1
|
Rosic N, Delamare-Deboutteville J, Dove S. Heat stress in symbiotic dinoflagellates: Implications on oxidative stress and cellular changes. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 944:173916. [PMID: 38866148 DOI: 10.1016/j.scitotenv.2024.173916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Revised: 05/18/2024] [Accepted: 06/08/2024] [Indexed: 06/14/2024]
Abstract
Global warming has been shown to harmfully affect symbiosis between Symbiodiniaceae and other marine invertebrates. When symbiotic dinoflagellates (the genus Breviolum) were in vitro exposed to acute heat stress of +7 °C for a period of 5 days, the results revealed the negative impact on all physiological and other cellular parameters measured. Elevated temperatures resulted in a severe reduction in algal density of up to 9.5-fold, as well as pigment concentrations, indicating the status of the physiological stress and early signs of photo-bleaching. Reactive oxygen species (ROS) were increased in all heated dinoflagellate cells, while the antioxidant-reduced glutathione levels initially dropped on day one but increased under prolonged temperature stress. The cell viability parameters were reduced by 97 % over the heating period, with an increased proportion of apoptotic and necrotic cells. Autofluorescence (AF) for Cy5-PE 660-20 was reduced from 1.7-fold at day 1 to up to 50-fold drop at the end of heating time, indicating that the AF changes were highly sensitive to heat stress and that it could be an extremely sensitive tool for assessing the functionality of algal photosynthetic machinery. The addition of the drug 5-AZA-2'-deoxycytidine (5-AZA), which inhibits DNA methylation processes, was assessed in parallel and contributed to some alterations in algal cellular stress response. The presence of drug 5-AZA combined with the temperature stress had an additional impact on Symbiodiniaceae density and cell complexity, including the AF levels. These variations in cellular stress response under heat stress and compromised DNA methylation conditions may indicate the importance of this epigenetic mechanism for symbiotic dinoflagellate thermal tolerance adaptability over a longer period, which needs further exploration. Consequently, the increased ROS levels and changes in AF signals reported during ongoing heat stress in dinoflagellate cells could be used as early stress biomarkers in these microalgae and potentially other photosynthetic species.
Collapse
Affiliation(s)
- Nedeljka Rosic
- Faculty of Health, Southern Cross University, Gold Coast, QLD, Australia; Marine Ecology Research Centre, Southern Cross University, Lismore, NSW, Australia.
| | | | - Sophie Dove
- School of Biological Sciences, The University of Queensland, St. Lucia, Qld, Australia
| |
Collapse
|
2
|
Hulver AM, Carbonne C, Teixidó N, Comeau S, Kemp DW, Keister EF, Gattuso JP, Grottoli AG. Elevated heterotrophic capacity as a strategy for Mediterranean corals to cope with low pH at CO2 vents. PLoS One 2024; 19:e0306725. [PMID: 39078831 PMCID: PMC11288460 DOI: 10.1371/journal.pone.0306725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Accepted: 06/21/2024] [Indexed: 08/02/2024] Open
Abstract
The global increase in anthropogenic CO2 is leading to ocean warming and acidification, which is threatening corals. In Ischia, Italy, two species of Mediterranean scleractinian corals-the symbiotic Cladocora caespitosa and the asymbiotic Astroides calycularis-were collected from ambient pH sites (average pHT = 8.05) and adjacent CO2 vent sites (average pHT = 7.8) to evaluate their response to ocean acidification. Coral colonies from both sites were reared in a laboratory setting for six months at present day pH (pHT ~ 8.08) or low pH (pHT ~7.72). Previous work showed that these corals were tolerant of low pH and maintained positive calcification rates throughout the experiment. We hypothesized that these corals cope with low pH by increasing their heterotrophic capacity (i.e., feeding and/or proportion of heterotrophically derived compounds incorporated in their tissues), irrespective of site of origin, which was quantified indirectly by measuring δ13C, δ15N, and sterols. To further characterize coral health, we quantified energy reserves by measuring biomass, total lipids, and lipid classes. Additional analysis for C. caespitosa included carbohydrates (an energy reserve) and chlorophyll a (an indicator of photosynthetic capacity). Isotopic evidence shows that ambient-sourced Mediterranean corals, of both species, decreased heterotrophy in response to six months of low pH. Despite maintaining energy reserves, lower net photosynthesis (C. caespitosa) and a trend of declining calcification (A. calycularis) suggest a long-term cost to low heterotrophy under ocean acidification conditions. Conversely, vent-sourced corals maintained moderate (C. caespitosa) or high (A. calycularis) heterotrophic capacity and increased photosynthesis rates (C. caespitosa) in response to six months at low pH, allowing them to sustain themselves physiologically. Provided there is sufficient zooplankton and/or organic matter to meet their heterotrophic needs, vent-sourced corals are more likely to persist this century and potentially be a source for new corals in the Mediterranean.
Collapse
Affiliation(s)
- Ann Marie Hulver
- School of Earth Sciences, The Ohio State University, Columbus, Ohio, United States of America
| | - Chloé Carbonne
- CNRS-INSU, Laboratoire d’Océanographie de Villefranche, Sorbonne Université, Villefranche-sur-Mer, France
| | - Nuria Teixidó
- CNRS-INSU, Laboratoire d’Océanographie de Villefranche, Sorbonne Université, Villefranche-sur-Mer, France
- Department of Integrated Marine Ecology, Stazione Zoologica Anton Dohrn, Ischia Marine Center, Ischia, Naples, Italy
| | - Steeve Comeau
- CNRS-INSU, Laboratoire d’Océanographie de Villefranche, Sorbonne Université, Villefranche-sur-Mer, France
| | - Dustin W. Kemp
- Department of Biology, The University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | - Elise F. Keister
- Department of Biology, The University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | - Jean-Pierre Gattuso
- CNRS-INSU, Laboratoire d’Océanographie de Villefranche, Sorbonne Université, Villefranche-sur-Mer, France
- Institute for Sustainable Development and International Relations, Sciences Po, Paris, France
| | - Andréa G. Grottoli
- School of Earth Sciences, The Ohio State University, Columbus, Ohio, United States of America
| |
Collapse
|
3
|
Deore P, Tsang Min Ching SJ, Nitschke MR, Rudd D, Brumley DR, Hinde E, Blackall LL, van Oppen MJH. Unique photosynthetic strategies employed by closely related Breviolum minutum strains under rapid short-term cumulative heat stress. JOURNAL OF EXPERIMENTAL BOTANY 2024; 75:4005-4023. [PMID: 38636949 PMCID: PMC11233414 DOI: 10.1093/jxb/erae170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Accepted: 04/17/2024] [Indexed: 04/20/2024]
Abstract
The thermal tolerance of symbiodiniacean photo-endosymbionts largely underpins the thermal bleaching resilience of their cnidarian hosts such as corals and the coral model Exaiptasia diaphana. While variation in thermal tolerance between species is well documented, variation between conspecific strains is understudied. We compared the thermal tolerance of three closely related strains of Breviolum minutum represented by two internal transcribed spacer region 2 profiles (one strain B1-B1o-B1g-B1p and the other two strains B1-B1a-B1b-B1g) and differences in photochemical and non-photochemical quenching, de-epoxidation state of photopigments, and accumulation of reactive oxygen species under rapid short-term cumulative temperature stress (26-40 °C). We found that B. minutum strains employ distinct photoprotective strategies, resulting in different upper thermal tolerances. We provide evidence for previously unknown interdependencies between thermal tolerance traits and photoprotective mechanisms that include a delicate balancing of excitation energy and its dissipation through fast relaxing and state transition components of non-photochemical quenching. The more thermally tolerant B. minutum strain (B1-B1o-B1g-B1p) exhibited an enhanced de-epoxidation that is strongly linked to the thylakoid membrane melting point and possibly membrane rigidification minimizing oxidative damage. This study provides an in-depth understanding of photoprotective mechanisms underpinning thermal tolerance in closely related strains of B. minutum.
Collapse
Affiliation(s)
- Pranali Deore
- School of BioSciences, The University of Melbourne, Parkville 3010, Victoria, Australia
| | | | - Matthew R Nitschke
- Australian Institute of Marine Science, Townsville 4810, Queensland, Australia
- School of Biological Sciences, Victoria University of Wellington, Wellington 6102, New Zealand
| | - David Rudd
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC 3052, Australia
| | - Douglas R Brumley
- School of Mathematics and Statistics, The University of Melbourne, Parkville 3010, Victoria, Australia
| | - Elizabeth Hinde
- School of Physics, The University of Melbourne, Parkville 3010, Victoria, Australia
| | - Linda L Blackall
- School of BioSciences, The University of Melbourne, Parkville 3010, Victoria, Australia
| | - Madeleine J H van Oppen
- School of BioSciences, The University of Melbourne, Parkville 3010, Victoria, Australia
- Australian Institute of Marine Science, Townsville 4810, Queensland, Australia
| |
Collapse
|
4
|
Goodbody-Gringley G, Martinez S, Bellworthy J, Chequer A, Nativ H, Mass T. Irradiance driven trophic plasticity in the coral Madracis pharensis from the Eastern Mediterranean. Sci Rep 2024; 14:3646. [PMID: 38351312 PMCID: PMC10864392 DOI: 10.1038/s41598-024-54217-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Accepted: 02/09/2024] [Indexed: 02/16/2024] Open
Abstract
The distribution of symbiotic scleractinian corals is driven, in part, by light availability, as host energy demands are partially met through translocation of photosynthate. Physiological plasticity in response to environmental conditions, such as light, enables the expansion of resilient phenotypes in the face of changing environmental conditions. Here we compared the physiology, morphology, and taxonomy of the host and endosymbionts of individual Madracis pharensis corals exposed to dramatically different light conditions based on colony orientation on the surface of a shipwreck at 30 m depth in the Bay of Haifa, Israel. We found significant differences in symbiont species consortia, photophysiology, and stable isotopes, suggesting that these corals can adjust multiple aspects of host and symbiont physiology in response to light availability. These results highlight the potential of corals to switch to a predominantly heterotrophic diet when light availability and/or symbiont densities are too low to sustain sufficient photosynthesis, which may provide resilience for corals in the face of climate change.
Collapse
Affiliation(s)
| | - Stephane Martinez
- Department of Marine Biology, Leon H. Charney School of Marine Sciences, University of Haifa, Haifa, Israel
- Leon H. Charney School of Marine Sciences, Morris Kahn Marine Research Station, University of Haifa, Haifa, Israel
| | - Jessica Bellworthy
- Department of Marine Biology, Leon H. Charney School of Marine Sciences, University of Haifa, Haifa, Israel
- Leon H. Charney School of Marine Sciences, Morris Kahn Marine Research Station, University of Haifa, Haifa, Israel
| | - Alex Chequer
- Reef Ecology and Evolution, Central Caribbean Marine Institute, Little Cayman, Cayman Islands
| | - Hagai Nativ
- Department of Marine Biology, Leon H. Charney School of Marine Sciences, University of Haifa, Haifa, Israel
- Leon H. Charney School of Marine Sciences, Morris Kahn Marine Research Station, University of Haifa, Haifa, Israel
| | - Tali Mass
- Department of Marine Biology, Leon H. Charney School of Marine Sciences, University of Haifa, Haifa, Israel
- Leon H. Charney School of Marine Sciences, Morris Kahn Marine Research Station, University of Haifa, Haifa, Israel
| |
Collapse
|
5
|
Villafranca N, Changsut I, Diaz de Villegas S, Womack H, Fuess LE. Characterization of trade-offs between immunity and reproduction in the coral species Astrangia poculata. PeerJ 2023; 11:e16586. [PMID: 38077420 PMCID: PMC10702360 DOI: 10.7717/peerj.16586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Accepted: 11/14/2023] [Indexed: 12/18/2023] Open
Abstract
Background Living organisms face ubiquitous pathogenic threats and have consequently evolved immune systems to protect against potential invaders. However, many components of the immune system are physiologically costly to maintain and engage, often drawing resources away from other organismal processes such as growth and reproduction. Evidence from a diversity of systems has demonstrated that organisms use complex resource allocation mechanisms to manage competing needs and optimize fitness. However, understanding of resource allocation patterns is limited across taxa. Cnidarians, which include ecologically important organisms like hard corals, have been historically understudied in the context of resource allocations. Improving understanding of resource allocation-associated trade-offs in cnidarians is critical for understanding future ecological dynamics in the face of rapid environmental change. Methods Here, we characterize trade-offs between constitutive immunity and reproduction in the facultatively symbiotic coral Astrangia poculata. Male colonies underwent ex situ spawning and sperm density was quantified. We then examined the effects of variable symbiont density and energetic budget on physiological traits, including immune activity and reproductive investment. Furthermore, we tested for potential trade-offs between immune activity and reproductive investment. Results We found limited associations between energetic budget and immune metrics; melanin production was significantly positively associated with carbohydrate concentration. However, we failed to document any associations between immunity and reproductive output which would be indicative of trade-offs, possibly due to experimental limitations. Our results provide a preliminary framework for future studies investigating immune trade-offs in cnidarians.
Collapse
Affiliation(s)
- Natalie Villafranca
- Department of Biology, Texas State University, San Marcos, TX, United States
| | - Isabella Changsut
- Department of Biology, Texas State University, San Marcos, TX, United States
| | | | - Haley Womack
- Department of Biology, Texas State University, San Marcos, TX, United States
| | - Lauren E. Fuess
- Department of Biology, Texas State University, San Marcos, TX, United States
| |
Collapse
|
6
|
Kawamura K, Shoguchi E, Nishitsuji K, Sekida S, Narisoko H, Zhao H, Shu Y, Fu P, Yamashita H, Fujiwara S, Satoh N. In Vitro Phagocytosis of Different Dinoflagellate Species by Coral Cells. Zoolog Sci 2023; 40:444-454. [PMID: 38064371 DOI: 10.2108/zs230045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Accepted: 09/14/2023] [Indexed: 12/18/2023]
Abstract
Coral-dinoflagellate symbiosis is a unique biological phenomenon, in which animal cells engulf single-celled photosynthetic algae and maintain them in their cytoplasm mutualistically. Studies are needed to reveal the complex mechanisms involved in symbiotic processes, but it is difficult to answer these questions using intact corals. To tackle these issues, our previous studies established an in vitro system of symbiosis between cells of the scleractinian coral Acropora tenuis and the dinoflagellate Breviolum minutum, and showed that corals direct phagocytosis, while algae are likely engulfed by coral cells passively. Several genera of the family Symbiodiniaceae can establish symbioses with corals, but the symbiotic ratio differs depending on the dinoflagellate clades involved. To understand possible causes of these differences, this study examined whether cultured coral cells show phagocytotic activity with various dinoflagellate strains similar to those shown by intact A. tenuis. We found that (a) A. tenuis larvae incorporate Symbiodinium and Breviolum, but not Cladocopium, and very few Effrenium, (b) cultured coral cells engulfed all four species but the ratio of engulfment was significantly higher with Symbiodinium and Breviolum than Cladocopium and Effrenium, (c) cultured coral cells also phagocytosed inorganic latex beads differently than they do dinoflagellates . It is likely that cultured coral cells preferentially phagocytose Symbiodinium and Breviolum, suggesting that specific molecular mechanisms involved in initiation of symbiosis should be investigated in the future.
Collapse
Affiliation(s)
- Kaz Kawamura
- Department of Applied Science, Kochi University, Kochi 780-8520, Japan,
| | - Eiichi Shoguchi
- Marine Genomics Unit, Okinawa Institute of Science and Technology Graduate University, Onna, Okinawa 904-0495, Japan
| | - Koki Nishitsuji
- Marine Genomics Unit, Okinawa Institute of Science and Technology Graduate University, Onna, Okinawa 904-0495, Japan
| | - Satoko Sekida
- Kuroshio Science Program, Graduate School of Integrated Arts and Sciences, Kochi University, Kochi 780-8520, Japan
| | - Haruhi Narisoko
- Marine Genomics Unit, Okinawa Institute of Science and Technology Graduate University, Onna, Okinawa 904-0495, Japan
| | - Hongwei Zhao
- College of Ecology and Environment & State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou 570228, China
| | - Yang Shu
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou 570228, China
| | - Pengcheng Fu
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou 570228, China
| | - Hiroshi Yamashita
- Fisheries Technology Institute, Japan Fisheries Research and Education Agency, Ishigaki, Okinawa 907-0451, Japan
| | - Shigeki Fujiwara
- Department of Applied Science, Kochi University, Kochi 780-8520, Japan
| | - Noriyuki Satoh
- Marine Genomics Unit, Okinawa Institute of Science and Technology Graduate University, Onna, Okinawa 904-0495, Japan,
| |
Collapse
|
7
|
Coffroth MA, Buccella LA, Eaton KM, Lasker HR, Gooding AT, Franklin H. What makes a winner? Symbiont and host dynamics determine Caribbean octocoral resilience to bleaching. SCIENCE ADVANCES 2023; 9:eadj6788. [PMID: 37992160 PMCID: PMC10664981 DOI: 10.1126/sciadv.adj6788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Accepted: 10/23/2023] [Indexed: 11/24/2023]
Abstract
Unlike reef-building, scleractinian corals, Caribbean soft corals (octocorals) have not suffered marked declines in abundance associated with anthropogenic ocean warming. Both octocorals and reef-building scleractinians depend on a nutritional symbiosis with single-celled algae living within their tissues. In both groups, increased ocean temperatures can induce symbiont loss (bleaching) and coral death. Multiple heat waves from 2014 to 2016 resulted in widespread damage to reef ecosystems and provided an opportunity to examine the bleaching response of three Caribbean octocoral species. Symbiont densities declined during the heat waves but recovered quickly, and colony mortality was low. The dominant symbiont genotypes within a host generally did not change, and all colonies hosted symbiont species in the genus Breviolum. Their association with thermally tolerant symbionts likely contributes to the octocoral holobiont's resistance to mortality and the resilience of their symbiont populations. The resistance and resilience of Caribbean octocorals offer clues for the future of coral reefs.
Collapse
Affiliation(s)
| | - Louis A. Buccella
- Graduate Program in Evolution, Ecology and Behavior, University at Buffalo, Buffalo NY 14260, USA
| | - Katherine M. Eaton
- Department of Biological Sciences, University at Buffalo, Buffalo, NY 14260, USA
| | - Howard R. Lasker
- Department of Geology, University at Buffalo, Buffalo, NY 14260, USA
| | - Alyssa T. Gooding
- Department of Biological Sciences, University at Buffalo, Buffalo, NY 14260, USA
| | - Harleena Franklin
- Department of Geology, University at Buffalo, Buffalo, NY 14260, USA
| |
Collapse
|
8
|
Kihika JK, Wood SA, Rhodes L, Smith KF, Butler J, Ryan KG. Assessment of the recovery and photosynthetic efficiency of Breviolum psygmophilum and Effrenium voratum (Symbiodiniaceae) following cryopreservation. PeerJ 2023; 11:e14885. [PMID: 36874975 PMCID: PMC9983422 DOI: 10.7717/peerj.14885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Accepted: 01/22/2023] [Indexed: 03/06/2023] Open
Abstract
Many strains of Symbiodiniaceae have been isolated and their genetics, taxonomy, and metabolite production studied. Maintaining these cultures requires careful and regular sub-culturing that is costly with a high risk of species contamination or loss. Cryopreservation is a viable alternative for their long-term storage; however, there is uncertainty as to whether cryopreservation impacts the photosynthetic performance of Symbiodiniaceae. We investigated the growth rates and photosynthetic efficiency of two species, Breviolum psygmophilum and Effrenium voratum before and after cryopreservation. Rapid light curves (RLCs) produced using Pulse Amplitude Modulated (PAM) fluorometry were used to generate detailed information on the characteristics of photosystem II (PSII). The maximum electron transport rate (ETRmax) and the quantum yield (Fv/Fm) of the control (non-cryopreserved) and cryopreserved culture isolates were assessed across the growth cycle. The non-cryopreserved isolate of B. psygmophilum had a higher quantum yield than the cryopreserved isolate from day 12 to day 24, whereas there were no differences from day 28 to the late stationary phase. There were no significant differences in ETRmax. No significant differences were observed in quantum yield or ETRmax between the control and cryopreserved E. voratum isolates. The ability of cryopreserved strains to recover and regain their photosynthetic efficiency after freezing demonstrates the utility of this method for the long-term storage of these and other Symbiodiniaceae species.
Collapse
Affiliation(s)
- Joseph K Kihika
- Department of Biological Sciences, Victoria University of Wellington, Wellington, New Zealand.,Cawthron Institute, Nelson, New Zealand
| | | | | | - Kirsty F Smith
- Cawthron Institute, Nelson, New Zealand.,Department of Biological Sciences, University of Auckland, Auckland, New Zealand
| | | | - Ken G Ryan
- Department of Biological Sciences, Victoria University of Wellington, Wellington, New Zealand
| |
Collapse
|
9
|
Davies SW, Gamache MH, Howe-Kerr LI, Kriefall NG, Baker AC, Banaszak AT, Bay LK, Bellantuono AJ, Bhattacharya D, Chan CX, Claar DC, Coffroth MA, Cunning R, Davy SK, del Campo J, Díaz-Almeyda EM, Frommlet JC, Fuess LE, González-Pech RA, Goulet TL, Hoadley KD, Howells EJ, Hume BCC, Kemp DW, Kenkel CD, Kitchen SA, LaJeunesse TC, Lin S, McIlroy SE, McMinds R, Nitschke MR, Oakley CA, Peixoto RS, Prada C, Putnam HM, Quigley K, Reich HG, Reimer JD, Rodriguez-Lanetty M, Rosales SM, Saad OS, Sampayo EM, Santos SR, Shoguchi E, Smith EG, Stat M, Stephens TG, Strader ME, Suggett DJ, Swain TD, Tran C, Traylor-Knowles N, Voolstra CR, Warner ME, Weis VM, Wright RM, Xiang T, Yamashita H, Ziegler M, Correa AMS, Parkinson JE. Building consensus around the assessment and interpretation of Symbiodiniaceae diversity. PeerJ 2023; 11:e15023. [PMID: 37151292 PMCID: PMC10162043 DOI: 10.7717/peerj.15023] [Citation(s) in RCA: 18] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Accepted: 02/17/2023] [Indexed: 05/09/2023] Open
Abstract
Within microeukaryotes, genetic variation and functional variation sometimes accumulate more quickly than morphological differences. To understand the evolutionary history and ecology of such lineages, it is key to examine diversity at multiple levels of organization. In the dinoflagellate family Symbiodiniaceae, which can form endosymbioses with cnidarians (e.g., corals, octocorals, sea anemones, jellyfish), other marine invertebrates (e.g., sponges, molluscs, flatworms), and protists (e.g., foraminifera), molecular data have been used extensively over the past three decades to describe phenotypes and to make evolutionary and ecological inferences. Despite advances in Symbiodiniaceae genomics, a lack of consensus among researchers with respect to interpreting genetic data has slowed progress in the field and acted as a barrier to reconciling observations. Here, we identify key challenges regarding the assessment and interpretation of Symbiodiniaceae genetic diversity across three levels: species, populations, and communities. We summarize areas of agreement and highlight techniques and approaches that are broadly accepted. In areas where debate remains, we identify unresolved issues and discuss technologies and approaches that can help to fill knowledge gaps related to genetic and phenotypic diversity. We also discuss ways to stimulate progress, in particular by fostering a more inclusive and collaborative research community. We hope that this perspective will inspire and accelerate coral reef science by serving as a resource to those designing experiments, publishing research, and applying for funding related to Symbiodiniaceae and their symbiotic partnerships.
Collapse
Affiliation(s)
- Sarah W. Davies
- Department of Biology, Boston University, Boston, MA, United States
| | - Matthew H. Gamache
- Department of Integrative Biology, University of South Florida, Tampa, FL, United States
| | | | | | - Andrew C. Baker
- Rosenstiel School of Marine, Atmospheric, and Earth Science, University of Miami, Miami, FL, United States
| | - Anastazia T. Banaszak
- Unidad Académica de Sistemas Arrecifales, Universidad Nacional Autónoma de México, Puerto Morelos, Mexico
| | - Line Kolind Bay
- Australian Institute of Marine Science, Townsville, Australia
| | - Anthony J. Bellantuono
- Department of Biological Sciences, Florida International University, Miami, FL, United States
| | - Debashish Bhattacharya
- Department of Biochemistry and Microbiology, Rutgers University, New Brunswick, NJ, United States
| | - Cheong Xin Chan
- Australian Centre for Ecogenomics, School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD, Australia
| | - Danielle C. Claar
- Nearshore Habitat Program, Washington State Department of Natural Resources, Olympia, WA, USA
| | | | - Ross Cunning
- Daniel P. Haerther Center for Conservation and Research, John G. Shedd Aquarium, Chicago, IL, United States
| | - Simon K. Davy
- School of Biological Sciences, Victoria University of Wellington, Wellington, New Zealand
| | - Javier del Campo
- Institut de Biologia Evolutiva (CSIC - Universitat Pompeu Fabra), Barcelona, Catalonia, Spain
| | | | - Jörg C. Frommlet
- Centre for Environmental and Marine Studies, Department of Biology, University of Aveiro, Campus Universitário de Santiago, Aveiro, Portugal
| | - Lauren E. Fuess
- Department of Biology, Texas State University, San Marcos, TX, United States
| | - Raúl A. González-Pech
- Department of Integrative Biology, University of South Florida, Tampa, FL, United States
- Department of Biology, Pennsylvania State University, State College, PA, United States
| | - Tamar L. Goulet
- Department of Biology, University of Mississippi, University, MS, United States
| | - Kenneth D. Hoadley
- Department of Biological Sciences, University of Alabama—Tuscaloosa, Tuscaloosa, AL, United States
| | - Emily J. Howells
- National Marine Science Centre, Faculty of Science and Engineering, Southern Cross University, Coffs Harbour, NSW, Australia
| | | | - Dustin W. Kemp
- Department of Biology, University of Alabama—Birmingham, Birmingham, Al, United States
| | - Carly D. Kenkel
- Department of Biological Sciences, University of Southern California, Los Angeles, CA, United States
| | - Sheila A. Kitchen
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, United States
| | - Todd C. LaJeunesse
- Department of Biology, Pennsylvania State University, University Park, PA, United States
| | - Senjie Lin
- Department of Marine Sciences, University of Connecticut, Mansfield, CT, United States
| | - Shelby E. McIlroy
- Swire Institute of Marine Science, School of Biological Sciences, The University of Hong Kong, Pok Fu Lam, Hong Kong
| | - Ryan McMinds
- Center for Global Health and Infectious Disease Research, University of South Florida, Tampa, FL, United States
| | | | - Clinton A. Oakley
- School of Biological Sciences, Victoria University of Wellington, Wellington, New Zealand
| | - Raquel S. Peixoto
- Red Sea Research Center (RSRC), Division of Biological and Environmental Science and Engineering (BESE), King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| | - Carlos Prada
- Department of Biological Sciences, University of Rhode Island, Kingston, RI, United States
| | - Hollie M. Putnam
- Department of Biological Sciences, University of Rhode Island, Kingston, RI, United States
| | | | - Hannah G. Reich
- Department of Biological Sciences, University of Rhode Island, Kingston, RI, United States
| | - James Davis Reimer
- Department of Biology, Chemistry and Marine Sciences, Faculty of Science, University of the Ryukyus, Nishihara, Okinawa, Japan
| | | | - Stephanie M. Rosales
- The Cooperative Institute For Marine and Atmospheric Studies, Miami, FL, United States
| | - Osama S. Saad
- Department of Biological Oceanography, Red Sea University, Port-Sudan, Sudan
| | - Eugenia M. Sampayo
- School of Biological Sciences, The University of Queensland, St. Lucia, QLD, Australia
| | - Scott R. Santos
- Department of Biological Sciences, University at Buffalo, Buffalo, NY, United States
| | - Eiichi Shoguchi
- Marine Genomics Unit, Okinawa Institute of Science and Technology Graduate University, Okinawa, Japan
| | - Edward G. Smith
- School of Life Sciences, University of Warwick, Coventry, UK
| | - Michael Stat
- School of Environmental and Life Sciences, University of Newcastle, Callaghan, NSW, Australia
| | - Timothy G. Stephens
- Department of Biochemistry and Microbiology, Rutgers University, New Brunswick, NJ, United States
| | - Marie E. Strader
- Department of Biology, Texas A&M University, College Station, TX, United States
| | - David J. Suggett
- Red Sea Research Center (RSRC), Division of Biological and Environmental Science and Engineering (BESE), King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
- Climate Change Cluster, University of Technology Sydney, Ultimo, NSW, Australia
| | - Timothy D. Swain
- Department of Marine and Environmental Science, Nova Southeastern University, Dania Beach, FL, United States
| | - Cawa Tran
- Department of Biology, University of San Diego, San Diego, CA, United States
| | - Nikki Traylor-Knowles
- Rosenstiel School of Marine, Atmospheric, and Earth Science, University of Miami, Miami, FL, United States
| | | | - Mark E. Warner
- School of Marine Science and Policy, University of Delaware, Lewes, DE, United States
| | - Virginia M. Weis
- Department of Integrative Biology, Oregon State University, Corvallis, OR, United States
| | - Rachel M. Wright
- Department of Biological Sciences, Southern Methodist University, Dallas, TX, United States
| | - Tingting Xiang
- School of Life Sciences, University of Warwick, Coventry, UK
| | - Hiroshi Yamashita
- Fisheries Technology Institute, Japan Fisheries Research and Education Agency, Ishigaki, Okinawa, Japan
| | - Maren Ziegler
- Department of Animal Ecology & Systematics, Justus Liebig University Giessen (Germany), Giessen, Germany
| | | | - John Everett Parkinson
- Department of Integrative Biology, University of South Florida, Tampa, FL, United States
| |
Collapse
|
10
|
Sheahan K, Zarate D, Chalifour B, Li J. Intraspecific transfer of algal symbionts can occur in photosymbiotic Exaiptasia sea anemones. Symbiosis 2022. [DOI: 10.1007/s13199-022-00891-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
11
|
Kannan MR, Balakrishnan R, Thillaichidambaram M, Natesan S, Paramasamy G, Prakash S, Muthiah RC. Probing the thermo tolerant endosymbiont genus Durusdinium (Clade D) in the scleractinian corals of Palk Bay, Southeast coast of India. Biologia (Bratisl) 2022. [DOI: 10.1007/s11756-022-01235-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
12
|
Dellaert Z, Vargas PA, La Riviere PJ, Roberson LM. Uncovering the Effects of Symbiosis and Temperature on Coral Calcification. THE BIOLOGICAL BULLETIN 2022; 242:62-73. [PMID: 35245159 DOI: 10.1086/716711] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
AbstractWe tested the impact of temperature and symbiont state on calcification in corals, using the facultatively symbiotic coral Astrangia poculata as a model system. Symbiotic and aposymbiotic colonies of A. poculata were reared in 15, 20, and 27 °C conditions. We used scanning electron microscopy to quantify how these physiological and environmental conditions impact skeletal structure. Buoyant weight data over time revealed that temperature significantly affects calcification rates. Scanning electron microscopy of A. poculata skeletons showed that aposymbiotic colonies appear to have a lower density of calcium carbonate in actively growing septal spines. We describe a novel approach to analyze the roughness and texture of scanning electron microscopy images. Quantitative analysis of the roughness of septal spines revealed that aposymbiotic colonies have a rougher surface than symbiotic colonies in tropical conditions (27 °C). This trend reversed at 15 °C, a temperature at which the symbionts of A. poculata may exhibit parasitic properties. Analysis of surface texture patterns showed that temperature impacts the spatial variance of crystals on the spine surface. Few published studies have examined the skeleton of A. poculata by using scanning electron microscopy. Our approach provides a way to study detailed changes in skeletal microstructure in response to environmental parameters and can serve as a proxy for more expensive and time-consuming analyses. Utilizing a facultatively symbiotic coral that is native to both temperate and tropical regions provides new insights into the impact of both symbiosis and temperature on calcification in corals.
Collapse
|
13
|
Turnham KE, Wham DC, Sampayo E, LaJeunesse TC. Mutualistic microalgae co-diversify with reef corals that acquire symbionts during egg development. THE ISME JOURNAL 2021; 15:3271-3285. [PMID: 34012104 PMCID: PMC8528872 DOI: 10.1038/s41396-021-01007-8] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2020] [Revised: 04/23/2021] [Accepted: 05/04/2021] [Indexed: 02/04/2023]
Abstract
The application of molecular genetics has reinvigorated and improved how species are defined and investigated scientifically, especially for morphologically cryptic micro-organisms. Here we show how species recognition improves understanding of the ecology and evolution of mutualisms between reef-building corals and their mutualistic dinoflagellates (i.e. Symbiodiniaceae). A combination of genetic, ecological, and morphological evidence defines two sibling species of Cladocopium (formerly Symbiodinium Clade C), specific only to host corals in the common genus Pocillopora, which transmit their obligate symbionts during oogenesis. Cladocopium latusorum sp. nov. is symbiotic with P. grandis/meandrina while the smaller-celled C. pacificum sp. nov. associates with P. verrucosa. Both symbiont species form mutualisms with Pocillopora that brood their young. Populations of each species, like their hosts, are genetically well connected across the tropical and subtropical Pacific Ocean, indicating a capacity for long-range dispersal. A molecular clock approximates their speciation during the late Pliocene or early Pleistocene as Earth underwent cycles of precipitous cooling and warming; and corresponds to when their hosts were also diversifying. The long temporal and spatial maintenance of high host fidelity, as well as genetic connectivity across thousands of kilometers, indicates that distinct ecological attributes and close evolutionary histories will restrain the adaptive responses of corals and their specialized symbionts to rapid climate warming.
Collapse
Affiliation(s)
| | - Drew C Wham
- Penn State University, University Park, PA, USA
| | | | - Todd C LaJeunesse
- Penn State University, University Park, PA, USA.
- Penn State Institutes of Energy and the Environment, University Park, PA, USA.
| |
Collapse
|
14
|
Rivera HE, Davies SW. Symbiosis maintenance in the facultative coral, Oculina arbuscula, relies on nitrogen cycling, cell cycle modulation, and immunity. Sci Rep 2021; 11:21226. [PMID: 34707162 PMCID: PMC8551165 DOI: 10.1038/s41598-021-00697-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2021] [Accepted: 10/11/2021] [Indexed: 12/24/2022] Open
Abstract
Symbiosis with unicellular algae in the family Symbiodiniaceae is common across tropical marine invertebrates. Reef-building corals offer a clear example of cellular dysfunction leading to a dysbiosis that disrupts entire ecosystems in a process termed coral bleaching. Due to their obligate symbiotic relationship, understanding the molecular underpinnings that sustain this symbiosis in tropical reef-building corals is challenging, as any aposymbiotic state is inherently coupled with severe physiological stress. Here, we leverage the subtropical, facultatively symbiotic and calcifying coral Oculina arbuscula to investigate gene expression differences between aposymbiotic and symbiotic branches within the same colonies under baseline conditions. We further compare gene ontology (GO) and KOG enrichment in gene expression patterns from O. arbuscula with prior work in the sea anemone Exaiptasia pallida (Aiptasia) and the salamander Ambystoma maculatum-both of which exhibit endophotosymbiosis with unicellular algae. We identify nitrogen cycling, cell cycle control, and immune responses as key pathways involved in the maintenance of symbiosis under baseline conditions. Understanding the mechanisms that sustain a healthy symbiosis between corals and Symbiodiniaceae algae is of urgent importance given the vulnerability of these partnerships to changing environmental conditions and their role in the continued functioning of critical and highly diverse marine ecosystems.
Collapse
Affiliation(s)
- H E Rivera
- Department of Biology, Boston University, Boston, MA, USA.
| | - S W Davies
- Department of Biology, Boston University, Boston, MA, USA.
| |
Collapse
|
15
|
Morphological and molecular variability of Peridinium volzii Lemmerm. (Peridiniaceae, Dinophyceae) and its relevance for infraspecific taxonomy. ORG DIVERS EVOL 2021. [DOI: 10.1007/s13127-021-00514-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
AbstractContemporary delimitation of species and populations in the microbial domain relies on an integrative approach combining molecular and morphological techniques. In case of the dinophyte Peridinium volzii, a considerable number of infraspecific taxonomic entities have been reported, but it is unclear at present whether the corresponding traits are stable within reproductively isolated units or refer to intraspecific variability. We established 26 monoclonal strains from Central Europe with a morphology that is consistent for P. volzii and characterised them by sequences gained from the rRNA operon. Ten of such strains, representative for the entire diversity observed, were investigated in detail morphologically using light and electron microscopy. In the molecular tree, P. volzii was monophyletic, sister group of Peridinium willei, and three ITS ribotypes could be distinguished. Some traits corresponding to previously described varieties and forms were found in individual cells across the strains under investigation, but not as stable characters correlating to certain ribotypes. We also observed new morphological variability (e.g., unusual shape of plate 4″). Cell size and displacement of the cingulum were significantly different between certain ribotypes but in turn, such diagnostic traits are impossible to assign to already described taxa due to their ambiguity. Based on the small first apical plate as diagnostic trait and putative apomorphy, P. volzii is a characteristic species but the present data given, we are reserved to accept more than a single reproductive unit. Thus, more research is necessary, including a focus on species delimitation to putative close relatives such as Peridinium maeandricum.
Collapse
|
16
|
Wuitchik DM, Almanzar A, Benson BE, Brennan S, Chavez JD, Liesegang MB, Reavis JL, Reyes CL, Schniedewind MK, Trumble IF, Davies SW. Title: Characterizing environmental stress responses of aposymbiotic Astrangia poculata to divergent thermal challenges. Mol Ecol 2021; 30:5064-5079. [PMID: 34379848 DOI: 10.1111/mec.16108] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Revised: 07/13/2021] [Accepted: 07/28/2021] [Indexed: 11/29/2022]
Abstract
Anthropogenic climate change threatens corals globally and both high and low temperatures are known to induce coral bleaching. However, coral stress responses across wide thermal breadths remain understudied. Disentangling the role of symbiosis on the stress response in obligately symbiotic corals is challenging because this response is inherently coupled with nutritional stress. Here, we leverage aposymbiotic colonies of the facultatively symbiotic coral, Astrangia poculata, which lives naturally with and without its algal symbionts, to examine how broad thermal challenges influence coral hosts in the absence of symbiosis. A. poculata were collected from their northern range limit and thermally challenged in two independent 16-day common garden experiments (heat and cold challenge) and behavioral responses to food stimuli and genome-wide gene expression profiling (TagSeq) were performed. Both thermal challenges elicited significant reductions in polyp extension. However, there were five times as many differentially expressed genes (DEGs) under cold challenge compared to heat challenge. Despite an overall stronger response to cold challenge, there was significant overlap in DEGs between thermal challenges. We contrasted these responses to a previously identified module of genes associated with the environmental stress response (ESR) in tropical reef-building corals. Cold challenged corals exhibited a pattern consistent with more severe stressors while the heat challenge response was consistent with lower intensity stressors. Given that these responses were observed in aposymbiotic colonies, many genes previously implicated in ESRs in tropical symbiotic species may represent the coral host's stress response in or out of symbiosis.
Collapse
Affiliation(s)
- D M Wuitchik
- Department of Biology, Boston University, Boston, MA, USA
| | - A Almanzar
- Department of Biology, Boston University, Boston, MA, USA
| | - B E Benson
- Department of Biology, Boston University, Boston, MA, USA
| | - S Brennan
- Department of Biology, Boston University, Boston, MA, USA
| | - J D Chavez
- Department of Biology, Boston University, Boston, MA, USA
| | - M B Liesegang
- Department of Biology, Boston University, Boston, MA, USA.,Scripps Institution of Oceanography, University of California San Diego, San Diego, CA, USA
| | - J L Reavis
- Department of Biology, Boston University, Boston, MA, USA
| | - C L Reyes
- Department of Biology, Boston University, Boston, MA, USA
| | | | - I F Trumble
- Department of Biology, Boston University, Boston, MA, USA
| | - S W Davies
- Department of Biology, Boston University, Boston, MA, USA
| |
Collapse
|
17
|
Reich HG, Tu WC, Rodriguez IB, Chou Y, Keister EF, Kemp DW, LaJeunesse TC, Ho TY. Iron Availability Modulates the Response of Endosymbiotic Dinoflagellates to Heat Stress. JOURNAL OF PHYCOLOGY 2021; 57:3-13. [PMID: 32996595 DOI: 10.1111/jpy.13078] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Revised: 09/03/2020] [Accepted: 09/11/2020] [Indexed: 06/11/2023]
Abstract
Warming and nutrient limitation are stressors known to weaken the health of microalgae. In situations of stress, access to energy reserves can minimize physiological damage. Because of its widespread requirements in biochemical processes, iron is an important trace metal, especially for photosynthetic organisms. Lowered iron availability in oceans experiencing rising temperatures may contribute to the thermal sensitivity of reef-building corals, which rely on mutualisms with dinoflagellates to survive. To test the influence of iron concentration on thermal sensitivity, the physiological responses of cultured symbiotic dinoflagellates (genus Breviolum; family Symbiodiniaceae) were evaluated when exposed to increasing temperatures (26 to 30°C) and iron concentrations ranging from replete (500 pM Fe') to limiting (50 pM Fe') under a diurnal light cycle with saturating radiance. Declines in photosynthetic efficiency at elevated temperatures indicated sensitivity to heat stress. Furthermore, five times the amount of iron was needed to reach exponential growth during heat stress (50 pM Fe' at 26-28°C vs. 250 pM Fe' at 30°C). In treatments where exponential growth was reached, Breviolum psygmophilum grew faster than B.minutum, possibly due to greater cellular contents of iron and other trace metals. The metal composition of B.psygmophilum shifted only at the highest temperature (30°C), whereas changes in B.minutum were observed at lower temperatures (28°C). The influence of iron availability in modulating each alga's response to thermal stress suggests the importance of trace metals to the health of coral-algal mutualisms. Ultimately, a greater ability to acquire scarce metals may improve the tolerance of corals to physiological stressors and contribute to the differences in performance associated with hosting one symbiont species over another.
Collapse
Affiliation(s)
- Hannah G Reich
- Department of Biology, The Pennsylvania State University, University Park, Pennsylvania, 16802, USA
| | - Wan-Chen Tu
- Research Center for Environmental Changes, Academia Sinica, Taipei, Taiwan
| | - Irene B Rodriguez
- Research Center for Environmental Changes, Academia Sinica, Taipei, Taiwan
| | - Yalan Chou
- Research Center for Environmental Changes, Academia Sinica, Taipei, Taiwan
| | - Elise F Keister
- Department of Biology, The University of Alabama at Birmingham, Birmingham, Alabama, 35294, USA
| | - Dustin W Kemp
- Department of Biology, The University of Alabama at Birmingham, Birmingham, Alabama, 35294, USA
| | - Todd C LaJeunesse
- Department of Biology, The Pennsylvania State University, University Park, Pennsylvania, 16802, USA
| | - Tung-Yuan Ho
- Research Center for Environmental Changes, Academia Sinica, Taipei, Taiwan
- Institute of Oceanography, National Taiwan University, Taipei, Taiwan
| |
Collapse
|
18
|
Kirk AL, Clowez S, Lin F, Grossman AR, Xiang T. Transcriptome Reprogramming of Symbiodiniaceae Breviolum minutum in Response to Casein Amino Acids Supplementation. Front Physiol 2020; 11:574654. [PMID: 33329024 PMCID: PMC7710908 DOI: 10.3389/fphys.2020.574654] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2020] [Accepted: 09/18/2020] [Indexed: 01/08/2023] Open
Abstract
Dinoflagellates in the family Symbiodiniaceae can live freely in ocean waters or form a symbiosis with a variety of cnidarians including corals, sea anemones, and jellyfish. Trophic plasticity of Symbiodiniaceae is critical to its ecological success as it moves between environments. However, the molecular mechanisms underlying these trophic shifts in Symbiodiniaceae are still largely unknown. Using Breviolum minutum strain SSB01 (designated SSB01) as a model, we showed that Symbiodiniaceae go through a physiological and transcriptome reprogramming when the alga is grown with the organic nitrogen containing nutrients in hydrolyzed casein, but not with inorganic nutrients. SSB01 grows at a much faster rate and maintains stable photosynthetic efficiency when supplemented with casein amino acids compared to only inorganic nutrients or seawater. These physiological changes are driven by massive transcriptome changes in SSB01 supplemented with casein amino acids. The levels of transcripts encoding proteins involved in altering DNA conformation such as DNA topoisomerases, histones, and chromosome structural components were all significantly changed. Functional enrichment analysis also revealed processes involved in translation, ion transport, generation of second messengers, and phosphorylation. The physiological and molecular changes that underlie in vitro trophic transitions in Symbiodiniaceae can serve as an orthogonal platform to further understand the factors that impact the Symbiodiniaceae lifestyle.
Collapse
Affiliation(s)
- Andrea L. Kirk
- Department of Biological Sciences, The University of North Carolina at Charlotte, Charlotte, NC, United States
| | - Sophie Clowez
- Department of Plant Biology, Carnegie Institution for Science, Stanford, CA, United States
| | - Fan Lin
- Brightseed Inc., San Francisco, CA, United States
| | - Arthur R. Grossman
- Department of Plant Biology, Carnegie Institution for Science, Stanford, CA, United States
| | - Tingting Xiang
- Department of Biological Sciences, The University of North Carolina at Charlotte, Charlotte, NC, United States
| |
Collapse
|
19
|
Aichelman HE, Barshis DJ. Adaptive divergence, neutral panmixia, and algal symbiont population structure in the temperate coral Astrangia poculata along the Mid-Atlantic United States. PeerJ 2020; 8:e10201. [PMID: 33240603 PMCID: PMC7680023 DOI: 10.7717/peerj.10201] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Accepted: 09/27/2020] [Indexed: 12/11/2022] Open
Abstract
Astrangia poculata is a temperate scleractinian coral that exists in facultative symbiosis with the dinoflagellate alga Breviolum psygmophilum across a range spanning the Gulf of Mexico to Cape Cod, Massachusetts. Our previous work on metabolic thermal performance of Virginia (VA) and Rhode Island (RI) populations of A. poculata revealed physiological signatures of cold (RI) and warm (VA) adaptation of these populations to their respective local thermal environments. Here, we used whole-transcriptome sequencing (mRNA-Seq) to evaluate genetic differences and identify potential loci involved in the adaptive signature of VA and RI populations. Sequencing data from 40 A. poculata individuals, including 10 colonies from each population and symbiotic state (VA-white, VA-brown, RI-white, and RI-brown), yielded a total of 1,808 host-associated and 59 algal symbiont-associated single nucleotide polymorphisms (SNPs) post filtration. Fst outlier analysis identified 66 putative high outlier SNPs in the coral host and 4 in the algal symbiont. Differentiation of VA and RI populations in the coral host was driven by putatively adaptive loci, not neutral divergence (Fst = 0.16, p = 0.001 and Fst = 0.002, p = 0.269 for outlier and neutral SNPs respectively). In contrast, we found evidence of neutral population differentiation in B. psygmophilum (Fst = 0.093, p = 0.001). Several putatively adaptive host loci occur on genes previously associated with the coral stress response. In the symbiont, three of four putatively adaptive loci are associated with photosystem proteins. The opposing pattern of neutral differentiation in B. psygmophilum, but not the A. poculata host, reflects the contrasting dynamics of coral host and algal symbiont population connectivity, dispersal, and gene by environment interactions.
Collapse
Affiliation(s)
- Hannah E Aichelman
- Department of Biology, Boston University, Boston, MA, USA.,Department of Biological Sciences, Old Dominion University, Norfolk, VA, USA
| | - Daniel J Barshis
- Department of Biological Sciences, Old Dominion University, Norfolk, VA, USA
| |
Collapse
|
20
|
Newkirk CR, Frazer TK, Martindale MQ, Schnitzler CE. Adaptation to Bleaching: Are Thermotolerant Symbiodiniaceae Strains More Successful Than Other Strains Under Elevated Temperatures in a Model Symbiotic Cnidarian? Front Microbiol 2020; 11:822. [PMID: 32431680 PMCID: PMC7214872 DOI: 10.3389/fmicb.2020.00822] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Accepted: 04/06/2020] [Indexed: 01/01/2023] Open
Abstract
The ability of some symbiotic cnidarians to resist and better withstand stress factors that cause bleaching is a trait that is receiving increased attention. The adaptive bleaching hypothesis postulates that cnidarians that can form a stable symbiosis with thermotolerant Symbiodiniaceae strains may cope better with increasing seawater temperatures. We used polyps of the scyphozoan, Cassiopea xamachana, as a model system to test symbiosis success under heat stress. We sought to determine: (1) if aposymbiotic C. xamachana polyps could establish and maintain a symbiosis with both native and non-native strains of Symbiodiniaceae that all exhibit different tolerances to heat, (2) whether polyps with these newly acquired Symbiodiniaceae strains would strobilate (produce ephyra), and (3) if thermally tolerant Symbiodiniaceae strains that established and maintained a symbiosis exhibited greater success in response to heat stress (even if they are not naturally occurring in Cassiopea). Following recolonization of aposymbiotic C. xamachana polyps with different strains, we found that: (1) strains Smic, Stri, Slin, and Spil all established a stable symbiosis that promoted strobilation and (2) strains Bmin1 and Bmin2 did not establish a stable symbiosis and strobilation did not occur. Strains Smic, Stri, Slin, and Spil were used in a subsequent bleaching experiment; each of the strains was introduced to a subset of aposymbiotic polyps and once polyp tissues were saturated with symbionts they were subjected to elevated temperatures - 32°C and 34°C - for 2 weeks. Our findings indicate that, in general, pairings of polyps with Symbiodiniaceae strains that are native to Cassiopea (Stri and Smic) performed better than a non-native strain (Slin) even though this strain has a high thermotolerance. This suggests a degree of partner specificity that may limit the adaptive potential of certain cnidarians to increased ocean warming. We also observed that the free-living, non-native thermotolerant strain Spil was relatively successful in resisting bleaching during experimental trials. This suggests that free-living Symbiodiniaceae may provide a supply of potentially "new" thermotolerant strains to cnidarians following a bleaching event.
Collapse
Affiliation(s)
- Casandra R. Newkirk
- Whitney Laboratory for Marine Bioscience, University of Florida, St. Augustine, FL, United States
- Fisheries and Aquatic Sciences Program, School of Forest Resources and Conservation, University of Florida, Gainesville, FL, United States
| | - Thomas K. Frazer
- Fisheries and Aquatic Sciences Program, School of Forest Resources and Conservation, University of Florida, Gainesville, FL, United States
- School of Natural Resources and Environment, University of Florida, Gainesville, FL, United States
| | - Mark Q. Martindale
- Whitney Laboratory for Marine Bioscience, University of Florida, St. Augustine, FL, United States
| | - Christine E. Schnitzler
- Whitney Laboratory for Marine Bioscience, University of Florida, St. Augustine, FL, United States
| |
Collapse
|
21
|
Eckert RJ, Reaume AM, Sturm AB, Studivan MS, Voss JD. Depth Influences Symbiodiniaceae Associations Among Montastraea cavernosa Corals on the Belize Barrier Reef. Front Microbiol 2020; 11:518. [PMID: 32328040 PMCID: PMC7160519 DOI: 10.3389/fmicb.2020.00518] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Accepted: 03/10/2020] [Indexed: 12/21/2022] Open
Abstract
In Belize, shallow populations (10 and 16 m) of the coral species Montastraea cavernosa from the back reef and reef crest are genetically differentiated from deeper populations on the fore reef and reef wall (25 and 35 m). Like many species of scleractinian corals, M. cavernosa has an obligate symbiosis with dinoflagellate microalgae from the family Symbiodiniaceae. Here, we describe the Symbiodiniaceae taxa found within previously sampled and genotyped M. cavernosa populations along a depth gradient on the Belize Barrier Reef by implementing high-throughput sequencing of the ITS2 region of Symbiodiniaceae ribosomal DNA and the SymPortal analysis framework. While Symbiodiniaceae ITS2 type profiles across all sampling depths were almost entirely (99.99%) from the genus Cladocopium (formerly Symbiodinium Clade C), shallow (10 and 16 m) populations had a greater diversity of ITS2 type profiles in comparison to deeper (25 and 35 m) populations. Permutational multivariate analysis of variance (PERMANOVA) confirmed significant differences in ITS2 type profiles between shallow and deep sample populations. Overall Symbiodiniaceae communities changed significantly with depth, following patterns similar to the coral host's population genetic structure. Though physiological differences among species in the cosmopolitan genus Cladocopium are not well-described, our results suggest that although some members of Cladocopium are depth-generalists, shallow M. cavernosa populations in Belize may harbor shallow-specialized Symbiodiniaceae not found in deeper populations.
Collapse
Affiliation(s)
- Ryan J. Eckert
- Harbor Branch Oceanographic Institute, Florida Atlantic University, Boca Raton, FL, United States
| | | | | | | | - Joshua D. Voss
- Harbor Branch Oceanographic Institute, Florida Atlantic University, Boca Raton, FL, United States
| |
Collapse
|
22
|
Host and Symbiont Cell Cycle Coordination Is Mediated by Symbiotic State, Nutrition, and Partner Identity in a Model Cnidarian-Dinoflagellate Symbiosis. mBio 2020; 11:mBio.02626-19. [PMID: 32156819 PMCID: PMC7064764 DOI: 10.1128/mbio.02626-19] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Biomass regulation is critical to the overall health of cnidarian-dinoflagellate symbioses. Despite the central role of the cell cycle in the growth and proliferation of cnidarian host cells and dinoflagellate symbionts, there are few studies that have examined the potential for host-symbiont coregulation. This study provides evidence for the acceleration of host cell proliferation when in local proximity to clusters of symbionts within cnidarian tentacles. The findings suggest that symbionts augment the cell cycle of not only their enveloping host cells but also neighboring cells in the epidermis and gastrodermis. This provides a possible mechanism for rapid colonization of cnidarian tissues. In addition, the cell cycles of symbionts differed depending on nutritional regime, symbiotic state, and species identity. The responses of cell cycle profiles to these different factors implicate a role for species-specific regulation of symbiont cell cycles within host cnidarian tissues. The cell cycle is a critical component of cellular proliferation, differentiation, and response to stress, yet its role in the regulation of intracellular symbioses is not well understood. To explore host-symbiont cell cycle coordination in a marine symbiosis, we employed a model for coral-dinoflagellate associations: the tropical sea anemone Aiptasia (Exaiptasia pallida) and its native microalgal photosymbionts (Breviolum minutum and Breviolum psygmophilum). Using fluorescent labeling and spatial point-pattern image analyses to characterize cell population distributions in both partners, we developed protocols that are tailored to the three-dimensional cellular landscape of a symbiotic sea anemone tentacle. Introducing cultured symbiont cells to symbiont-free adult hosts increased overall host cell proliferation rates. The acceleration occurred predominantly in the symbiont-containing gastrodermis near clusters of symbionts but was also observed in symbiont-free epidermal tissue layers, indicating that the presence of symbionts contributes to elevated proliferation rates in the entire host during colonization. Symbiont cell cycle progression differed between cultured algae and those residing within hosts; the endosymbiotic state resulted in increased S-phase but decreased G2/M-phase symbiont populations. These phenotypes and the deceleration of cell cycle progression varied with symbiont identity and host nutritional status. These results demonstrate that host and symbiont cells have substantial and species-specific effects on the proliferation rates of their mutualistic partners. This is the first empirical evidence to support species-specific regulation of the symbiont cell cycle within a single cnidarian-dinoflagellate association; similar regulatory mechanisms likely govern interpartner coordination in other coral-algal symbioses and shape their ecophysiological responses to a changing climate.
Collapse
|
23
|
Xiang T, Lehnert E, Jinkerson RE, Clowez S, Kim RG, DeNofrio JC, Pringle JR, Grossman AR. Symbiont population control by host-symbiont metabolic interaction in Symbiodiniaceae-cnidarian associations. Nat Commun 2020; 11:108. [PMID: 31913264 PMCID: PMC6949306 DOI: 10.1038/s41467-019-13963-z] [Citation(s) in RCA: 58] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Accepted: 12/11/2019] [Indexed: 01/28/2023] Open
Abstract
In cnidarian-Symbiodiniaceae symbioses, algal endosymbiont population control within the host is needed to sustain a symbiotic relationship. However, the molecular mechanisms that underlie such population control are unclear. Here we show that a cnidarian host uses nitrogen limitation as a primary mechanism to control endosymbiont populations. Nitrogen acquisition and assimilation transcripts become elevated in symbiotic Breviolum minutum algae as they reach high-densities within the sea anemone host Exaiptasia pallida. These same transcripts increase in free-living algae deprived of nitrogen. Symbiotic algae also have an elevated carbon-to-nitrogen ratio and shift metabolism towards scavenging nitrogen from purines relative to free-living algae. Exaiptasia glutamine synthetase and glutamate synthase transcripts concomitantly increase with the algal endosymbiont population, suggesting an increased ability of the host to assimilate ammonium. These results suggest algal growth and replication in hospite is controlled by access to nitrogen, which becomes limiting for the algae as their population within the host increases. The relationship between the coral animal and symbiotic algae is essential to coral health, and researchers are turning to Exaiptasia, a model cnidarian system, to study this relationship mechanistically. Here the authors find that endosymbiotic algae become limited by nitrogen at high population densities and provide the host with high levels of fixed carbon.
Collapse
Affiliation(s)
- Tingting Xiang
- Department of Plant Biology, Carnegie Institution for Science, Stanford, CA, 94305, USA. .,Department of Biological Sciences, University of North Carolina at Charlotte, Charlotte, NC, 28223, USA.
| | - Erik Lehnert
- Department of Genetics, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Robert E Jinkerson
- Department of Chemical and Environmental Engineering, University of California, Riverside, CA, 92521, USA
| | - Sophie Clowez
- Department of Plant Biology, Carnegie Institution for Science, Stanford, CA, 94305, USA
| | - Rick G Kim
- Department of Plant Biology, Carnegie Institution for Science, Stanford, CA, 94305, USA
| | - Jan C DeNofrio
- Department of Genetics, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - John R Pringle
- Department of Genetics, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Arthur R Grossman
- Department of Plant Biology, Carnegie Institution for Science, Stanford, CA, 94305, USA
| |
Collapse
|
24
|
McIlroy SE, Cunning R, Baker AC, Coffroth MA. Competition and succession among coral endosymbionts. Ecol Evol 2019; 9:12767-12778. [PMID: 31788212 PMCID: PMC6875658 DOI: 10.1002/ece3.5749] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Revised: 09/18/2019] [Accepted: 09/23/2019] [Indexed: 01/03/2023] Open
Abstract
Host species often support a genetically diverse guild of symbionts, the identity and performance of which can determine holobiont fitness under particular environmental conditions. These symbiont communities are structured by a complex set of potential interactions, both positive and negative, between the host and symbionts and among symbionts. In reef-building corals, stable associations with specific symbiont species are common, and we hypothesize that this is partly due to ecological mechanisms, such as succession and competition, which drive patterns of symbiont winnowing in the initial colonization of new generations of coral recruits. We tested this hypothesis using the experimental framework of the de Wit replacement series and found that competitive interactions occurred among symbionts which were characterized by unique ecological strategies. Aposymbiotic octocoral recruits within high- and low-light environments were inoculated with one of three Symbiodiniaceae species as monocultures or with cross-paired mixtures, and we tracked symbiont uptake using quantitative genetic assays. Priority effects, in which early colonizers excluded competitive dominants, were evidenced under low light, but these early opportunistic species were later succeeded by competitive dominants. Under high light, a more consistent competitive hierarchy was established in which competitive dominants outgrew and limited the abundance of others. These findings provide insight into mechanisms of microbial community organization and symbiosis breakdown and recovery. Furthermore, transitions in competitive outcomes across spatial and temporal environmental variation may improve lifetime host fitness.
Collapse
Affiliation(s)
- Shelby E. McIlroy
- Graduate Program in Evolution, Ecology and BehaviorState University of New YorkUniversity at BuffaloBuffaloNew York
- Swire Institute of Marine ScienceSchool of Biological ScienceThe University of Hong KongHong Kong
- Present address:
Swire Institute of Marine ScienceSchool of Biological ScienceThe University of Hong KongHong Kong
| | - Ross Cunning
- Department of Marine Biology and EcologyRosenstiel School of Marine and Atmospheric ScienceUniversity of MiamiMiamiFlorida
- Present address:
Daniel P. Haerther Center for Conservation and ResearchJohn G. Shedd AquariumChicagoIllinois
| | - Andrew C. Baker
- Department of Marine Biology and EcologyRosenstiel School of Marine and Atmospheric ScienceUniversity of MiamiMiamiFlorida
| | - Mary Alice Coffroth
- Graduate Program in Evolution, Ecology and BehaviorState University of New YorkUniversity at BuffaloBuffaloNew York
- Department of GeologyState University of New YorkUniversity at BuffaloBuffaloNew York
| |
Collapse
|
25
|
Hadjioannou L, Jimenez C, Rottier C, Sfenthourakis S, Ferrier-Pagès C. Response of the temperate scleractinian coral Cladocora caespitosa to high temperature and long-term nutrient enrichment. Sci Rep 2019; 9:14229. [PMID: 31578398 PMCID: PMC6775152 DOI: 10.1038/s41598-019-50716-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Accepted: 09/13/2019] [Indexed: 12/11/2022] Open
Abstract
Anthropogenic nutrient enrichment and increased seawater temperatures are responsible for coral reef decline. In particular, they disrupt the relationship between corals and their dinoflagellate symbionts (bleaching). However, some coral species can afford either high temperatures or nutrient enrichment and their study can bring new insights into how corals acclimate or adapt to stressors. Here, we focused on the role of the nutrient history in influencing the response of the Mediterranean scleractinian coral Cladocora caespitosa to thermal stress. Colonies living naturally in nutrient-poor (<0.5 µM nitrogen, <0.2 µM phosphorus, LN) and nutrient-rich (ca. 10–20 µM nitrogen, 0.4 µM phosphorus, HN) locations were sampled, maintained under the right nutrient conditions, and exposed to a temperature increase from 17 °C to 24 °C and 29 °C. While both HN and LN colonies decreased their concentrations of symbionts and/or photosynthetic pigments, HN colonies were able to maintain significant higher rates of net and gross photosynthesis at 24 °C compared to LN colonies. In addition, while there was no change in protein concentration in HN corals during the experiment, proteins continuously decreased in LN corals with increased temperature. These results are important in that they show that nutrient history can influence the response of scleractinian corals to thermal stress. Further investigations of under-studied coral groups are thus required in the future to understand the processes leading to coral resistance to environmental perturbations.
Collapse
Affiliation(s)
- Louis Hadjioannou
- Department of Biological Sciences, University of Cyprus, Nicosia, Cyprus. .,Enalia Physis Environmental Research Centre, (ENALIA), Acropoleos 2, Aglantzia 2101, Nicosia, Cyprus.
| | - Carlos Jimenez
- Enalia Physis Environmental Research Centre, (ENALIA), Acropoleos 2, Aglantzia 2101, Nicosia, Cyprus.,Energy, Environment and Water Research Centre (EEWRC) of The Cyprus Institute, Nicosia, Cyprus
| | - Cecile Rottier
- Marine Department, Ecophysiology team, Centre Scientifique de Monaco, Monaco, 98000, Monaco
| | | | | |
Collapse
|
26
|
Sproles AE, Oakley CA, Matthews JL, Peng L, Owen JG, Grossman AR, Weis VM, Davy SK. Proteomics quantifies protein expression changes in a model cnidarian colonised by a thermally tolerant but suboptimal symbiont. THE ISME JOURNAL 2019; 13:2334-2345. [PMID: 31118473 PMCID: PMC6775970 DOI: 10.1038/s41396-019-0437-5] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2018] [Revised: 04/23/2019] [Accepted: 05/03/2019] [Indexed: 11/09/2022]
Abstract
The acquisition of thermally tolerant algal symbionts by corals has been proposed as a natural or assisted mechanism of increasing coral reef resilience to anthropogenic climate change, but the cell-level processes determining the performance of new symbiotic associations are poorly understood. We used liquid chromatography-mass spectrometry to investigate the effects of an experimentally induced symbiosis on the host proteome of the model sea anemone Exaiptasia pallida. Aposymbiotic specimens were colonised by either the homologous dinoflagellate symbiont (Breviolum minutum) or a thermally tolerant, ecologically invasive heterologous symbiont (Durusdinium trenchii). Anemones containing D. trenchii exhibited minimal expression of Niemann-Pick C2 proteins, which have predicted biochemical roles in sterol transport and cell recognition, and glutamine synthetases, which are thought to be involved in nitrogen assimilation and recycling between partners. D. trenchii-colonised anemones had higher expression of methionine-synthesising betaine-homocysteine S-methyltransferases and proteins with predicted oxidative stress response functions. Multiple lysosome-associated proteins were less abundant in both symbiotic treatments compared with the aposymbiotic treatment. The differentially abundant proteins are predicted to represent pathways that may be involved in nutrient transport or resource allocation between partners. These results provide targets for specific experiments to elucidate the mechanisms underpinning compensatory physiology in the coral-dinoflagellate symbiosis.
Collapse
Affiliation(s)
- Ashley E Sproles
- School of Biological Sciences, Victoria University of Wellington, Wellington, 6140, New Zealand
| | - Clinton A Oakley
- School of Biological Sciences, Victoria University of Wellington, Wellington, 6140, New Zealand
| | - Jennifer L Matthews
- School of Biological Sciences, Victoria University of Wellington, Wellington, 6140, New Zealand
| | - Lifeng Peng
- School of Biological Sciences, Victoria University of Wellington, Wellington, 6140, New Zealand
| | - Jeremy G Owen
- School of Biological Sciences, Victoria University of Wellington, Wellington, 6140, New Zealand
| | - Arthur R Grossman
- Department of Plant Biology, The Carnegie Institution for Science, Stanford, CA, 94305, USA
| | - Virginia M Weis
- Department of Integrative Biology, Oregon State University, Corvallis, OR, 97331, USA
| | - Simon K Davy
- School of Biological Sciences, Victoria University of Wellington, Wellington, 6140, New Zealand.
| |
Collapse
|
27
|
Chen B, Yu K, Liang J, Huang W, Wang G, Su H, Qin Z, Huang X, Pan Z, Luo W, Luo Y, Wang Y. Latitudinal Variation in the Molecular Diversity and Community Composition of Symbiodiniaceae in Coral From the South China Sea. Front Microbiol 2019; 10:1278. [PMID: 31275256 PMCID: PMC6591375 DOI: 10.3389/fmicb.2019.01278] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2018] [Accepted: 05/22/2019] [Indexed: 01/18/2023] Open
Abstract
Coral reefs are continuing to decline worldwide due to anthropogenic climate change. The study of the molecular diversity and biogeographical patterns of Symbiodiniaceae, is essential to understand the adaptive potential and resilience of coral–algal symbiosis. Next generation sequencing was used to analyze the Symbiodiniaceae rDNA internal transcribed spacer 2 marker genes from 178 reef-building coral samples in eight coral habitats across approximately 13° of latitude in the South China Sea (SCS). A total of three Symbiodiniaceae genera, Cladocopium, Durusdinium, and Gerakladium, as well as 31 dominant Symbiodiniaceae types, were identified. Symbiodiniaceae richness, diversity, and community composition varied according to latitude; intermediate and low latitude coral reefs (IR and LR) have higher Symbiodiniaceae richness and diversity than high latitude coral habitats (HC and HR). A PERMANOVA analysis found significant differences in the Symbiodiniaceae community composition in the SCS (F = 14.75, R2 = 0.20, p = 0.001 < 0.01). The major dominant Symbiodiniaceae types were C1 in the HC and the HR, C1/Cspc/C50/C15 and D1 in the IR, and C3u and C15 in the LR. Canonical correspondence analysis showed that the relative abundance of different Symbiodiniaceae types is affected by multiple environmental factors. Phylogenetic analysis indicated that the Symbiodiniaceae type Cladocopium, which shared common ancestors, shows similar environmental adaptability. Based on these results, we suggest that coral host species played a relatively small role in the identity of the dominant Symbiodiniaceae type. Therefore, the biogeographical patterns of Symbiodiniaceae may be mainly affected by environmental factors. Our research provides a comprehensive overview of the biogeography of Symbiodiniaceae in the SCS, where coral communities and reefs are widely distributed across different latitude regions and have variable environmental conditions. Our data will provide support for further study of the regional diversification of Symbiodiniaceae and the ecological resilience of the coral-Symbiodiniaceae symbioses.
Collapse
Affiliation(s)
- Biao Chen
- Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, Guangxi University, Nanning, China.,Coral Reef Research Center of China, Guangxi University, Nanning, China.,School of Marine Sciences, Guangxi University, Nanning, China
| | - Kefu Yu
- Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, Guangxi University, Nanning, China.,Coral Reef Research Center of China, Guangxi University, Nanning, China.,School of Marine Sciences, Guangxi University, Nanning, China
| | - Jiayuan Liang
- Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, Guangxi University, Nanning, China.,Coral Reef Research Center of China, Guangxi University, Nanning, China.,School of Marine Sciences, Guangxi University, Nanning, China
| | - Wen Huang
- Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, Guangxi University, Nanning, China.,Coral Reef Research Center of China, Guangxi University, Nanning, China.,School of Marine Sciences, Guangxi University, Nanning, China
| | - Guanghua Wang
- Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, Guangxi University, Nanning, China.,Coral Reef Research Center of China, Guangxi University, Nanning, China.,School of Marine Sciences, Guangxi University, Nanning, China
| | - Hongfei Su
- Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, Guangxi University, Nanning, China.,Coral Reef Research Center of China, Guangxi University, Nanning, China.,School of Marine Sciences, Guangxi University, Nanning, China
| | - Zhenjun Qin
- Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, Guangxi University, Nanning, China.,Coral Reef Research Center of China, Guangxi University, Nanning, China.,School of Marine Sciences, Guangxi University, Nanning, China
| | - Xueyong Huang
- Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, Guangxi University, Nanning, China.,Coral Reef Research Center of China, Guangxi University, Nanning, China.,School of Marine Sciences, Guangxi University, Nanning, China
| | - Ziliang Pan
- Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, Guangxi University, Nanning, China.,Coral Reef Research Center of China, Guangxi University, Nanning, China.,School of Marine Sciences, Guangxi University, Nanning, China
| | - Wenwen Luo
- Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, Guangxi University, Nanning, China.,Coral Reef Research Center of China, Guangxi University, Nanning, China.,School of Marine Sciences, Guangxi University, Nanning, China
| | - Yanqiu Luo
- Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, Guangxi University, Nanning, China.,Coral Reef Research Center of China, Guangxi University, Nanning, China.,School of Marine Sciences, Guangxi University, Nanning, China
| | - Yinghui Wang
- Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, Guangxi University, Nanning, China.,Coral Reef Research Center of China, Guangxi University, Nanning, China.,School of Marine Sciences, Guangxi University, Nanning, China
| |
Collapse
|
28
|
Hume BCC, Smith EG, Ziegler M, Warrington HJM, Burt JA, LaJeunesse TC, Wiedenmann J, Voolstra CR. SymPortal: A novel analytical framework and platform for coral algal symbiont next-generation sequencing ITS2 profiling. Mol Ecol Resour 2019; 19:1063-1080. [PMID: 30740899 PMCID: PMC6618109 DOI: 10.1111/1755-0998.13004] [Citation(s) in RCA: 107] [Impact Index Per Article: 21.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2018] [Revised: 01/30/2019] [Accepted: 01/31/2019] [Indexed: 12/01/2022]
Abstract
We present SymPortal (SymPortal.org), a novel analytical framework and platform for genetically resolving the algal symbionts of reef corals using next‐generation sequencing (NGS) data of the ITS2 rDNA. Although the ITS2 marker is widely used to genetically characterize taxa within the family Symbiodiniaceae (formerly the genus Symbiodinium), the multicopy nature of the marker complicates its use. Commonly, the intragenomic diversity resultant from this multicopy nature is collapsed by analytical approaches, thereby focusing on only the most abundant sequences. In contrast, SymPortal employs logic to identify within‐sample informative intragenomic sequences, which we have termed ‘defining intragenomic variants' (DIVs), to identify ITS2‐type profiles representative of putative Symbiodiniaceae taxa. By making use of this intragenomic ITS2 diversity, SymPortal is able to resolve genetic delineations using the ITS2 marker at a level that was previously only possible by using additional genetic markers. We demonstrate this by comparing this novel approach to the most commonly used alternative approach for NGS ITS2 data, the 97% similarity clustering to operational taxonomic units (OTUs). The SymPortal platform accepts NGS raw sequencing data as input to provide an easy‐to‐use, standardization‐enforced, and community‐driven framework that integrates with a database to gain resolving power with increased use. We consider that SymPortal, in conjunction with ongoing large‐scale sampling and sequencing efforts, should play an instrumental role in making future sampling efforts more comparable and in maximizing their efficacy in working towards the classification of the global Symbiodiniaceae diversity.
Collapse
Affiliation(s)
- Benjamin C C Hume
- Division of Biological and Environmental Science and Engineering (BESE), Red Sea Research Center, King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Edward G Smith
- Center for Genomics and Systems Biology, New York University Abu Dhabi, Abu Dhabi, UAE
| | - Maren Ziegler
- Division of Biological and Environmental Science and Engineering (BESE), Red Sea Research Center, King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | | | - John A Burt
- Center for Genomics and Systems Biology, New York University Abu Dhabi, Abu Dhabi, UAE
| | - Todd C LaJeunesse
- Department of Biology, The Pennsylvania State University, University Park, Pennsylvania
| | - Joerg Wiedenmann
- Coral Reef Laboratory, Ocean and Earth Sciences, University of Southampton, Southampton, UK.,Institute for Life Sciences, University of Southampton, Southampton, UK
| | - Christian R Voolstra
- Division of Biological and Environmental Science and Engineering (BESE), Red Sea Research Center, King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| |
Collapse
|
29
|
Aichelman HE, Zimmerman RC, Barshis DJ. Adaptive signatures in thermal performance of the temperate coral Astrangia poculata. J Exp Biol 2019; 222:jeb189225. [PMID: 30718370 DOI: 10.1242/jeb.189225] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2018] [Accepted: 01/30/2019] [Indexed: 12/24/2022]
Abstract
Variation in environmental characteristics and divergent selection pressures can drive adaptive differentiation across a species' range. Astrangia poculata is a temperate scleractinian coral that provides unique opportunities to understand the roles of phenotypic plasticity and evolutionary adaptation in coral physiological tolerance limits. This species inhabits hard-bottom ecosystems from the northwestern Atlantic to the Gulf of Mexico and withstands an annual temperature range of up to 20°C. Additionally, A. poculata is facultatively symbiotic and co-occurs in both symbiotic ('brown') and aposymbiotic ('white') states. Here, brown and white A. poculata were collected from Virginia (VA) and Rhode Island (RI), USA, and exposed to heat (18-32°C) and cold (18-6°C) stress, during which respiration of the coral host along with photosynthesis and photochemical efficiency (Fv/Fm) of Breviolum psygmophilum photosymbionts were measured. Thermal performance curves (TPCs) of respiration revealed a pattern of countergradient variation with RI corals exhibiting higher respiration rates overall, and specifically at 6, 15, 18, 22 and 26°C. Additionally, thermal optimum (Topt) analyses show a 3.8°C (brown) and 6.9°C (white) higher Topt in the VA population, corresponding to the warmer in situ thermal environment in VA. In contrast to respiration, no origin effect was detected in photosynthesis rates or Fv/Fm, suggesting a possible host-only signature of adaptation. This study is the first to consider A. poculata's response to both heat and cold stress across symbiotic states and geography, and provides insight into the potential evolutionary mechanisms behind the success of this species along the East Coast of the USA.
Collapse
Affiliation(s)
- Hannah E Aichelman
- Department of Biological Sciences, Old Dominion University, 110 Mills Godwin Life Sciences Building, Norfolk, VA 23529, USA
| | - Richard C Zimmerman
- Department of Ocean, Earth, and Atmospheric Sciences, Old Dominion University, 4600 Elkhorn Avenue, Norfolk, VA 23529, USA
| | - Daniel J Barshis
- Department of Biological Sciences, Old Dominion University, 110 Mills Godwin Life Sciences Building, Norfolk, VA 23529, USA
| |
Collapse
|
30
|
Goldsmith DB, Pratte ZA, Kellogg CA, Snader SE, Sharp KH. Stability of temperate coral Astrangia poculata microbiome is reflected across different sequencing methodologies. AIMS Microbiol 2019; 5:62-76. [PMID: 31384703 PMCID: PMC6646935 DOI: 10.3934/microbiol.2019.1.62] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Accepted: 02/21/2019] [Indexed: 02/01/2023] Open
Abstract
The microbiome of the temperate coral Astrangia poculata was first described in 2017 using next-generation Illumina sequencing to examine the coral's bacterial and archaeal associates across seasons and among hosts of differing symbiotic status. To assess the impact of methodology on the detectable diversity of the coral's microbiome, we obtained near full-length Sanger sequences from clone libraries constructed from a subset of the same A. poculata samples. Eight samples were analyzed: two sets of paired symbiotic (brown) and aposymbiotic (white) colonies collected in the fall (September) and two sets collected in the spring (April). Analysis of the Sanger sequences revealed that the microbiome of A. poculata exhibited a high level of richness; 806 OTUs were identified among 1390 bacterial sequences. While the Illumina study revealed that A. poculata's microbial communities did not significantly vary according to symbiotic state, but did vary by season, Sanger sequencing did not expose seasonal or symbiotic differences in the microbiomes. Proteobacteria dominated the microbiome, forming the majority (55% to 80%) of classifiable bacteria in every sample, and the five bacterial classes with the highest mean relative portion (5% to 35%) were the same as those determined by prior Illumina sequencing. Sanger sequencing also captured the same core taxa previously identified by next-generation sequencing. Alignment of all sequences and construction of a phylogenetic tree revealed that both sequencing methods provided similar portrayals of the phylogenetic diversity within A. poculata's bacterial associates. Consistent with previous findings, the results demonstrated that the Astrangia microbiome is stable notwithstanding the choice of sequencing method and the far fewer sequences generated by clone libraries (46 to 326 sequences per sample) compared to next-generation sequencing (3634 to 48481 sequences per sample). Moreover, the near-full length 16S rRNA sequences produced by this study are presented as a resource for the community studying this model system since they provide necessary information for designing primers and probes to further our understanding of this coral's microbiome.
Collapse
Affiliation(s)
- Dawn B Goldsmith
- St. Petersburg Coastal and Marine Science Center, U.S. Geological Survey, St. Petersburg, FL 33701, USA
| | - Zoe A Pratte
- School of Biology, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Christina A Kellogg
- St. Petersburg Coastal and Marine Science Center, U.S. Geological Survey, St. Petersburg, FL 33701, USA
| | - Sara E Snader
- Cherokee Nation Technologies, contracted to U.S. Geological Survey, St. Petersburg, FL 33701, USA
| | - Koty H Sharp
- Department of Biology, Marine Biology and Environmental Science, Roger Williams University, Bristol, RI 02809, USA
| |
Collapse
|
31
|
Bayliss SLJ, Scott ZR, Coffroth MA, terHorst CP. Genetic variation in Breviolum antillogorgium, a coral reef symbiont, in response to temperature and nutrients. Ecol Evol 2019; 9:2803-2813. [PMID: 30891218 PMCID: PMC6406013 DOI: 10.1002/ece3.4959] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2018] [Revised: 12/30/2018] [Accepted: 01/04/2019] [Indexed: 01/01/2023] Open
Abstract
Symbionts within the family Symbiodiniaceae are important on coral reefs because they provide significant amounts of carbon to many different reef species. The breakdown of this mutualism that occurs as a result of increasingly warmer ocean temperatures is a major threat to coral reef ecosystems globally. Recombination during sexual reproduction and high rates of somatic mutation can lead to increased genetic variation within symbiont species, which may provide the fuel for natural selection and adaptation. However, few studies have asked whether such variation in functional traits exists within these symbionts. We used several genotypes of two closely related species, Breviolum antillogorgium and B. minutum, to examine variation of traits related to symbiosis in response to increases in temperature or nitrogen availability in laboratory cultures. We found significant genetic variation within and among symbiont species in chlorophyll content, photosynthetic efficiency, and growth rate. Two genotypes showed decreases in traits in response to increased temperatures predicted by climate change, but one genotype responded positively. Similarly, some genotypes within a species responded positively to high-nitrogen environments, such as those expected within hosts or eutrophication associated with global change, while other genotypes in the same species responded negatively, suggesting context-dependency in the strength of mutualism. Such variation in traits implies that there is potential for natural selection on symbionts in response to temperature and nutrients, which could confer an adaptive advantage to the holobiont.
Collapse
Affiliation(s)
- Shannon L. J. Bayliss
- Biology DepartmentCalifornia State UniversityNorthridgeCalifornia
- Department of Ecology and Evolutionary BiologyUniversity of TennesseeKnoxvilleTennessee
| | - Zoë R. Scott
- Biology DepartmentCalifornia State UniversityNorthridgeCalifornia
| | - Mary Alice Coffroth
- Department of Geology and Graduate Program in Evolution, Ecology and BehaviorUniversity at BuffaloBuffaloNew York
| | | |
Collapse
|
32
|
|
33
|
Revisiting “Genetic Diversity of Symbiotic Dinoflagellates in the Genus Symbiodinium”. Protist 2018; 169:784-787. [DOI: 10.1016/j.protis.2018.06.008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2018] [Accepted: 06/28/2018] [Indexed: 11/23/2022]
|
34
|
Lewis AM, Chan AN, LaJeunesse TC. New Species of Closely Related Endosymbiotic Dinoflagellates in the Greater Caribbean have Niches Corresponding to Host Coral Phylogeny. J Eukaryot Microbiol 2018; 66:469-482. [DOI: 10.1111/jeu.12692] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2018] [Revised: 09/25/2018] [Accepted: 09/26/2018] [Indexed: 12/23/2022]
Affiliation(s)
- Allison M. Lewis
- Department of Biology Pennsylvania State University University Park Pennsylvania 16802
| | - Andrea N. Chan
- Department of Biology Pennsylvania State University University Park Pennsylvania 16802
| | - Todd C. LaJeunesse
- Department of Biology Pennsylvania State University University Park Pennsylvania 16802
| |
Collapse
|
35
|
Burmester EM, Breef-Pilz A, Lawrence NF, Kaufman L, Finnerty JR, Rotjan RD. The impact of autotrophic versus heterotrophic nutritional pathways on colony health and wound recovery in corals. Ecol Evol 2018; 8:10805-10816. [PMID: 30519408 PMCID: PMC6262932 DOI: 10.1002/ece3.4531] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Accepted: 08/07/2018] [Indexed: 12/04/2022] Open
Abstract
For animals that harbor photosynthetic symbionts within their tissues, such as corals, the different relative contributions of autotrophy versus heterotrophy to organismal energetic requirements have direct impacts on fitness. This is especially true for facultatively symbiotic corals, where the balance between host‐caught and symbiont‐produced energy can be altered substantially to meet the variable demands of a shifting environment. In this study, we utilized a temperate coral–algal system (the northern star coral, Astrangia poculata, and its photosynthetic endosymbiont, Symbiodinium psygmophilum) to explore the impacts of nutritional sourcing on the host's health and ability to regenerate experimentally excised polyps. For fed and starved colonies, wound healing and total colony tissue cover were differentially impacted by heterotrophy versus autotrophy. There was an additive impact of positive nutritional and symbiotic states on a coral's ability to initiate healing, but a greater influence of symbiont state on the recovery of lost tissue at the lesion site and complete polyp regeneration. On the other hand, regardless of symbiont state, fed corals maintained a higher overall colony tissue cover, which also enabled more active host behavior (polyp extension) and endosymbiont behavior (photosynthetic ability of Symbiondinium). Overall, we determined that the impact of nutritional state and symbiotic state varied between biological functions, suggesting a diversity in energetic sourcing for each of these processes.
Collapse
Affiliation(s)
- Elizabeth M Burmester
- Billion Oyster Project New York New York.,Department of Biology Boston University Boston Massachusetts.,John H Prescott Marine Laboratory Anderson-Cabot Center for Ocean Life, New England Aquarium Boston Massachusetts
| | - Adrienne Breef-Pilz
- John H Prescott Marine Laboratory Anderson-Cabot Center for Ocean Life, New England Aquarium Boston Massachusetts
| | - Nicholas F Lawrence
- John H Prescott Marine Laboratory Anderson-Cabot Center for Ocean Life, New England Aquarium Boston Massachusetts
| | - Les Kaufman
- Department of Biology Boston University Boston Massachusetts
| | - John R Finnerty
- Department of Biology Boston University Boston Massachusetts
| | - Randi D Rotjan
- Department of Biology Boston University Boston Massachusetts.,John H Prescott Marine Laboratory Anderson-Cabot Center for Ocean Life, New England Aquarium Boston Massachusetts
| |
Collapse
|
36
|
Hume BCC, D'Angelo C, Smith EG, Stevens JR, Burt JA, Wiedenmann J. Validation of the binary designation Symbiodinium thermophilum (Dinophyceae). JOURNAL OF PHYCOLOGY 2018; 54:762-764. [PMID: 29981276 DOI: 10.1111/jpy.12764] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2017] [Accepted: 06/25/2018] [Indexed: 06/08/2023]
Abstract
The binary designation Symbiodinium thermophilum was invalid due to the absence of an illustration as required by Article 44.2 of the ICN. Herein, it is validated. This species is the most common symbiont in reef corals in the southern Persian/Arabian Gulf, the world's hottest body of water sustaining reef coral growth.
Collapse
Affiliation(s)
- Benjamin C C Hume
- Red Sea Research Center, Division of Biological and Environmental Science and Engineering, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| | - Cecilia D'Angelo
- Coral Reef Laboratory, Ocean and Earth Science, University of Southampton, National Oceanography Centre, Waterfront Campus, Southampton, SO14 3ZH, UK
| | - Edward G Smith
- Marine Biology Laboratory, Centre for Genomics and Systems Biology, New York University Abu Dhabi, Abu Dhabi, 129188, United Arab Emirates
| | - Jamie R Stevens
- Department of Biosciences, College of Life and Environmental Sciences, University of Exeter, Exeter, EX4 4QD, UK
| | - John A Burt
- Marine Biology Laboratory, Centre for Genomics and Systems Biology, New York University Abu Dhabi, Abu Dhabi, 129188, United Arab Emirates
| | - Jörg Wiedenmann
- Coral Reef Laboratory, Ocean and Earth Science, University of Southampton, National Oceanography Centre, Waterfront Campus, Southampton, SO14 3ZH, UK
| |
Collapse
|
37
|
LaJeunesse TC, Parkinson JE, Gabrielson PW, Jeong HJ, Reimer JD, Voolstra CR, Santos SR. Systematic Revision of Symbiodiniaceae Highlights the Antiquity and Diversity of Coral Endosymbionts. Curr Biol 2018; 28:2570-2580.e6. [PMID: 30100341 DOI: 10.1016/j.cub.2018.07.008] [Citation(s) in RCA: 671] [Impact Index Per Article: 111.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2018] [Revised: 06/08/2018] [Accepted: 07/03/2018] [Indexed: 11/18/2022]
Abstract
The advent of molecular data has transformed the science of organizing and studying life on Earth. Genetics-based evidence provides fundamental insights into the diversity, ecology, and origins of many biological systems, including the mutualisms between metazoan hosts and their micro-algal partners. A well-known example is the dinoflagellate endosymbionts ("zooxanthellae") that power the growth of stony corals and coral reef ecosystems. Once assumed to encompass a single panmictic species, genetic evidence has revealed a divergent and rich diversity within the zooxanthella genus Symbiodinium. Despite decades of reporting on the significance of this diversity, the formal systematics of these eukaryotic microbes have not kept pace, and a major revision is long overdue. With the consideration of molecular, morphological, physiological, and ecological data, we propose that evolutionarily divergent Symbiodinium "clades" are equivalent to genera in the family Symbiodiniaceae, and we provide formal descriptions for seven of them. Additionally, we recalibrate the molecular clock for the group and amend the date for the earliest diversification of this family to the middle of the Mesozoic Era (∼160 mya). This timing corresponds with the adaptive radiation of analogs to modern shallow-water stony corals during the Jurassic Period and connects the rise of these symbiotic dinoflagellates with the emergence and evolutionary success of reef-building corals. This improved framework acknowledges the Symbiodiniaceae's long evolutionary history while filling a pronounced taxonomic gap. Its adoption will facilitate scientific dialog and future research on the physiology, ecology, and evolution of these important micro-algae.
Collapse
Affiliation(s)
- Todd C LaJeunesse
- Department of Biology, The Pennsylvania State University, 208 Mueller Laboratory, University Park, PA 16802, USA.
| | - John Everett Parkinson
- Department of Integrative Biology, Oregon State University, 3029 Cordley Hall, Corvallis, OR 97331, USA.
| | - Paul W Gabrielson
- Herbarium and Biology Department, University of North Carolina-Chapel Hill, Coker Hall, CB 3280, Chapel Hill, NC 27599, USA
| | - Hae Jin Jeong
- School of Earth and Environmental Sciences, College of Natural Sciences, Seoul National University, Seoul 151-747, Republic of Korea; Advanced Institutes of Convergence Technology, Suwon, Gyeonggi-do 16229, Republic of Korea
| | - James Davis Reimer
- Molecular Invertebrate Systematics and Ecology Laboratory, University of the Ryukyus, 1 Senbaru, Nishihara, Okinawa 903-0213, Japan
| | - Christian R Voolstra
- Red Sea Research Center, Division of Biological and Environmental Science and Engineering (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
| | - Scott R Santos
- Department of Biological Sciences and Molette Laboratory for Climate Change and Environmental Studies, Auburn University, 101 Rouse Life Sciences Building, Auburn, AL 36849, USA
| |
Collapse
|
38
|
Parkinson JE, Tivey TR, Mandelare PE, Adpressa DA, Loesgen S, Weis VM. Subtle Differences in Symbiont Cell Surface Glycan Profiles Do Not Explain Species-Specific Colonization Rates in a Model Cnidarian-Algal Symbiosis. Front Microbiol 2018; 9:842. [PMID: 29765363 PMCID: PMC5938612 DOI: 10.3389/fmicb.2018.00842] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2018] [Accepted: 04/12/2018] [Indexed: 11/13/2022] Open
Abstract
Mutualisms between cnidarian hosts and dinoflagellate endosymbionts are foundational to coral reef ecosystems. These symbioses are often re-established every generation with high specificity, but gaps remain in our understanding of the cellular mechanisms that control symbiont recognition and uptake dynamics. Here, we tested whether differences in glycan profiles among different symbiont species account for the different rates at which they initially colonize aposymbiotic polyps of the model sea anemone Aiptasia (Exaiptasia pallida). First, we used a lectin array to characterize the glycan profiles of colonizing Symbiodinium minutum (ITS2 type B1) and noncolonizing Symbiodinium pilosum (ITS2 type A2), finding subtle differences in the binding of lectins Euonymus europaeus lectin (EEL) and Urtica dioica agglutinin lectin (UDA) that distinguish between high-mannoside and hybrid-type protein linked glycans. Next, we enzymatically cleaved glycans from the surfaces of S. minutum cultures and followed their recovery using flow cytometry, establishing a 48-72 h glycan turnover rate for this species. Finally, we exposed aposymbiotic host polyps to cultured S. minutum cells masked by EEL or UDA lectins for 48 h, then measured cell densities the following day. We found no effect of glycan masking on symbiont density, providing further support to the hypothesis that glycan-lectin interactions are more important for post-phagocytic persistence of specific symbionts than they are for initial uptake. We also identified several methodological and biological factors that may limit the utility of studying glycan masking in the Aiptasia system.
Collapse
Affiliation(s)
- John E. Parkinson
- Department of Integrative Biology, Oregon State University, Corvallis, OR, United States
| | - Trevor R. Tivey
- Department of Integrative Biology, Oregon State University, Corvallis, OR, United States
| | - Paige E. Mandelare
- Department of Chemistry, Oregon State University, Corvallis, OR, United States
| | - Donovon A. Adpressa
- Department of Chemistry, Oregon State University, Corvallis, OR, United States
| | - Sandra Loesgen
- Department of Chemistry, Oregon State University, Corvallis, OR, United States
| | - Virginia M. Weis
- Department of Integrative Biology, Oregon State University, Corvallis, OR, United States
| |
Collapse
|
39
|
Wietheger A, Starzak DE, Gould KS, Davy SK. Differential ROS Generation in Response to Stress in Symbiodinium spp. THE BIOLOGICAL BULLETIN 2018; 234:11-21. [PMID: 29694799 DOI: 10.1086/696977] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Oxidative stress inside cells occurs when the production of reactive oxygen species (ROS) is no longer efficiently counterbalanced by the generation of antioxidants. In this study, we measured the intracellular production of ROS, including hydrogen peroxide (H2O2), superoxide (O2-), and singlet oxygen (1O2), in cultured dinoflagellates of the genus Symbiodinium under thermal and oxidative stress. ROS tagged with fluorescent probes were measured by flow cytometry. Dissimilar Symbiodinium internal transcribed spacer 2 (ITS2) clades or phylotypes (A1, B2, E, F1) produced ROS in different quantities in response to stress. For example, when comparing the control (26 °C) to the high-temperature treatment (35 °C), Symbiodinium E showed no change in the intracellular concentrations of any of the ROS; but phylotype A1 displayed a 10-fold increase in the overall ROS concentration and a 4-fold increase in O2-. Under oxidative stress, when 8 mmol l-1 H2O2 was added to the cells, these same two Symbiodinium phylotypes increased their overall concentrations of ROS, but only Symbiodinium E showed an increase in the concentrations of O2- (2×) and 1O2 (3×). Therefore, not only were the stress responses of the various Symbiodinium phylotypes different but also the responses of individual phylotypes to thermal and oxidative stress were different in terms of ROS production. Variation in the quality and quantity of ROS generation and its implications for subsequent antioxidant production suggest that different stress mechanisms are at play. While our experiments were done under laboratory conditions that did not necessarily mirror ecological ones, these results provide new insight into processes inside Symbiodinium cells during stress events and add new explanations for a phylotype's susceptibility to stress.
Collapse
Key Words
- 1O2, singlet oxygen
- APX, ascorbate peroxidase
- CAT, catalase
- DMSO, dimethyl sulfoxide
- H2DCF-DA, 2′,7′-dichlorodihydrofluorescein diacetate
- ITS2, internal transcribed spacer 2
- NPQ, non-photochemical quenching
- O2−, superoxide
- OEC, oxygen-evolving complex
- OH•, hydroxyl radical
- PSI/II, photosystem I/II
- ROS, reactive oxygen species
- SOD, superoxide dismutase
- SOG, singlet oxygen sensor green
Collapse
|
40
|
Fujise L, Nitschke MR, Frommlet JC, Serôdio J, Woodcock S, Ralph PJ, Suggett DJ. Cell Cycle Dynamics of Cultured Coral Endosymbiotic Microalgae (
Symbiodinium
) Across Different Types (Species) Under Alternate Light and Temperature Conditions. J Eukaryot Microbiol 2018; 65:505-517. [DOI: 10.1111/jeu.12497] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2017] [Revised: 12/17/2017] [Accepted: 12/19/2017] [Indexed: 01/02/2023]
Affiliation(s)
- Lisa Fujise
- Climate Change Cluster University of Technology Sydney Broadway New South Wales 2007 Australia
| | - Matthew R. Nitschke
- Climate Change Cluster University of Technology Sydney Broadway New South Wales 2007 Australia
- Department of Biology and Center for Environmental and Marine Studies University of Aveiro Aveiro 3810‐193 Portugal
| | - Jörg C. Frommlet
- Department of Biology and Center for Environmental and Marine Studies University of Aveiro Aveiro 3810‐193 Portugal
| | - João Serôdio
- Department of Biology and Center for Environmental and Marine Studies University of Aveiro Aveiro 3810‐193 Portugal
| | - Stephen Woodcock
- Climate Change Cluster University of Technology Sydney Broadway New South Wales 2007 Australia
| | - Peter J. Ralph
- Climate Change Cluster University of Technology Sydney Broadway New South Wales 2007 Australia
| | - David J. Suggett
- Climate Change Cluster University of Technology Sydney Broadway New South Wales 2007 Australia
| |
Collapse
|
41
|
|
42
|
Sproles AE, Kirk NL, Kitchen SA, Oakley CA, Grossman AR, Weis VM, Davy SK. Phylogenetic characterization of transporter proteins in the cnidarian-dinoflagellate symbiosis. Mol Phylogenet Evol 2017; 120:307-320. [PMID: 29233707 DOI: 10.1016/j.ympev.2017.12.007] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2016] [Revised: 10/22/2017] [Accepted: 12/05/2017] [Indexed: 12/11/2022]
Abstract
Metabolic exchange between cnidarians and their symbiotic dinoflagellates is central to maintaining their mutualistic relationship. Sugars are translocated to the host, while ammonium and nitrate are utilized by the dinoflagellates (Symbiodinium spp.). We investigated membrane protein sequences of each partner to identify potential transporter proteins that move sugars into cnidarian cells and nitrogen products into Symbiodinium cells. We examined the facilitated glucose transporters (GLUT), sodium/glucose cotransporters (SGLT), and aquaporin (AQP) channels in the cnidarian host as mechanisms for sugar uptake, and the ammonium and high-affinity nitrate transporters (AMT and NRT2, respectively) in the algal symbiont as mechanisms for nitrogen uptake. Homologous protein sequences were used for phylogenetic analysis and tertiary structure deductions. In cnidarians, we identified putative glucose transporters of the GLUT family and glycerol transporting AQP proteins, as well as sodium monocarboxylate transporters and sodium myo-inositol cotransporters homologous to SGLT proteins. We hypothesize that cnidarians use GLUT proteins as the primary mechanism for glucose uptake, while glycerol moves into cells by passive diffusion. We also identified putative AMT proteins in several Symbiodinium clades and putative NRT2 proteins only in a single clade. We further observed an upregulation of expressed putative AMT proteins in Symbiodinium, which may have emerged as an adaptation to conditions experienced inside the host cell. This study is the first to identify transporter sequences from a diversity of cnidarian species and Symbiodinium clades, which will be useful for future experimental analyses of the host-symbiont proteome and the nutritional exchange of Symbiodinium cells in hospite.
Collapse
Affiliation(s)
- Ashley E Sproles
- School of Biological Sciences, Victoria University of Wellington, Wellington 6012, New Zealand
| | - Nathan L Kirk
- Department of Integrative Biology, Oregon State University, Corvallis, OR 97331, USA
| | - Sheila A Kitchen
- Department of Integrative Biology, Oregon State University, Corvallis, OR 97331, USA
| | - Clinton A Oakley
- School of Biological Sciences, Victoria University of Wellington, Wellington 6012, New Zealand
| | - Arthur R Grossman
- Department of Plant Biology, The Carnegie Institution for Science, Stanford, CA 94305, USA
| | - Virginia M Weis
- Department of Integrative Biology, Oregon State University, Corvallis, OR 97331, USA
| | - Simon K Davy
- School of Biological Sciences, Victoria University of Wellington, Wellington 6012, New Zealand.
| |
Collapse
|
43
|
Ellison MA, Ferrier MD, Carney SL. Salinity stress results in differential Hsp70 expression in the Exaiptasia pallida and Symbiodinium symbiosis. MARINE ENVIRONMENTAL RESEARCH 2017; 132:63-67. [PMID: 29108677 DOI: 10.1016/j.marenvres.2017.10.006] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2017] [Revised: 10/08/2017] [Accepted: 10/13/2017] [Indexed: 06/07/2023]
Abstract
Abiotic factors affect cnidarian-algal symbiosis and, if severe enough, can result in bleaching. Increased temperature and light are well characterized causes of bleaching, but other factors like salinity can also stress the holobiont. In cnidarian-dinoflagellate systems, the expression of host genes, including heat shock protein 70 (Hsp70), changes due to thermal and light stress. In this experiment, we characterized to what extent salinity stress affects Hsp70 expression in the holobiont by simultaneously measuring host and symbiont Hsp70 expression in response to up to 8 h of hypo- and hypersaline conditions in the sea anemone Exaiptasia pallida and its intracellular symbiont Symbiodinium minutum. We show that E. pallida Hsp70 expression increases (6-11-fold) at high salinities whereas Symbiodinium Hsp70 expression shows little change (1.4-2.6-fold). These data suggest that cnidarian Hsp70 response is similar across multiple abiotic stressors further validating the Hsp70 gene as a biomarker for abiotic stress.
Collapse
Affiliation(s)
- Mitchell A Ellison
- Hood College, Department of Biology, 401 Rosemont Avenue, Frederick, MD 21701, USA
| | - M Drew Ferrier
- Hood College, Department of Biology, 401 Rosemont Avenue, Frederick, MD 21701, USA
| | - Susan L Carney
- Hood College, Department of Biology, 401 Rosemont Avenue, Frederick, MD 21701, USA.
| |
Collapse
|
44
|
Rare symbionts may contribute to the resilience of coral-algal assemblages. ISME JOURNAL 2017; 12:161-172. [PMID: 29192903 PMCID: PMC5739009 DOI: 10.1038/ismej.2017.151] [Citation(s) in RCA: 81] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/05/2017] [Revised: 08/02/2017] [Accepted: 08/14/2017] [Indexed: 01/31/2023]
Abstract
The association between corals and photosynthetic dinoflagellates (Symbiodinium spp.) is the key to the success of reef ecosystems in highly oligotrophic environments, but it is also their Achilles‘ heel due to its vulnerability to local stressors and the effects of climate change. Research during the last two decades has shaped a view that coral host–Symbiodinium pairings are diverse, but largely exclusive. Deep sequencing has now revealed the existence of a rare diversity of cryptic Symbiodinium assemblages within the coral holobiont, in addition to one or a few abundant algal members. While the contribution of the most abundant resident Symbiodinium species to coral physiology is widely recognized, the significance of the rare and low abundant background Symbiodinium remains a matter of debate. In this study, we assessed how coral–Symbiodinium communities assemble and how rare and abundant components together constitute the Symbiodinium community by analyzing 892 coral samples comprising >110 000 unique Symbiodinium ITS2 marker gene sequences. Using network modeling, we show that host–Symbiodinium communities assemble in non-random ‘clusters‘ of abundant and rare symbionts. Symbiodinium community structure follows the same principles as bacterial communities, for which the functional significance of rare members (the ‘rare bacterial biosphere’) has long been recognized. Importantly, the inclusion of rare Symbiodinium taxa in robustness analyses revealed a significant contribution to the stability of the host–symbiont community overall. As such, it highlights the potential functions rare symbionts may provide to environmental resilience of the coral holobiont.
Collapse
|
45
|
Comparative growth rates of cultured marine dinoflagellates in the genus Symbiodinium and the effects of temperature and light. PLoS One 2017; 12:e0187707. [PMID: 29186143 PMCID: PMC5706665 DOI: 10.1371/journal.pone.0187707] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2017] [Accepted: 10/24/2017] [Indexed: 02/04/2023] Open
Abstract
Many dinoflagellate microalgae of the genus Symbiodinium form successful symbioses with a large group of metazoans and selected protists. Yet knowledge of growth kinetics of these endosymbionts and their ecological and evolutionary implications is limited. We used a Bayesian biphasic generalized logistic model to estimate key parameters of the growth of five strains of cultured Symbiodinium, S. microadriaticum (cp-type A194; strain 04–503), S. microadriaticum (cp-type A194; strain CassKB8), S. minutum (cp-type B184; strain Mf 1.05b.01.SCI.01), S. psygmophilum (cp-type B224; strain Mf 11.05b.01) and S. trenchii (cp-type D206; strain Mf 2.2b), grown in four different combinations of temperature and light. Growth kinetics varied among Symbiodinium strains and across treatments. Biphasic growth was especially evident for S. minutum and S. psygmophilum across all treatments. Monophasic growth was more common when final asymptotic densities were relatively low (~ 200 million cells ml-1). All species tended to grow faster and / or reached a higher asymptote at 26°C than at 18°C. The fastest growth was exhibited by S. minutum, with an approximate four-fold increase in estimated cell density after 60 days. The strongest effect of light was seen in S. trenchii, in which increasing light levels resulted in a decrease in initial growth rate, and an increase in asymptotic density, time when growth rate was at its maximum, final growth rate, and maximum growth rate. Results suggest that Symbiodinium species have different photokinetic and thermal optima, which may affect their growth-related nutritional physiology and allow them to modify their response to environmental changes.
Collapse
|
46
|
Optimal nutrient exchange and immune responses operate in partner specificity in the cnidarian-dinoflagellate symbiosis. Proc Natl Acad Sci U S A 2017; 114:13194-13199. [PMID: 29158383 DOI: 10.1073/pnas.1710733114] [Citation(s) in RCA: 117] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The relationship between corals and dinoflagellates of the genus Symbiodinium is fundamental to the functioning of coral ecosystems. It has been suggested that reef corals may adapt to climate change by changing their dominant symbiont type to a more thermally tolerant one, although the capacity for such a shift is potentially hindered by the compatibility of different host-symbiont pairings. Here we combined transcriptomic and metabolomic analyses to characterize the molecular, cellular, and physiological processes that underlie this compatibility, with a particular focus on Symbiodinium trenchii, an opportunistic, thermally tolerant symbiont that flourishes in coral tissues after bleaching events. Symbiont-free individuals of the sea anemone Exaiptasia pallida (commonly referred to as Aiptasia), an established model system for the study of the cnidarian-dinoflagellate symbiosis, were colonized with the "normal" (homologous) symbiont Symbiodinium minutum and the heterologous S. trenchii Analysis of the host gene and metabolite expression profiles revealed that heterologous symbionts induced an expression pattern intermediate between the typical symbiotic state and the aposymbiotic state. Furthermore, integrated pathway analysis revealed that increased catabolism of fixed carbon stores, metabolic signaling, and immune processes occurred in response to the heterologous symbiont type. Our data suggest that both nutritional provisioning and the immune response induced by the foreign "invader" are important factors in determining the capacity of corals to adapt to climate change through the establishment of novel symbioses.
Collapse
|
47
|
Noda H, Parkinson JE, Yang SY, Reimer JD. A preliminary survey of zoantharian endosymbionts shows high genetic variation over small geographic scales on Okinawa-jima Island, Japan. PeerJ 2017; 5:e3740. [PMID: 29018596 PMCID: PMC5629959 DOI: 10.7717/peerj.3740] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2017] [Accepted: 08/05/2017] [Indexed: 12/03/2022] Open
Abstract
Symbiotic dinoflagellates (genus Symbiodinium) shape the responses of their host reef organisms to environmental variability and climate change. To date, the biogeography of Symbiodinium has been investigated primarily through phylogenetic analyses of the ribosomal internal transcribed spacer 2 region. Although the marker can approximate species-level diversity, recent work has demonstrated that faster-evolving genes can resolve otherwise hidden species and population lineages, and that this diversity is often distributed over much finer geographical and environmental scales than previously recognized. Here, we use the noncoding region of the chloroplast psbA gene (psbAncr) to examine genetic diversity among clade C Symbiodinium associating with the common reef zoantharian Palythoa tuberculosa on Okinawa-jima Island, Japan. We identify four closely related Symbiodinium psbAncr lineages including one common generalist and two potential specialists that appear to be associated with particular microhabitats. The sea surface temperature differences that distinguish these habitats are smaller than those usually investigated, suggesting that future biogeographic surveys of Symbiodinium should incorporate fine scale environmental information as well as fine scale molecular data to accurately determine species diversity and their distributions.
Collapse
Affiliation(s)
- Hatsuko Noda
- Molecular Invertebrate Systematics and Ecology Laboratory, Department of Biology, Chemistry and Marine Sciences, Faculty of Science, University of the Ryukyus, Nishihara, Okinawa, Japan
| | - John Everett Parkinson
- Molecular Invertebrate Systematics and Ecology Laboratory, Department of Biology, Chemistry and Marine Sciences, Faculty of Science, University of the Ryukyus, Nishihara, Okinawa, Japan.,Department of Integrative Biology, Oregon State University, Corvallis, OR, USA
| | - Sung-Yin Yang
- Molecular Invertebrate Systematics and Ecology Laboratory, Department of Biology, Chemistry and Marine Sciences, Faculty of Science, University of the Ryukyus, Nishihara, Okinawa, Japan.,Microbiology and Biochemistry of Secondary Metabolites Unit, Okinawa Institute of Science and Technology Graduate University, Onna, Okinawa, Japan.,Biodiversity Research Center, Academia Sinica, Nankang, Taipei, Taiwan
| | - James Davis Reimer
- Molecular Invertebrate Systematics and Ecology Laboratory, Department of Biology, Chemistry and Marine Sciences, Faculty of Science, University of the Ryukyus, Nishihara, Okinawa, Japan.,Tropical Biosphere Research Center, University of the Ryukyus, Nishihara, Okinawa, Japan
| |
Collapse
|
48
|
Bellis ES, Denver DR. Natural Variation in Responses to Acute Heat and Cold Stress in a Sea Anemone Model System for Coral Bleaching. THE BIOLOGICAL BULLETIN 2017; 233:168-181. [PMID: 29373064 DOI: 10.1086/694890] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Rising ocean temperatures disrupt the symbiosis between corals and their microalgae, accelerating global decline of coral reef ecosystems. Because of the difficulty of performing laboratory experiments with corals, the sea anemone Aiptasia has emerged as an important model system for molecular studies of coral bleaching and symbiosis. Here, we investigate natural variation in bleaching responses among different genetic lineages of Aiptasia. Both heat- and cold-induced paths to symbiosis breakdown were analyzed. Significant genetic variation in response to acute heat stress was observed, with severe bleaching of two Aiptasia strains from Hawaii but minimal bleaching of strains from the U.S. South Atlantic, including the strain used to generate the Aiptasia reference genome. Both strains from Hawaii hosted Symbiodinium type B1, whereas strains from the U.S. South Atlantic hosted type A4 or B2. In contrast to the results from exposures to acute heat stress, negligible variation was observed in response to a pulsed cold shock despite moderate bleaching across all strains. These results support our hypothesis that bleaching responses to distinct stressors are independent. Our findings emphasize the role of stress regime when predicting adaptive responses of symbiotic cnidarians to changing climates, because genetic variation may exist for some forms of stress-induced bleaching but not others.
Collapse
|
49
|
Suggett DJ, Warner ME, Leggat W. Symbiotic Dinoflagellate Functional Diversity Mediates Coral Survival under Ecological Crisis. Trends Ecol Evol 2017; 32:735-745. [DOI: 10.1016/j.tree.2017.07.013] [Citation(s) in RCA: 101] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2017] [Revised: 07/30/2017] [Accepted: 07/31/2017] [Indexed: 11/30/2022]
|
50
|
Ramsby BD, Hill MS, Thornhill DJ, Steenhuizen SF, Achlatis M, Lewis AM, LaJeunesse TC. Sibling species of mutualistic Symbiodinium clade G from bioeroding sponges in the western Pacific and western Atlantic oceans. JOURNAL OF PHYCOLOGY 2017; 53:951-960. [PMID: 28796903 DOI: 10.1111/jpy.12576] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2017] [Accepted: 07/21/2017] [Indexed: 06/07/2023]
Abstract
Dinoflagellates in the genus Symbiodinium associate with a broad array of metazoan and protistian hosts. Symbiodinium-based symbioses involving bioeroding sponge hosts have received less attention than those involving popular scleractinian hosts. Certain species of common Cliona harbor high densities of an ecologically restricted group of Symbiodinium, referred to as Clade G. Clade G Symbiodinium are also known to form stable and functionally important associations with Foraminifera and black corals (Antipatharia) Analyses of genetic evidence indicate that Clade G likely comprises several distinct species. Here, we use nucleotide sequence data in combination with ecological and geographic attributes to formally describe Symbiodinium endoclionum sp. nov. obtained from the Pacific boring sponge Cliona orientalis and Symbiodinium spongiolum sp. nov. from the congeneric western Atlantic sponge Cliona varians. These species appear to be part of an adaptive radiation comprising lineages of Clade G specialized to the metazoan phyla Porifera and Cnidaria, which began prior to the separation of the Pacific and Atlantic Oceans.
Collapse
Affiliation(s)
- Blake D Ramsby
- Australian Institute of Marine Science, Townsville, Queensland, Australia
- College of Science and Engineering, James Cook University, Townsville, Queensland, Australia
- AIMS@JCU, Australian Institute of Marine Science and James Cook University, Townsville, Queensland, Australia
| | - Malcolm S Hill
- Department of Biology, University of Richmond, Richmond, Virginia, 23173, USA
| | - Daniel J Thornhill
- Department of Biological Sciences, Auburn University, Auburn, Alabama, 36849, USA
| | - Sieuwkje F Steenhuizen
- Molecular Invertebrate Systematics and Ecology Laboratory, University of the Ryukyus, 1 Senbaru, Nishihara, Okinawa, 903-0213, Japan
- Marine Palynology and Paleoceanography, Laboratory of Paleobotany and Palynology, Department of Earth Sciences, Faculty of Geosciences, Utrecht University, P.O. Box 80.115, 3508TC, Utrecht, The Netherlands
| | - Michelle Achlatis
- Coral Reef Ecosystems Laboratory, School of Biological Sciences, University of Queensland, St. Lucia, Queensland, 4072, Australia
| | - Allison M Lewis
- Department of Biology, The Pennsylvania State University, University Park, Pennsylvania, 16802, USA
| | - Todd C LaJeunesse
- Department of Biology, The Pennsylvania State University, University Park, Pennsylvania, 16802, USA
| |
Collapse
|