1
|
Liu Y, Liu T, Zhang F, Gao Y. Unraveling the Complex Interplay between Epigenetics and Immunity in Alcohol-Associated Liver Disease: A Comprehensive Review. Int J Biol Sci 2023; 19:4811-4830. [PMID: 37781509 PMCID: PMC10539712 DOI: 10.7150/ijbs.87975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Accepted: 08/26/2023] [Indexed: 10/03/2023] Open
Abstract
The mechanisms of immune dysfunction in alcohol-associated liver disease (ALD) have garnered growing research interest in recent times. Alcohol-mediated immune dysfunction has been implicated as a potential cause of ALD-associated microbial infection and inflammatory response. The immune microenvironment of an organism is essentially a complex network of interactions between immune cells, cytokines, extracellular matrix, and other immune-related molecules. This microenvironment is highly adaptive and responsive to environmental cues. Epigenetic reprogramming of the immune microenvironment has recently emerged as a key driver of ALD progression, particularly in the context of endotoxin tolerance and immune disorders. Although epigenetic modifications are known to play an important role in the regulation of the immune microenvironment in ALD, the specific mechanisms and molecular processes by which this regulation is achieved are yet to be fully understood. This paper aims to provide an overview of the current knowledge on the effects of alcohol consumption on epigenetics, with special focus on summarizing the data on the epigenetic regulatory mechanisms involved in the effects of alcohol consumption on the immune microenvironment. In addition, this paper aims to present a review of the epigenetic modifications involved in different forms of ALD. This review is expected to offer new perspectives for the diagnosis, treatment, monitoring, and prognostic assessment of ALD from an epigenetic perspective.
Collapse
Affiliation(s)
| | | | | | - Yanhang Gao
- Department of Hepatology, The First Hospital of Jilin University, Jilin University, Changchun, Jilin, 130021, China
| |
Collapse
|
2
|
Gandhirajan A, Roychowdhury S, Kibler C, Cross E, Abraham S, Bellar A, Nagy LE, Scheraga RG, Vachharajani V. SIRT2-PFKP interaction dysregulates phagocytosis in macrophages with acute ethanol-exposure. Front Immunol 2023; 13:1079962. [PMID: 36865524 PMCID: PMC9972587 DOI: 10.3389/fimmu.2022.1079962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Accepted: 12/27/2022] [Indexed: 01/28/2023] Open
Abstract
Alcohol abuse, reported by 1/8th critically ill patients, is an independent risk factor for death in sepsis. Sepsis kills over 270,000 patients/year in the US. We reported that the ethanol-exposure suppresses innate-immune response, pathogen clearance, and decreases survival in sepsis-mice via sirtuin 2 (SIRT2). SIRT2 is an NAD+-dependent histone-deacetylase with anti-inflammatory properties. We hypothesized that in ethanol-exposed macrophages, SIRT2 suppresses phagocytosis and pathogen clearance by regulating glycolysis. Immune cells use glycolysis to fuel increased metabolic and energy demand of phagocytosis. Using ethanol-exposed mouse bone marrow- and human blood monocyte-derived macrophages, we found that SIRT2 mutes glycolysis via deacetylating key glycolysis regulating enzyme phosphofructokinase-platelet isoform (PFKP), at mouse lysine 394 (mK394, human: hK395). Acetylation of PFKP at mK394 (hK395) is crucial for PFKP function as a glycolysis regulating enzyme. The PFKP also facilitates phosphorylation and activation of autophagy related protein 4B (Atg4B). Atg4B activates microtubule associated protein 1 light chain-3B (LC3). LC3 is a driver of a subset of phagocytosis, the LC3-associated phagocytosis (LAP), which is crucial for segregation and enhanced clearance of pathogens, in sepsis. We found that in ethanol-exposed cells, the SIRT2-PFKP interaction leads to decreased Atg4B-phosphorylation, decreased LC3 activation, repressed phagocytosis and LAP. Genetic deficiency or pharmacological inhibition of SIRT2 reverse PFKP-deacetylation, suppressed LC3-activation and phagocytosis including LAP, in ethanol-exposed macrophages to improve bacterial clearance and survival in ethanol with sepsis mice.
Collapse
Affiliation(s)
- Anugraha Gandhirajan
- Department of Inflammation and Immunity, Cleveland Clinic Lerner Research Institute, Cleveland, OH, United States
| | - Sanjoy Roychowdhury
- Department of Inflammation and Immunity, Cleveland Clinic Lerner Research Institute, Cleveland, OH, United States
| | - Christopher Kibler
- Department of Inflammation and Immunity, Cleveland Clinic Lerner Research Institute, Cleveland, OH, United States
| | - Emily Cross
- Department of Inflammation and Immunity, Cleveland Clinic Lerner Research Institute, Cleveland, OH, United States
| | - Susamma Abraham
- Department of Inflammation and Immunity, Cleveland Clinic Lerner Research Institute, Cleveland, OH, United States
| | - Annett Bellar
- Department of Inflammation and Immunity, Cleveland Clinic Lerner Research Institute, Cleveland, OH, United States
| | - Laura E. Nagy
- Department of Inflammation and Immunity, Cleveland Clinic Lerner Research Institute, Cleveland, OH, United States
| | - Rachel Greenberg Scheraga
- Department of Inflammation and Immunity, Cleveland Clinic Lerner Research Institute, Cleveland, OH, United States
- Department of Critical Care Medicine, Respiratory Institute, Cleveland Clinic, Cleveland, OH, United States
| | - Vidula Vachharajani
- Department of Inflammation and Immunity, Cleveland Clinic Lerner Research Institute, Cleveland, OH, United States
- Department of Critical Care Medicine, Respiratory Institute, Cleveland Clinic, Cleveland, OH, United States
| |
Collapse
|
3
|
Yang Z, Gao Y, Wu W, Mu H, Liu R, Fang X, Gao H, Chen H. The mitigative effect of lotus root ( Nelumbo nucifera Gaertn) extract on acute alcoholism through activation of alcohol catabolic enzyme, reduction of oxidative stress, and protection of liver function. Front Nutr 2023; 9:1111283. [PMID: 36712522 PMCID: PMC9875029 DOI: 10.3389/fnut.2022.1111283] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Accepted: 12/20/2022] [Indexed: 01/13/2023] Open
Abstract
Objectives Lotus root (Nelumbo nucifera Gaertn) is a common medicinal-food dual-use vegetable. In this study, the effects of lotus root extract on acute alcoholism were investigated. Methods The Walle-Hoch method was used to determine the ADH activity of lotus root extracts in vitro. Lotus root methanol extract were identified by UPLC-QTOF-MS/MS based metabolomics analysis. Then 109 active ingredients with achievable oral doses and drug-like properties were explored using the TCMSP platform. SwissTargetPrediction Database to predict lotus root treatment targets for acute alcoholismSTRING database (https://www.string-db.org/) was used to construct protein-protein interaction network graphs. Gene ontology (GO) functional, Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis of genes common to lotus root and alcoholism by Metascap database. Molecular docking simulations were performed using AutoDock 1.5.6 software. Animal experiments verified the relieving effect of lotus root extract on acute alcoholism after intervention. Results Results indicated the methanol extract of lotus root showed the highest activation rate of ethanol dehydrogenase in vitro (18.87%). The 433 compounds of lotus root methanol extract were identified by UPLC-QTOF-MS/MS based metabolomics analysis. Bioinformatics analysis indicate that there were 224 intersectioning targets between lotus root extract and acute alcoholism. KEGG enrichment analysised shows that lotus root extract may play a role in treating acute alcoholism by intervening with the neuroactive ligand-receptor interaction pathway. The protein-protein interaction network (PPI) analysis found that HSP90AA1, MAPK1 and STAT3 played a key role in lotus root extract-modulated PPI networks. Molecular docking showed that (7R, 8S)-dihydrodihydrodipine cypressol had the best binding ability with MAPK1. Experiments in mice indicate that lotus root extract improved the activity of liver alcohol dehydrogenase (ADH), acetaldehyde dehydrogenase (ALDH), catalase (CAT), superoxide dismutase (SOD) and glutathione peroxidase (GSH-PX), increase glutathione (GSH) and reduce malondialdehyde (MDA) levels, decrease glutamate transaminase (AST), alanine transaminase (ALT) and alkaline phosphatase (AKP) in the serum of mice with acute alcoholism, and accelerate the metabolic rate of alcohol after drinking. This study reveals the mechanism of lotus root to alleviate acute alcoholism, which provides a basis for further research on functional foods using lotus root and offers new possibilities for the treatment of acute alcoholism. Conclusions The results of the current study showed that the methanolic extract of lotus root had the highest activation rate of ethanol dehydrogenase. Network pharmacology results suggest that lotus root extract may play a role in the treatment of alcoholism by regulating signaling pathways, such as neuroactive ligand-receptor interactions, as well as biological processes, such as regulation of secretion, regulation of ion transport, response to lipopolysaccharides, and response to alcohol. Animal experiments confirmed the therapeutic effect of lotus root on acute alcoholism mechanistically through activation of alcohol catabolic enzyme, reduction of oxidative stress and protection of liver function.
Collapse
Affiliation(s)
- Zihan Yang
- Food Science Institute, Zhejiang Academy of Agricultural Sciences, Hangzhou, China,Key Laboratory of Postharvest Handling of Fruits, Ministry of Agriculture and Rural Affairs, Hangzhou, China,Key Laboratory of Postharvest Preservation and Processing of Vegetables (Co-Construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Hangzhou, China,Key Laboratory of Fruits and Vegetables Postharvest and Processing Technology Research of Zhejiang Province, Hangzhou, China,Key Laboratory of Postharvest Preservation and Processing of Fruits and Vegetables, China National Light Industry, Hangzhou, China
| | - Yuan Gao
- Food Science Institute, Zhejiang Academy of Agricultural Sciences, Hangzhou, China,Key Laboratory of Postharvest Handling of Fruits, Ministry of Agriculture and Rural Affairs, Hangzhou, China,Key Laboratory of Postharvest Preservation and Processing of Vegetables (Co-Construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Hangzhou, China,Key Laboratory of Fruits and Vegetables Postharvest and Processing Technology Research of Zhejiang Province, Hangzhou, China,Key Laboratory of Postharvest Preservation and Processing of Fruits and Vegetables, China National Light Industry, Hangzhou, China
| | - Weijie Wu
- Food Science Institute, Zhejiang Academy of Agricultural Sciences, Hangzhou, China,Key Laboratory of Postharvest Handling of Fruits, Ministry of Agriculture and Rural Affairs, Hangzhou, China,Key Laboratory of Postharvest Preservation and Processing of Vegetables (Co-Construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Hangzhou, China,Key Laboratory of Fruits and Vegetables Postharvest and Processing Technology Research of Zhejiang Province, Hangzhou, China,Key Laboratory of Postharvest Preservation and Processing of Fruits and Vegetables, China National Light Industry, Hangzhou, China
| | - Honglei Mu
- Food Science Institute, Zhejiang Academy of Agricultural Sciences, Hangzhou, China,Key Laboratory of Postharvest Handling of Fruits, Ministry of Agriculture and Rural Affairs, Hangzhou, China,Key Laboratory of Postharvest Preservation and Processing of Vegetables (Co-Construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Hangzhou, China,Key Laboratory of Fruits and Vegetables Postharvest and Processing Technology Research of Zhejiang Province, Hangzhou, China,Key Laboratory of Postharvest Preservation and Processing of Fruits and Vegetables, China National Light Industry, Hangzhou, China
| | - Ruiling Liu
- Food Science Institute, Zhejiang Academy of Agricultural Sciences, Hangzhou, China,Key Laboratory of Postharvest Handling of Fruits, Ministry of Agriculture and Rural Affairs, Hangzhou, China,Key Laboratory of Postharvest Preservation and Processing of Vegetables (Co-Construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Hangzhou, China,Key Laboratory of Fruits and Vegetables Postharvest and Processing Technology Research of Zhejiang Province, Hangzhou, China,Key Laboratory of Postharvest Preservation and Processing of Fruits and Vegetables, China National Light Industry, Hangzhou, China
| | - Xiangjun Fang
- Food Science Institute, Zhejiang Academy of Agricultural Sciences, Hangzhou, China,Key Laboratory of Postharvest Handling of Fruits, Ministry of Agriculture and Rural Affairs, Hangzhou, China,Key Laboratory of Postharvest Preservation and Processing of Vegetables (Co-Construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Hangzhou, China,Key Laboratory of Fruits and Vegetables Postharvest and Processing Technology Research of Zhejiang Province, Hangzhou, China,Key Laboratory of Postharvest Preservation and Processing of Fruits and Vegetables, China National Light Industry, Hangzhou, China
| | - Haiyan Gao
- Food Science Institute, Zhejiang Academy of Agricultural Sciences, Hangzhou, China,Key Laboratory of Postharvest Handling of Fruits, Ministry of Agriculture and Rural Affairs, Hangzhou, China,Key Laboratory of Postharvest Preservation and Processing of Vegetables (Co-Construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Hangzhou, China,Key Laboratory of Fruits and Vegetables Postharvest and Processing Technology Research of Zhejiang Province, Hangzhou, China,Key Laboratory of Postharvest Preservation and Processing of Fruits and Vegetables, China National Light Industry, Hangzhou, China,*Correspondence: Haiyan Gao ✉
| | - Hangjun Chen
- Food Science Institute, Zhejiang Academy of Agricultural Sciences, Hangzhou, China,Key Laboratory of Postharvest Handling of Fruits, Ministry of Agriculture and Rural Affairs, Hangzhou, China,Key Laboratory of Postharvest Preservation and Processing of Vegetables (Co-Construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Hangzhou, China,Key Laboratory of Fruits and Vegetables Postharvest and Processing Technology Research of Zhejiang Province, Hangzhou, China,Key Laboratory of Postharvest Preservation and Processing of Fruits and Vegetables, China National Light Industry, Hangzhou, China,Hangjun Chen ✉
| |
Collapse
|
4
|
Malherbe DC, Messaoudi I. Transcriptional and Epigenetic Regulation of Monocyte and Macrophage Dysfunction by Chronic Alcohol Consumption. Front Immunol 2022; 13:911951. [PMID: 35844518 PMCID: PMC9277054 DOI: 10.3389/fimmu.2022.911951] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2022] [Accepted: 05/27/2022] [Indexed: 02/05/2023] Open
Abstract
Drinking alcohol, even in moderation, can affect the immune system. Studies have shown disproportionate effects of alcohol on circulating and tissue-resident myeloid cells (granulocytes, monocytes, macrophages, dendritic cells). These cells orchestrate the body's first line of defense against microbial challenges as well as maintain tissue homeostasis and repair. Alcohol's effects on these cells are dependent on exposure pattern, with acute drinking dampening but chronic drinking enhancing production of inflammatory mediators. Although chronic drinking is associated with heightened systemic inflammation, studies on tissue resident macrophage populations in several organs including the spleen, liver, brain, and lung have also shown compromised functional and metabolic capacities of these cells. Many of these effects are thought to be mediated by oxidative stress caused by alcohol and its metabolites which can directly impact the cellular epigenetic landscapes. In addition, since myeloid cells are relatively short-lived in circulation and are under constant repopulation from the bone marrow compartment, alcohol's effects on bone marrow progenitors and hematopoiesis are important for understanding the impact of alcohol systemically on these myeloid populations. Alcohol-induced disruption of progenitor, circulating, and tissue resident myeloid populations contribute to the increased susceptibility of patients with alcohol use disorders to viral and bacterial infections. In this review, we provide an overview of the impact of chronic alcohol consumption on the function of monocytes and macrophages in host defense, tissue repair and inflammation. We then summarize our current understanding of the mechanisms underlying alcohol-induced disruption and examine changes in transcriptome and epigenome of monocytes and mcrophages. Overall, chronic alcohol consumption leads to hyper-inflammation concomitant with decreased microbial and wound healing responses by monocytes/macrophages due to a rewiring of the epigentic and transcriptional landscape. However, in advanced alcoholic liver disease, myeloid cells become immunosuppressed as a response to the surrounding hyper-inflammatory milieu. Therefore, the effect of chronic alcohol on the inflammatory response depends on disease state and the immune cell population.
Collapse
|
5
|
Gruol DL, Melkonian C, Huitron-Resendiz S, Roberts AJ. Alcohol alters IL-6 Signal Transduction in the CNS of Transgenic Mice with Increased Astrocyte Expression of IL-6. Cell Mol Neurobiol 2021; 41:733-750. [PMID: 32447612 PMCID: PMC7680720 DOI: 10.1007/s10571-020-00879-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Accepted: 05/15/2020] [Indexed: 12/30/2022]
Abstract
Neuroimmune factors, including the cytokine interleukin-6 (IL-6), are important chemical regulators of central nervous system (CNS) function under both physiological and pathological conditions. Elevated expression of IL-6 occurs in the CNS in a variety of disorders associated with altered CNS function, including excessive alcohol use. Alcohol-induced production of IL-6 has been reported for several CNS regions including the cerebellum. Cerebellar actions of alcohol occur through a variety of mechanisms, but alcohol-induced changes in signal transduction, transcription, and translation are known to play important roles. IL-6 is an activator of signal transduction that regulates gene expression. Thus, alcohol-induced IL-6 production could contribute to cerebellar effects of alcohol by altering gene expression, especially under conditions of chronic alcohol abuse, where IL-6 levels could be habitually elevated. To gain an understanding of the effects of alcohol on IL-6 signal transduction, we studied activation/expression of IL-6 signal transduction partners STAT3 (Signal Transducer and Activator of Transcription), CCAAT-enhancer binding protein (C/EBP) beta, and p42/p44 mitogen-activated protein kinase (MAPK) at the protein level. Cerebella of transgenic mice that express elevated levels of astrocyte produced IL-6 in the CNS were studied. Results show that the both IL-6 and chronic intermittent alcohol exposure/withdrawal affect IL-6 signal transduction partners and that the actions of IL-6 and alcohol interact to alter activation/expression of IL-6 signal transduction partners. The alcohol/IL-6 interactions may contribute to cerebellar actions of alcohol, whereas the effects of IL-6 alone may have relevance to cerebellar changes occurring in CNS disorders associated with elevated levels of IL-6.
Collapse
Affiliation(s)
- Donna L Gruol
- Neuroscience Department, SR301, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA, 92037, USA.
| | - Claudia Melkonian
- Neuroscience Department, SR301, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA, 92037, USA
| | | | - Amanda J Roberts
- Animal Models Core Facility, The Scripps Research Institute, La Jolla, CA, 92037, USA
| |
Collapse
|
6
|
Azizov V, Zaiss MM. Alcohol Consumption in Rheumatoid Arthritis: A Path through the Immune System. Nutrients 2021; 13:1324. [PMID: 33923766 PMCID: PMC8072698 DOI: 10.3390/nu13041324] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 04/14/2021] [Accepted: 04/15/2021] [Indexed: 12/27/2022] Open
Abstract
Benefits and harms of different components of human diet have been known for hundreds of years. Alcohol is one the highest consumed, abused, and addictive substances worldwide. Consequences of alcohol abuse are increased risks for diseases of the cardiovascular system, liver, and nervous system, as well as reduced immune system function. Paradoxically, alcohol has also been a consistent protective factor against the development of autoimmune diseases such as type 1 diabetes, multiple sclerosis, systemic lupus erythematosus, and rheumatoid arthritis (RA). Here, we focused on summarizing current findings on the effects of alcohol, as well as of its metabolites, acetaldehyde and acetate, on the immune system and RA. Heavy or moderate alcohol consumption can affect intestinal barrier integrity, as well as the microbiome, possibly contributing to RA. Additionally, systemic increase in acetate negatively affects humoral immune response, diminishing TFH cell as well as professional antigen-presenting cell (APC) function. Hence, alcohol consumption has profound effects on the efficacy of vaccinations, but also elicits protection against autoimmune diseases. The mechanism of alcohol's negative effects on the immune system is multivariate. Future studies addressing alcohol and its metabolite acetate's effect on individual components of the immune system remains crucial for our understanding and development of novel therapeutic pathways.
Collapse
Affiliation(s)
- Vugar Azizov
- Department of Internal Medicine 3—Rheumatology and Immunology, Friedrich-Alexander Universität Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, 91054 Erlangen, Germany;
- Deutsches Zentrum für Immuntherapie, Friedrich-Alexander Universität Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, 91054 Erlangen, Germany
| | - Mario M. Zaiss
- Department of Internal Medicine 3—Rheumatology and Immunology, Friedrich-Alexander Universität Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, 91054 Erlangen, Germany;
- Deutsches Zentrum für Immuntherapie, Friedrich-Alexander Universität Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, 91054 Erlangen, Germany
| |
Collapse
|
7
|
Blood Leukocyte Signaling Pathways as Predictors of Severity of Acute Pancreatitis. Pancreas 2021; 50:710-718. [PMID: 34016897 PMCID: PMC8195735 DOI: 10.1097/mpa.0000000000001832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/10/2022]
Abstract
OBJECTIVES Clinical practice lacks biomarkers to predict the severity of acute pancreatitis (AP). We studied if intracellular signaling of circulating leukocytes could predict persistent organ dysfunction (OD) and secondary infections in AP. METHODS A venous blood sample was taken from 174 patients with AP 72 hours or less from onset of symptoms and 31 healthy controls. Phosphorylation levels (p) of appropriately stimulated signal transducer and activator of transcription 1 (STAT1), STAT6, nuclear factor-κB (NF-κB), Akt, and nonstimulated STAT3 in monocytes, neutrophils, and lymphocytes was measured using phosphospecific flow cytometry. RESULTS The patients showed higher pSTAT3 and lower pSTAT1, pSTAT6, pNF-κB, and pAkt than healthy controls. pSTAT3 in all leukocyte subtypes studied increased, and pSTAT1 in monocytes and T cells decreased in an AP severity-wise manner. In patients without OD at sampling, high pSTAT3 in monocytes and T lymphocytes were associated with development of persistent OD. In patients with OD, low interleukin-4-stimulated pSTAT6 in monocytes and neutrophils and Escherichia coli-stimulated pNF-κB in neutrophils predicted OD persistence. High pSTAT3 in monocytes, CD8+ T cells, and neutrophils; low pSTAT1 in monocytes and T cells; and low pNF-κB in lymphocytes predicted secondary infections. CONCLUSIONS Leukocyte STAT3, STAT1, STAT6, and NF-κΒ phosphorylations are potential predictors of AP severity.
Collapse
|
8
|
Karki P, Ke Y, Zhang CO, Li Y, Tian Y, Son S, Yoshimura A, Kaibuchi K, Birukov KG, Birukova AA. SOCS3-microtubule interaction via CLIP-170 and CLASP2 is critical for modulation of endothelial inflammation and lung injury. J Biol Chem 2021; 296:100239. [PMID: 33372035 PMCID: PMC7949054 DOI: 10.1074/jbc.ra120.014232] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Revised: 11/23/2020] [Accepted: 12/28/2020] [Indexed: 12/12/2022] Open
Abstract
Proinflammatory cytokines such as IL-6 induce endothelial cell (EC) barrier disruption and trigger an inflammatory response in part by activating the Janus kinase-signal transducer and activator of transcription (JAK-STAT) pathway. The protein suppressor of cytokine signaling-3 (SOCS3) is a negative regulator of JAK-STAT, but its role in modulation of lung EC barrier dysfunction caused by bacterial pathogens has not been investigated. Using human lung ECs and EC-specific SOCS3 knockout mice, we tested the hypothesis that SOCS3 confers microtubule (MT)-mediated protection against endothelial dysfunction. SOCS3 knockdown in cultured ECs or EC-specific SOCS3 knockout in mice resulted in exacerbated lung injury characterized by increased permeability and inflammation in response to IL-6 or heat-killed Staphylococcus aureus (HKSA). Ectopic expression of SOCS3 attenuated HKSA-induced EC dysfunction, and this effect required assembled MTs. SOCS3 was enriched in the MT fractions, and treatment with HKSA disrupted SOCS3-MT association. We discovered that-in addition to its known partners gp130 and JAK2-SOCS3 interacts with MT plus-end binding proteins CLIP-170 and CLASP2 via its N-terminal domain. The resulting SOCS3-CLIP-170/CLASP2 complex was essential for maximal SOCS3 anti-inflammatory effects. Both IL-6 and HKSA promoted MT disassembly and disrupted SOCS3 interaction with CLIP-170 and CLASP2. Moreover, knockdown of CLIP-170 or CLASP2 impaired SOCS3-JAK2 interaction and abolished the anti-inflammatory effects of SOCS3. Together, these findings demonstrate for the first time an interaction between SOCS3 and CLIP-170/CLASP2 and reveal that this interaction is essential to the protective effects of SOCS3 in lung endothelium.
Collapse
Affiliation(s)
- Pratap Karki
- Department of Medicine, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Yunbo Ke
- Department of Anesthesiology, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Chen-Ou Zhang
- Department of Medicine, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Yue Li
- Department of Medicine, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Yufeng Tian
- Section of Pulmonary and Critical Care Medicine, Department of Medicine, University of Chicago, Chicago, Illinois, USA
| | - Sophia Son
- Section of Pulmonary and Critical Care Medicine, Department of Medicine, University of Chicago, Chicago, Illinois, USA
| | - Akihiko Yoshimura
- Department of Microbiology and Immunology, Keio University, Tokyo, Japan
| | - Kozo Kaibuchi
- Department of Cell Pharmacology, Nagoya University, Nagoya, Japan
| | - Konstantin G Birukov
- Department of Anesthesiology, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Anna A Birukova
- Department of Medicine, University of Maryland School of Medicine, Baltimore, Maryland, USA.
| |
Collapse
|
9
|
Moody L, Crowder SL, Fruge AD, Locher JL, Demark-Wahnefried W, Rogers LQ, Delk-Licata A, Carroll WR, Spencer SA, Black M, Erdman JW, Chen H, Pan YX, Arthur AE. Epigenetic stratification of head and neck cancer survivors reveals differences in lycopene levels, alcohol consumption, and methylation of immune regulatory genes. Clin Epigenetics 2020; 12:138. [PMID: 32917280 PMCID: PMC7488769 DOI: 10.1186/s13148-020-00930-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Accepted: 09/01/2020] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Inflammation has been associated with higher rates of recurrence and mortality in head and neck cancer (HNC). While the biological mechanisms predisposing patients to heightened inflammatory states remain largely unknown, DNA methylation has been proposed to reflect systemic inflammation. In this analysis, we attempt to identify meaningful epigenetic patterns in HNC survivors by stratifying individuals based on DNA methylation profiles in leukocytes. RESULTS We used hierarchical clustering to uncover three distinct methylation patterns among HNC survivors. Each group displayed a unique methylation signature in inflammatory pathways including cytokine and B-cell receptor signaling. Additionally, we examined physiological, clinical, and lifestyle parameters related to inflammation, such as circulating carotenoid and cytokine levels, cancer treatment type, and alcohol consumption. Specifically, we identified one group of survivors who had significant differential methylation of transcriptional and translational regulators as well as genes in the T-cell receptor signaling pathway, including hypermethylation of CD40 ligand (CD40LG) and Tec protein tyrosine kinase (TEC) and hypomethylation of CD8A. This group also displayed high circulating lycopene levels. We identified another group that had distinctive methylation in the toll-like receptor (TLR) signaling pathway, including hypomethylation of TLR5, a component of the inhibitor of nuclear factor-kappa B kinase complex (CHUK), and two mitogen-activated protein kinases (MAP3K8 and MAP2K3). This group also had hypermethylation of mitochondrial ribosomal genes along with higher rates of alcohol consumption. CONCLUSION The correlation between lycopene, alcohol consumption, DNA methylation, and inflammation warrants further investigation and may have implications in future recommendations and interventions to impact health outcomes in HNC survivors.
Collapse
Affiliation(s)
- Laura Moody
- Division of Nutritional Sciences, University of Illinois at Urbana–Champaign, Urbana, IL 61801 USA
| | - Sylvia L. Crowder
- Department of Food Science and Human Nutrition, University of Illinois at Urbana–Champaign, 386A Bevier Hall, MC-182, 905 South Goodwin Avenue, Urbana, IL 61801 USA
| | - Andrew D. Fruge
- Department of Nutrition, Dietetics, and Hospitality Management, Auburn University, Auburn, AL 36849 USA
| | - Julie L. Locher
- Department of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294 USA
| | - Wendy Demark-Wahnefried
- Department of Nutrition Science, University of Alabama at Birmingham, Birmingham, AL 35294 USA
| | - Laura Q. Rogers
- Department of Nutrition Science, University of Alabama at Birmingham, Birmingham, AL 35294 USA
| | - Ashley Delk-Licata
- Department of Nutrition Science, University of Alabama at Birmingham, Birmingham, AL 35294 USA
| | - William R. Carroll
- Department of Otolaryngology, University of Alabama at Birmingham, Birmingham, AL 35294 USA
| | - Sharon A. Spencer
- Department of Radiation Oncology, University of Alabama at Birmingham, Birmingham, AL 35294 USA
| | - Molly Black
- Department of Food Science and Human Nutrition, University of Illinois at Urbana–Champaign, 386A Bevier Hall, MC-182, 905 South Goodwin Avenue, Urbana, IL 61801 USA
| | - John W. Erdman
- Division of Nutritional Sciences, University of Illinois at Urbana–Champaign, Urbana, IL 61801 USA
- Department of Food Science and Human Nutrition, University of Illinois at Urbana–Champaign, 386A Bevier Hall, MC-182, 905 South Goodwin Avenue, Urbana, IL 61801 USA
| | - Hong Chen
- Division of Nutritional Sciences, University of Illinois at Urbana–Champaign, Urbana, IL 61801 USA
- Department of Food Science and Human Nutrition, University of Illinois at Urbana–Champaign, 386A Bevier Hall, MC-182, 905 South Goodwin Avenue, Urbana, IL 61801 USA
| | - Yuan-Xiang Pan
- Division of Nutritional Sciences, University of Illinois at Urbana–Champaign, Urbana, IL 61801 USA
- Department of Food Science and Human Nutrition, University of Illinois at Urbana–Champaign, 386A Bevier Hall, MC-182, 905 South Goodwin Avenue, Urbana, IL 61801 USA
- Illinois Informatics Institute, University of Illinois at Urbana–Champaign, Urbana, IL 61801 USA
| | - Anna E. Arthur
- Division of Nutritional Sciences, University of Illinois at Urbana–Champaign, Urbana, IL 61801 USA
- Department of Food Science and Human Nutrition, University of Illinois at Urbana–Champaign, 386A Bevier Hall, MC-182, 905 South Goodwin Avenue, Urbana, IL 61801 USA
- Carle Cancer Center, Carle Foundation Hospital, Urbana, IL 61801 USA
| |
Collapse
|
10
|
Oxidative stress in alcohol-related liver disease. World J Hepatol 2020. [DOI: 10.4254/wjh.v12.i7.333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
|
11
|
Tan HK, Yates E, Lilly K, Dhanda AD. Oxidative stress in alcohol-related liver disease. World J Hepatol 2020; 12:332-349. [PMID: 32821333 PMCID: PMC7407918 DOI: 10.4254/wjh.v12.i7.332] [Citation(s) in RCA: 88] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Revised: 05/06/2020] [Accepted: 05/17/2020] [Indexed: 02/06/2023] Open
Abstract
Alcohol consumption is one of the leading causes of the global burden of disease and results in high healthcare and economic costs. Heavy alcohol misuse leads to alcohol-related liver disease, which is responsible for a significant proportion of alcohol-attributable deaths globally. Other than reducing alcohol consumption, there are currently no effective treatments for alcohol-related liver disease. Oxidative stress refers to an imbalance in the production and elimination of reactive oxygen species and antioxidants. It plays important roles in several aspects of alcohol-related liver disease pathogenesis. Here, we review how chronic alcohol use results in oxidative stress through increased metabolism via the cytochrome P450 2E1 system producing reactive oxygen species, acetaldehyde and protein and DNA adducts. These trigger inflammatory signaling pathways within the liver leading to expression of pro-inflammatory mediators causing hepatocyte apoptosis and necrosis. Reactive oxygen species exposure also results in mitochondrial stress within hepatocytes causing structural and functional dysregulation of mitochondria and upregulating apoptotic signaling. There is also evidence that oxidative stress as well as the direct effect of alcohol influences epigenetic regulation. Increased global histone methylation and acetylation and specific histone acetylation inhibits antioxidant responses and promotes expression of key pro-inflammatory genes. This review highlights aspects of the role of oxidative stress in disease pathogenesis that warrant further study including mitochondrial stress and epigenetic regulation. Improved understanding of these processes may identify novel targets for therapy.
Collapse
Affiliation(s)
- Huey K Tan
- Hepatology Research Group, Institute of Translational and Stratified Medicine, Faculty of Health, University of Plymouth, Plymouth PL6 8BU, United Kingdom
- South West Liver Unit, University Hospitals Plymouth NHS Trust, Plymouth PL6 8DH, United Kingdom
| | - Euan Yates
- Hepatology Research Group, Institute of Translational and Stratified Medicine, Faculty of Health, University of Plymouth, Plymouth PL6 8BU, United Kingdom
| | - Kristen Lilly
- Hepatology Research Group, Institute of Translational and Stratified Medicine, Faculty of Health, University of Plymouth, Plymouth PL6 8BU, United Kingdom
- Department of Clinical Immunology, University Hospitals Plymouth NHS Trust, Plymouth PL6 8DH, United Kingdom
| | - Ashwin D Dhanda
- Hepatology Research Group, Institute of Translational and Stratified Medicine, Faculty of Health, University of Plymouth, Plymouth PL6 8BU, United Kingdom
- South West Liver Unit, University Hospitals Plymouth NHS Trust, Plymouth PL6 8DH, United Kingdom
| |
Collapse
|
12
|
Wan YM, Li ZQ, Zhou Q, Liu C, Wang MJ, Wu HX, Mu YZ, He YF, Zhang Y, Wu XN, Li YH, Xu ZY, Wu HM, Xu Y, Yang JH, Wang XF. Mesenchymal stem cells alleviate liver injury induced by chronic-binge ethanol feeding in mice via release of TSG6 and suppression of STAT3 activation. Stem Cell Res Ther 2020; 11:24. [PMID: 31931878 PMCID: PMC6958598 DOI: 10.1186/s13287-019-1547-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Revised: 12/10/2019] [Accepted: 12/29/2019] [Indexed: 12/20/2022] Open
Abstract
Background Mesenchymal stem cells (MSCs) are a population of pluripotent cells that might be used for treatment of liver disease. However, the efficacy of MSCs for mice with alcoholic hepatitis (AH) and its underlying mechanism remains unclear. Methods MSCs were isolated from the bone marrow (BM) of 4–6-week-old male C57BL/6 N mice. AH was induced in female mice by chronic-binge ethanol feeding for 10 days. The mice were given intraperitoneal injections of MSCs with or without transfection or AG490, recombinant mouse tumor necrosis factor (TNF)-α-stimulated gene/protein 6 (rmTSG-6), or saline at day 10. Blood samples and hepatic tissues were collected at day 11. Various assays such as biochemistry, histology, and flow cytometry were performed. Results MSCs reduced AH in mice, decreasing liver/body weight ratio, liver injury, blood and hepatic lipids, malondialdehyde, interleukin (IL)-6, and TNF-ɑ, but increasing glutathione, IL-10, and TSG-6, compared to control mice. Few MSCs engrafted into the inflamed liver. Knockdown of TSG-6 in MSCs significantly attenuated their effects, and injection of rmTSG-6 achieved similar effects to MSCs. The signal transducer and activator of transcription 3 (STAT3) was activated in mice with AH, and MSCs and rmTSG-6 inhibited the STAT3 activation. Injection of MSCs plus AG490 obtained more alleviation of liver injury than MSCs alone. Conclusions BM-MSCs injected into mice with AH do not engraft the liver, but they secrete TSG-6 to reduce liver injury and to inhibit STAT3 activation.
Collapse
Affiliation(s)
- Yue-Meng Wan
- Gastroenterology Department, The 2nd Affiliated Hospital of Kunming Medical University, Kunming City, 650101, Yunnan Province, China.,Public Health Institute of Kunming Medical University, Kunming City, 650500, Yunnan Province, China
| | - Zhi-Qiang Li
- Public Health Institute of Kunming Medical University, Kunming City, 650500, Yunnan Province, China
| | - Qiong Zhou
- Public Health Institute of Kunming Medical University, Kunming City, 650500, Yunnan Province, China
| | - Chang Liu
- Public Health Institute of Kunming Medical University, Kunming City, 650500, Yunnan Province, China
| | - Men-Jie Wang
- Public Health Institute of Kunming Medical University, Kunming City, 650500, Yunnan Province, China
| | - Hui-Xin Wu
- Public Health Institute of Kunming Medical University, Kunming City, 650500, Yunnan Province, China
| | - Yun-Zhen Mu
- Public Health Institute of Kunming Medical University, Kunming City, 650500, Yunnan Province, China
| | - Yue-Feng He
- Public Health Institute of Kunming Medical University, Kunming City, 650500, Yunnan Province, China
| | - Yuan Zhang
- The Biomedical Engineering Research Center, Kunming Medical University, Kunming, 650500, Yunnan, China
| | - Xi-Nan Wu
- Public Health Institute of Kunming Medical University, Kunming City, 650500, Yunnan Province, China.
| | - Yu-Hua Li
- Gastroenterology Department, The 2nd Affiliated Hospital of Kunming Medical University, Kunming City, 650101, Yunnan Province, China
| | - Zhi-Yuan Xu
- Gastroenterology Department, The 2nd Affiliated Hospital of Kunming Medical University, Kunming City, 650101, Yunnan Province, China
| | - Hua-Mei Wu
- Gastroenterology Department, The 2nd Affiliated Hospital of Kunming Medical University, Kunming City, 650101, Yunnan Province, China
| | - Ying Xu
- Gastroenterology Department, The 2nd Affiliated Hospital of Kunming Medical University, Kunming City, 650101, Yunnan Province, China
| | - Jin-Hui Yang
- Gastroenterology Department, The 2nd Affiliated Hospital of Kunming Medical University, Kunming City, 650101, Yunnan Province, China
| | - Xiao-Fang Wang
- Department of Pathology, The 2nd Affiliated Hospital of Kunming Medical University, Kunming City, 65010, Yunnan Province, China
| |
Collapse
|
13
|
Liu K, Wu Z, Chu J, Yang L, Wang N. Promoter methylation and expression of SOCS3 affect the clinical outcome of pediatric acute lymphoblastic leukemia by JAK/STAT pathway. Biomed Pharmacother 2019; 115:108913. [PMID: 31054507 DOI: 10.1016/j.biopha.2019.108913] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Revised: 04/23/2019] [Accepted: 04/23/2019] [Indexed: 02/06/2023] Open
Abstract
Suppressor of cytokine signaling 3 (SOCS3) has been characterized as one of the most crucial negative regulator in the JAK2/STAT3 signaling pathway. However, there are few studies on the relationship between SOCS3 and pediatric acute lymphoblastic leukemia (ALL). This study analyzes the influence of SOCS3 expression on the risk and the progression of pediatric ALL and the underlying mechanism. The levels of SOCS3, p-JAK2, p-STAT3, SOCS3 methylation, CD4+CD25+CD127lowTreg were detected by PCR, laser confocal microscopy, western blot, bisulfite sequencing and flow cytometry at different progression of ALL. We found that the SOCS3 expression level at initial diagnosis (DG) of ALL patients was significantly lower than that of healthy controls (HC), while the expression of SOCS3 methylation was opposite. The expression of SOCS3 and SOCS3 methylation were returned to normal in the complete remission (CR) stage, and there were no difference between resistance, relapse and initial diagnosis. The expression of SOCS3 decreased and weakened the inhibition of pSTAT3 expression in DG, resistance and relapse groups. The levels of Treg cells in ALL children were significantly higher than those in the HC children. There was a positive correlation between the expression level of STAT3 and the expression level of Treg cells in children with ALL, while that was negatively correlated with the expression levels of Treg cells. Compared with high-level of SOCS3, the low-level of SOCS3 patients had more high risk factors, as higher WBC counts, LDH level and much more poor prognostic genes. SOCS3 methylation leads to low-expression of SOCS3, which can lead to continuous activation of JAK/STAT3 and increased expression of Treg cells, which in turn affects the anti-tumor immunological effect of the body. Taken together, our data show that monitoring the level of SOCS3 can contribute to the understanding of the state of illness and evaluate the risk of progression of ALL.
Collapse
Affiliation(s)
- Kangkang Liu
- Pediatrics, the Second Hospital of Anhui Medical University, Hefei, 230601, China
| | - Zhengyu Wu
- Pediatrics, the Second Hospital of Anhui Medical University, Hefei, 230601, China
| | - Jinhua Chu
- Pediatrics, the Second Hospital of Anhui Medical University, Hefei, 230601, China
| | - Linhai Yang
- Pediatrics, the Second Hospital of Anhui Medical University, Hefei, 230601, China
| | - Ningling Wang
- Pediatrics, the Second Hospital of Anhui Medical University, Hefei, 230601, China.
| |
Collapse
|
14
|
Chronic heavy drinking drives distinct transcriptional and epigenetic changes in splenic macrophages. EBioMedicine 2019; 43:594-606. [PMID: 31005514 PMCID: PMC6557917 DOI: 10.1016/j.ebiom.2019.04.027] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Revised: 04/08/2019] [Accepted: 04/12/2019] [Indexed: 02/06/2023] Open
Abstract
Background Chronic heavy alcohol drinking (CHD) leads to significant organ damage, increased susceptibility to infections, and delayed wound healing. These adverse outcomes are believed to be mediated by alterations in the function of myeloid cells; however, the mechanisms underlying these changes are poorly understood. Methods We determined the impact of CHD on the phenotype of splenic macrophages using flow cytometry. Changes in functional responses to LPS were measured using luminex and RNA-Seq. Finally, alterations in chromatin accessibility were uncovered using ATAC-Seq. Findings A history of CHD led to increased frequency of splenic macrophages that exhibited a heightened activation state at resting. Additionally, splenic macrophages from CHD animals generated a larger inflammatory response to LPS, both at protein and gene expression levels. Finally, CHD resulted in increased levels of H3K4me3, a histone mark of active promoters, as well as chromatin accessibility at promoters and intergenic regions that regulate inflammatory responses. Interpretation These findings suggest that a history of CHD alters the immune fitness of tissue-resident macrophages via epigenetic mechanisms. Fund National Institute on Alcohol Abuse and Alcoholism (NIAAA), National Institutes of Health (NIH) - R24AA019431, U01 AA13641, U01 AA13510, R21AA021947, and R21AA025839.
Collapse
|
15
|
Nabavi SM, Ahmed T, Nawaz M, Devi KP, Balan DJ, Pittalà V, Argüelles-Castilla S, Testai L, Khan H, Sureda A, de Oliveira MR, Vacca RA, Xu S, Yousefi B, Curti V, Daglia M, Sobarzo-Sánchez E, Filosa R, Nabavi SF, Majidinia M, Dehpour AR, Shirooie S. Targeting STATs in neuroinflammation: The road less traveled! Pharmacol Res 2018; 141:73-84. [PMID: 30550953 DOI: 10.1016/j.phrs.2018.12.004] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/23/2018] [Revised: 12/01/2018] [Accepted: 12/10/2018] [Indexed: 12/16/2022]
Abstract
JAK/STAT transduction pathway is a highly conserved pathway implicated in regulating cellular proliferation, differentiation, survival and apoptosis. Dysregulation of this pathway is involved in the onset of autoimmune, haematological, oncological, metabolic and neurological diseases. Over the last few years, the research of anti-neuroinflammatory agents has gained considerable attention. The ability to diminish the STAT-induced transcription of inflammatory genes is documented for both natural compounds (such as polyphenols) and chemical drugs. Among polyphenols, quercetin and curcumin directly inhibit STAT, while Berberis vulgaris L. and Sophora alopecuroides L extracts act indirectly. Also, the Food and Drug Administration has approved several JAK/STAT inhibitors (direct or indirect) for treating inflammatory diseases, indicating STAT can be considered as a therapeutic target for neuroinflammatory pathologies. Considering the encouraging data obtained so far, clinical trials are warranted to demonstrate the effectiveness and potential use in the clinical practice of STAT inhibitors to treat inflammation-associated neurodegenerative pathologies.
Collapse
Affiliation(s)
- Seyed Mohammad Nabavi
- Applied Biotechnology Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran.
| | - Touqeer Ahmed
- Neurobiology Laboratory, Department of Healthcare Biotechnology, Atta-ur-Rahman School of Applied Biosciences, National University of Sciences and Technology, Sector H-12, Islamabad, 44000, Pakistan
| | - Maheen Nawaz
- Neurobiology Laboratory, Department of Healthcare Biotechnology, Atta-ur-Rahman School of Applied Biosciences, National University of Sciences and Technology, Sector H-12, Islamabad, 44000, Pakistan
| | - Kasi Pandima Devi
- Department of Biotechnology, Alagappa University (Science Campus), Karaikudi 630 003, Tamil Nadu, India
| | - Devasahayam Jaya Balan
- Department of Biotechnology, Alagappa University (Science Campus), Karaikudi 630 003, Tamil Nadu, India
| | - Valeria Pittalà
- Department of Drug Sciences, University of Catania, Viale A. Doria 6, 95125, Catania, Italy
| | | | - Lara Testai
- Department of Pharmacy, University of Pisa, Pisa, via Bonanno 6 - 56126, Pisa, Italy
| | - Haroon Khan
- Department of Pharmacy, Abdul Wali Khan University, Mardan 23200, Pakistan
| | - Antoni Sureda
- Research Group on Community Nutrition and Oxidative Stress and CIBEROBN (Physiopathology of Obesity and Nutrition), University of Balearic Islands, E-07122 Palma de Mallorca, Spain.
| | - Marcos Roberto de Oliveira
- Department of Chemistry/ICET, Federal University of Mato Grosso (UFMT), Av. Fernando Corrêa da Costa, 2367, Cuiaba, MT, 78060-900, Brazil
| | - Rosa Anna Vacca
- Institute of Biomembranes, Bioenergetics and Molecular Biotechnologies, National Council of Research, I-70126, Bari, Italy
| | - Suowen Xu
- University of Rochester, Aab Cardiovascular Research Institute, Rochester, NY, 14623, USA
| | - Bahman Yousefi
- Molecular Medicine Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Valeria Curti
- Department of Drug Sciences, University of Pavia, Pavia, Italy
| | - Maria Daglia
- Department of Drug Sciences, University of Pavia, Pavia, Italy
| | - Eduardo Sobarzo-Sánchez
- Laboratory of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Santiago de Compostela, 15782, Spain; Instituto de Investigación e Innovación en Salud, Facultad de Ciencias de la Salud, Universidad Central de Chile, Santiago, Chile
| | - Rosanna Filosa
- Consorzio Sannio Tech, Appia Str, Apollosa, BN 82030, Italy
| | - Seyed Fazel Nabavi
- Pharmaceutical Sciences Research Center, Kermanshah University of Medical Sciences, Kermanshah, Iran; Applied Biotechnology Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Maryam Majidinia
- Solid Tumor Research Center, Urmia University of Medical Sciences, Urmia, Iran
| | - Ahmad Reza Dehpour
- Department of Pharmacology, Faculty of Medicine, Tehran University of Medical Sciences, Tehran, Iran; Experimental Medicine Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Samira Shirooie
- Department of Pharmacology, Faculty of Pharmacy, Kermanshah University of Medical Sciences, Kermanshah, Iran
| |
Collapse
|
16
|
Sarper SE, Kurosaka H, Inubushi T, Ono Minagi H, Kuremoto KI, Sakai T, Taniuchi I, Yamashiro T. Runx1-Stat3-Tgfb3 signaling network regulating the anterior palatal development. Sci Rep 2018; 8:11208. [PMID: 30046048 PMCID: PMC6060112 DOI: 10.1038/s41598-018-29681-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2018] [Accepted: 06/15/2018] [Indexed: 02/07/2023] Open
Abstract
Runx1 deficiency results in an anteriorly specific cleft palate at the boundary between the primary and secondary palates and in the first rugae area of the secondary palate in mice. However, the cellular and molecular pathogenesis underlying such regional specificity remain unknown. In this study, Runx1 epithelial-specific deletion led to the failed disintegration of the contacting palatal epithelium and markedly downregulated Tgfb3 expression in the primary palate and nasal septum. In culture, TGFB3 protein rescued the clefting of the mutant. Furthermore, Stat3 phosphorylation was disturbed in the corresponding cleft regions in Runx1 mutants. The Stat3 function was manifested by palatal fusion defects in culture following Stat3 inhibitor treatment with significant downregulation of Tgfb3. Tgfb3 is therefore a critical target of Runx1 signaling, and this signaling axis could be mediated by Stat3 activation. Interestingly, the expression of Socs3, an inhibitor of Stat3, was specific in the primary palate and upregulated by Runx1 deficiency. Thus, the involvement of Socs3 in Runx1-Tgfb3 signaling might explain, at least in part, the anteriorly specific downregulation of Tgfb3 expression and Stat3 activity in Runx1 mutants. This is the first study to show that the novel Runx1-Stat3-Tgfb3 axis is essential in anterior palatogenesis.
Collapse
Affiliation(s)
- Safiye E Sarper
- Department of Orthodontics and Dentofacial Orthopedics, Osaka University Graduate School of Dentistry, Osaka, Japan
| | - Hiroshi Kurosaka
- Department of Orthodontics and Dentofacial Orthopedics, Osaka University Graduate School of Dentistry, Osaka, Japan
| | - Toshihiro Inubushi
- Department of Orthodontics and Dentofacial Orthopedics, Osaka University Graduate School of Dentistry, Osaka, Japan
| | - Hitomi Ono Minagi
- Department of Oral-facial Disorders, Osaka University Graduate School of Dentistry, Osaka, Japan
| | - Koh-Ichi Kuremoto
- Department of Advanced Prosthodontics, Graduate School of Biomedical & Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Takayoshi Sakai
- Department of Oral-facial Disorders, Osaka University Graduate School of Dentistry, Osaka, Japan
| | - Ichiro Taniuchi
- Laboratory for Transcriptional Regulation, RIKEN Research Center for Allergy and Immunology, Yokohama, Japan
| | - Takashi Yamashiro
- Department of Orthodontics and Dentofacial Orthopedics, Osaka University Graduate School of Dentistry, Osaka, Japan.
| |
Collapse
|
17
|
Gruol DL, Huitron-Resendiz S, Roberts AJ. Altered brain activity during withdrawal from chronic alcohol is associated with changes in IL-6 signal transduction and GABAergic mechanisms in transgenic mice with increased astrocyte expression of IL-6. Neuropharmacology 2018; 138:32-46. [PMID: 29787738 DOI: 10.1016/j.neuropharm.2018.05.024] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2018] [Revised: 04/25/2018] [Accepted: 05/17/2018] [Indexed: 10/16/2022]
Abstract
Interleukin-6 (IL-6) is an important neuroimmune factor that is increased in the brain by alcohol exposure/withdrawal and is thought to play a role in the actions of alcohol on the brain. To gain insight into IL-6/alcohol/withdrawal interactions and how these interactions affect the brain, we are studying the effects of chronic binge alcohol exposure on transgenic mice that express elevated levels of IL-6 in the brain due to increased astrocyte expression (IL-6 tg) and their non-transgenic (non-tg) littermate controls. IL-6/alcohol/withdrawal interactions were identified by genotypic differences in spontaneous brain activity in electroencephalogram (EEG) recordings from the mice, and by Western blot analysis of protein activation or expression in hippocampus obtained from the mice after the final alcohol withdrawal period. Results from EEG studies showed frequency dependent genotypic differences in brain activity during withdrawal. For EEG frequencies that were affected by alcohol exposure/withdrawal in both genotypes, the nature of the effect was similar, but differed across withdrawal cycles. Differences between IL-6 tg and non-tg mice were also observed in Western blot studies of the activated form of STAT3 (phosphoSTAT3), a signal transduction partner of IL-6, and subunits of GABAA receptors (GABAAR). Regression analysis revealed that pSTAT3 played a more prominent role during withdrawal in the IL-6 tg mice than in the non-tg mice, and that the role of GABAAR alpha-5 and GABAAR alpha-1 in brain activity varied across genotype and withdrawal. Taken together, our results suggest that IL-6 can significantly impact mechanisms involved in alcohol withdrawal.
Collapse
Affiliation(s)
- Donna L Gruol
- Neuroscience Department, The Scripps Research Institute, La Jolla, CA, 92037, USA.
| | | | - Amanda J Roberts
- Animal Models Core Facility, The Scripps Research Institute, La Jolla, CA, 92037, USA
| |
Collapse
|
18
|
Bala S, Csak T, Kodys K, Catalano D, Ambade A, Furi I, Lowe P, Cho Y, Iracheta-Vellve A, Szabo G. Alcohol-induced miR-155 and HDAC11 inhibit negative regulators of the TLR4 pathway and lead to increased LPS responsiveness of Kupffer cells in alcoholic liver disease. J Leukoc Biol 2017; 102:487-498. [PMID: 28584078 PMCID: PMC6608073 DOI: 10.1189/jlb.3a0716-310r] [Citation(s) in RCA: 66] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2016] [Revised: 04/11/2017] [Accepted: 05/04/2017] [Indexed: 12/13/2022] Open
Abstract
Inflammation promotes the progression of alcoholic liver disease. Alcohol sensitizes KCs to gut-derived endotoxin (LPS); however, signaling pathways that perpetuate inflammation in alcoholic liver disease are only partially understood. We found that chronic alcohol feeding in mice induced miR-155, an inflammatory miRNA in isolated KCs. We hypothesized that miR-155 might increase the responsiveness of KCs to LPS via targeting the negative regulators of LPS signaling. Our results revealed that KCs that were isolated from alcohol-fed mice showed a decrease in IRAK-M, SHIP1, and PU.1, and an increase in TNF-α levels. This was specific to KCs, as no significant differences were observed in these genes in hepatocytes. We found a causal effect of miR-155 deficiency on LPS responsiveness, as KCs that were isolated from miR-155 KO mice showed a greater induction of IRAK-M, SHIP1, and suppressor of cytokine signaling 1 after LPS treatment. C/EBPβ, a validated miR-155 target, stimulates IL-10 transcription. We found a higher induction of C/EBPβ and IL-10 in KCs that were isolated from miR-155 KO mice after LPS treatment. Gain- and loss-of-function studies affirmed that alcohol-induced miR-155 directly regulates IRAK-M, SHIP1, suppressor of cytokine signaling 1, and C/EBPβ, as miR-155 inhibition increased and miR-155 overexpression decreased these genes in LPS or alcohol-pretreated wild-type KCs. HDAC11, a regulator of IL-10, was significantly increased and IL-10 was decreased in KCs that were isolated from alcohol-fed mice. Functionally, knockdown of HDAC11 with small interfering RNA resulted in an IL-10 increase in LPS or alcohol-pretreated Mϕ. We found that acetaldehyde and NF-κB pathways regulate HDAC11 levels. Collectively, our results indicate that the alcohol-induced responsiveness of KCs to LPS, in part, is governed by miR-155 and HDAC11.
Collapse
Affiliation(s)
- Shashi Bala
- Department of Medicine, University of Massachusetts Medical School, Worcester, Massachusetts, USA
| | - Timea Csak
- Department of Medicine, University of Massachusetts Medical School, Worcester, Massachusetts, USA
| | - Karen Kodys
- Department of Medicine, University of Massachusetts Medical School, Worcester, Massachusetts, USA
| | - Donna Catalano
- Department of Medicine, University of Massachusetts Medical School, Worcester, Massachusetts, USA
| | - Aditya Ambade
- Department of Medicine, University of Massachusetts Medical School, Worcester, Massachusetts, USA
| | - Istvan Furi
- Department of Medicine, University of Massachusetts Medical School, Worcester, Massachusetts, USA
| | - Patrick Lowe
- Department of Medicine, University of Massachusetts Medical School, Worcester, Massachusetts, USA
| | - Yeonhee Cho
- Department of Medicine, University of Massachusetts Medical School, Worcester, Massachusetts, USA
| | - Arvin Iracheta-Vellve
- Department of Medicine, University of Massachusetts Medical School, Worcester, Massachusetts, USA
| | - Gyongyi Szabo
- Department of Medicine, University of Massachusetts Medical School, Worcester, Massachusetts, USA
| |
Collapse
|
19
|
Chen D, Zhang F, Ren H, Luo J, Wang S. Role of cytokines and chemokines in alcohol-induced tumor promotion. Onco Targets Ther 2017; 10:1665-1671. [PMID: 28360527 PMCID: PMC5364014 DOI: 10.2147/ott.s129781] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Excessive chronic alcohol consumption has become a worldwide health problem. The oncogenic effect of chronic alcohol consumption is one of the leading concerns. The mechanisms of alcohol-induced tumorigenesis and tumor progression are largely unknown, although many factors have been implicated in the process. This review discusses the recent progress in this research area with concentration on alcohol-induced dysregulation of cytokines and chemokines. Based on the available evidence, we propose that alcohol promotes tumor progression by the dysregulation of the cytokine/chemokine system. In addition, we discuss specific transcription factors and signaling pathways that are involved in the action of these cytokines/chemokines and the oncogenic effect of alcohol. This review provides novel insight into the mechanisms of alcohol-induced tumor promotion.
Collapse
Affiliation(s)
- Danlei Chen
- School of Basic Medical Sciences, Anhui Medical University, Hefei, Anhui, People's Republic of China
| | - Fengyun Zhang
- School of Basic Medical Sciences, Anhui Medical University, Hefei, Anhui, People's Republic of China
| | - Haifeng Ren
- School of Basic Medical Sciences, Anhui Medical University, Hefei, Anhui, People's Republic of China
| | - Jia Luo
- Department of Pharmacology and Nutritional Sciences, University of Kentucky, College of Medicine, Lexington, KY, USA
| | - Siying Wang
- School of Basic Medical Sciences, Anhui Medical University, Hefei, Anhui, People's Republic of China
| |
Collapse
|
20
|
Vergis N, Khamri W, Beale K, Sadiq F, Aletrari MO, Moore C, Atkinson SR, Bernsmeier C, Possamai LA, Petts G, Ryan JM, Abeles RD, James S, Foxton M, Hogan B, Foster GR, O'Brien AJ, Ma Y, Shawcross DL, Wendon JA, Antoniades CG, Thursz MR. Defective monocyte oxidative burst predicts infection in alcoholic hepatitis and is associated with reduced expression of NADPH oxidase. Gut 2017; 66:519-529. [PMID: 26860769 PMCID: PMC5534772 DOI: 10.1136/gutjnl-2015-310378] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/17/2015] [Revised: 10/07/2015] [Accepted: 10/25/2015] [Indexed: 12/12/2022]
Abstract
OBJECTIVE In order to explain the increased susceptibility to serious infection in alcoholic hepatitis, we evaluated monocyte phagocytosis, aberrations of associated signalling pathways and their reversibility, and whether phagocytic defects could predict subsequent infection. DESIGN Monocytes were identified from blood samples of 42 patients with severe alcoholic hepatitis using monoclonal antibody to CD14. Phagocytosis and monocyte oxidative burst (MOB) were measured ex vivo using flow cytometry, luminometry and bacterial killing assays. Defects were related to the subsequent development of infection. Intracellular signalling pathways were investigated using western blotting and PCR. Interferon-γ (IFN-γ) was evaluated for its therapeutic potential in reversing phagocytic defects. Paired longitudinal samples were used to evaluate the effect of in vivo prednisolone therapy. RESULTS MOB, production of superoxide and bacterial killing in response to Escherichia coli were markedly impaired in patients with alcoholic hepatitis. Pretreatment MOB predicted development of infection within two weeks with sensitivity and specificity that were superior to available clinical markers. Accordingly, defective MOB was associated with death at 28 and 90 days. Expression of the gp91 phox subunit of nicotinamide adenine dinucleotide phosphate (NADPH) oxidase was reduced in patients with alcoholic hepatitis demonstrating defective MOB. Monocytes were refractory to IFN-γ stimulation and showed high levels of a negative regulator of cytokine signalling, suppressor of cytokine signalling-1. MOB was unaffected by 7 days in vivo prednisolone therapy. CONCLUSIONS Monocyte oxidative burst and bacterial killing is impaired in alcoholic hepatitis while bacterial uptake by phagocytosis is preserved. Defective MOB is associated with reduced expression of NADPH oxidase in these patients and predicts the development of infection and death.
Collapse
Affiliation(s)
- Nikhil Vergis
- Department of Hepatology and Gastroenterology, Imperial College, London, UK
| | - Wafa Khamri
- Department of Hepatology and Gastroenterology, Imperial College, London, UK
| | - Kylie Beale
- Department of Hepatology and Gastroenterology, Imperial College, London, UK
| | - Fouzia Sadiq
- Department of Hepatology and Gastroenterology, Imperial College, London, UK
| | - Mina O Aletrari
- Department of Hepatology and Gastroenterology, Imperial College, London, UK
| | - Celia Moore
- Department of Hepatology and Gastroenterology, Imperial College, London, UK
| | - Stephen R Atkinson
- Department of Hepatology and Gastroenterology, Imperial College, London, UK
| | - Christine Bernsmeier
- Department of Hepatology, King's College Hospital, Institute of Liver Studies, London, UK
| | - Lucia A Possamai
- Department of Hepatology and Gastroenterology, Imperial College, London, UK
| | - Gemma Petts
- Department of Hepatology and Gastroenterology, Imperial College, London, UK
| | - Jennifer M Ryan
- Department of Hepatology, King's College Hospital, Institute of Liver Studies, London, UK
| | - Robin D Abeles
- Department of Hepatology, King's College Hospital, Institute of Liver Studies, London, UK
| | - Sarah James
- Department of Hepatology, University College, London, UK
| | | | - Brian Hogan
- Department of Hepatology, Royal Free Hospital, London, UK
| | - Graham R Foster
- Department of Gastroenterology, Royal London Hospital, London, UK
| | | | - Yun Ma
- Department of Hepatology, King's College Hospital, Institute of Liver Studies, London, UK
| | - Debbie L Shawcross
- Department of Hepatology, King's College Hospital, Institute of Liver Studies, London, UK
| | - Julia A Wendon
- Department of Hepatology, King's College Hospital, Institute of Liver Studies, London, UK
| | | | - Mark R Thursz
- Department of Hepatology and Gastroenterology, Imperial College, London, UK
| |
Collapse
|
21
|
Hernandez RV, Puro AC, Manos JC, Huitron-Resendiz S, Reyes KC, Liu K, Vo K, Roberts AJ, Gruol DL. Transgenic mice with increased astrocyte expression of IL-6 show altered effects of acute ethanol on synaptic function. Neuropharmacology 2015; 103:27-43. [PMID: 26707655 DOI: 10.1016/j.neuropharm.2015.12.015] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2015] [Revised: 11/21/2015] [Accepted: 12/14/2015] [Indexed: 11/29/2022]
Abstract
A growing body of evidence has revealed that resident cells of the central nervous system (CNS), and particularly the glial cells, comprise a neuroimmune system that serves a number of functions in the normal CNS and during adverse conditions. Cells of the neuroimmune system regulate CNS functions through the production of signaling factors, referred to as neuroimmune factors. Recent studies show that ethanol can activate cells of the neuroimmune system, resulting in the elevated production of neuroimmune factors, including the cytokine interleukin-6 (IL-6). Here we analyzed the consequences of this CNS action of ethanol using transgenic mice that express elevated levels of IL-6 through increased astrocyte expression (IL-6-tg) to model the increased IL-6 expression that occurs with ethanol use. Results show that increased IL-6 expression induces neuroadaptive changes that alter the effects of ethanol. In hippocampal slices from non-transgenic (non-tg) littermate control mice, synaptically evoked dendritic field excitatory postsynaptic potential (fEPSP) and somatic population spike (PS) at the Schaffer collateral to CA1 pyramidal neuron synapse were reduced by acute ethanol (20 or 60 mM). In contrast, acute ethanol enhanced the fEPSP and PS in hippocampal slices from IL-6 tg mice. Long-term synaptic plasticity of the fEPSP (i.e., LTP) showed the expected dose-dependent reduction by acute ethanol in non-tg hippocampal slices, whereas LTP in the IL-6 tg hippocampal slices was resistant to this depressive effect of acute ethanol. Consistent with altered effects of acute ethanol on synaptic function in the IL-6 tg mice, EEG recordings showed a higher level of CNS activity in the IL-6 tg mice than in the non-tg mice during the period of withdrawal from an acute high dose of ethanol. These results suggest a potential role for neuroadaptive effects of ethanol-induced astrocyte production of IL-6 as a mediator or modulator of the actions of ethanol on the CNS, including persistent changes in CNS function that contribute to cognitive dysfunction and the development of alcohol dependence.
Collapse
Affiliation(s)
- Ruben V Hernandez
- Molecular and Cellular Neuroscience Department, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Alana C Puro
- Molecular and Cellular Neuroscience Department, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Jessica C Manos
- Molecular and Cellular Neuroscience Department, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Salvador Huitron-Resendiz
- Molecular and Cellular Neuroscience Department, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Kenneth C Reyes
- Molecular and Cellular Neuroscience Department, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Kevin Liu
- Molecular and Cellular Neuroscience Department, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Khanh Vo
- Molecular and Cellular Neuroscience Department, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Amanda J Roberts
- Molecular and Cellular Neuroscience Department, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Donna L Gruol
- Molecular and Cellular Neuroscience Department, The Scripps Research Institute, La Jolla, CA 92037, USA.
| |
Collapse
|
22
|
Punzalan CS, Bukong TN, Szabo G. Alcoholic hepatitis and HCV interactions in the modulation of liver disease. J Viral Hepat 2015; 22:769-76. [PMID: 25754333 PMCID: PMC4966284 DOI: 10.1111/jvh.12399] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/31/2014] [Accepted: 01/15/2015] [Indexed: 12/12/2022]
Abstract
Most HCV-infected patients regularly consume alcohol. Alcoholic liver disease (ALD) and chronic hepatitis C virus (HCV) infection together are the most common causes of liver disease worldwide. Although both factors independently cause liver disease, they synergistically promote rapid liver disease progression with devastating outcomes for patients. This review focuses on the prevalence, clinical characteristics and molecular pathophysiologic mechanisms of HCV infection associated with alcohol abuse. Recent findings have centred on the synergistic effect of alcohol and HCV on viral replication, hepatocyte apoptosis, oxidative stress, alcohol-induced 'leaky gut', miR-122 and immune dysregulation. Clinical and basic research findings presented here summarize key scientific findings with the aim of highlighting potential areas for new therapies and identifying ways of optimizing current treatments for alcoholics with HCV infection.
Collapse
Affiliation(s)
| | | | - Gyongyi Szabo
- Corresponding Author: Gyongyi Szabo, MD PhD, Department of Medicine, University of Massachusetts Medical School, LRB208, 364 Plantation Street, Worcester, MA 01605. USA; Tel: 00-1-508-856-5275; Fax: 00-1-508-856-4770;
| |
Collapse
|
23
|
Momen-Heravi F, Bala S, Kodys K, Szabo G. Exosomes derived from alcohol-treated hepatocytes horizontally transfer liver specific miRNA-122 and sensitize monocytes to LPS. Sci Rep 2015; 5:9991. [PMID: 25973575 PMCID: PMC4650752 DOI: 10.1038/srep09991] [Citation(s) in RCA: 263] [Impact Index Per Article: 26.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2014] [Accepted: 03/23/2015] [Indexed: 12/12/2022] Open
Abstract
Hepatocyte damage and inflammation in monocytes/macrophages are central to the pathogenesis of alcoholic hepatitis (AH). MicroRNAs (miRNAs) regulate all of these processes. MiRNA-122 is abundantly expressed in hepatocytes while monocytes/macrophages have low levels. The role of exosomes in AH and possible cross talk between hepatocyte-derived exosomes and immune cells is not explored yet. Here, we show that the number of exosomes significantly increases in the sera of healthy individuals after alcohol binge drinking and in mice after binge or chronic alcohol consumption. Exosomes isolated from sera after alcohol consumption or from in vitro ethanol-treated hepatocytes contained miRNA-122. Exosomes derived from ethanol-treated Huh7.5 cells were taken up by the recipients THP1 monocytes and horizontally transferred a mature form of liver-specific miRNA-122. In vivo, liver mononuclear cells and Kupffer cells from alcohol-fed mice had increased miRNA-122 levels. In monocytes, miRNA-122 transferred via exosomes inhibited the HO-1 pathway and sensitized to LPS stimulation and increased levels of pro-inflammatory cytokines. Finally, inflammatory effects of exosomes from ethanol-treated hepatocytes were prevented by using RNA interference via exosome-mediated delivery of a miRNA-122 inhibitor. These results demonstrate that first, exosomes mediate communication between hepatocytes and monocytes/macrophages and second, hepatocyte-derived miRNA-122 can reprogram monocytes inducing sensitization to LPS.
Collapse
Affiliation(s)
- Fatemeh Momen-Heravi
- Department of Medicine, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Shashi Bala
- Department of Medicine, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Karen Kodys
- Department of Medicine, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Gyongyi Szabo
- Department of Medicine, University of Massachusetts Medical School, Worcester, MA 01605, USA
| |
Collapse
|
24
|
Szabo G, Saha B, Bukong TN. Alcohol and HCV: implications for liver cancer. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2015; 815:197-216. [PMID: 25427909 DOI: 10.1007/978-3-319-09614-8_12] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Liver cancers are one of the deadliest known malignancies which are increasingly becoming a major public health problem in both developed and developing countries. Overwhelming evidence suggests a strong role of infection with hepatitis B and C virus (HBV and HCV), alcohol abuse, as well as metabolic diseases such as obesity and diabetes either individually or synergistically to cause or exacerbate the development of liver cancers. Although numerous etiologic mechanisms for liver cancer development have been advanced and well characterized, the lack of definite curative treatments means that gaps in knowledge still exist in identifying key molecular mechanisms and pathways in the pathophysiology of liver cancers. Given the limited success with current therapies and preventive strategies against liver cancer, there is an urgent need to identify new therapeutic options for patients. Targeting HCV and or alcohol-induced signal transduction, or virus-host protein interactions may offer novel therapies for liver cancer. This review summarizes current knowledge on the mechanistic development of liver cancer associated with HCV infection and alcohol abuse as well as highlights potential novel therapeutic strategies.
Collapse
Affiliation(s)
- Gyongyi Szabo
- Department of Medicine, University of Massachusetts Medical School, 364 Plantation Street, Worcester, MA, 01605, USA,
| | | | | |
Collapse
|
25
|
Szabo G, Saha B. Alcohol's Effect on Host Defense. Alcohol Res 2015; 37:159-70. [PMID: 26695755 PMCID: PMC4590613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Alcohol affects many organs, including the immune system, with even moderate amounts of alcohol influencing immune responses. Although alcohol can alter the actions of all cell populations involved in the innate and adaptive immune responses, the effect in many cases is a subclinical immunosuppression that becomes clinically relevant only after a secondary insult (e.g., bacterial or viral infection or other tissue damage). Alcohol's specific effects on the innate immune system depend on the pattern of alcohol exposure, with acute alcohol inhibiting and chronic alcohol accelerating inflammatory responses. The proinflammatory effects of chronic alcohol play a major role in the pathogenesis of alcoholic liver disease and pancreatitis, but also affect numerous other organs and tissues. In addition to promoting proinflammatory immune responses, alcohol also impairs anti-inflammatory cytokines. Chronic alcohol exposure also interferes with the normal functioning of all aspects of the adaptive immune response, including both cell-mediated and humoral responses. All of these effects enhance the susceptibility of chronic alcoholics to viral and bacterial infections and to sterile inflammation.
Collapse
|
26
|
Muralidharan S, Ambade A, Fulham MA, Deshpande J, Catalano D, Mandrekar P. Moderate alcohol induces stress proteins HSF1 and hsp70 and inhibits proinflammatory cytokines resulting in endotoxin tolerance. THE JOURNAL OF IMMUNOLOGY 2014; 193:1975-87. [PMID: 25024384 DOI: 10.4049/jimmunol.1303468] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Binge or moderate alcohol exposure impairs host defense and increases susceptibility to infection because of compromised innate immune responses. However, there is a lack of consensus on the molecular mechanism by which alcohol mediates this immunosuppression. In this study, we show that cellular stress proteins HSF1 and hsp70 play a mechanistic role in alcohol-mediated inhibition of the TLR4/MyD88 pathway. Alcohol exposure induced transcription factor HSF1 mRNA expression and DNA binding activity in primary human monocytes and murine macrophages. Furthermore, HSF1 target gene hsp70 mRNA and protein are upregulated by alcohol in monocytes. In vitro pre-exposure to moderate alcohol reduced subsequent LPS-induced NF-κB promoter activity and downstream TNF-α, IL-6 and IL-1β production in monocytes and macrophages, exhibiting endotoxin tolerance. Mechanistic analysis demonstrates that alcohol-induced HSF1 binds to the TNF-α promoter in macrophages at early time points, exerting transrepression and decreased TNF-α expression. Furthermore, association of hsp70 with NF-κB subunit p50 in alcohol-treated macrophages correlates with reduced NF-κB activation at later time points. Hsp70 overexpression in macrophages was sufficient to block LPS-induced NF-κB promoter activity, suggesting alcohol-mediated immunosuppression by hsp70. The direct crosstalk of hsp70 and HSF1 was further confirmed by the loss of alcohol-mediated endotoxin tolerance in hsp70- and HSF1-silenced macrophages. Our data suggest that alcohol-mediated activation of HSF1 and induction of hsp70 inhibit TLR4-MyD88 signaling and are required for alcohol-induced endotoxin tolerance. Using stress proteins as direct drug targets would be clinically relevant in alcohol abuse treatment and may serve to provide a better understanding of alcohol-mediated immunosuppression.
Collapse
Affiliation(s)
- Sujatha Muralidharan
- Department of Medicine, University of Massachusetts Medical School, Worcester, MA 01605
| | - Aditya Ambade
- Department of Medicine, University of Massachusetts Medical School, Worcester, MA 01605
| | - Melissa A Fulham
- Department of Medicine, University of Massachusetts Medical School, Worcester, MA 01605
| | - Janhavee Deshpande
- Department of Medicine, University of Massachusetts Medical School, Worcester, MA 01605
| | - Donna Catalano
- Department of Medicine, University of Massachusetts Medical School, Worcester, MA 01605
| | - Pranoti Mandrekar
- Department of Medicine, University of Massachusetts Medical School, Worcester, MA 01605
| |
Collapse
|
27
|
Bala S, Marcos M, Gattu A, Catalano D, Szabo G. Acute binge drinking increases serum endotoxin and bacterial DNA levels in healthy individuals. PLoS One 2014; 9:e96864. [PMID: 24828436 PMCID: PMC4020790 DOI: 10.1371/journal.pone.0096864] [Citation(s) in RCA: 228] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2014] [Accepted: 04/10/2014] [Indexed: 02/07/2023] Open
Abstract
Binge drinking, the most common form of alcohol consumption, is associated with increased mortality and morbidity; yet, its biological consequences are poorly defined. Previous studies demonstrated that chronic alcohol use results in increased gut permeability and increased serum endotoxin levels that contribute to many of the biological effects of chronic alcohol, including alcoholic liver disease. In this study, we evaluated the effects of acute binge drinking in healthy adults on serum endotoxin levels. We found that acute alcohol binge resulted in a rapid increase in serum endotoxin and 16S rDNA, a marker of bacterial translocation from the gut. Compared to men, women had higher blood alcohol and circulating endotoxin levels. In addition, alcohol binge caused a prolonged increase in acute phase protein levels in the systemic circulation. The biological significance of the in vivo endotoxin elevation was underscored by increased levels of inflammatory cytokines, TNFα and IL-6, and chemokine, MCP-1, measured in total blood after in vitro lipopolysaccharide stimulation. Our findings indicate that even a single alcohol binge results in increased serum endotoxin levels likely due to translocation of gut bacterial products and disturbs innate immune responses that can contribute to the deleterious effects of binge drinking.
Collapse
Affiliation(s)
- Shashi Bala
- Department of Medicine, University of Massachusetts Medical School, Worcester, Massachusetts, United States of America
| | - Miguel Marcos
- Department of Medicine, University of Massachusetts Medical School, Worcester, Massachusetts, United States of America
| | - Arijeet Gattu
- Department of Medicine, University of Massachusetts Medical School, Worcester, Massachusetts, United States of America
| | - Donna Catalano
- Department of Medicine, University of Massachusetts Medical School, Worcester, Massachusetts, United States of America
| | - Gyongyi Szabo
- Department of Medicine, University of Massachusetts Medical School, Worcester, Massachusetts, United States of America
| |
Collapse
|
28
|
Acute alcohol intoxication impairs methicillin-resistant Staphylococcus aureus clearance in the lung by impeding epithelial production of Reg3γ. Infect Immun 2014; 82:1402-7. [PMID: 24421048 DOI: 10.1128/iai.00974-13] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
The incidence of community-associated methicillin-resistant Staphylococcus aureus (MRSA) pneumonia in previously healthy individuals has increased in the past 5 years. Such infections are associated with bronchiectasis and high mortality rates, making them a significant public health concern. The mechanisms of host defense against this pathogen are not well characterized. However, patients diagnosed with MRSA, as opposed to methicillin-susceptible S. aureus (MSSA), are more likely to have abused alcohol in the past, and these patients are more likely to die from sepsis. In the United States, USA300 is the predominant strain that causes necrotizing pneumonia. To investigate whether acute ethanol exacerbates MRSA pneumonia, mice were intraperitoneally (i.p.) administered 2 or 4 g/kg of ethanol 30 min prior to oropharyngeal inoculation of 2 × 10(7) CFU of USA300. An increased pulmonary bacterial burden was observed in alcohol-intoxicated mice at 16 and 24 h and was associated with decreased levels of interleukin 6 (IL-6). IL-6 activates signal transducer and activator of transcription 3 (STAT3) as part of an acute-phase response of infection. Reg3γ is an antimicrobial C-type lectin that is induced by STAT3 signaling in response to Gram-positive bacteria. Previously, in situ hybridization studies showed that Reg3g is highly expressed in lung epithelium. In the present study, we found that acute ethanol exacerbated USA300 in a murine model of USA300 pneumonia. This was associated with reduced IL-6 expression in vivo as well as inhibition of IL-6 induction of STAT3 signaling and Reg3g expression in mouse lung epithelial (MLE12) cells in vitro. Furthermore, recombinant Reg3γ administration 4 h after MRSA infection in alcohol-intoxicated mice rescued USA300 clearance in vivo. Therefore, acute alcohol intoxication leads to decreased MRSA clearance in part by inhibiting IL-6/STAT3 induction of the antimicrobial protein Reg3γ in the pulmonary epithelium.
Collapse
|
29
|
Mastrogiannis DS, Wang X, Dai M, Li J, Wang Y, Zhou Y, Sakarcan S, Pena JC, Ho W. Alcohol enhances HIV infection of cord blood monocyte-derived macrophages. Curr HIV Res 2014; 12:301-8. [PMID: 25053361 PMCID: PMC4153785 DOI: 10.2174/1570162x12666140721124923] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2013] [Revised: 04/25/2014] [Accepted: 04/25/2014] [Indexed: 11/22/2022]
Abstract
Alcohol consumption or alcohol abuse is common among pregnant HIV(+) women and has been identified as a potential behavioral risk factor for the transmission of HIV. In this study, we examined the impact of alcohol on HIV infection of cord blood monocyte-derived macrophages (CBMDM). We demonstrated that alcohol treatment of CBMDM significantly enhanced HIV infection of CBMDM. Investigation of the mechanisms of alcohol action on HIV demonstrated that alcohol inhibited the expression of several HIV restriction factors, including anti-HIV microRNAs, APOBEC3G and APOBEC3H. Additionally, alcohol also suppressed the expression of IFN regulatory factor 7 (IRF-7) and retinoic acid-inducible gene I (RIG-I), an intracellular sensor of viral infection. The suppression of these IFN regulatory factors was associated with reduced expression of type I IFN. These experimental findings suggest that maternal alcohol consumption may facilitate HIV infection, promoting vertical transmission of HIV.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Wenzhe Ho
- Department of Pathology and Laboratory Medicine, Temple University School of Medicine Philadelphia, PA 19140, USA.
| |
Collapse
|
30
|
Kupfer DM, White VL, Strayer DL, Crouch DJ, Burian D. Microarray characterization of gene expression changes in blood during acute ethanol exposure. BMC Med Genomics 2013; 6:26. [PMID: 23883607 PMCID: PMC3750403 DOI: 10.1186/1755-8794-6-26] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2013] [Accepted: 07/17/2013] [Indexed: 11/29/2022] Open
Abstract
Background As part of the civil aviation safety program to define the adverse effects of ethanol on flying performance, we performed a DNA microarray analysis of human whole blood samples from a five-time point study of subjects administered ethanol orally, followed by breathalyzer analysis, to monitor blood alcohol concentration (BAC) to discover significant gene expression changes in response to the ethanol exposure. Methods Subjects were administered either orange juice or orange juice with ethanol. Blood samples were taken based on BAC and total RNA was isolated from PaxGene™ blood tubes. The amplified cDNA was used in microarray and quantitative real-time polymerase chain reaction (RT-qPCR) analyses to evaluate differential gene expression. Microarray data was analyzed in a pipeline fashion to summarize and normalize and the results evaluated for relative expression across time points with multiple methods. Candidate genes showing distinctive expression patterns in response to ethanol were clustered by pattern and further analyzed for related function, pathway membership and common transcription factor binding within and across clusters. RT-qPCR was used with representative genes to confirm relative transcript levels across time to those detected in microarrays. Results Microarray analysis of samples representing 0%, 0.04%, 0.08%, return to 0.04%, and 0.02% wt/vol BAC showed that changes in gene expression could be detected across the time course. The expression changes were verified by qRT-PCR. The candidate genes of interest (GOI) identified from the microarray analysis and clustered by expression pattern across the five BAC points showed seven coordinately expressed groups. Analysis showed function-based networks, shared transcription factor binding sites and signaling pathways for members of the clusters. These include hematological functions, innate immunity and inflammation functions, metabolic functions expected of ethanol metabolism, and pancreatic and hepatic function. Five of the seven clusters showed links to the p38 MAPK pathway. Conclusions The results of this study provide a first look at changing gene expression patterns in human blood during an acute rise in blood ethanol concentration and its depletion because of metabolism and excretion, and demonstrate that it is possible to detect changes in gene expression using total RNA isolated from whole blood. The analysis approach for this study serves as a workflow to investigate the biology linked to expression changes across a time course and from these changes, to identify target genes that could serve as biomarkers linked to pilot performance.
Collapse
Affiliation(s)
- Doris M Kupfer
- Civil Aerospace Medical Institute, AAM 610, Federal Aviation Administration, Bioaeronautical Sciences Research Laboratory, Oklahoma City, OK 73169, USA.
| | | | | | | | | |
Collapse
|
31
|
Shukla SD, Pruett SB, Szabo G, Arteel GE. Binge ethanol and liver: new molecular developments. Alcohol Clin Exp Res 2013; 37:550-7. [PMID: 23347137 DOI: 10.1111/acer.12011] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2012] [Accepted: 08/10/2012] [Indexed: 02/06/2023]
Abstract
Binge consumption of alcohol is an alarming global health problem. Binge (acute) ethanol (EtOH) is implicated in the pathophysiology of alcoholic liver disease (ALD). New studies from experimental animals and from humans indicate that binge EtOH has profound effects on immunological, signaling, and epigenetic parameters of the liver. This is in addition to the known metabolic effects of acute EtOH. Binge EtOH alters the levels of several cellular components and dramatically amplifies liver injury in chronically EtOH exposed liver. These studies highlight the importance of molecular investigations into binge effects of EtOH for a better understanding of ALD and also to develop therapeutic strategies to control it. This review summarizes these recent developments.
Collapse
Affiliation(s)
- Shivendra D Shukla
- Department of Medical Pharmacology and Physiology, University of Missouri School of Medicine, Columbia, MO 65202, USA.
| | | | | | | |
Collapse
|
32
|
Wang X, Wang Y, Ye L, Li J, Zhou Y, Sakarcan S, Ho W. Modulation of intracellular restriction factors contributes to methamphetamine-mediated enhancement of acquired immune deficiency syndrome virus infection of macrophages. Curr HIV Res 2012; 10:407-14. [PMID: 22591364 DOI: 10.2174/157016212802138797] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2011] [Revised: 02/10/2012] [Accepted: 02/12/2012] [Indexed: 12/13/2022]
Abstract
Epidemiological studies have demonstrated that the use of methamphetamine (METH), a sympathomimetic stimulant, is particularly common among patients infected with HIV. In vitro studies have determined that METH enhances HIV infection of CD4+ T cells, monocyte-derived dendritic cells, and macrophages. In addition, animal studies have also showed that METH treatment increases brain viral load of SIV-infected monkeys and promotes HIV replication and viremia in HIV/hu-CycT1 transgenic mice. However, the mechanisms (s) of METH actions on HIV remain to be determined. In this study, we investigated the impact of METH on intracellular restriction factors against HIV and SIV. We demonstrated that METH treatment of human blood mononuclear phagocytes significantly affected the expression of anti-HIV microRNAs and several key elements (RIG-I, IRF-3/5, SOCS-2, 3 and PIAS-1, 3, X, Y) in the type I IFN pathway. The suppression of these innate restriction factors was associated with a reduced production of type I IFNs and the enhancement of HIV or SIV infection of macrophages. These findings indicate that METH use impairs intracellular innate antiviral mechanism(s) in macrophages, contributing to cell susceptibility to the acquired immune deficiency syndrome (AIDS) virus infection.
Collapse
Affiliation(s)
- Xu Wang
- Department of Pathology and Laboratory Medicine, Temple University School of Medicine, Philadelphia, PA 19140, USA.
| | | | | | | | | | | | | |
Collapse
|
33
|
Rezende LF, Santos GJ, Carneiro EM, Boschero AC. Ciliary neurotrophic factor protects mice against streptozotocin-induced type 1 diabetes through SOCS3: the role of STAT1/STAT3 ratio in β-cell death. J Biol Chem 2012; 287:41628-39. [PMID: 23038263 DOI: 10.1074/jbc.m112.358788] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Type 1 diabetes is characterized by a loss of islet β-cells. Ciliary neurotrophic factor (CNTF) protects pancreatic islets against cytokine-induced apoptosis. For this reason, we assessed whether CNTF protects mice against streptozotocin-induced diabetes (a model of type 1 diabetes) and the mechanism for this protection. WT and SOCS3 knockdown C57BL6 mice were treated for 5 days with citrate buffer or 0.1 mg/kg CNTF before receiving 80 mg/kg streptozotocin. Glycemia in non-fasted mice was measured weekly from days 0-28 after streptozotocin administration. Diabetes was defined as a blood glucose > 11.2 mmol/liter. Wild-type (WT) and SOCS3 knockdown MIN6 cells were cultured with CNTF, IL1β, or both. CNTF reduced diabetes incidence and islet apoptosis in WT but not in SOCS3kd mice. Likewise, CNTF inhibited apoptosis in WT but not in SOCS3kd MIN6 cells. CNTF increased STAT3 phosphorylation in WT and SOCS3kd mice and MIN6 cells but reduced STAT1 phosphorylation only in WT mice, in contrast to streptozotocin and IL1β. Moreover, CNTF reduced NFκB activation and required down-regulation of inducible NO synthase expression to exert its protective effects. In conclusion, CNTF protects mice against streptozotocin-induced diabetes by increasing pancreatic islet survival, and this protection depends on SOCS3. In addition, SOCS3 expression and β-cell fate are dependent on STAT1/STAT3 ratio.
Collapse
Affiliation(s)
- Luiz F Rezende
- Department of Structural and Functional Biology Institute of Biology State University of Campinas (UNICAMP), P.O. Box 6109, Campinas, Sao Paulo 13083-865, Brazil.
| | | | | | | |
Collapse
|
34
|
Guo Q, Shen N, Yuan K, Li J, Wu H, Zeng Y, Fox J, Bansal AK, Singh BB, Gao H, Wu M. Caveolin-1 plays a critical role in host immunity against Klebsiella pneumoniae by regulating STAT5 and Akt activity. Eur J Immunol 2012; 42:1500-11. [PMID: 22678904 DOI: 10.1002/eji.201142051] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Caveolin-1 (Cav1) is a structural protein of caveolae. Although Cav1 is associated with certain bacterial infections, it is unknown whether Cav1 is involved in host immunity against Klebsiella pneumoniae, the third most commonly isolated microorganism from bacterial sepsis patients. Here, we showed that cav1 knockout mice succumbed to K. pneumoniae infection with markedly decreased survival rates, increased bacterial burdens, intensified tissue injury, hyperactive proinflammatory cytokines, and systemic bacterial dissemination as compared with WT mice. Knocking down Cav1 by a dominant negative approach in lung epithelial MLE-12 cells resulted in similar outcomes (decreased bacterial clearance and increased proinflammatory cytokine production). Furthermore, we revealed that STAT5 influences the GSK3β-β-catenin-Akt pathway, which contributes to the intensive inflammatory response and rapid infection dissemination seen in Cav1 deficiency. Collectively, our findings indicate that Cav1 may offer resistance to K. pneumoniae infection, by affecting both systemic and local production of proinflammatory cytokines via the actions of STAT5 and the GSK3β-β-catenin-Akt pathway.
Collapse
Affiliation(s)
- Qiang Guo
- Department of Biochemistry and Molecular Biology, University of North Dakota, Grand Forks, North Dakota 58203, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Bala S, Tang A, Catalano D, Petrasek J, Taha O, Kodys K, Szabo G. Induction of Bcl-3 by acute binge alcohol results in toll-like receptor 4/LPS tolerance. J Leukoc Biol 2012; 92:611-20. [PMID: 22782967 DOI: 10.1189/jlb.0112050] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Acute alcohol binge results in immunosuppression and impaired production of proinflammatory cytokines, including TNF-α. TNF-α production is induced by LPS, a TLR4 ligand, and is tightly regulated at various levels of the signaling cascade, including the NF-κB transcription factor. Here, we hypothesized that acute alcohol induces TLR4/LPS tolerance via Bcl-3, a nuclear protein and member of the NF-κB family. We found that acute alcohol pretreatment resulted in the same attenuating effect as LPS pretreatment on TLR4-induced TNF-α production in human monocytes and murine RAW 264.7 macrophages. Acute alcohol-induced Bcl-3 expression and IP studies revealed increased association of Bcl-3 with NF-κB p50 homodimers in alcohol-treated macrophages and in mice. ChIP assays revealed increased occupancy of Bcl-3 and p50 at the promoter region of TNF-α in alcohol-pretreated cells. To confirm that the Bcl-3-p50 complex regulates transcription/production of TNF-α during acute alcohol exposure, we inhibited Bcl-3 expression using a targeted siRNA. Bcl-3 knockdown prevented the alcohol-induced inhibition of TNF-α mRNA and protein production. In a mouse model of binge alcohol, an increase in Bcl-3 and a concomitant decrease in TNF-α but no change in IL-10 production were found in mice that received alcohol followed by LPS challenge. In summary, our novel data suggest that acute alcohol treatment in vitro and in vivo induces molecular signatures of TLR4/LPS tolerance through the induction of Bcl-3, a negative regulator of TNF-α transcription via its association with NF-κB p50/p50 dimers.
Collapse
Affiliation(s)
- Shashi Bala
- Department of Medicine, University of Massachusetts Medical School, Worcester, MA, USA
| | | | | | | | | | | | | |
Collapse
|
36
|
Choi J. Oxidative stress, endogenous antioxidants, alcohol, and hepatitis C: pathogenic interactions and therapeutic considerations. Free Radic Biol Med 2012; 52:1135-50. [PMID: 22306508 DOI: 10.1016/j.freeradbiomed.2012.01.008] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/17/2011] [Revised: 01/04/2012] [Accepted: 01/12/2012] [Indexed: 12/16/2022]
Abstract
Hepatitis C virus (HCV) is a blood-borne pathogen that was identified as an etiologic agent of non-A, non-B hepatitis in 1989. HCV is estimated to have infected at least 170 million people worldwide. The majority of patients infected with HCV do not clear the virus and become chronically infected, and chronic HCV infection increases the risk for hepatic steatosis, cirrhosis, and hepatocellular carcinoma. HCV induces oxidative/nitrosative stress from multiple sources, including inducible nitric oxide synthase, the mitochondrial electron transport chain, hepatocyte NAD(P)H oxidases, and inflammation, while decreasing glutathione. The cumulative oxidative burden is likely to promote both hepatic and extrahepatic conditions precipitated by HCV through a combination of local and more distal effects of reactive species, and clinical, animal, and in vitro studies strongly point to a role of oxidative/nitrosative stress in HCV-induced pathogenesis. Oxidative stress and hepatopathogenesis induced by HCV are exacerbated by even low doses of alcohol. Alcohol and reactive species may have other effects on hepatitis C patients such as modulation of the host immune system, viral replication, and positive selection of HCV sequence variants that contribute to antiviral resistance. This review summarizes the current understanding of redox interactions of HCV, outlining key experimental findings, directions for future research, and potential applications to therapy.
Collapse
Affiliation(s)
- Jinah Choi
- Department of Molecular Cell Biology, School of Natural Sciences, University of California at Merced, Merced, CA 95343, USA.
| |
Collapse
|
37
|
Wang Y, Wang X, Ye L, Li J, Song L, Fulambarkar N, Ho W. Morphine suppresses IFN signaling pathway and enhances AIDS virus infection. PLoS One 2012; 7:e31167. [PMID: 22359571 PMCID: PMC3281044 DOI: 10.1371/journal.pone.0031167] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2011] [Accepted: 01/03/2012] [Indexed: 01/12/2023] Open
Abstract
BACKGROUND Opioids exert a profound influence on immunomodulation and enhance HIV infection and replication. However, the mechanism(s) of their action remains to be determined. We thus investigated the impact of morphine on the intracellular innate antiviral immunity. METHODOLOGY/PRINCIPAL FINDINGS Seven-day-cultured macrophages were infected with equal amounts of cell-free HIV Bal or SIV Delta(B670) for 2 h at 37°C after 24 h of treatment with or without morphine. Effect of morphine on HIV/SIV infection and replication was evaluated by HIV/SIV RT activity assay and indirect immunofluorescence for HIV p24 or SIV p28 antigen. The mRNA expression of cellular factors suppressed or induced by morphine treatment was analyzed by the real-time RT-PCR. We demonstrated that morphine treatment of human blood monocyte-derived macrophages significantly inhibited the expression of interferons (IFN-α, IFN-β and IFN-λ) and IFN-inducible genes (APOBEC3C/3F/3G and 3H). The further experiments showed that morphine suppressed the expression of several key elements (RIG-I and IRF-7) in IFN signaling pathway. In addition, morphine treatment induced the expression of suppressor of cytokine signaling protein-1, 2, 3 (SOCS-1, 2, 3) and protein inhibitors of activated STAT-1, 3, X, Y (PIAS-1, 3, X, Y), the key negative regulators of IFN signaling pathway. CONCLUSIONS These findings indicate that morphine impairs intracellular innate antiviral mechanism(s) in macrophages, contributing to cell susceptibility to AIDS virus infection.
Collapse
Affiliation(s)
- Yizhong Wang
- Department of Pathology and Laboratory Medicine, Temple University School of Medicine, Philadelphia, Pennsylvania, United States of America
| | - Xu Wang
- Department of Pathology and Laboratory Medicine, Temple University School of Medicine, Philadelphia, Pennsylvania, United States of America
| | - Li Ye
- Department of Pathology and Laboratory Medicine, Temple University School of Medicine, Philadelphia, Pennsylvania, United States of America
- The Center for Animal Experiment/ABSL-3 Laboratory, Wuhan University, Hubei, People's Republic of China
| | - Jieliang Li
- Department of Pathology and Laboratory Medicine, Temple University School of Medicine, Philadelphia, Pennsylvania, United States of America
| | - Li Song
- Department of Pathology and Laboratory Medicine, Temple University School of Medicine, Philadelphia, Pennsylvania, United States of America
| | - Nilija Fulambarkar
- Department of Pathology and Laboratory Medicine, Temple University School of Medicine, Philadelphia, Pennsylvania, United States of America
| | - Wenzhe Ho
- Department of Pathology and Laboratory Medicine, Temple University School of Medicine, Philadelphia, Pennsylvania, United States of America
- The Center for Animal Experiment/ABSL-3 Laboratory, Wuhan University, Hubei, People's Republic of China
- * E-mail:
| |
Collapse
|
38
|
Rhee YH, Jeong SJ, Lee HJ, Lee HJ, Koh W, Jung JH, Kim SH, Sung-Hoon K. Inhibition of STAT3 signaling and induction of SHP1 mediate antiangiogenic and antitumor activities of ergosterol peroxide in U266 multiple myeloma cells. BMC Cancer 2012; 12:28. [PMID: 22260501 PMCID: PMC3292511 DOI: 10.1186/1471-2407-12-28] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2011] [Accepted: 01/20/2012] [Indexed: 01/09/2023] Open
Abstract
BACKGROUND Ergosterol peroxide (EP) derived from edible mushroom has been shown to exert anti-tumor activity in several cancer cells. In the present study, anti-angiogenic activity of EP was investigated with the underlying molecular mechanisms in human multiple myeloma U266 cells. RESULTS Despite weak cytotoxicity against U266 cells, EP suppressed phosphorylation, DNA binding activity and nuclear translocalization of signal transducer and activator of transcription 3 (STAT3) in U266 cells at nontoxic concentrations. Also, EP inhibited phosphorylation of the upstream kinases Janus kinase 2 (JAK2) and Src in a time-dependent manner. Furthermore, EP increased the expression of protein tyrosine phosphatase SHP-1 at protein and mRNA levels, and conversely silencing of the SHP-1 gene clearly blocked EP-mediated STAT3 inactivation. In addition, EP significantly decreased vascular endothelial growth factor (VEGF), one of STAT3 target genes at cellular and protein levels as well as disrupted in vitro tube formation assay. Moreover, EP significantly suppressed the growth of U266 cells inoculated in female BALB/c athymic nude mice and immunohistochemistry revealed that EP effectively reduced the expression of STAT3 and CD34 in tumor sections compared to untreated control. CONCLUSION These findings suggest that EP can exert antitumor activity in multiple myeloma U266 cells partly with antiangiogenic activity targeting JAK2/STAT3 signaling pathway as a potent cancer preventive agent for treatment of multiple myeloma cells.
Collapse
Affiliation(s)
- Yun-Hee Rhee
- Clinical Trial Institute, Dankook University, Chenan, South Korea
| | | | | | | | | | | | | | | |
Collapse
|
39
|
Helms CM, Messaoudi I, Jeng S, Freeman WM, Vrana KE, Grant KA. A longitudinal analysis of circulating stress-related proteins and chronic ethanol self-administration in cynomolgus macaques. Alcohol Clin Exp Res 2011; 36:995-1003. [PMID: 22141444 DOI: 10.1111/j.1530-0277.2011.01685.x] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
BACKGROUND Alcoholics have alterations in endocrine and immune functions and increased susceptibility to stress-related disorders. A longitudinal analysis of chronic ethanol intake on homeostatic mechanisms is, however, incompletely characterized in primates. METHODS Plasma proteins (n = 60; Luminex) and hormones (adrenocorticotropic hormone [ACTH]; cortisol) were repeatedly measured in adult male cynomolgus monkeys (Macaca fascicularis, n = 10) during a 32-month experimental protocol at baseline, during induction of water and ethanol (4% w/v in water) self-administration, after 4 months, and after 12 months of 22-hour daily concurrent access to ethanol and water. RESULTS Significant changes were observed in ACTH, cortisol, and 45/60 plasma proteins: a majority (28/45) were suppressed as a function of ethanol self-administration, 8 proteins were elevated, and 9 showed biphasic changes. Cortisol and ACTH were greatest during induction, and correlations between these hormones and plasma proteins varied across the experiment. Pathway analyses implicated nuclear factor κ-light-chain-enhancer of activated B cells (NF-κB) and Janus kinase (JAK)/signal transducer and activator of transcription (STAT) as possible mediators of ethanol-induced effects on immune-related proteins in primates. CONCLUSIONS Chronic ethanol consumption in primates leads to an allostatic state of physiological compromise with respect to circulating immune- and stress-related proteins in NF-κB- and STAT/JAK-related pathways in correlation with altered endocrine activity.
Collapse
Affiliation(s)
- Christa M Helms
- Division of Neuroscience, Oregon National Primate Research Center, Oregon Health & Science University, 505 NW 185th Avenue, Beaverton, OR 97006-3448, USA.
| | | | | | | | | | | |
Collapse
|
40
|
Pang M, Bala S, Kodys K, Catalano D, Szabo G. Inhibition of TLR8- and TLR4-induced Type I IFN induction by alcohol is different from its effects on inflammatory cytokine production in monocytes. BMC Immunol 2011; 12:55. [PMID: 21962237 PMCID: PMC3203086 DOI: 10.1186/1471-2172-12-55] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2011] [Accepted: 09/30/2011] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND Prolonged alcohol consumption is a significant co-factor in the progression of chronic viral infections including hepatitis C and HIV, which are both single-stranded RNA viruses. Toll like receptor 8 (TLR8), a pattern recognition receptor expressed in monocytes, senses viral single stranded RNA as a danger signal and leads to the induction of Type I interferon (IFN) as well as the pro-inflammatory cytokine, tumor necrosis factor alpha (TNF alpha). Lipopolysaccharide (LPS), a Toll like receptor 4 (TLR4) ligand, was shown to affect inflammatory cell activation after alcohol consumption and in HIV and HCV infections. Here we hypothesized that alcohol exposure modulates TLR8- and TLR4-ligand-induced monocyte activation and affects both type I IFN and inflammatory cytokine induction. RESULTS The TLR8 ligand, CL075, as well as the TLR4 ligand, LPS, resulted in a significant induction of TNF alpha both at the mRNA and protein levels in human monocytes. We found that both acute and prolonged alcohol treatment resulted in inhibition of type I IFN induction by either TLR8 or TLR4 ligands in human monocytes at the protein and mRNA levels. In contrast to Type I IFN production, the effects of acute and prolonged alcohol were different on inflammatory cytokine activation after TLR8 or TLR4 ligand stimulation. Acute alcohol inhibited TLR8- or TLR4-induced TNF alpha protein and mRNA induction while it augmented IL-10 production in monocytes. In contrast, prolonged alcohol treatment augmented TNF alpha without affecting IL-10 production significantly in response to either TLR8 or TLR4 ligand stimulation. CONCLUSIONS These novel results suggest first, that alcohol has a profound inhibitory effect on Type I IFN induction regardless of intracellular (TLR8) or cell surface-derived (TLR4) danger signals. Second, both acute and prolonged alcohol exposure can inhibit antiviral Type I IFN pathway activation. Third, the opposite effects of acute (inhibitory) and prolonged alcohol (augmentation) treatment on pro-inflammatory cytokine activation extend to TLR8-induced signals beyond the previously shown TLR4/LPS pathway.
Collapse
Affiliation(s)
- Maoyin Pang
- Department of Medicine, University of Massachusetts Medical School, 364 Plantation Street, Worcester, MA 01605, USA
| | | | | | | | | |
Collapse
|
41
|
Eken A, Ortiz V, Wands JR. Ethanol inhibits antigen presentation by dendritic cells. CLINICAL AND VACCINE IMMUNOLOGY : CVI 2011; 18:1157-66. [PMID: 21562114 PMCID: PMC3147329 DOI: 10.1128/cvi.05029-11] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2011] [Accepted: 04/29/2011] [Indexed: 12/26/2022]
Abstract
Previous studies suggest that altered virus-specific T-cell responses observed during chronic ethanol exposure may be due to abnormal functioning of dendritic cells (DCs). Here we explored the effects of ethanol on exogenous antigen presentation by DCs. BALB/c, C57BL/6, and CBA/caj mice were fed ethanol or an isocaloric control diet for 8 weeks. The splenic DC population was expanded using an Flt3L expression plasmid via tail vein injection. DCs were purified and assessed for antigen presentation and processing and for peptide-major histocompatibility complex class I and II (MHCI and MHCII) formation on the cell surface. Interleukin-2 (IL-2) was measured as an indicator of antigen-specific T-cell activation by DCs in coculture. Antigen processing and peptide-MHCII complexes were evaluated by flow cytometry. We observed that ethanol not only suppressed allogeneic peptide presentation to T cells by DCs but also altered presentation of exogenous ovalbumin (OVA) peptide 323-339 to an OVA-specific DO11 T-cell line as well as to OVA-sensitized primary T cells. Smaller amounts of peptide-MHCII complexes were found on the DCs isolated from the spleens of ethanol-fed mice. In contrast to MHCII presentation, cross-presentation of exogenous OVA peptide via MHCI by DCs remained intact. More importantly, ethanol-exposed DCs had reduced B7-DC and enhanced ICOS-L (inhibitory) costimulatory molecule expression. Ethanol inhibits exogenous and allogeneic antigen presentation and affects the formation of peptide-MHCII complexes, as well as altering costimulatory molecule expression on the cell surface. Therefore, DC presentation of peptides in a favorable costimulatory protein environment is required to subsequently activate T cells and appears to be a critical target for the immunosuppressive effects of ethanol.
Collapse
Affiliation(s)
- Ahmet Eken
- Department of Molecular Biology, Cell Biology, and Biochemistry, Brown University
| | - Vivian Ortiz
- Liver Research Center, Rhode Island Hospital
- Department of Medicine, Warren Alpert Medical School of Brown University, Providence, Rhode Island
| | - Jack R. Wands
- Liver Research Center, Rhode Island Hospital
- Department of Medicine, Warren Alpert Medical School of Brown University, Providence, Rhode Island
| |
Collapse
|
42
|
Yuan K, Huang C, Fox J, Gaid M, Weaver A, Li G, Singh BB, Gao H, Wu M. Elevated inflammatory response in caveolin-1-deficient mice with Pseudomonas aeruginosa infection is mediated by STAT3 protein and nuclear factor kappaB (NF-kappaB). J Biol Chem 2011; 286:21814-25. [PMID: 21515682 DOI: 10.1074/jbc.m111.237628] [Citation(s) in RCA: 73] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Caveolin-1 (Cav-1), an important composition protein within the flask-shaped membrane invaginations termed caveolae, may play a role in host defense against infections. However, the phenotype in Pseudomonas aeruginosa-infected cav1 knock-out (KO) mice is still unresolved, and the mechanism involved is almost entirely unknown. Using a respiratory infection model, we confirmed a crucial role played by Cav-1 in host defense against this pathogen because Cav-1 KO mice showed increased mortality, severe lung injury, and systemic dissemination as compared with wild-type (WT) littermates. In addition, cav1 KO mice exhibited elevated inflammatory cytokines (IL-6, TNF-α, and IL-12a), decreased phagocytic ability of macrophages, and increased superoxide release in the lung, liver, and kidney. We further studied relevant cellular signaling processes and found that STAT3 and NF-κB are markedly activated. Our data revealed that the Cav-1/STAT3/NF-κB axis is responsible for a dysregulated cytokine response, which contributes to increased mortality and disease progression. Moreover, down-regulating Cav-1 in cell culture with a dominant negative strategy demonstrated that STAT3 activation was essential for the translocation of NF-κB into the nucleus, confirming the observations from cav1 KO mice. Collectively, our studies indicate that Cav-1 is critical for inflammatory responses regulating the STAT3/NF-κB pathway and thereby impacting P. aeruginosa infection.
Collapse
Affiliation(s)
- Kefei Yuan
- State Key Laboratory for Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Siggins RW, Melvan JN, Welsh DA, Bagby GJ, Nelson S, Zhang P. Alcohol suppresses the granulopoietic response to pulmonary Streptococcus pneumoniae infection with enhancement of STAT3 signaling. THE JOURNAL OF IMMUNOLOGY 2011; 186:4306-13. [PMID: 21357267 DOI: 10.4049/jimmunol.1002885] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Enhanced granulopoietic activity is crucial for host defense against bacterial pneumonia. Alcohol impairs this response. The underlying mechanisms remain obscure. G-CSF produced by infected lung tissue plays a key role in stimulating bone marrow granulopoiesis. This study investigated the effects of alcohol on G-CSF signaling in the regulation of marrow myeloid progenitor cell proliferation in mice with Streptococcus pneumoniae pneumonia. Chronic alcohol consumption plus acute alcohol intoxication suppressed the increase in blood granulocyte counts following intrapulmonary challenge with S. pneumoniae. This suppression was associated with a significant decrease in bone marrow granulopoietic progenitor cell proliferation. Alcohol treatment significantly enhanced STAT3 phosphorylation in bone marrow cells of animals challenged with S. pneumoniae. In vitro experiments showed that G-CSF-induced activation of STAT3-p27(Kip1) pathway in murine myeloid progenitor cell line 32D-G-CSFR cells was markedly enhanced by alcohol exposure. Alcohol dose dependently inhibited G-CSF-stimulated 32D-G-CSFR cell proliferation. This impairment of myeloid progenitor cell proliferation was not attenuated by inhibition of alcohol metabolism through either the alcohol dehydrogenase pathway or the cytochrome P450 system. These data suggest that alcohol enhances G-CSF-associated STAT3-p27(Kip1) signaling, which impairs granulopoietic progenitor cell proliferation by inducing cell cycling arrest and facilitating their terminal differentiation during the granulopoietic response to pulmonary infection.
Collapse
Affiliation(s)
- Robert W Siggins
- Department of Physiology, Louisiana State University Health Sciences Center, New Orleans, LA 70112, USA
| | | | | | | | | | | |
Collapse
|
44
|
Miller AM, Horiguchi N, Jeong WI, Radaeva S, Gao B. Molecular mechanisms of alcoholic liver disease: innate immunity and cytokines. Alcohol Clin Exp Res 2011; 35:787-93. [PMID: 21284667 DOI: 10.1111/j.1530-0277.2010.01399.x] [Citation(s) in RCA: 136] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Alcohol consumption is a predominant etiological factor in the pathogenesis of chronic liver diseases worldwide, causing fatty liver, alcoholic hepatitis, fibrosis/cirrhosis, and hepatocellular carcinoma. In the past few decades, significant progress has been made in our understanding of the molecular mechanisms underlying alcoholic liver injury. Activation of innate immunity components such as Kupffer cells, LPS/TLR4, and complements in response to alcohol exposure plays a key role in the development and progression of alcoholic liver disease (ALD). LPS activation of Kupffer cells also produces IL-6 and IL-10 that may play a protective role in ameliorating ALD. IL-6 activates signal transducer and activator of transcription 3 (STAT3) in hepatocytes and sinusoidal endothelial cells, while IL-10 activates STAT3 in Kupffer cells/macrophages, subsequently protecting against ALD. In addition, alcohol consumption also inhibits some components of innate immunity such as natural killer (NK) cells, a type of cells that play key roles in anti-viral, anti-tumor, and anti-fibrotic defenses in the liver. Ethanol inhibition of NK cells likely contributes significantly to the pathogenesis of ALD. Understanding the roles of innate immunity and cytokines in alcoholic liver injury may provide insight into novel therapeutic targets in the treatment of alcoholic liver disease.
Collapse
Affiliation(s)
- Andrew M Miller
- Section on Liver Biology, Laboratory of Physiologic Studies, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, Maryland 20892, USA
| | | | | | | | | |
Collapse
|
45
|
Role of TLR4 in ethanol effects on innate and adaptive immune responses in peritoneal macrophages. Immunol Cell Biol 2011; 89:716-27. [DOI: 10.1038/icb.2010.163] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
46
|
Ye L, Wang S, Wang X, Zhou Y, Li J, Persidsky Y, Ho W. Alcohol impairs interferon signaling and enhances full cycle hepatitis C virus JFH-1 infection of human hepatocytes. Drug Alcohol Depend 2010; 112:107-16. [PMID: 20646875 PMCID: PMC2967585 DOI: 10.1016/j.drugalcdep.2010.05.008] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/23/2010] [Revised: 05/11/2010] [Accepted: 05/25/2010] [Indexed: 12/20/2022]
Abstract
Alcohol drinking and hepatitis C virus (HCV) infection frequently coexist in patients with chronic liver disease. There is limited information, however, about the impact of alcohol on host cell innate immunity and full cycle replication of HCV. This study investigated whether alcohol impairs the intracellular innate immunity in human hepatocytes, promoting HCV infection and replication. Alcohol treatment of human hepatocytes before, during and after viral infection significantly enhanced full cycle HCV replication. Alcohol suppressed intracellular expression of type I interferons (IFN-α/β) in human hepatocytes. Investigation of the mechanisms responsible for the alcohol action revealed that alcohol inhibited the expression of the IFN regulatory factors (IRF-5 and IRF-7), and signal transducer and activator of transcription (STAT-1 and STAT-2), the key positive regulators in type I IFN signaling pathway. In addition, alcohol induced the expression of suppressors of cytokine signaling (SOCS-2 and SOCS-3), the key negative regulators of IFN-α/β expression. These in vitro findings suggest that alcohol, through modulating the expression of key regulators in IFN signaling pathway, inhibits type I IFN-based intracellular innate immunity in hepatocytes, which may contribute to the chronicity of HCV infection and the poor efficacy of IFN-α-based therapy.
Collapse
Affiliation(s)
- Li Ye
- Department of Pathology and Laboratory Medicine, Temple University School of Medicine, Philadelphia, PA 19140 USA
| | - Shihong Wang
- Renmin Hospital of Wuhan University, Wuhan University, Hubei, 430060, China
| | - Xu Wang
- Department of Pathology and Laboratory Medicine, Temple University School of Medicine, Philadelphia, PA 19140 USA
| | - Yu Zhou
- Division of Infectious Diseases, Department of Medicine, University of Pennsylvania School of Medicine, Philadelphia, PA 19104 USA
| | - Jieliang Li
- Department of Pathology and Laboratory Medicine, Temple University School of Medicine, Philadelphia, PA 19140 USA
| | - Yuri Persidsky
- Department of Pathology and Laboratory Medicine, Temple University School of Medicine, Philadelphia, PA 19140 USA
| | - Wenzhe Ho
- Department of Pathology and Laboratory Medicine, Temple University School of Medicine, Philadelphia, PA 19140 USA,Corresponding author at: Department of Pathology and Laboratory Medicine, Temple University School of Medicine, 1052 MERB, 3500 N. Broad Street, Philadelphia, PA 19140; Tel: 1-215-707-8858; Fax: 1-215-707-5525;
| |
Collapse
|
47
|
Hao Y, Yang X, Chen C, Yuan-Wang, Wang X, Li M, Yu Z. STAT3 signalling pathway is involved in the activation of microglia induced by 2.45 GHz electromagnetic fields. Int J Radiat Biol 2010; 86:27-36. [PMID: 20070213 DOI: 10.3109/09553000903264507] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
PURPOSE Microglia activation plays a pivotal role in the initiation and progression of central nervous system (CNS) insult. The aim of the present work was to investigate the activation of microglia and involvement of signal transducer and activator of transcription 3 (STAT3) in microglia activation after 2.45 GHz electromagnetic fields (EMF) exposure. MATERIALS AND METHODS In this study, murine N9 microglial cells were exposed to 2.45 GHz EMF, the protein expressions of STAT3, Janus Tyrosine kinase 1 and 2(JAK1 and JAK2), phosphor-(Try705)STAT3 and DNA binding activity of STAT3 were examined by Western blot analysis and electrophoresis mobility shift assay (EMSA). Levels of the nitric oxide (NO) derivative nitrite were determined in the culture medium by the Griess reaction. The mRNA expression of tumour necrosis factor alpha (TNF-alpha) and inducible nitric oxide synthase (iNOS) were detected by reverse transcription and polymerase chain reaction (RT-PCR). RESULTS A significant increase of STAT3 DNA-binding ability was noted after exposure. Consistent with this, EMF rapidly induced phosphorylation of STAT3 and activated JAK1 and JAK2. In addition, EMF exposure increased transcription levels of the inflammation-associated genes, iNOS and TNF-alpha, which are reported to contain STAT-binding elements in their promoter region. P6, a JAK inhibitor, reduced induction of iNOS and TNF-alpha, nuclear factor binding activity, and activation of STAT3 in EMF-stimulated microglia. CONCLUSION These results provide evidence that EMF exposure can initiate the activation of microglia cells and STAT3 signalling involves in EMF-induced microglial activation.
Collapse
Affiliation(s)
- Yutong Hao
- Key laboratory of Medical Protection for Electromagnetic radiation Ministry of Education, Third Military Medical University, Chongqing, People's Republic of China
| | | | | | | | | | | | | |
Collapse
|
48
|
Fernandez-Lizarbe S, Pascual M, Guerri C. Critical role of TLR4 response in the activation of microglia induced by ethanol. THE JOURNAL OF IMMUNOLOGY 2009; 183:4733-44. [PMID: 19752239 DOI: 10.4049/jimmunol.0803590] [Citation(s) in RCA: 271] [Impact Index Per Article: 16.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Microglial cells are the primary immune effector cells in the brain and play a pivotal role in the neuroinflammatory processes associated with a variety of neurological and pathological disorders. Alcohol consumption induces brain damage, although the neuropathological processes are poorly understood. We previously suggested that ethanol promotes inflammatory processes in the brain, up-regulating inflammatory mediators and signaling pathways associated with IL-1RI/TLR4 receptors. In the present study we investigate whether ethanol induces microglia activation by stimulating TLR4 response and whether this response causes neuronal death and contributes to ethanol-induced neuroinflammatory damage. We demonstrate that ethanol activates microglía and stimulates NF-kappaB, MAPKs, and MyD88-independent (IFN regulatory factor-3, IFN-beta) pathways to trigger the production of inflammatory mediators, causing neuronal death. The inflammatory response induced by ethanol is completely abrogated in microglia of TLR4-deficient mice (TLR4(-/-)), thus supporting the role of these receptors in microglia activation and neuronal death. In accord with the in vitro findings, acute ethanol administration induces microglia activation (CD11b(+) cells) in cerebral cortex of TLR4(+/+) mice, but not in TLR4(-/-) mice. Taken together, our results not only provide the first evidence of the critical role of the TLR4 response in the ethanol-induced microglia activation, but also new insight into the basic mechanisms participating in ethanol-induced neuroinflammatory damage.
Collapse
Affiliation(s)
- Sara Fernandez-Lizarbe
- Department of Cellular Pathology, Centro de Investigación Príncipe Felipe, Valencia 46012, Spain
| | | | | |
Collapse
|
49
|
Mandrekar P, Bala S, Catalano D, Kodys K, Szabo G. The opposite effects of acute and chronic alcohol on lipopolysaccharide-induced inflammation are linked to IRAK-M in human monocytes. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2009; 183:1320-7. [PMID: 19561104 PMCID: PMC3845821 DOI: 10.4049/jimmunol.0803206] [Citation(s) in RCA: 152] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Impaired host defense after alcohol use is linked to altered cytokine production, however, acute and chronic alcohol differently modulate monocyte/macrophage activation. We hypothesized that in human monocytes, acute alcohol induces hyporesponsiveness to LPS, resulting in decreased TNF-alpha, whereas chronic alcohol increases TNF-alpha by sensitization to LPS. We found that acute alcohol increased IL-1R-associated kinase-monocyte (IRAK-M), a negative regulator of IRAK-1, in human monocytes. This was associated with decreased IkappaB alpha kinase activity, NFkappaB DNA binding, and NFkappaB-driven reporter activity after LPS stimulation. In contrast, chronic alcohol decreased IRAK-M expression but increased IRAK-1 and IKK kinase activities, NFkappaB DNA binding, and NFkappaB-reporter activity. Inhibition of IRAK-M in acute alcohol-exposed monocytes using small interfering RNA restored the LPS-induced TNF-alpha production whereas over-expression of IRAK-M in chronic alcohol macrophages prevented the increase in TNF-alpha production. Addition of inhibitors of alcohol metabolism did not alter LPS signaling and TNF-alpha production during chronic alcohol exposure. IRAK-1 activation induces MAPKs that play an important role in TNF-alpha induction. We determined that acute alcohol decreased but chronic alcohol increased activation of ERK in monocytes and ERK inhibitor, PD98059, prevented the chronic alcohol-induced increase in TNF-alpha. In summary, inhibition of LPS-induced NFkappaB and ERK activation by acute alcohol leads to hyporesponsiveness of monocytes to LPS due to increased IRAK-M. In contrast, chronic alcohol sensitizes monocytes to LPS through decreased IRAK-M expression and activation of NFkappaB and ERK kinases. Our data indicate that IRAK-M is a central player in the opposite regulation of LPS signaling by different lengths of alcohol exposure in monocytes.
Collapse
Affiliation(s)
- Pranoti Mandrekar
- University of Massachusetts Medical School, Department of Medicine, Worcester, MA 01605
| | - Shashi Bala
- University of Massachusetts Medical School, Department of Medicine, Worcester, MA 01605
| | - Donna Catalano
- University of Massachusetts Medical School, Department of Medicine, Worcester, MA 01605
| | - Karen Kodys
- University of Massachusetts Medical School, Department of Medicine, Worcester, MA 01605
| | - Gyongyi Szabo
- University of Massachusetts Medical School, Department of Medicine, Worcester, MA 01605
| |
Collapse
|
50
|
Abstract
The pathogenesis of alcoholic liver injury involves interactions of several intracellular signalling pathways in different cell types of the liver. Alcohol-induced sensitization of liver macrophages to portal endotoxin/lipopolysaccharide (LPS) is considered a hallmark of alcoholic liver disease (ALD). Intracellular mechanisms associated with LPS-induced signalling play a crucial role in the initiation and progression of alcoholic liver injury, and are being extensively explored. LPS recognition by Toll-like receptor 4 (TLR4) on macrophages and other cell types in the liver, activation of downstream signalling pathways culminating in activation of transcription factors such as NFkappaB, AP-1 leads to increased inflammatory cytokine production in ALD. In addition, LPS-induced MAPK such as ERK and p38 also contribute to liver injury. The importance of alcohol-induced reactive oxygen species and interactions with TLR pathways in macrophages leading to inflammation is becoming increasingly evident. Collectively, these signalling pathways induce pro- and anti-inflammatory cytokines that play an important role in ALD. In this review we describe the key signalling intermediates leading to alcohol-induced inflammation in alcoholic liver disease.
Collapse
Affiliation(s)
- Pranoti Mandrekar
- Department of Medicine, University of Massachusetts Medical School, 364 Plantation Street, Worcester, MA 01605, USA.
| | | |
Collapse
|