. Several hypotheses have been put forward to explain the prevalence of NH in animal models through neurophysiological, biochemical, and imaging techniques. However, some of these hypotheses have been built on animal models with limitations and caveats that may have derived NH through other mechanisms or mechanisms without translational validity to sporadic AD patients, potentially leading to an erroneous conclusion of the underlying cause of NH occurring in patients with AD. In this review, we discuss the substantiation for NH in animal models of AD pathology and in human patients, as well as some of the hypotheses considering recently developed animal models that challenge existing hypotheses and mechanisms of NH. In addition, we provide a preclinical perspective on how the development of animal models incorporating AD-specific NH could provide physiologically relevant translational experimental data that may potentially aid the discovery and development of novel therapies for AD.
Collapse
Affiliation(s)
- Sean Tok
- Department of Neuroscience, Janssen Research & Development, Janssen Pharmaceutica NV, Beerse, Belgium.,Groningen Institute for Evolutionary Life Sciences, Faculty of Science and Engineering, University of Groningen, The Netherlands
| | - Abdallah Ahnaou
- Department of Neuroscience, Janssen Research & Development, Janssen Pharmaceutica NV, Beerse, Belgium
| | - Wilhelmus Drinkenburg
- Department of Neuroscience, Janssen Research & Development, Janssen Pharmaceutica NV, Beerse, Belgium.,Groningen Institute for Evolutionary Life Sciences, Faculty of Science and Engineering, University of Groningen, The Netherlands
| |
Collapse
|
35
|
Tait L, Lopes MA, Stothart G, Baker J, Kazanina N, Zhang J, Goodfellow M. A large-scale brain network mechanism for increased seizure propensity in Alzheimer's disease. PLoS Comput Biol 2021; 17:e1009252. [PMID: 34379638 PMCID: PMC8382184 DOI: 10.1371/journal.pcbi.1009252] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Revised: 08/23/2021] [Accepted: 07/06/2021] [Indexed: 11/19/2022] Open
Abstract
People with Alzheimer's disease (AD) are 6-10 times more likely to develop seizures than the healthy aging population. Leading hypotheses largely consider hyperexcitability of local cortical tissue as primarily responsible for increased seizure prevalence in AD. However, in the general population of people with epilepsy, large-scale brain network organization additionally plays a role in determining seizure likelihood and phenotype. Here, we propose that alterations to large-scale brain network organization seen in AD may contribute to increased seizure likelihood. To test this hypothesis, we combine computational modelling with electrophysiological data using an approach that has proved informative in clinical epilepsy cohorts without AD. EEG was recorded from 21 people with probable AD and 26 healthy controls. At the time of EEG acquisition, all participants were free from seizures. Whole brain functional connectivity derived from source-reconstructed EEG recordings was used to build subject-specific brain network models of seizure transitions. As cortical tissue excitability was increased in the simulations, AD simulations were more likely to transition into seizures than simulations from healthy controls, suggesting an increased group-level probability of developing seizures at a future time for AD participants. We subsequently used the model to assess seizure propensity of different regions across the cortex. We found the most important regions for seizure generation were those typically burdened by amyloid-beta at the early stages of AD, as previously reported by in-vivo and post-mortem staging of amyloid plaques. Analysis of these spatial distributions also give potential insight into mechanisms of increased susceptibility to generalized (as opposed to focal) seizures in AD vs controls. This research suggests avenues for future studies testing patients with seizures, e.g. co-morbid AD/epilepsy patients, and comparisons with PET and MRI scans to relate regional seizure propensity with AD pathologies.
Collapse
Affiliation(s)
- Luke Tait
- Cardiff University Brain Research Imaging Centre, Cardiff University, Cardiff, United Kingdom
| | - Marinho A. Lopes
- Cardiff University Brain Research Imaging Centre, Cardiff University, Cardiff, United Kingdom
| | - George Stothart
- Department of Psychology, University of Bath, Bath, United Kingdom
| | - John Baker
- Dementia Research Centre, Queen Square Institute of Neurology, UCL, London, United Kingdom
| | - Nina Kazanina
- School of Psychological Science, University of Bristol, Bristol, United Kingdom
| | - Jiaxiang Zhang
- Cardiff University Brain Research Imaging Centre, Cardiff University, Cardiff, United Kingdom
| | - Marc Goodfellow
- Living Systems Institute, University of Exeter, Exeter, United Kingdom
| |
Collapse
|
36
|
Schindler KA, Rahimi A. A Primer on Hyperdimensional Computing for iEEG Seizure Detection. Front Neurol 2021; 12:701791. [PMID: 34354666 PMCID: PMC8329339 DOI: 10.3389/fneur.2021.701791] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Accepted: 06/18/2021] [Indexed: 11/13/2022] Open
Abstract
A central challenge in today's care of epilepsy patients is that the disease dynamics are severely under-sampled in the currently typical setting with appointment-based clinical and electroencephalographic examinations. Implantable devices to monitor electrical brain signals and to detect epileptic seizures may significantly improve this situation and may inform personalized treatment on an unprecedented scale. These implantable devices should be optimized for energy efficiency and compact design. Energy efficiency will ease their maintenance by reducing the time of recharging, or by increasing the lifetime of their batteries. Biological nervous systems use an extremely small amount of energy for information processing. In recent years, a number of methods, often collectively referred to as brain-inspired computing, have also been developed to improve computation in non-biological hardware. Here, we give an overview of one of these methods, which has in particular been inspired by the very size of brains' circuits and termed hyperdimensional computing. Using a tutorial style, we set out to explain the key concepts of hyperdimensional computing including very high-dimensional binary vectors, the operations used to combine and manipulate these vectors, and the crucial characteristics of the mathematical space they inhabit. We then demonstrate step-by-step how hyperdimensional computing can be used to detect epileptic seizures from intracranial electroencephalogram (EEG) recordings with high energy efficiency, high specificity, and high sensitivity. We conclude by describing potential future clinical applications of hyperdimensional computing for the analysis of EEG and non-EEG digital biomarkers.
Collapse
Affiliation(s)
- Kaspar A Schindler
- Department of Neurology, Inselspital, Sleep-Wake-Epilepsy-Center, NeuroTec, Bern University Hospital, University Bern, Bern, Switzerland
| | | |
Collapse
|
37
|
Subota A, Jetté N, Josephson CB, McMillan J, Keezer MR, Gonzalez-Izquierdo A, Holroyd-Leduc J. Risk factors for dementia development, frailty, and mortality in older adults with epilepsy - A population-based analysis. Epilepsy Behav 2021; 120:108006. [PMID: 33964541 DOI: 10.1016/j.yebeh.2021.108006] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/24/2021] [Revised: 03/25/2021] [Accepted: 04/12/2021] [Indexed: 12/18/2022]
Abstract
OBJECTIVE Although the prevalence of comorbid epilepsy and dementia is expected to increase, the impact is not well understood. Our objectives were to examine risk factors associated with incident dementia and the impact of frailty and dementia on mortality in older adults with epilepsy. METHODS The CALIBER scientific platform was used. People with incident epilepsy at or after age 65 were identified using Read codes and matched by age, sex, and general practitioner to a cohort without epilepsy (10:1). Baseline cohort characteristics were compared using conditional logistic regression models. Multivariate Cox proportional hazard regression models were used to examine the impact of frailty and dementia on mortality, and to assess risk factors for dementia development. RESULTS One thousand forty eight older adults with incident epilepsy were identified. The odds of having dementia at baseline were 7.39 [95% CI 5.21-10.50] times higher in older adults with epilepsy (n = 62, 5.92%) compared to older adults without epilepsy (n = 88, 0.86%). In the final multivariate Cox model (n = 326), age [HR: 1.20, 95% CI 1.09-1.32], Charlson comorbidity index score [HR: 1.26, 95% CI 1.10-1.44], and sleep disturbances [HR: 2.41, 95% CI 1.07-5.43] at baseline epilepsy diagnosis were significantly associated with an increased hazard of dementia development over the follow-up period. In a multivariate Cox model (n = 1047), age [HR: 1.07, 95% CI 1.03-1.11], baseline dementia [HR: 2.66, 95% CI 1.65-4.27] and baseline e-frailty index score [HR: 11.55, 95% CI 2.09-63.84] were significantly associated with a higher hazard of death among those with epilepsy. Female sex [HR: 0.77, 95% CI 0.59-0.99] was associated with a lower hazard of death. SIGNIFICANCE The odds of having dementia were higher in older adults with incident epilepsy. A higher comorbidity burden acts as a risk factor for dementia, while prevalent dementia and increasing frailty were associated with mortality.
Collapse
Affiliation(s)
- Ann Subota
- Department of Medicine, University of Calgary, North Tower, 1403-29 St NW, Calgary, AB T2N 2T9, Canada; Department of Community Health Sciences, University of Calgary, 3D10 - 3280 Hospital Drive NW, Calgary, AB T2N 4Z6, Canada
| | - Nathalie Jetté
- Department of Community Health Sciences, University of Calgary, 3D10 - 3280 Hospital Drive NW, Calgary, AB T2N 4Z6, Canada; Hotchkiss Brain Institute, University of Calgary, 1A10 - 3330 Hospital Drive NW, Calgary, AB T2N 4N1, Canada; Department of Neurology, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, Box 1137, New York, NY 10029, USA
| | - Colin B Josephson
- Department of Community Health Sciences, University of Calgary, 3D10 - 3280 Hospital Drive NW, Calgary, AB T2N 4Z6, Canada; Department of Clinical Neurosciences, University of Calgary, 1195 1403-29 Street NW, Calgary, AB T2N 2T9, Canada; Hotchkiss Brain Institute, University of Calgary, 1A10 - 3330 Hospital Drive NW, Calgary, AB T2N 4N1, Canada; Alberta Health Services, Foothills Medical Centre, 1403-29 St. NW, Calgary, Alberta T2N 2T9, Canada
| | - Jaqueline McMillan
- Department of Medicine, University of Calgary, North Tower, 1403-29 St NW, Calgary, AB T2N 2T9, Canada; Department of Community Health Sciences, University of Calgary, 3D10 - 3280 Hospital Drive NW, Calgary, AB T2N 4Z6, Canada; Alberta Health Services, Foothills Medical Centre, 1403-29 St. NW, Calgary, Alberta T2N 2T9, Canada; O'Brien Institute for Public Health, University of Calgary, 3rd Floor TRW Building, 3280 Hospital Drive NW, Calgary, AB T2N 4Z6, Canada
| | - Mark R Keezer
- Research Center of the Centre Hospitalier de l'Université de Montréal, 1051 Rue Sanguinet, Montréal, QC H2X 3E4, Canada
| | - Arturo Gonzalez-Izquierdo
- Institute of Health Informatics, University College London, 222 Euston Rd, London NW1 2DA, United Kingdom
| | - Jayna Holroyd-Leduc
- Department of Medicine, University of Calgary, North Tower, 1403-29 St NW, Calgary, AB T2N 2T9, Canada; Department of Community Health Sciences, University of Calgary, 3D10 - 3280 Hospital Drive NW, Calgary, AB T2N 4Z6, Canada; Hotchkiss Brain Institute, University of Calgary, 1A10 - 3330 Hospital Drive NW, Calgary, AB T2N 4N1, Canada; Alberta Health Services, Foothills Medical Centre, 1403-29 St. NW, Calgary, Alberta T2N 2T9, Canada; O'Brien Institute for Public Health, University of Calgary, 3rd Floor TRW Building, 3280 Hospital Drive NW, Calgary, AB T2N 4Z6, Canada.
| |
Collapse
|
38
|
Sun L, Shan W, Yang H, Liu R, Wu J, Wang Q. The Role of Neuroinflammation in Post-traumatic Epilepsy. Front Neurol 2021; 12:646152. [PMID: 34122298 PMCID: PMC8194282 DOI: 10.3389/fneur.2021.646152] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2020] [Accepted: 05/05/2021] [Indexed: 01/03/2023] Open
Abstract
Post-traumatic epilepsy (PTE) is one of the consequences after traumatic brain injury (TBI), which increases the morbidity and mortality of survivors. About 20% of patients with TBI will develop PTE, and at least one-third of them are resistant to conventional antiepileptic drugs (AEDs). Therefore, it is of utmost importance to explore the mechanisms underlying PTE from a new perspective. More recently, neuroinflammation has been proposed to play a significant role in epileptogenesis. This review focuses particularly on glial cells activation, peripheral leukocytes infiltration, inflammatory cytokines release and chronic neuroinflammation occurrence post-TBI. Although the immune response to TBI appears to be primarily pro-epileptogenic, further research is needed to clarify the causal relationships. A better understanding of how neuroinflammation contributes to the development of PTE is of vital importance. Novel prevention and treatment strategies based on the neuroinflammatory mechanisms underlying epileptogenesis are evidently needed. Search Strategy Search MeSH Terms in pubmed: "["Epilepsy"(Mesh)] AND "Brain Injuries, Traumatic"[Mesh]". Published in last 30 years. 160 results were founded. Full text available:145 results. Record screened manually related to Neuroinflammation and Post-traumatic epilepsy. Then finally 123 records were included.
Collapse
Affiliation(s)
- Lei Sun
- Beijing Tiantan Hospital, Capital Medical University, Beijing, China.,Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, China.,National Center for Clinical Medicine of Neurological Diseases, Beijing, China
| | - Wei Shan
- Beijing Tiantan Hospital, Capital Medical University, Beijing, China.,Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, China.,National Center for Clinical Medicine of Neurological Diseases, Beijing, China
| | - Huajun Yang
- Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, China.,Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Ru Liu
- Beijing Tiantan Hospital, Capital Medical University, Beijing, China.,Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, China.,National Center for Clinical Medicine of Neurological Diseases, Beijing, China
| | - Jianping Wu
- Beijing Tiantan Hospital, Capital Medical University, Beijing, China.,Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, China.,National Center for Clinical Medicine of Neurological Diseases, Beijing, China
| | - Qun Wang
- Beijing Tiantan Hospital, Capital Medical University, Beijing, China.,National Center for Clinical Medicine of Neurological Diseases, Beijing, China.,Beijing Institute for Brain Disorders, Beijing, China
| |
Collapse
|
39
|
Lauterborn JC, Scaduto P, Cox CD, Schulmann A, Lynch G, Gall CM, Keene CD, Limon A. Increased excitatory to inhibitory synaptic ratio in parietal cortex samples from individuals with Alzheimer's disease. Nat Commun 2021; 12:2603. [PMID: 33972518 PMCID: PMC8110554 DOI: 10.1038/s41467-021-22742-8] [Citation(s) in RCA: 70] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Accepted: 03/24/2021] [Indexed: 02/08/2023] Open
Abstract
Synaptic disturbances in excitatory to inhibitory (E/I) balance in forebrain circuits are thought to contribute to the progression of Alzheimer's disease (AD) and dementia, although direct evidence for such imbalance in humans is lacking. We assessed anatomical and electrophysiological synaptic E/I ratios in post-mortem parietal cortex samples from middle-aged individuals with AD (early-onset) or Down syndrome (DS) by fluorescence deconvolution tomography and microtransplantation of synaptic membranes. Both approaches revealed significantly elevated E/I ratios for AD, but not DS, versus controls. Gene expression studies in an independent AD cohort also demonstrated elevated E/I ratios in individuals with AD as compared to controls. These findings provide evidence of a marked pro-excitatory perturbation of synaptic E/I balance in AD parietal cortex, a region within the default mode network that is overly active in the disorder, and support the hypothesis that E/I imbalances disrupt cognition-related shifts in cortical activity which contribute to the intellectual decline in AD.
Collapse
Affiliation(s)
- Julie C Lauterborn
- Department of Anatomy and Neurobiology, University of California at Irvine, Irvine, CA, USA.
| | - Pietro Scaduto
- Department of Neurology, Mitchell Center for Neurodegenerative Diseases. School of Medicine, University of Texas Medical Branch at Galveston, Galveston, USA
| | - Conor D Cox
- Department of Anatomy and Neurobiology, University of California at Irvine, Irvine, CA, USA
| | - Anton Schulmann
- National Institute of Mental Health, Human Genetics Branch, Bethesda, MD, USA
| | - Gary Lynch
- Department of Anatomy and Neurobiology, University of California at Irvine, Irvine, CA, USA
- Department of Psychiatry & Human Behavior, University of California at Irvine, Irvine, CA, 92697, USA
| | - Christine M Gall
- Department of Anatomy and Neurobiology, University of California at Irvine, Irvine, CA, USA
| | - C Dirk Keene
- Department of Laboratory Medicine and Pathology, University of Washington School of Medicine, Seattle, WA, USA
| | - Agenor Limon
- Department of Neurology, Mitchell Center for Neurodegenerative Diseases. School of Medicine, University of Texas Medical Branch at Galveston, Galveston, USA.
| |
Collapse
|
40
|
Akrout Brizard B, Limbu B, Baeza-Velasco C, Deb S. Association between epilepsy and psychiatric disorders in adults with intellectual disabilities: systematic review and meta-analysis. BJPsych Open 2021; 7:e95. [PMID: 33938422 PMCID: PMC8142548 DOI: 10.1192/bjo.2021.55] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
BACKGROUND Psychiatric disorders, such as depression and anxiety, are commonly associated with epilepsy in the general population, but the relationship between psychiatric disorders and epilepsy among adults with intellectual disabilities is unclear. AIMS To conduct a systematic review and meta-analysis to assess whether epilepsy is associated with an increased rate of psychiatric disorders in adults with intellectual disabilities. METHOD We included literature published between 1985 and 2020 from four databases, and hand-searched six relevant journals. We assessed risk of bias by using SIGN 50 and the Cochrane risk of bias tool. Several meta-analyses were carried out. RESULTS We included 29 papers involving data on 9594 adults with intellectual disabilities, 3180 of whom had epilepsy and 6414 did not. Of the 11 controlled studies that compared the overall rate of psychiatric disorders between the epilepsy and non-epilepsy groups, seven did not show any significant inter-group difference. Meta-analysis was possible on pooled data from seven controlled studies, which did not show any significant inter-group difference in the overall rate of psychiatric disorders. The rates of psychotic disorders, depressive disorders and anxiety disorders were significantly higher in the non-epilepsy control groups compared with the epilepsy group, with effect sizes of 0.29, 0.47 and 0.58, respectively. Epilepsy-related factors did not show any definite association with psychiatric disorders. CONCLUSIONS It is difficult to pool data from such heterogeneous studies and draw any definitive conclusion because most studies lacked an appropriately matched control group, which will be required for future studies.
Collapse
Affiliation(s)
- Basma Akrout Brizard
- Université de Paris, Laboratory of Psychopathology and Health Processes, F-92100 Boulogne Billancourt, France
| | - Bharati Limbu
- Department of Brain Sciences, Faculty of Medicine, Imperial College London, UK
| | - Carolina Baeza-Velasco
- Laboratory of Psychopathology and Health Processes, Université de Paris, France; and Department of Emergency Psychiatry and Acute Care, CHU Montpellier, France
| | - Shoumitro Deb
- Division of Psychiatry, Department of Brain Sciences, Faculty of Medicine, Imperial College London, UK
| |
Collapse
|
41
|
Neuronal Network Excitability in Alzheimer's Disease: The Puzzle of Similar versus Divergent Roles of Amyloid β and Tau. eNeuro 2021; 8:ENEURO.0418-20.2020. [PMID: 33741601 PMCID: PMC8174042 DOI: 10.1523/eneuro.0418-20.2020] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Revised: 12/02/2020] [Accepted: 12/18/2020] [Indexed: 12/12/2022] Open
Abstract
Alzheimer’s disease (AD) is the most frequent neurodegenerative disorder that commonly causes dementia in the elderly. Recent evidence indicates that network abnormalities, including hypersynchrony, altered oscillatory rhythmic activity, interneuron dysfunction, and synaptic depression, may be key mediators of cognitive decline in AD. In this review, we discuss characteristics of neuronal network excitability in AD, and the role of Aβ and tau in the induction of network hyperexcitability. Many patients harboring genetic mutations that lead to increased Aβ production suffer from seizures and epilepsy before the development of plaques. Similarly, pathologic accumulation of hyperphosphorylated tau has been associated with hyperexcitability in the hippocampus. We present common and divergent roles of tau and Aβ on neuronal hyperexcitability in AD, and hypotheses that could serve as a template for future experiments.
Collapse
|
42
|
Glaser T, Oliveira-Giacomelli Á, Petiz LL, Ribeiro DE, Andrejew R, Ulrich H. Antagonistic Roles of P2X7 and P2Y2 Receptors in Neurodegenerative Diseases. Front Pharmacol 2021; 12:659097. [PMID: 33912064 PMCID: PMC8072373 DOI: 10.3389/fphar.2021.659097] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Accepted: 02/23/2021] [Indexed: 11/23/2022] Open
Affiliation(s)
- Talita Glaser
- Department of Biochemistry, Institute of Chemistry, University of São Paulo, São Paulo, Brazil
| | | | - Lyvia Lintzmaier Petiz
- Department of Biochemistry, Institute of Chemistry, University of São Paulo, São Paulo, Brazil
| | - Deidiane Elisa Ribeiro
- Department of Biochemistry, Institute of Chemistry, University of São Paulo, São Paulo, Brazil
| | - Roberta Andrejew
- Department of Biochemistry, Institute of Chemistry, University of São Paulo, São Paulo, Brazil
| | - Henning Ulrich
- Department of Biochemistry, Institute of Chemistry, University of São Paulo, São Paulo, Brazil
| |
Collapse
|
43
|
Tombini M, Assenza G, Ricci L, Lanzone J, Boscarino M, Vico C, Magliozzi A, Di Lazzaro V. Temporal Lobe Epilepsy and Alzheimer's Disease: From Preclinical to Clinical Evidence of a Strong Association. J Alzheimers Dis Rep 2021; 5:243-261. [PMID: 34113782 PMCID: PMC8150253 DOI: 10.3233/adr-200286] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Increasing evidence coming from both experimental and humans' studies strongly suggest the existence of a link between epilepsy, in particular temporal lobe epilepsy (TLE), and Alzheimer's disease (AD). Patients with mild cognitive impairment and AD are more prone to have seizures, and seizures seem to facilitate amyloid-β and tau deposits, thus promoting neurodegenerative processes. Consistent with this view, long-lasting drug-resistant TLE and AD have been shown to share several pathological and neuroimaging features. Even if studies addressing prevalence of interictal and subclinical epileptiform activity in these patients are not yet conclusive, their findings raise the possibility that epileptiform activity might negatively impact memory and hasten cognitive decline, either directly or by association with unrecognized silent seizures. In addition, data about detrimental effect of network hyperexcitability in temporal regions in the premorbid and early stages ofADopen up newtherapeutic opportunities for antiseizure medications and/or antiepileptic strategies that might complement or enhance existing therapies, and potentially modify disease progression. Here we provide a review of evidence linking epileptiform activity, network hyperexcitability, and AD, and their role promoting and accelerating neurodegenerative process. Finally, the effects of antiseizure medications on cognition and their optimal administration in patients with AD are summarized.
Collapse
Affiliation(s)
- Mario Tombini
- Unit of Neurology, Neurophysiology, Neurobiology, Department of Medicine, University Campus Bio-Medico, Rome, Italy
| | - Giovanni Assenza
- Unit of Neurology, Neurophysiology, Neurobiology, Department of Medicine, University Campus Bio-Medico, Rome, Italy
| | - Lorenzo Ricci
- Unit of Neurology, Neurophysiology, Neurobiology, Department of Medicine, University Campus Bio-Medico, Rome, Italy
| | - Jacopo Lanzone
- Unit of Neurology, Neurophysiology, Neurobiology, Department of Medicine, University Campus Bio-Medico, Rome, Italy
| | - Marilisa Boscarino
- Unit of Neurology, Neurophysiology, Neurobiology, Department of Medicine, University Campus Bio-Medico, Rome, Italy
| | - Carlo Vico
- Unit of Neurology, Neurophysiology, Neurobiology, Department of Medicine, University Campus Bio-Medico, Rome, Italy
| | - Alessandro Magliozzi
- Unit of Neurology, Neurophysiology, Neurobiology, Department of Medicine, University Campus Bio-Medico, Rome, Italy
| | - Vincenzo Di Lazzaro
- Unit of Neurology, Neurophysiology, Neurobiology, Department of Medicine, University Campus Bio-Medico, Rome, Italy
| |
Collapse
|
44
|
Xu Y, Lavrencic L, Radford K, Booth A, Yoshimura S, Anstey KJ, Anderson CS, Peters R. Systematic review of coexistent epileptic seizures and Alzheimer's disease: Incidence and prevalence. J Am Geriatr Soc 2021; 69:2011-2020. [PMID: 33740274 DOI: 10.1111/jgs.17101] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Revised: 02/14/2021] [Accepted: 02/16/2021] [Indexed: 01/06/2023]
Abstract
BACKGROUND/OBJECTIVES Coexistent seizures add complexity to the burden of Alzheimer's disease (AD). We aim to estimate the incidence and prevalence of coexistent seizures and AD and summarize characteristics. DESIGN A systematic review and meta-analysis (PROSPERO protocol registration CRD42020150479). SETTING Population-, community-, hospital-, or nursing home-based. PARTICIPANTS AND MEASUREMENTS Thirty-nine studies reporting on seizure incidence and prevalence in 21,198 and 380,777 participants with AD, respectively, and AD prevalence in 727,446 participants with seizures. When statistical heterogeneity and inconsistency (assessed by Q statistic and I2 ) were not shown, rates were synthesized using random effect. RESULTS Studies were conducted in Australia, Brazil, Finland, France, Ireland, Italy, Japan, Netherlands, Portugal, Sweden, Taiwan, United Kingdom, and United States. The incidence of seizures among people with clinically diagnosed AD ranged from 4.2 to 31.5 per 1000 person-years. Prevalence of seizures among people with clinically diagnosed AD ranged from 1.5% to 12.7% generally, but it rose to the highest (49.5% of those with early-onset AD) in one study. Meta-analysis reported a combined seizure prevalence rate among people with pathologically verified AD at 16% (95% confidence interval [CI] 14-19). Prevalence of seizure in autosomal dominant AD (ADAD) ranged from 2.8% to 41.7%. Being younger was associated with higher risk of seizure occurrence. Eleven percent of people with adult-onset seizures had AD (95%CI, 7-14). CONCLUSION Seizures are common in those with AD, and seizure monitoring may be particularly important for younger adults and those with ADAD.
Collapse
Affiliation(s)
- Ying Xu
- Neuroscience Research Australia, Sydney, New South Wales, Australia.,School of Psychology, Faculty of Science, University of New South Wales, Sydney, New South Wales, Australia
| | - Louise Lavrencic
- Neuroscience Research Australia, Sydney, New South Wales, Australia.,Faculty of Medicine, University of New South Wales, Sydney, New South Wales, Australia
| | - Kylie Radford
- Neuroscience Research Australia, Sydney, New South Wales, Australia.,Faculty of Medicine, University of New South Wales, Sydney, New South Wales, Australia
| | - Andrew Booth
- School of Health and Related Research, University of Sheffield, Sheffield, UK
| | - Sohei Yoshimura
- Department of Cerebrovascular Medicine, National Cerebral and Cardiovascular Center, Suita, Japan
| | - Kaarin J Anstey
- Neuroscience Research Australia, Sydney, New South Wales, Australia.,School of Psychology, Faculty of Science, University of New South Wales, Sydney, New South Wales, Australia
| | - Craig S Anderson
- Faculty of Medicine, University of New South Wales, Sydney, New South Wales, Australia.,The George Institute for Global Health, Faculty of Medicine, University of New South Wales, Sydney, New South Wales, Australia.,The George Institute for Global Health, Peking University Health Science Centre, Beijing, China.,Neurology Department, Sydney Local Area Health District, Royal Prince Alfred Hospital, Sydney, New South Wales, Australia
| | - Ruth Peters
- Neuroscience Research Australia, Sydney, New South Wales, Australia.,School of Psychology, Faculty of Science, University of New South Wales, Sydney, New South Wales, Australia.,School of Public Health, Imperial College London, London, UK
| |
Collapse
|
45
|
La Barbera L, Vedele F, Nobili A, Krashia P, Spoleti E, Latagliata EC, Cutuli D, Cauzzi E, Marino R, Viscomi MT, Petrosini L, Puglisi-Allegra S, Melone M, Keller F, Mercuri NB, Conti F, D'Amelio M. Nilotinib restores memory function by preventing dopaminergic neuron degeneration in a mouse model of Alzheimer's Disease. Prog Neurobiol 2021; 202:102031. [PMID: 33684513 DOI: 10.1016/j.pneurobio.2021.102031] [Citation(s) in RCA: 46] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Revised: 02/15/2021] [Accepted: 02/28/2021] [Indexed: 01/18/2023]
Abstract
What happens precociously to the brain destined to develop Alzheimer's Disease (AD) still remains to be elucidated and this is one reason why effective AD treatments are missing. Recent experimental and clinical studies indicate that the degeneration of the dopaminergic (DA) neurons in the Ventral Tegmental Area (VTA) could be one of the first events occurring in AD. However, the causes of the increased vulnerability of DA neurons in AD are missing. Here, we deeply investigate the physiology of DA neurons in the VTA before, at the onset, and after onset of VTA neurodegeneration. We use the Tg2576 mouse model of AD, overexpressing a mutated form of the human APP, to identify molecular targets that can be manipulated pharmacologically. We show that in Tg2576 mice, DA neurons of the VTA at the onset of degeneration undergo slight but functionally relevant changes in their electrophysiological properties and cell morphology. Importantly, these changes are associated with accumulation of autophagosomes, suggestive of a dysfunctional autophagy, and with enhanced activation of c-Abl, a tyrosine kinase previously implicated in the pathogenesis of neurodegenerative diseases. Chronic treatment of Tg2576 mice with Nilotinib, a validated c-Abl inhibitor, reduces c-Abl phosphorylation, improves autophagy, reduces Aβ levels and - more importantly - prevents degeneration as well as functional and morphological alterations in DA neurons of the VTA. Interestingly, the drug prevents the reduction of DA outflow to the hippocampus and ameliorates hippocampal-related cognitive functions. Our results strive to identify early pathological brain changes in AD, to provide a rational basis for new therapeutic interventions able to slow down the disease progression.
Collapse
Affiliation(s)
- Livia La Barbera
- Department of Medicine and Surgery, Department of Sciences and Technologies for Humans and Environment, University Campus Bio-Medico, 00128, Rome, Italy; Department of Experimental Neurosciences, IRCCS Santa Lucia Foundation, 00143, Rome, Italy
| | - Francescangelo Vedele
- Department of Experimental Neurosciences, IRCCS Santa Lucia Foundation, 00143, Rome, Italy; Department of Systems Medicine, University of Rome Tor Vergata, 00133, Rome, Italy
| | - Annalisa Nobili
- Department of Medicine and Surgery, Department of Sciences and Technologies for Humans and Environment, University Campus Bio-Medico, 00128, Rome, Italy; Department of Experimental Neurosciences, IRCCS Santa Lucia Foundation, 00143, Rome, Italy
| | - Paraskevi Krashia
- Department of Medicine and Surgery, Department of Sciences and Technologies for Humans and Environment, University Campus Bio-Medico, 00128, Rome, Italy; Department of Experimental Neurosciences, IRCCS Santa Lucia Foundation, 00143, Rome, Italy.
| | - Elena Spoleti
- Department of Medicine and Surgery, Department of Sciences and Technologies for Humans and Environment, University Campus Bio-Medico, 00128, Rome, Italy
| | | | - Debora Cutuli
- Department of Experimental Neurosciences, IRCCS Santa Lucia Foundation, 00143, Rome, Italy; Department of Psychology, Sapienza University of Rome, 00185, Rome, Italy
| | - Emma Cauzzi
- Department of Medicine and Surgery, Department of Sciences and Technologies for Humans and Environment, University Campus Bio-Medico, 00128, Rome, Italy; School of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy
| | - Ramona Marino
- Department of Medicine and Surgery, Department of Sciences and Technologies for Humans and Environment, University Campus Bio-Medico, 00128, Rome, Italy
| | - Maria Teresa Viscomi
- Department of Experimental Neurosciences, IRCCS Santa Lucia Foundation, 00143, Rome, Italy; Department of Life Science and Public Health Section of Histology and Embryology, Università Cattolica del Sacro Cuore, 00168, Rome, Italy
| | - Laura Petrosini
- Department of Experimental Neurosciences, IRCCS Santa Lucia Foundation, 00143, Rome, Italy
| | | | - Marcello Melone
- Section of Neuroscience and Cell Biology, Department of Experimental and Clinical Medicine, Università Politecnica delle Marche (UNIVPM), 60020, Ancona, Italy; Center for Neurobiology of Aging, IRCCS Istituto Nazionale Ricovero e Cura Anziani (INRCA), 60020, Ancona, Italy
| | - Flavio Keller
- Department of Medicine and Surgery, Department of Sciences and Technologies for Humans and Environment, University Campus Bio-Medico, 00128, Rome, Italy
| | - Nicola Biagio Mercuri
- Department of Experimental Neurosciences, IRCCS Santa Lucia Foundation, 00143, Rome, Italy; Department of Systems Medicine, University of Rome Tor Vergata, 00133, Rome, Italy
| | - Fiorenzo Conti
- Section of Neuroscience and Cell Biology, Department of Experimental and Clinical Medicine, Università Politecnica delle Marche (UNIVPM), 60020, Ancona, Italy; Center for Neurobiology of Aging, IRCCS Istituto Nazionale Ricovero e Cura Anziani (INRCA), 60020, Ancona, Italy; Foundation for Molecular Medicine, Università Politecnica delle Marche, 60020, Ancona, Italy
| | - Marcello D'Amelio
- Department of Medicine and Surgery, Department of Sciences and Technologies for Humans and Environment, University Campus Bio-Medico, 00128, Rome, Italy; Department of Experimental Neurosciences, IRCCS Santa Lucia Foundation, 00143, Rome, Italy.
| |
Collapse
|
46
|
Alcantara-Gonzalez D, Chartampila E, Criscuolo C, Scharfman HE. Early changes in synaptic and intrinsic properties of dentate gyrus granule cells in a mouse model of Alzheimer's disease neuropathology and atypical effects of the cholinergic antagonist atropine. Neurobiol Dis 2021; 152:105274. [PMID: 33484828 DOI: 10.1016/j.nbd.2021.105274] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Revised: 01/09/2021] [Accepted: 01/16/2021] [Indexed: 12/19/2022] Open
Abstract
It has been reported that hyperexcitability occurs in a subset of patients with Alzheimer's disease (AD) and hyperexcitability could contribute to the disease. Several studies have suggested that the hippocampal dentate gyrus (DG) may be an important area where hyperexcitability occurs. Therefore, we tested the hypothesis that the principal DG cell type, granule cells (GCs), would exhibit changes at the single-cell level which would be consistent with hyperexcitability and might help explain it. We used the Tg2576 mouse, where it has been shown that hyperexcitability is robust at 2-3 months of age. GCs from 2 to 3-month-old Tg2576 mice were compared to age-matched wild type (WT) mice. Effects of muscarinic cholinergic antagonism were tested because previously we found that Tg2576 mice exhibited hyperexcitability in vivo that was reduced by the muscarinic cholinergic antagonist atropine, counter to the dogma that in AD one needs to boost cholinergic function. The results showed that GCs from Tg2576 mice exhibited increased frequency of spontaneous excitatory postsynaptic potentials/currents (sEPSP/Cs) and reduced frequency of spontaneous inhibitory synaptic events (sIPSCs) relative to WT, increasing the excitation:inhibition (E:I) ratio. There was an inward NMDA receptor-dependent current that we defined here as a novel synaptic current (nsC) in Tg2576 mice because it was very weak in WT mice. Intrinsic properties were distinct in Tg2576 GCs relative to WT. In summary, GCs of the Tg2576 mouse exhibit early electrophysiological alterations that are consistent with increased synaptic excitation, reduced inhibition, and muscarinic cholinergic dysregulation. The data support previous suggestions that the DG contributes to hyperexcitability and there is cholinergic dysfunction early in life in AD mouse models.
Collapse
Affiliation(s)
- David Alcantara-Gonzalez
- Center for Dementia Research, the Nathan Kline Institute for Psychiatric Research, Orangeburg, NY 10962, USA.
| | - Elissavet Chartampila
- Center for Dementia Research, the Nathan Kline Institute for Psychiatric Research, Orangeburg, NY 10962, USA.
| | - Chiara Criscuolo
- Center for Dementia Research, the Nathan Kline Institute for Psychiatric Research, Orangeburg, NY 10962, USA.
| | - Helen E Scharfman
- Center for Dementia Research, the Nathan Kline Institute for Psychiatric Research, Orangeburg, NY 10962, USA; Department of Child & Adolescent Psychiatry, Neuroscience & Physiology, and Psychiatry, New York University Langone Health, New York, NY 10016, USA; Neuroscience Institute, New York University Langone Health, New York, NY 10016, USA.
| |
Collapse
|
47
|
Tsai ZR, Zhang HW, Tseng CH, Peng HC, Kok VC, Li GP, Hsiung CA, Hsu CY. Late-onset epilepsy and subsequent increased risk of dementia. Aging (Albany NY) 2021; 13:3573-3587. [PMID: 33429365 PMCID: PMC7906153 DOI: 10.18632/aging.202299] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Accepted: 11/11/2020] [Indexed: 02/07/2023]
Abstract
Inflammation is considered as a key pathogenesis factor of dementia and epilepsy. However, epilepsy's association with dementia, particularly its role in the development of dementia, remains unclear. To evaluate the association between epilepsy and the risk of dementia, in Taiwan, we have now conducted a retrospective cohort study comprising 675 individuals (age, ≥50 years) with epilepsy and 2,025 matched control subjects without epilepsy. In order to match individuals diagnosed with epilepsy with those with no diagnosis of epilepsy (comparison cohort), we utilized exact matching at a ratio of 1:3. Compared with those in the comparison cohort, individuals in the epilepsy cohort had a significantly increased risk of developing dementia (adjusted hazard ratio = 2.87, p < 0.001). A similar result has been observed after stratifying for sex (adjusted hazard ratio in males = 2.95, p < 0.001; adjusted hazard ratio in females = 2.66, p < 0.001). To conclude, based on these data, epileptic individuals ≥50 years were at a greater risk of developing dementia than people who do not have epilepsy, which indicates that a diagnosis of epilepsy presents a greater risk for the development of dementia.
Collapse
Affiliation(s)
- Zhi-Ren Tsai
- Department of Computer Science and Information Engineering, Asia University, Taichung, Taiwan
- Department of Medical Research, China Medical University Hospital, China Medical University, Taichung, Taiwan
- Taichung City Smart Transportation Big Data Research Center, Taichung, Taiwan
- Pervasive Artificial Intelligence Research (PAIR) Labs, Hsinchu, Taiwan
- Biomdcare Corporation, New Taipei, Taiwan
| | - Han-Wei Zhang
- Biomdcare Corporation, New Taipei, Taiwan
- Program for Aging, China Medical University, Taichung, Taiwan
- Institute of Population Health Sciences, National Health Research Institutes, Miaoli, Taiwan
- Institute of Electrical Control Engineering, Department of Electrical and Computer Engineering, National Chiao Tung University, Hsinchu, Taiwan
| | - Chun-Hung Tseng
- Department of Neurology, China Medical University Hospital, and School of Medicine, China Medical University, Taichung, Taiwan
| | | | - Victor C. Kok
- Disease Informatics Research Group, Asia University, Taichung, Taiwan
- Department of Internal Medicine, Kuang Tien General Hospital, Taichung, Taiwan
| | - Gao Ping Li
- Zhongshan Hospital, Affiliated Hospital of Fudan University, Shanghai, China
| | - Chao A. Hsiung
- Institute of Population Health Sciences, National Health Research Institutes, Miaoli, Taiwan
| | - Chun-Yi. Hsu
- Graduate Institute of Biomedical Science, China Medical University, Taichung, Taiwan
| |
Collapse
|
48
|
The relationship between dementia and temporal lobe epilepsy. ANADOLU KLINIĞI TIP BILIMLERI DERGISI 2021. [DOI: 10.21673/anadoluklin.781043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
49
|
|
50
|
Stefanidou M, Beiser AS, Himali JJ, Peng TJ, Devinsky O, Seshadri S, Friedman D. Bi-directional association between epilepsy and dementia: The Framingham Heart Study. Neurology 2020; 95:e3241-e3247. [PMID: 33097599 DOI: 10.1212/wnl.0000000000011077] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Accepted: 08/03/2020] [Indexed: 12/24/2022] Open
Abstract
OBJECTIVE To assess the risk of incident epilepsy among participants with prevalent dementia and the risk of incident dementia among participants with prevalent epilepsy in the Framingham Heart Study (FHS). METHODS We analyzed prospectively collected data in the Original and Offspring FHS cohorts. To determine the risk of developing epilepsy among participants with dementia and the risk of developing dementia among participants with epilepsy, we used separate, nested, case-control designs and matched each case to 3 age-, sex- and FHS cohort-matched controls. We used Cox proportional hazards regression analysis, adjusting for sex and age. In secondary analysis, we investigated the role of education level and APOE ε4 allele status in modifying the association between epilepsy and dementia. RESULTS A total of 4,906 participants had information on epilepsy and dementia and dementia follow-up after age 65. Among 660 participants with dementia and 1,980 dementia-free controls, there were 58 incident epilepsy cases during follow-up. Analysis comparing epilepsy risk among dementia cases vs controls yielded a hazard ratio (HR) of 1.82 (95% confidence interval 1.05-3.16, p = 0.034). Among 43 participants with epilepsy and 129 epilepsy-free controls, there were 51 incident dementia cases. Analysis comparing dementia risk among epilepsy cases vs controls yielded a HR of 1.99 (1.11-3.57, p = 0.021). In this group, among participants with any post-high school education, prevalent epilepsy was associated with a nearly 5-fold risk for developing dementia (HR 4.67 [1.82-12.01], p = 0.001) compared to controls of the same educational attainment. CONCLUSIONS There is a bi-directional association between epilepsy and dementia. with either condition carrying a nearly 2-fold risk of developing the other when compared to controls.
Collapse
Affiliation(s)
- Maria Stefanidou
- From the Framingham Heart Study (M.S., A.S.B., J.J.H., S.S.); Department of Neurology (M.S., A.S.B., J.J.H., S.S.), Boston University School of Medicine; Department of Biostatistics (A.S.B., J.J.H.), Boston University School of Public Health, MA; Department of Neurology (T.J.P.), Yale University School of Medicine, New Haven, CT; Department of Neurology (O.D., D.F.), NYU Grossman School of Medicine, New York, NY; and University of Texas Health Sciences Center (S.S.), San Antonio. Dr. Himali is currently affiliated with the Department of Population Health Sciences, University of Texas Health Science Center, San Antonio.
| | - Alexa S Beiser
- From the Framingham Heart Study (M.S., A.S.B., J.J.H., S.S.); Department of Neurology (M.S., A.S.B., J.J.H., S.S.), Boston University School of Medicine; Department of Biostatistics (A.S.B., J.J.H.), Boston University School of Public Health, MA; Department of Neurology (T.J.P.), Yale University School of Medicine, New Haven, CT; Department of Neurology (O.D., D.F.), NYU Grossman School of Medicine, New York, NY; and University of Texas Health Sciences Center (S.S.), San Antonio. Dr. Himali is currently affiliated with the Department of Population Health Sciences, University of Texas Health Science Center, San Antonio
| | - Jayandra Jung Himali
- From the Framingham Heart Study (M.S., A.S.B., J.J.H., S.S.); Department of Neurology (M.S., A.S.B., J.J.H., S.S.), Boston University School of Medicine; Department of Biostatistics (A.S.B., J.J.H.), Boston University School of Public Health, MA; Department of Neurology (T.J.P.), Yale University School of Medicine, New Haven, CT; Department of Neurology (O.D., D.F.), NYU Grossman School of Medicine, New York, NY; and University of Texas Health Sciences Center (S.S.), San Antonio. Dr. Himali is currently affiliated with the Department of Population Health Sciences, University of Texas Health Science Center, San Antonio
| | - Teng J Peng
- From the Framingham Heart Study (M.S., A.S.B., J.J.H., S.S.); Department of Neurology (M.S., A.S.B., J.J.H., S.S.), Boston University School of Medicine; Department of Biostatistics (A.S.B., J.J.H.), Boston University School of Public Health, MA; Department of Neurology (T.J.P.), Yale University School of Medicine, New Haven, CT; Department of Neurology (O.D., D.F.), NYU Grossman School of Medicine, New York, NY; and University of Texas Health Sciences Center (S.S.), San Antonio. Dr. Himali is currently affiliated with the Department of Population Health Sciences, University of Texas Health Science Center, San Antonio
| | - Orrin Devinsky
- From the Framingham Heart Study (M.S., A.S.B., J.J.H., S.S.); Department of Neurology (M.S., A.S.B., J.J.H., S.S.), Boston University School of Medicine; Department of Biostatistics (A.S.B., J.J.H.), Boston University School of Public Health, MA; Department of Neurology (T.J.P.), Yale University School of Medicine, New Haven, CT; Department of Neurology (O.D., D.F.), NYU Grossman School of Medicine, New York, NY; and University of Texas Health Sciences Center (S.S.), San Antonio. Dr. Himali is currently affiliated with the Department of Population Health Sciences, University of Texas Health Science Center, San Antonio
| | - Sudha Seshadri
- From the Framingham Heart Study (M.S., A.S.B., J.J.H., S.S.); Department of Neurology (M.S., A.S.B., J.J.H., S.S.), Boston University School of Medicine; Department of Biostatistics (A.S.B., J.J.H.), Boston University School of Public Health, MA; Department of Neurology (T.J.P.), Yale University School of Medicine, New Haven, CT; Department of Neurology (O.D., D.F.), NYU Grossman School of Medicine, New York, NY; and University of Texas Health Sciences Center (S.S.), San Antonio. Dr. Himali is currently affiliated with the Department of Population Health Sciences, University of Texas Health Science Center, San Antonio
| | - Daniel Friedman
- From the Framingham Heart Study (M.S., A.S.B., J.J.H., S.S.); Department of Neurology (M.S., A.S.B., J.J.H., S.S.), Boston University School of Medicine; Department of Biostatistics (A.S.B., J.J.H.), Boston University School of Public Health, MA; Department of Neurology (T.J.P.), Yale University School of Medicine, New Haven, CT; Department of Neurology (O.D., D.F.), NYU Grossman School of Medicine, New York, NY; and University of Texas Health Sciences Center (S.S.), San Antonio. Dr. Himali is currently affiliated with the Department of Population Health Sciences, University of Texas Health Science Center, San Antonio
| |
Collapse
|