1
|
Dwivedi R, Kaushik M, Tripathi M, Dada R, Tiwari P. Unraveling the genetic basis of epilepsy: Recent advances and implications for diagnosis and treatment. Brain Res 2024; 1843:149120. [PMID: 39032529 DOI: 10.1016/j.brainres.2024.149120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 07/05/2024] [Accepted: 07/08/2024] [Indexed: 07/23/2024]
Abstract
Epilepsy, affecting approximately 1% of the global population, manifests as recurring seizures and is heavily influenced by genetic factors. Recent advancements in genetic technologies have revolutionized our understanding of epilepsy's genetic landscape. Key studies, such as the discovery of mutations in ion channels (e.g., SCN1A and SCN2A), neurotransmitter receptors (e.g., GABRA1), and synaptic proteins (e.g., SYNGAP1, KCNQ2), have illuminated critical pathways underlying epilepsy susceptibility and pathogenesis. Genome-wide association studies (GWAS) have identified specific genetic variations linked to epilepsy risk, such as variants near SCN1A and PCDH7, enhancing diagnostic accuracy and enabling personalized treatment strategies. Moreover, epigenetic mechanisms, including DNA methylation (e.g., MBD5), histone modifications (e.g., HDACs), and non-coding RNAs (e.g., miR-134), play pivotal roles in altering gene expression and synaptic plasticity, contributing to epileptogenesis. These discoveries offer promising avenues for therapeutic interventions aimed at improving outcomes for epilepsy patients. Genetic testing has become essential in clinical practice, facilitating precise diagnosis and tailored management approaches based on individual genetic profiles. Furthermore, insights into epigenetic regulation suggest novel therapeutic targets for developing more effective epilepsy treatments. In summary, this review highlights significant progress in understanding the genetic and epigenetic foundations of epilepsy. By integrating findings from key studies and specifying genes involved in epigenetic modifications, we underscore the potential for advanced therapeutic strategies in this complex neurological disorder, emphasizing the importance of personalized medicine approaches in epilepsy management.
Collapse
Affiliation(s)
- Rekha Dwivedi
- Department of Neurology, All India Institute of Medical Sciences (AIIMS), New Delhi 110029, India
| | - Meenakshi Kaushik
- Department of Anatomy, All India Institute of Medical Sciences (AIIMS), New Delhi 110029, India
| | - Manjari Tripathi
- Department of Neurology, All India Institute of Medical Sciences (AIIMS), New Delhi 110029, India
| | - Rima Dada
- Department of Anatomy, All India Institute of Medical Sciences (AIIMS), New Delhi 110029, India
| | - Prabhakar Tiwari
- Department of Anatomy, All India Institute of Medical Sciences (AIIMS), New Delhi 110029, India.
| |
Collapse
|
2
|
Fan CX, Liu XR, Mei DQ, Li BM, Li WB, Xie HC, Wang J, Shen NX, Ye ZL, You QL, Li LY, Qu XC, Chen LZ, Liang JJ, Zhang MR, He N, Li J, Gao JY, Deng WY, Liu WZ, Wang WT, Liao WP, Chen Q, Shi YW. Heterozygous variants in USP25 cause genetic generalized epilepsy. Brain 2024; 147:3442-3457. [PMID: 38875478 DOI: 10.1093/brain/awae191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 04/17/2024] [Accepted: 05/14/2024] [Indexed: 06/16/2024] Open
Abstract
USP25 encodes ubiquitin-specific protease 25, a key member of the deubiquitinating enzyme family that is involved in neural fate determination. Although abnormal expression in Down's syndrome was reported previously, the specific role of USP25 in human diseases has not been defined. In this study, we performed trio-based whole exome sequencing in a cohort of 319 cases (families) with generalized epilepsy of unknown aetiology. Five heterozygous USP25 variants, including two de novo and three co-segregated variants, were determined in eight individuals affected by generalized seizures and/or febrile seizures from five unrelated families. The frequency of USP25 variants showed a significantly high aggregation in this cohort compared with the East Asian population and all populations in the gnomAD database. The mean age at onset of febrile and afebrile seizures were 10 months (infancy) and 11.8 years (juvenile), respectively. The patients achieved seizure freedom, except that one had occasional nocturnal seizures at the last follow-up. Two patients exhibited intellectual disability. Usp25 was expressed ubiquitously in mouse brain with two peaks, on embryonic Days 14-16 and postnatal Day 21, respectively. In human brain, likewise, USP25 is expressed in the fetus/early childhood stage and with a second peak at ∼12-20 years old, consistent with the seizure onset age in patients during infancy and in juveniles. To investigate the functional impact of USP25 deficiency in vivo, we established Usp25 knockout mice, which showed increased seizure susceptibility compared with wild-type mice in a pentylenetetrazol-induced seizure test. To explore the impact of USP25 variants, we used multiple functional detections. In HEK293 T cells, the variant associated with a severe phenotype (p.Gln889Ter) led to a significant reduction of mRNA and protein expressions but formed stable truncated dimers with an increment of deubiquitinating enzyme activities and abnormal cellular aggregations, indicating a gain-of-function effect. The p.Gln889Ter and p.Leu1045del variants increased neuronal excitability in mouse brain, with a higher firing ability in p.Gln889Ter. These functional impairments align with the severity of the observed phenotypes, suggesting a genotype-phenotype correlation. Hence, a moderate association between USP25 and epilepsy was noted, indicating that USP25 is potentially a predisposing gene for epilepsy. Our results from Usp25 null mice and the patient-derived variants indicated that USP25 would play an epileptogenic role via loss-of-function or gain-of-function effects. The truncated variant p.Gln889Ter would have a profoundly different effect on epilepsy. Together, our results underscore the significance of USP25 heterozygous variants in epilepsy, thereby highlighting the critical role of USP25 in the brain.
Collapse
Affiliation(s)
- Cui-Xia Fan
- Department of Neurology, Institute of Neuroscience, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou 510260, China
| | - Xiao-Rong Liu
- Department of Neurology, Institute of Neuroscience, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou 510260, China
| | - Dao-Qi Mei
- Department of Neurology, Children's Hospital of Soochow University, Suzhou 215000, China
| | - Bing-Mei Li
- Department of Neurology, Institute of Neuroscience, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou 510260, China
| | - Wen-Bin Li
- Department of Neurology, Institute of Neuroscience, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou 510260, China
| | - Huan-Cheng Xie
- Department of Neurology, Institute of Neuroscience, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou 510260, China
| | - Jie Wang
- Department of Neurology, Institute of Neuroscience, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou 510260, China
| | - Nan-Xiang Shen
- Department of Neurology, Institute of Neuroscience, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou 510260, China
| | - Zi-Long Ye
- Department of Neurology, Institute of Neuroscience, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou 510260, China
| | - Qiang-Long You
- Department of Neurology, Institute of Neuroscience, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou 510260, China
| | - Ling-Ying Li
- Department of Neurology, Institute of Neuroscience, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou 510260, China
| | - Xiao-Chong Qu
- Department of Neurology, Institute of Neuroscience, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou 510260, China
| | - Li-Zhi Chen
- Department of Neurology, Institute of Neuroscience, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou 510260, China
| | - Jin-Jie Liang
- Department of Neurology, Institute of Neuroscience, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou 510260, China
| | - Ming-Rui Zhang
- Department of Neurology, Institute of Neuroscience, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou 510260, China
| | - Na He
- Department of Neurology, Institute of Neuroscience, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou 510260, China
| | - Jia Li
- Department of Neurology, Institute of Neuroscience, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou 510260, China
| | - Jun-Ying Gao
- Department of Neurology, Institute of Neuroscience, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou 510260, China
| | - Wei-Yi Deng
- Department of Neurology, Institute of Neuroscience, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou 510260, China
| | - Wen-Zhe Liu
- Department of Stomatology of the second Affiliated Hospital of Guangzhou Medical University, Guangzhou 510260, China
| | - Wen-Ting Wang
- Department of Neurobiology, School of Basic Medicine, Fourth Military Medical University, Xi'an 710032, China
| | - Wei-Ping Liao
- Department of Neurology, Institute of Neuroscience, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou 510260, China
| | - Qian Chen
- Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Zhongshan 528400, China
| | - Yi-Wu Shi
- Department of Neurology, Institute of Neuroscience, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou 510260, China
| |
Collapse
|
3
|
Murthy MC, Banerjee B, Shetty M, Mariappan M, Sekhsaria A. A retrospective study of the yield of next-generation sequencing in the diagnosis of developmental and epileptic encephalopathies and epileptic encephalopathies in 0-12 years aged children at a single tertiary care hospital in South India. Epileptic Disord 2024; 26:609-625. [PMID: 38923778 DOI: 10.1002/epd2.20254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Revised: 06/02/2024] [Accepted: 06/11/2024] [Indexed: 06/28/2024]
Abstract
OBJECTIVE Studies on the genetic yield of developmental and epileptic encephalopathy and Epileptic encephalopathies using next-generation sequencing techniques are sparse from the Indian subcontinent. Hence, the study was conducted to assess the yield of genetic testing and the proportion of children where a positive genetic yield influenced treatment decisions. METHODS In this retrospective observational study, electronic medical records of children (0-12 years) with suspected genetic epilepsy who underwent genetic testing using whole exome sequencing, focused exome sequencing and epilepsy gene panels were retrieved. Genetic yield was ascertained based on the detection of pathogenic and likely pathogenic variants. RESULTS A total of 100 patients with epilepsy underwent genetic testing. A yield of 53.8% (42/78) was obtained. Pathogenic variants were identified in 18 (42.8%) cases and likely pathogenic variants in 24 (57.1%) cases. Yield was 66.6% each through whole exome sequencing, focused exome sequencing and 40% through Epilepsy gene panels (p = .07). Yield was not statistically significant across different age groups (p = .2). It was however found to significantly vary across different epilepsy syndromes with maximum yield in Epilepsy in infancy with migrating focal seizures in 2 (100%), followed by developmental and epileptic encephalopathy unspecified in 14 (77.7%), Dravet syndrome in 14 (60.8%), early infantile developmental and epileptic encephalopathy in 3 (60%), infantile epileptic spasm syndrome in 5 (35.7%), and other epileptic encephalopathies in 4 (30.7%) cases (p = .04). After genetic diagnosis and drug optimization, drug-refractory proportion reduced from 73.8% to 45.3%. About half of the cases achieved seizure control. SIGNIFICANCE A reasonably high yield of 53.8% was obtained irrespective of the choice of panel or exome or age group using next-generation sequencing-based techniques. Yield was however higher in certain epilepsy syndromes and low in Infantile epileptic spasms syndrome. A specific genetic diagnosis facilitated tailored treatment leading to seizure freedom in 28.6% and marked seizure reduction in 54.7% cases.
Collapse
Affiliation(s)
- Manasa C Murthy
- Division of Pediatric Neurology, Department of Pediatrics, Manipal Hospital, Bengaluru, India
| | - Bidisha Banerjee
- Division of Pediatric Neurology, Department of Pediatrics, Manipal Hospital, Bengaluru, India
| | - Mitesh Shetty
- Department of Medical Genetics, Manipal Hospital, Bengaluru, India
| | | | | |
Collapse
|
4
|
Castellotti B, Ragona F, Freri E, Messina G, Magri S, Previtali R, Solazzi R, Franceschetti S, Taroni F, Canafoglia L, Gellera C, Granata T, DiFrancesco JC. Next-generation sequencing in pediatric-onset epilepsies: Analysis with target panels and personalized therapeutic approach. Epilepsia Open 2024; 9:1922-1930. [PMID: 39215763 PMCID: PMC11450606 DOI: 10.1002/epi4.13039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2024] [Revised: 08/06/2024] [Accepted: 08/06/2024] [Indexed: 09/04/2024] Open
Abstract
OBJECTIVE The objective of this study is to report the results of the genetic analysis in a large and well-characterized population with pediatric-onset epilepsies and to identify those who could benefit from precision medicine treatments. METHODS In this retrospective observational study, we consecutively recruited patients with pediatric-onset epilepsy observed at a tertiary neurological center over a time span of 7 years, collecting clinical and laboratory findings. Following in-depth diagnostic process to exclude possible structural and metabolic causes of the disease, patients with a suspected genetically determined etiology underwent next-generation sequencing (NGS) screening with panels for the analysis of target genes causative of epilepsy. RESULTS We detected likely pathogenic or pathogenic variants (classes IV and V) in 24% of the 562 patients who underwent genetic investigations. By the evaluation of patients' data, we observed that some features (onset of epilepsy before one year old, presence of neurological deficits, psychomotor delay/cognitive disability, and malformative aspects at brain MRI) were significantly associated with class IV or V variants. Moreover, statistical analysis showed that the diagnostic yield resulted higher for patients affected by Progressive Myoclonic Epilepsy (PME) and with early onset developmental and epileptic encephalopathies (DEE), compared with focal epilepsies, genetic generalized epilepsies, DEE with onset at/after 1 y.o., and unclassified epileptic syndromes. According to the results of the genetic screening, up to 33% of patients carrying class IV or V variants resulted potentially eligible for precision medicine treatments. SIGNIFICANCE The large-scale application of NGS multigene panels of analysis is a useful tool for the molecular diagnosis of patients with pediatric-onset epilepsies, allowing the identification of those who could benefit from a personalized therapeutic approach. PLAIN LANGUAGE SUMMARY The analysis of patients with pediatric-onset epilepsy using advanced technologies for the screening of all the implicated genes allows the identification of the cause of diseases in an ever-increasing number of cases. Understanding the pathogenic mechanisms could, in some cases, guide the selection and optimization of appropriate treatment approaches for patients.
Collapse
Affiliation(s)
- Barbara Castellotti
- Unit of Medical Genetics and NeurogeneticsFondazione IRCCS Istituto Neurologico Carlo BestaMilanItaly
| | - Francesca Ragona
- Department of Pediatric NeuroscienceFondazione IRCCS Istituto Neurologico Carlo BestaMilanItaly
| | - Elena Freri
- Department of Pediatric NeuroscienceFondazione IRCCS Istituto Neurologico Carlo BestaMilanItaly
| | - Giuliana Messina
- Unit of Medical Genetics and NeurogeneticsFondazione IRCCS Istituto Neurologico Carlo BestaMilanItaly
| | - Stefania Magri
- Unit of Medical Genetics and NeurogeneticsFondazione IRCCS Istituto Neurologico Carlo BestaMilanItaly
| | - Roberto Previtali
- Pediatric Neurology, Department of Biomedical and Clinical Sciences, Buzzi Children's HospitalUniversity of MilanMilanItaly
| | - Roberta Solazzi
- Department of Pediatric NeuroscienceFondazione IRCCS Istituto Neurologico Carlo BestaMilanItaly
| | - Silvana Franceschetti
- Integrated Diagnostics for EpilepsyFondazione IRCCS Istituto Neurologico Carlo BestaMilanItaly
| | - Franco Taroni
- Unit of Medical Genetics and NeurogeneticsFondazione IRCCS Istituto Neurologico Carlo BestaMilanItaly
| | - Laura Canafoglia
- Integrated Diagnostics for EpilepsyFondazione IRCCS Istituto Neurologico Carlo BestaMilanItaly
| | - Cinzia Gellera
- Unit of Medical Genetics and NeurogeneticsFondazione IRCCS Istituto Neurologico Carlo BestaMilanItaly
| | - Tiziana Granata
- Department of Pediatric NeuroscienceFondazione IRCCS Istituto Neurologico Carlo BestaMilanItaly
| | | |
Collapse
|
5
|
Chandrasekhar V, Balakrishnan RK, K V, Rachakonda S. Clinical Insights Into Eating-Induced Reflex Epilepsy: A Case Report of an Eight-Year-Old Girl. Cureus 2024; 16:e67862. [PMID: 39328688 PMCID: PMC11426928 DOI: 10.7759/cureus.67862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Accepted: 08/26/2024] [Indexed: 09/28/2024] Open
Abstract
Eating epilepsy is a rare condition in children where seizures are triggered by the act of eating. An eight-year-old girl presented with seizures occurring primarily during mealtimes, characterized by a fixed gaze, jaw hypotonia, and impaired awareness. These seizures began at age seven, were initially uninvestigated, and progressively worsened over the year, reaching up to 20-30 episodes per meal. Diagnostic tests, including blood work, upper gastrointestinal endoscopy, psychiatric evaluation, and magnetic resonance imaging (MRI), were normal. The EEG showed generalized epileptiform activity, suggesting a seizure disorder, but the exact cause was unclear. After ruling out more common conditions with similar symptoms, such as gastroesophageal reflux disease, Sandifer syndrome, and psychogenic non-epileptic seizures, the diagnosis of reflex eating epilepsy was made in the end through a process of elimination, combining clinical features with EEG findings and through reviewing the literature. Treatment with oral sodium valproate monotherapy led to significant symptomatic improvement, reducing the frequency of seizures during meals.
Collapse
Affiliation(s)
- Varshini Chandrasekhar
- Pediatrics, Saveetha Medical College and Hospital, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, IND
| | - Rangesh Kumar Balakrishnan
- Pediatrics, Saveetha Medical College and Hospital, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, IND
| | - Vidhyasagar K
- Pediatrics, Saveetha Medical College and Hospital, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, IND
| | - Shreenivas Rachakonda
- Pediatrics, Saveetha Medical College and Hospital, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, IND
| |
Collapse
|
6
|
Maggi J, Koller S, Feil S, Bachmann-Gagescu R, Gerth-Kahlert C, Berger W. Limited Added Diagnostic Value of Whole Genome Sequencing in Genetic Testing of Inherited Retinal Diseases in a Swiss Patient Cohort. Int J Mol Sci 2024; 25:6540. [PMID: 38928247 PMCID: PMC11203445 DOI: 10.3390/ijms25126540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 06/11/2024] [Accepted: 06/12/2024] [Indexed: 06/28/2024] Open
Abstract
The purpose of this study was to assess the added diagnostic value of whole genome sequencing (WGS) for patients with inherited retinal diseases (IRDs) who remained undiagnosed after whole exome sequencing (WES). WGS was performed for index patients in 66 families. The datasets were analyzed according to GATK's guidelines. Additionally, DeepVariant was complemented by GATK's workflow, and a novel structural variant pipeline was developed. Overall, a molecular diagnosis was established in 19/66 (28.8%) index patients. Pathogenic deletions and one deep-intronic variant contributed to the diagnostic yield in 4/19 and 1/19 index patients, respectively. The remaining diagnoses (14/19) were attributed to exonic variants that were missed during WES analysis due to bioinformatic limitations, newly described loci, or unclear pathogenicity. The added diagnostic value of WGS equals 5/66 (9.6%) for our cohort, which is comparable to previous studies. This figure would decrease further to 1/66 (1.5%) with a standardized and reliable copy number variant workflow during WES analysis. Given the higher costs and limited added value, the implementation of WGS as a first-tier assay for inherited eye disorders in a diagnostic laboratory remains untimely. Instead, progress in bioinformatic tools and communication between diagnostic and clinical teams have the potential to ameliorate diagnostic yields.
Collapse
Affiliation(s)
- Jordi Maggi
- Institute of Medical Molecular Genetics, University of Zurich, 8952 Schlieren, Switzerland; (J.M.); (S.K.); (S.F.)
| | - Samuel Koller
- Institute of Medical Molecular Genetics, University of Zurich, 8952 Schlieren, Switzerland; (J.M.); (S.K.); (S.F.)
| | - Silke Feil
- Institute of Medical Molecular Genetics, University of Zurich, 8952 Schlieren, Switzerland; (J.M.); (S.K.); (S.F.)
| | | | - Christina Gerth-Kahlert
- Department of Ophthalmology, University Hospital Zurich and University of Zurich, 8091 Zurich, Switzerland;
| | - Wolfgang Berger
- Institute of Medical Molecular Genetics, University of Zurich, 8952 Schlieren, Switzerland; (J.M.); (S.K.); (S.F.)
- Zurich Center for Integrative Human Physiology (ZIHP), University of Zurich, 8057 Zurich, Switzerland
- Neuroscience Center Zurich (ZNZ), University and ETH Zurich, 8057 Zurich, Switzerland
| |
Collapse
|
7
|
Wu B, Liu S. Structural Insights into the Mechanisms Underlying Polyaminopathies. Int J Mol Sci 2024; 25:6340. [PMID: 38928047 PMCID: PMC11203672 DOI: 10.3390/ijms25126340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2024] [Revised: 06/01/2024] [Accepted: 06/05/2024] [Indexed: 06/28/2024] Open
Abstract
Polyamines are ubiquitous in almost all biological entities and involved in various crucial physiological processes. They are also closely associated with the onset and progression of many diseases. Polyaminopathies are a group of rare genetic disorders caused by alterations in the function of proteins within the polyamine metabolism network. Although the identified polyaminopathies are all rare diseases at present, they are genetically heritable, rendering high risks not only to the carriers but also to their descendants. Meanwhile, more polyaminopathic patients might be discovered with the increasing accessibility of gene sequencing. This review aims to provide a comprehensive overview of the structural variations of mutated proteins in current polyaminopathies, in addition to their causative genes, types of mutations, clinical symptoms, and therapeutic approaches. We focus on analyzing how alterations in protein structure lead to protein dysfunction, thereby facilitating the onset of diseases. We hope this review will offer valuable insights and references for the future clinical diagnosis and precision treatment of polyaminopathies.
Collapse
Affiliation(s)
- Bing Wu
- Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Key Laboratory of Fermentation Engineering (Ministry of Education), Wuhan 430068, China
- Hubei Key Laboratory of Industrial Microbiology, National “111” Center for Cellular Regulation and Molecular Pharmaceutics, Hubei University of Technology, Wuhan 430068, China
| | - Sen Liu
- Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Key Laboratory of Fermentation Engineering (Ministry of Education), Wuhan 430068, China
- Hubei Key Laboratory of Industrial Microbiology, National “111” Center for Cellular Regulation and Molecular Pharmaceutics, Hubei University of Technology, Wuhan 430068, China
| |
Collapse
|
8
|
Luiza Benevides M, de Moraes HT, Granados DMM, Bonadia LC, Sauma L, Augusta Montenegro M, Guerreiro MM, Lopes-Cendes Í, Carolina Coan A. Predictors of genetic diagnosis in individuals with developmental and epileptic encephalopathies. Epilepsy Behav 2024; 155:109762. [PMID: 38636144 DOI: 10.1016/j.yebeh.2024.109762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 11/29/2023] [Accepted: 03/23/2024] [Indexed: 04/20/2024]
Abstract
OBJECTIVE To evaluate the clinical predictors of positive genetic investigation in developmental and epileptic encephalopathies, beyond the influence of Dravet Syndrome. METHODS The study included 98 patients diagnosed with developmental and epileptic encephalopathies. The patients underwent Sanger sequencing of SCN1A, Chromosomal Microarray Analysis, and Whole Exome Sequencing. The association of clinical variables with a positive genetic test was investigated using univariate and multivariate analysis. RESULTS Genetic diagnosis was identified in 47 (48 %) patients with developmental and epileptic encephalopathies. Beyond Dravet Syndrome influence, first seizure in the context of fever (p < 0.01), seizures precipitated by temperature (p = 0.04), cognitive regression (p = 0.04), hypotonia (p < 0.01), and focal seizures (p = 0.03) increased the chances of a positive genetic investigation. In contrast, atonic seizures (p = 0.01) and generalized discharges on electroencephalogram (p = 0.02) decreased the chances. Dravet Syndrome was positively associated with a genetic developmental and epileptic encephalopathies etiology (p < 0.01), whereas epilepsy with myoclonic-atonic seizures (p = 0.01), developmental and epileptic encephalopathies with spike-wave activation in sleep (p = 0.04), and Lennox-Gastaut syndrome (p = 0.03) were negatively associated. In multivariate analysis, the first seizure in the context of fever (p < 0.01) and hypotonia (p = 0.02) were positively, and atonic seizures (p = 0.01) were negatively and independently associated with a genetic etiology. CONCLUSION The predictive variables of genetic investigation in developmental and epileptic encephalopathies are first seizure in the context of fever and hypotonia, whereas atonic seizures decrease the chances of finding a genetic cause for developmental and epileptic encephalopathies. Regarding epileptic syndromes, Dravet Syndrome is highly associated with a positive genetic test, whereas epilepsy with myoclonic-atonic seizures, developmental and epileptic encephalopathies with spike-wave activation in sleep, and Lennox-Gastaut syndrome are rarely associated with a positive genetic investigation.
Collapse
Affiliation(s)
- Maria Luiza Benevides
- Child Neurology Service, Department of Neurology, University of Campinas (UNICAMP), Campinas - São Paulo (SP), Brazil.
| | | | | | - Luciana C Bonadia
- Department of Translational Medicine, UNICAMP, Campinas - SP, Brazil.
| | - Letícia Sauma
- Child Neurology Service, Department of Neurology, University of Campinas (UNICAMP), Campinas - São Paulo (SP), Brazil.
| | | | - Marilisa M Guerreiro
- Child Neurology Service, Department of Neurology, University of Campinas (UNICAMP), Campinas - São Paulo (SP), Brazil; Brazilian Institute of Neuroscience and Neurotechnology, BRAINN, at UNICAMP, Campinas, SP, Brazil.
| | - Íscia Lopes-Cendes
- Department of Translational Medicine, UNICAMP, Campinas - SP, Brazil; Brazilian Institute of Neuroscience and Neurotechnology, BRAINN, at UNICAMP, Campinas, SP, Brazil.
| | - Ana Carolina Coan
- Child Neurology Service, Department of Neurology, University of Campinas (UNICAMP), Campinas - São Paulo (SP), Brazil; Brazilian Institute of Neuroscience and Neurotechnology, BRAINN, at UNICAMP, Campinas, SP, Brazil; Neuroimaging Laboratory, UNICAMP, Campinas, SP, Brazil.
| |
Collapse
|
9
|
Veltra D, Theodorou V, Katsalouli M, Vorgia P, Niotakis G, Tsaprouni T, Pons R, Kosma K, Kampouraki A, Tsoutsou I, Makrythanasis P, Kekou K, Traeger-Synodinos J, Sofocleous C. SCN1A Channels a Wide Range of Epileptic Phenotypes: Report of Novel and Known Variants with Variable Presentations. Int J Mol Sci 2024; 25:5644. [PMID: 38891831 PMCID: PMC11171476 DOI: 10.3390/ijms25115644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 05/15/2024] [Accepted: 05/18/2024] [Indexed: 06/21/2024] Open
Abstract
SCN1A, the gene encoding for the Nav1.1 channel, exhibits dominant interneuron-specific expression, whereby variants disrupting the channel's function affect the initiation and propagation of action potentials and neuronal excitability causing various types of epilepsy. Dravet syndrome (DS), the first described clinical presentation of SCN1A channelopathy, is characterized by severe myoclonic epilepsy in infancy (SMEI). Variants' characteristics and other genetic or epigenetic factors lead to extreme clinical heterogeneity, ranging from non-epileptic conditions to developmental and epileptic encephalopathy (DEE). This current study reports on findings from 343 patients referred by physicians in hospitals and tertiary care centers in Greece between 2017 and 2023. Positive family history for specific neurologic disorders was disclosed in 89 cases and the one common clinical feature was the onset of seizures, at a mean age of 17 months (range from birth to 15 years old). Most patients were specifically referred for SCN1A investigation (Sanger Sequencing and MLPA) and only five for next generation sequencing. Twenty-six SCN1A variants were detected, including nine novel causative variants (c.4567A>Τ, c.5564C>A, c.2176+2T>C, c.3646G>C, c.4331C>A, c.1130_1131delGAinsAC, c.1574_1580delCTGAGGA, c.4620A>G and c.5462A>C), and are herein presented, along with subsequent genotype-phenotype associations. The identification of novel variants complements SCN1A databases extending our expertise on genetic counseling and patient and family management including gene-based personalized interventions.
Collapse
Affiliation(s)
- Danai Veltra
- Laboratory of Medical Genetics, Medical School, National and Kapodistrian University of Athens, St. Sophia’s Children’s Hospital, 11527 Athens, Greece; (D.V.); (K.K.); (A.K.); (I.T.); (P.M.); (K.K.); (J.T.-S.)
- Research University Institute for the Study and Prevention of Genetic and Malignant Disease of Childhood, National and Kapodistrian University of Athens, St. Sophia’s Children’s Hospital, 11527 Athens, Greece
| | - Virginia Theodorou
- Pediatric Neurology Department, St. Sophia’s Children’s Hospital, 11527 Athens, Greece; (V.T.); (M.K.)
| | - Marina Katsalouli
- Pediatric Neurology Department, St. Sophia’s Children’s Hospital, 11527 Athens, Greece; (V.T.); (M.K.)
| | - Pelagia Vorgia
- Agrifood and Life Sciences Institute, Hellenic Mediterranean University, 71410 Heraklion, Greece;
| | - Georgios Niotakis
- Pediatric Neurology Department, Venizelion Hospital, 71409 Heraklion, Greece;
| | | | - Roser Pons
- First Department of Pediatrics, Medical School, National and Kapodistrian University of Athens, St. Sophia’s Children’s Hospital, 11527 Athens, Greece;
| | - Konstantina Kosma
- Laboratory of Medical Genetics, Medical School, National and Kapodistrian University of Athens, St. Sophia’s Children’s Hospital, 11527 Athens, Greece; (D.V.); (K.K.); (A.K.); (I.T.); (P.M.); (K.K.); (J.T.-S.)
| | - Afroditi Kampouraki
- Laboratory of Medical Genetics, Medical School, National and Kapodistrian University of Athens, St. Sophia’s Children’s Hospital, 11527 Athens, Greece; (D.V.); (K.K.); (A.K.); (I.T.); (P.M.); (K.K.); (J.T.-S.)
| | - Irene Tsoutsou
- Laboratory of Medical Genetics, Medical School, National and Kapodistrian University of Athens, St. Sophia’s Children’s Hospital, 11527 Athens, Greece; (D.V.); (K.K.); (A.K.); (I.T.); (P.M.); (K.K.); (J.T.-S.)
| | - Periklis Makrythanasis
- Laboratory of Medical Genetics, Medical School, National and Kapodistrian University of Athens, St. Sophia’s Children’s Hospital, 11527 Athens, Greece; (D.V.); (K.K.); (A.K.); (I.T.); (P.M.); (K.K.); (J.T.-S.)
- Department of Genetic Medicine and Development, Medical School, University of Geneva, 1211 Geneva, Switzerland
- Biomedical Research Foundation of the Academy of Athens, 11527 Athens, Greece
| | - Kyriaki Kekou
- Laboratory of Medical Genetics, Medical School, National and Kapodistrian University of Athens, St. Sophia’s Children’s Hospital, 11527 Athens, Greece; (D.V.); (K.K.); (A.K.); (I.T.); (P.M.); (K.K.); (J.T.-S.)
| | - Joanne Traeger-Synodinos
- Laboratory of Medical Genetics, Medical School, National and Kapodistrian University of Athens, St. Sophia’s Children’s Hospital, 11527 Athens, Greece; (D.V.); (K.K.); (A.K.); (I.T.); (P.M.); (K.K.); (J.T.-S.)
| | - Christalena Sofocleous
- Laboratory of Medical Genetics, Medical School, National and Kapodistrian University of Athens, St. Sophia’s Children’s Hospital, 11527 Athens, Greece; (D.V.); (K.K.); (A.K.); (I.T.); (P.M.); (K.K.); (J.T.-S.)
| |
Collapse
|
10
|
Heebner M, Mainali G, Wei S, Kumar A, Naik S, Pradhan S, Kandel P, Tencer J, Carney P, Paudel S. Importance of Genetic Testing in Children With Generalized Epilepsy. Cureus 2024; 16:e59991. [PMID: 38854234 PMCID: PMC11162283 DOI: 10.7759/cureus.59991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/08/2024] [Indexed: 06/11/2024] Open
Abstract
INTRODUCTION Epilepsy is a neurological disorder characterized by the predisposition for recurrent unprovoked seizures. It can broadly be classified as focal, generalized, unclassified, and unknown in its onset. Focal epilepsy originates in and involves networks localized to one region of the brain. Generalized epilepsy engages broader, more diffuse networks. The etiology of epilepsy can be structural, genetic, infectious, metabolic, immune, or unknown. Many generalized epilepsies have presumed genetic etiologies. The aim of this study is to compare the role of genetic testing to brain MRI as diagnostic tools for identifying the underlying causes of idiopathic (genetic) generalized epilepsy (IGE). METHODS We evaluated the diagnostic yield of these two categories in children diagnosed with IGE. Data collection was completed using ICD10 codes filtered by TriNetX to select 982 individual electronic medical records (EMRs) of children in the Penn State Children's Hospital who received a diagnosis of IGE. The diagnosis was confirmed after reviewing the clinical history and electroencephalogram (EEG) data for each patient. RESULTS From this dataset, neuroimaging and genetic testing results were gathered. A retrospective chart review was done on 982 children with epilepsy, of which 143 (14.5%) met the criteria for IGE. Only 18 patients underwent genetic testing. Abnormalities that could be a potential cause for epilepsy were seen in 72.2% (13/18) of patients with IGE and abnormal genetic testing, compared to 30% (37/123) for patients who had a brain MRI with genetic testing. CONCLUSION This study suggests that genetic testing may be more useful than neuroimaging for identifying an etiological diagnosis of pediatric patients with IGE.
Collapse
Affiliation(s)
| | - Gayatra Mainali
- Pediatric Neurology, Penn State Health Milton S. Hershey Medical Center, Hershey, USA
| | - Sharon Wei
- Neurology, Penn State University, Hershey, USA
| | - Ashutosh Kumar
- Pediatric Neurology, Penn State Health Milton S. Hershey Medical Center, Hershey, USA
| | - Sunil Naik
- Pediatric Neurology, Penn State Health Milton S. Hershey Medical Center, Hershey, USA
| | | | - Prakash Kandel
- Biostatistics, Penn State College of Medicine, Hershey, USA
| | - Jaclyn Tencer
- Pediatric Neurology, Penn State Health Milton S. Hershey Medical Center, Hershey, USA
| | - Paul Carney
- Pediatrics and Neurology, University of Missouri, Columbia, USA
| | - Sita Paudel
- Pediatric Neurology, Penn State Health Milton S. Hershey Medical Center, Hershey, USA
| |
Collapse
|
11
|
Witzel MGW, Gebhard C, Wenzel S, Kleier S, Eichhorn B, Lorenz P, von der Heyden L, Kuhn M, Luedeke M, Döcker M, Jüngling J, Schulte B, Hörtnagel K, Glaubitz R, Knippenberger S, Teubert A, Abicht A, Neuhann TM. Prospective evaluation of NGS-based sequencing in epilepsy patients: results of seven NASGE-associated diagnostic laboratories. Front Neurol 2023; 14:1276238. [PMID: 38125836 PMCID: PMC10731269 DOI: 10.3389/fneur.2023.1276238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Accepted: 11/03/2023] [Indexed: 12/23/2023] Open
Abstract
Background Epilepsy is one of the most common and disabling neurological disorders. It is highly prevalent in children with neurodevelopmental delay and syndromic diseases. However, epilepsy can also be the only disease-determining symptom. The exact molecular diagnosis is essential to determine prognosis, comorbidity, and probability of recurrence, and to inform therapeutic decisions. Methods and materials Here, we describe a prospective cohort study of patients with epilepsy evaluated in seven diagnostic outpatient centers in Germany. Over a period of 2 months, 07/2022 through 08/2022, 304 patients (317 returned result) with seizure-related human phenotype ontology (HPO) were analyzed. Evaluated data included molecular results, phenotype (syndromic and non-syndromic), and sequencing methods. Results Single exome sequencing (SE) was applied in half of all patients, followed by panel (P) testing (36%) and trio exome sequencing (TE) (14%). Overall, a pathogenic variant (PV) (ACMG cl. 4/5) was identified in 22%; furthermore, a significant number of patients (12%) carried a reported clinically meaningful variant of unknown significance (VUS). The average diagnostic yield in patients ≤ 12 y was higher compared to patients >12 y cf. Figure 2B vs. Figure 3B. This effect was more pronounced in cases, where TE was applied in patients ≤ 12 vs. >12 y [PV (PV + VUS): patients ≤ 12 y: 35% (47%), patients > 12 y: 20% (40%)]. The highest diagnostic yield was achieved by TE in syndromic patients within the age group ≤ 12 y (ACMG classes 4/5 40%). In addition, TE vs. SE had a tendency to result in less VUS in patients ≤ 12 y [SE: 19% (22/117) VUS; TE: 17% (6/36) VUS] but not in patients >12 y [SE: 19% (8/42) VUS; TE: 20% (2/10) VUS]. Finally, diagnostic findings in patients with syndromic vs. non-syndromic symptoms revealed a significant overlap of frequent causes of monogenic epilepsies, including SCN1A, CACNA1A, and SETD1B, confirming the heterogeneity of the associated conditions. Conclusion In patients with seizures-regardless of the detailed phenotype-a monogenic cause can be frequently identified, often implying a possible change in therapeutic action (36.7% (37/109) of PV/VUS variants); this justifies early and broad application of genetic testing. Our data suggest that the diagnostic yield is highest in exome or trio-exome-based testing, resulting in a molecular diagnosis within 3 weeks, with profound implications for therapeutic strategies and for counseling families and patients regarding prognosis and recurrence risk.
Collapse
Affiliation(s)
| | | | - Sören Wenzel
- Gemeinschaftspraxis für Humangenetik and Genetische Labore Hamburg, Hamburg, Germany
| | - Saskia Kleier
- Gemeinschaftspraxis für Humangenetik and Genetische Labore Hamburg, Hamburg, Germany
| | - Birgit Eichhorn
- MVZ Mitteldeutscher Praxisverbund Humangenetik GmbH, Dresden, Germany
| | - Peter Lorenz
- MVZ Mitteldeutscher Praxisverbund Humangenetik GmbH, Dresden, Germany
| | | | | | | | | | | | | | - Konstanze Hörtnagel
- Zentrum für Humangenetik und Laboratoriumsdiagnostik (MVZ), Martinsried, Germany
| | | | | | | | - Angela Abicht
- MGZ Medizinisch Genetisches Zentrum, München, Germany
| | | |
Collapse
|
12
|
Nagarajan B, Gowda VK, Yoganathan S, Sharawat IK, Srivastava K, Vora N, Badheka R, Danda S, Kalane U, Kaur A, Madaan P, Mehta S, Negi S, Panda PK, Rajadhyaksha S, Saini AG, Saini L, Shah S, Srinivasan VM, Suthar R, Thomas M, Vyas S, Sankhyan N, Sahu JK. Landscape of genetic infantile epileptic spasms syndrome-A multicenter cohort of 124 children from India. Epilepsia Open 2023; 8:1383-1404. [PMID: 37583270 PMCID: PMC10690684 DOI: 10.1002/epi4.12811] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Accepted: 08/10/2023] [Indexed: 08/17/2023] Open
Abstract
OBJECTIVE Literature on the genotypic spectrum of Infantile Epileptic Spasms Syndrome (IESS) in children is scarce in developing countries. This multicentre collaboration evaluated the genotypic and phenotypic landscape of genetic IESS in Indian children. METHODS Between January 2021 and June 2022, this cross-sectional study was conducted at six centers in India. Children with genetically confirmed IESS, without definite structural-genetic and structural-metabolic etiology, were recruited and underwent detailed in-person assessment for phenotypic characterization. The multicentric data on the genotypic and phenotypic characteristics of genetic IESS were collated and analyzed. RESULTS Of 124 probands (60% boys, history of consanguinity in 15%) with genetic IESS, 105 had single gene disorders (104 nuclear and one mitochondrial), including one with concurrent triple repeat disorder (fragile X syndrome), and 19 had chromosomal disorders. Of 105 single gene disorders, 51 individual genes (92 variants including 25 novel) were identified. Nearly 85% of children with monogenic nuclear disorders had autosomal inheritance (dominant-55.2%, recessive-14.2%), while the rest had X-linked inheritance. Underlying chromosomal disorders included trisomy 21 (n = 14), Xq28 duplication (n = 2), and others (n = 3). Trisomy 21 (n = 14), ALDH7A1 (n = 10), SCN2A (n = 7), CDKL5 (n = 6), ALG13 (n = 5), KCNQ2 (n = 4), STXBP1 (n = 4), SCN1A (n = 4), NTRK2 (n = 4), and WWOX (n = 4) were the dominant single gene causes of genetic IESS. The median age at the onset of epileptic spasms (ES) and establishment of genetic diagnosis was 5 and 12 months, respectively. Pre-existing developmental delay (94.3%), early age at onset of ES (<6 months; 86.2%), central hypotonia (81.4%), facial dysmorphism (70.1%), microcephaly (77.4%), movement disorders (45.9%) and autistic features (42.7%) were remarkable clinical findings. Seizures other than epileptic spasms were observed in 83 children (66.9%). Pre-existing epilepsy syndrome was identified in 21 (16.9%). Nearly 60% had an initial response to hormonal therapy. SIGNIFICANCE Our study highlights a heterogenous genetic landscape and phenotypic pleiotropy in children with genetic IESS.
Collapse
Affiliation(s)
- Balamurugan Nagarajan
- Pediatric Neurology Unit, Department of PediatricsPostgraduate Institute of Medical Education and ResearchChandigarhIndia
| | - Vykuntaraju K. Gowda
- Department of Pediatric NeurologyIndira Gandhi Institute of Child HealthBengaluruIndia
| | - Sangeetha Yoganathan
- Pediatric Neurology Unit, Department of Neurological SciencesChristian Medical CollegeVelloreIndia
| | - Indar Kumar Sharawat
- Pediatric Neurology Division, Department of PediatricsAll India Institute of Medical SciencesRishikeshIndia
| | - Kavita Srivastava
- Pediatric Neurology Unit, Department of PediatricsBharati Vidyapeeth Deemed University Medical CollegePuneIndia
| | - Nitish Vora
- Royal Institute of Child NeurosciencesAhmedabadIndia
| | - Rahul Badheka
- Royal Institute of Child NeurosciencesAhmedabadIndia
| | - Sumita Danda
- Department of Medical GeneticsChristian Medical CollegeVelloreIndia
| | - Umesh Kalane
- Pediatric Neurology Division, Department of PediatricsAll India Institute of Medical SciencesRishikeshIndia
| | - Anupriya Kaur
- Genetics and Metabolic Unit, Department of PediatricsPostgraduate Institute of Medical Education and ResearchChandigarhIndia
| | - Priyanka Madaan
- Pediatric Neurology Unit, Department of PediatricsPostgraduate Institute of Medical Education and ResearchChandigarhIndia
- Department of Pediatric NeurologyAmrita Institute of Medical SciencesFaridabadIndia
| | - Sanjiv Mehta
- Royal Institute of Child NeurosciencesAhmedabadIndia
| | - Sandeep Negi
- Pediatric Neurology Unit, Department of PediatricsPostgraduate Institute of Medical Education and ResearchChandigarhIndia
| | - Prateek Kumar Panda
- Pediatric Neurology Division, Department of PediatricsAll India Institute of Medical SciencesRishikeshIndia
| | - Surekha Rajadhyaksha
- Pediatric Neurology Unit, Department of PediatricsBharati Vidyapeeth Deemed University Medical CollegePuneIndia
| | - Arushi Gahlot Saini
- Pediatric Neurology Unit, Department of PediatricsPostgraduate Institute of Medical Education and ResearchChandigarhIndia
| | - Lokesh Saini
- Pediatric Neurology Unit, Department of PediatricsPostgraduate Institute of Medical Education and ResearchChandigarhIndia
- Department of PediatricsAll India Institute of Medical SciencesJodhpurIndia
| | | | | | - Renu Suthar
- Pediatric Neurology Unit, Department of PediatricsPostgraduate Institute of Medical Education and ResearchChandigarhIndia
| | - Maya Thomas
- Pediatric Neurology Unit, Department of Neurological SciencesChristian Medical CollegeVelloreIndia
| | - Sameer Vyas
- Division of Neuroimaging and Interventional Neuroradiology, Department of Radiodiagnosis and ImagingPostgraduate Institute of Medical Education and ResearchChandigarhIndia
| | - Naveen Sankhyan
- Pediatric Neurology Unit, Department of PediatricsPostgraduate Institute of Medical Education and ResearchChandigarhIndia
| | - Jitendra Kumar Sahu
- Pediatric Neurology Unit, Department of PediatricsPostgraduate Institute of Medical Education and ResearchChandigarhIndia
| |
Collapse
|
13
|
Bariş S, Kırık S, Balasar Ö. Importance of targeted next-generation sequencing in pediatric patients with developmental epileptic encephalopathy. REVISTA DA ASSOCIACAO MEDICA BRASILEIRA (1992) 2023; 69:e20230547. [PMID: 37820178 PMCID: PMC10561910 DOI: 10.1590/1806-9282.20230547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Accepted: 07/16/2023] [Indexed: 10/13/2023]
Abstract
OBJECTIVE Childhood epilepsy is a common neurological disorder with a prevalence of 300-600 cases per 100,000 people. It is associated with refractory epilepsies, global developmental delay, and epileptic encephalopathies, causing epileptic syndromes characterized by cognitive and behavioral disorders. METHODS In this retrospective cohort study, patients with refractory epilepsy and global developmental delay, defined as epileptic encephalopathy, who applied to the Aydın 7Maternity and Children's Hospital Genetic Diagnosis Center and were followed in the pediatric neurology clinic of our hospital, between July 2018 and July 2021, were included. RESULTS Targeted next-generation sequencing molecular genetics results were reviewed, and 3 ALDH7A1, 1 AARS, 3 CACNA1A, 1 CTNNB1, 1 DCX, 2 DBH, 2 DOCK7, 1 FOLR1, 2 GABRB3, 2 GCH1, 1 VGRIN2B, 1 GUF1, 3 KCNQ2, 2 KCNT1, 1 NECAP1, 1 PCDH19, 1 PNPO, 1 SCN8A, 1 SCN9A, 4 SCN1A, 2 SLC25A22, 1 SLC2A1, 2 SPTAN1, 2 SZT2, 4 TBC1D24, 2 TH, and 1 PCDH19 (X chromosome) mutations were detected in three of the patients using the next-generation sequencing method. CONCLUSION Although the development of gene panels aids in diagnosis, there are still unidentified disorders in this illness category, which is highly variable in genotype and phenotype. Understanding the genetic etiology is vital for genetic counseling and, maybe, the future development of remedies for the etiology.
Collapse
Affiliation(s)
- Savaş Bariş
- Aydın Obstetrics and Gynecology Hospital, Genetic Diseases Diagnosis Center – Aydın, Turkiye
| | - Serkan Kırık
- Fırat University, Faculty of Medicine, Pediatric Neurology – Elazığ, Turkiye
| | - Özgür Balasar
- Konya City Hospital, Genetic Diagnosis Center – Konya, Turkiye
| |
Collapse
|
14
|
Oliver KL, Scheffer IE, Bennett MF, Grinton BE, Bahlo M, Berkovic SF. Genes4Epilepsy: An epilepsy gene resource. Epilepsia 2023; 64:1368-1375. [PMID: 36808730 PMCID: PMC10952165 DOI: 10.1111/epi.17547] [Citation(s) in RCA: 28] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 02/11/2023] [Accepted: 02/13/2023] [Indexed: 02/23/2023]
Abstract
OBJECTIVE "How many epilepsy genes are there?" is a frequently asked question. We sought to (1) provide a curated list of genes that cause monogenic epilepsies, and (2) compare and contrast epilepsy gene panels from multiple sources. METHODS We compared genes included on the epilepsy panels (as of July 29, 2022) of four clinical diagnostic providers: Invitae, GeneDx, Fulgent Genetics, and Blueprint Genetics; and two research resources: PanelApp Australia and ClinGen. A master list of all unique genes was supplemented by additional genes identified via PubMed searches up until August 15, 2022, using the search terms "genetics" AND/OR "epilepsy" AND/OR "seizures". Evidence supporting a monogenic role for all genes was manually reviewed; those with limited or disputed evidence were excluded. All genes were annotated according to inheritance pattern and broad epilepsy phenotype. RESULTS The comparison of genes included on epilepsy clinical panels revealed high heterogeneity in both number of genes (range: 144-511) and content. Just 111 genes (15.5%) were included on all four clinical panels. Subsequent manual curation of all "epilepsy genes" identified >900 monogenic etiologies. Almost 90% of genes were associated with developmental and epileptic encephalopathies. By comparison only 5% of genes were associated with monogenic causes of "common epilepsies" (i.e., generalized and focal epilepsy syndromes). Autosomal recessive genes were most frequent (56% of genes); however, this varied according to the associated epilepsy phenotype(s). Genes associated with common epilepsy syndromes were more likely to be dominantly inherited and associated with multiple epilepsy types. SIGNIFICANCE Our curated list of monogenic epilepsy genes is publicly available: github.com/bahlolab/genes4epilepsy and will be regularly updated. This gene resource can be utilized to target genes beyond those included on clinical gene panels, for gene enrichment methods and candidate gene prioritization. We invite ongoing feedback and contributions from the scientific community via genes4-epilepsy@unimelb.edu.au.
Collapse
Affiliation(s)
- Karen L. Oliver
- Department of Medicine, Epilepsy Research CentreUniversity of Melbourne, Austin HealthMelbourneVictoriaAustralia
- Population Health and Immunity DivisionThe Walter and Eliza Hall Institute of Medical ResearchParkvilleVictoriaAustralia
- Department of Medical BiologyThe University of MelbourneParkvilleVictoriaAustralia
| | - Ingrid E. Scheffer
- Department of Medicine, Epilepsy Research CentreUniversity of Melbourne, Austin HealthMelbourneVictoriaAustralia
- Florey Institute of Neuroscience and Mental HealthHeidelbergVictoriaAustralia
- Department of PaediatricsUniversity of MelbourneMelbourneVictoriaAustralia
- Murdoch Children's Research InstituteParkvilleVictoriaAustralia
| | - Mark F. Bennett
- Department of Medicine, Epilepsy Research CentreUniversity of Melbourne, Austin HealthMelbourneVictoriaAustralia
- Population Health and Immunity DivisionThe Walter and Eliza Hall Institute of Medical ResearchParkvilleVictoriaAustralia
- Department of Medical BiologyThe University of MelbourneParkvilleVictoriaAustralia
| | - Bronwyn E. Grinton
- Department of Medicine, Epilepsy Research CentreUniversity of Melbourne, Austin HealthMelbourneVictoriaAustralia
| | - Melanie Bahlo
- Population Health and Immunity DivisionThe Walter and Eliza Hall Institute of Medical ResearchParkvilleVictoriaAustralia
- Department of Medical BiologyThe University of MelbourneParkvilleVictoriaAustralia
| | - Samuel F. Berkovic
- Department of Medicine, Epilepsy Research CentreUniversity of Melbourne, Austin HealthMelbourneVictoriaAustralia
| |
Collapse
|
15
|
Chang YT, Hong SY, Lin WD, Lin CH, Lin SS, Tsai FJ, Chou IC. Genetic Testing in Children with Developmental and Epileptic Encephalopathies: A Review of Advances in Epilepsy Genomics. CHILDREN 2023; 10:children10030556. [PMID: 36980114 PMCID: PMC10047509 DOI: 10.3390/children10030556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 03/11/2023] [Accepted: 03/13/2023] [Indexed: 03/17/2023]
Abstract
Advances in disease-related gene discovery have led to tremendous innovations in the field of epilepsy genetics. Identification of genetic mutations that cause epileptic encephalopathies has opened new avenues for the development of targeted therapies. Clinical testing using extensive gene panels, exomes, and genomes is currently accessible and has resulted in higher rates of diagnosis and better comprehension of the disease mechanisms underlying the condition. Children with developmental disabilities have a higher risk of developing epilepsy. As our understanding of the mechanisms underlying encephalopathies and epilepsies improves, there may be greater potential to develop innovative therapies tailored to an individual’s genotype. This article provides an overview of the significant progress in epilepsy genomics in recent years, with a focus on developmental and epileptic encephalopathies in children. The aim of this review is to enhance comprehension of the clinical utilization of genetic testing in this particular patient population. The development of effective and precise therapeutic strategies for epileptic encephalopathies may be facilitated by a comprehensive understanding of their molecular pathogenesis.
Collapse
Affiliation(s)
- Yu-Tzu Chang
- School of Post Baccalaureate Chinese Medicine, China Medical University, Taichung 40447, Taiwan; (Y.-T.C.)
- Division of Pediatric Neurology, China Medical University Children’s Hospital, Taichung 40447, Taiwan
| | - Syuan-Yu Hong
- Division of Pediatric Neurology, China Medical University Children’s Hospital, Taichung 40447, Taiwan
- Department of Medicine, School of Medicine, China Medical University, Taichung 40447, Taiwan
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung 40447, Taiwan
| | - Wei-De Lin
- School of Post Baccalaureate Chinese Medicine, China Medical University, Taichung 40447, Taiwan; (Y.-T.C.)
- Department of Medical Research, China Medical University Hospital, Taichung 40447, Taiwan
| | - Chien-Heng Lin
- Division of Pediatric Pulmonology, China Medical University Children’s Hospital, Taichung 40447, Taiwan
- Department of Biomedical Imaging and Radiological Science, College of Medicine, China Medial University, Taichung 40447, Taiwan
| | - Sheng-Shing Lin
- School of Post Baccalaureate Chinese Medicine, China Medical University, Taichung 40447, Taiwan; (Y.-T.C.)
- Division of Pediatric Neurology, China Medical University Children’s Hospital, Taichung 40447, Taiwan
| | - Fuu-Jen Tsai
- Department of Medical Research, China Medical University Hospital, Taichung 40447, Taiwan
- Division of Genetics and Metabolism, China Medical University Children’s Hospital, Taichung 40447, Taiwan
- Department of Medical Genetics, China Medical University Hospital, Taichung 40447, Taiwan
- School of Chinese Medicine, China Medical University, Taichung 40447, Taiwan
- Department of Medical Laboratory Science and Biotechnology, Asia University, Taichung 40447, Taiwan
| | - I-Ching Chou
- Division of Pediatric Neurology, China Medical University Children’s Hospital, Taichung 40447, Taiwan
- Graduate Institute of Integrated Medicine, China Medical University, Taichung 40447, Taiwan
- Correspondence: ; Tel.: +886-4-22052121
| |
Collapse
|
16
|
Boonsimma P, Ittiwut C, Kamolvisit W, Ittiwut R, Chetruengchai W, Phokaew C, Srichonthong C, Poonmaksatit S, Desudchit T, Suphapeetiporn K, Shotelersuk V. Exome sequencing as first-tier genetic testing in infantile-onset pharmacoresistant epilepsy: diagnostic yield and treatment impact. Eur J Hum Genet 2023; 31:179-187. [PMID: 36198807 PMCID: PMC9905506 DOI: 10.1038/s41431-022-01202-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 09/06/2022] [Accepted: 09/20/2022] [Indexed: 11/09/2022] Open
Abstract
Pharmacoresistant epilepsy presenting during infancy poses both diagnostic and therapeutic challenges. We aim to identify diagnostic yield and treatment implications of exome sequencing (ES) as first-tier genetic testing for infantile-onset pharmacoresistant epilepsy. From June 2016 to December 2020, we enrolled patients with infantile-onset (age ≤ 12 months) pharmacoresistant epilepsy. 103 unrelated patients underwent ES. Clinical characteristics and changes in management due to the molecular diagnosis were studied. 42% (43/103) had epilepsy onset within the first month of life. After ES as first-tier genetic testing, 62% (64/103) of the cases were solved. Two partially solved cases (2%; 2/103) with heterozygous variants identified in ALDH7A1 known to cause autosomal recessive pyridoxine dependent epilepsy underwent genome sequencing (GS). Two novel large deletions in ALDH7A1 were detected in both cases. ES identified 66 pathogenic and likely pathogenic single nucleotide variants (SNVs) in 27 genes. 19 variants have not been previously reported. GS identified two additional copy number variations (CNVs). The most common disease-causing genes are SCN1A (13%; 13/103) and KCNQ2 (8%; 8/103). Eight percent (8/103) of the patients had treatable disorders and specific treatments were provided resulting in seizure freedom. Pyridoxine dependent epilepsy was the most common treatable epilepsy (6%; 6/103). Furthermore, 35% (36/103) had genetic defects which guided gene-specific treatments. Altogether, the diagnostic yield is 64%. Molecular diagnoses change management in 43% of the cases. This study substantiates the use of next generation sequencing (NGS) as the first-tier genetic investigation in infantile-onset pharmacoresistant epilepsy.
Collapse
Affiliation(s)
- Ponghatai Boonsimma
- Center of Excellence for Medical Genomics, Medical Genomics Cluster, Department of Pediatrics, Faculty of Medicine, Chulalongkorn University, Bangkok, 10330, Thailand
- Excellence Center for Genomics and Precision Medicine, King Chulalongkorn Memorial Hospital, the Thai Red Cross Society, Bangkok, 10330, Thailand
| | - Chupong Ittiwut
- Center of Excellence for Medical Genomics, Medical Genomics Cluster, Department of Pediatrics, Faculty of Medicine, Chulalongkorn University, Bangkok, 10330, Thailand
- Excellence Center for Genomics and Precision Medicine, King Chulalongkorn Memorial Hospital, the Thai Red Cross Society, Bangkok, 10330, Thailand
| | - Wuttichart Kamolvisit
- Center of Excellence for Medical Genomics, Medical Genomics Cluster, Department of Pediatrics, Faculty of Medicine, Chulalongkorn University, Bangkok, 10330, Thailand
- Excellence Center for Genomics and Precision Medicine, King Chulalongkorn Memorial Hospital, the Thai Red Cross Society, Bangkok, 10330, Thailand
| | - Rungnapa Ittiwut
- Center of Excellence for Medical Genomics, Medical Genomics Cluster, Department of Pediatrics, Faculty of Medicine, Chulalongkorn University, Bangkok, 10330, Thailand
- Excellence Center for Genomics and Precision Medicine, King Chulalongkorn Memorial Hospital, the Thai Red Cross Society, Bangkok, 10330, Thailand
| | - Wanna Chetruengchai
- Center of Excellence for Medical Genomics, Medical Genomics Cluster, Department of Pediatrics, Faculty of Medicine, Chulalongkorn University, Bangkok, 10330, Thailand
- Excellence Center for Genomics and Precision Medicine, King Chulalongkorn Memorial Hospital, the Thai Red Cross Society, Bangkok, 10330, Thailand
| | - Chureerat Phokaew
- Center of Excellence for Medical Genomics, Medical Genomics Cluster, Department of Pediatrics, Faculty of Medicine, Chulalongkorn University, Bangkok, 10330, Thailand
- Excellence Center for Genomics and Precision Medicine, King Chulalongkorn Memorial Hospital, the Thai Red Cross Society, Bangkok, 10330, Thailand
| | - Chalurmpon Srichonthong
- Center of Excellence for Medical Genomics, Medical Genomics Cluster, Department of Pediatrics, Faculty of Medicine, Chulalongkorn University, Bangkok, 10330, Thailand
- Excellence Center for Genomics and Precision Medicine, King Chulalongkorn Memorial Hospital, the Thai Red Cross Society, Bangkok, 10330, Thailand
| | - Sathida Poonmaksatit
- Division of Neurology, Department of Pediatrics, Faculty of Medicine, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Tayard Desudchit
- Division of Neurology, Department of Pediatrics, Faculty of Medicine, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Kanya Suphapeetiporn
- Center of Excellence for Medical Genomics, Medical Genomics Cluster, Department of Pediatrics, Faculty of Medicine, Chulalongkorn University, Bangkok, 10330, Thailand.
- Excellence Center for Genomics and Precision Medicine, King Chulalongkorn Memorial Hospital, the Thai Red Cross Society, Bangkok, 10330, Thailand.
| | - Vorasuk Shotelersuk
- Center of Excellence for Medical Genomics, Medical Genomics Cluster, Department of Pediatrics, Faculty of Medicine, Chulalongkorn University, Bangkok, 10330, Thailand
- Excellence Center for Genomics and Precision Medicine, King Chulalongkorn Memorial Hospital, the Thai Red Cross Society, Bangkok, 10330, Thailand
| |
Collapse
|
17
|
Utility of genetic testing in children with developmental and epileptic encephalopathy (DEE) at a tertiary hospital in South Africa: A prospective study. Seizure 2022; 101:197-204. [DOI: 10.1016/j.seizure.2022.09.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 08/10/2022] [Accepted: 09/01/2022] [Indexed: 11/21/2022] Open
|
18
|
Beverley KM, Pattnaik BR. Inward rectifier potassium (Kir) channels in the retina: living our vision. Am J Physiol Cell Physiol 2022; 323:C772-C782. [PMID: 35912989 PMCID: PMC9448332 DOI: 10.1152/ajpcell.00112.2022] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 07/25/2022] [Accepted: 07/25/2022] [Indexed: 11/22/2022]
Abstract
Channel proteins are vital for conducting ions throughout the body and are especially relevant to retina physiology. Inward rectifier potassium (Kir) channels are a class of K+ channels responsible for maintaining membrane potential and extracellular K+ concentrations. Studies of the KCNJ gene (that encodes Kir protein) expression identified the presence of all of the subclasses (Kir 1-7) of Kir channels in the retina or retinal-pigmented epithelium (RPE). However, functional studies have established the involvement of the Kir4.1 homotetramer and Kir4.1/5.1 heterotetramer in Müller glial cells, Kir2.1 in bipolar cells, and Kir7.1 in the RPE cell physiology. Here, we propose the potential roles of Kir channels in the retina based on the physiological contributions to the brain, pancreatic, and cardiac tissue functions. There are several open questions regarding the expressed KCNJ genes in the retina and RPE. For example, why does not the Kir channel subtype gene expression correspond with protein expression? Catching up with multiomics or functional "omics" approaches might shed light on posttranscriptional changes that might influence Kir subunit mRNA translation within the retina that guides our vision.
Collapse
Affiliation(s)
- Katie M Beverley
- Endocrinology and Reproductive Physiology Graduate Program, School of Medicine and Public Health, University of Wisconsin, Madison, Wisconsin
- Department of Pediatrics, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin
- McPherson Eye Research Institute, University of Wisconsin, Madison, Wisconsin
| | - Bikash R Pattnaik
- Endocrinology and Reproductive Physiology Graduate Program, School of Medicine and Public Health, University of Wisconsin, Madison, Wisconsin
- Department of Pediatrics, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin
- McPherson Eye Research Institute, University of Wisconsin, Madison, Wisconsin
- Department of Ophthalmology and Visual Sciences, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin
| |
Collapse
|
19
|
Genetic Testing and Hospital Length of Stay in Neonates With Epilepsy. Pediatr Neurol 2022; 133:30-33. [PMID: 35751960 PMCID: PMC9484310 DOI: 10.1016/j.pediatrneurol.2022.05.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Accepted: 05/25/2022] [Indexed: 11/22/2022]
Abstract
BACKGROUND We evaluated changes in genetic testing for neonatal-onset epilepsy and associated short-term outcomes over an 8-year period among a cohort of patients in the neonatal intensive care unit (NICU) at a single institution before and after the introduction of sponsored genetic epilepsy testing in January 2018. METHODS Our primary outcome was a change in length of stay (LOS) after 2018. We also ascertained severity of illness with the Neonatal Sequential Organ Failure Assessment (nSOFA), type and result of genetic testing, turnaround time to molecular diagnosis (TAT), LOS, antiseizure medications (ASMs), and use of technology at discharge. We compared outcomes using nonparametric tests and difference-in-difference analysis. RESULTS Fifty-three infants with genetic testing were included; 20 infants were tested after 2018. A total of 4160 infants in the NICU without genetic testing were used as reference. In the genetic testing group, LOS was 25 days (interquartile range [IQR] 5, 49) pre-2018 and 19 days (IQR 6, 19) post-2018 (P < 0.001 when compared with the reference population in the difference-in-difference analysis). TAT decreased from 51 days to 17 days after 2018 (P = 0.003). ASM number decreased from 4 (IQR 2, 5) to 2 post-2018 (IQR 1, 3) (P = 0.02). Over the same time periods there was no significant change in birth weight, maximum nSOFA score, or technology dependence. CONCLUSIONS In this cohort, changes in genetic testing for neonatal-onset epilepsy were associated with shorter LOS that was not explained by changes in severity of illness, birth weight, or the average LOS in the NICU over time. Validation of these results in a larger, multicenter sample size is warranted.
Collapse
|
20
|
Rooney K, Sadikovic B. DNA Methylation Episignatures in Neurodevelopmental Disorders Associated with Large Structural Copy Number Variants: Clinical Implications. Int J Mol Sci 2022; 23:ijms23147862. [PMID: 35887210 PMCID: PMC9324454 DOI: 10.3390/ijms23147862] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 07/11/2022] [Accepted: 07/14/2022] [Indexed: 02/06/2023] Open
Abstract
Large structural chromosomal deletions and duplications, referred to as copy number variants (CNVs), play a role in the pathogenesis of neurodevelopmental disorders (NDDs) through effects on gene dosage. This review focuses on our current understanding of genomic disorders that arise from large structural chromosome rearrangements in patients with NDDs, as well as difficulties in overlap of clinical presentation and molecular diagnosis. We discuss the implications of epigenetics, specifically DNA methylation (DNAm), in NDDs and genomic disorders, and consider the implications and clinical impact of copy number and genomic DNAm testing in patients with suspected genetic NDDs. We summarize evidence of global methylation episignatures in CNV-associated disorders that can be used in the diagnostic pathway and may provide insights into the molecular pathogenesis of genomic disorders. Finally, we discuss the potential for combining CNV and DNAm assessment into a single diagnostic assay.
Collapse
Affiliation(s)
- Kathleen Rooney
- Department of Pathology and Laboratory Medicine, Western University, London, ON N6A 3K7, Canada;
- Verspeeten Clinical Genome Centre, London Health Sciences Centre, London, ON N6A 5W9, Canada
| | - Bekim Sadikovic
- Department of Pathology and Laboratory Medicine, Western University, London, ON N6A 3K7, Canada;
- Verspeeten Clinical Genome Centre, London Health Sciences Centre, London, ON N6A 5W9, Canada
- Correspondence: ; Tel.: +1-519-685-8500 (ext. 53074)
| |
Collapse
|
21
|
Phenotypic and Genotypic Spectrum of Early-Onset Developmental and Epileptic Encephalopathies-Data from a Romanian Cohort. Genes (Basel) 2022; 13:genes13071253. [PMID: 35886038 PMCID: PMC9322987 DOI: 10.3390/genes13071253] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 07/11/2022] [Accepted: 07/12/2022] [Indexed: 02/01/2023] Open
Abstract
Early-onset developmental epileptic encephalopathy (DEE) refers to an age-specific, diverse group of epilepsy syndromes with electroclinical anomalies that are associated with severe cognitive, behavioral, and developmental impairments. Genetic DEEs have heterogeneous etiologies. This study includes 36 Romanian patients referred to the Regional Centre for Medical Genetics Dolj for genetic testing between 2017 and 2020. The patients had been admitted to and clinically evaluated at Doctor Victor Gomoiu Children’s Hospital and Prof. Dr. Alexandru Obregia Psychiatry Hospital in Bucharest. Panel testing was performed using the Illumina® TruSight™ One “clinical exome” (4811 genes), and the analysis focused on the known genes reported in DEEs and clinical concordance. The overall diagnostic rate was 25% (9/36 cases). Seven cases were diagnosed with Dravet syndrome (likely pathogenic/pathogenic variants in SCN1A) and two with Genetic Epilepsy with Febrile Seizures Plus (SCN1B). For the diagnosed patients, seizure onset was <1 year, and the seizure type was generalized tonic-clonic. Four additional plausible variants of unknown significance in SCN2A, SCN9A, and SLC2A1 correlated with the reported phenotype. Overall, we are reporting seven novel variants. Comprehensive clinical phenotyping is crucial for variant interpretation. Genetic assessment of patients with severe early-onset DEE can be a powerful diagnostic tool for clinicians, with implications for the management and counseling of the patients and their families.
Collapse
|
22
|
Zhao X, Ning H, Wang Y, Zhao G, Mei S, Liu N, Wang C, Cai A, Wei E, Kong X. Genetic analysis and identification of novel variations in Chinese patients with pediatric epilepsy by whole-exome sequencing. Neurol Sci 2022; 43:4439-4451. [DOI: 10.1007/s10072-022-05953-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Accepted: 02/12/2022] [Indexed: 11/28/2022]
|
23
|
Yang H, Yang X, Cai F, Gan S, Yang S, Wu L. Analysis of clinical phenotypic and genotypic spectra in 36 children patients with Epilepsy of Infancy with Migrating Focal Seizures. Sci Rep 2022; 12:10187. [PMID: 35715422 PMCID: PMC9205988 DOI: 10.1038/s41598-022-13974-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Accepted: 05/31/2022] [Indexed: 01/01/2023] Open
Abstract
Epilepsy of Infancy with Migrating Focal Seizures (EIMFS) is a rare developmental and epileptic encephalopathy (DEEs) with unknown etiology, and poor prognosis. In order to explore new genetic etiology of EIMFS and new precision medicine treatment strategies, 36 children with EIMFS were enrolled in this study. 17/36 cases had causative variants across 11 genes, including 6 novel EIMFS genes: PCDH19, ALDH7A1, DOCK6, PRRT2, ALG1 and ATP7A. 13/36 patients had ineffective seizure control, 14/36 patients had severe retardation and 6/36 patients died. Of them, the genes for ineffective seizure control, severe retardation or death include KCNT1, SCN2A, SCN1A, ALG1, ATP7A and WWOX. 17 patients had abnormal MRI, of which 8 had ineffective seizure control, 7 had severe retardation and 4 died. 13 patients had hypsarrhythmia, of which 6 had ineffective seizure control, 6 had severe retardation and 2 died. Also, 7 patients had burst suppression, of which 1 had ineffective seizure control, 3 had severe retardation and 3 died. This study is the first to report that ALDH7A1, ATP7A, DOCK6, PRRT2, ALG1, and PCDH19 mutations cause the phenotypic spectrum of EIMFS to expand the genotypic spectrum. The genes KCNT1, SCN2A, SCN1A, ALG1, ATP7A and WWOX may be associated with poor prognosis. The patients presenting with MRI abnormalities, hypsarrhythmia and burst suppression in EEG may be associated with poor prognosis.
Collapse
Affiliation(s)
- Haiyan Yang
- Department of Neurology, Hunan Children's Hospital, Ziyuan Road 86th, Changsha, 410007, Hunan, People's Republic of China
| | - Xiaofan Yang
- Department of Pediatrics, Qilu Hospital of Shangdong University, Jinan, People's Republic of China
| | - Fang Cai
- Department of Neurology, Chenzhou No 1 People's Hospital, Chenzhou, People's Republic of China
| | - Siyi Gan
- Department of Neurology, Hunan Children's Hospital, Ziyuan Road 86th, Changsha, 410007, Hunan, People's Republic of China
| | - Sai Yang
- Department of Neurology, Hunan Children's Hospital, Ziyuan Road 86th, Changsha, 410007, Hunan, People's Republic of China
| | - Liwen Wu
- Department of Neurology, Hunan Children's Hospital, Ziyuan Road 86th, Changsha, 410007, Hunan, People's Republic of China.
| |
Collapse
|
24
|
Functional correlates of clinical phenotype and severity in recurrent SCN2A variants. Commun Biol 2022; 5:515. [PMID: 35637276 PMCID: PMC9151917 DOI: 10.1038/s42003-022-03454-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Accepted: 05/05/2022] [Indexed: 01/24/2023] Open
Abstract
In SCN2A-related disorders, there is an urgent demand to establish efficient methods for determining the gain- (GoF) or loss-of-function (LoF) character of variants, to identify suitable candidates for precision therapies. Here we classify clinical phenotypes of 179 individuals with 38 recurrent SCN2A variants as early-infantile or later-onset epilepsy, or intellectual disability/autism spectrum disorder (ID/ASD) and assess the functional impact of 13 variants using dynamic action potential clamp (DAPC) and voltage clamp. Results show that 36/38 variants are associated with only one phenotypic group (30 early-infantile, 5 later-onset, 1 ID/ASD). Unexpectedly, we revealed major differences in outcome severity between individuals with the same variant for 40% of early-infantile variants studied. DAPC was superior to voltage clamp in predicting the impact of mutations on neuronal excitability and confirmed GoF produces early-infantile phenotypes and LoF later-onset phenotypes. For one early-infantile variant, the co-expression of the α1 and β2 subunits of the Nav1.2 channel was needed to unveil functional impact, confirming the prediction of 3D molecular modeling. Neither DAPC nor voltage clamp reliably predicted phenotypic severity of early-infantile variants. Genotype, phenotypic group and DAPC are accurate predictors of the biophysical impact of SCN2A variants, but other approaches are needed to predict severity. A comprehensive biophysical analysis of disease-associated mutations in the voltage-gated sodium channel gene, SCN2A, suggests that dynamic action potential clamp may be a better predictor than voltage clamp of how these mutations alter neuronal excitability, though other approaches are needed to predict severity.
Collapse
|
25
|
Wegler M, Jia X, Alders M, Bouman A, Chen J, Duan X, Lauzon JL, Mathijssen IB, Sticht H, Syrbe S, Tan S, Guo H, Abou Jamra R. De novo variants in the PABP domain of PABPC1 lead to developmental delay. Genet Med 2022; 24:1761-1773. [PMID: 35511136 DOI: 10.1016/j.gim.2022.04.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 04/05/2022] [Accepted: 04/06/2022] [Indexed: 10/18/2022] Open
Abstract
PURPOSE The study aimed to investigate the role of PABPC1 in developmental delay (DD). METHODS Children were examined by geneticists and pediatricians. Variants were identified using exome sequencing and standard downstream bioinformatics pipelines. We performed in silico molecular modeling and coimmunoprecipitation to test if the variants affect the interaction between PABPC1 and PAIP2. We performed in utero electroporation of mouse embryo brains to enlighten the function of PABPC1. RESULTS We describe 4 probands with an overlapping phenotype of DD, expressive speech delay, and autistic features and heterozygous de novo variants that cluster in the PABP domain of PABPC1. Further symptoms were seizures and behavioral disorders. Molecular modeling predicted that the variants are pathogenic and would lead to decreased binding affinity to messenger RNA metabolism-related proteins, such as PAIP2. Coimmunoprecipitation confirmed this because it showed a significant weakening of the interaction between mutant PABPC1 and PAIP2. Electroporation of mouse embryo brains showed that Pabpc1 knockdown decreases the proliferation of neural progenitor cells. Wild-type Pabpc1 could rescue this disturbance, whereas 3 of the 4 variants did not. CONCLUSION Pathogenic variants in the PABP domain lead to DD, possibly because of interference with the translation initiation and subsequently an impaired neurogenesis in cortical development.
Collapse
Affiliation(s)
- Meret Wegler
- Institute of Human Genetics, University Medical Center, Leipzig, Germany
| | - Xiangbin Jia
- Center for Medical Genetics & Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha, Hunan, China
| | - Marielle Alders
- Department of Human Genetics, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Arjan Bouman
- Department of Clinical Genetics, Erasmus MC University Medical Center, Rotterdam, The Netherlands
| | - Jia Chen
- Center for Medical Genetics & Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha, Hunan, China
| | - Xinyu Duan
- Department of Pediatrics, Daping Hospital, Army Medical University, Chongqing, China
| | - Julie L Lauzon
- Department of Medical Genetics, Cummings School of Medicine, University of Calgary, Alberta Children's Hospital, Alberta, Canada
| | - Inge B Mathijssen
- Department of Human Genetics, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Heinrich Sticht
- Institute of Biochemistry, Medical Faculty, Friedrich-Alexander-Universität Erlangen-Nürnberg; Erlangen, Germany
| | - Steffen Syrbe
- Division of Pediatric Epileptology, Centre for Pediatrics and Adolescent Medicine, University Hospital Heidelberg, Heidelberg, Germany
| | - Senwei Tan
- Center for Medical Genetics & Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha, Hunan, China
| | - Hui Guo
- Center for Medical Genetics & Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha, Hunan, China.
| | - Rami Abou Jamra
- Institute of Human Genetics, University Medical Center, Leipzig, Germany.
| |
Collapse
|
26
|
Lo J, Forst AL, Warth R, Zdebik AA. EAST/SeSAME Syndrome and Beyond: The Spectrum of Kir4.1- and Kir5.1-Associated Channelopathies. Front Physiol 2022; 13:852674. [PMID: 35370765 PMCID: PMC8965613 DOI: 10.3389/fphys.2022.852674] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Accepted: 02/08/2022] [Indexed: 12/13/2022] Open
Abstract
In 2009, two groups independently linked human mutations in the inwardly rectifying K+ channel Kir4.1 (gene name KCNJ10) to a syndrome affecting the central nervous system (CNS), hearing, and renal tubular salt reabsorption. The autosomal recessive syndrome has been named EAST (epilepsy, ataxia, sensorineural deafness, and renal tubulopathy) or SeSAME syndrome (seizures, sensorineural deafness, ataxia, intellectual disability, and electrolyte imbalance), accordingly. Renal dysfunction in EAST/SeSAME patients results in loss of Na+, K+, and Mg2+ with urine, activation of the renin-angiotensin-aldosterone system, and hypokalemic metabolic alkalosis. Kir4.1 is highly expressed in affected organs: the CNS, inner ear, and kidney. In the kidney, it mostly forms heteromeric channels with Kir5.1 (KCNJ16). Biallelic loss-of-function mutations of Kir5.1 can also have disease significance, but the clinical symptoms differ substantially from those of EAST/SeSAME syndrome: although sensorineural hearing loss and hypokalemia are replicated, there is no alkalosis, but rather acidosis of variable severity; in contrast to EAST/SeSAME syndrome, the CNS is unaffected. This review provides a framework for understanding some of these differences and will guide the reader through the growing literature on Kir4.1 and Kir5.1, discussing the complex disease mechanisms and the variable expression of disease symptoms from a molecular and systems physiology perspective. Knowledge of the pathophysiology of these diseases and their multifaceted clinical spectrum is an important prerequisite for making the correct diagnosis and forms the basis for personalized therapies.
Collapse
Affiliation(s)
- Jacky Lo
- Neuroscience, Physiology and Pharmacology, University College London, London, United Kingdom
| | - Anna-Lena Forst
- Medical Cell Biology, Institute of Physiology, University of Regensburg, Regensburg, Germany
| | - Richard Warth
- Medical Cell Biology, Institute of Physiology, University of Regensburg, Regensburg, Germany
| | - Anselm A. Zdebik
- Neuroscience, Physiology and Pharmacology, University College London, London, United Kingdom
- Centre for Nephrology, University College London, London, United Kingdom
| |
Collapse
|
27
|
Hines DJ, Contreras A, Garcia B, Barker JS, Boren AJ, Moufawad El Achkar C, Moss SJ, Hines RM. Human ARHGEF9 intellectual disability syndrome is phenocopied by a mutation that disrupts collybistin binding to the GABA A receptor α2 subunit. Mol Psychiatry 2022; 27:1729-1741. [PMID: 35169261 PMCID: PMC9095487 DOI: 10.1038/s41380-022-01468-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 01/12/2022] [Accepted: 01/26/2022] [Indexed: 11/20/2022]
Abstract
Intellectual disability (ID) is a common neurodevelopmental disorder that can arise from genetic mutations ranging from trisomy to single nucleotide polymorphism. Mutations in a growing number of single genes have been identified as causative in ID, including ARHGEF9. Evaluation of 41 ARHGEF9 patient reports shows ubiquitous inclusion of ID, along with other frequently reported symptoms of epilepsy, abnormal baseline EEG activity, behavioral symptoms, and sleep disturbances. ARHGEF9 codes for the Cdc42 Guanine Nucleotide Exchange Factor 9 collybistin (Cb), a known regulator of inhibitory synapse function via direct interaction with the adhesion molecule neuroligin-2 and the α2 subunit of GABAA receptors. We mutate the Cb binding motif within the large intracellular loop of α2 replacing it with the binding motif for gephyrin from the α1 subunit (Gabra2-1). The Gabra2-1 mutation causes a strong downregulation of Cb expression, particularly at cholecystokinin basket cell inhibitory synapses. Gabra2-1 mice have deficits in working and recognition memory, as well as hyperactivity, anxiety, and reduced social preference, recapitulating the frequently reported features of ARHGEF9 patients. Gabra2-1 mice also have spontaneous seizures during postnatal development which can lead to mortality, and baseline abnormalities in low-frequency wavelengths of the EEG. EEG abnormalities are vigilance state-specific and manifest as sleep disturbance including increased time in wake and a loss of free-running rhythmicity in the absence of light as zeitgeber. Gabra2-1 mice phenocopy multiple features of human ARHGEF9 mutation, and reveal α2 subunit-containing GABAA receptors as a druggable target for treatment of this complex ID syndrome.
Collapse
Affiliation(s)
- Dustin J Hines
- Department of Psychology, University of Nevada Las Vegas, Las Vegas, NV, USA
| | - April Contreras
- Department of Psychology, University of Nevada Las Vegas, Las Vegas, NV, USA
| | - Betsua Garcia
- Department of Psychology, University of Nevada Las Vegas, Las Vegas, NV, USA
| | - Jeffrey S Barker
- Department of Psychology, University of Nevada Las Vegas, Las Vegas, NV, USA
| | - Austin J Boren
- Department of Psychology, University of Nevada Las Vegas, Las Vegas, NV, USA
| | | | - Stephen J Moss
- Department of Neuroscience, Tufts University School of Medicine, Boston, MA, USA
| | - Rochelle M Hines
- Department of Psychology, University of Nevada Las Vegas, Las Vegas, NV, USA.
| |
Collapse
|
28
|
Carvill GL, Jansen S, Lacroix A, Zemel M, Mehaffey M, De Vries P, Brunner HG, Scheffer IE, De Vries BBA, Vissers LELM, Mefford HC. Genetic convergence of developmental and epileptic encephalopathies and intellectual disability. Dev Med Child Neurol 2021; 63:1441-1447. [PMID: 34247411 DOI: 10.1111/dmcn.14989] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 06/02/2021] [Indexed: 10/20/2022]
Abstract
AIM To determine whether genes that cause developmental and epileptic encephalopathies (DEEs) are more commonly implicated in intellectual disability with epilepsy as a comorbid feature than in intellectual disability only. METHOD We performed targeted resequencing of 18 genes commonly implicated in DEEs in a cohort of 830 patients with intellectual disability (59% male) and 393 patients with DEEs (52% male). RESULTS We observed a significant enrichment of pathogenic/likely pathogenic variants in patients with epilepsy and intellectual disability (16 out of 159 in seven genes) compared with intellectual disability only (2 out of 671) (p<1.86×10-10 , odds ratio 37.22, 95% confidence interval 8.60-337.0). INTERPRETATION We identified seven genes that are more likely to cause epilepsy and intellectual disability than intellectual disability only. Conversely, two genes, GRIN2B and SCN2A, can be implicated in intellectual disability without epilepsy; in these instances intellectual disability is not a secondary consequence of ongoing seizures but rather a primary cause. What this paper adds A subset of genes are more commonly implicated in epilepsy than other neurodevelopmental disorders. GRIN2B and SCN2A are implicated in intellectual disability and epilepsy independently.
Collapse
Affiliation(s)
- Gemma L Carvill
- Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA.,Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA.,Department of Pediatrics, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Sandra Jansen
- Department of Human Genetics, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Amy Lacroix
- Division of Genetic Medicine, Department of Pediatrics, University of Washington, Seattle, WA, USA
| | - Matthew Zemel
- Division of Genetic Medicine, Department of Pediatrics, University of Washington, Seattle, WA, USA
| | - Michele Mehaffey
- Division of Genetic Medicine, Department of Pediatrics, University of Washington, Seattle, WA, USA
| | - Petra De Vries
- Department of Human Genetics, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Han G Brunner
- Department of Human Genetics, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, the Netherlands.,Department of Clinical Genetics and GROW-School for Oncology and Developmental Biology, Maastricht University Medical Center, Maastricht, the Netherlands
| | - Ingrid E Scheffer
- Murdoch Children's Research and Florey Institutes, Austin and Royal Children's Hospital, University of Melbourne, Melbourne, Victoria, Australia
| | - Bert B A De Vries
- Department of Human Genetics, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Lisenka E L M Vissers
- Department of Human Genetics, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Heather C Mefford
- Division of Genetic Medicine, Department of Pediatrics, University of Washington, Seattle, WA, USA.,Center for Pediatric Neurological Disease Research, St. Jude Children's Research Hospital, Memphis, TN, USA
| |
Collapse
|
29
|
Bui TA, Shatto J, Cuppens T, Droit A, Bolduc FV. Phenotypic Trade-Offs: Deciphering the Impact of Neurodiversity on Drug Development in Fragile X Syndrome. Front Psychiatry 2021; 12:730987. [PMID: 34733188 PMCID: PMC8558248 DOI: 10.3389/fpsyt.2021.730987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Accepted: 09/20/2021] [Indexed: 11/24/2022] Open
Abstract
Fragile X syndrome (FXS) is the most common single-gene cause of intellectual disability and autism spectrum disorder. Individuals with FXS present with a wide range of severity in multiple phenotypes including cognitive delay, behavioral challenges, sleep issues, epilepsy, and anxiety. These symptoms are also shared by many individuals with other neurodevelopmental disorders (NDDs). Since the discovery of the FXS gene, FMR1, FXS has been the focus of intense preclinical investigation and is placed at the forefront of clinical trials in the field of NDDs. So far, most studies have aimed to translate the rescue of specific phenotypes in animal models, for example, learning, or improving general cognitive or behavioral functioning in individuals with FXS. Trial design, selection of outcome measures, and interpretation of results of recent trials have shown limitations in this type of approach. We propose a new paradigm in which all phenotypes involved in individuals with FXS would be considered and, more importantly, the possible interactions between these phenotypes. This approach would be implemented both at the baseline, meaning when entering a trial or when studying a patient population, and also after the intervention when the study subjects have been exposed to the investigational product. This approach would allow us to further understand potential trade-offs underlying the varying effects of the treatment on different individuals in clinical trials, and to connect the results to individual genetic differences. To better understand the interplay between different phenotypes, we emphasize the need for preclinical studies to investigate various interrelated biological and behavioral outcomes when assessing a specific treatment. In this paper, we present how such a conceptual shift in preclinical design could shed new light on clinical trial results. Future clinical studies should take into account the rich neurodiversity of individuals with FXS specifically and NDDs in general, and incorporate the idea of trade-offs in their designs.
Collapse
Affiliation(s)
- Truong An Bui
- Department of Pediatrics, University of Alberta, Edmonton, AB, Canada
| | - Julie Shatto
- Department of Pediatrics, University of Alberta, Edmonton, AB, Canada
| | - Tania Cuppens
- Centre de Recherche du CHU de Québec-Université Laval et Département de Médecine Moléculaire de l'Université Laval, Laval, QC, Canada
| | - Arnaud Droit
- Centre de Recherche du CHU de Québec-Université Laval et Département de Médecine Moléculaire de l'Université Laval, Laval, QC, Canada
| | - François V. Bolduc
- Department of Pediatrics, University of Alberta, Edmonton, AB, Canada
- Department of Medical Genetics, University of Alberta, Edmonton, AB, Canada
- Neuroscience and Mental Health Institute, University of Alberta, Edmonton, AB, Canada
| |
Collapse
|
30
|
Next-generation sequencing in childhood-onset epilepsies: Diagnostic yield and impact on neuronal ceroid lipofuscinosis type 2 (CLN2) disease diagnosis. PLoS One 2021; 16:e0255933. [PMID: 34469436 PMCID: PMC8409681 DOI: 10.1371/journal.pone.0255933] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Accepted: 07/27/2021] [Indexed: 11/19/2022] Open
Abstract
Epilepsy is one of the most common childhood-onset neurological conditions with a genetic etiology. Genetic diagnosis provides potential for etiologically-based management and treatment. Existing research has focused on early-onset (<24 months) epilepsies; data regarding later-onset epilepsies is limited. The goal of this study was to determine the diagnostic yield of a clinically available epilepsy panel in a selected pediatric epilepsy cohort with epilepsy onset between 24-60 months of life and evaluate whether this approach decreases the age of diagnosis of neuronal ceroid lipofuscinosis type 2 (CLN2). Next-generation sequencing (NGS)-based epilepsy panels, including genes associated with epileptic encephalopathies and inborn errors of metabolism (IEMs) that present with epilepsy, were used. Copy-number variant (CNV) detection from NGS data was included. Variant interpretation was performed per American College of Medical Genetics and Genomics (ACMG) guidelines. Results are reported from 211 consecutive patients with the following inclusion criteria: 24-60 months of age at the time of enrollment, first unprovoked seizure at/after 24 months, and at least one additional finding such as EEG/MRI abnormalities, speech delay, or motor symptoms. Median age was 42 months at testing and 30 months at first seizure onset; the mean delay from first seizure to comprehensive genetic testing was 10.3 months. A genetic diagnosis was established in 43 patients (20.4%). CNVs were reported in 25.6% diagnosed patients; 27.3% of CNVs identified were intragenic. Within the diagnosed cohort, 11 (25.6%) patients were diagnosed with an IEM. The predominant molecular diagnosis was CLN2 (14% of diagnosed patients). For these patients, diagnosis was achieved 12-24 months earlier than reported by natural history of the disease. This study supports comprehensive genetic testing for patients whose first seizure occurs ≥ 24 months of age. It also supports early application of testing in this age group, as the identified diagnoses can have significant impact on patient management and outcome.
Collapse
|
31
|
Binaafar S, Garshasbi M, Tavasoli AR, Badv RS, Hosseiny SMM, Samanta D, Rabbani B, Mahdieh N. Nonsyndromic Early-Onset Epileptic Encephalopathies: Two Novel KCTD7 Pathogenic Variants and a Literature Review. Dev Neurosci 2021; 43:348-357. [PMID: 34469883 DOI: 10.1159/000519318] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2021] [Accepted: 08/30/2021] [Indexed: 11/19/2022] Open
Abstract
Early-onset epileptic encephalopathies (EOEE) affect cognitive, sensory, and motor development. Genetic variations are among the identifiable primary causes of these syndromes. However, some patients have been reported to be affected by EOEE without any other clinical symptoms and signs. We study the genotype and phenotype of patients with nonsyndromic early-onset epileptic encephalopathy (NSEOEE) and report 2 novel patients from Iran. A comprehensive search was conducted in PubMed, John Willy, Springer, Elsevier, and Google Scholar databases to collect related information of all the previously reported cases with KCTD7 mutations. Fifty-four patients (from 40 families) were investigated. Using trio-whole-exome sequencing (trio-WES) and Sanger sequencing, the possible genetic causes of the disorder were checked. The probable impacts of the identified variants on the KCTD7 protein structure and function were predicted. This study provided a detailed overview of all published KCTD7 mutations and 2 de novo ones. We identified 2 novel homozygous variants of uncertain significance, c.458 G > A p. Arg153His and c.529C > T (p.Arg177Cys), in KCTD7 (NM_153033.4) (Chr7(GRCh37)). There is a significant wide distribution of the KCTD7 gene causing NSEOEE among different populations. In conclusion, KCTD7 mutations demonstrate a diverse geographical distribution alongside a wide range of ethnicities. This highlights the importance of careful consideration in the WES data analysis. Mutations of this gene may be a common cause of NSEOEE. Also, this study imprints targeted therapeutic opportunities for potassium channelepsies such as KCTD7-related NSEOEE.
Collapse
Affiliation(s)
- Sima Binaafar
- Growth and Development Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Masoud Garshasbi
- Department of Medical Genetics, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Ali Reza Tavasoli
- Myelin Disorders Clinic, Pediatric Neurology Division, Children's Medical Center, Pediatrics Center of Excellence, Tehran University of Medical Sciences, Tehran, Iran
| | - Reza Shervin Badv
- Children's Hospital Center, Pediatric Center of Excellence, Tehran University of Medical Center, Tehran, Iran
| | - Seyyed Mohammad Mahdi Hosseiny
- Myelin Disorders Clinic, Pediatric Neurology Division, Children's Medical Center, Pediatrics Center of Excellence, Tehran University of Medical Sciences, Tehran, Iran
| | - Debopam Samanta
- Child Neurology Section, Department of Pediatrics, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA
| | - Bahareh Rabbani
- Growth and Development Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Nejat Mahdieh
- Growth and Development Research Center, Tehran University of Medical Sciences, Tehran, Iran.,Cardiogenetic Research Center, Rajaie Cardiovascular Medical and Research Center, Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
32
|
Rahman MM, Fatema K. Genetic Diagnosis in Children with Epilepsy and Developmental Disorders by Targeted Gene Panel Analysis in a Developing Country. J Epilepsy Res 2021; 11:22-31. [PMID: 34395220 PMCID: PMC8357555 DOI: 10.14581/jer.21004] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 06/16/2021] [Accepted: 06/20/2021] [Indexed: 12/12/2022] Open
Abstract
Background and Purpose In childhood epilepsy, genetic etiology is increasingly recognized in recent years with the advent of next generation sequencing. This has broadened the scope of precision medicine in intractable epilepsy, particularly epileptic encephalopathy (EE). Developmental disorder (DD) is an integral part of childhood uncontrolled epilepsy. This study was performed to investigate the genetic etiology of childhood epilepsy and DD. Methods In this study, 40 children with epilepsy and DD with positive genetic mutation were included retrospectively. It was done in a tertiary care referral hospital of Bangladesh from January 2019 to December 2020. Genetic study was done by next generation sequencing. In all cases electroencephalography, neuroimaging was done and reviewed. Results In total, 40 children were enrolled and the average age was 41.4±35.850 months with a male predominance (67.5%). Generalized seizure was the predominant type of seizure. Regarding the association, intellectual disability and attention deficit hyperactivity disorder was common. Seventeen cases had genetically identified early infantile EE and common mutations observed were SCN1A (3), SCN8A (2), SLC1A2 (2), KCNT1 (2), and etc. Five patients of progressive myoclonic epilepsy were diagnosed and the mutations identified were in KCTD7, MFSD8, and CLN6 genes. Three cases had mitochondrial gene mutation (MT-ND5, MT-CYB). Some rare syndromes like Gibbs syndrome, Kohlschütter-Tönz syndrome, Cockayne syndrome, Pitt-Hopkins syndrome and cerebral creatine deficiency were diagnosed. Conclusions This is the first study from Bangladesh on genetics of epilepsy and DD. This will help to improve the understanding of genetics epilepsy of this region as well as contribute in administering precision medicine in these patients.
Collapse
Affiliation(s)
- Md Mizanur Rahman
- Department of Pediatric Neurology, Bangabandhu Sheikh Mujib Medical University, Dhaka, Bangladesh
| | - Kanij Fatema
- Department of Pediatric Neurology, Bangabandhu Sheikh Mujib Medical University, Dhaka, Bangladesh
| |
Collapse
|
33
|
Abstract
The presence of unprovoked, recurrent seizures, particularly when drug resistant and associated with cognitive and behavioral deficits, warrants investigation for an underlying genetic cause. This article provides an overview of the major classes of genes associated with epilepsy phenotypes divided into functional categories along with the recommended work-up and therapeutic considerations. Gene discovery in epilepsy supports counseling and anticipatory guidance but also opens the door for precision medicine guiding therapy with a focus on those with disease-modifying effects.
Collapse
Affiliation(s)
- Luis A Martinez
- Department of Pediatrics, Section of Pediatric Neurology and Developmental Neuroscience, Baylor College of Medicine, Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, 1250 Moursund Drive, Houston, TX 77030, USA
| | - Yi-Chen Lai
- Department of Pediatrics, Section of Pediatric Critical Care Medicine, Baylor College of Medicine, Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, 1250 Moursund Drive, Houston, TX 77030, USA
| | - J Lloyd Holder
- Department of Pediatrics, Section of Pediatric Neurology and Developmental Neuroscience, Baylor College of Medicine, Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, 1250 Moursund Drive, Houston, TX 77030, USA
| | - Anne E Anderson
- Department of Pediatrics, Section of Pediatric Neurology and Developmental Neuroscience, Baylor College of Medicine, Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, 1250 Moursund Drive, Houston, TX 77030, USA.
| |
Collapse
|
34
|
New avenues in molecular genetics for the diagnosis and application of therapeutics to the epilepsies. Epilepsy Behav 2021; 121:106428. [PMID: 31400936 DOI: 10.1016/j.yebeh.2019.07.029] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/05/2019] [Revised: 06/14/2019] [Accepted: 07/06/2019] [Indexed: 11/22/2022]
Abstract
Genetic epidemiology studies have shown that most epilepsies involve some genetic cause. In addition, twin studies have helped strengthen the hypothesis that in most patients with epilepsy, a complex inheritance is involved. More recently, with the development of high-density single-nucleotide polymorphism (SNP) microarrays and next-generation sequencing (NGS) technologies, the discovery of genes related to the epilepsies has accelerated tremendously. Especially, the use of whole exome sequencing (WES) has had a considerable impact on the identification of rare genetic variants with large effect sizes, including inherited or de novo mutations in severe forms of childhood epilepsies. The identification of pathogenic variants in patients with these childhood epilepsies provides many benefits for patients and families, such as the confirmation of the genetic nature of the diseases. This process will allow for better genetic counseling, more accurate therapy decisions, and a significant positive emotional impact. However, to study the genetic component of the more common forms of epilepsy, the use of high-density SNP arrays in genome-wide association studies (GWAS) seems to be the strategy of choice. As such, researchers can identify loci containing genetic variants associated with the common forms of epilepsy. The knowledge generated over the past two decades about the effects of the mutations that cause the monogenic epilepsy is tremendous; however, the scientific community is just starting to apply this information in order to generate better target treatments.
Collapse
|
35
|
Jaxybayeva A, Nauryzbayeva A, Khamzina A, Takhanova M, Abilhadirova A, Rybalko A, Jamanbekova K. Genomic Investigation of Infantile and Childhood Epileptic Encephalopathies in Kazakhstan: An Urgent Priority. Front Neurol 2021; 12:639317. [PMID: 34177756 PMCID: PMC8222974 DOI: 10.3389/fneur.2021.639317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Accepted: 04/20/2021] [Indexed: 11/28/2022] Open
Abstract
Objectives: Infantile and childhood epileptic encephalopathies are a group of severe epilepsies that begin within the first year of life and often portend increased morbidity. Many of them are genetically determined. The medical strategy for their management depends on the genetic cause. There are no facilities for genetic testing of children in Kazakhstan but we have a collection of data with already defined genes responsible for clinical presentations. Methods: We analyzed children with epileptic encephalopathies that began in the first 3 years of life and were accompanied by a delay/arrest of intellectual development, in the absence of structural changes in the brain. Such patients were recommended to undergo genetic testing using epileptic genetic panels in laboratories in different countries. Results: We observed 350 infants with clinical presentation of epileptic encephalopathies. 4.3% of them followed our recommendations and underwent genetic testing privately. In total 12/15 children became eligible for targeted treatment, 3/15 were likely to have non-epileptic stereotypies/movements, 2/15 were unlikely to respond to any therapy and all had a high chance of intellectual disability, behavioral and social communication disorders. Conclusion: The genetic results of 15/350 (4.3% of patients) have demonstrated the potential and enormous impact from gene panel analysis in management of epileptic encephalopathy. Availability of genetic testing within the country will improve management of children with genetic epilepsies and help to create a local database of pathogenic variants.
Collapse
Affiliation(s)
| | - Alissa Nauryzbayeva
- Department of Neurology of Early Age, National Research Center for Maternal and Child Health, Nur-Sultan, Kazakhstan
| | - Assem Khamzina
- Department of Neurology of Early Age, National Research Center for Maternal and Child Health, Nur-Sultan, Kazakhstan
| | - Meruert Takhanova
- Department of Neurology, Astana Medical University, Nur-Sultan, Kazakhstan
| | - Assel Abilhadirova
- Department of Early Age Neurology, University Medical Center, National Research Center for Maternal and Child Health, Nur-Sultan, Kazakhstan
| | - Anastasia Rybalko
- Corporate Fund University Medical Center, National Research Center for Maternal and Child Health, Nur-Sultan, Kazakhstan
| | | |
Collapse
|
36
|
Liu L, Liu F, Wang Q, Xie H, Li Z, Lu Q, Wang Y, Zhang M, Zhang Y, Picker J, Cui X, Zou L, Chen X. Confirming the contribution and genetic spectrum of de novo mutation in infantile spasms: Evidence from a Chinese cohort. Mol Genet Genomic Med 2021; 9:e1689. [PMID: 33951346 PMCID: PMC8222834 DOI: 10.1002/mgg3.1689] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 03/24/2021] [Accepted: 03/30/2021] [Indexed: 01/21/2023] Open
Abstract
Objective We determined the yield, genetic spectrum, and actual origin of de novo mutations (DNMs) for infantile spasms (ISs) in a Chinese cohort. The efficacy of levetiracetam (LEV) for STXBP1‐related ISs was explored also. Methods Targeted sequencing of 153 epilepsy‐related candidate genes was applied to 289 Chinese patients with undiagnosed ISs. Trio‐based amplicon deep sequencing was used for all DNMs to distinguish somatic/mosaic mutations from germline ones. Results Total of 26 DNMs were identified from 289 recruited Chinese patients with undiagnosed ISs. Among them, 24 DNMs were interpreted as pathogenic mutations based on American College of Medical Genetics and Genomics guidelines, contributing to 8.3% (24/289) of diagnosis yield in the Chinese IS cohort. CDKL5 and STXBP1 are the top genes with recurrent DNMs, accounting for 3.1% (9/289) of yield. Further deep resequencing for the trio members showed that 22.7% (5/22) of DNMs are actually somatic in the proband or a parent. These somatic carriers presented milder seizure attacks than those with true germline DNMs. After treatment with LEV for half a year, three patients with DNM in STXBP1 showed improved clinical symptoms, including seizure‐free and normal electroencephalogram, except for a patient with a second DNM in DIAPH3. Significance Our study confirmed the contribution and genetic spectrum of DNMs in Chinese IS patients. Somatic mutation account for a quarter of DNMs in IS cases. Treatment with LEV improved the prognosis of STXBP1‐related ISs.
Collapse
Affiliation(s)
- Liying Liu
- Department of Pediatrics, The First Medical Center of Chinese, PLA General Hospital, Beijing, China
| | - Fang Liu
- Graduate School of Peking, Union Medical College, Beijing, China.,Department of Medical Genetics, Capital Institute of Pediatrics, Beijing, China
| | - Qiuhong Wang
- Department of Pediatrics, The First Medical Center of Chinese, PLA General Hospital, Beijing, China
| | - Hua Xie
- Department of Medical Genetics, Capital Institute of Pediatrics, Beijing, China
| | - Zhengchang Li
- Department of Medical Genetics, Capital Institute of Pediatrics, Beijing, China
| | - Qian Lu
- Department of Pediatrics, The First Medical Center of Chinese, PLA General Hospital, Beijing, China.,Center of Epilepsy, Beijing Institute for Brain Disorders, Beijing, China
| | - Yangyang Wang
- Department of Pediatrics, The First Medical Center of Chinese, PLA General Hospital, Beijing, China
| | - Mengna Zhang
- Department of Pediatrics, The First Medical Center of Chinese, PLA General Hospital, Beijing, China
| | - Yu Zhang
- Department of Lab Center, Capital Institute of Pediatrics, Beijing, China
| | - Jonathan Picker
- Division of Genetics & Genomics (Department of Medicine) and Department of Child & Adolescent Psychiatry, Boston Children's Hospital, Boston, MA, USA
| | - Xiaodai Cui
- Department of Lab Center, Capital Institute of Pediatrics, Beijing, China
| | - Liping Zou
- Department of Pediatrics, The First Medical Center of Chinese, PLA General Hospital, Beijing, China.,Center of Epilepsy, Beijing Institute for Brain Disorders, Beijing, China
| | - Xiaoli Chen
- Department of Medical Genetics, Capital Institute of Pediatrics, Beijing, China.,Beijing Municipal Key Laboratory of Child Development and Nutriomics, Capital Institute of Pediatrics, Beijing, China
| |
Collapse
|
37
|
Wagner S, Lee C, Rojas L, Specht CG, Rhee J, Brose N, Papadopoulos T. The α3 subunit of GABA A receptors promotes formation of inhibitory synapses in the absence of collybistin. J Biol Chem 2021; 296:100709. [PMID: 33901490 PMCID: PMC8141935 DOI: 10.1016/j.jbc.2021.100709] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 04/14/2021] [Accepted: 04/22/2021] [Indexed: 01/03/2023] Open
Abstract
Signaling at nerve cell synapses is a key determinant of proper brain function, and synaptic defects—or synaptopathies—are at the basis of many neurological and psychiatric disorders. Collybistin (CB), a brain-specific guanine nucleotide exchange factor, is essential for the formation of γ-aminobutyric acidergic (GABAergic) postsynapses in defined regions of the mammalian forebrain, including the hippocampus and basolateral amygdala. This process depends on a direct interaction of CB with the scaffolding protein gephyrin, which leads to the redistribution of gephyrin into submembranous clusters at nascent inhibitory synapses. Strikingly, synaptic clustering of gephyrin and GABAA type A receptors (GABAARs) in several brain regions, including the cerebral cortex and certain thalamic areas, is unperturbed in CB-deficient mice, indicating that the formation of a substantial subset of inhibitory postsynapses must be controlled by gephyrin-interacting proteins other than CB. Previous studies indicated that the α3 subunit of GABAARs (GABAAR-α3) binds directly and with high affinity to gephyrin. Here, we provide evidence (i) that a homooligomeric GABAAR-α3A343W mutant induces the formation of submembranous gephyrin clusters independently of CB in COS-7 cells, (ii) that gephyrin clustering is unaltered in the neuronal subpopulations endogenously expressing the GABAAR-α3 in CB-deficient brains, and (iii) that exogenous expression of GABAAR-α3 partially rescues impaired gephyrin clustering in CB-deficient hippocampal neurons. Our results identify an important role of GABAAR-α3 in promoting gephyrin-mediated and CB-independent formation of inhibitory postsynapses.
Collapse
Affiliation(s)
- Sven Wagner
- Department of Molecular Neurobiology, Max Planck Institute of Experimental Medicine, Göttingen, Germany
| | - ChoongKu Lee
- Department of Molecular Neurobiology, Max Planck Institute of Experimental Medicine, Göttingen, Germany
| | - Lucia Rojas
- Department of Molecular Neurobiology, Max Planck Institute of Experimental Medicine, Göttingen, Germany
| | - Christian G Specht
- Diseases and Hormones of the Nervous System (DHNS), Inserm U1195, Université Paris-Saclay, Le Kremlin-Bicêtre, France
| | - JeongSeop Rhee
- Department of Molecular Neurobiology, Max Planck Institute of Experimental Medicine, Göttingen, Germany
| | - Nils Brose
- Department of Molecular Neurobiology, Max Planck Institute of Experimental Medicine, Göttingen, Germany
| | | |
Collapse
|
38
|
Cong Y, So V, Tijssen MAJ, Verbeek DS, Reggiori F, Mauthe M. WDR45, one gene associated with multiple neurodevelopmental disorders. Autophagy 2021; 17:3908-3923. [PMID: 33843443 PMCID: PMC8726670 DOI: 10.1080/15548627.2021.1899669] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
The WDR45 gene is localized on the X-chromosome and variants in this gene are linked to six different neurodegenerative disorders, i.e., ß-propeller protein associated neurodegeneration, Rett-like syndrome, intellectual disability, and epileptic encephalopathies including developmental and epileptic encephalopathy, early-onset epileptic encephalopathy and West syndrome and potentially also specific malignancies. WDR45/WIPI4 is a WD-repeat β-propeller protein that belongs to the WIPI (WD repeat domain, phosphoinositide interacting) family. The precise cellular function of WDR45 is still largely unknown, but deletions or conventional variants in WDR45 can lead to macroautophagy/autophagy defects, malfunctioning mitochondria, endoplasmic reticulum stress and unbalanced iron homeostasis, suggesting that this protein functions in one or more pathways regulating directly or indirectly those processes. As a result, the underlying cause of the WDR45-associated disorders remains unknown. In this review, we summarize the current knowledge about the cellular and physiological functions of WDR45 and highlight how genetic variants in its encoding gene may contribute to the pathophysiology of the associated diseases. In particular, we connect clinical manifestations of the disorders with their potential cellular origin of malfunctioning and critically discuss whether it is possible that one of the most prominent shared features, i.e., brain iron accumulation, is the primary cause for those disorders. Abbreviations: ATG/Atg: autophagy related; BPAN: ß-propeller protein associated neurodegeneration; CNS: central nervous system; DEE: developmental and epileptic encephalopathy; EEG: electroencephalograph; ENO2/neuron-specific enolase, enolase 2; EOEE: early-onset epileptic encephalopathy; ER: endoplasmic reticulum; ID: intellectual disability; IDR: intrinsically disordered region; MRI: magnetic resonance imaging; NBIA: neurodegeneration with brain iron accumulation; NCOA4: nuclear receptor coactivator 4; PtdIns3P: phosphatidylinositol-3-phosphate; RLS: Rett-like syndrome; WDR45: WD repeat domain 45; WIPI: WD repeat domain, phosphoinositide interacting
Collapse
Affiliation(s)
- Yingying Cong
- Department of Biomedical Sciences of Cells & Systems, Molecular Cell Biology Section, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Vincent So
- Department of Biomedical Sciences of Cells & Systems, Molecular Cell Biology Section, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Marina A J Tijssen
- Department of Neurology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands.,Expertise Center Movement Disorders Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Dineke S Verbeek
- Expertise Center Movement Disorders Groningen, University Medical Center Groningen, Groningen, The Netherlands.,Department of Genetics, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Fulvio Reggiori
- Department of Biomedical Sciences of Cells & Systems, Molecular Cell Biology Section, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands.,Expertise Center Movement Disorders Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Mario Mauthe
- Department of Biomedical Sciences of Cells & Systems, Molecular Cell Biology Section, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands.,Expertise Center Movement Disorders Groningen, University Medical Center Groningen, Groningen, The Netherlands
| |
Collapse
|
39
|
Willimsky EK, Munzig A, Mayer K, Biskup S, Abicht A, Hoertnagel K, Voss HV, Klein HG, Rost I, Larsen LHG, Dahl HA, Hoelz H, Stuelpnagel CV, Borggraefe I. Next Generation Sequencing in Pediatric Epilepsy Using Customized Panels: Size Matters. Neuropediatrics 2021; 52:92-97. [PMID: 33086385 DOI: 10.1055/s-0040-1712488] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
INTRODUCTION Next generation sequencing (NGS) with customized gene panels is a helpful tool to identify monogenic epilepsy syndromes. The number of genes tested within a customized panel may vary greatly. The aim of the present study was to compare the diagnostic yield of small (<25 kb) and large (>25 kb) customized epilepsy panels. METHODS This retrospective cohort study investigated data of 190 patients of 18 years or younger, with the diagnosis of an epilepsy of unknown etiology who underwent NGS using customized gene panels. Small (<25 kb) and large (>25 kb) panels were compared regarding the distribution of benign/likely benign and pathogenic/likely pathogenic variants and variants of unclear significance. In addition, differences of the diagnostic yield with respect to epilepsy severity, i.e., developmental and epileptic encephalopathy [DEE] vs. non-DEE, were analyzed. RESULTS The diagnostic yield defined as pathogenic or likely pathogenic variants in large panels was significantly increased (29% [n = 14/48] vs. 13% [n = 18/142], p = 0.0198) compared with smaller panels. In non-DEE patients the increase of the diagnostic yield in large panels was significant(35% n = 6/17 vs. 13% n = 12/94, p = 0.0378), which was not true for DEE patients. DISCUSSION This study indicates that large panels are superior for pediatric patients with epilepsy forms without encephalopathy (non-DEE). For patients suffering from DEE small panels of a maximum of 10 genes seem to be sufficient. The proportion of unclear findings increases with rising panel sizes. CONCLUSION Customized epilepsy panels of >25 kb compared with smaller panels show a significant higher diagnostic yield in patients with epilepsy especially in non-DEE patients.
Collapse
Affiliation(s)
- Eva-Katharina Willimsky
- Division of Pediatric Neurology, Developmental Medicine and Social Pediatrics Department of Pediatrics, Ludwig-Maximilians University of Munich, Dr. von Hauner Children's Hospital, Munich, Germany
| | - Anna Munzig
- Center of Human Genetics and Laboratory Diagnostics, Martinsried, Germany
| | - Karin Mayer
- Center of Human Genetics and Laboratory Diagnostics, Martinsried, Germany
| | | | | | | | - Hubertus von Voss
- Center of Human Genetics and Laboratory Diagnostics, Martinsried, Germany
| | - Hanns-Georg Klein
- Center of Human Genetics and Laboratory Diagnostics, Martinsried, Germany
| | - Imma Rost
- Center of Human Genetics and Laboratory Diagnostics, Martinsried, Germany
| | | | | | - Hannes Hoelz
- Division of Pediatric Neurology, Developmental Medicine and Social Pediatrics Department of Pediatrics, Ludwig-Maximilians University of Munich, Dr. von Hauner Children's Hospital, Munich, Germany
| | - Celina von Stuelpnagel
- Division of Pediatric Neurology, Developmental Medicine and Social Pediatrics Department of Pediatrics, Ludwig-Maximilians University of Munich, Dr. von Hauner Children's Hospital, Munich, Germany.,Paracelsus Medical University, Salzburg, Austria
| | - Ingo Borggraefe
- Division of Pediatric Neurology, Developmental Medicine and Social Pediatrics Department of Pediatrics, Ludwig-Maximilians University of Munich, Dr. von Hauner Children's Hospital, Munich, Germany.,Comprehensive Epilepsy Center (Pediatric section), Ludwig-Maximilians University of Munich, Munich, Germany
| |
Collapse
|
40
|
Mary L, Nourisson E, Feger C, Laugel V, Chaigne D, Keren B, Afenjar A, Billette T, Trost D, Cieuta-Walti C, Gerard B, Piton A, Schaefer E. Pathogenic variants in KCNQ2 cause intellectual deficiency without epilepsy: Broadening the phenotypic spectrum of a potassium channelopathy. Am J Med Genet A 2021; 185:1803-1815. [PMID: 33754465 DOI: 10.1002/ajmg.a.62181] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2020] [Revised: 01/19/2021] [Accepted: 03/11/2021] [Indexed: 12/22/2022]
Abstract
High-throughput sequencing (HTS) improved the molecular diagnosis in individuals with intellectual deficiency (ID) and helped to broaden the phenotype of previously known disease-causing genes. We report herein four unrelated patients with isolated ID, carriers of a likely pathogenic variant in KCNQ2, a gene usually implicated in benign familial neonatal seizures (BFNS) or early onset epileptic encephalopathy (EOEE). Patients were diagnosed by targeted HTS or exome sequencing. Pathogenicity of the variants was assessed by multiple in silico tools. Patients' ID ranged from mild to severe with predominance of speech disturbance and autistic features. Three of the four variants disrupted the same amino acid. Compiling all the pathogenic variants previously reported, we observed a strong overlap between variants causing EOEE, isolated ID, and BFNS and an important intra-familial phenotypic variability, although missense variants in the voltage-sensing domain and the pore are significantly associated to EOEE (p < 0.01, Fisher test). Thus, pathogenic variants in KCNQ2 can be associated with isolated ID. We did not highlight strong related genotype-phenotype correlations in KCNQ2-related disorders. A second genetic hit, a burden of rare variants, or other extrinsic factors may explain such a phenotypic variability. However, it is of interest to study encephalopathy genes in non-epileptic ID patients.
Collapse
Affiliation(s)
- Laura Mary
- Laboratoire de Diagnostic Génétique, Hôpitaux Universitaires de Strasbourg, Strasbourg, France
| | - Elsa Nourisson
- Laboratoire de Diagnostic Génétique, Hôpitaux Universitaires de Strasbourg, Strasbourg, France
| | - Claire Feger
- Laboratoire de Diagnostic Génétique, Hôpitaux Universitaires de Strasbourg, Strasbourg, France
| | - Vincent Laugel
- Service de Neuropédiatrie, Hôpitaux Universitaires de Strasbourg, Strasbourg, France
| | - Denys Chaigne
- Service de Neuropédiatrie, Hôpitaux Universitaires de Strasbourg, Strasbourg, France
| | - Boris Keren
- Département de Génétique, Centre de Référence des Déficiences Intellectuelles de Causes Rares, Groupe de Recherche Clinique "Déficiences Intellectuelles et Autisme," Université Pierre et Marie Curie, Hôpital de la Pitié-Salpêtrière, Paris, France.,Institut du Cerveau et de la Moelle Épinière, Sorbonne Universités, Université Pierre et Marie Curie (Université Paris 06), UMRS 1127, INSERM U 1127, CNRS UMR 7225, Paris, France
| | - Alexandra Afenjar
- Centre de Référence Déficiences Intellectuelles de Causes Rares, Département de Génétique et Embryologie Médicale, Hôpital Trousseau, Sorbonne Universités, Paris, France
| | - Thierry Billette
- Assistance Publique-Hôpitaux de Paris, Service de Neuropédiatrie, Hôpital Armand Trousseau, Paris, France
| | | | | | - Bénédicte Gerard
- Laboratoire de Diagnostic Génétique, Hôpitaux Universitaires de Strasbourg, Strasbourg, France
| | - Amélie Piton
- Laboratoire de Diagnostic Génétique, Hôpitaux Universitaires de Strasbourg, Strasbourg, France.,Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), CNRS UMR-7104, Inserm U964, Université de Strasbourg, Strasbourg, France
| | - Elise Schaefer
- Service de Génétique Médicale, Hôpitaux Universitaires de Strasbourg, Institut de Génétique Médicale d'Alsace, Strasbourg, France
| |
Collapse
|
41
|
Ghesh L, Besnard T, Nizon M, Trochu E, Landeau-Trottier G, Breheret F, Thauvin-Robinet C, Bruel AL, Kuentz P, Coubes C, Cuisset L, Mignot C, Keren B, Bézieau S, Cogné B. Loss-of-function variants in ARHGEF9 are associated with an X-linked intellectual disability dominant disorder. Hum Mutat 2021; 42:498-505. [PMID: 33600053 DOI: 10.1002/humu.24188] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 01/28/2021] [Accepted: 02/14/2021] [Indexed: 01/12/2023]
Abstract
ARHGEF9 defects lead to an X-linked intellectual disability disorder related to inhibitory synaptic dysfunction. This condition is more frequent in males, with a few affected females reported. Up to now, sequence variants and gross deletions have been identified in males, while only chromosomal aberrations have been reported in affected females who showed a skewed pattern of X-chromosome inactivation (XCI), suggesting an X-linked recessive (XLR) disorder. We report three novel loss-of-function (LoF) variants in ARHGEF9: A de novo synonymous variant affecting splicing (NM_015185.2: c.1056G>A, p.(Lys352=)) in one female; a nonsense variant in another female (c.865C>T, p.(Arg289*)), that is, also present as a somatically mosaic variant in her father, and a de novo nonsense variant in a boy (c.899G>A; p.(Trp300*)). Both females showed a random XCI. Thus, we suggest that missense variants are responsible for an XLR disorder affecting males and that LoF variants, mainly occurring de novo, may be responsible for an X-linked dominant disorder affecting males and females.
Collapse
Affiliation(s)
- Leïla Ghesh
- Service de Génétique Médicale, Centre Hospitalier Universitaire de Nantes, Nantes, France
| | - Thomas Besnard
- Service de Génétique Médicale, Centre Hospitalier Universitaire de Nantes, Nantes, France
- l'institut du thorax, Université de Nantes, CNRS, INSERM, Nantes, France
| | - Mathilde Nizon
- Service de Génétique Médicale, Centre Hospitalier Universitaire de Nantes, Nantes, France
- l'institut du thorax, Université de Nantes, CNRS, INSERM, Nantes, France
| | - Eva Trochu
- Service de Génétique Médicale, Centre Hospitalier Universitaire de Nantes, Nantes, France
| | | | - Flora Breheret
- Service de Génétique Médicale, Centre Hospitalier Universitaire de Nantes, Nantes, France
| | - Christel Thauvin-Robinet
- FHU TRANSLAD, Centre Hospitalier Universitaire Dijon-Bourgogne et Université de Bourgogne-Franche Comté, Dijon, France
- Génétique des Anomalies du Développement, Inserm UMR 1231, Université de Bourgogne, Dijon, France
- Centre de Génétique et Centre de Référence Déficience Intellectuelle de causes rares, Hôpital d'Enfants, Centre Hospitalier Universitaire Dijon-Bourgogne, Dijon, France
- UF Innovation en diagnostic génomique des maladies rares, CHU Dijon, Dijon, France
| | - Ange-Line Bruel
- FHU TRANSLAD, Centre Hospitalier Universitaire Dijon-Bourgogne et Université de Bourgogne-Franche Comté, Dijon, France
- Génétique des Anomalies du Développement, Inserm UMR 1231, Université de Bourgogne, Dijon, France
- UF Innovation en diagnostic génomique des maladies rares, CHU Dijon, Dijon, France
| | - Paul Kuentz
- FHU TRANSLAD, Centre Hospitalier Universitaire Dijon-Bourgogne et Université de Bourgogne-Franche Comté, Dijon, France
- Génétique des Anomalies du Développement, Inserm UMR 1231, Université de Bourgogne, Dijon, France
| | - Christine Coubes
- Département de Génétique Médicale, Maladies Rares et Médecine Personnalisée, Hôpital Arnaud de Villeneuve, CHU de Montpellier, Montpellier, France
| | - Laurence Cuisset
- Laboratoire de Génétique et Biologie Moléculaires, Département Médico-Universitaire BioPhyGen, Hôpital Cochin, APHP, Université de Paris, Paris, France
| | - Cyril Mignot
- Institut du Cerveau et de la Moelle épinière, ICM, INSERM, U 1127, CNRS UMR 7225, Sorbonne Universités, UPMC Univ Paris 06 UMR S 1127, Paris, France
- Service de Génétique clinique et Médicale, CHU Paris, Hôpital Pitié-Salpêtrière, Paris, France
| | - Boris Keren
- Service de Génétique clinique et Médicale, CHU Paris, Hôpital Pitié-Salpêtrière, Paris, France
| | - Stéphane Bézieau
- Service de Génétique Médicale, Centre Hospitalier Universitaire de Nantes, Nantes, France
- l'institut du thorax, Université de Nantes, CNRS, INSERM, Nantes, France
| | - Benjamin Cogné
- Service de Génétique Médicale, Centre Hospitalier Universitaire de Nantes, Nantes, France
- l'institut du thorax, Université de Nantes, CNRS, INSERM, Nantes, France
| |
Collapse
|
42
|
Association of early-onset epileptic encephalopathy with involuntary movements - Case series and literature review. Epilepsy Behav Rep 2021; 15:100417. [PMID: 33490948 PMCID: PMC7808918 DOI: 10.1016/j.ebr.2020.100417] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2020] [Revised: 11/27/2020] [Accepted: 12/01/2020] [Indexed: 11/28/2022] Open
Abstract
Epileptic-dyskinetic encephalopathies are rare epileptic disorders characterized by EOEE with involuntary movement. The presence of involuntary movements in patients with EOEE caused by gene variants may be a key diagnostic symptom. Genetic diagnosis is useful and may provide a reference for treatment selection.
Epileptic-dyskinetic encephalopathies are rare epilepsies characterized by early-onset epileptic encephalopathies (EOEEs) with involuntary movement. Herein, we investigated the impact of gene variants in epileptic-dyskinetic encephalopathies. Four independent patients from four families who exhibited involuntary movements were recruited from Tokyo Metropolitan Neurological Hospital. The inclusion criteria were as follows: onset within 1 year after birth, frequent seizures, severe developmental delay and accompanying involuntary movements. We detected four genetic mutations, including STXBP1, GNAO1, CYFIP2, and SCN8A variants. The involuntary movements were drug-resistant. However, pallidal electrocoagulation followed by gabapentin were partially effective in treating chorea and ballismus of the extremities in patients with GNAO1 variants, and perampanel partially suppressed seizures and involuntary movements in one patient with a SCN8A variant. Movement disorders are common to many neurodevelopmental disorders, including a variety of EOEEs. Although we could not establish a definitive correlation using genetic variants in patients with EOEE and movement disorders, involuntary movements in patients with EOEEs may be a key diagnostic finding. The usage of genetic variants could prove beneficial in the future as more patients are investigated with epileptic-dyskinetic encephalopathies.
Collapse
|
43
|
Yang M, Xu B, Wang J, Zhang Z, Xie H, Wang H, Hu T, Liu S. Genetic diagnoses in pediatric patients with epilepsy and comorbid intellectual disability. Epilepsy Res 2021; 170:106552. [PMID: 33486335 DOI: 10.1016/j.eplepsyres.2021.106552] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Revised: 12/19/2020] [Accepted: 01/05/2021] [Indexed: 01/14/2023]
Abstract
PURPOSE The aim of this retrospective study is to investigate the genetic etiology and propose a diagnostic strategy for pediatric patients with epilepsy and comorbid intellectual disability (ID). METHODS From September 2014 to May 2020, a total of 102 pediatric patients diagnosed with epilepsy with co-morbid ID with unknown causes were included in this study. All patients underwent tests of single nucleotide polymorphism (SNP) array for chromosomal abnormalities. Whole exome sequencing (WES) was consecutively performed in patients without diagnostic copy number variants (CNVs) (n = 85) for single nucleotide variants (SNVs). Subgroup analyses based on the age of seizure onset and ID severity were done. RESULTS The overall diagnostic yield of genetic aberrations was 33.3 % (34/102), which comprised 50.0 % with diagnostic CNVs and 50.0 % with diagnostic SNVs. The yield nominally increased with ID severity and decreased with age of seizure onset, though this result was not statistically significant. The diagnostic yield of SNVs in patients with seizure onset in the first year of life (25.0 % (11/44)) was significantly higher than those with childhood-onset epilepsy (10.3 % (6/58)) (p = 0.049), however, the diagnostic yield of CNVs in patients with childhood-onset epilepsy (17.2 % (10/58) was higher than the diagnostic yield of SNVs (10.3 % (6/58)). The most frequently syndromic epilepsy detected by SNP array was Angelman syndrome (n=4), including one confirmed with paternal uniparental disomy. Meanwhile, the most frequent SNVs were mutations of MECP2 (n=2) and IQSEC2 (n = 2) in sporadic cases. CONCLUSION Both CMA and WES are advantageous as unbiased approaches for a genetically heterogeneous condition. We proposed an effective diagnostic strategy for pediatric patients with epilepsy. For patients with seizure onset in the first year of life, WES is recommended as the first-tier test. However, for patients with childhood-onset epilepsy, SNP array should be considered for the first-tier test.
Collapse
Affiliation(s)
- Mei Yang
- Department of Obstetrics & Gynecology, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, 610041, China; Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, 610041, China
| | - Bocheng Xu
- Department of Obstetrics & Gynecology, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, 610041, China; Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, 610041, China
| | - Jiamin Wang
- Department of Obstetrics & Gynecology, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, 610041, China; Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, 610041, China
| | - Zhu Zhang
- Department of Obstetrics & Gynecology, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, 610041, China; Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, 610041, China
| | - Hanbing Xie
- Department of Obstetrics & Gynecology, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, 610041, China; Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, 610041, China
| | - He Wang
- Department of Obstetrics & Gynecology, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, 610041, China; Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, 610041, China
| | - Ting Hu
- Department of Obstetrics & Gynecology, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, 610041, China; Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, 610041, China.
| | - Shanling Liu
- Department of Obstetrics & Gynecology, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, 610041, China; Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, 610041, China.
| |
Collapse
|
44
|
George S, Bear J, Taylor MJ, Kanamalla K, Fekete CD, Chiou TT, Miralles CP, Papadopoulos T, De Blas AL. Collybistin SH3-protein isoforms are expressed in the rat brain promoting gephyrin and GABA-A receptor clustering at GABAergic synapses. J Neurochem 2021; 157:1032-1051. [PMID: 33316079 DOI: 10.1111/jnc.15270] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Revised: 11/18/2020] [Accepted: 12/08/2020] [Indexed: 01/21/2023]
Abstract
Collybistin (CB) is a guanine nucleotide exchange factor (GEF) selectively localized at GABAergic and glycinergic postsynapses. Analysis of mRNA shows that several isoforms of collybistin are expressed in the brain. Some of the isoforms have a SH3 domain (CBSH3+) and some have no SH3 domain (CBSH3-). The CBSH3+ mRNAs are predominantly expressed over CBSH3-. However, in an immunoblot study of mouse brain homogenates, only CBSH3+ protein isoforms were detected, proposing that CBSH3- protein might not be expressed in the brain. The expression or lack of expression of CBSH3- protein is an important issue because CBSH3- has a strong effect in promoting the postsynaptic clustering of gephyrin and GABA-A receptors (GABAA Rs). Moreover CBSH3- is constitutively active; therefore lower expression of CBSH3- protein might play a relatively stronger functional role than the more abundant but self-inhibited CBSH3+ isoforms, which need to be activated. We are now showing that: (a) CBSH3- protein is expressed in the brain; (b) parvalbumin positive (PV+) interneurons show higher expression of CBSH3- protein than other neurons; (c) CBSH3- is associated with GABAergic synapses in various regions of the brain and (d) knocking down CBSH3- in hippocampal neurons decreases the synaptic clustering of gephyrin and GABAA Rs. The results show that CBSH3- protein is expressed in the brain and that it plays a significant role in the size regulation of the GABAergic postsynapse.
Collapse
Affiliation(s)
- Shanu George
- Department of Physiology and Neurobiology, University of Connecticut, Storrs, CT, USA
| | - John Bear
- Department of Physiology and Neurobiology, University of Connecticut, Storrs, CT, USA
| | - Michael J Taylor
- Department of Physiology and Neurobiology, University of Connecticut, Storrs, CT, USA
| | - Karthik Kanamalla
- Department of Physiology and Neurobiology, University of Connecticut, Storrs, CT, USA
| | - Christopher D Fekete
- Department of Physiology and Neurobiology, University of Connecticut, Storrs, CT, USA
| | - Tzu-Ting Chiou
- Department of Physiology and Neurobiology, University of Connecticut, Storrs, CT, USA
| | - Celia P Miralles
- Department of Physiology and Neurobiology, University of Connecticut, Storrs, CT, USA
| | | | - Angel L De Blas
- Department of Physiology and Neurobiology, University of Connecticut, Storrs, CT, USA
| |
Collapse
|
45
|
Abstract
Pediatric epilepsy is a highly variable condition due to age-related expression of syndromes that require specific diagnosis, evaluations, and treatments. Children with epilepsy differ from their adult counterparts in many important ways, mostly related to the age-related expression of specific epilepsy syndromes. This results in many important considerations related to the epilepsy diagnosis, classification, evaluations to determine an etiology, as well as treatment guidelines. A good understanding of these factors will help to establish an accurate epilepsy diagnosis, which in turn will guide appropriate testing and treatment decisions. In this way, patients will have improved seizure outcomes, and families will be educated appropriately and provided with the most accurate prognostic information available. The purpose of this article is to review the diagnosis, work-up, and management of pediatric epilepsy.
Collapse
Affiliation(s)
- Jeffrey R Tenney
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio.,Division of Neurology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| |
Collapse
|
46
|
Dontaine P, Kottos E, Dassonville M, Balasel O, Catros V, Soblet J, Perlot P, Vilain C. Digestive involvement in a severe form of Snyder-Robinson syndrome: Possible expansion of the phenotype. Eur J Med Genet 2020; 64:104097. [PMID: 33186760 DOI: 10.1016/j.ejmg.2020.104097] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Revised: 10/23/2020] [Accepted: 11/04/2020] [Indexed: 11/30/2022]
Abstract
Snyder-Robinson syndrome (OMIM #309583) is a rare X-linked condition, caused by mutation in the SMS gene (MIM *300105), characterized by a wide spectrum of clinical signs including developmental delay, epilepsy, asthenic habitus, dysmorphism, osteopenia, and renal or genital anomalies. Here we describe two maternal half-brothers who both presented with severe neurodevelopmental delay, seizures, hearing loss, facial dysmorphism, renal and ophthalmologic anomalies, failure to thrive and premature death. A novel p.(Gly203Asp) variant was found at the hemizygous state in the two boys, and an elevated Spermidine/Spermine ratio confirmed the diagnosis of Snyder-Robinson syndrome. One of the brothers presented with gastrointestinal symptoms, with jejunal stenosis, enteral feeding intolerance, failure to thrive due to a dysfunctional gastrointestinal system, cholestasis and exocrine pancreatic insufficiency. Although more studies will be needed to understand its mechanisms, this observation lends further support to the possibility of severe digestive involvement in Snyder Robinson syndrome.
Collapse
Affiliation(s)
- Pauline Dontaine
- Department of Genetics, Hôpital Universitaire des Enfants Reine Fabiola, ULB Center of Human Genetics, Universite Libre de Bruxelles, Brussels, Belgium
| | - Elisa Kottos
- Department of Genetics, Hôpital Universitaire des Enfants Reine Fabiola, ULB Center of Human Genetics, Universite Libre de Bruxelles, Brussels, Belgium
| | - Martine Dassonville
- Department of Pediatric Surgery, Hôpital Universitaire des Enfants Reine Fabiola, Universite Libre de Bruxelles, Brussels, Belgium
| | - Ovidiu Balasel
- Department of Neonatalogy, Hôpital Universitaire des Enfants Reine Fabiola, Universite Libre de Bruxelles, Brussels, Belgium
| | - Véronique Catros
- Univ Rennes, Inserm, CHU Rennes, Institut NUMECAN (Nutrition Metabolisms and Cancer), CRB Santé Rennes, F-35000, Rennes, France
| | - Julie Soblet
- Department of Genetics, Hôpital Universitaire des Enfants Reine Fabiola, ULB Center of Human Genetics, Universite Libre de Bruxelles, Brussels, Belgium; Department of Genetics, Hôpital Erasme, ULB Center of Human Genetics, Universite Libre de Bruxelles, Brussels, Belgium; Interuniversity Institute of Bioinformatics in Brussels, Universite Libre de Bruxelles, Brussels, Belgium
| | - Pascale Perlot
- Department of Pediatrics, Hôpital Universitaire des Enfants Reine Fabiola, Universite Libre de Bruxelles, Brussels, Belgium
| | - Catheline Vilain
- Department of Genetics, Hôpital Universitaire des Enfants Reine Fabiola, ULB Center of Human Genetics, Universite Libre de Bruxelles, Brussels, Belgium; Department of Genetics, Hôpital Erasme, ULB Center of Human Genetics, Universite Libre de Bruxelles, Brussels, Belgium; Interuniversity Institute of Bioinformatics in Brussels, Universite Libre de Bruxelles, Brussels, Belgium.
| |
Collapse
|
47
|
Gamirova RG, Gamirova RR, Esin RG. [Genetics of epilepsy: successes, problems and development prospects]. Zh Nevrol Psikhiatr Im S S Korsakova 2020; 120:144-150. [PMID: 33081460 DOI: 10.17116/jnevro2020120091144] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The authors present a detailed review of current advances in the field of genetics of epilepsy. Separately, new views on the etiology and pathogenesis of genetic epileptic encephalopathies, focal epilepsy and idiopathic generalized epilepsies are examined. The authors emphasize the importance of genetic discoveries for the clinical practice, including the prospects in the development of patients' personalized treatment. A comparative analysis of the value of various methods of genetic research in the diagnosis of epilepsy, methods of integrating molecular genetic analyses into everyday practical medicine is presented.
Collapse
Affiliation(s)
- R G Gamirova
- Kazan State Medical Academy - branch of Russian Medical Academy of Continuing Professional Education, Kazan, Russia.,Kazan (Volga Region) Federal University, Kazan, Russia
| | - R R Gamirova
- Kazan (Volga Region) Federal University, Kazan, Russia
| | - R G Esin
- Kazan State Medical Academy - branch of Russian Medical Academy of Continuing Professional Education, Kazan, Russia.,Kazan (Volga Region) Federal University, Kazan, Russia
| |
Collapse
|
48
|
Schröter J, Döring JH, Garbade SF, Hoffmann GF, Kölker S, Ries M, Syrbe S. Cross-sectional quantitative analysis of the natural history of TUBA1A and TUBB2B tubulinopathies. Genet Med 2020; 23:516-523. [PMID: 33082561 PMCID: PMC7935713 DOI: 10.1038/s41436-020-01001-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 09/25/2020] [Accepted: 09/28/2020] [Indexed: 11/09/2022] Open
Abstract
Purpose TUBA1A and TUBB2B tubulinopathies are rare neurodevelopmental disorders characterized by cortical and extracortical malformations and heterogenic phenotypes. There is a need for quantitative clinical endpoints that will be beneficial for future diagnostic and therapeutic trials. Methods Quantitative natural history modeling of individuals with TUBA1A and TUBB2B tubulinopathies from clinical reports and database entries of DECIPHER and ClinVar. Main outcome measures were age at disease onset, survival, and diagnostic delay. Phenotypical, neuroradiological, and histopathological features were descriptively illustrated. Results Mean age at disease onset was 4 (TUBA1A) and 6 months (TUBB2B), respectively. Mortality was equally estimated with 7% at 3.2 (TUBA1A) and 8.0 years (TUBB2B). Diagnostic delay was significantly higher in TUBB2B (12.3 years) compared with TUBA1A tubulinopathy (4.2 years). We delineated the isotype-dependent clinical, neuroradiological, and histopathological phenotype of affected individuals and present brain malformations associated with epilepsy and an unfavorable course of disease. Conclusion The natural history of tubulinopathies is defined by the genotype and associated brain malformations. Defined data on estimated survival, diagnostic delay, and disease characteristics of TUBA1A and TUBB2B tubulinopathy will help to raise disease awareness and encourage future clinical trials to optimize genetic testing, family counseling, and supportive care.
Collapse
Affiliation(s)
- Julian Schröter
- Division of Pediatric Epileptology, Center for Pediatrics and Adolescent Medicine, University Hospital Heidelberg, Heidelberg, Germany
| | - Jan H Döring
- Division of Pediatric Epileptology, Center for Pediatrics and Adolescent Medicine, University Hospital Heidelberg, Heidelberg, Germany
| | - Sven F Garbade
- Division of Neuropediatrics and Inherited Metabolic Diseases, Center for Pediatrics and Adolescent Medicine, University Hospital Heidelberg, Heidelberg, Germany
| | - Georg F Hoffmann
- Division of Neuropediatrics and Inherited Metabolic Diseases, Center for Pediatrics and Adolescent Medicine, University Hospital Heidelberg, Heidelberg, Germany
| | - Stefan Kölker
- Division of Neuropediatrics and Inherited Metabolic Diseases, Center for Pediatrics and Adolescent Medicine, University Hospital Heidelberg, Heidelberg, Germany
| | - Markus Ries
- Division of Neuropediatrics and Inherited Metabolic Diseases, Center for Pediatrics and Adolescent Medicine, University Hospital Heidelberg, Heidelberg, Germany
| | - Steffen Syrbe
- Division of Pediatric Epileptology, Center for Pediatrics and Adolescent Medicine, University Hospital Heidelberg, Heidelberg, Germany.
| |
Collapse
|
49
|
Molecular diagnosis of epileptic encephalopathy of the first year of life applying a customized gene panel in a group of Argentinean patients. Epilepsy Behav 2020; 111:107322. [PMID: 32702657 DOI: 10.1016/j.yebeh.2020.107322] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Revised: 07/01/2020] [Accepted: 07/04/2020] [Indexed: 11/22/2022]
Abstract
OBJECTIVE The aim of this study was to perform a molecular characterization of 17 Argentinean pediatric patients with diagnosis of having epileptic encephalopathies (EEs) of the first year of life without known etiology, applying next-generation sequencing (NGS). METHODS We included 17 patients with EE with age of onset under 12 months without known etiology after ruling out structural abnormalities, metabolic disorders, and large chromosomal abnormalities. They presented with the following clinical phenotypes: Dravet syndrome (DS; n: 7), epilepsy of infancy with migrating focal seizures (EIMFS; n: 3), West syndrome (WS; n: 2), and undetermined epileptic encephalopathy (UEE; n: 5). Neurologic examinations, seizure semiology, brain magnetic resonance imaging, and standard electroencephalography (EEG) or video-EEG studies were performed in all cases. Using a custom amplicon strategy, we designed an NGS panel to study 47 genes associated with EEs. RESULTS Pathogenic variants were detected in 8 cases (47%), including seven novel pathogenic variants and one previously reported as being pathogenic. The pathogenic variants were identified in 6 patients with DS (SCN1A gene), one with EIMFS (SCN2A gene), and one with UEE (SLC2A1 gene). Nonrelevant variants were identified in the patients with WS. CONCLUSION We demonstrated the feasibility of an NGS-gene panel approach for the analysis of patients with EE in our setting. A genetic diagnosis was achieved in nearly 50% of patients, 87% of them presenting with nonpreviously reported variants. The early identification of the underlying causative genetic alteration will be a valuable tool for providing prognostic information and genetic counselling and also to improve therapeutic decisions in Argentinean patients.
Collapse
|
50
|
Stödberg T, Tomson T, Barbaro M, Stranneheim H, Anderlid BM, Carlsson S, Åmark P, Wedell A. Epilepsy syndromes, etiologies, and the use of next-generation sequencing in epilepsy presenting in the first 2 years of life: A population-based study. Epilepsia 2020; 61:2486-2499. [PMID: 32964447 PMCID: PMC7756847 DOI: 10.1111/epi.16701] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Revised: 07/28/2020] [Accepted: 08/31/2020] [Indexed: 01/01/2023]
Abstract
OBJECTIVE Population-based data on epilepsy syndromes and etiologies in early onset epilepsy are scarce. The use of next-generation sequencing (NGS) has hitherto not been reported in this context. The aim of this study is to describe children with epilepsy onset before 2 years of age, and to explore to what degree whole exome and whole genome sequencing (WES/WGS) can help reveal a molecular genetic diagnosis. METHODS Children presenting with a first unprovoked epileptic seizure before age 2 years and registered in the Stockholm Incidence Registry of Epilepsy (SIRE) between September 1, 2001 and December 31, 2006, were retrieved and their medical records up to age 7 years reviewed. Children who met the epilepsy criteria were included in the study cohort. WES/WGS was offered in cases of suspected genetic etiology regardless of whether a structural or metabolic diagnosis had been established. RESULTS One hundred sixteen children were included, of which 88 had seizure onset during the first year of life and 28 during the second, corresponding to incidences of 139 and 42/100 000 person-years, respectively. An epilepsy syndrome could be diagnosed in 54% of cases, corresponding to a birth prevalence of 1/1100. Structural etiology was revealed in 34% of cases, a genetic cause in 20%, and altogether etiology was known in 65% of children. The highest diagnostic yield was seen in magnetic resonance imaging (MRI) with 65% revealing an etiology. WES/WGS was performed in 26/116 cases (22%), with a diagnostic yield of 58%. SIGNIFICANCE Epilepsy syndromes can be diagnosed and etiologies revealed in a majority of early onset cases. NGS can identify a molecular diagnosis in a substantial number of children, and should be included in the work-up, especially in cases of epileptic encephalopathy, cerebral malformation, or metabolic disease without molecular diagnosis. A genetic diagnosis is essential to genetic counselling, prenatal diagnostics, and precision therapy.
Collapse
Affiliation(s)
- Tommy Stödberg
- Department of Women's and Children's Health, Karolinska Institutet, Stockholm, Sweden.,Department of Pediatric Neurology, Karolinska University Hospital, Stockholm, Sweden
| | - Torbjörn Tomson
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Michela Barbaro
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden.,Centre for Inherited Metabolic Diseases, Karolinska University Hospital, Stockholm, Sweden
| | - Henrik Stranneheim
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden.,Centre for Inherited Metabolic Diseases, Karolinska University Hospital, Stockholm, Sweden.,Science for Life Laboratory, Karolinska Institutet, Stockholm, Sweden
| | - Britt-Marie Anderlid
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden.,Department of Clinical Genetics, Karolinska University Hospital, Stockholm, Sweden
| | - Sofia Carlsson
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Per Åmark
- Department of Women's and Children's Health, Karolinska Institutet, Stockholm, Sweden
| | - Anna Wedell
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden.,Centre for Inherited Metabolic Diseases, Karolinska University Hospital, Stockholm, Sweden.,Science for Life Laboratory, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|