1
|
Sandys O, Stokkers PCF, Te Velde AA. DAMP-ing IBD: Extinguish the Fire and Prevent Smoldering. Dig Dis Sci 2024:10.1007/s10620-024-08523-5. [PMID: 38963463 DOI: 10.1007/s10620-024-08523-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Accepted: 06/04/2024] [Indexed: 07/05/2024]
Abstract
In inflammatory bowel diseases (IBD), the most promising therapies targeting cytokines or immune cell trafficking demonstrate around 40% efficacy. As IBD is a multifactorial inflammation of the intestinal tract, a single-target approach is unlikely to solve this problem, necessitating an alternative strategy that addresses its variability. One approach often overlooked by the pharmaceutically driven therapeutic options is to address the impact of environmental factors. This is somewhat surprising considering that IBD is increasingly viewed as a condition heavily influenced by such factors, including diet, stress, and environmental pollution-often referred to as the "Western lifestyle". In IBD, intestinal responses result from a complex interplay among the genetic background of the patient, molecules, cells, and the local inflammatory microenvironment where danger- and microbe-associated molecular patterns (D/MAMPs) provide an adjuvant-rich environment. Through activating DAMP receptors, this array of pro-inflammatory factors can stimulate, for example, the NLRP3 inflammasome-a major amplifier of the inflammatory response in IBD, and various immune cells via non-specific bystander activation of myeloid cells (e.g., macrophages) and lymphocytes (e.g., tissue-resident memory T cells). Current single-target biological treatment approaches can dampen the immune response, but without reducing exposure to environmental factors of IBD, e.g., by changing diet (reducing ultra-processed foods), the adjuvant-rich landscape is never resolved and continues to drive intestinal mucosal dysregulation. Thus, such treatment approaches are not enough to put out the inflammatory fire. The resultant smoldering, low-grade inflammation diminishes physiological resilience of the intestinal (micro)environment, perpetuating the state of chronic disease. Therefore, our hypothesis posits that successful interventions for IBD must address the complexity of the disease by simultaneously targeting all modifiable aspects: innate immunity cytokines and microbiota, adaptive immunity cells and cytokines, and factors that relate to the (micro)environment. Thus the disease can be comprehensively treated across the nano-, meso-, and microscales, rather than with a focus on single targets. A broader perspective on IBD treatment that also includes options to adapt the DAMPing (micro)environment is warranted.
Collapse
Affiliation(s)
- Oliver Sandys
- Tytgat Institute for Liver and Intestinal Research, AmsterdamUMC, AGEM, University of Amsterdam, Amsterdam, The Netherlands
| | - Pieter C F Stokkers
- Department of Gastroenterology and Hepatology, OLVG West, Amsterdam, The Netherlands
| | - Anje A Te Velde
- Tytgat Institute for Liver and Intestinal Research, AmsterdamUMC, AGEM, University of Amsterdam, Amsterdam, The Netherlands.
| |
Collapse
|
2
|
Zhao L, Wang S, Zhang N, Zhou J, Mehmood A, Raka RN, Zhou F, Zhao L. The Beneficial Effects of Natural Extracts and Bioactive Compounds on the Gut-Liver Axis: A Promising Intervention for Alcoholic Liver Disease. Antioxidants (Basel) 2022; 11:antiox11061211. [PMID: 35740108 PMCID: PMC9219895 DOI: 10.3390/antiox11061211] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2022] [Revised: 06/15/2022] [Accepted: 06/19/2022] [Indexed: 12/10/2022] Open
Abstract
Alcoholic liver disease (ALD) is a major cause of morbidity and mortality worldwide. It can cause fatty liver (steatosis), steatohepatitis, fibrosis, cirrhosis, and liver cancer. Alcohol consumption can also disturb the composition of gut microbiota, increasing the composition of harmful microbes and decreasing beneficial ones. Restoring eubiosis or preventing dysbiosis after alcohol consumption is an important strategy in treating ALD. Plant natural products and polyphenolic compounds exert beneficial effects on several metabolic disorders associated with ALD. Natural products and related phytochemicals act through multiple pathways, such as modulating gut microbiota, improving redox stress, and anti-inflammation. In the present review article, we gather information on natural extract and bioactive compounds on the gut-liver axis for the possible treatment of ALD. Supplementation with natural extracts and bioactive compounds promoted the intestinal tight junction, protected against the alcohol-induced gut leakiness and inflammation, and reduced endotoxemia in alcohol-exposed animals. Taken together, natural extracts and bioactive compounds have strong potential against ALD; however, further clinical studies are still needed.
Collapse
Affiliation(s)
- Liang Zhao
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Engineering and Technology Research Center of Food Additives, School of Food and Health, Beijing Technology and Business University, Beijing 100048, China; (L.Z.); (S.W.); (A.M.); (R.N.R.)
| | - Shaoxuan Wang
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Engineering and Technology Research Center of Food Additives, School of Food and Health, Beijing Technology and Business University, Beijing 100048, China; (L.Z.); (S.W.); (A.M.); (R.N.R.)
| | - Nanhai Zhang
- Beijing Key Laboratory of Functional Food from Plant Resources, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; (N.Z.); (J.Z.)
| | - Jingxuan Zhou
- Beijing Key Laboratory of Functional Food from Plant Resources, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; (N.Z.); (J.Z.)
| | - Arshad Mehmood
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Engineering and Technology Research Center of Food Additives, School of Food and Health, Beijing Technology and Business University, Beijing 100048, China; (L.Z.); (S.W.); (A.M.); (R.N.R.)
- Department of Food Science and Technology, University of Haripur, Haripur 22620, Pakistan
| | - Rifat Nowshin Raka
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Engineering and Technology Research Center of Food Additives, School of Food and Health, Beijing Technology and Business University, Beijing 100048, China; (L.Z.); (S.W.); (A.M.); (R.N.R.)
| | - Feng Zhou
- Beijing Key Laboratory of Functional Food from Plant Resources, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; (N.Z.); (J.Z.)
- Correspondence: (F.Z.); (L.Z.)
| | - Lei Zhao
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Engineering and Technology Research Center of Food Additives, School of Food and Health, Beijing Technology and Business University, Beijing 100048, China; (L.Z.); (S.W.); (A.M.); (R.N.R.)
- Correspondence: (F.Z.); (L.Z.)
| |
Collapse
|
3
|
Prenatal and adolescent alcohol exposure programs immunity across the lifespan: CNS-mediated regulation. Pharmacol Biochem Behav 2022; 216:173390. [PMID: 35447157 DOI: 10.1016/j.pbb.2022.173390] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 03/28/2022] [Accepted: 04/11/2022] [Indexed: 12/31/2022]
Abstract
For many individuals, first exposure to alcohol occurs either prenatally due to maternal drinking, or during adolescence, when alcohol consumption is most likely to be initiated. Prenatal Alcohol Exposure (PAE) and its associated Fetal Alcohol Spectrum Disorders (FASD) in humans is associated with earlier initiation of alcohol use and increased rates of Alcohol Use Disorders (AUD). Initiation of alcohol use and misuse in early adolescence correlates highly with later AUD diagnosis as well. Thus, PAE and adolescent binge drinking set the stage for long-term health consequences due to adverse effects of alcohol on subsequent immune function, effects that may persist across the lifespan. The overarching goal of this review, therefore, is to determine the extent to which early developmental exposure to alcohol produces long-lasting, and potentially life-long, changes in immunological function. Alcohol affects the whole body, yet most studies are narrowly focused on individual features of immune function, largely ignoring the systems-level interactions required for effective host defense. We therefore emphasize the crucial role of the Central Nervous System (CNS) in orchestrating host defense processes. We argue that alcohol-mediated disruption of host immunity can occur through both (a) direct action of ethanol on neuroimmune processes, that subsequently disrupt peripheral immune function (top down); and (b) indirect action of ethanol on peripheral immune organs/cells, which in turn elicit consequent changes in CNS neuroimmune function (bottom up). Recognizing that alcohol consumption across the entire body, we argue in favor of integrative, whole-organism approaches toward understanding alcohol effects on immune function, and highlight the need for more work specifically examining long-lasting effects of early developmental exposure to alcohol (prenatal and adolescent periods) on host immunity.
Collapse
|
4
|
Lycopene Inhibits IL-6 Expression by Upregulating NQO1 and HO-1 via Activation of Nrf2 in Ethanol/Lipopolysaccharide-Stimulated Pancreatic Acinar Cells. Antioxidants (Basel) 2022; 11:antiox11030519. [PMID: 35326169 PMCID: PMC8944646 DOI: 10.3390/antiox11030519] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 03/05/2022] [Accepted: 03/07/2022] [Indexed: 12/16/2022] Open
Abstract
In alcoholic pancreatitis, alcohol increases gut permeability, which increases the penetration of endotoxins, such as lipopolysaccharides (LPS). LPS act as clinically significant triggers to increase pancreatic damage in alcoholic pancreatitis. Ethanol or LPS treatment increases reactive oxygen species (ROS) production in pancreatic acinar cells. ROS induce inflammatory cytokine production in pancreatic acinar cells, leading to pancreatic inflammation. The nuclear erythroid-2-related factor 2 (Nrf2) pathway is activated as a cytoprotective response to oxidative stress, and induces the expression of NAD(P)H quinone oxidoreductase 1 (NQO1) and heme oxygenase-1 (HO-1). Lycopene exerts anti-inflammatory and antioxidant effects in various cells. We previously showed that lycopene inhibits NADPH oxidase to reduce ROS and IL-6 levels, and zymogene activation in ethanol or palmitoleic acid-treated pancreatic acinar cells. In this study, we examined whether lycopene inhibits IL-6 expression by activating the Nrf2/NQO1-HO-1 pathway, and reducing intracellular and mitochondrial ROS levels, in ethanol and LPS-treated pancreatic AR42J cells. Lycopene increased the phosphorylated and nuclear-translocated Nrf2 levels by decreasing the amount of Nrf2 sequestered in the cytoplasm via a complex formation with Kelch-like ECH1-associated protein 1 (Keap1). Using exogenous inhibitors targeting Nrf2 and HO-1, we showed that the upregulation of activated Nrf2 and HO-1 results in lycopene-induced suppression of IL-6 expression and ROS production. The consumption of lycopene-rich foods may prevent the development of ethanol and LPS-associated pancreatic inflammation by activating Nrf2-mediated expression of NQO1 and HO-1, thereby decreasing ROS-mediated IL-6 expression in pancreatic acinar cells.
Collapse
|
5
|
Crosstalk between Oxidative Stress and Inflammatory Liver Injury in the Pathogenesis of Alcoholic Liver Disease. Int J Mol Sci 2022; 23:ijms23020774. [PMID: 35054960 PMCID: PMC8775426 DOI: 10.3390/ijms23020774] [Citation(s) in RCA: 83] [Impact Index Per Article: 41.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 01/04/2022] [Accepted: 01/07/2022] [Indexed: 02/06/2023] Open
Abstract
Alcoholic liver disease (ALD) is characterized by the injury, inflammation, and scarring in the liver owing to excessive alcohol consumption. Currently, ALD is a leading cause for liver transplantation. Therefore, extensive studies (in vitro, in experimental ALD models and in humans) are needed to elucidate pathological features and pathogenic mechanisms underlying ALD. Notably, oxidative changes in the liver have been recognized as a signature trait of ALD. Progression of ALD is linked to the generation of highly reactive free radicals by reactions involving ethanol and its metabolites. Furthermore, hepatic oxidative stress promotes tissue injury and, in turn, stimulates inflammatory responses in the liver, forming a pathological loop that promotes the progression of ALD. Accordingly, accumulating further knowledge on the relationship between oxidative stress and inflammation may help establish a viable therapeutic approach for treating ALD.
Collapse
|
6
|
Sato S, Namisaki T, Murata K, Fujimoto Y, Takeda S, Enomoto M, Shibamoto A, Ishida K, Ogawa H, Takagi H, Tsuji Y, Kaya D, Fujinaga Y, Furukawa M, Inoue T, Sawada Y, Nishimura N, Kitagawa K, Ozutsumi T, Takaya H, Kaji K, Shimozato N, Kawaratani H, Moriya K, Akahane T, Mitoro A, Yoshiji H. The association between sarcopenia and endotoxin in patients with alcoholic cirrhosis. Medicine (Baltimore) 2021; 100:e27212. [PMID: 34516526 PMCID: PMC8428753 DOI: 10.1097/md.0000000000027212] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Accepted: 07/13/2021] [Indexed: 01/05/2023] Open
Abstract
We aimed to prospectively identify the risk factors of sarcopenia in patients with cirrhosis.Patients (n = 193) included in a discovery cohort (January 2011 and December 2014) were categorized into alcoholic (A1; n = 55) and non-alcoholic cirrhosis (NA; n = 138) groups, and those (n = 235) in a validation cohort (January 2015 to December 2019) were categorized into alcoholic (n = 92), non-alcoholic steatohepatitis-related (n = 27), and hepatitis C virus-related cirrhosis groups (n = 116). Skeletal muscle mass index (SMI) was determined using computed tomography (SMI-CT) and bioelectrical impedance analysis (SMI-BIA). Endotoxin activity (EA) was measured with an EA assay.SMI-CT correlated with grip strength in all the groups but significantly correlated with SMI-BIA of the men in group A1 (R = 0.64, P < .0001) and both sexes in group NA (male: R = 0.44, P = .0001; female: R = 0.35, P = .003). SMI-CT inversely correlated with the EA levels of the men in group A1 (R = -0.67, P < .0001) and myostatin levels in group NA (R = -0.53, P < .0001). Lower extremity SMI had a strong negative correlation with the EA levels of the men in group A1 (R = -0.58, P < .001), whereas upper extremity SMI showed an inverse trend with EA levels (R = -0.28, P = .08). SMI-CT also inversely correlated with the EA levels in groups A2 (R = -0.52, P = .003) and N (R = -0.67, P < .0001) and myostatin levels in group C (R = -0.65, P < .0001). Moreover, SMI-CT correlated with nutritional factors, including cholinesterase (R = 0.50, P = .005), zinc (R = 0.45, P = .01), branched amino acid-to-tyrosine ratio (R = 0.39, P = .02), and triglyceride (R = 0.33, P = .03) in group N.Sarcopenia risk factors differ among cirrhosis etiologies. Alcohol-induced, intestine-mediated peripheral endotoxemia could participate in sarcopenia development in patients with alcoholic cirrhosis.
Collapse
Affiliation(s)
- Shinya Sato
- Department of Gastroenterology, Nara Medical University, Kashihara, Nara, Japan
| | - Tadashi Namisaki
- Department of Gastroenterology, Nara Medical University, Kashihara, Nara, Japan
| | - Koji Murata
- Department of Gastroenterology, Nara Medical University, Kashihara, Nara, Japan
| | - Yuki Fujimoto
- Department of Gastroenterology, Nara Medical University, Kashihara, Nara, Japan
| | - Soichi Takeda
- Department of Gastroenterology, Nara Medical University, Kashihara, Nara, Japan
| | - Masahide Enomoto
- Department of Gastroenterology, Nara Medical University, Kashihara, Nara, Japan
| | - Akihiko Shibamoto
- Department of Gastroenterology, Nara Medical University, Kashihara, Nara, Japan
| | - Koji Ishida
- Department of Gastroenterology, Nara Medical University, Kashihara, Nara, Japan
| | - Hiroyuki Ogawa
- Department of Gastroenterology, Nara Medical University, Kashihara, Nara, Japan
| | - Hirotetsu Takagi
- Department of Gastroenterology, Nara Medical University, Kashihara, Nara, Japan
| | - Yuki Tsuji
- Department of Gastroenterology, Nara Medical University, Kashihara, Nara, Japan
| | - Daisuke Kaya
- Department of Gastroenterology, Nara Medical University, Kashihara, Nara, Japan
| | - Yukihisa Fujinaga
- Department of Gastroenterology, Nara Medical University, Kashihara, Nara, Japan
| | - Masanori Furukawa
- Department of Gastroenterology, Nara Medical University, Kashihara, Nara, Japan
| | - Takashi Inoue
- Institute for Clinical and Translational Science, Nara Medical University Hospital, Shijo-cho, Kashihara, Nara, Japan
| | - Yasuhiko Sawada
- Department of Gastroenterology, Nara Medical University, Kashihara, Nara, Japan
| | - Norihisa Nishimura
- Department of Gastroenterology, Nara Medical University, Kashihara, Nara, Japan
| | - Koh Kitagawa
- Department of Gastroenterology, Nara Medical University, Kashihara, Nara, Japan
| | - Takahiro Ozutsumi
- Department of Gastroenterology, Nara Medical University, Kashihara, Nara, Japan
| | - Hiroaki Takaya
- Department of Gastroenterology, Nara Medical University, Kashihara, Nara, Japan
| | - Kosuke Kaji
- Department of Gastroenterology, Nara Medical University, Kashihara, Nara, Japan
| | - Naotaka Shimozato
- Department of Gastroenterology, Nara Medical University, Kashihara, Nara, Japan
| | - Hideto Kawaratani
- Department of Gastroenterology, Nara Medical University, Kashihara, Nara, Japan
| | - Kei Moriya
- Department of Gastroenterology, Nara Medical University, Kashihara, Nara, Japan
| | - Takemi Akahane
- Department of Gastroenterology, Nara Medical University, Kashihara, Nara, Japan
| | - Akira Mitoro
- Department of Gastroenterology, Nara Medical University, Kashihara, Nara, Japan
| | - Hitoshi Yoshiji
- Department of Gastroenterology, Nara Medical University, Kashihara, Nara, Japan
| |
Collapse
|
7
|
CYP2E1 in Alcoholic and Non-Alcoholic Liver Injury. Roles of ROS, Reactive Intermediates and Lipid Overload. Int J Mol Sci 2021; 22:ijms22158221. [PMID: 34360999 PMCID: PMC8348366 DOI: 10.3390/ijms22158221] [Citation(s) in RCA: 97] [Impact Index Per Article: 32.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 07/09/2021] [Accepted: 07/13/2021] [Indexed: 02/08/2023] Open
Abstract
CYP2E1 is one of the fifty-seven cytochrome P450 genes in the human genome and is highly conserved. CYP2E1 is a unique P450 enzyme because its heme iron is constitutively in the high spin state, allowing direct reduction of, e.g., dioxygen, causing the formation of a variety of reactive oxygen species and reduction of xenobiotics to toxic products. The CYP2E1 enzyme has been the focus of scientific interest due to (i) its important endogenous function in liver homeostasis, (ii) its ability to activate procarcinogens and to convert certain drugs, e.g., paracetamol and anesthetics, to cytotoxic end products, (iii) its unique ability to effectively reduce dioxygen to radical species causing liver injury, (iv) its capability to reduce compounds, often generating radical intermediates of direct toxic or indirect immunotoxic properties and (v) its contribution to the development of alcoholic liver disease, steatosis and NASH. In this overview, we present the discovery of the enzyme and studies in humans, 3D liver systems and genetically modified mice to disclose its function and clinical relevance. Induction of the CYP2E1 enzyme either by alcohol or high-fat diet leads to increased severity of liver pathology and likelihood to develop ALD and NASH, with subsequent influence on the occurrence of hepatocellular cancer. Thus, fat-dependent induction of the enzyme might provide a link between steatosis and fibrosis in the liver. We conclude that CYP2E1 has many important physiological functions and is a key enzyme for hepatic carcinogenesis, drug toxicity and liver disease.
Collapse
|
8
|
Mazarati A, Medel-Matus JS, Shin D, Jacobs JP, Sankar R. Disruption of intestinal barrier and endotoxemia after traumatic brain injury: Implications for post-traumatic epilepsy. Epilepsia 2021; 62:1472-1481. [PMID: 33893636 DOI: 10.1111/epi.16909] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 04/01/2021] [Accepted: 04/05/2021] [Indexed: 02/06/2023]
Abstract
OBJECTIVE Traumatic brain injury (TBI) may lead to the disruption of the intestinal barrier (IB), and to the escape of products of commensal gut bacteria, including lipopolysaccharide (LPS), into the bloodstream. We examined whether lateral fluid percussion injury (LFPI) and post-traumatic epilepsy (PTE) are associated with the increased intestinal permeability and endotoxemia, and whether these events in turn are associated with PTE. METHODS LFPI was delivered to adult male Sprague-Dawley rats. Before, 1 week, and 7 months after LFPI, the IB permeability was examined by measuring plasma concentration of fluorescein isothiocyanate-labeled dextran (FD4) upon its enteral administration. Plasma LPS concentration was measured in the same animals, using enzyme-linked immunosorbent assay. PTE was examined 7 months after LFPI, with use of video-EEG (electroencephalography) monitoring. RESULTS One week after LFPI, the IB disruption was detected in 14 of 17 and endotoxemia - in 10 of 17 rats, with a strong positive correlation between FD4 and LPS levels, and between plasma levels of each of the analytes and the severity of neuromotor deficit. Seven months after LFPI, IB disruption was detected in 13 of 15 and endotoxemia in 8 of 15 rats, with a strong positive correlation between plasma levels of the two analytes. Five of 15 LFPI rats developed PTE. Plasma levels of both FD4 and LPS were significantly higher in animals with PTE than among the animals without PTE. The analysis of seven rats, which were examined repeatedly at 1 week and at 7 months, confirmed that late IB disruption and endotoxemia were not due to lingering of impairments occurring shortly after LFPI. SIGNIFICANCE LFPI leads to early and remote disruption of IB and a secondary endotoxemia. Early and late perturbations may occur in different subjects. Early changes reflect the severity of acute post-traumatic motor dysfunction, whereas late changes are associated with PTE.
Collapse
Affiliation(s)
- Andrey Mazarati
- Department of Pediatrics, David Geffen School of Medicine at the University of California, Los Angeles (UCLA), Los Angeles, CA, USA.,UCLA Children's Discovery and Innovation Institute, Los Angeles, California, USA.,UCLA Microbiome Center, Los Angeles, CA, USA
| | - Jesus-Servando Medel-Matus
- Department of Pediatrics, David Geffen School of Medicine at the University of California, Los Angeles (UCLA), Los Angeles, CA, USA
| | - Don Shin
- Department of Pediatrics, David Geffen School of Medicine at the University of California, Los Angeles (UCLA), Los Angeles, CA, USA
| | - Jonathan P Jacobs
- UCLA Microbiome Center, Los Angeles, CA, USA.,Department of Medicine, David Geffen School of Medicine at the University of California, Los Angeles (UCLA), Los Angeles, CA, USA.,Division of Gastroenterology, Hepatology and Parenteral Nutrition, VA Greater Los Angeles Healthcare System, Los Angeles, CA, USA
| | - Raman Sankar
- Department of Pediatrics, David Geffen School of Medicine at the University of California, Los Angeles (UCLA), Los Angeles, CA, USA.,UCLA Children's Discovery and Innovation Institute, Los Angeles, California, USA.,Department of Neurology, David Geffen School of Medicine at the University of California, Los Angeles (UCLA), Los Angeles, CA, USA
| |
Collapse
|
9
|
Phosphoesterase complex modulates microflora and chronic inflammation in rats with alcoholic fatty liver disease. Life Sci 2020; 262:118509. [PMID: 33010280 DOI: 10.1016/j.lfs.2020.118509] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2020] [Revised: 09/07/2020] [Accepted: 09/24/2020] [Indexed: 02/08/2023]
Abstract
Phosphoesterase complex (Pho), a major active component of barley malt, has been demonstrated to be clinically effective in relieving alcoholic fatty liver disease (AFLD), and several lines of evidence have suggested that microbial dysbiosis, caused by chronic alcohol overconsumption, plays a key role in the progression of AFLD. The current study aimed to investigate the modulatory effect of Pho on gut microflora. The microbiota diversity, determined via detection of the V4 region of 16S rDNA genes, was analyzed in rats fed the Lieber-Decarli diet. Gut permeability was evaluated via mucus layer staining. Dysbiosis-associated chronic inflammation was investigated by observing the expression of the following inflammatory molecules in the liver: tumor necrosis factor α (TNF-α), monocyte chemotactic protein 1 (MCP-1), chemokine (C-X-C motif) ligand 1 (CXCL-1) and interleukin 1 beta (IL-1β). Pyrosequencing revealed that the gut microbiota in Pho-treated rats was different from that of AFLD rats at both the phylum and genus levels. In addition, Pho significantly alleviated dysbiosis-associated disruption of gut permeability and inflammation, increased mucus layer thickness and downregulated TNF-α, MCP-1, CXCL-1 and IL-1β expression. In summary, the current results revealed that the microflora, gut barrier and chronic inflammation in AFLD may be modulated by Pho.
Collapse
|
10
|
Gao B, Emami A, Nath S, Schnabl B. Microbial Products and Metabolites Contributing to Alcohol-Related Liver Disease. Mol Nutr Food Res 2020; 65:e2000023. [PMID: 32583604 DOI: 10.1002/mnfr.202000023] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Revised: 06/01/2020] [Indexed: 02/06/2023]
Abstract
As a serious public health concern, alcohol-related liver disease is associated with dysregulations in the intestinal barrier function and the gut microbiota. The liver and gut communicate via the gut-liver axis, through which microbial products and metabolites translocate to the liver. Here, the current knowledge of various microbial products and metabolites which contribute to the alcohol-related liver diseases, including bile acids, indole-3-acetic acid, butyrate, long-chain fatty acids, endotoxin, cytolysin, β-glucan, and candidalysin is reviewed. Some of these might serve as therapeutic targets for alcohol-related liver disease.
Collapse
Affiliation(s)
- Bei Gao
- Department of Medicine, University of California San Diego, La Jolla, CA, 92093, USA
| | - Atoosa Emami
- Department of Medicine, University of California San Diego, La Jolla, CA, 92093, USA
| | - Shilpa Nath
- Department of Medicine, University of California San Diego, La Jolla, CA, 92093, USA
| | - Bernd Schnabl
- Department of Medicine, University of California San Diego, La Jolla, CA, 92093, USA.,Department of Medicine, VA San Diego Healthcare System, San Diego, CA, 92093, USA
| |
Collapse
|
11
|
Akiba Y, Maruta K, Takajo T, Narimatsu K, Said H, Kato I, Kuwahara A, Kaunitz JD. Lipopolysaccharides transport during fat absorption in rodent small intestine. Am J Physiol Gastrointest Liver Physiol 2020; 318:G1070-G1087. [PMID: 32390462 PMCID: PMC7311662 DOI: 10.1152/ajpgi.00079.2020] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Revised: 04/29/2020] [Accepted: 05/06/2020] [Indexed: 02/07/2023]
Abstract
Lipopolysaccharides (LPS) are potent pro-inflammatory molecules that enter the systemic circulation from the intestinal lumen by uncertain mechanisms. We investigated these mechanisms and the effect of exogenous glucagon-like peptide-2 (GLP-2) on LPS transport in the rodent small intestine. Transmucosal LPS transport was measured in Ussing-chambered rat jejunal mucosa. In anesthetized rats, the appearance of fluorescein isothiocyanate (FITC)-LPS into the portal vein (PV) and the mesenteric lymph was simultaneously monitored after intraduodenal perfusion of FITC-LPS with oleic acid and taurocholate (OA/TCA). In vitro, luminally applied LPS rapidly appeared in the serosal solution only with luminal OA/TCA present, inhibited by the lipid raft inhibitor methyl-β-cyclodextrin (MβCD) and the CD36 inhibitor sulfosuccinimidyl oleate (SSO), or by serosal GLP-2. In vivo, perfusion of FITC-LPS with OA/TCA rapidly increased FITC-LPS appearance into the PV, followed by a gradual increase of FITC-LPS into the lymph. Rapid PV transport was inhibited by the addition of MβCD or by SSO, whereas transport into the lymph was inhibited by chylomicron synthesis inhibition. Intraveous injection of the stable GLP-2 analog teduglutide acutely inhibited FITC-LPS transport into the PV, yet accelerated FITC-LPS transport into the lymph via Nω-nitro-l-arginine methyl ester (l-NAME)- and PG97-269-sensitive mechanisms. In vivo confocal microscopy in mouse jejunum confirmed intracellular FITC-LPS uptake with no evidence of paracellular localization. This is the first direct demonstration in vivo that luminal LPS may cross the small intestinal barrier physiologically during fat absorption via lipid raft- and CD36-mediated mechanisms, followed by predominant transport into the PV, and that teduglutide inhibits LPS uptake into the PV in vivo.NEW & NOTEWORTHY We report direct in vivo confirmation of transcellular lipopolysaccharides (LPS) uptake from the intestine into the portal vein (PV) involving CD36 and lipid rafts, with minor uptake via the canonical chylomicron pathway. The gut hormone glucagon-like peptide-2 (GLP-2) inhibited uptake into the PV. These data suggest that the bulk of LPS absorption is via the PV to the liver, helping clarify the mechanism of LPS transport into the PV as part of the "gut-liver" axis. These data do not support the paracellular transport of LPS, which has been implicated in the pathogenesis of the "leaky gut" syndrome.
Collapse
Affiliation(s)
- Yasutada Akiba
- Greater Los Angeles Veterans Affairs Healthcare System, Los Angeles, California
- Department of Medicine, University of California, School of Medicine, Los Angeles, California
- Brentwood Biomedical Research Institute, Los Angeles, California
| | - Koji Maruta
- Department of Medicine, University of California, School of Medicine, Los Angeles, California
| | - Takeshi Takajo
- Department of Medicine, University of California, School of Medicine, Los Angeles, California
| | - Kazuyuki Narimatsu
- Department of Medicine, University of California, School of Medicine, Los Angeles, California
| | - Hyder Said
- Department of Medicine, University of California, School of Medicine, Los Angeles, California
| | - Ikuo Kato
- Department of Medical Biochemistry, Kobe Pharmaceutical University, Kobe, Japan
| | - Atsukazu Kuwahara
- Research Unit for Epithelial Physiology, Research Organization of Science and Technology, Ritsumeikan University, Kusatsu, Japan
| | - Jonathan D Kaunitz
- Greater Los Angeles Veterans Affairs Healthcare System, Los Angeles, California
- Department of Medicine, University of California, School of Medicine, Los Angeles, California
- Department of Surgery, University of California, School of Medicine, Los Angeles, California
- Brentwood Biomedical Research Institute, Los Angeles, California
| |
Collapse
|
12
|
Rodriguez-Gonzalez A, Orio L. Microbiota and Alcohol Use Disorder: Are Psychobiotics a Novel Therapeutic Strategy? Curr Pharm Des 2020; 26:2426-2437. [PMID: 31969090 DOI: 10.2174/1381612826666200122153541] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Accepted: 12/30/2019] [Indexed: 02/08/2023]
Abstract
In recent years, there has been an exciting focus of research attempting to understand neuropsychiatric disorders from a holistic perspective in order to determine the role of gut microbiota in the aetiology and pathogenesis of such disorders. Thus, the possible therapeutic benefits of targeting gut microbiota are being explored for conditions such as stress, depression or schizophrenia. Growing evidence indicates that there is bidirectional communication between gut microbiota and the brain that has an effect on normal CNS functioning and behavioural responses. Alcohol abuse damages the gastrointestinal tract, alters gut microbiota and induces neuroinflammation and cognitive decline. The relationship between alcohol abuse and hypothalamic-pituitary-adrenal axis activation, inflammation and immune regulation has been well documented. In this review, we explore the connection between microbiota, brain function and behaviour, as well as the mechanisms through which alcohol induces microbiota dysbiosis and intestinal barrier dysfunction. Finally, we propose the study of psychobiotics as a novel pharmaceutical strategy to treat alcohol use disorders.
Collapse
Affiliation(s)
- Alicia Rodriguez-Gonzalez
- Department of Psychobiology and Methods in Behavioural Sciences, Faculty of Psychology, Complutense University of Madrid, Madrid, Spain
| | - Laura Orio
- Department of Psychobiology and Methods in Behavioural Sciences, Faculty of Psychology, Complutense University of Madrid, Madrid, Spain
| |
Collapse
|
13
|
Faraj TA, Stover C, Erridge C. Dietary Toll-Like Receptor Stimulants Promote Hepatic Inflammation and Impair Reverse Cholesterol Transport in Mice via Macrophage-Dependent Interleukin-1 Production. Front Immunol 2019; 10:1404. [PMID: 31316501 PMCID: PMC6611433 DOI: 10.3389/fimmu.2019.01404] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Accepted: 06/04/2019] [Indexed: 01/21/2023] Open
Abstract
Background: The mechanisms connecting dietary intake of processed foods with systemic inflammatory markers and cardiovascular risk remain poorly defined. We sought to compare the abundance of pro-inflammatory stimulants of innate immune receptors in processed foods with those produced by the murine ileal and caecal microbiota, and to explore the impact of their ingestion on systemic inflammation and lipid metabolism in vivo. Methods and results: Calibrated receptor-dependent reporter assays revealed that many processed foods, particularly those based on minced meats, contain pro-inflammatory stimulants of Toll-like receptor (TLR)-2 and TLR4 at concentrations which greatly exceed those produced by the endogenous murine ileal microbiota. Chronic dietary supplementation with these stimulants, at concentrations relevant to those measured in the Western diet, promoted hepatic inflammation and reduced several markers of reverse cholesterol transport (RCT) in mice. Hepatocytes were found to be insensitive to TLR2- and TLR4-stimulants directly, but their secretion of functional cholesterol acceptors was impaired by interleukin (IL)-1β released by TLR-responsive hepatic macrophages. Hepatic macrophage priming by high-fat diet enhanced the impairment of RCT by ingested endotoxin, and this was reversed by macrophage depletion via clodronate liposome treatment, or genetic deficiency in the IL-1 receptor. Conclusion: These findings reveal an unexpected mechanism connecting processed food consumption with cardiovascular risk factors, and introduce the food microbiota as a potential target for therapeutic regulation of lipid metabolism.
Collapse
Affiliation(s)
- Tola A. Faraj
- Department of Cardiovascular Sciences, University of Leicester, Glenfield Hospital, Leicester, United Kingdom
- Department of Pharmacognosy, Hawler Medical University, Erbil, Iraq
| | - Cordula Stover
- Department of Infection, Immunity and Inflammation, University of Leicester, Leicester, United Kingdom
| | - Clett Erridge
- Department of Cardiovascular Sciences, University of Leicester, Glenfield Hospital, Leicester, United Kingdom
- School of Life Sciences, Anglia Ruskin University, Cambridge, United Kingdom
| |
Collapse
|
14
|
Antón M, Rodríguez-González A, Ballesta A, González N, Del Pozo A, de Fonseca FR, Gómez-Lus ML, Leza JC, García-Bueno B, Caso JR, Orio L. Alcohol binge disrupts the rat intestinal barrier: the partial protective role of oleoylethanolamide. Br J Pharmacol 2018; 175:4464-4479. [PMID: 30248186 DOI: 10.1111/bph.14501] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2018] [Revised: 09/04/2018] [Accepted: 09/12/2018] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND AND PURPOSE Chronic alcohol consumption alters the gut-brain axis, but little is known about alcohol binge episodes on the functioning of the intestinal barrier. We investigated the influence of ethanol binges on bacterial translocation, gut inflammation and immunity, and tight junction (TJ) structure and the ability of the biolipid oleoylethanolamide (OEA) to prevent ethanol binge-induced intestinal barrier dysfunction. EXPERIMENTAL APPROACH OEA was injected i.p. before repeated ethanol administration by oral gavage. Plasma, spleen, liver and mesenteric lymph nodes (MLN) were collected in sterile conditions for determination of bacterial load. Immune/inflammatory parameters, TJ proteins and apoptotic markers were determined in colonic tissue by RT-PCR and Western blotting. TJ ultrastructure was examined by transmission electron microscopy. KEY RESULTS Ethanol binges induced bacterial translocation to the MLN (mainly) and spleen. Colonic tissues showed signs of inflammation, and activation of innate (Toll-like receptor-4) and adaptive (IgA) immune systems and TJ proteins (occludin and claudin-3) were decreased after ethanol binges. Pretreatment with OEA reduced intestinal inflammation and immune activation and partially preserved the TJ structure affected by alcohol binges but had no effect on alcohol-induced apoptosis. Ultrastructural analyses of colonic TJs revealed dilated TJs in all ethanol groups, with less electron-dense material in non-pretreated rats. The protective effects of i.p. OEA did not reduce bacterial translocation to the MLN. However, intragastric OEA administration significantly reduced plasma LPS levels and bacterial translocation to the MLN. CONCLUSION AND IMPLICATIONS OEA-based pharmacotherapies could potentially be useful to treat disorders characterized by intestinal barrier dysfunction, including alcohol abuse.
Collapse
Affiliation(s)
- M Antón
- Department of Psychobiology and Behavioral Science Methods, Faculty of Psychology, Complutense University, Madrid (UCM), and Red de Trastornos Adictivos (RTA) Instituto de Salud Carlos III (ISCIII), Madrid, Spain
| | - A Rodríguez-González
- Department of Psychobiology and Behavioral Science Methods, Faculty of Psychology, Complutense University, Madrid (UCM), and Red de Trastornos Adictivos (RTA) Instituto de Salud Carlos III (ISCIII), Madrid, Spain
| | - A Ballesta
- Department of Psychobiology and Behavioral Science Methods, Faculty of Psychology, Complutense University, Madrid (UCM), and Red de Trastornos Adictivos (RTA) Instituto de Salud Carlos III (ISCIII), Madrid, Spain
| | - N González
- Department of Medicine Microbiology, Faculty of Medicine, UCM, Madrid, Spain
| | - A Del Pozo
- Department of Psychobiology and Behavioral Science Methods, Faculty of Psychology, Complutense University, Madrid (UCM), and Red de Trastornos Adictivos (RTA) Instituto de Salud Carlos III (ISCIII), Madrid, Spain
| | - F R de Fonseca
- Department of Psychobiology and Behavioral Science Methods, Faculty of Psychology, Complutense University, Madrid (UCM), and Red de Trastornos Adictivos (RTA) Instituto de Salud Carlos III (ISCIII), Madrid, Spain
| | - M L Gómez-Lus
- Department of Medicine Microbiology, Faculty of Medicine, UCM, Madrid, Spain
| | - J C Leza
- Department of Pharmacology and Toxicology, Faculty of Medicine, UCM, Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Imas12 and IUINQ, Madrid, Spain
| | - B García-Bueno
- Department of Pharmacology and Toxicology, Faculty of Medicine, UCM, Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Imas12 and IUINQ, Madrid, Spain
| | - J R Caso
- Department of Pharmacology and Toxicology, Faculty of Medicine, UCM, Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Imas12 and IUINQ, Madrid, Spain
| | - L Orio
- Department of Psychobiology and Behavioral Science Methods, Faculty of Psychology, Complutense University, Madrid (UCM), and Red de Trastornos Adictivos (RTA) Instituto de Salud Carlos III (ISCIII), Madrid, Spain
| |
Collapse
|
15
|
Khasawneh M, Spence AD, Addley J, Allen PB. The role of smoking and alcohol behaviour in the management of inflammatory bowel disease. Best Pract Res Clin Gastroenterol 2017; 31:553-559. [PMID: 29195675 DOI: 10.1016/j.bpg.2017.10.004] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/09/2017] [Revised: 09/11/2017] [Accepted: 10/20/2017] [Indexed: 02/09/2023]
Abstract
In the era of increasing use of immunosuppressive and biologic therapy for inflammatory bowel disease, environmental influences remain important independent risk factors to modify the course of the disease, affect the need for surgery and recurrence rates post-surgical resection. The effect of smoking on inflammatory bowel disease has been established over the decades, however the exact mechanism of how smoking affects remains as area of research. Alcohol is also among the socio-environmental factors which has been recognised to cause a flare of symptoms in inflammatory bowel disease patients. Nonetheless, the exact relation to date is not fully understood, and various paradoxical results from different studies are still a point of controversy.
Collapse
Affiliation(s)
- Mais Khasawneh
- South Eastern Health and Social Care Trust, Belfast, Northern Ireland, United Kingdom
| | - Andrew D Spence
- Cancer Epidemiology and Health Services Research Group, Centre for Public Health, Queen's University Belfast, Belfast, Northern Ireland, United Kingdom
| | - Jennifer Addley
- South Eastern Health and Social Care Trust, Belfast, Northern Ireland, United Kingdom
| | - Patrick B Allen
- South Eastern Health and Social Care Trust, Belfast, Northern Ireland, United Kingdom.
| |
Collapse
|
16
|
Hamarneh SR, Kim BM, Kaliannan K, Morrison SA, Tantillo TJ, Tao Q, Mohamed MMR, Ramirez JM, Karas A, Liu W, Hu D, Teshager A, Gul SS, Economopoulos KP, Bhan AK, Malo MS, Choi MY, Hodin RA. Intestinal Alkaline Phosphatase Attenuates Alcohol-Induced Hepatosteatosis in Mice. Dig Dis Sci 2017; 62:2021-2034. [PMID: 28424943 PMCID: PMC5684583 DOI: 10.1007/s10620-017-4576-0] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/28/2016] [Accepted: 04/06/2017] [Indexed: 02/08/2023]
Abstract
BACKGROUND AND AIMS Bacterially derived factors from the gut play a major role in the activation of inflammatory pathways in the liver and in the pathogenesis of alcoholic liver disease. The intestinal brush-border enzyme intestinal alkaline phosphatase (IAP) detoxifies a variety of bacterial pro-inflammatory factors and also functions to preserve gut barrier function. The aim of this study was to investigate whether oral IAP supplementation could protect against alcohol-induced liver disease. METHODS Mice underwent acute binge or chronic ethanol exposure to induce alcoholic liver injury and steatosis ± IAP supplementation. Liver tissue was assessed for biochemical, inflammatory, and histopathological changes. An ex vivo co-culture system was used to examine the effects of alcohol and IAP treatment in regard to the activation of hepatic stellate cells and their role in the development of alcoholic liver disease. RESULTS Pretreatment with IAP resulted in significantly lower serum alanine aminotransferase compared to the ethanol alone group in the acute binge model. IAP treatment attenuated the development of alcohol-induced fatty liver, lowered hepatic pro-inflammatory cytokine and serum LPS levels, and prevented alcohol-induced gut barrier dysfunction. Finally, IAP ameliorated the activation of hepatic stellate cells and prevented their lipogenic effect on hepatocytes. CONCLUSIONS IAP treatment protected mice from alcohol-induced hepatotoxicity and steatosis. Oral IAP supplementation could represent a novel therapy to prevent alcoholic-related liver disease in humans.
Collapse
Affiliation(s)
- Sulaiman R Hamarneh
- Department of Surgery, Harvard Medical School, Massachusetts General Hospital, 15 Parkman Street, Boston, MA, 02114, USA
| | - Byeong-Moo Kim
- Gastrointestinal Unit, Department of Medicine, Harvard Medical School, Massachusetts General Hospital, 55 Fruit Street, Boston, MA, 02114, USA
| | - Kanakaraju Kaliannan
- Department of Surgery, Harvard Medical School, Massachusetts General Hospital, 15 Parkman Street, Boston, MA, 02114, USA
| | - Sara A Morrison
- Department of Surgery, Harvard Medical School, Massachusetts General Hospital, 15 Parkman Street, Boston, MA, 02114, USA
| | - Tyler J Tantillo
- Department of Surgery, Harvard Medical School, Massachusetts General Hospital, 15 Parkman Street, Boston, MA, 02114, USA
| | - Qingsong Tao
- Department of Surgery, Harvard Medical School, Massachusetts General Hospital, 15 Parkman Street, Boston, MA, 02114, USA
| | - Mussa M Rafat Mohamed
- Department of Surgery, Harvard Medical School, Massachusetts General Hospital, 15 Parkman Street, Boston, MA, 02114, USA
| | - Juan M Ramirez
- Department of Surgery, Harvard Medical School, Massachusetts General Hospital, 15 Parkman Street, Boston, MA, 02114, USA
| | - Aaron Karas
- Department of Surgery, Harvard Medical School, Massachusetts General Hospital, 15 Parkman Street, Boston, MA, 02114, USA
| | - Wei Liu
- Department of Surgery, Harvard Medical School, Massachusetts General Hospital, 15 Parkman Street, Boston, MA, 02114, USA
| | - Dong Hu
- Department of Surgery, Harvard Medical School, Massachusetts General Hospital, 15 Parkman Street, Boston, MA, 02114, USA
| | - Abeba Teshager
- Department of Surgery, Harvard Medical School, Massachusetts General Hospital, 15 Parkman Street, Boston, MA, 02114, USA
| | - Sarah Shireen Gul
- Department of Surgery, Harvard Medical School, Massachusetts General Hospital, 15 Parkman Street, Boston, MA, 02114, USA
| | - Konstantinos P Economopoulos
- Department of Surgery, Harvard Medical School, Massachusetts General Hospital, 15 Parkman Street, Boston, MA, 02114, USA
| | - Atul K Bhan
- Department of Pathology, Harvard Medical School, Massachusetts General Hospital, Boston, MA, 02114, USA
| | - Madhu S Malo
- Department of Surgery, Harvard Medical School, Massachusetts General Hospital, 15 Parkman Street, Boston, MA, 02114, USA
| | - Michael Y Choi
- Gastrointestinal Unit, Department of Medicine, Harvard Medical School, Massachusetts General Hospital, 55 Fruit Street, Boston, MA, 02114, USA.
- Harvard Stem Cell Institute, Cambridge, MA, 02138, USA.
| | - Richard A Hodin
- Department of Surgery, Harvard Medical School, Massachusetts General Hospital, 15 Parkman Street, Boston, MA, 02114, USA.
| |
Collapse
|
17
|
Kema VH, Khan I, Jamal R, Vishwakarma SK, Lakki Reddy C, Parwani K, Patel F, Patel D, Khan AA, Mandal P. Protective Effects of Diallyl Sulfide Against Ethanol-Induced Injury in Rat Adipose Tissue and Primary Human Adipocytes. Alcohol Clin Exp Res 2017; 41:1078-1092. [PMID: 28414868 DOI: 10.1111/acer.13398] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2016] [Accepted: 04/06/2017] [Indexed: 12/13/2022]
Abstract
BACKGROUND Alcohol consumption is the fourth leading cause of death and disability worldwide. Several cellular pathways contribute to alcohol-mediated tissue injury. Adipose tissue apart from functioning as an endocrine organ secretes several hormones and cytokines known as adipokines that are known to play a significant role in alcohol-induced tissue damage. This study was designed to test the efficacy of diallyl sulfide (DAS) in regulating the alcohol-induced outcomes on adipose tissue. METHODS Male Wistar rats were fed with 36% Lieber-DeCarli liquid diet containing ethanol (EtOH) for 4 weeks. Control rats were pair-fed with isocaloric diet containing maltodextrin instead of EtOH. During the last week of feeding protocol, the EtOH-fed rat group was given 200 mg/kg body weight of DAS through diet. We also studied DAS effect on isolated human primary adipocytes. Viability of human primary adipocytes on DAS treatment was assessed by MTT assay. Malondialdehyde (MDA), a marker of oxidative stress, was measured by HPLC and the thiobarbituric acid method. Expression of inflammatory genes and lipogenic genes was studied by qRT-PCR and Western blotting. Serum inflammatory gene expression was studied by ELISA. RESULTS Our study results showed that DAS could alleviate EtOH-induced expression levels of proinflammatory and endoplasmic reticulum (ER) stress genes and improve adipose tissue mass and adipocyte morphology in male Wistar rats fed Lieber-DeCarli diet containing 6% EtOH. Further, we showed that DAS reduced the expression of lipogenic genes and improved lipid accumulation and adipocyte mass in human primary adipocytes treated with EtOH. Subsequently, we also showed that oxidative stress, as measured by the changes in MDA levels, was reduced in both male Wistar rats and human primary adipocytes treated with EtOH plus DAS. CONCLUSIONS Our study results prove that DAS is effective in ameliorating EtOH-induced damage to adipose tissue as evidenced by the reduction brought about by DAS in oxidative stress, ER stress, and proinflammatory gene expression levels. DAS treatment also regulated lipogenic gene expression levels, thereby reducing free fatty acid release. In conclusion, this study has clinical implications with respect to alcohol-induced adipose tissue injury among alcohol users.
Collapse
Affiliation(s)
| | - Imran Khan
- Department of Biological Sciences , BITS Pilani, Hyderabad, India
| | - Reshma Jamal
- Department of Biological Sciences , BITS Pilani, Hyderabad, India
| | - Sandeep Kumar Vishwakarma
- Central Laboratory for Stem Cell Research & Translational Medicine , CLRD, Deccan College of Medical Sciences, Hyderabad, India
| | - Chandrakala Lakki Reddy
- Central Laboratory for Stem Cell Research & Translational Medicine , CLRD, Deccan College of Medical Sciences, Hyderabad, India
| | - Kirti Parwani
- Department of Biological Sciences , P D Patel Institute of Applied Sciences, Charotar University of Science and Technology, Anand, Gujarat, India
| | - Farhin Patel
- Department of Biological Sciences , P D Patel Institute of Applied Sciences, Charotar University of Science and Technology, Anand, Gujarat, India
| | - Dhara Patel
- Department of Biological Sciences , P D Patel Institute of Applied Sciences, Charotar University of Science and Technology, Anand, Gujarat, India
| | - Aleem A Khan
- Central Laboratory for Stem Cell Research & Translational Medicine , CLRD, Deccan College of Medical Sciences, Hyderabad, India
| | - Palash Mandal
- Department of Biological Sciences , BITS Pilani, Hyderabad, India.,Department of Biological Sciences , P D Patel Institute of Applied Sciences, Charotar University of Science and Technology, Anand, Gujarat, India
| |
Collapse
|
18
|
Host defenses against metabolic endotoxaemia and their impact on lipopolysaccharide detection. Int Rev Immunol 2017; 36:125-144. [DOI: 10.1080/08830185.2017.1280483] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
19
|
Landmann M, Sellmann C, Engstler AJ, Ziegenhardt D, Jung F, Brombach C, Bergheim I. Hops (Humulus lupulus) Content in Beer Modulates Effects of Beer on the Liver After Acute Ingestion in Female Mice. Alcohol Alcohol 2016; 52:48-55. [DOI: 10.1093/alcalc/agw060] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2015] [Revised: 06/07/2016] [Accepted: 07/28/2016] [Indexed: 02/06/2023] Open
|
20
|
Hartmann P, Seebauer CT, Schnabl B. Alcoholic liver disease: the gut microbiome and liver cross talk. Alcohol Clin Exp Res 2016; 39:763-75. [PMID: 25872593 DOI: 10.1111/acer.12704] [Citation(s) in RCA: 197] [Impact Index Per Article: 24.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2015] [Accepted: 02/18/2015] [Indexed: 01/18/2023]
Abstract
Alcoholic liver disease (ALD) is a leading cause of morbidity and mortality worldwide. Alcoholic fatty liver disease can progress to steatohepatitis, alcoholic hepatitis, fibrosis, and cirrhosis. Patients with alcohol abuse show quantitative and qualitative changes in the composition of the intestinal microbiome. Furthermore, patients with ALD have increased intestinal permeability and elevated systemic levels of gut-derived microbial products. Maintaining eubiosis, stabilizing the mucosal gut barrier, or preventing cellular responses to microbial products protect from experimental ALD. Therefore, intestinal dysbiosis and pathological bacterial translocation appear fundamental for the pathogenesis of ALD. This review highlights causes for intestinal dysbiosis and pathological bacterial translocation, their relationship, and consequences for ALD. We also discuss how the liver affects the intestinal microbiota.
Collapse
Affiliation(s)
- Phillipp Hartmann
- Department of Medicine, University of California, San Diego, La Jolla, California
| | | | | |
Collapse
|
21
|
Kema VH, Mojerla NR, Khan I, Mandal P. Effect of alcohol on adipose tissue: a review on ethanol mediated adipose tissue injury. Adipocyte 2015; 4:225-31. [PMID: 26451277 PMCID: PMC4573182 DOI: 10.1080/21623945.2015.1017170] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/05/2015] [Revised: 01/30/2015] [Accepted: 02/02/2015] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Alcohol consumption has been in existence in the world for many centuries and it is the major cause of death and injury worldwide. Alcoholic liver disease (ALD) is caused due to excess and chronic alcohol intake. Studies across the globe have identified several pathways leading to ALD. Adipose tissue which has been considered as an energy storage organ is also found to play a major role in ALD progression by secreting hormones and cytokines known as adipokines or adipocytokines. Ethanol affects the metabolic and innate immune activities of adipose tissue contributing to alcohol-induced injury of the tissues. OBJECTIVE We aimed at 1) summarizing the metabolism and progression of ALD 2) summarizing about the structure and effect of ethanol induced oxidative stress on adipose tissue 3) reviewing the available data on the effect of ethanol on adipose tissue mass and adipokine secretion in both rodent models and alcoholic patients. METHODS The article is summarized based on the original literature and reviews in studying the effect of ethanol on adipose tissue. RESULTS Studies on alcoholic patients and rodent models has shown that chronic ethanol consumption reduces adipose tissue mass and causes CYP2E1 mediated oxidative stress and inflammation of adipose tissue. Further hyperlipolysis is observed in adipose tissue that leads to excess fatty acid release that gets transported and deposited in the liver resulting in hepatic steatosis. CONCLUSION Studies show that adipose tissue plays a major role in the progression of ALD. So understanding of the mechanisms linking ethanol induced adipose tissue injury with ALD progression would help us in identifying potential therapeutic targets.
Collapse
Affiliation(s)
- Venkata Harini Kema
- Department of Biological Sciences; BITS Pilani; Hyderabad Campus; Hyderabad, India
| | | | - Imran Khan
- Department of Biological Sciences; BITS Pilani; Hyderabad Campus; Hyderabad, India
| | - Palash Mandal
- Department of Biological Sciences; BITS Pilani; Hyderabad Campus; Hyderabad, India
| |
Collapse
|
22
|
Wang XP, Lei F, Du F, Chai YS, Jiang JF, Wang YG, Yu X, Yan XJ, Xing DM, Du LJ. Protection of Gastrointestinal Mucosa from Acute Heavy Alcohol Consumption: The Effect of Berberine and Its Correlation with TLR2, 4/IL1β-TNFα Signaling. PLoS One 2015. [PMID: 26226164 PMCID: PMC4520689 DOI: 10.1371/journal.pone.0134044] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
The purpose of the present study is to confirm the protective effect of berberine (BBR) on gastrointestinal injury caused by acute heavy alcohol exposure, an effect that has not been reported previously. Our research details how BBR protects against gastrointestinal injuries from acute alcohol exposure using both in vivo and in vitro experiments. Acute high alcohol concentrations lead to obvious damage to the gastrointestinal mucosa, resulting in necrosis of the intestinal mucosa. Oral administration of BBR was able to significantly reduce this alcohol-induced damage, inhibit increases of alcohol-induced TNFα and IL-1β expression in gastrointestinal mucosa as well as their upstream signals TLR2 and TLR4, and regulate cytokines that modulate tight junctions. Alcohol consumption is a popular human social behavior worldwide, and the present study reports a comprehensive mechanism by which BBR protects against gastrointestinal injuries from alcohol stress, providing people with a novel application of BBR.
Collapse
Affiliation(s)
- Xin-Pei Wang
- MOE Key Laboratory of Protein Sciences, Laboratory of Molecular Pharmacology and Pharmaceutical Sciences, School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Fan Lei
- School of Medicine, Tsinghua University, Beijing, 100084, China
| | - Feng Du
- Department of Mathematics, Tulane University, New Orleans, LA, 70118, United States of America
| | - Yu-Shuang Chai
- MOE Key Laboratory of Protein Sciences, Laboratory of Molecular Pharmacology and Pharmaceutical Sciences, School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Jing-Fei Jiang
- MOE Key Laboratory of Protein Sciences, Laboratory of Molecular Pharmacology and Pharmaceutical Sciences, School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Yu-Gang Wang
- MD Anderson Cancer Center, University of Texas, Houston, Texas, 77030, United States of America
| | - Xuan Yu
- MOE Key Laboratory of Protein Sciences, Laboratory of Molecular Pharmacology and Pharmaceutical Sciences, School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Xiao-Jin Yan
- MOE Key Laboratory of Protein Sciences, Laboratory of Molecular Pharmacology and Pharmaceutical Sciences, School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Dong-Ming Xing
- MOE Key Laboratory of Protein Sciences, Laboratory of Molecular Pharmacology and Pharmaceutical Sciences, School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Li-Jun Du
- MOE Key Laboratory of Protein Sciences, Laboratory of Molecular Pharmacology and Pharmaceutical Sciences, School of Life Sciences, Tsinghua University, Beijing, 100084, China
- * E-mail:
| |
Collapse
|
23
|
Dual effect of red wine on liver redox status: a concise and mechanistic review. Arch Toxicol 2015; 89:1681-93. [PMID: 26026610 DOI: 10.1007/s00204-015-1538-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2015] [Accepted: 05/12/2015] [Indexed: 01/09/2023]
|
24
|
Lippai D, Bala S, Catalano D, Kodys K, Szabo G. Micro-RNA-155 deficiency prevents alcohol-induced serum endotoxin increase and small bowel inflammation in mice. Alcohol Clin Exp Res 2015; 38:2217-24. [PMID: 25156614 DOI: 10.1111/acer.12483] [Citation(s) in RCA: 82] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2013] [Accepted: 04/29/2014] [Indexed: 02/07/2023]
Abstract
BACKGROUND Chronic alcohol impairs gut barrier function and induces inflammatory cytokines. The effects of acute alcohol binge on the gut are partially understood. Micro-RNA-155 (miR-155), a modulator of cytokine and T-cell immune response in the gut, stabilizes tumor necrosis factor-α (TNFα) mRNA. Here, we investigated the role of the inflammation modulator miR-155 as well as the effects of acute binge and chronic alcohol feeding in the small bowel (SB) in mice. METHODS For the acute alcohol binge, wild-type (WT) mice received 5 g/kg 50% alcohol/d or equal amount of water oral gavage for 3 days. WT and miR-155-deficient (miR-155-knockout [KO]) mice received ethanol containing Lieber-DeCarli or isocaloric control diet for 5 weeks. MiR-155, antimicrobial peptide, regenerating islet-derived 3-beta (Reg3b), inflammation markers, Src homology 2-containing inositol phosphatase-1 (SHIP1), TNFα, and nuclear factor-κB (NF-κB) were measured in proximal intestinal tissue. Endotoxin was measured in the serum. RESULTS Acute alcohol binge enhanced, whereas chronic alcohol feeding decreased, Reg3b mRNA and protein levels in the SB. Both acute binge and chronic alcohol feeding increased serum endotoxin levels, intestinal NF-κB activation and TNFα mRNA levels. However, TNFα protein and miR-155 were increased only after chronic alcohol feeding in the SB. Furthermore, miR-155-KO mice were protected from chronic alcohol-induced increase in serum endotoxin, intestinal TNFα, and NF-κB activation. Also, alcohol-fed miR-155-KO mice had no decrease of Reg3b and SHIP1 levels. CONCLUSIONS These results demonstrate that both acute binge and chronic ethanol administration result in increased serum-endotoxin levels. Our study identifies a novel role for miR-155 in chronic alcohol-induced intestinal inflammation and barrier dysfunction.
Collapse
Affiliation(s)
- Dora Lippai
- 2nd Department of Medicine, Semmelweis University, Budapest, Hungary; Department of Medicine, University of Massachusetts Medical School, Worcester, Massachusetts
| | | | | | | | | |
Collapse
|
25
|
Tuomisto S, Pessi T, Collin P, Vuento R, Aittoniemi J, Karhunen PJ. Changes in gut bacterial populations and their translocation into liver and ascites in alcoholic liver cirrhotics. BMC Gastroenterol 2014; 14:40. [PMID: 24564202 PMCID: PMC3996058 DOI: 10.1186/1471-230x-14-40] [Citation(s) in RCA: 94] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/09/2013] [Accepted: 02/19/2014] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND The liver is the first line of defence against continuously occurring influx of microbial-derived products and bacteria from the gut. Intestinal bacteria have been implicated in the pathogenesis of alcoholic liver cirrhosis. Escape of intestinal bacteria into the ascites is involved in the pathogenesis of spontaneous bacterial peritonitis, which is a common complication of liver cirrhosis. The association between faecal bacterial populations and alcoholic liver cirrhosis has not been resolved. METHODS Relative ratios of major commensal bacterial communities (Bacteroides spp., Bifidobacterium spp., Clostridium leptum group, Enterobactericaea and Lactobacillus spp.) were determined in faecal samples from post mortem examinations performed on 42 males, including cirrhotic alcoholics (n = 13), non-cirrhotic alcoholics (n = 15), non-alcoholic controls (n = 14) and in 7 healthy male volunteers using real-time quantitative PCR (RT-qPCR). Translocation of bacteria into liver in the autopsy cases and into the ascites of 12 volunteers with liver cirrhosis was also studied with RT-qPCR. CD14 immunostaining was performed for the autopsy liver samples. RESULTS Relative ratios of faecal bacteria in autopsy controls were comparable to those of healthy volunteers. Cirrhotics had in median 27 times more bacterial DNA of Enterobactericaea in faeces compared to the healthy volunteers (p = 0.011). Enterobactericaea were also the most common bacteria translocated into cirrhotic liver, although there were no statistically significant differences between the study groups. Of the ascites samples from the volunteers with liver cirrhosis, 50% contained bacterial DNA from Enterobactericaea, Clostridium leptum group or Lactobacillus spp.. The total bacterial DNA in autopsy liver was associated with the percentage of CD14 expression (p = 0.045). CD14 expression percentage in cirrhotics was significantly higher than in the autopsy controls (p = 0.004). CONCLUSIONS Our results suggest that translocation of intestinal bacteria into liver may be involved as a one factor in the pathogenesis of alcoholic liver cirrhosis.
Collapse
Affiliation(s)
- Sari Tuomisto
- Department of Forensic Medicine, University of Tampere, School of Medicine, Medisiinarinkatu 3, 33014 Tampere, Finland.
| | | | | | | | | | | |
Collapse
|
26
|
Szabo G, Lippai D. Converging actions of alcohol on liver and brain immune signaling. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2014; 118:359-80. [PMID: 25175869 DOI: 10.1016/b978-0-12-801284-0.00011-7] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Chronic excessive alcohol consumption results in inflammation in multiple organs, including the brain. While the contribution of neuroinflammation to alcohol-related cognitive dysfunction and behavioral alterations is established, the mechanisms by which alcohol triggers inflammation in the brain are only partially understood. There are acute and long-term alterations in brain function due to intercellular and intracellular changes of different cell types as a result of alcohol consumption. This review focuses on the alcohol-induced proinflammatory cellular and molecular changes in the central nervous system. Alcohol passes through the blood-brain barrier and alters neurotransmission. Alcohol use activates microglia and astrocyte, contributing to neurodegeneration and impaired regeneration. Alcohol-induced cell injury in the brain results in release of damage-associated molecular patterns, such as high mobility group box 1, that trigger inflammatory changes through activation of pattern recognition receptors. In addition, alcohol consumption increases intestinal permeability and results in increased levels of pathogen-associated molecular pattern such as endotoxin in the systemic circulation that triggers PRRs and inflammation. The Toll-like receptor-4 pathway that activates nuclear factor-κB and secretion of proinflammatory cytokines, tumor necrosis factor-α, interleukin-1-beta, and chemokines, including monocyte chemotactic protein-1, has been suggested to contribute to alcohol-induced neuroinflammation. Alcohol-induced IL-1β secretion also requires Nod-like receptor-mediated inflammasome and caspase-1 activation, and, consistent with this, disruption of IL-1/IL-1-receptor signaling prevents alcohol-induced neuroinflammation. Delicate regulators of inflammatory gene expressions are micro-RNAs (miRs) that have recently been identified in alcohol-related neuroinflammation. Alcohol induces miR155, a regulator of inflammation in the brain, and deficiency in miR-155 in mice was protective from neuroinflammatory changes. These observations suggest that manipulation of miR pathways and cytokine induction may reduce alcohol-induced proinflammatory processes.
Collapse
Affiliation(s)
- Gyongyi Szabo
- Department of Medicine, University of Massachusetts Medical School, Worcester, Massachusetts, USA.
| | - Dora Lippai
- 2nd Department of Internal Medicine, Semmelweis University, Budapest, Hungary
| |
Collapse
|
27
|
Abhilash PA, Harikrishnan R, Indira M. Ascorbic acid suppresses endotoxemia and NF-κB signaling cascade in alcoholic liver fibrosis in guinea pigs: a mechanistic approach. Toxicol Appl Pharmacol 2013; 274:215-24. [PMID: 24239723 DOI: 10.1016/j.taap.2013.11.005] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2013] [Revised: 10/30/2013] [Accepted: 11/01/2013] [Indexed: 12/12/2022]
Abstract
Alcohol consumption increases the small intestinal bacterial overgrowth (SIBO) and intestinal permeability of endotoxin. The endotoxin mediated inflammatory signaling plays a major role in alcoholic liver fibrosis. We evaluated the effect of ascorbic acid (AA), silymarin and alcohol abstention on the alcohol induced endotoxemia and NF-κB activation cascade pathway in guinea pigs (Cavia porcellus). Guinea pigs were administered ethanol at a daily dose of 4g/kg b.wt for 90days. After 90days, ethanol administration was stopped. The ethanol treated animals were divided into abstention, silymarin (250mg/kg b.wt) and AA (250mg/kg b.wt) supplemented groups and maintained for 30days. The SIBO, intestinal permeability and endotoxin were significantly increased in the ethanol group. The mRNA expressions of intestinal proteins claudin, occludin and zona occludens-1 were significantly decreased in ethanol group. The mRNA levels of inflammatory receptors, activity of IKKβ and the protein expressions of phospho-IκBα, NF-κB, TNF-α, TGF-β1 and IL-6 were also altered in ethanol group. The expressions of fibrosis markers α-SMA, α1 (I) collagen and sirius red staining in the liver revealed the induction of fibrosis. But the supplementation of AA could induce greater reduction of ethanol induced SIBO, intestinal barrier defects, NF-κB activation and liver fibrosis than silymarin. The possible mechanism may be the inhibitory effect of AA on SIBO, intestinal barrier defect and IKKβ, which decreased the activation of NF-κB and synthesis of cytokines. This might have led to suppression of HSCs activation and liver fibrosis.
Collapse
Affiliation(s)
- P A Abhilash
- Department of Biochemistry, University of Kerala, Kariavattom, Thiruvananthapuram 695 581, Kerala, India
| | - R Harikrishnan
- Department of Biochemistry, University of Kerala, Kariavattom, Thiruvananthapuram 695 581, Kerala, India
| | - M Indira
- Department of Biochemistry, University of Kerala, Kariavattom, Thiruvananthapuram 695 581, Kerala, India.
| |
Collapse
|
28
|
Elamin EE, Masclee AA, Dekker J, Jonkers DM. Ethanol metabolism and its effects on the intestinal epithelial barrier. Nutr Rev 2013; 71:483-99. [PMID: 23815146 DOI: 10.1111/nure.12027] [Citation(s) in RCA: 122] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Ethanol is widely consumed and is associated with an increasing global health burden. Several reviews have addressed the effects of ethanol and its oxidative metabolite, acetaldehyde, on the gastrointestinal (GI) tract, focusing on carcinogenic effects or alcoholic liver disease. However, both the oxidative and the nonoxidative metabolites of ethanol can affect the epithelial barrier of the small and large intestines, thereby contributing to GI and liver diseases. This review outlines the possible mechanisms of ethanol metabolism as well as the effects of ethanol and its metabolites on the intestinal barrier. Limited studies in humans and supporting in vitro data have indicated that ethanol as well as mainly acetaldehyde can increase small intestinal permeability. Limited evidence also points to increased colon permeability following exposure to ethanol or acetaldehyde. In vitro studies have provided several mechanisms for disruption of the epithelial barrier, including activation of different cell-signaling pathways, oxidative stress, and remodeling of the cytoskeleton. Modulation via intestinal microbiota, however, should also be considered. In conclusion, ethanol and its metabolites may act additively or even synergistically in vivo. Therefore, in vivo studies investigating the effects of ethanol and its byproducts on permeability of the small and large intestines are warranted.
Collapse
Affiliation(s)
- Elhaseen E Elamin
- Top Institute Food and Nutrition (TIFN), Wageningen, The Netherlands
| | | | | | | |
Collapse
|
29
|
Relja B, Henrich D, Wetzel G, Sander AL, Jakob H, Maraslioglu M, Marzi I, Lehnert M. Effects of acute ethanol gavage on intestinal integrity after hemorrhage/resuscitation. Scand J Gastroenterol 2013; 48:448-58. [PMID: 23517294 DOI: 10.3109/00365521.2013.772228] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
BACKGROUND In hemorrhagic shock with subsequent resuscitation (H/R), increased pro-inflammatory changes contribute to tissue injury and mortality in rodent models. Ethanol (EtOH) is assumed to modulate the inflammatory response and the subsequent organ injury after H/R. Therefore, we determined the contribution of acute ethanol gavage on intestinal inflammation and injury as well as survival after H/R in rats. METHODS Fourteen hours before H/R, female LEWIS rats were gavaged with single dose of EtOH or saline (5 g/kg, 30% EtOH, H/R_EtOH group or H/R_ctrl group). Then, rats were hemorrhaged to a mean arterial blood pressure of 30 ± 2 mmHg for 60 min and resuscitated. Control groups underwent surgical procedures and gavage without H/R (sham_ctrl group and sham_EtOH group). Tissue was harvested 2 h after resuscitation. Mortality was assessed 72 h after H/R. RESULTS Ethanol gavage increased survival after H/R from 20% to 80%, but amplified plasma alanineaminotransferase (ALT) release compared to saline gavage (2847 ± 406 vs. 1159 ± 200 IU/L, p < 0.05). Intestinal mucosal damage index, intestinal permeability, ileal myeloperoxidase levels as indicators of polymorphonuclear leukocyte (PMNL) infiltration and systemic IL-6 levels as well as ileal IL-6 and TNF gene expressions after H/R were reduced and partly restored after ethanol gavage when compared to the saline gavaged group after H/R. CONCLUSIONS Taken together, we propose that acute ethanol gavage prior to H/R 1) did not enhance intestinal mucosa injury after H/R and 2) suppressed the H/R-induced inflammatory response. Both findings seem to contribute to the ethanol-induced survival benefit after H/R in our model.
Collapse
Affiliation(s)
- Borna Relja
- Department of Trauma, Hand and Reconstructive Surgery, Johann Wolfgang Goethe-University Frankfurt am Main, Frankfurt, Germany.
| | | | | | | | | | | | | | | |
Collapse
|
30
|
Suzuki T. Regulation of intestinal epithelial permeability by tight junctions. Cell Mol Life Sci 2013; 70:631-59. [PMID: 22782113 PMCID: PMC11113843 DOI: 10.1007/s00018-012-1070-x] [Citation(s) in RCA: 898] [Impact Index Per Article: 81.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2012] [Revised: 06/19/2012] [Accepted: 06/21/2012] [Indexed: 12/13/2022]
Abstract
The gastrointestinal epithelium forms the boundary between the body and external environment. It effectively provides a selective permeable barrier that limits the permeation of luminal noxious molecules, such as pathogens, toxins, and antigens, while allowing the appropriate absorption of nutrients and water. This selective permeable barrier is achieved by intercellular tight junction (TJ) structures, which regulate paracellular permeability. Disruption of the intestinal TJ barrier, followed by permeation of luminal noxious molecules, induces a perturbation of the mucosal immune system and inflammation, and can act as a trigger for the development of intestinal and systemic diseases. In this context, much effort has been taken to understand the roles of extracellular factors, including cytokines, pathogens, and food factors, for the regulation of the intestinal TJ barrier. Here, I discuss the regulation of the intestinal TJ barrier together with its implications for the pathogenesis of diseases.
Collapse
Affiliation(s)
- Takuya Suzuki
- Department of Biofunctional Science and Technology, Graduate School of Biosphere Science, Hiroshima University, 1-4-4, Kagamiyama, Higashi-Hiroshima, 739-8528, Japan.
| |
Collapse
|
31
|
Abstract
Hepatic fibrosis is a known consequence of long-term use of alcohol and is regarded as a turning point in alcohol-induced liver disease because it can lead to cirrhosis. The mechanisms of injury are not well understood, but recent studies have helped advance the understanding of the earliest events in the process that eventually leads to hepatic injury and, in some cases, fibrosis. It is hoped that increasing understanding of the role played by the immune system in the process will lead to the development of new therapies for these patients.
Collapse
Affiliation(s)
- Anupama T Duddempudi
- Division of Gastroenterology, Hepatology and Nutrition North Shore University Hospital, 300 Community Drive, Manhasset, NY 11030, USA.
| |
Collapse
|
32
|
Yan AW, Schnabl B. Bacterial translocation and changes in the intestinal microbiome associated with alcoholic liver disease. World J Hepatol 2012; 4:110-8. [PMID: 22567183 PMCID: PMC3345535 DOI: 10.4254/wjh.v4.i4.110] [Citation(s) in RCA: 79] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/03/2011] [Revised: 11/13/2011] [Accepted: 04/24/2012] [Indexed: 02/06/2023] Open
Abstract
Alcoholic liver disease progresses through several stages of tissue damage, from simple steatosis to alcoholic hepatitis, fibrosis, or cirrhosis. Alcohol also affects the intestine, increases intestinal permeability and changes the bacterial microflora. Liver disease severity correlates with levels of systemic bacterial products in patients, and experimental alcoholic liver disease is dependent on gut derived bacterial products in mice. Supporting evidence for the importance of bacterial translocation comes from animal studies demonstrating that intestinal decontamination is associated with decreased liver fibrogenesis. In addition, mice with a gene mutation or deletion encoding receptors for either bacterial products or signaling molecules downstream from these receptors, are resistant to alcohol-induced liver disease. Despite this strong association, the exact molecular mechanism of bacterial translocation and of how changes in the intestinal microbiome contribute to liver disease progression remains largely unknown. In this review we will summarize evidence for bacterial translocation and enteric microbial changes in response to alcoholic liver injury and chronic alcoholic liver disease. We will further describe consequences of intestinal dysbiosis on host biology. We finally discuss how therapeutic interventions may modify the gastrointestinal microflora and prevent or reduce alcoholic liver disease progression.
Collapse
Affiliation(s)
- Arthur W Yan
- Arthur W Yan, Division of Gastroenterology, Department of Medicine, University of Southern California, Keck School of Medicine, Los Angeles, CA 90033, United States
| | | |
Collapse
|
33
|
Voican CS, Perlemuter G, Naveau S. Mechanisms of the inflammatory reaction implicated in alcoholic hepatitis: 2011 update. Clin Res Hepatol Gastroenterol 2011; 35:465-74. [PMID: 21571602 DOI: 10.1016/j.clinre.2011.01.017] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/17/2011] [Revised: 01/26/2011] [Accepted: 01/31/2011] [Indexed: 02/07/2023]
|
34
|
Yan AW, Fouts DE, Brandl J, Starkel P, Torralba M, Schott E, Tsukamoto H, Nelson KE, Brenner DA, Schnabl B. Enteric dysbiosis associated with a mouse model of alcoholic liver disease. Hepatology 2011; 53:96-105. [PMID: 21254165 PMCID: PMC3059122 DOI: 10.1002/hep.24018] [Citation(s) in RCA: 583] [Impact Index Per Article: 44.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/09/2010] [Accepted: 09/07/2010] [Indexed: 12/11/2022]
Abstract
UNLABELLED The translocation of bacteria and bacterial products into the circulation contributes to alcoholic liver disease. Intestinal bacterial overgrowth is common in patients with alcoholic liver disease. The aims of our study were to investigate bacterial translocation, changes in the enteric microbiome, and its regulation by mucosal antimicrobial proteins in alcoholic liver disease. We used a mouse model of continuous intragastric feeding of alcohol or an isocaloric diet. Bacterial translocation occurred prior to changes observed in the microbiome. Quantitative changes in the intestinal microflora of these animals were assessed first using conventional culture techniques in the small and large intestine. Although we found no difference after 1 day or 1 week, intestinal bacterial overgrowth was observed in the gastrointestinal tract of mice fed alcohol for 3 weeks compared with control mice fed an isocaloric liquid diet. Because <20% of all gastrointestinal bacteria can be cultured using conventional methodologies, we performed massively parallel pyrosequencing to further assess the qualitative changes in the intestinal microbiome following alcohol exposure. Sequencing of 16S ribosomal RNA genes revealed a relative abundance of Bacteroidetes and Verrucomicrobia bacteria in mice fed alcohol compared with a relative predominance of Firmicutes bacteria in control mice. With respect to the host's transcriptome, alcohol feeding was associated with down-regulation in gene and protein expression of bactericidal c-type lectins Reg3b and Reg3g in the small intestine. Treatment with prebiotics partially restored Reg3g protein levels, reduced bacterial overgrowth, and lessened alcoholic steatohepatitis. CONCLUSION Alcohol feeding is associated with intestinal bacterial overgrowth and enteric dysbiosis. Intestinal antimicrobial molecules are dysregulated following chronic alcohol feeding contributing to changes in the enteric microbiome and to alcoholic steatohepatitis.
Collapse
Affiliation(s)
- Arthur W. Yan
- Department of Medicine, University of California San Diego, La Jolla, CA
| | | | - Johannes Brandl
- Department of Medicine, University of California San Diego, La Jolla, CA, Department of Hepatology and Gastroenterology, CVK, Charite Universitatsmedizin, Berlin, Germany
| | - Peter Starkel
- St. Luc University Hospital, Universite Catholique de Louvain, Brussels, Belgium
| | | | - Eckart Schott
- Department of Hepatology and Gastroenterology, CVK, Charite Universitatsmedizin, Berlin, Germany
| | - Hide Tsukamoto
- Department of Pathology, Southern California Research Center for Alcoholic Liver and Pancreatic Diseases and Cirrhosis, Keck School of Medicine of the University of Southern California, and Department of Veterans Affairs Greater Los Angeles Healthcare System, Los Angeles, CA
| | | | - David A. Brenner
- Department of Medicine, University of California San Diego, La Jolla, CA
| | - Bernd Schnabl
- Department of Medicine, University of California San Diego, La Jolla, CA
| |
Collapse
|
35
|
Sakaguchi S, Takahashi S, Sasaki T, Kumagai T, Nagata K. Progression of alcoholic and non-alcoholic steatohepatitis: common metabolic aspects of innate immune system and oxidative stress. Drug Metab Pharmacokinet 2010; 26:30-46. [PMID: 21150132 DOI: 10.2133/dmpk.dmpk-10-rv-087] [Citation(s) in RCA: 92] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Growing evidence indicates that the innate immune system and oxidative stress caused by gut-derived endotoxins play a key role in alcoholic liver disease (ALD). Intracellular mechanisms associated with endotoxin-induced signaling play a crucial role in the initiation and progression of ALD. It is now widely accepted that activation of the innate immune system and increased release of pro-inflammatory cytokines and other mediators play an important role in the development of ALD. Accumulating evidence suggests that alcohol-mediated upregulation of CYP2E1 expression may initiate lipid peroxidation via reactive oxygen species. Non-alcoholic steatohepatitis (NASH) is a liver disease characterized by histopathological features similar to those observed in ALD, but in the absence of significant alcohol consumption. Initial efforts to clarify the mechanisms that promote the progression from steatosis to steatohepatitis somewhat artificially divided disease mechanisms into "first and second hits." This model considered the development of steatosis to be the "first hit," increasing the sensitivity of the liver to the putative "second hit," leading to hepatocyte injury, inflammation, and oxidative stress. We have emphasized the important role of gut-derived bacterial toxins, the innate immune system, and oxidative stress in the common pathogenic mechanism in ALD and NASH progression.
Collapse
Affiliation(s)
- Shuhei Sakaguchi
- Department of Environmental and Health Science, Tohoku Pharmaceutical University, Sendai, Japan.
| | | | | | | | | |
Collapse
|
36
|
Pattern of alcohol consumption and its effect on gastrointestinal symptoms in inflammatory bowel disease. Alcohol 2010; 44:223-8. [PMID: 20682190 DOI: 10.1016/j.alcohol.2009.10.019] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2009] [Revised: 10/10/2009] [Accepted: 10/31/2009] [Indexed: 12/12/2022]
Abstract
Alcohol consumption is a potential trigger for flare in inflammatory bowel disease (IBD) flare because of alcohol's pro-oxidant effects and its deleterious effects on gut barrier function. The association with alcohol consumption and IBD flare is unclear. To test this hypothesis, we evaluated the pattern of alcohol consumption and its self-reported effect on gastrointestinal (GI) symptoms in patients with IBD. We recruited 129 consecutive patients: 52 patients with Crohn's disease, 38 patients with ulcerative colitis, and 39 patients with irritable bowel syndrome (IBS). All the participants completed a validated questionnaire on disease activity (the Crohn's disease activity index or ulcerative colitis clinical activity index, respectively) validated questionnaires to quantify alcohol consumption by National Institute of Alcohol Abuse and Alcoholism criteria, and two structured questionnaires we designed to access patients' perception of the effect of alcohol on their GI symptoms and on overall GI symptom severity. The pattern of current, light, moderate, and heavy alcohol consumption in inactive IBD was similar to the general U.S. population. Specifically, of the 90 inactive IBD patients, 56 (62%) were current drinkers, compared with 61% in the general U.S. population. Of current drinkers, 75% of IBD (N=42) and 43% of IBS (N=9) reported a worsening of GI symptoms with alcohol consumption (P=.01); however, overall GI symptom severity did not differ when compared with quantity of alcohol consumed. Patients with inactive IBD drink alcohol in quantities similar to the general population. Current drinkers with inactive IBD are more likely to report worsening of GI symptoms with alcohol than current drinkers with IBS.
Collapse
|
37
|
Mas VR, Fassnacht R, Archer KJ, Maluf D. Molecular mechanisms involved in the interaction effects of alcohol and hepatitis C virus in liver cirrhosis. Mol Med 2010; 16:287-97. [PMID: 20386865 DOI: 10.2119/molmed.2009.00165] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2009] [Accepted: 03/25/2010] [Indexed: 12/19/2022] Open
Abstract
The mechanisms by which alcohol consumption accelerates liver disease in patients with chronic hepatitis C virus (HCV) are not well understood. To identify the characteristics of molecular pathways affected by alcohol in HCV patients, we fit probe-set level linear models that included the additive effects as well as the interaction between alcohol and HCV. The study included liver tissue samples from 78 patients, 23 (29.5%) with HCV-cirrhosis, 13 (16.7%) with alcohol-cirrhosis, 23 (29.5%) with HCV/alcohol cirrhosis and 19 (24.4%) with no liver disease (no HCV/no alcohol group). We performed gene-expression profiling by using microarrays. Probe-set expression summaries were calculated by using the robust multiarray average. Probe-set level linear models were fit where probe-set expression was modeled by HCV status, alcohol status, and the interaction between HCV and alcohol. We found that 2172 probe sets (1895 genes) were differentially expressed between HCV cirrhosis versus alcoholic cirrhosis groups. Genes involved in the virus response and the immune response were the more important upregulated genes in HCV cirrhosis. Genes involved in apoptosis regulation were also overexpressed in HCV cirrhosis. Genes of the cytochrome P450 superfamily of enzymes were upregulated in alcoholic cirrhosis, and 1230 probe sets (1051 genes) had a significant interaction estimate. Cell death and cellular growth and proliferation were affected by the interaction between HCV and alcohol. Immune response and response to the virus genes were downregulated in HCV-alcohol interaction (interaction term alcohol*HCV). Alcohol*HCV in the cirrhotic tissues resulted in a strong negative regulation of the apoptosis pattern with concomitant positive regulation of cellular division and proliferation.
Collapse
Affiliation(s)
- Valeria R Mas
- Hume-Lee Transplant Center, Division of Transplant, Department of Surgery, Virginia Commonwealth University Health System, Richmond, Virginia 23298-0057, USA.
| | | | | | | |
Collapse
|
38
|
The immunopathogenesis of alcoholic and nonalcoholic steatohepatitis: two triggers for one disease? Semin Immunopathol 2009; 31:359-69. [DOI: 10.1007/s00281-009-0152-9] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2009] [Accepted: 04/28/2009] [Indexed: 02/08/2023]
|
39
|
Kishikawa H, Nishida J, Ichikawa H, Kaida S, Morishita T, Miura S, Hibi T. Lipopolysaccharides stimulate adrenomedullin synthesis in intestinal epithelial cells: release kinetics and secretion polarity. Peptides 2009; 30:906-12. [PMID: 19428768 DOI: 10.1016/j.peptides.2009.01.023] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/25/2008] [Revised: 01/25/2009] [Accepted: 01/26/2009] [Indexed: 10/21/2022]
Abstract
Adrenomedullin (AM), a potent vasodilator peptide initially isolated from a human pheochromocytoma, functions as an antimicrobial peptide in host defense. In this study, we investigated changes in AM levels in intestinal epithelial cells and the mechanism of its secretion and cellular polarity after exposure to lipopolysaccharides (LPS). When a rat small intestinal cell line (IEC-18 cells) was exposed to LPS, enzyme-linked immunosorbent assay revealed a dose-dependent increase in AM together with an increase in AM mRNA expression, as determined by real-time polymerase chain reaction. Up-regulation of AM by LPS was dose-dependently inhibited by LY294002, PD98059, SP600125 and calphostin-C, suggesting the involvement of the phosphatidylinositol 3 kinase, extracellular signal-regulated kinase, c-Jun NH2-terminal kinase and protein kinase C pathways, respectively, in this process. When polarized IEC-18 cells in a Transwell chamber were stimulated with LPS, AM secretion was directed primarily toward the side of LPS administration (either the apical or basolateral side). In situ hybridization revealed that AM mRNA was expressed in epithelial cells and in the connective tissue in the lamina propria of the jejunum after intraperitoneal or oral administration of LPS. Higher levels of AM mRNA expression were observed in rats treated with LPS via the intraperitoneal route, compared with those treated via the oral route. These findings suggest that intestinal AM plays an important role in mucosal defense in the case of intestinal luminal infection, as well as in the modulation of hemodynamics in endotoxemia.
Collapse
Affiliation(s)
- Hiroshi Kishikawa
- Department of Gastroenterology, Tokyo Dental College, Ichikawa General Hospital, 5-11-13 Sugano Ichikawa, Chiba 272-8513, Japan
| | | | | | | | | | | | | |
Collapse
|
40
|
Purohit V, Bode JC, Bode C, Brenner DA, Choudhry MA, Hamilton F, Kang YJ, Keshavarzian A, Rao R, Sartor RB, Swanson C, Turner JR. Alcohol, intestinal bacterial growth, intestinal permeability to endotoxin, and medical consequences: summary of a symposium. Alcohol 2008; 42:349-61. [PMID: 18504085 DOI: 10.1016/j.alcohol.2008.03.131] [Citation(s) in RCA: 232] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2007] [Revised: 03/11/2008] [Accepted: 03/27/2008] [Indexed: 12/13/2022]
Abstract
This report is a summary of the symposium on Alcohol, Intestinal Bacterial Growth, Intestinal Permeability to Endotoxin, and Medical Consequences, organized by National Institute on Alcohol Abuse and Alcoholism, Office of Dietary Supplements, and National Institute of Diabetes and Digestive and Kidney Diseases of National Institutes of Health in Rockville, Maryland, October 11, 2006. Alcohol exposure can promote the growth of Gram-negative bacteria in the intestine, which may result in accumulation of endotoxin. In addition, alcohol metabolism by Gram-negative bacteria and intestinal epithelial cells can result in accumulation of acetaldehyde, which in turn can increase intestinal permeability to endotoxin by increasing tyrosine phosphorylation of tight junction and adherens junction proteins. Alcohol-induced generation of nitric oxide may also contribute to increased permeability to endotoxin by reacting with tubulin, which may cause damage to microtubule cytoskeleton and subsequent disruption of intestinal barrier function. Increased intestinal permeability can lead to increased transfer of endotoxin from the intestine to the liver and general circulation where endotoxin may trigger inflammatory changes in the liver and other organs. Alcohol may also increase intestinal permeability to peptidoglycan, which can initiate inflammatory response in liver and other organs. In addition, acute alcohol exposure may potentiate the effect of burn injury on intestinal bacterial growth and permeability. Decreasing the number of Gram-negative bacteria in the intestine can result in decreased production of endotoxin as well as acetaldehyde which is expected to decrease intestinal permeability to endotoxin. In addition, intestinal permeability may be preserved by administering epidermal growth factor, l-glutamine, oats supplementation, or zinc, thereby preventing the transfer of endotoxin to the general circulation. Thus reducing the number of intestinal Gram-negative bacteria and preserving intestinal permeability to endotoxin may attenuate alcoholic liver and other organ injuries.
Collapse
Affiliation(s)
- Vishnudutt Purohit
- Division of Metabolism and Health Effects, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, 5635 Fishers Lane, Room 2035, MSC 9304, Bethesda, MD 20892-9304, USA.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Acetaldehyde-induced barrier disruption and paracellular permeability in Caco-2 cell monolayer. Methods Mol Biol 2008; 447:171-83. [PMID: 18369919 DOI: 10.1007/978-1-59745-242-7_13] [Citation(s) in RCA: 85] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
A significant body of evidence indicates that endotoxemia plays a crucial role in the pathogenesis of alcoholic liver disease. There are several possible factors that may be involved in inducing alcoholic endotoxemia, but increased intestinal permeability to enteric endotoxins appears to be the major contributing factor. In the normal gut, the epithelial barrier function prevents diffusion of toxins across the epithelium. However, the barrier is disrupted in patients with alcoholic liver disease. We showed that acetaldehyde disrupts intestinal epithelial tight junctions and increases paracellular permeability to endotoxins in Caco-2 cell monolayer, the extensively studied model of the differentiated intestinal epithelium. The mechanisms involved in acetaldehyde-induced increase in intestinal permeability to endotoxins can be elucidated in this model of the intestinal epithelium.
Collapse
|
42
|
Nagata K, Suzuki H, Sakaguchi S. Common pathogenic mechanism in development progression of liver injury caused by non-alcoholic or alcoholic steatohepatitis. J Toxicol Sci 2008; 32:453-68. [PMID: 18198478 DOI: 10.2131/jts.32.453] [Citation(s) in RCA: 146] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
This review showed the common pathogenic mechanism in the development of non-alcoholic or alcoholic steatohepatitis. In particular, we describe the role of innate immune system and oxidative stress caused by gut-derived endotoxin. Gut-derived endotoxin plays an important role in alcoholic liver injury. It was reported that acute ethanol administration reduced activation of Kupffer cells. It is therefore possible that alcohol-induced hepatocellular damage occurs as a result of bacterial or endotoxin translocation under a reduction of the reticuloendothelial system (RES) function in alcoholic liver disease (ALD). On the other hand, recently, attention has been directed toward the effect of ethanol ingestion on Kupffer cell function, which is stimulated by gut-derived endotoxin via mechanisms dependent on increased gut permeability and the possible relationship between Kupffer cells and alcohol-induced liver injury. It is generally accepted that activation of the innate immune system and increased release of proinflammatory cytokines and other mediators plays an important role in the development of ALD. It was shown that Kupffer cells activation by endotoxin via Toll-like receptor (TLR-4) is involved in alcohol-induced liver injury and that ethanol-induced oxidative stress is important in the regulation of transcription factor NF-kappaB activation and that cytokine production by Kupffer cells. TNF-alpha and free radicals are produced in early alcohol-induced liver injury. In support of this finding, the pathology caused by alcohol was blocked nearly completely in TNF-alpha receptor 1. Many pathways have been suggested to contribute to the ability of ethanol to induce a state of oxidative stress. One central pathway appears to be the induction of the CYP2E1 form of cytochrome P450 enzymes by ethanol. Initial efforts to clarify the mechanisms that promote the progression from steatosis to steatohepatitis somewhat artificially divides disease mechanisms into "first and second" hit. The best candidates for these second hits were considered to be oxidative stress (CYP2E1 induction) and associated lipid peroxidation and cyokines, principally, TNF-alpha. Some of the most definitive data on the importance of the innate immune system or oxidative stress in the pathogenesis of liver disease come from studies of alcoholic and non-alcoholic steatohepatitis in animals.
Collapse
Affiliation(s)
- Kiyoshi Nagata
- Department of Environmental Health Science, Tohoku Pharmaceutical University, Sendai, Japan
| | | | | |
Collapse
|
43
|
El-Mas MM, Fan M, Abdel-Rahman AA. Endotoxemia-mediated induction of cardiac inducible nitric-oxide synthase expression accounts for the hypotensive effect of ethanol in female rats. J Pharmacol Exp Ther 2007; 324:368-75. [PMID: 17925480 DOI: 10.1124/jpet.107.127498] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
We have recently shown that intragastric (i.g.) ethanol lowers blood pressure (BP) in conscious female rats via a reduction in cardiac output (CO). However, the mechanisms implicated in these hemodynamic effects of ethanol are not known. Therefore, we tested the hypothesis that ethanol-evoked endotoxemia mediates the reduction in CO via enhanced myocardial inducible nitric-oxide synthase (iNOS) expression. Immunoblot (myocardial iNOS), biochemical (plasma endotoxin and nitrite/nitrate), and integrative [BP, heart rate, CO, stroke volume (SV), and total peripheral resistance (TPR)] studies were conducted in conscious female rats that received i.g. ethanol (1 g/kg) in the absence or presence of 1400W (N-(3-[aminomethyl]benzyl) acetamidine) or ampicillin to selectively inhibit iNOS and to eliminate endogenous endotoxin, respectively. Ethanol-evoked hypotension coincided with reductions in CO and SV and increases in: 1) TPR, 2) plasma endotoxin and nitrite/nitrate, and 3) myocardial iNOS expression. These effects of ethanol were virtually abolished in rats pretreated with ampicillin (200 mg/kg/day for 2 days by gavage) or with 1400W (5 mg/kg i.p.) except for the increase in plasma endotoxin, which persisted in 1400W-pretreated rats. These findings yield insight into the mechanistic role of endotoxin-myocardial iNOS signaling in the cardiodepressant action of ethanol, which accounts for its hypotensive effect in conscious female rats.
Collapse
Affiliation(s)
- Mahmoud M El-Mas
- Department of Pharmacology, School of Medicine, East Carolina University, Greenville, NC 27834, USA
| | | | | |
Collapse
|
44
|
|
45
|
Kishikawa H, Miura S, Nishida J, Nakano M, Hirano E, Sudo N, Morishita T, Ishii H. Ethanol-induced CXC-chemokine synthesis and barrier dysfunction in intestinal epithelial cells. Alcohol Clin Exp Res 2006; 29:2116-22. [PMID: 16385181 DOI: 10.1097/01.alc.0000192299.63463.50] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
BACKGROUND Ethanol exposure contributes to infectious complications in burn and trauma patients through a process known as "bacterial translocation." Two major factors, 1) physical disruption of the intestinal mucosal barrier and 2) suppression of immune defense, explain this phenomenon. However, little information is available concerning the immune mechanisms of ethanol-induced bacterial translocation. In this study we investigated the effect of physiological concentrations of ethanol on immune function, especially on CXC-chemokine secretion, neutrophil migration, and barrier function in the small intestine METHODS A rat small intestinal intestinal cell line (IEC-18 cells) was exposed to 50-500 mM ethanol for 24 hr with or without IL-1 beta. Secretion of CXC chemokines (GRO/CINC-1 and MIP-2) was measured by ELISA assay, and barrier dysfunction was assessed by the apical-to-basolateral flux of HRP-dextran. Neutrophil transmigration was assessed by enzyme histochemistry (AS-D chloroesterase staining) RESULTS Exposure to ethanol concentrations of 200 mM and over increased GRO/CINC-1 secretion, and MIP-2 secretion increased at 500 mM. Administration of ethanol in combination with IL-1 beta had no additive effect on the release of GRO/CINC-1 and MIP-2. Exposure of IEC-18 monolayers to ethanol resulted in a dose-dependent increase in permeability but IL-1 beta had no effect on barrier function. Ethanol had no effect on neutrophil migration in enzyme histochemistry analysis CONCLUSIONS The above observations suggest that ethanol induced physical disruption of the intestine but not neutrophil transmigration is the main cause of the bacterial translocation that leads to bacteremia and endotoxemia in alcoholics.
Collapse
Affiliation(s)
- Hiroshi Kishikawa
- Department of Gastroenterology, Tokyo Dental College, Ichikawa General Hospital, Chiba, Japan.
| | | | | | | | | | | | | | | |
Collapse
|
46
|
Horie Y, Han JY, Mori S, Konishi M, Kajihara M, Kaneko T, Yamagishi Y, Kato S, Ishii H, Hibi T. Herbal cardiotonic pills prevent gut ischemia/reperfusion-induced hepatic microvascular dysfunction in rats fed ethanol chronically. World J Gastroenterol 2005; 11:511-5. [PMID: 15641136 PMCID: PMC4250801 DOI: 10.3748/wjg.v11.i4.511] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
AIM: Cardiotonic Pill (CP), an oral herbal medicine that includes Danshen (Salviae Miltiorrhizae), Panax notoginseny and Dyroblanops aromatica gaertn, has been clinically used for vascular diseases such as occlusive vasculitis, coronary diseases, atherosclerosis, and cerebral infarction. The main component, Salviae Miltiorrhizae, has been reported to prevent cerebral and intestinal reperfusion injury. However, little is known about the effect of CP on hepatic microcirculation. Thus, this study aimed to determine whether CP could affect hepatic microvascular dysfunction elicited by gut ischemia/reperfusion (I/R) in rats fed ethanol chronically.
METHODS: Male Wistar rats were pair-fed with a liquid diet containing ethanol or isocaloric control diet for 6 wk. After laparotomy, one lobe of the liver was examined through an inverted intravital microscope. The rats were exposed to 30 min of gut ischemia followed by 60 min of reperfusion. Rhodamine-6G-labeled leukocytes in the sinusoids were observed 90 min after the onset of superior mesenteric artery occlusion. Plasma tumor necrosis factor (TNF)-α and endotoxin levels were measured 1 h after the onset of reperfusion. Plasma alanine aminotransferase (ALT) activities were measured 6 h after the onset of reperfusion. In another set of experiments, CP (0.8 g/kg, intragastrically) was administered 1 and 24 h before the onset of ischemia.
RESULTS: In control rats, gut I/R elicited increases in the number of stationary leukocytes, and plasma TNF-α and endotoxin levels and plasma ALT activities. These changes were mitigated by pretreatment with CP. In ethanol-fed rats, the gut I/R-induced increases in the number of stationary leukocytes, plasma endotoxin levels and ALT activities were enhanced. Pretreatment with CP attenuated the enhancement of gut I/R-induced responses by chronic ethanol consumption.
CONCLUSION: These results suggest that CP prevents the gut I/R-induced hepatic microvascular dysfunction and hepatocellular injury. A reduction of inflammatory responses such as TNF-α production via reduction of blood endotoxin levels appears to be involved in the mechanisms. Chronic ethanol consumption enhances gut I/R-induced hepatic microvascular and hepatocellular injury. CP also attenuates an enhancement of gut I/R-induced responses by chronic ethanol consumption via the reduction of blood endotoxin levels.
Collapse
Affiliation(s)
- Yoshinori Horie
- Department of Internal Medicine, School of Medicine, Keio University, Tokyo, Japan.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Abstract
Alcohol-induced diseases of the gastrointestinal tract play an important role in clinical gastroenterology. However, the precise pathophysiological mechanisms are still largely unknown. Alcohol research depends essentially on animal models due to the fact that controlled experimental studies of ethanol-induced diseases in humans are unethical. Animal models have already been successfully applied to disclose and analyze molecular mechanisms in alcohol-induced diseases, partially by using knockout technology. Because of a lack of transferability of some animal models to the human condition, results have to be interpreted cautiously. For some alcohol-related diseases like chronic alcoholic pancreatitis, the ideal animal model does not yet exist. Here we provide an overview of the most commonly used animal models in gastrointestinal alcohol research. We will also briefly discuss the findings based on animal models as well as the current concepts of pathophysiological mechanisms involved in acute and chronic alcoholic damage of the esophagus, stomach, small and large intestine, pancreas and liver.
Collapse
Affiliation(s)
- Soren V Siegmund
- Department of Medicine II (Gastroenterology, Hepatology, Infectious Diseases), University Hospital Mannheim, University of Heidelberg, Mannheim, Germany
| | | | | |
Collapse
|
48
|
El-Mas MM, Abdel-Rahman AA. Contrasting effects of chronic ethanol feeding on centrally and peripherally evoked hypotension in telemetered female rats. Vascul Pharmacol 2004; 41:59-66. [PMID: 15196476 DOI: 10.1016/j.vph.2004.05.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2004] [Revised: 04/12/2004] [Accepted: 05/13/2004] [Indexed: 11/19/2022]
Abstract
Our previous studies have shown that ethanol compromises hypotension produced by centrally acting antihypertensive agents in normotensive and hypertensive male rats. The present study investigated whether female rats are as susceptible as male rats to the deleterious effect of ethanol on centrally evoked hypotension. The study was extended to investigate ethanol effects on the time-domain indices of variability in blood pressure [standard deviation of mean arterial pressure (SDMAP)] and heart rate [standard deviation of beat-to-beat intervals (SDRR) and root mean square of successive differences in R-R intervals (rMSSD)]. The hemodynamic effects of a single intraperitoneal dose of clonidine (30 microg/kg) were evaluated in radiotelemetered ethanol-fed (5%, 12 weeks) and pair-fed control Sprague-Dawley rats. In control rats, clonidine caused a significant reduction in MAP that continued for at least 6 h and was associated with reductions in SDMAP and SDRR but not rMSSD, suggesting inhibition of central sympathetic tone. A maximum hypotensive response of -16.4+/-1.7 mm Hg was demonstrated 40 min after clonidine administration. Ethanol feeding significantly attenuated clonidine hypotension whereas it potentiated the associated reduction in SDMAP. To verify the selectivity of ethanol-clonidine interaction, the effects of ethanol on peripherally mediated hemodynamic responses to hydralazine (0.5 mg/kg ip) were investigated. In contrast to its antagonistic effect on clonidine hypotension, ethanol significantly potentiated the hypotensive effect of hydralazine. Together, these findings demonstrate that chronic ethanol feeding exerts opposite effects on centrally (attenuation) and peripherally (potentiation) evoked hypotension in female rats. The interaction of ethanol with antihypertensive agents may not be related to changes in hemodynamic variability.
Collapse
Affiliation(s)
- Mahmoud M El-Mas
- Department of Pharmacology, School of Medicine, East Carolina University, Greenville, NC 27858, USA
| | | |
Collapse
|
49
|
Horie Y, Kajihara M, Mori S, Yamagishi Y, Kimura H, Tamai H, Kato S, Ishii H. Japanese herbal medicine, Saiko-keishi-to, prevents gut ischemia/reperfusion-induced liver injury in rats via nitric oxide. World J Gastroenterol 2004; 10:2241-4. [PMID: 15259073 PMCID: PMC4724972 DOI: 10.3748/wjg.v10.i15.2241] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
AIM: To determine whether Saiko-keishi- to (TJ-10), a Japanese herbal medicine, could protect liver injury induced by gut ischemia/reperfusion (I/R), and to investigate the role of NO.
METHODS: Male Wistar rats were exposed to 30-min gut ischemia followed by 60 min of reperfusion. Intravital microscopy was used to monitor leukocyte recruitment. Plasma tumor necrosis factor (TNF) levels and alanine aminotransferase (ALT) activities were measured. TJ- 10 1 g/(kg·d) was intragastrically administered to rats for 7 d. A NO synthase inhibitor was administered.
RESULTS: In control rats, gut I/R elicited increases in the number of stationary leukocytes, and plasma TNF levels and ALT activities were mitigated by pretreatment with TJ-10. Pretreatment with the NO synthase inhibitor diminished the protective effects of TJ-10 on leukostasis in the liver, and the increase of plasma TNF levels and ALT activities. Pretreatment with TJ-10 increased plasma nitrite/nitrate levels.
CONCLUSION: TJ-10 attenuates the gut I/R-induced hepatic microvascular dysfunction and sequential hepatocellular injury via enhancement of NO production.
Collapse
Affiliation(s)
- Yoshinori Horie
- Department of Internal Medicine, School of Medicine, Keio University, 35 Shinanomachi Shinjuku-ku, Tokyo 160-8582, Japan.
| | | | | | | | | | | | | | | |
Collapse
|
50
|
Lambert JC, Zhou Z, Wang L, Song Z, McClain CJ, Kang YJ. Preservation of intestinal structural integrity by zinc is independent of metallothionein in alcohol-intoxicated mice. THE AMERICAN JOURNAL OF PATHOLOGY 2004; 164:1959-66. [PMID: 15161632 PMCID: PMC1615750 DOI: 10.1016/s0002-9440(10)63756-x] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Intestinal-derived endotoxins are importantly involved in alcohol-induced liver injury. Disruption of intestinal barrier function and endotoxemia are common features associated with liver inflammation and injury due to acute ethanol exposure. Zinc has been shown to inhibit acute alcohol-induced liver injury. This study was designed to determine the inhibitory effect of zinc on alcohol-induced endotoxemia and whether the inhibition is mediated by metallothionein (MT) or is independent of MT. MT knockout (MT-KO) mice were administered three oral doses of zinc sulfate (2.5 mg zinc ion/kg body weight) every 12 hours before being administered a single dose of ethanol (6 g/kg body weight) by gavage. Ethanol administration caused liver injury as determined by increased serum transaminases, parenchymal fat accumulation, necrotic foci, and an elevation of tumor necrosis factor (TNF-alpha). Increased plasma endotoxin levels were detected in ethanol-treated animals whose small intestinal structural integrity was compromised as determined by microscopic examination. Zinc supplementation significantly inhibited acute ethanol-induced liver injury and suppressed hepatic TNF-alpha production in association with decreased circulating endotoxin levels and a significant protection of small intestine structure. As expected, MT levels remained undetectable in the MT-KO mice under the zinc treatment. These results thus demonstrate that zinc preservation of intestinal structural integrity is associated with suppression of endotoxemia and liver injury induced by acute exposure to ethanol and the zinc protection is independent of MT.
Collapse
Affiliation(s)
- Jason C Lambert
- Department of Pharmacology, University of Louisville School of Medicine, Louisville, Kentucky 40202, USA
| | | | | | | | | | | |
Collapse
|