1
|
Dasgupta D, Ghosh S, Dey I, Majumdar S, Chowdhury S, Das S, Banerjee S, Saha M, Ghosh A, Roy N, Manna A, Ray S, Agarwal S, Bhaumik P, Datta S, Chowdhury A, Banerjee S. Influence of polymorphisms in TNF-α and IL1β on susceptibility to alcohol induced liver diseases and therapeutic potential of miR-124-3p impeding TNF-α/IL1β mediated multi-cellular signaling in liver microenvironment. Front Immunol 2023; 14:1241755. [PMID: 38146363 PMCID: PMC10749309 DOI: 10.3389/fimmu.2023.1241755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Accepted: 10/23/2023] [Indexed: 12/27/2023] Open
Abstract
Background and aims Alcoholic liver disease (ALD) is the leading cause of the liver cirrhosis related death worldwide. Excessive alcohol consumption resulting enhanced gut permeability which trigger sensitization of inflammatory cells to bacterial endotoxins and induces secretion of cytokines, chemokines leading to activation of stellate cells, neutrophil infiltration and hepatocyte injury followed by steatohepatitis, fibrosis and cirrhosis. But all chronic alcoholics are not susceptible to ALD. This study investigated the causes of differential immune responses among ALD patients and alcoholic controls (ALC) to identify genetic risk factors and assessed the therapeutic potential of a microRNA, miR-124-3p. Materials and methods Bio-Plex Pro™ Human Chemokine analysis/qRT-PCR array was used for identification of deregulated immune genes. Sequencing/luciferase assay/ELISA detected and confirmed the polymorphisms. THP1 co-cultured with HepG2/LX2/HUVEC and apoptosis assay/qRT-PCR/neutrophil migration assay were employed as required. Results The combined data analysis of the GSE143318/Bio-Plex Pro™ Human Chemokine array and qRT-PCR array revealed that six genes (TNFα/IL1β/IL8/MCP1/IL6/TGFβ) were commonly overexpressed in both serum/liver tissue of ALD-patients compared to ALC. The promoter sequence analysis of these 6 genes among ALD (n=322)/ALC (n=168) samples revealed that only two SNPs, rs361525(G/A) at -238 in TNF-α/rs1143627(C/T) at -31 in IL1β were independently associated with ALD respectively. To evaluate the functional implication of these SNPs on ALD development, the serum level of TNF-α/IL1β was verified and observed significantly higher in ALD patients with risk genotypes TNF-α-238GA/IL1β-31CT+TT than TNF-α-238GG/IL1β-31CC. The TNF-α/IL1β promoter Luciferase-reporter assays showed significantly elevated level of luciferase activities with risk genotypes -238AA/-31TT than -238GG/-31CC respectively. Furthermore, treatment of conditioned medium of TNF-α/IL1β over-expressed THP1 cells to HepG2/LX2/HUVEC cells independently showed enhanced level of ER stress and apoptosis in HepG2/increased TGFβ and collagen-I production by LX2/huge neutrophil infiltration through endothelial layer. However, restoration of miR-124-3p in THP1 attenuated such inter-cellular communications and hepatocyte damage/collagen production/neutrophil infiltration were prohibited. Target analysis/luciferase-reporter assays revealed that both TNF-α/IL1β were inhibited by miR-124-3p along with multiple genes from TLR4 signaling/apoptosis/fibrogenesis pathways including MYD88, TRAF3/TRADD, Caspase8/PDGFRA, TGFβR2/MCP1, and ICAM1 respectively. Conclusion Thus, rs361525(G/A) in TNF-α and rs1143627(C/T) in IL1β gene may be used as early predictors of ALD susceptibility among East Indian population. Impeding overexpressed TNF-α/IL1β and various genes from associated immune response pathways, miR-124-3p exhibits robust therapeutic potential for ALD patients.
Collapse
Affiliation(s)
- Debanjali Dasgupta
- Centre for Liver Research, School of Digestive and Liver Diseases, Institute of Post Graduate Medical Education and Research, Kolkata, India
| | - Suchandrima Ghosh
- Centre for Liver Research, School of Digestive and Liver Diseases, Institute of Post Graduate Medical Education and Research, Kolkata, India
| | - Indrashish Dey
- Centre for Liver Research, School of Digestive and Liver Diseases, Institute of Post Graduate Medical Education and Research, Kolkata, India
| | - Swagata Majumdar
- Centre for Liver Research, School of Digestive and Liver Diseases, Institute of Post Graduate Medical Education and Research, Kolkata, India
| | - Saheli Chowdhury
- Centre for Liver Research, School of Digestive and Liver Diseases, Institute of Post Graduate Medical Education and Research, Kolkata, India
| | - Subhas Das
- Centre for Liver Research, School of Digestive and Liver Diseases, Institute of Post Graduate Medical Education and Research, Kolkata, India
| | - Sanjana Banerjee
- Centre for Liver Research, School of Digestive and Liver Diseases, Institute of Post Graduate Medical Education and Research, Kolkata, India
| | - Mehelana Saha
- Department of Pharmacology, Institute of Post Graduate Medical Education and Research, Kolkata, India
| | - Amit Ghosh
- Centre for Liver Research, School of Digestive and Liver Diseases, Institute of Post Graduate Medical Education and Research, Kolkata, India
| | - Neelanjana Roy
- Centre for Liver Research, School of Digestive and Liver Diseases, Institute of Post Graduate Medical Education and Research, Kolkata, India
| | - Alak Manna
- Department of Pharmacology, Institute of Post Graduate Medical Education and Research, Kolkata, India
| | - Sukanta Ray
- Department Gastro-Surgery, School of Digestive and Liver Diseases, Institute of Post Graduate Medical Education and Research, Kolkata, India
| | - Shaleen Agarwal
- Liver Transplant and Biliary Sciences, Max Saket West Super Speciality Hospital, New Delhi, India
| | - Pradeep Bhaumik
- Department of Medicine, Agartala Government Medical College, West Tripura, India
| | - Simanti Datta
- Centre for Liver Research, School of Digestive and Liver Diseases, Institute of Post Graduate Medical Education and Research, Kolkata, India
| | - Abhijit Chowdhury
- Department of Hepatology, School of Digestive and Liver Diseases, Institute of Post Graduate Medical Education and Research, Kolkata, India
| | - Soma Banerjee
- Centre for Liver Research, School of Digestive and Liver Diseases, Institute of Post Graduate Medical Education and Research, Kolkata, India
| |
Collapse
|
2
|
Rodimova S, Mozherov A, Elagin V, Karabut M, Shchechkin I, Kozlov D, Krylov D, Gavrina A, Bobrov N, Zagainov V, Zagaynova E, Kuznetsova D. Effect of Hepatic Pathology on Liver Regeneration: The Main Metabolic Mechanisms Causing Impaired Hepatic Regeneration. Int J Mol Sci 2023; 24:ijms24119112. [PMID: 37298064 DOI: 10.3390/ijms24119112] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 05/15/2023] [Accepted: 05/17/2023] [Indexed: 06/12/2023] Open
Abstract
Liver regeneration has been studied for many decades, and the mechanisms underlying regeneration of normal liver following resection are well described. However, no less relevant is the study of mechanisms that disrupt the process of liver regeneration. First of all, a violation of liver regeneration can occur in the presence of concomitant hepatic pathology, which is a key factor reducing the liver's regenerative potential. Understanding these mechanisms could enable the rational targeting of specific therapies to either reduce the factors inhibiting regeneration or to directly stimulate liver regeneration. This review describes the known mechanisms of normal liver regeneration and factors that reduce its regenerative potential, primarily at the level of hepatocyte metabolism, in the presence of concomitant hepatic pathology. We also briefly discuss promising strategies for stimulating liver regeneration and those concerning methods for assessing the regenerative potential of the liver, especially intraoperatively.
Collapse
Affiliation(s)
- Svetlana Rodimova
- Institute of Experimental Oncology and Biomedical Technologies, Privolzhsky Research Medical University, 10/1 Minin and Pozharsky Sq., 603000 Nizhny Novgorod, Russia
| | - Artem Mozherov
- Institute of Experimental Oncology and Biomedical Technologies, Privolzhsky Research Medical University, 10/1 Minin and Pozharsky Sq., 603000 Nizhny Novgorod, Russia
- Laboratory of Molecular Genetic Research, Institute of Clinical Medicine, N.I. Lobachevsky Nizhny Novgorod National Research State University, 23 Gagarina Ave., 603022 Nizhny Novgorod, Russia
| | - Vadim Elagin
- Institute of Experimental Oncology and Biomedical Technologies, Privolzhsky Research Medical University, 10/1 Minin and Pozharsky Sq., 603000 Nizhny Novgorod, Russia
| | - Maria Karabut
- Institute of Experimental Oncology and Biomedical Technologies, Privolzhsky Research Medical University, 10/1 Minin and Pozharsky Sq., 603000 Nizhny Novgorod, Russia
| | - Ilya Shchechkin
- Institute of Experimental Oncology and Biomedical Technologies, Privolzhsky Research Medical University, 10/1 Minin and Pozharsky Sq., 603000 Nizhny Novgorod, Russia
- Laboratory of Molecular Genetic Research, Institute of Clinical Medicine, N.I. Lobachevsky Nizhny Novgorod National Research State University, 23 Gagarina Ave., 603022 Nizhny Novgorod, Russia
| | - Dmitry Kozlov
- Institute of Experimental Oncology and Biomedical Technologies, Privolzhsky Research Medical University, 10/1 Minin and Pozharsky Sq., 603000 Nizhny Novgorod, Russia
- Laboratory of Molecular Genetic Research, Institute of Clinical Medicine, N.I. Lobachevsky Nizhny Novgorod National Research State University, 23 Gagarina Ave., 603022 Nizhny Novgorod, Russia
| | - Dmitry Krylov
- Institute of Experimental Oncology and Biomedical Technologies, Privolzhsky Research Medical University, 10/1 Minin and Pozharsky Sq., 603000 Nizhny Novgorod, Russia
- Laboratory of Molecular Genetic Research, Institute of Clinical Medicine, N.I. Lobachevsky Nizhny Novgorod National Research State University, 23 Gagarina Ave., 603022 Nizhny Novgorod, Russia
| | - Alena Gavrina
- Institute of Experimental Oncology and Biomedical Technologies, Privolzhsky Research Medical University, 10/1 Minin and Pozharsky Sq., 603000 Nizhny Novgorod, Russia
- Laboratory of Molecular Genetic Research, Institute of Clinical Medicine, N.I. Lobachevsky Nizhny Novgorod National Research State University, 23 Gagarina Ave., 603022 Nizhny Novgorod, Russia
| | - Nikolai Bobrov
- Institute of Experimental Oncology and Biomedical Technologies, Privolzhsky Research Medical University, 10/1 Minin and Pozharsky Sq., 603000 Nizhny Novgorod, Russia
- The Volga District Medical Centre of Federal Medical and Biological Agency, 14 Ilinskaya St., 603000 Nizhny Novgorod, Russia
| | - Vladimir Zagainov
- Institute of Experimental Oncology and Biomedical Technologies, Privolzhsky Research Medical University, 10/1 Minin and Pozharsky Sq., 603000 Nizhny Novgorod, Russia
- Nizhny Novgorod Regional Clinical Oncologic Dispensary, Delovaya St., 11/1, 603126 Nizhny Novgorod, Russia
| | - Elena Zagaynova
- Institute of Experimental Oncology and Biomedical Technologies, Privolzhsky Research Medical University, 10/1 Minin and Pozharsky Sq., 603000 Nizhny Novgorod, Russia
| | - Daria Kuznetsova
- Institute of Experimental Oncology and Biomedical Technologies, Privolzhsky Research Medical University, 10/1 Minin and Pozharsky Sq., 603000 Nizhny Novgorod, Russia
- Laboratory of Molecular Genetic Research, Institute of Clinical Medicine, N.I. Lobachevsky Nizhny Novgorod National Research State University, 23 Gagarina Ave., 603022 Nizhny Novgorod, Russia
| |
Collapse
|
3
|
El-Sayed A, Aleya L, Kamel M. Epigenetics and the role of nutraceuticals in health and disease. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:28480-28505. [PMID: 36694069 DOI: 10.1007/s11356-023-25236-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Accepted: 01/05/2023] [Indexed: 06/17/2023]
Abstract
In the post-genomic era, the data provided by complete genome sequencing could not answer several fundamental questions about the causes of many noninfectious diseases, diagnostic biomarkers, and novel therapeutic approaches. The rapidly expanding understanding of epigenetic mechanisms, as well as widespread acceptance of their hypothesized role in disease induction, facilitated the development of a number of novel diagnostic markers and therapeutic concepts. Epigenetic aberrations are reversible in nature, which enables the treatment of serious incurable diseases. Therefore, the interest in epigenetic modulatory effects has increased over the last decade, so about 60,000 publications discussing the expression of epigenetics could be detected in the PubMed database. Out of these, 58,442 were published alone in the last 10 years, including 17,672 reviews (69 historical articles), 314 clinical trials, 202 case reports, 197 meta-analyses, 156 letters to the editor, 108 randomized controlled trials, 87 observation studies, 40 book chapters, 22 published lectures, and 2 clinical trial protocols. The remaining publications are either miscellaneous or a mixture of the previously mentioned items. According to the species and gender, the publications included 44,589 human studies (17,106 females, 14,509 males, and the gender is not mentioned in the remaining papers) and 30,253 animal studies. In the present work, the role of epigenetic modulations in health and disease and the influencing factors in epigenetics are discussed.
Collapse
Affiliation(s)
- Amr El-Sayed
- Department of Medicine and Infectious Diseases, Faculty of Veterinary Medicine, Cairo University, Giza, 12211, Egypt
| | - Lotfi Aleya
- Chrono-Environnement Laboratory, UMR CNRS 6249, Bourgogne Franche-Comté University, 25030, Besançon Cedex, France
| | - Mohamed Kamel
- Department of Medicine and Infectious Diseases, Faculty of Veterinary Medicine, Cairo University, Giza, 12211, Egypt.
| |
Collapse
|
4
|
Wakil A, Niazi M, Meybodi MA, Pyrsopoulos NT. Emerging Pharmacotherapies in Alcohol-Associated Hepatitis. J Clin Exp Hepatol 2023; 13:116-126. [PMID: 36647403 PMCID: PMC9840076 DOI: 10.1016/j.jceh.2022.06.012] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Accepted: 06/25/2022] [Indexed: 02/07/2023] Open
Abstract
The incidence of alcoholic-associated hepatitis (AH) is increasing. The treatment options for severe AH (sAH) are scarce and limited to corticosteroid therapy which showed limited mortality benefit in short-term use only. Therefore, there is a dire need for developing safe and effective therapies for patients with sAH and to improve their high mortality rates.This review article focuses on the current novel therapeutics targeting various mechanisms in the pathogenesis of alcohol-related hepatitis. Anti-inflammatory agents such as IL-1 inhibitor, Pan-caspase inhibitor, Apoptosis signal-regulating kinase-1, and CCL2 inhibitors are under investigation. Other group of agents include gut-liver axis modulators, hepatic regeneration, antioxidants, and Epigenic modulators. We describe the ongoing clinical trials of some of the new agents for alcohol-related hepatitis. Conclusion A combination of therapies was investigated, possibly providing a synergistic effect of drugs with different mechanisms. Multiple clinical trials of novel therapies in AH remain ongoing. Their result could potentially make a difference in the clinical course of the disease. DUR-928 and granulocyte colony-stimulating factor had promising results and further trials are ongoing to evaluate their efficacy in the large patient sample.
Collapse
Key Words
- AH, alcohol-Associated hepatitis
- ALD, Alcohol-associated liver disease
- ASK-1, Apoptosis signal-regulating kinase-1
- AUD, alcohol use disorder
- CCL2, C–C chemokine ligand type 2
- CVC, Cenicriviroc
- ELAD, Extracorporeal liver assist device
- FMT, Fecal Microbiota Transplant
- G-CSF, Granulocyte colony-stimulating factor
- HA35, Hyaluronic Acid 35KD
- IL-1, interleukin 1
- IL-6, interleukin 6
- LCFA, saturated long-chain fatty acids
- LDL, low-density lipoprotein cholesterol
- LPS, Lipopolysaccharides
- MCP-1, monocyte chemoattractant protein −1
- MDF, Maddrey's discriminant function
- MELD, Model for end-stage disease
- NAC, N-acetylcysteine
- NLRs, nucleotide-binding oligomerization domain-like receptors
- PAMPs, Pathogen-associated molecular patterns
- RCT, Randomized controlled trial
- SAM, S-Adenosyl methionine
- SCFA, short-chain fatty acids. 5
- TLRs, Toll-like receptors
- TNF, tumor necrotic factor
- alcohol-associated hepatitis
- anti-inflammatory
- antioxidants
- liver-gut axis
- microbiome
- sAH, severe alcohol-associated hepatitis
Collapse
Affiliation(s)
- Ali Wakil
- Department of Gastroenterology and Hepatology, Rutgers New Jersey Medical School, New York, New Jersey, USA
| | - Mumtaz Niazi
- Department of Gastroenterology and Hepatology, Rutgers New Jersey Medical School, New York, New Jersey, USA
| | - Mohamad A. Meybodi
- Department of Internal Medicine, Rutgers New Jersey Medical School, New York, New Jersey, USA
| | - Nikolaos T. Pyrsopoulos
- Department of Gastroenterology and Hepatology, Rutgers New Jersey Medical School, New York, New Jersey, USA
| |
Collapse
|
5
|
Habash NW, Sehrawat TS, Shah VH, Cao S. Epigenetics of alcohol-related liver diseases. JHEP REPORTS : INNOVATION IN HEPATOLOGY 2022; 4:100466. [PMID: 35462859 PMCID: PMC9018389 DOI: 10.1016/j.jhepr.2022.100466] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 02/14/2022] [Accepted: 02/22/2022] [Indexed: 02/07/2023]
Abstract
Alcohol-related liver disease (ARLD) is a primary cause of chronic liver disease in the United States. Despite advances in the diagnosis and management of ARLD, it remains a major public health problem associated with significant morbidity and mortality, emphasising the need to adopt novel approaches to the study of ARLD and its complications. Epigenetic changes are increasingly being recognised as contributing to the pathogenesis of multiple disease states. Harnessing the power of innovative technologies for the study of epigenetics (e.g., next-generation sequencing, DNA methylation assays, histone modification profiling and computational techniques like machine learning) has resulted in a seismic shift in our understanding of the pathophysiology of ARLD. Knowledge of these techniques and advances is of paramount importance for the practicing hepatologist and researchers alike. Accordingly, in this review article we will summarise the current knowledge about alcohol-induced epigenetic alterations in the context of ARLD, including but not limited to, DNA hyper/hypo methylation, histone modifications, changes in non-coding RNA, 3D chromatin architecture and enhancer-promoter interactions. Additionally, we will discuss the state-of-the-art techniques used in the study of ARLD (e.g. single-cell sequencing). We will also highlight the epigenetic regulation of chemokines and their proinflammatory role in the context of ARLD. Lastly, we will examine the clinical applications of epigenetics in the diagnosis and management of ARLD.
Collapse
Key Words
- 3C, chromosome conformation capture
- 4C, chromosome conformation capture-on-chip
- AH, alcohol-related hepatitis
- ARLD, alcohol-related liver disease
- ASH, alcohol-related steatohepatitis
- ATAC, assay for transposase-accessible chromatin
- Acetylation
- Alcohol liver disease
- BET, bromodomain and extraterminal motif
- BETi, BET inhibitor
- BRD, bromodomain
- CCL2, C-C motif chemokine ligand 2
- CTCF, CCCTC-binding factor
- CXCL, C-X-C motif chemokine ligand
- Chromatin architecture
- Computational biology
- DNA methylation
- DNMT, DNA methyltransferase
- E-P, enhancer-promoter
- Epidrugs
- Epigenetics
- FKBP5, FK506-binding protein 5
- HCC, hepatocellular carcinoma
- HDAC, histone deacetylase
- HIF1α, hypoxia inducible factor-1α
- HMGB1, high-mobility group box protein 1
- HNF4α, hepatocyte nuclear factor 4α
- HSC, hepatic stellate cell
- Hi-C, chromosome capture followed by high-throughput sequencing
- Histones
- IL, interleukin
- LPS, lipopolysaccharide
- MALAT1, metastasis-associated lung adenocarcinoma transcript 1
- MECP2, methyl-CpG binding protein 2
- NAFLD, non-alcohol-related fatty liver disease
- PPARG, peroxisome proliferator activated receptor-γ
- SAA, salvianolic acid A
- SIRT, sirtuin
- SREBPs, sterol regulatory element-binding proteins
- Single cell epigenome
- TAD, topologically associating domain
- TEAD, TEA domain transcription factor
- TLR, Toll-like receptor
- TNF, tumour necrosis factor
- YAP, Yes-associated protein
- lncRNA, long non-coding RNA
- miRNA, microRNA
Collapse
Affiliation(s)
| | | | - Vijay H. Shah
- Corresponding authors. Address: Division of Gastroenterology and Hepatology, Mayo Clinic, 200 First St SW, Rochester, MN 55905, USA. Tel. 507-255-6028, fax: 507-255-6318.
| | - Sheng Cao
- Corresponding authors. Address: Division of Gastroenterology and Hepatology, Mayo Clinic, 200 First St SW, Rochester, MN 55905, USA. Tel. 507-255-6028, fax: 507-255-6318.
| |
Collapse
|
6
|
Mead EA, Boulghassoul-Pietrzykowska N, Wang Y, Anees O, Kinstlinger NS, Lee M, Hamza S, Feng Y, Pietrzykowski AZ. Non-Invasive microRNA Profiling in Saliva can Serve as a Biomarker of Alcohol Exposure and Its Effects in Humans. Front Genet 2022; 12:804222. [PMID: 35126468 PMCID: PMC8812725 DOI: 10.3389/fgene.2021.804222] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Accepted: 12/13/2021] [Indexed: 12/14/2022] Open
Abstract
Alcohol Use Disorder (AUD) is one of the most prevalent mental disorders worldwide. Considering the widespread occurrence of AUD, a reliable, cheap, non-invasive biomarker of alcohol consumption is desired by healthcare providers, clinicians, researchers, public health and criminal justice officials. microRNAs could serve as such biomarkers. They are easily detectable in saliva, which can be sampled from individuals in a non-invasive manner. Moreover, microRNAs expression is dynamically regulated by environmental factors, including alcohol. Since excessive alcohol consumption is a hallmark of alcohol abuse, we have profiled microRNA expression in the saliva of chronic, heavy alcohol abusers using microRNA microarrays. We observed significant changes in salivary microRNA expression caused by excessive alcohol consumption. These changes fell into three categories: downregulated microRNAs, upregulated microRNAs, and microRNAs upregulated de novo. Analysis of these combinatorial changes in microRNA expression suggests dysregulation of specific biological pathways leading to impairment of the immune system and development of several types of epithelial cancer. Moreover, some of the altered microRNAs are also modulators of inflammation, suggesting their contribution to pro-inflammatory mechanisms of alcohol actions. Establishment of the cellular source of microRNAs in saliva corroborated these results. We determined that most of the microRNAs in saliva come from two types of cells: leukocytes involved in immune responses and inflammation, and buccal cells, involved in development of epithelial, oral cancers. In summary, we propose that microRNA profiling in saliva can be a useful, non-invasive biomarker allowing the monitoring of alcohol abuse, as well as alcohol-related inflammation and early detection of cancer.
Collapse
Affiliation(s)
- Edward A. Mead
- Laboratory of Adaptation, Reward and Addiction, Department of Animal Sciences, Rutgers University, New Brunswick, NJ, United States
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Nadia Boulghassoul-Pietrzykowska
- Laboratory of Adaptation, Reward and Addiction, Department of Animal Sciences, Rutgers University, New Brunswick, NJ, United States
- Mayo Clinic Health System, NWWI, Barron, WI, United States
- Department of Medicine, Capital Health, Trenton, NJ, United States
- Weight and Life MD, Hamilton, NJ, United States
| | - Yongping Wang
- Laboratory of Adaptation, Reward and Addiction, Department of Animal Sciences, Rutgers University, New Brunswick, NJ, United States
- Holmdel Township School, Holmdel, NJ, United States
| | - Onaiza Anees
- Laboratory of Adaptation, Reward and Addiction, Department of Animal Sciences, Rutgers University, New Brunswick, NJ, United States
- Virginia Commonwealth University Health, CMH Behavioral Health, South Hill, VA, United States
| | - Noah S. Kinstlinger
- Laboratory of Adaptation, Reward and Addiction, Department of Animal Sciences, Rutgers University, New Brunswick, NJ, United States
- Albert Einstein College of Medicine, Bronx, NY, United States
| | - Maximillian Lee
- Laboratory of Adaptation, Reward and Addiction, Department of Animal Sciences, Rutgers University, New Brunswick, NJ, United States
- George Washington University, School of Medicine and Health Sciences, Washington DC, MA, United States
| | - Shireen Hamza
- Laboratory of Adaptation, Reward and Addiction, Department of Animal Sciences, Rutgers University, New Brunswick, NJ, United States
- Department of the History of Science, Harvard University, Cambridge, MA, United States
| | - Yaping Feng
- Waksman Genomics Core Facility, Rutgers University, Piscataway, NJ, United States
- Bioinformatics Department, Admera Health, South Plainfield, NJ, United States
| | - Andrzej Z. Pietrzykowski
- Laboratory of Adaptation, Reward and Addiction, Department of Animal Sciences, Rutgers University, New Brunswick, NJ, United States
- Weight and Life MD, Hamilton, NJ, United States
| |
Collapse
|
7
|
Parrish A, Srivastava A, Juskeviciute E, Hoek JB, Vadigepalli R. Dysregulation of miR-21-associated miRNA regulatory networks by chronic ethanol consumption impairs liver regeneration. Physiol Genomics 2021; 53:546-555. [PMID: 34796728 PMCID: PMC8820682 DOI: 10.1152/physiolgenomics.00113.2021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 10/25/2021] [Accepted: 11/15/2021] [Indexed: 11/22/2022] Open
Abstract
Impaired liver regeneration has been considered as a hallmark of progression of alcohol-associated liver disease. Our previous studies demonstrated that in vivo inhibition of the microRNA (miRNA) miR21 can restore regenerative capacity of the liver in chronic ethanol-fed animals. The present study focuses on the role of microRNA regulatory networks that are likely to mediate the miR-21 action. Rats were chronically fed an ethanol-enriched diet along with pair-fed control animals and treated with AM21 (anti-miR-21), a locked nucleic acid antisense to miR-21. Partial hepatectomy (PHx) was performed and miRNA expression profiling over the course of liver regeneration was assessed. Our results showed dynamic expression changes in several miRNAs after PHx, notably with altered miRNA expression profiles between ethanol and control groups. We found that in vivo inhibition of miR-21 led to correlated differential expression of miR-340-5p and anticorrelated expression of miR-365, let-7a, miR-1224, and miR-146a across all sample groups after PHx. Gene set enrichment analysis identified a miRNA signature significantly associated with hepatic stellate cell activation within whole liver tissue data. We hypothesized that at least part of the PHx-induced miRNA network changes responsive to miR-21 inhibition is localized to hepatic stellate cells. We validated this hypothesis using AM21 and TGF-β treatments in LX-2 human hepatic stellate cells in culture and measured expression levels of select miRNAs by quantitative RT-PCR. Based on the in vivo and in vitro results, we propose a hepatic stellate cell miRNA regulatory network as contributing to the restoration of liver regenerative capacity by miR-21 inhibition.
Collapse
Affiliation(s)
- Austin Parrish
- Daniel Baugh Institute for Functional Genomics and Computational Biology, Department of Pathology, Anatomy and Cell Biology, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Ankita Srivastava
- Daniel Baugh Institute for Functional Genomics and Computational Biology, Department of Pathology, Anatomy and Cell Biology, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Egle Juskeviciute
- Daniel Baugh Institute for Functional Genomics and Computational Biology, Department of Pathology, Anatomy and Cell Biology, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Jan B Hoek
- Daniel Baugh Institute for Functional Genomics and Computational Biology, Department of Pathology, Anatomy and Cell Biology, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Rajanikanth Vadigepalli
- Daniel Baugh Institute for Functional Genomics and Computational Biology, Department of Pathology, Anatomy and Cell Biology, Thomas Jefferson University, Philadelphia, Pennsylvania
| |
Collapse
|
8
|
Abstract
The incidence of alcoholic hepatitis is increasing while the mortality rate remains high. The single current available therapy for severe alcoholic hepatitis is administration of corticosteroids for patients with severe alcoholic hepatitis, which has demonstrated limited benefits, providing a short-term mortality benefit with a marginal response rate. There is a need for developing safe and effective therapies. This article reviews novel therapies targeting various mechanisms in the pathogenesis of alcoholic hepatitis, such as the gut-liver axis, inflammatory cascade, oxidative stress, and hepatic regeneration. Current ongoing clinical trials for alcoholic hepatitis also are described.
Collapse
Affiliation(s)
- Ma Ai Thanda Han
- Division of Gastroenterology and Hepatology, Rutgers New Jersey Medical School, 185 South Orange Avenue, H-526, Newark, NJ 07103, USA
| | - Nikolaos Pyrsopoulos
- Division of Gastroenterology and Hepatology, Rutgers New Jersey Medical School, 185 South Orange Avenue, H-536, Newark, NJ 07103, USA.
| |
Collapse
|
9
|
Michalak A, Lach T, Cichoż-Lach H. Oxidative Stress-A Key Player in the Course of Alcohol-Related Liver Disease. J Clin Med 2021; 10:jcm10143011. [PMID: 34300175 PMCID: PMC8303854 DOI: 10.3390/jcm10143011] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Revised: 07/04/2021] [Accepted: 07/05/2021] [Indexed: 12/12/2022] Open
Abstract
Oxidative stress is known to be an inseparable factor involved in the presentation of liver disorders. Free radicals interfere with DNA, proteins, and lipids, which are crucial in liver metabolism, changing their expression and biological functions. Additionally, oxidative stress modifies the function of micro-RNAs, impairing the metabolism of hepatocytes. Free radicals have also been proven to influence the function of certain transcriptional factors and to alter the cell cycle. The pathological appearance of alcohol-related liver disease (ALD) constitutes an ideal example of harmful effects due to the redox state. Finally, ethanol-induced toxicity and overproduction of free radicals provoke irreversible changes within liver parenchyma. Understanding the underlying mechanisms associated with the redox state in the course of ALD creates new possibilities of treatment for patients. The future of hepatology may become directly dependent on the effective action against reactive oxygen species. This review summarizes current data on the redox state in the natural history of ALD, highlighting the newest reports on this topic.
Collapse
Affiliation(s)
- Agata Michalak
- Department of Gastroenterology with Endoscopy Unit, Medical University of Lublin, Jaczewskiego 8, 20-090 Lublin, Poland;
| | - Tomasz Lach
- Department of Orthopedics and Traumatology, Medical University of Lublin, Jaczewskiego 8, 20-090 Lublin, Poland;
| | - Halina Cichoż-Lach
- Department of Gastroenterology with Endoscopy Unit, Medical University of Lublin, Jaczewskiego 8, 20-090 Lublin, Poland;
- Correspondence: ; Tel.: +48-601377656; Fax: +48-814796135
| |
Collapse
|
10
|
Thapa K, Grewal AS, Kanojia N, Rani L, Sharma N, Singh S. Alcoholic and Non-Alcoholic Liver Diseases: Promising Molecular Drug Targets and their Clinical Development. Curr Drug Discov Technol 2021; 18:333-353. [PMID: 31965945 DOI: 10.2174/1570163817666200121143959] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Revised: 11/25/2019] [Accepted: 12/04/2019] [Indexed: 11/22/2022]
Abstract
Alcoholic and non-alcoholic fatty liver diseases have become a serious concern worldwide. Both these liver diseases have an identical pathology, starting from simple steatosis to cirrhosis and, ultimately to hepatocellular carcinoma. Treatment options for alcoholic liver disease (ALD) are still the same as they were 50 years ago which include corticosteroids, pentoxifylline, antioxidants, nutritional support and abstinence; and for non-alcoholic fatty liver disease (NAFLD), weight loss, insulin sensitizers, lipid-lowering agents and anti-oxidants are the only treatment options. Despite broad research in understanding the disease pathophysiology, limited treatments are available for clinical use. Some therapeutic strategies based on targeting a specific molecule have been developed to lessen the consequences of disease and are under clinical investigation. Therefore, focus on multiple molecular targets will help develop an efficient therapeutic strategy. This review comprises a brief overview of the pathogenesis of ALD and NAFLD; recent molecular drug targets explored for ALD and NAFLD that may prove to be effective for multiple therapeutic regimens and also the clinical status of these promising drug targets for liver diseases.
Collapse
Affiliation(s)
- Komal Thapa
- Chitkara University School of Basic Sciences, Chitkara University, Himachal Pradesh, India
| | - Ajmer Singh Grewal
- Chitkara University School of Basic Sciences, Chitkara University, Himachal Pradesh, India
| | - Neha Kanojia
- Chitkara College of Pharmacy, Chitkara University, Punjab, India
| | - Lata Rani
- Chitkara University School of Basic Sciences, Chitkara University, Himachal Pradesh, India
| | - Neelam Sharma
- Chitkara College of Pharmacy, Chitkara University, Punjab, India
| | - Sukhbir Singh
- Chitkara College of Pharmacy, Chitkara University, Punjab, India
| |
Collapse
|
11
|
Liu SY, Tsai IT, Hsu YC. Alcohol-Related Liver Disease: Basic Mechanisms and Clinical Perspectives. Int J Mol Sci 2021; 22:5170. [PMID: 34068269 PMCID: PMC8153142 DOI: 10.3390/ijms22105170] [Citation(s) in RCA: 53] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2021] [Revised: 05/07/2021] [Accepted: 05/12/2021] [Indexed: 12/12/2022] Open
Abstract
Alcohol-related liver disease (ALD) refers to the liver damage occurring due to excessive alcohol consumption and involves a broad spectrum of diseases that includes liver steatosis, steatohepatitis, hepatitis, cirrhosis, and hepatocellular carcinoma (HCC). The progression of ALD is mainly associated with the amount and duration of alcohol usage; however, it is also influenced by genetic, epigenetic, and environmental factors. The definite diagnosis of ALD is based on a liver biopsy, although several non-invasive diagnostic tools and serum biomarkers have emerging roles in the early detection of ALD. While alcohol abstinence and nutritional support remain the cornerstone of ALD treatment, growing evidence has revealed that the therapeutic agents that target oxidative stress or gut-liver axis, inflammatory response inhibition, and liver regeneration enhancement also play a role in ALD management. Furthermore, microRNAs modulation and mesenchymal stem cell-based therapy have emerging potential as ALD therapeutic options. This review summarizes the updated understanding of the pathophysiology, diagnosis, and novel therapeutic approaches for ALD.
Collapse
Affiliation(s)
- Szu-Yi Liu
- Department of Emergency Medicine, E-Da Hospital, I-Shou University, Kaohsiung 82445, Taiwan; (S.-Y.L.); (I.-T.T.)
| | - I-Ting Tsai
- Department of Emergency Medicine, E-Da Hospital, I-Shou University, Kaohsiung 82445, Taiwan; (S.-Y.L.); (I.-T.T.)
- School of Medicine for International Student, I-Shou University, Kaohsiung 82445, Taiwan
| | - Yin-Chou Hsu
- Department of Emergency Medicine, E-Da Hospital, I-Shou University, Kaohsiung 82445, Taiwan; (S.-Y.L.); (I.-T.T.)
- School of Medicine for International Student, I-Shou University, Kaohsiung 82445, Taiwan
- School of Chinese Medicine for Post Baccalaureate, I-Shou University, Kaohsiung 82445, Taiwan
| |
Collapse
|
12
|
Pasqualotto A, Ayres R, Longo L, Del Duca Lima D, Losch de Oliveira D, Alvares-da-Silva MR, Reverbel da Silveira T, Uribe-Cruz C. Chronic exposure to ethanol alters the expression of miR-155, miR-122 and miR-217 in alcoholic liver disease in an adult zebrafish model. Biomarkers 2021; 26:146-151. [PMID: 33435755 DOI: 10.1080/1354750x.2021.1874051] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
AIM The aim of this study was to evaluate the hepatic and circulating expression of miR-155, miR-122 and miR-217 in a model of chronic exposure to ethanol in adult zebrafish. METHODS Wild-type adult zebrafish were divided into two groups (n = 281): an EG (exposed to 0.5% v/v Ethanol in aquarium water) and a CG (without ethanol). After 28 days the animals were euthanized, followed by histopathological analysis, quantification of lipids, triglycerides and inflammatory cytokines in liver tissue. miR-155, miR-122 and miR-217 gene expression was quantified in liver tissue and serum. RESULTS We observed hepatic lesions and increased accumulation of hepatic lipids in the EG. The expression of il-1β was higher in the EG, but there were no differences in il-10 and tnf-α between groups. In the liver, expression of miR-122 and miR-155 was higher in the EG. The circulating expression of miR-155 and miR-217 was significantly higher in the EG. CONCLUSION Chronic exposure to ethanol in zebrafish leads to altered hepatic and circulating expression of miR-155, miR-122 and miR-217. This confirms its potential as a biomarker and therapeutic target.
Collapse
Affiliation(s)
- Amanda Pasqualotto
- Experimental Hepatology and Gastroenterology Laboratory, Center for Experimental Research, Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil
- Graduate Program in Gastroenterology and Hepatology, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Raquel Ayres
- Experimental Hepatology and Gastroenterology Laboratory, Center for Experimental Research, Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil
| | - Larisse Longo
- Experimental Hepatology and Gastroenterology Laboratory, Center for Experimental Research, Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil
- Graduate Program in Gastroenterology and Hepatology, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Diego Del Duca Lima
- Graduate Program in Biological Sciences-Biochemistry, Department of Biochemistry, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
| | - Diogo Losch de Oliveira
- Graduate Program in Biological Sciences-Biochemistry, Department of Biochemistry, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
| | - Mário Reis Alvares-da-Silva
- Experimental Hepatology and Gastroenterology Laboratory, Center for Experimental Research, Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil
- Graduate Program in Gastroenterology and Hepatology, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Themis Reverbel da Silveira
- Experimental Hepatology and Gastroenterology Laboratory, Center for Experimental Research, Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil
| | - Carolina Uribe-Cruz
- Experimental Hepatology and Gastroenterology Laboratory, Center for Experimental Research, Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil
- Graduate Program in Gastroenterology and Hepatology, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| |
Collapse
|
13
|
Kedarisetty CK, Kumar A, Sarin SK. Insights into the Role of Granulocyte Colony-Stimulating Factor in Severe Alcoholic Hepatitis. Semin Liver Dis 2021; 41:67-78. [PMID: 33764486 DOI: 10.1055/s-0040-1719177] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Alcohol use disorder is the predominant cause of chronic liver disease globally. The standard of care for the treatment of alcoholic hepatitis, corticosteroids, has been shown to provide a therapeutic response in ∼60% of carefully selected patients with a short-term survival benefit. The patients who do not respond to steroids, or are ineligible due to infections or very severe disease, have little options other than liver transplantation. There is, thus, a large unmet need for new therapeutic strategies for this large and sick group of patients. Granulocyte colony stimulating factor (G-CSF) has been shown to favorably modulate the intrahepatic immune milieu and stimulate the regenerative potential of the liver. Initial studies have shown encouraging results with G-CSF in patients with severe alcoholic hepatitis. It has also been found to help steroid nonresponsive patients. There is, however, a need for careful selection of patients, regular dose monitoring and close observation for adverse events of G-CSF. In this review, we analyze the basis of the potential benefits, clinical studies, cautions and challenges in the use of G-CSF in alcoholic hepatitis.
Collapse
Affiliation(s)
- Chandan Kumar Kedarisetty
- Department of Hepatology, Institute of Liver and Biliary Sciences, New Delhi, India.,Department of Hepatology, Sri Ramachandra Institute of Higher Education and Research, Chennai, Tamil Nadu, India
| | - Anupam Kumar
- Department of Molecular and Cellular Medicine, Institute of Liver and Biliary Sciences, New Delhi, India
| | - Shiv Kumar Sarin
- Department of Hepatology, Institute of Liver and Biliary Sciences, New Delhi, India.,Department of Molecular and Cellular Medicine, Institute of Liver and Biliary Sciences, New Delhi, India
| |
Collapse
|
14
|
Nowak AJ, Relja B. The Impact of Acute or Chronic Alcohol Intake on the NF-κB Signaling Pathway in Alcohol-Related Liver Disease. Int J Mol Sci 2020; 21:E9407. [PMID: 33321885 PMCID: PMC7764163 DOI: 10.3390/ijms21249407] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Revised: 12/07/2020] [Accepted: 12/08/2020] [Indexed: 02/06/2023] Open
Abstract
Ethanol misuse is frequently associated with a multitude of profound medical conditions, contributing to health-, individual- and social-related damage. A particularly dangerous threat from this classification is coined as alcoholic liver disease (ALD), a liver condition caused by prolonged alcohol overconsumption, involving several pathological stages induced by alcohol metabolic byproducts and sustained cellular intoxication. Molecular, pathological mechanisms of ALD principally root in the innate immunity system and are especially associated with enhanced functionality of the nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) pathway. NF-κB is an interesting and convoluted DNA transcription regulator, promoting both anti-inflammatory and pro-inflammatory gene expression. Thus, the abundancy of studies in recent years underlines the importance of NF-κB in inflammatory responses and the mechanistic stimulation of inner molecular motifs within the factor components. Hereby, in the following review, we would like to put emphasis on the correlation between the NF-κB inflammation signaling pathway and ALD progression. We will provide the reader with the current knowledge regarding the chronic and acute alcohol consumption patterns, the molecular mechanisms of ALD development, the involvement of the NF-κB pathway and its enzymatic regulators. Therefore, we review various experimental in vitro and in vivo studies regarding the research on ALD, including the recent active compound treatments and the genetic modification approach. Furthermore, our investigation covers a few human studies.
Collapse
Affiliation(s)
- Aleksander J. Nowak
- Experimental Radiology, University Clinic for Radiology and Nuclear Medicine, Leipziger Strasse 44, 39120 Magdeburg, Germany;
- Medical Faculty, Otto-von-Guericke-University Magdeburg, Leipziger Strasse 44, 39120 Magdeburg, Germany
| | - Borna Relja
- Experimental Radiology, University Clinic for Radiology and Nuclear Medicine, Leipziger Strasse 44, 39120 Magdeburg, Germany;
- Medical Faculty, Otto-von-Guericke-University Magdeburg, Leipziger Strasse 44, 39120 Magdeburg, Germany
| |
Collapse
|
15
|
Ortega‐Ribera M, Hunt NJ, Gracia‐Sancho J, Cogger VC. The Hepatic Sinusoid in Aging and Disease: Update and Advances From the 20th Liver Sinusoid Meeting. Hepatol Commun 2020; 4:1087-1098. [PMID: 32626839 PMCID: PMC7327202 DOI: 10.1002/hep4.1517] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Revised: 03/17/2020] [Accepted: 03/18/2020] [Indexed: 12/13/2022] Open
Abstract
This is a meeting report of the 2019 Liver Sinusoid Meeting, 20th International Symposium on Cells of the Hepatic Sinusoid, held in Sydney, Australia, in September 2019. The meeting, which was organized by the International Society for Hepatic Sinusoidal Research, provided an update on the recent advances in the field of hepatic sinusoid cells in relation to cell biology, aging, and liver disease, with particular focus on the molecular and cellular targets involved in hepatic fibrosis, nonalcoholic hepatic steatohepatitis, alcoholic liver disease, hepatocellular carcinoma, and cirrhosis. In addition, the meeting highlighted the recent advances in regenerative medicine, targeted nanotechnologies, therapeutics, and novel methodologies.
Collapse
Affiliation(s)
- Martí Ortega‐Ribera
- Liver Vascular Biology Research GroupBarcelona Hepatic Hemodynamic UnitInstitut d’Investigacions Biomèdiques August Pi i SunyerCentro de Investigación Biomédica en Red de Enfermedades Hepáticas y DigestivasBarcelonaSpain
| | - Nicholas J. Hunt
- Centre for Education and Research on AgeingConcord Repatriation General HospitalANZAC Research InstituteAustralian Ageing and Alzheimers InstituteConcordSydneyNSWAustralia
- Faculty of Medicine and HealthUniversity of SydneySydneyNSWAustralia
| | - Jordi Gracia‐Sancho
- Liver Vascular Biology Research GroupBarcelona Hepatic Hemodynamic UnitInstitut d’Investigacions Biomèdiques August Pi i SunyerCentro de Investigación Biomédica en Red de Enfermedades Hepáticas y DigestivasBarcelonaSpain
- HepatologyDepartment of Biomedical ResearchUniversity of BernInselspitalBernSwitzerland
| | - Victoria C. Cogger
- Centre for Education and Research on AgeingConcord Repatriation General HospitalANZAC Research InstituteAustralian Ageing and Alzheimers InstituteConcordSydneyNSWAustralia
- Faculty of Medicine and HealthUniversity of SydneySydneyNSWAustralia
| |
Collapse
|
16
|
Chen L, Huang W, Wang L, Zhang Z, Zhang F, Zheng S, Kong D. The effects of epigenetic modification on the occurrence and progression of liver diseases and the involved mechanism. Expert Rev Gastroenterol Hepatol 2020; 14:259-270. [PMID: 32124651 DOI: 10.1080/17474124.2020.1736042] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Introduction: Epigenetic modification is a type of gene expression and regulation that does not involve changes in DNA sequences. An increasing number of studies have proven that epigenetic modifications play an important role in the occurrence and progression of liver diseases through the gene regulation and protein expressions of hepatocellular lipid metabolism, inflammatory reaction, cell proliferation, and activation, etc.Areas covered: In this study, we elaborated and analyzed the underlying functional mechanism of epigenetic modification in alcoholic liver disease (ALD), nonalcoholic fatty liver disease (NAFLD), liver fibrosis (LF), viral hepatitis, hepatocellular carcinoma (HCC), and research progress of recent years.Expert opinion: The further understanding of epigenetic mechanisms that can regulate gene expression and cell phenotype leads to new insights in epigenetic control of chronic liver disease. Currently, hepatologists are exploring the role of DNA methylation, histone/chromatin modification, and non-coding RNA in specific liver pathology. These findings have led to advances in direct epigenetic biomarker testing of patient tissue or body fluid specimens, as well as quantitative analysis. Based on these findings, drug validation of some targets involved in the epigenetic mechanism of liver disease is gradually being carried out clinically.
Collapse
Affiliation(s)
- Liping Chen
- Chinese Medicine Modernization and Big Data Research Center, Nanjing Hospital of Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Weifang Huang
- Department of Pharmacology, School of Integral Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Ling Wang
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, China.,Department of Pharmacology, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
| | - Zili Zhang
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, China.,Department of Pharmacology, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
| | - Feng Zhang
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, China.,Department of Pharmacology, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
| | - Shizhong Zheng
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, China.,Department of Pharmacology, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
| | - Desong Kong
- Chinese Medicine Modernization and Big Data Research Center, Nanjing Hospital of Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| |
Collapse
|
17
|
Protocatechuic Acid-Mediated miR-219a-5p Activation Inhibits the p66shc Oxidant Pathway to Alleviate Alcoholic Liver Injury. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2019; 2019:3527809. [PMID: 31428222 PMCID: PMC6683775 DOI: 10.1155/2019/3527809] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Revised: 02/22/2019] [Accepted: 06/25/2019] [Indexed: 12/13/2022]
Abstract
Alcohol abuse has become common worldwide and has been recognized as a major cause of chronic alcoholic liver disease (ALD). ALD encompasses a complex process that includes a broad scope of hepatic lesions, ranging from steatosis to cirrhosis. In particular, reactive oxygen species (ROS) are mainly involved. Numerous studies have shown that p66shc plays a significant role in ALD. Protocatechuic acid (PCA), a dihydroxybenzoic acid that is naturally found in green tea, vegetables, and fruits, has efficient free radical scavenging effects. In this study, we aimed to assess the protective effect of PCA on ALD and to evaluate the microRNA- (miRNA-) p66shc-mediated reduction of ROS formation in ALD. Our results demonstrated that PCA treatment significantly decreased p66shc expression and downstream ROS formation in ALD. miR-219a-5p, which was identified by bioinformatics and experimental analysis, was enhanced by PCA and subsequently suppressed p66shc expression. Importantly, p66shc played an essential role in the protection of PCA-stimulated miR-219a-5p overexpression. Overall, these findings show that PCA-stimulated miR-219a-5p expression mitigates ALD by reducing p66shc-mediated ROS formation. This study may contribute to the development of therapeutic interventions for ALD.
Collapse
|
18
|
Tu Y, Zhu S, Wang J, Burstein E, Jia D. Natural compounds in the chemoprevention of alcoholic liver disease. Phytother Res 2019; 33:2192-2212. [PMID: 31264302 DOI: 10.1002/ptr.6410] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2019] [Revised: 04/29/2019] [Accepted: 05/21/2019] [Indexed: 12/17/2022]
Abstract
Alcoholic liver disease (ALD), caused by excessive consumption of alcohol, is a major cause of chronic liver disease worldwide. Much effort has been expended to explore the pathogenesis of ALD. Hepatic cell injury, oxidative stress, inflammation, regeneration, and bacterial translocation are all involved in the pathogenesis of ALD. Immediate abstinence is the most important therapeutic treatment for affected individuals. However, the medical treatment for ALD had not advanced in a long period. Intriguingly, an increasing body of research indicates the potential of natural compounds in the targeted therapy of ALD. A plethora of dietary natural products such as flavonoids, resveratrol, saponins, and β-carotene are found to exert protective effects on ALD. This occurs through various mechanisms composed of antioxidative, anti-inflammatory, iron chelation, pro-apoptosis, and/or antiproliferation of hepatic stellate cells and hepatocellular carcinoma cells. In this review, we will summarize current knowledge about the pathogenesis and treatments of ALD and focus on the potential of natural compounds in ALD therapies and underlying mechanisms.
Collapse
Affiliation(s)
- Yingfeng Tu
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Department of Paediatrics, West China Second University Hospital, State Key Laboratory of Biotherapy, Sichuan University, Chengdu, China
| | - Shu Zhu
- Chinese Academy of Science and Technology for Development, Ministry of Science and Technology, Institute of Foresight and Evaluation Research, Beijing, China
| | - Jing Wang
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Department of Paediatrics, West China Second University Hospital, State Key Laboratory of Biotherapy, Sichuan University, Chengdu, China
| | - Ezra Burstein
- Department of Internal Medicine, University of Texas, Southwestern Medical Center, Dallas, TX, USA
| | - Da Jia
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Department of Paediatrics, West China Second University Hospital, State Key Laboratory of Biotherapy, Sichuan University, Chengdu, China
| |
Collapse
|
19
|
Eguchi A, Franz N, Kobayashi Y, Iwasa M, Wagner N, Hildebrand F, Takei Y, Marzi I, Relja B. Circulating Extracellular Vesicles and Their miR "Barcode" Differentiate Alcohol Drinkers With Liver Injury and Those Without Liver Injury in Severe Trauma Patients. Front Med (Lausanne) 2019; 6:30. [PMID: 30859103 PMCID: PMC6397866 DOI: 10.3389/fmed.2019.00030] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2018] [Accepted: 02/01/2019] [Indexed: 12/16/2022] Open
Abstract
Short Summary: Extracellular vesicles (EVs), released during tissue/cell injury, contain a “barcode” indicating specific microRNAs (miRs) that can uncover their origin. We examined whether systemic EVs possessing hepatic miR-signatures would indicate ongoing liver injury and clinical complications in trauma patients (TP). We grouped the patients of alcoholic drinkers into “alcohol-drinkers with liver injury (LI)” (EtOH with LI) or “alcohol-drinkers without LI” (EtOH w/o LI) and we compared these groups to “non-drinkers” (no EtOH). When we examined patient blood from the EtOH with LI group we found the total number of EVs to be increased, along with an increase in miR-122 and let7f—two EV-associated miRNAs—and several inflammation-associating cytokines, such as interleukin (IL)-6 and IL-33. In contrast, all of the aforementioned readouts were found to be decreased in the EtOH w/o LI group. These novel data demonstrate that hepatocyte damage in alcohol-intoxicated trauma patients presenting with liver injury can be reflected by an increase in circulating serum EVs, their specific miR-“barcode” and the concomitant increase of systemic inflammatory markers IL-6 and IL-33. Anti-inflammatory effect of alcohol-drinking in EtOH w/o LI can be presented by a reduced number of hepato-derived EVs, no upregulation of IL-6 and IL-33, and a miR “barcode” different from patients presenting with liver injury. Background: Alcohol abuse is associated with (neuro)protective effects related to (head) injuries, and with negative effects regarding infection rates and survival in severely injured trauma patients (TP). Extracellular vesicles (EVs), which are released during tissue and/or cell injury, can contain a “barcode” including specific microRNAs (miRs) that uncover their origin. We examined whether EVs with a hepatic miR signature can be systemically measured, and whether they can indicate ongoing liver injury in alcohol-intoxicated TP and foretell clinical complications. Patients/Methods: We enrolled 35 TP and measured blood EVs, IL-6, TNF-alpha, IL-1beta, IL-10 and IL-33, alcohol (ethanol, EtOH) concentration (BAC), GLDH, GGT, AST, ALT, leukocytes, platelets, and bilirubin. Within circulating EVs we measured the expression levels of miR-122, let7f, miR21, miR29a, miR-155, and miR-146a. Patients of alcohol-drinkers were grouped into “alcohol drinkers with liver injury (LI)” (EtOH with LI) or “alcohol drinkers without LI” (EtOH w/o LI) and compared to “non-drinkers” (no EtOH). We assessed systemic injury characteristics and the outcome of hospitalization with regard to sepsis, septic shock, pneumonia, or mortality. Results: EtOH with LI patients had significantly increased rates of pneumonia vs. the EtOH w/o LI group. EVs, IL-6, and IL-33 levels were significantly increased in EtOH with LI vs. EtOH w/o LI group (p < 0.05). EV number correlated positively with ALT and IL-6 (p < 0.0001). Two miRs, miR-122 and let7f, were increased only in the blood EVs from the EtOH with LI group (p < 0.05). Five miRs, miR-122, let7f, miR-21, miR-29a, and miR-146a, were reduced in the blood EVs from the EtOH w/o LI group, vs. no EtOH (p < 0.05). Notably miR-122 correlated significantly with increased bilirubin levels in the EtOH with LI group (p < 0.05). Conclusions: Liver injury in alcohol-intoxicated TP is reflected by increased EV numbers, their specific miR barcode, and the correlated increase of systemic inflammatory markers IL-6 and IL-33. Interestingly, severely injured TP without liver injury were found to have a reduced number of liver-derived EVs, no observed inflammatory infiltration and reduced specific miR “barcode.”
Collapse
Affiliation(s)
- Akiko Eguchi
- Department of Gastroenterology and Hepatology, Mie University Graduate School of Medicine, Tsu, Japan.,JST, PRESTO, Saitama, Japan
| | - Niklas Franz
- Department of Trauma, Hand and Reconstructive Surgery, University Hospital Frankfurt, Goethe University, Frankfurt, Germany
| | - Yoshinao Kobayashi
- Department of Gastroenterology and Hepatology, Mie University Graduate School of Medicine, Tsu, Japan
| | - Motoh Iwasa
- Department of Gastroenterology and Hepatology, Mie University Graduate School of Medicine, Tsu, Japan
| | - Nils Wagner
- Department of Trauma, Hand and Reconstructive Surgery, University Hospital Frankfurt, Goethe University, Frankfurt, Germany
| | - Frank Hildebrand
- Department of Orthopaedic Trauma, RWTH Aachen University, Aachen, Germany
| | - Yoshiyuki Takei
- Department of Gastroenterology and Hepatology, Mie University Graduate School of Medicine, Tsu, Japan
| | - Ingo Marzi
- Department of Trauma, Hand and Reconstructive Surgery, University Hospital Frankfurt, Goethe University, Frankfurt, Germany
| | - Borna Relja
- Department of Trauma, Hand and Reconstructive Surgery, University Hospital Frankfurt, Goethe University, Frankfurt, Germany
| |
Collapse
|
20
|
Meroni M, Longo M, Rametta R, Dongiovanni P. Genetic and Epigenetic Modifiers of Alcoholic Liver Disease. Int J Mol Sci 2018; 19:E3857. [PMID: 30513996 PMCID: PMC6320903 DOI: 10.3390/ijms19123857] [Citation(s) in RCA: 64] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Revised: 10/31/2018] [Accepted: 11/28/2018] [Indexed: 12/12/2022] Open
Abstract
Alcoholic liver disease (ALD), a disorder caused by excessive alcohol consumption is a global health issue. More than two billion people consume alcohol in the world and about 75 million are classified as having alcohol disorders. ALD embraces a wide spectrum of hepatic lesions including steatosis, alcoholic steatohepatitis (ASH), fibrosis, cirrhosis, and hepatocellular carcinoma (HCC). ALD is a complex disease where environmental, genetic, and epigenetic factors contribute to its pathogenesis and progression. The severity of alcohol-induced liver disease depends on the amount, method of usage and duration of alcohol consumption as well as on age, gender, presence of obesity, and genetic susceptibility. Genome-wide association studies and candidate gene studies have identified genetic modifiers of ALD that can be exploited as non-invasive biomarkers, but which do not completely explain the phenotypic variability. Indeed, ALD development and progression is also modulated by epigenetic factors. The premise of this review is to discuss the role of genetic variants and epigenetic modifications, with particular attention being paid to microRNAs, as pathogenic markers, risk predictors, and therapeutic targets in ALD.
Collapse
Affiliation(s)
- Marica Meroni
- General Medicine and Metabolic Diseases, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Pad. Granelli, via F Sforza 35, 20122 Milan, Italy.
| | - Miriam Longo
- General Medicine and Metabolic Diseases, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Pad. Granelli, via F Sforza 35, 20122 Milan, Italy.
| | - Raffaela Rametta
- General Medicine and Metabolic Diseases, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Pad. Granelli, via F Sforza 35, 20122 Milan, Italy.
| | - Paola Dongiovanni
- General Medicine and Metabolic Diseases, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Pad. Granelli, via F Sforza 35, 20122 Milan, Italy.
| |
Collapse
|
21
|
Ohashi K, Pimienta M, Seki E. Alcoholic liver disease: A current molecular and clinical perspective. LIVER RESEARCH 2018; 2:161-172. [PMID: 31214376 PMCID: PMC6581514 DOI: 10.1016/j.livres.2018.11.002] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Heavy alcohol use is the cause of alcoholic liver disease (ALD). The ALD spectrum ranges from alcoholic steatosis to steatohepatitis, fibrosis, and cirrhosis. In Western countries, approximately 50% of cirrhosis-related deaths are due to alcohol use. While alcoholic cirrhosis is no longer considered a completely irreversible condition, no effective anti-fibrotic therapies are currently available. Another significant clinical aspect of ALD is alcoholic hepatitis (AH). AH is an acute inflammatory condition that is often comorbid with cirrhosis, and severe AH has a high mortality rate. Therapeutic options for ALD are limited. The established treatment for AH is corticosteroids, which improve short-term survival but do not affect long-term survival. Liver transplantation is a curative treatment option for alcoholic cirrhosis and AH, but patients must abstain from alcohol use for 6 months to qualify. Additional effective therapies are needed. The molecular mechanisms underlying ALD are complex and have not been fully elucidated. Various molecules, signaling pathways, and crosstalk between multiple hepatic and extrahepatic cells contribute to ALD progression. This review highlights established and emerging concepts in ALD clinicopathology, their underlying molecular mechanisms, and current and future ALD treatment options.
Collapse
Affiliation(s)
- Koichiro Ohashi
- Division of Digestive and Liver Diseases, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Michael Pimienta
- Division of Digestive and Liver Diseases, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA, USA,University of California San Diego, School of Medicine, La Jolla, CA, USA
| | - Ekihiro Seki
- Division of Digestive and Liver Diseases, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA, USA,University of California San Diego, School of Medicine, La Jolla, CA, USA,Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA, USA,Department of Medicine, University of California Los Angeles, David Geffen School of Medicine, Los Angeles, CA, USA,Corresponding author. Division of Digestive and Liver Diseases, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA, USA., (E. Seki)
| |
Collapse
|
22
|
Lin XX, Lian GH, Peng SF, Zhao Q, Xu Y, Ou-Yang DS, Zhang W, Chen Y. Reversing Epigenetic Alterations Caused by Alcohol: A Promising Therapeutic Direction for Alcoholic Liver Disease. Alcohol Clin Exp Res 2018; 42:1863-1873. [PMID: 30080257 DOI: 10.1111/acer.13863] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2018] [Accepted: 07/28/2018] [Indexed: 12/19/2022]
Abstract
Alcoholic liver disease (ALD), a liver function disorder caused by excessive alcohol intake, is a serious threat to global public health and social development. Toxic metabolites and reactive oxygen species produced during the metabolism of alcohol can alter the epigenetic state including DNA methylation, histone modifications, and expression of microRNAs. Epigenetic alterations can conversely involve various signaling pathways, which could contribute to the initiation and progression of ALD. To elucidate the relationship between epigenetic alterations and alcohol damage not only reinforces our understanding on pathogenesis of ALD, but also provides novel targets for clinical diagnosis, treatment, and drug research of ALD. In this review, we have summarized the research progress of epigenetic alterations and related mechanisms caused by alcohol in the pathogenesis of ALD. Considering the invertibility of epigenetic alterations, treatment of ALD through epigenetic modification with common less harmful compounds is also related.
Collapse
Affiliation(s)
- Xiu-Xian Lin
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Institute of Clinical Pharmacology, Central South University, Changsha, Hunan, China
| | - Guang-Hui Lian
- Department of Gastroenterology, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Shi-Fang Peng
- Department of Hepatology and Infectious Diseases, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Qing Zhao
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Institute of Clinical Pharmacology, Central South University, Changsha, Hunan, China
| | - Ying Xu
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Institute of Clinical Pharmacology, Central South University, Changsha, Hunan, China
| | - Dong-Sheng Ou-Yang
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Institute of Clinical Pharmacology, Central South University, Changsha, Hunan, China
| | - Wei Zhang
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Institute of Clinical Pharmacology, Central South University, Changsha, Hunan, China
| | - Yao Chen
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Institute of Clinical Pharmacology, Central South University, Changsha, Hunan, China
| |
Collapse
|
23
|
Torres JL, Novo-Veleiro I, Manzanedo L, Alvela-Suárez L, Macías R, Laso FJ, Marcos M. Role of microRNAs in alcohol-induced liver disorders and non-alcoholic fatty liver disease. World J Gastroenterol 2018; 24:4104-4118. [PMID: 30271077 PMCID: PMC6158486 DOI: 10.3748/wjg.v24.i36.4104] [Citation(s) in RCA: 77] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/13/2018] [Revised: 06/25/2018] [Accepted: 06/27/2018] [Indexed: 02/06/2023] Open
Abstract
MicroRNAs (miRNAs) are small non-coding RNAs that regulate multiple physiological and pathological functions through the modulation of gene expression at the post-transcriptional level. Accumulating evidence has established a role for miRNAs in the development and pathogenesis of liver disease. Specifically, a large number of studies have assessed the role of miRNAs in alcoholic liver disease (ALD) and non-alcoholic fatty liver disease (NAFLD), two diseases that share common underlying mechanisms and pathological characteristics. The purpose of the current review is to summarize and update the body of literature investigating the role of miRNAs in liver disease. In addition, the potential use of miRNAs as biomarkers and/or therapeutic targets is discussed. Among all miRNAs analyzed, miR-34a, miR-122 and miR-155 are most involved in the pathogenesis of NAFLD. Of note, these three miRNAs have also been implicated in ALD, reinforcing a common disease mechanism between these two entities and the pleiotropic effects of specific miRNAs. Currently, no single miRNA or panel of miRNAs has been identified for the detection of, or staging of ALD or NAFLD. While promising results have been shown in murine models, no therapeutic based-miRNA agents have been developed for use in humans with liver disease.
Collapse
Affiliation(s)
- Jorge-Luis Torres
- Department of Internal Medicine, University Hospital of Salamanca, Institute of Biomedical Research of Salamanca-IBSAL, Salamanca 37007, Spain
- Spanish Working Group on Alcohol and Alcoholism, Spanish Society of Internal Medicine, Madrid 28016, Spain
| | - Ignacio Novo-Veleiro
- Department of Internal Medicine, University Hospital of Santiago de Compostela, A Coruña 15706, Spain
- Spanish Working Group on Alcohol and Alcoholism, Spanish Society of Internal Medicine, Madrid 28016, Spain
| | - Laura Manzanedo
- Department of Internal Medicine, University Hospital of Salamanca, Institute of Biomedical Research of Salamanca-IBSAL, Salamanca 37007, Spain
| | - Lucía Alvela-Suárez
- Department of Internal Medicine, HM Rosaleda Hospital, Santiago de Compostela, A Coruña 15701, Spain
| | - Ronald Macías
- Department of Internal Medicine, University Hospital of Salamanca, Institute of Biomedical Research of Salamanca-IBSAL, Salamanca 37007, Spain
| | - Francisco-Javier Laso
- Department of Internal Medicine, University Hospital of Salamanca, Institute of Biomedical Research of Salamanca-IBSAL, Salamanca 37007, Spain
- Department of Medicine, Faculty of Medicine, University of Salamanca, Salamanca 37007, Spain
- Spanish Working Group on Alcohol and Alcoholism, Spanish Society of Internal Medicine, Madrid 28016, Spain
| | - Miguel Marcos
- Department of Internal Medicine, University Hospital of Salamanca, Institute of Biomedical Research of Salamanca-IBSAL, Salamanca 37007, Spain
- Department of Medicine, Faculty of Medicine, University of Salamanca, Salamanca 37007, Spain
- Spanish Working Group on Alcohol and Alcoholism, Spanish Society of Internal Medicine, Madrid 28016, Spain
| |
Collapse
|
24
|
Seitz HK, Bataller R, Cortez-Pinto H, Gao B, Gual A, Lackner C, Mathurin P, Mueller S, Szabo G, Tsukamoto H. Alcoholic liver disease. Nat Rev Dis Primers 2018; 4:16. [PMID: 30115921 DOI: 10.1038/s41572-018-0014-7] [Citation(s) in RCA: 690] [Impact Index Per Article: 115.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Alcoholic liver disease (ALD) is the most prevalent type of chronic liver disease worldwide. ALD can progress from alcoholic fatty liver (AFL) to alcoholic steatohepatitis (ASH), which is characterized by hepatic inflammation. Chronic ASH can eventually lead to fibrosis and cirrhosis and in some cases hepatocellular cancer (HCC). In addition, severe ASH (with or without cirrhosis) can lead to alcoholic hepatitis, which is an acute clinical presentation of ALD that is associated with liver failure and high mortality. Most individuals consuming >40 g of alcohol per day develop AFL; however, only a subset of individuals will develop more advanced disease. Genetic, epigenetic and non-genetic factors might explain the considerable interindividual variation in ALD phenotype. The pathogenesis of ALD includes hepatic steatosis, oxidative stress, acetaldehyde-mediated toxicity and cytokine and chemokine-induced inflammation. Diagnosis of ALD involves assessing patients for alcohol use disorder and signs of advanced liver disease. The degree of AFL and liver fibrosis can be determined by ultrasonography, transient elastography, MRI, measurement of serum biomarkers and liver biopsy histology. Alcohol abstinence achieved by psychosomatic intervention is the best treatment for all stages of ALD. In the case of advanced disease such as cirrhosis or HCC, liver transplantation may be required. Thus, new therapies are urgently needed.
Collapse
Affiliation(s)
- Helmut K Seitz
- Centre of Alcohol Research (CAR),, University of Heidelberg, Heidelberg and Department of Medicine, Salem Medical Center, Heidelberg, Germany.
| | - Ramon Bataller
- Division of Gastroenterology, Hepatology and Nutrition, Department of Medicine, Pittsburgh Liver Research Center, University of Pittsburgh, Pittsburgh, PA, USA
| | - Helena Cortez-Pinto
- Departmento de Gastroenterologia, CHLN, Laboratorio de Nutricão, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal
| | - Bin Gao
- Laboratory of Liver Diseases, National Institute on Alcohol Abuse and Alcoholism, NIH, Bethesda, MD, USA
| | - Antoni Gual
- Addiction Unit, Neuroscience Institute Hospital Clinic, IDIBAPS, Barcelona, Spain
| | - Carolin Lackner
- Institute of Pathology, Medical University of Graz, Graz, Austria
| | - Philippe Mathurin
- Service des Maladies de l'Appareil Digestif, Universite Lille 2 and INSERM U795, Lille, France
| | - Sebastian Mueller
- Centre of Alcohol Research (CAR),, University of Heidelberg, Heidelberg and Department of Medicine, Salem Medical Center, Heidelberg, Germany
| | - Gyongyi Szabo
- Department of Medicine, University of Massachusetts Medical School, Worcester, MA, USA
| | - Hidekazu Tsukamoto
- University of Southern California Keck School of Medicine and Greater Los Angeles VA Healthcare System, Los Angeles, CA, USA
| |
Collapse
|
25
|
Xu T, Li L, Hu HQ, Meng XM, Huang C, Zhang L, Qin J, Li J. MicroRNAs in alcoholic liver disease: Recent advances and future applications. J Cell Physiol 2018; 234:382-394. [PMID: 30076710 DOI: 10.1002/jcp.26938] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2018] [Accepted: 06/12/2018] [Indexed: 12/13/2022]
Abstract
Alcoholic liver disease (ALD) is characterized by hepatocyte damage, inflammatory cell activation, and increased intestinal permeability leading to the clinical manifestations of alcoholic hepatitis. Selected members of the family of microRNAs (miRNAs) are affected by alcohol, resulting in an abnormal miRNA profile in the liver and circulation in ALD. Increasing evidence suggests that miRNAs that regulate inflammation, lipid metabolism and promote cancer are affected by excessive alcohol administration in mouse models of ALD. This communication highlights recent findings in miRNA expression and functions as they relate to the pathogenesis of ALD. The cell-specific distribution of miRNAs, as well as the significance of circulating extracellular miRNAs, is discussed as potential biomarkers. Finally, the prospects of miRNA-based therapies are evaluated in ALD.
Collapse
Affiliation(s)
- Tao Xu
- The Key Laboratory of Major Autoimmune Diseases, Anhui Province, Anhui Institute of Innovative Drug, School of Pharmacy, Anhui Medical University, No. 81 Meishan Road, Hefei, Anhui, China.,Institute for Liver Diseases of Anhui Medical University, Anhui Medical University, Hefei, China
| | - Li Li
- The Key Laboratory of Major Autoimmune Diseases, Anhui Province, Anhui Institute of Innovative Drug, School of Pharmacy, Anhui Medical University, No. 81 Meishan Road, Hefei, Anhui, China.,Institute for Liver Diseases of Anhui Medical University, Anhui Medical University, Hefei, China.,Department of Pathology and Pathophysiology, Zhejiang University School of Medicine, Hangzhou, China
| | - Hua-Qing Hu
- Health Management Center, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Xiao-Ming Meng
- The Key Laboratory of Major Autoimmune Diseases, Anhui Province, Anhui Institute of Innovative Drug, School of Pharmacy, Anhui Medical University, No. 81 Meishan Road, Hefei, Anhui, China.,Institute for Liver Diseases of Anhui Medical University, Anhui Medical University, Hefei, China
| | - Cheng Huang
- The Key Laboratory of Major Autoimmune Diseases, Anhui Province, Anhui Institute of Innovative Drug, School of Pharmacy, Anhui Medical University, No. 81 Meishan Road, Hefei, Anhui, China.,Institute for Liver Diseases of Anhui Medical University, Anhui Medical University, Hefei, China
| | - Lei Zhang
- The Key Laboratory of Major Autoimmune Diseases, Anhui Province, Anhui Institute of Innovative Drug, School of Pharmacy, Anhui Medical University, No. 81 Meishan Road, Hefei, Anhui, China.,Institute for Liver Diseases of Anhui Medical University, Anhui Medical University, Hefei, China
| | - Jian Qin
- Anhui Joyfar Pharmaceutical Institute Co., Ltd., Hefei, China
| | - Jun Li
- The Key Laboratory of Major Autoimmune Diseases, Anhui Province, Anhui Institute of Innovative Drug, School of Pharmacy, Anhui Medical University, No. 81 Meishan Road, Hefei, Anhui, China.,Institute for Liver Diseases of Anhui Medical University, Anhui Medical University, Hefei, China
| |
Collapse
|
26
|
Abstract
MicroRNAs are short regulatory RNAs that posttranscriptionally modulate gene expression and thus play crucial roles in controlling cancer-onset, growth, and progression processes. miR107, a highly conserved microRNA that maps to intron 5 of the PANK1 gene, contributes to the regulation of normal and tumor biological processes. Studies have reported that miR107 has oncogenic or tumor-suppressor functions in different human tumors. The pleiotropic functions of miR107 in various cancers are achieved via its targeting different genes that are involved in tumor proliferation, invasiveness, metastasis, angiogenesis, and chemotherapy-response pathways. The carcinogenicity or cancer-suppressor effects of miR107 occur in a tissue- and cell-specific manner, and the expression level of miR107 can be affected by various factors, including epigenetic and genetic factors, treatment exposure, and daily diet. A comprehensive analysis of the current literature suggests that miR107 functions as a central element in the regulation of cancer networks and can be used as a potential diagnostic and prognostic biomarker and drug target for therapeutic intervention.
Collapse
Affiliation(s)
- Zhiying Luo
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, Hunan, China, .,Institute of Clinical Pharmacology, Hunan Key Laboratory of Pharmacogenetics, Central South University, Changsha, Hunan, China,
| | - Yi Zheng
- Department of Pharmacy, Hunan Province Maternal and Child Health, Changsha, Hunan, China
| | - Wei Zhang
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, Hunan, China, .,Institute of Clinical Pharmacology, Hunan Key Laboratory of Pharmacogenetics, Central South University, Changsha, Hunan, China,
| |
Collapse
|
27
|
Chung HH. The Multiple Modulation of miR-122 in the Attenuation of Alcoholic Liver Disease. Gastroenterology 2018; 154:1857. [PMID: 29621515 DOI: 10.1053/j.gastro.2018.02.036] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/25/2018] [Accepted: 02/09/2018] [Indexed: 12/19/2022]
Affiliation(s)
- Hsien-Hui Chung
- Preventive Medicine Program, Center for General Education, Chung Yuan Christian University, Taoyuan City, Taiwan and Department of Pharmacy & Clinical Trial Pharmacy, Kaohsiung Veterans General Hospital, Kaohsiung City, Taiwan
| |
Collapse
|
28
|
Rossi M, Jahanzaib Anwar M, Usman A, Keshavarzian A, Bishehsari F. Colorectal Cancer and Alcohol Consumption-Populations to Molecules. Cancers (Basel) 2018; 10:E38. [PMID: 29385712 PMCID: PMC5836070 DOI: 10.3390/cancers10020038] [Citation(s) in RCA: 99] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2017] [Revised: 01/22/2018] [Accepted: 01/24/2018] [Indexed: 12/11/2022] Open
Abstract
Colorectal cancer (CRC) is a major cause of morbidity and mortality, being the third most common cancer diagnosed in both men and women in the world. Several environmental and habitual factors have been associated with the CRC risk. Alcohol intake, a common and rising habit of modern society, is one of the major risk factors for development of CRC. Here, we will summarize the evidence linking alcohol with colon carcinogenesis and possible underlying mechanisms. Some epidemiologic studies suggest that even moderate drinking increases the CRC risk. Metabolism of alcohol involves ethanol conversion to its metabolites that could exert carcinogenic effects in the colon. Production of ethanol metabolites can be affected by the colon microbiota, another recently recognized mediating factor to colon carcinogenesis. The generation of acetaldehyde and alcohol's other metabolites leads to activation of cancer promoting cascades, such as DNA-adduct formation, oxidative stress and lipid peroxidation, epigenetic alterations, epithelial barrier dysfunction, and immune modulatory effects. Not only does alcohol induce its toxic effect through carcinogenic metabolites, but alcoholics themselves are predisposed to a poor diet, low in folate and fiber, and circadian disruption, which could further augment alcohol-induced colon carcinogenesis.
Collapse
Affiliation(s)
- Marco Rossi
- Division of Digestive Diseases, Hepatology, and Nutrition, Department of Internal Medicine, Rush University Medical Center, Chicago, IL 60612, USA.
| | - Muhammad Jahanzaib Anwar
- Division of Digestive Diseases, Hepatology, and Nutrition, Department of Internal Medicine, Rush University Medical Center, Chicago, IL 60612, USA.
| | - Ahmad Usman
- Division of Digestive Diseases, Hepatology, and Nutrition, Department of Internal Medicine, Rush University Medical Center, Chicago, IL 60612, USA.
| | - Ali Keshavarzian
- Division of Digestive Diseases, Hepatology, and Nutrition, Department of Internal Medicine, Rush University Medical Center, Chicago, IL 60612, USA.
| | - Faraz Bishehsari
- Division of Digestive Diseases, Hepatology, and Nutrition, Department of Internal Medicine, Rush University Medical Center, Chicago, IL 60612, USA.
| |
Collapse
|
29
|
Schueller F, Roy S, Vucur M, Trautwein C, Luedde T, Roderburg C. The Role of miRNAs in the Pathophysiology of Liver Diseases and Toxicity. Int J Mol Sci 2018; 19:ijms19010261. [PMID: 29337905 PMCID: PMC5796207 DOI: 10.3390/ijms19010261] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Revised: 01/12/2018] [Accepted: 01/13/2018] [Indexed: 12/12/2022] Open
Abstract
Both acute and chronic liver toxicity represents a major global health burden and an important cause of morbidity and lethality worldwide. Despite epochal progress in the treatment of hepatitis C virus infections, pharmacological treatment strategies for most liver diseases are still limited and new targets for prevention or treatment of liver disease are urgently needed. MicroRNAs (miRNAs) represent a new class of highly conserved small non-coding RNAs that are involved in the regulation of gene expression by targeting whole networks of so called “targets”. Previous studies have shown that the expression of miRNAs is specifically altered in almost all acute and chronic liver diseases. In this context, it was shown that miRNA can exert causal roles, being pro- or anti-inflammatory, as well as pro- or antifibrotic mediators or being oncogenes as well as tumor suppressor genes. Recent data suggested a potential therapeutic use of miRNAs by targeting different steps in the hepatic pathophysiology. Here, we review the function of miRNAs in the context of acute and chronic liver diseases. Furthermore, we highlight the potential role of circulating microRNAs in diagnosis of liver diseases and discuss the major challenges and drawbacks that currently prevent the use of miRNAs in clinical routine.
Collapse
Affiliation(s)
- Florian Schueller
- Department of Medicine III, University Hospital RWTH Aachen, Pauwelsstrasse 30, 52074 Aachen, Germany.
| | - Sanchari Roy
- Department of Medicine III, University Hospital RWTH Aachen, Pauwelsstrasse 30, 52074 Aachen, Germany.
| | - Mihael Vucur
- Department of Medicine III, University Hospital RWTH Aachen, Pauwelsstrasse 30, 52074 Aachen, Germany.
| | - Christian Trautwein
- Department of Medicine III, University Hospital RWTH Aachen, Pauwelsstrasse 30, 52074 Aachen, Germany.
| | - Tom Luedde
- Department of Medicine III, University Hospital RWTH Aachen, Pauwelsstrasse 30, 52074 Aachen, Germany.
- Division of Gastroenterology, Hepatology and Hepatobiliary Oncology, University Hospital RWTH Aachen, Pauwelsstrasse 30, 52074 Aachen, Germany.
| | - Christoph Roderburg
- Department of Medicine III, University Hospital RWTH Aachen, Pauwelsstrasse 30, 52074 Aachen, Germany.
| |
Collapse
|
30
|
Bai ZT, Bai B, Zhu J, Di CX, Li X, Zhou WC. Epigenetic actions of environmental factors and promising drugs for cancer therapy. Oncol Lett 2017; 15:2049-2056. [PMID: 29434904 DOI: 10.3892/ol.2017.7597] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2016] [Accepted: 06/09/2017] [Indexed: 01/15/2023] Open
Abstract
Carcinogenesis is known to be primarily associated with gene mutations. Recently, increasing evidence has suggested that epigenetic events also serve crucial roles in tumor etiology. Environmental factors, including nutrition, toxicants and ethanol, are involved in carcinogenesis through inducing epigenetic modifications, such as DNA methylation, histone deacetylase and miRNA regulation. Studying epigenetic mechanisms has facilitated the development of early diagnostic strategies and potential therapeutic avenues. Modulation at the epigenetic level, including reversing epigenetic modifications using targeted drugs, has demonstrated promise in cancer therapy. Therefore, identifying novel epigenetic biomarkers and therapeutic targets has potential for the future of cancer therapy. The present review discusses the environmental factors involved in epigenetic modifications and potential drug candidates for cancer therapy.
Collapse
Affiliation(s)
- Zhong-Tian Bai
- The Second Department of General Surgery, Key Laboratory of Biotherapy and Regenerative Medicine, First Hospital of Lanzhou University, Lanzhou, Gansu 730000, P.R. China.,Hepatopancreatobiliary Surgery Institute of Gansu, Medical College Cancer Center of Lanzhou University, Lanzhou, Gansu 730000, P.R. China
| | - Bing Bai
- The Second Department of General Surgery, Key Laboratory of Biotherapy and Regenerative Medicine, First Hospital of Lanzhou University, Lanzhou, Gansu 730000, P.R. China.,Hepatopancreatobiliary Surgery Institute of Gansu, Medical College Cancer Center of Lanzhou University, Lanzhou, Gansu 730000, P.R. China
| | - Jun Zhu
- Pathology Department of Donggang Branch Courts, First Hospital of Lanzhou University, Lanzhou, Gansu 730000, P.R. China
| | - Cui-Xia Di
- Department of Heavy Ion Radiation Medicine, Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, Gansu 730000, P.R. China
| | - Xun Li
- The Second Department of General Surgery, Key Laboratory of Biotherapy and Regenerative Medicine, First Hospital of Lanzhou University, Lanzhou, Gansu 730000, P.R. China.,Hepatopancreatobiliary Surgery Institute of Gansu, Medical College Cancer Center of Lanzhou University, Lanzhou, Gansu 730000, P.R. China
| | - Wen-Ce Zhou
- The Second Department of General Surgery, Key Laboratory of Biotherapy and Regenerative Medicine, First Hospital of Lanzhou University, Lanzhou, Gansu 730000, P.R. China.,Hepatopancreatobiliary Surgery Institute of Gansu, Medical College Cancer Center of Lanzhou University, Lanzhou, Gansu 730000, P.R. China
| |
Collapse
|
31
|
Hisada M, Zhang X, Ota Y, Cameron AM, Burdick J, Gao B, Williams GM, Sun Z. Fibrosis in small syngeneic rat liver grafts because of damaged bone marrow stem cells from chronic alcohol consumption. Liver Transpl 2017; 23:1564-1576. [PMID: 28719075 DOI: 10.1002/lt.24820] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/23/2017] [Revised: 06/22/2017] [Accepted: 07/07/2017] [Indexed: 12/13/2022]
Abstract
A patient with liver failure due to chronic and acute alcohol abuse under consideration for an urgent liver transplant shortly after stopping alcohol may have residual abnormalities that threaten transplant success, particularly for a small graft. To address this, we studied a model in which reduced-size (50%) Lewis rat livers are transplanted into green fluorescence protein transgenic Lewis recipients after they are fed alcohol or a control diet for 5 weeks. Here we show that normal small Lewis grafts transplanted to alcohol-fed Lewis hosts developed fibrosis, whereas no fibrosis was observed in control-fed recipients. Host-derived CD133 + 8-hydroxy-2'-deoxyguanosine (8-OHdG) cells were significantly increased in livers recovered from both alcohol-fed and control recipients, but only alcohol-fed recipients demonstrated co-staining (a marker of oxidative DNA damage). α smooth muscle actin (α-SMA) staining, a marker for myofibroblasts, also co-localized with CD133 + cells only in the livers of alcohol-fed recipients. Immunostaining and polymerase chain reaction analysis confirmed that chronic alcohol consumption decreased the proportion of bone marrow stem cells (BMSCs) expressing CD133, c-Kit, and chemokine (C-X-C motif) receptor 4 markers and caused oxidative mitochondria DNA (mtDNA) damage. Culture of CD133 + cells from normal rats with medium containing 3% ethanol for 48 hours resulted in elevated mitochondrial 8-OHdG and mtDNA deletion, and ethanol exposure diminished CD133 expression but dramatically increased α-SMA expression. In conclusion, oxidative mtDNA damage and deletions occur in BMSCs of chronic alcohol-fed recipients, and these damaged cells mobilize to the small liver grafts and become myofibroblasts where they play a key role in the subsequent development of fibrosis. Liver Transplantation 23 1564-1576 2017 AASLD.
Collapse
Affiliation(s)
- Masayuki Hisada
- Department of Surgery, Johns Hopkins University School of Medicine, Baltimore, MD.,Department of Surgery, Tokyo Medical University, Tokyo, Japan
| | - Xiuying Zhang
- Department of Surgery, Johns Hopkins University School of Medicine, Baltimore, MD.,Department of Pathology, Beijing Capital Medical University, Beijing, China
| | - Yoshihiro Ota
- Department of Surgery, Johns Hopkins University School of Medicine, Baltimore, MD.,Department of Surgery, Tokyo Medical University, Tokyo, Japan
| | - Andrew M Cameron
- Department of Surgery, Johns Hopkins University School of Medicine, Baltimore, MD
| | - James Burdick
- Department of Surgery, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Bin Gao
- Laboratory of Liver Diseases, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD
| | | | - Zhaoli Sun
- Department of Surgery, Johns Hopkins University School of Medicine, Baltimore, MD
| |
Collapse
|
32
|
Boyle M, Mann J. WITHDRAWN: Epigenetics in Chronic Liver Disease. J Hepatol 2017:S0168-8278(17)32255-9. [PMID: 28855099 DOI: 10.1016/j.jhep.2017.08.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/01/2017] [Revised: 08/17/2017] [Accepted: 08/18/2017] [Indexed: 12/04/2022]
Abstract
This article has been withdrawn at the request of the editors. The Publisher apologizes for any inconvenience this may cause. The full Elsevier Policy on Article Withdrawal can be found at https://www.elsevier.com/about/our-business/policies/article-withdrawal.
Collapse
Affiliation(s)
- Marie Boyle
- Institute of Cellular Medicine, Faculty of Medical Sciences, 4(th) Floor, William Leech Building, Newcastle University, Framlington Place, Newcastle upon Tyne, NE2 4HH, UK
| | - Jelena Mann
- Institute of Cellular Medicine, Faculty of Medical Sciences, 4(th) Floor, William Leech Building, Newcastle University, Framlington Place, Newcastle upon Tyne, NE2 4HH, UK.
| |
Collapse
|
33
|
Cheng D, Chen Y, Lu C, Qian Y, Lv Z. Preliminary profiling of microRNA in the normal and regenerating liver of Chiloscyllium plagiosum. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY D-GENOMICS & PROTEOMICS 2017; 24:60-67. [PMID: 28822868 DOI: 10.1016/j.cbd.2017.06.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2016] [Revised: 05/30/2017] [Accepted: 06/16/2017] [Indexed: 12/29/2022]
Abstract
Liver is a vital organ present in animals for detoxification, protein synthesis, digestion and other functions and its powerful regenerative capacity is well known. C. plagiosum is an abundant fish that is representative of the cartilaginous class in the southeast coastal region of China and its liver accounts for >70% of the fish's visceral weight and contains many bioactive substances. MicroRNAs (microRNAs) play important roles in a wide range of biological processes in eukaryotes, including cell proliferation, differentiation, apoptosis. However, microRNAs in response to liver regeneration has not been well studied. This study aimed to identify the microRNAs that participate in liver regeneration and other liver-related diseases and to improve our understanding of the mechanisms of liver regeneration in sharks. To this end, normal and regenerating liver tissues from C. plagiosum were harvested 0, 3, 6, 12 and 24h after partial hepatectomy (pH) and were sequenced using the Illumina/Solexa platform. In total, 309 known microRNAs and 590 novel microRNAs were identified in C. plagiosum. There were many microRNAs differentially expressed in the normal and regenerating livers between time points. Using target prediction and GO analysis, most of the differentially expressed microRNAs were assigned to functional categories that may be involved in regulating liver regeneration, such as cell proliferation, differentiation and apoptosis. The microRNA expression profile of liver regeneration will pave the way for the development of effective strategies to fight against liver disease and other related disease.
Collapse
Affiliation(s)
- Dandan Cheng
- Institute of Biochemistry, College of Life Sciences, Zhejiang Sci-Tech University, Hangzhou, China; Zhejiang Provincial Key Laboratory of Silkworm Bioreactor and Biomedicine, China.
| | - Yanna Chen
- Institute of Biochemistry, College of Life Sciences, Zhejiang Sci-Tech University, Hangzhou, China; Zhejiang Provincial Key Laboratory of Silkworm Bioreactor and Biomedicine, China.
| | - Conger Lu
- Institute of Biochemistry, College of Life Sciences, Zhejiang Sci-Tech University, Hangzhou, China; Zhejiang Provincial Key Laboratory of Silkworm Bioreactor and Biomedicine, China.
| | - Yuezhong Qian
- Institute of Biochemistry, College of Life Sciences, Zhejiang Sci-Tech University, Hangzhou, China; Zhejiang Provincial Key Laboratory of Silkworm Bioreactor and Biomedicine, China.
| | - Zhengbing Lv
- Institute of Biochemistry, College of Life Sciences, Zhejiang Sci-Tech University, Hangzhou, China; Zhejiang Provincial Key Laboratory of Silkworm Bioreactor and Biomedicine, China.
| |
Collapse
|
34
|
Abstract
Alcoholic liver disease (ALD) is a leading cause of chronic liver disease with a wide spectrum of manifestations including simple steatosis to steatohepatitis, cirrhosis, and hepatocellular carcinoma. Liver injury in ALD is caused by chronic inflammation, which has been actively investigated as a therapeutic target for the treatment of ALD for over the last four decades. In this review, we summarize a wide variety of inflammatory mediators that have been shown to contribute to the pathogenesis of ALD, and discuss the therapeutic potential of these mediators for the treatment of ALD.
Collapse
|
35
|
Ibusuki R, Uto H, Oda K, Ohshige A, Tabu K, Mawatari S, Kumagai K, Kanmura S, Tamai T, Moriuchi A, Tsubouchi H, Ido A. Human neutrophil peptide-1 promotes alcohol-induced hepatic fibrosis and hepatocyte apoptosis. PLoS One 2017; 12:e0174913. [PMID: 28403148 PMCID: PMC5389644 DOI: 10.1371/journal.pone.0174913] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2017] [Accepted: 03/17/2017] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND AND AIMS Neutrophil infiltration of the liver is a typical feature of alcoholic liver injury. Human neutrophil peptide (HNP)-1 is an antimicrobial peptide secreted by neutrophils. The aim of this study was to determine if HNP-1 affects ethanol-induced liver injury and to examine the mechanism of liver injury induced by HNP-1. METHODS Transgenic (TG) mice expressing HNP-1 under the control of a β-actin-based promoter were established. Ethanol was orally administered to HNP-1 TG or wild-type C57BL/6N (WT) mice. SK-Hep1 hepatocellular carcinoma cells were used to investigate the effect of HNP-1 on hepatocytes in vitro. RESULTS After 24 weeks of ethanol intake, hepatic fibrosis and hepatocyte apoptosis were significantly more severe in TG mice than in WT mice. Levels of CD14, TLR4, and IL-6 in liver tissues were higher in TG mice than in WT mice. Apoptosis was accompanied by higher protein levels of caspase-3, caspase-8, and cleaved PARP in liver tissue. In addition, phosphorylated ASK1, ASK1, phosphorylated JNK, JNK1, JNK2, Bax, Bak and Bim were all more abundant in TG mice than in WT mice. In contrast, the level of anti-apoptotic Bcl2 in the liver was significantly lower in TG mice than in WT mice. Analysis of microRNAs in liver tissue showed that miR-34a-5p expression was significantly higher in TG mice than in WT mice. Furthermore, in the presence of ethanol, HNP-1 increased the apoptosis with the decreased level of Bcl2 in a concentration-dependent manner in vitro. CONCLUSIONS HNP-1 secreted by neutrophils may exacerbate alcohol-induced hepatic fibrosis and hepatocyte apoptosis with a decrease in Bcl2 expression and an increase in miR-34a-5p expression.
Collapse
Affiliation(s)
- Rie Ibusuki
- Digestive and Lifestyle Diseases, Department of Human and Environmental Sciences, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan
- Department of International Island and Community Medicine, Kagoshima University Graduate School of Medical and Dental Science, Kagoshima, Japan
| | - Hirofumi Uto
- Digestive and Lifestyle Diseases, Department of Human and Environmental Sciences, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan
- Center for Digestive and Liver Diseases, Miyazaki Medical Center Hospital, Miyazaki, Japan
- * E-mail:
| | - Kohei Oda
- Department of HGF Tissue Repair and Regenerative Medicine, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan
| | - Akihiko Ohshige
- Digestive and Lifestyle Diseases, Department of Human and Environmental Sciences, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan
| | - Kazuaki Tabu
- Digestive and Lifestyle Diseases, Department of Human and Environmental Sciences, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan
| | - Seiichi Mawatari
- Digestive and Lifestyle Diseases, Department of Human and Environmental Sciences, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan
| | - Kotaro Kumagai
- Digestive and Lifestyle Diseases, Department of Human and Environmental Sciences, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan
| | - Shuji Kanmura
- Digestive and Lifestyle Diseases, Department of Human and Environmental Sciences, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan
| | - Tsutomu Tamai
- Digestive and Lifestyle Diseases, Department of Human and Environmental Sciences, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan
| | - Akihiro Moriuchi
- Digestive and Lifestyle Diseases, Department of Human and Environmental Sciences, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan
| | - Hirohito Tsubouchi
- Department of HGF Tissue Repair and Regenerative Medicine, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan
- Kagoshima City Hospital, Kagoshima, Japan
| | - Akio Ido
- Digestive and Lifestyle Diseases, Department of Human and Environmental Sciences, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan
- Department of HGF Tissue Repair and Regenerative Medicine, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan
| |
Collapse
|
36
|
Raitoharju E, Seppälä I, Lyytikäinen LP, Viikari J, Ala-Korpela M, Soininen P, Kangas AJ, Waldenberger M, Klopp N, Illig T, Leiviskä J, Loo BM, Oksala N, Kähönen M, Hutri-Kähönen N, Laaksonen R, Raitakari O, Lehtimäki T. Blood hsa-miR-122-5p and hsa-miR-885-5p levels associate with fatty liver and related lipoprotein metabolism-The Young Finns Study. Sci Rep 2016; 6:38262. [PMID: 27917915 PMCID: PMC5137183 DOI: 10.1038/srep38262] [Citation(s) in RCA: 60] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2016] [Accepted: 11/08/2016] [Indexed: 02/07/2023] Open
Abstract
MicroRNAs are involved in disease development and may be utilized as biomarkers. We investigated the association of blood miRNA levels and a) fatty liver (FL), b) lipoprotein and lipid pathways involved in liver lipid accumulation and c) levels of predicted mRNA targets in general population based cohort. Blood microRNA profiling (TaqMan OpenArray), genome-wide gene expression arrays and nuclear magnetic resonance metabolomics were performed for Young Finns Study participants aged 34–49 years (n = 871). Liver fat status was assessed ultrasonographically. Levels of hsa-miR-122-5p and -885-5p were up-regulated in individuals with FL (fold change (FC) = 1.55, p = 1.36 * 10−14 and FC = 1.25, p = 4.86 * 10−4, respectively). In regression model adjusted with age, sex and BMI, hsa-miR-122-5p and -885-5p predicted FL (OR = 2.07, p = 1.29 * 10−8 and OR = 1.41, p = 0.002, respectively). Together hsa-miR-122-5p and -885-5p slightly improved the detection of FL beyond established risk factors. These miRNAs may be associated with FL formation through the regulation of lipoprotein metabolism as hsa-miR-122-5p levels associated with small VLDL, IDL, and large LDL lipoprotein subclass components, while hsa-miR-885-5p levels associated inversely with XL HDL cholesterol levels. Hsa-miR-885-5p levels correlated inversely with oxysterol-binding protein 2 (OSBPL2) expression (r = −0.143, p = 1.00 * 10−4) and suppressing the expression of this lipid receptor and sterol transporter could link hsa-miR-885-5p with HDL cholesterol levels.
Collapse
Affiliation(s)
- Emma Raitoharju
- Department of Clinical Chemistry, Pirkanmaa Hospital District, Fimlab Laboratories, and University of Tampere, School of Medicine, Tampere, Finland
| | - Ilkka Seppälä
- Department of Clinical Chemistry, Pirkanmaa Hospital District, Fimlab Laboratories, and University of Tampere, School of Medicine, Tampere, Finland
| | - Leo-Pekka Lyytikäinen
- Department of Clinical Chemistry, Pirkanmaa Hospital District, Fimlab Laboratories, and University of Tampere, School of Medicine, Tampere, Finland
| | - Jorma Viikari
- Division of Medicine Turku University Hospital and Department of Medicine, University of Turku, Turku, Finland
| | - Mika Ala-Korpela
- Computational Medicine, Faculty of Medicine, University of Oulu and Biocenter Oulu, Oulu, Finland.,NMR Metabolomics Laboratory, School of Pharmacy, University of Eastern Finland, Kuopio, Finland.,Computational Medicine, School of Social and Community Medicine and the Medical Research Council Integrative Epidemiology Unit, University of Bristol, Bristol, UK
| | - Pasi Soininen
- Computational Medicine, Faculty of Medicine, University of Oulu and Biocenter Oulu, Oulu, Finland.,NMR Metabolomics Laboratory, School of Pharmacy, University of Eastern Finland, Kuopio, Finland
| | - Antti J Kangas
- Computational Medicine, Faculty of Medicine, University of Oulu and Biocenter Oulu, Oulu, Finland
| | - Melanie Waldenberger
- Research Unit of Molecular Epidemiology, Helmholtz Zentrum, German Research Center for Environmental Health, Munich, Germany
| | - Norman Klopp
- Hannover Unified Biobank, Hannover Medical School, Hannover, Germany.,Institute for Human Genetics, Hannover Medical School, Hanover, Germany
| | - Thomas Illig
- Research Unit of Molecular Epidemiology, Helmholtz Zentrum, German Research Center for Environmental Health, Munich, Germany.,Hannover Unified Biobank, Hannover Medical School, Hannover, Germany.,Institute for Human Genetics, Hannover Medical School, Hanover, Germany
| | - Jaana Leiviskä
- Department of Health, National Institute for Health and Welfare, Helsinki and Turku, Finland
| | - Britt-Marie Loo
- Department of Health, National Institute for Health and Welfare, Helsinki and Turku, Finland
| | - Niku Oksala
- Department of Clinical Chemistry, Pirkanmaa Hospital District, Fimlab Laboratories, and University of Tampere, School of Medicine, Tampere, Finland.,Division of Vascular Surgery, Department of Surgery, Tampere University Hospital, Tampere, Finland
| | - Mika Kähönen
- Department of Clinical Physiology, Tampere University Hospital, and School of Medicine, University of Tampere, Tampere, Finland
| | - Nina Hutri-Kähönen
- Department of Pediatrics, University of Tampere and Tampere University Hospital, Tampere, Finland
| | - Reijo Laaksonen
- Department of Clinical Chemistry, Pirkanmaa Hospital District, Fimlab Laboratories, and University of Tampere, School of Medicine, Tampere, Finland
| | - Olli Raitakari
- Research Centre for Applied and Preventive Cardiovascular Medicine, University of Turku, Turku, Finland.,Department of Clinical Physiology and Nuclear Medicine, University of Turku and Turku University Hospital, Turku, Finland
| | - Terho Lehtimäki
- Department of Clinical Chemistry, Pirkanmaa Hospital District, Fimlab Laboratories, and University of Tampere, School of Medicine, Tampere, Finland
| |
Collapse
|
37
|
Nephron segment specific microRNA biomarkers of pre-clinical drug-induced renal toxicity: Opportunities and challenges. Toxicol Appl Pharmacol 2016; 312:34-41. [DOI: 10.1016/j.taap.2016.01.021] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2015] [Revised: 01/19/2016] [Accepted: 01/27/2016] [Indexed: 12/11/2022]
|
38
|
Juskeviciute E, Dippold RP, Antony AN, Swarup A, Vadigepalli R, Hoek JB. Inhibition of miR-21 rescues liver regeneration after partial hepatectomy in ethanol-fed rats. Am J Physiol Gastrointest Liver Physiol 2016; 311:G794-G806. [PMID: 27634014 PMCID: PMC5130549 DOI: 10.1152/ajpgi.00292.2016] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/09/2016] [Accepted: 09/08/2016] [Indexed: 01/31/2023]
Abstract
Liver regeneration is a clinically significant tissue repair process that is suppressed by chronic alcohol intake through poorly understood mechanisms. Recently, microRNA-21 (miR-21) has been suggested to serve as a crucial microRNA (miRNA) regulator driving hepatocyte proliferation after partial hepatectomy (PHx) in mice. However, we reported recently that miR-21 is significantly upregulated in ethanol-fed rats 24 h after PHx, despite inhibition of cell proliferation, suggesting a more complex role for this miRNA. Here, we investigate how inhibition of miR-21 in vivo affects the early phase of liver regeneration in ethanol-fed rats. Chronically ethanol-fed rats and pair-fed control animals were treated with AM21, a mixed locked nucleic acid-DNA analog antisense to miR-21 that inhibited miR-21 in vivo to undetectable levels. Liver regeneration after PHx was followed by cell proliferation marker and gene expression analysis, miRNA profiling, and cell signaling pathway analysis. Although liver regeneration was not significantly impaired by AM21 in chow-fed rats, AM21 treatment in ethanol-fed animals completely restored regeneration and enhanced PHx-induced hepatocyte proliferation to levels comparable to those of untreated or chow-fed animals. In addition, a marked deposition of α-smooth muscle actin, a marker of stellate cell activation, which was evident in ethanol-treated animals after PHx, was effectively suppressed by AM21 treatment. Gene expression analysis further indicated that suppression of stellate cell-specific profibrogenic profiles and the Notch signaling contributed to AM21-mediated rescue from deficient hepatocyte proliferation in ethanol-fed animals. Our results indicate that the impact of miR-21 balances proproliferative effects with antiproliferative profibrogenic actions in regulating distinctive regenerative responses in normal vs. disease conditions.
Collapse
Affiliation(s)
- Egle Juskeviciute
- Department of Pathology, Anatomy, and Cell Biology, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Rachael P. Dippold
- Department of Pathology, Anatomy, and Cell Biology, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Anil N. Antony
- Department of Pathology, Anatomy, and Cell Biology, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Aditi Swarup
- Department of Pathology, Anatomy, and Cell Biology, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Rajanikanth Vadigepalli
- Department of Pathology, Anatomy, and Cell Biology, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Jan B. Hoek
- Department of Pathology, Anatomy, and Cell Biology, Thomas Jefferson University, Philadelphia, Pennsylvania
| |
Collapse
|
39
|
Tang QJ, Lin HM, He GD, Liu JE, Wu H, Li XX, Zhong WP, Tang L, Meng JX, Zhang MZ, Li HP, Chen JY, Zhong SL, Wang LY. Plasma miR-142 accounting for the missing heritability of CYP3A4/5 functionality is associated with pharmacokinetics of clopidogrel. Pharmacogenomics 2016; 17:1503-17. [PMID: 27556885 DOI: 10.2217/pgs-2016-0027] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
AIM To investigate whether plasma miRNAs targeting CYP3A4/5 have an impact on the variance of pharmacokinetics of clopidogrel. MATERIALS & METHODS The contribution of 13 miRNAs to the CYP3A4/5 gene expression and activity was investigated in 55 liver tissues. The association between plasma miRNAs targeting CYP3A4/5 mRNA and clopidogrel pharmacokinetics was analyzed in 31 patients with coronary heart disease who received 300 mg loading dose of clopidogrel. RESULTS Among 13 miRNAs, miR-142 was accounting for 12.2% (p = 0.002) CYP3A4 mRNA variance and 9.4% (p = 0.005) CYP3A5 mRNA variance, respectively. Plasma miR-142 was negatively associated with H4 Cmax (r = -0.5269; p = 0.0040) and associated with H4 AUC0-4h (r = -0.4986; p = 0.0069) after 300 mg loading dose of clopidogrel in coronary heart disease patients. CONCLUSION miR-142 could account for a part of missing heritability of CYP3A4/5 functionality related to clopidogrel activation.
Collapse
Affiliation(s)
- Qian-Jie Tang
- School of Pharmacy, Guangdong Metabolic Diseases Research Center of Integrated Chinese & Western Medicine, Guangdong Pharmaceutical University, Guangzhou, China.,Medical Research Center of Guangdong General Hospital, Guangzhou, China
| | - Hao-Ming Lin
- Department of Biliary & Pancreatic Surgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Guo-Dong He
- Medical Research Center of Guangdong General Hospital, Guangzhou, China.,Guangdong Cardiovascular Institute, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Ju-E Liu
- Medical Research Center of Guangdong General Hospital, Guangzhou, China.,Department of Pharmacy, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Hong Wu
- Department of Biliary & Pancreatic Surgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Xin-Xin Li
- Medical Research Center of Guangdong General Hospital, Guangzhou, China
| | - Wan-Ping Zhong
- Medical Research Center of Guangdong General Hospital, Guangzhou, China.,Guangdong Cardiovascular Institute, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Lan Tang
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, China
| | - Jin-Xiu Meng
- Medical Research Center of Guangdong General Hospital, Guangzhou, China
| | - Meng-Zhen Zhang
- Medical Research Center of Guangdong General Hospital, Guangzhou, China
| | - Han-Ping Li
- Medical Research Center of Guangdong General Hospital, Guangzhou, China
| | - Ji-Yan Chen
- Medical Research Center of Guangdong General Hospital, Guangzhou, China.,Guangdong Cardiovascular Institute, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Shi-Long Zhong
- Medical Research Center of Guangdong General Hospital, Guangzhou, China.,Guangdong Cardiovascular Institute, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Lai-You Wang
- School of Pharmacy, Guangdong Metabolic Diseases Research Center of Integrated Chinese & Western Medicine, Guangdong Pharmaceutical University, Guangzhou, China
| |
Collapse
|
40
|
Abstract
Alcoholic liver disease includes a broad clinical-histological spectrum from simple steatosis, cirrhosis, acute alcoholic hepatitis with or without cirrhosis to hepatocellular carcinoma as a complication of cirrhosis. The pathogenesis of alcoholic liver disease can be conceptually divided into (1) ethanol-mediated liver injury, (2) inflammatory immune response to injury, (3) intestinal permeability and microbiome changes. Corticosteroids may improve outcomes, but this is controversial and probably only impacts short-term survival. New pathophysiology-based therapies are under study, including antibiotics, caspase inhibition, interleukin-22, anakinra, FXR agonist and others. These studies provide hope for better future outcomes for this difficult disease.
Collapse
Affiliation(s)
- Winston Dunn
- Gastroenterology & Hepatology, The University of Kansas Medical Center, 3901 Rainbow Boulevard, Kansas City, KS USA
| | - Vijay H. Shah
- Gastroenterology Research Unit, Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, MN USA
| |
Collapse
|
41
|
McDaniel K, Hall C, Sato K, Lairmore T, Marzioni M, Glaser S, Meng F, Alpini G. Lin28 and let-7: roles and regulation in liver diseases. Am J Physiol Gastrointest Liver Physiol 2016; 310:G757-65. [PMID: 27012771 PMCID: PMC4888551 DOI: 10.1152/ajpgi.00080.2016] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/23/2016] [Accepted: 03/16/2016] [Indexed: 01/31/2023]
Abstract
The diagnosis and treatment of liver disease remain a major health concern worldwide because of the diverse etiologies of this disease. For this reason, new therapeutic targets are greatly needed to halt the progression of this damaging disease. Upon initiation of liver injury by viral infection, autoimmune disease or toxin, and/or hepatitis, chronic disease may develop, which can progress to cirrhosis, hepatocellular carcinoma (HCC), cholangiocarcinoma, liver failure, or death. The Lin28/lethal-7 (let-7) molecular switch has emerged as a central regulator of multiorgan injuries and cancer development. Lin28 is a stem cell marker vital to initiation or maintenance of a stem cell phenotype. Lin28 has not been extensively studied in the liver, despite its ability to induce tissue regeneration via reprogramming of oxidative enzymes in other tissues and its involvement with numerous upstream regulators and downstream targets in liver disease. Theoretically, overexpression of Lin28 in certain forms of liver disease could be a potential treatment that aids in liver regeneration. Alternatively, Lin28 has been implicated numerous times in the progression of diverse cancer types and is associated with increased severity of disease. In this case, Lin28 could be a potential inhibitory target to prevent malignant transformation in the liver. This review seeks to characterize the role of Lin28 in liver disease.
Collapse
Affiliation(s)
- Kelly McDaniel
- 1Research, Central Texas Veterans Health Care System, Temple, Texas; ,2Baylor Scott & White Digestive Disease Research Center, Scott & White Memorial Hospital, Temple, Texas; ,3Operational Funds, Baylor Scott & White, Temple, Texas; ,4Department of Medicine, Baylor Scott & White and Texas A & M Health Science Center, Temple, Texas;
| | - Chad Hall
- 3Operational Funds, Baylor Scott & White, Temple, Texas; ,5Department of Surgery, Baylor Scott & White and Texas A & M Health Science Center, Temple, Texas; and
| | - Keisaku Sato
- 4Department of Medicine, Baylor Scott & White and Texas A & M Health Science Center, Temple, Texas;
| | - Terry Lairmore
- 3Operational Funds, Baylor Scott & White, Temple, Texas; ,5Department of Surgery, Baylor Scott & White and Texas A & M Health Science Center, Temple, Texas; and
| | - Marco Marzioni
- 6Department of Medicine, Universita' Politecnica delle Marche, Ancona, Italy
| | - Shannon Glaser
- 1Research, Central Texas Veterans Health Care System, Temple, Texas; ,2Baylor Scott & White Digestive Disease Research Center, Scott & White Memorial Hospital, Temple, Texas; ,3Operational Funds, Baylor Scott & White, Temple, Texas;
| | - Fanyin Meng
- 1Research, Central Texas Veterans Health Care System, Temple, Texas; ,2Baylor Scott & White Digestive Disease Research Center, Scott & White Memorial Hospital, Temple, Texas; ,3Operational Funds, Baylor Scott & White, Temple, Texas;
| | - Gianfranco Alpini
- Research, Central Texas Veterans Health Care System, Temple, Texas; Baylor Scott & White Digestive Disease Research Center, Scott & White Memorial Hospital, Temple, Texas; Department of Medicine, Baylor Scott & White and Texas A & M Health Science Center, Temple, Texas;
| |
Collapse
|
42
|
Liu H, French BA, Li J, Tillman B, French SW. Altered regulation of miR-34a and miR-483-3p in alcoholic hepatitis and DDC fed mice. Exp Mol Pathol 2015; 99:552-7. [PMID: 26403328 DOI: 10.1016/j.yexmp.2015.09.005] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2015] [Accepted: 09/18/2015] [Indexed: 01/05/2023]
Abstract
MicroRNAs are small noncoding RNAs that negatively regulate gene expression by binding to the untranslated regions of their target mRNAs. Deregulation of miRNAs is shown to play pivotal roles in tumorigenesis and progression. Mallory-Denk Bodies (MDBs) are prevalent in various liver diseases including alcoholic hepatitis (AH) and are formed in mice livers by feeding DDC. By comparing AH livers where MDBs had formed with normal livers, there were significant changes of miR-34a and miR-483-3p by RNA sequencing (RNA-Seq) analyses. Real-time PCR further shows a 3- and 6-fold upregulation (respectively) of miR-34a in the AH livers and in the livers of DDC re-fed mice, while miR-483-3p was significantly downregulated in AH and DDC re-fed mice livers. This indicates that miR-34a and miR-483-3p may be crucial for liver MDB formation. P53 mRNA was found to be significantly downregulated both in the AH livers and in the livers of DDC re-fed mice, indicating that the upregulation of miR-34a is permitted by the decrease of p53 in AH since miR-34a is a main target of p53. Overexpression of miR-34a leads to an increase of p53 targets such as p27, which inhibits the cell cycle leading to cell cycle arrest. Importantly, BRCA1 is a target gene of miR-483-3p by RNA-Seq analyses and the downregulation of miR-483-3p may be the mechanism for liver MDB formation since the BRCA1 signal was markedly upregulated in AH livers. These results constitute a demonstration of the altered regulation of miR-34a and miR-483-3p in the livers of AH and mice fed DDC where MDBs formed, providing further insight into the mechanism of MDB formation mediated by miR-34a and miR-483-3p in AH.
Collapse
Affiliation(s)
- Hui Liu
- Department of Pathology, LABioMed at Harbor UCLA Medical Center, 1000 West Carson Street, Torrance, CA 90509, USA
| | - Barbara A French
- Department of Pathology, LABioMed at Harbor UCLA Medical Center, 1000 West Carson Street, Torrance, CA 90509, USA
| | - Jun Li
- Department of Pathology, LABioMed at Harbor UCLA Medical Center, 1000 West Carson Street, Torrance, CA 90509, USA
| | - Brittany Tillman
- Department of Pathology, LABioMed at Harbor UCLA Medical Center, 1000 West Carson Street, Torrance, CA 90509, USA
| | - Samuel W French
- Department of Pathology, LABioMed at Harbor UCLA Medical Center, 1000 West Carson Street, Torrance, CA 90509, USA.
| |
Collapse
|
43
|
Zakhari S. Chronic alcohol drinking: Liver and pancreatic cancer? Clin Res Hepatol Gastroenterol 2015; 39 Suppl 1:S86-91. [PMID: 26193868 DOI: 10.1016/j.clinre.2015.05.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/12/2015] [Revised: 05/13/2015] [Accepted: 05/16/2015] [Indexed: 02/07/2023]
Abstract
Cancer is a multifactorial disease that results from complex interactions of numerous risk factors - genetic and environmental - over time, eventually leading to the diseased phenotypes. Thus, while epidemiological studies can point to risk factors, they cannot determine cause and effect relationships, and are unable to give biological and clinical insights into carcinogenesis. The link between any risk factor and carcinogenesis needs to be validated in experimental models. This is particularly true in epidemiological studies on alcohol consumption and its consequences. While there is no doubt that heavy alcohol consumption has devastating health effects, the inconsistencies in alcohol-related epidemiological studies and cancer suffer from possible sources of the variability in outcomes, ranging from inaccuracy of self-report of consumption to the problem of correlating cancer that started decades earlier to current or recent alcohol consumption. To further study the interactions between alcohol and cancer, the use of "Molecular Pathological Epidemiology" (MPE) advocated by Ogino et al. for dissecting the interplay between etiological factors, cellular and molecular characteristics, and disease progression in cancer is appropriate. MPE does not consider cancer as a single entity, rather it integrates analyses of epidemiological studies with the macroenvironment and molecular and microenvironment. This approach allows investigating the relationships between potential etiological agents and cancer based on molecular signatures. More research is needed to fully elucidate the link between heavy alcohol consumption and pancreatic cancer, and to further investigate the roles of acetaldehyde and FAEEs in pancreatic carcinogenesis.
Collapse
Affiliation(s)
- Samir Zakhari
- 1250 Eye Street, NW, suite 400, Washington, DC 20005, USA.
| |
Collapse
|
44
|
MicroRNAs as Signaling Mediators and Biomarkers of Drug- and Chemical-Induced Liver Injury. J Clin Med 2015; 4:1063-1078. [PMID: 26167291 PMCID: PMC4470217 DOI: 10.3390/jcm4051063] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2015] [Accepted: 05/11/2015] [Indexed: 02/07/2023] Open
Abstract
Drug-induced liver injury (DILI) is major problem for both the drug industry and for clinicians. There are two basic categories of DILI: intrinsic and idiosyncratic. The former is the chief cause of acute liver failure in several developed countries, while the latter is the most common reason for post-marketing drug withdrawal and a major reason for failure to approve new drugs in the U.S. Although considerably more progress has been made in the study of intrinsic DILI, our understanding of both forms of drug hepatotoxicity remains incomplete. Recent work involving microRNAs (miRNAs) has advanced our knowledge of DILI in two ways: (1) possible roles of miRNAs in the pathophysiological mechanisms of DILI have been identified, and (2) circulating miRNA profiles have shown promise for the detection and diagnosis of DILI in clinical settings. The purpose of this review is to summarize major findings in these two areas of research. Taken together, exciting progress has been made in the study of miRNAs in DILI. Possible mechanisms through which miRNA species contribute to the basic mechanisms of DILI are beginning to emerge, and new miRNA-based biomarkers have the potential to greatly improve diagnosis of liver injury and prediction of patient outcomes.
Collapse
|
45
|
Taki FA, Pan X, Zhang B. Revisiting Chaos Theorem to Understand the Nature of miRNAs in Response to Drugs of Abuse. J Cell Physiol 2015; 230:2857-68. [PMID: 25966899 DOI: 10.1002/jcp.25037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2015] [Accepted: 05/05/2015] [Indexed: 11/08/2022]
Abstract
Just like Matryoshka dolls, biological systems follow a hierarchical order that is based on dynamic bidirectional communication among its components. In addition to the convoluted inter-relationships, the complexity of each component spans several folds. Therefore, it becomes rather challenging to investigate phenotypes resulting from these networks as it requires the integration of reductionistic and holistic approaches. One dynamic system is the transcriptome which comprises a variety of RNA species. Some, like microRNAs, have recently received a lot of attention. miRNAs are very pleiotropic and have been considered as therapeutic and diagnostic candidates in the biomedical fields. In this review, we survey miRNA profiles in response to drugs of abuse (DA) using 118 studies. After providing a summary of miRNAs related to substance use disorders (SUD), general patterns of miRNA signatures are compared among studies for single or multiple drugs of abuse. Then, current challenges and drawbacks in the field are discussed. Finally, we provide support for considering miRNAs as a chaotic system in normal versus disrupted states particularly in SUD and propose an integrative approach for studying and analyzing miRNA data.
Collapse
Affiliation(s)
- Faten A Taki
- Department of Biology, East Carolina University, Greenville, North Carolina
| | - Xiaoping Pan
- Department of Biology, East Carolina University, Greenville, North Carolina
| | - Baohong Zhang
- Department of Biology, East Carolina University, Greenville, North Carolina
| |
Collapse
|
46
|
Abstract
Alcoholic liver disease (ALD) is a complex process that includes a wide spectrum of hepatic lesions, from steatosis to cirrhosis. Cell injury, inflammation, oxidative stress, regeneration and bacterial translocation are key drivers of alcohol-induced liver injury. Alcoholic hepatitis is the most severe form of all the alcohol-induced liver lesions. Animal models of ALD mainly involve mild liver damage (that is, steatosis and moderate inflammation), whereas severe alcoholic hepatitis in humans occurs in the setting of cirrhosis and is associated with severe liver failure. For this reason, translational studies using humans and human samples are crucial for the development of new therapeutic strategies. Although multiple attempts have been made to improve patient outcome, the treatment of alcoholic hepatitis is still based on abstinence from alcohol and brief exposure to corticosteroids. However, nearly 40% of patients with the most severe forms of alcoholic hepatitis will not benefit from treatment. We suggest that future clinical trials need to focus on end points other than mortality. This Review discusses the main pathways associated with the progression of liver disease, as well as potential therapeutic strategies targeting these pathways.
Collapse
|
47
|
Nicolaidou V, Koufaris C. MicroRNA responses to environmental liver carcinogens: Biological and clinical significance. Clin Chim Acta 2015; 445:25-33. [PMID: 25773117 DOI: 10.1016/j.cca.2015.03.006] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2015] [Revised: 03/03/2015] [Accepted: 03/06/2015] [Indexed: 12/18/2022]
Abstract
A large number of biological, chemical, and dietary factors have been implicated in the development of liver cancer. These involve complex and protracted interactions between genetic, epigenetic, and environmental factors. The survival rate for patients diagnosed with late-stage liver cancer is currently low due to the aggressive nature of the disease and resistance to therapy. An increasing body of evidence has offered support for the crucial role of non-coding microRNA (miRNA) in directing hepatic responses to environmental risk factors for liver cancer. In this review we focus on miRNA responses to environmental liver cancer risk factors and their potential biological and clinical significance.
Collapse
Affiliation(s)
- Vicky Nicolaidou
- Department of Life and Health Sciences, University of Nicosia, Cyprus; Center for the study of Haematological Malignancies, Nicosia, Cyprus
| | - Costas Koufaris
- Department of Cytogenetics and Genomic, Cyprus Institute of Neurology and Genetics, Cyprus.
| |
Collapse
|
48
|
Retson TA, Reyes B, Van Bockstaele EJ. Chronic alcohol exposure differentially affects activation of female locus coeruleus neurons and the subcellular distribution of corticotropin releasing factor receptors. Prog Neuropsychopharmacol Biol Psychiatry 2015; 56:66-74. [PMID: 25149913 PMCID: PMC4258542 DOI: 10.1016/j.pnpbp.2014.08.005] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/05/2014] [Revised: 08/09/2014] [Accepted: 08/13/2014] [Indexed: 11/16/2022]
Abstract
Understanding the neurobiological bases for sex differences in alcohol dependence is needed to help guide the development of individualized therapies for alcohol abuse disorders. In the present study, alcohol-induced adaptations in (1) anxiety-like behavior, (2) patterns of c-Fos activation and (3) subcellular distribution of corticotropin releasing factor receptor in locus coeruleus (LC) neurons was investigated in male and female Sprague-Dawley rats that were chronically exposed to ethanol using a liquid diet. Results confirm and extend reports by others showing that chronic ethanol exposure produces an anxiogenic-like response in both male and female subjects. Ethanol-induced sex differences were observed with increased c-Fos expression in LC neurons of female ethanol-treated subjects compared to controls or male subjects. Results also reveal sex differences in the subcellular distribution of the CRFr in LC-noradrenergic neurons with female subjects exposed to ethanol exhibiting a higher frequency of plasmalemmal CRFrs. These adaptations have implications for LC neuronal activity and its neural targets across the sexes. Considering the important role of the LC in ethanol-induced activation of the hypothalamo-pituitary-adrenal (HPA) axis, the present results indicate important sex differences in feed-forward regulation of the HPA axis that may render alcohol dependent females more vulnerable to subsequent stress exposure.
Collapse
Affiliation(s)
- T. A. Retson
- Department of Neuroscience, Thomas Jefferson University, Philadelphia, PA 19107
| | - B.A. Reyes
- Department of Pharmacology and Physiology, Drexel University, Philadelphia, PA 19102
| | - E. J. Van Bockstaele
- Department of Pharmacology and Physiology, Drexel University, Philadelphia, PA 19102
| |
Collapse
|
49
|
Williams JA, Manley S, Ding WX. New advances in molecular mechanisms and emerging therapeutic targets in alcoholic liver diseases. World J Gastroenterol 2014; 20:12908-12933. [PMID: 25278688 PMCID: PMC4177473 DOI: 10.3748/wjg.v20.i36.12908] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/17/2013] [Revised: 03/07/2014] [Accepted: 04/16/2014] [Indexed: 02/06/2023] Open
Abstract
Alcoholic liver disease is a major health problem in the United States and worldwide. Chronic alcohol consumption can cause steatosis, inflammation, fibrosis, cirrhosis and even liver cancer. Significant progress has been made to understand key events and molecular players for the onset and progression of alcoholic liver disease from both experimental and clinical alcohol studies. No successful treatments are currently available for treating alcoholic liver disease; therefore, development of novel pathophysiological-targeted therapies is urgently needed. This review summarizes the recent progress on animal models used to study alcoholic liver disease and the detrimental factors that contribute to alcoholic liver disease pathogenesis including miRNAs, S-adenosylmethionine, Zinc deficiency, cytosolic lipin-1β, IRF3-mediated apoptosis, RIP3-mediated necrosis and hepcidin. In addition, we summarize emerging adaptive protective effects induced by alcohol to attenuate alcohol-induced liver pathogenesis including FoxO3, IL-22, autophagy and nuclear lipin-1α.
Collapse
|
50
|
Retson TA, Hoek JB, Sterling RC, Van Bockstaele EJ. Amygdalar neuronal plasticity and the interactions of alcohol, sex, and stress. Brain Struct Funct 2014; 220:3211-32. [PMID: 25081549 DOI: 10.1007/s00429-014-0851-4] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2014] [Accepted: 07/14/2014] [Indexed: 10/25/2022]
Abstract
Alcohol abuse and alcoholism are major medical problems affecting both men and women. Previous animal studies reported a difference in c-Fos neuronal activation after chronic alcohol exposure; however, females remain an understudied population. To model chronic alcohol exposure match-pair fed adult male and female rats were administered 14 days of a liquid ethanol containing diet. Analysis focused on the central nucleus of the amygdala (CeA), a region integral to stress sensitivity and substance abuse. Immunocytochemical approaches identified cells containing ΔFosB, a marker of sustained neuronal activation, and activity patterns within the CeA were mapped by subdivision and rostral-caudal extent. Significant interactions were present between all groups, with gender differences noted among control groups, and ethanol exposed animals having the greatest number of ΔFosB immunoreactive cells indicating baseline dysregulation. Compared with c-Fos, a marker of recent neuronal activation, male ethanol treated animals had similar activity to controls, indicating a neuronal habituation not seen in females. Next, a cohort of animals were exposed to the forced swim test (FST), and c-Fos was examined in addition to FST behavior. Neuronal activity was increased in ethanol exposed animals compared to controls, and control females compared to males, indicating a potentiated stress response. Further, a population of activated neurons were shown to contain either corticotropin releasing factor or enkephalin. The present data suggest that dysregulation in the CeA neuronal activity may underlie some of the negative sequelae of alcohol abuse, and may, in part, underlie the distinctive response seen between genders to alcohol use.
Collapse
Affiliation(s)
- T A Retson
- Department of Neuroscience, Farber Institute for Neurosciences, Thomas Jefferson University, 900 Walnut Street, Suite 417, Philadelphia, PA, 19107, USA.
| | - J B Hoek
- Department of Pathology, Anatomy and Cell Biology, Thomas Jefferson University, Philadelphia, PA, 19107, USA
| | - R C Sterling
- Department of Psychiatry, Thomas Jefferson University, Philadelphia, PA, 19107, USA
| | - E J Van Bockstaele
- Department of Pharmacology and Physiology, Drexel University, Philadelphia, PA, 19107, USA
| |
Collapse
|