1
|
Vieceli Dalla Sega F, Fortini F, Licastro D, Monego SD, Degasperi M, Ascierto A, Marracino L, Severi P, D'Accolti M, Soffritti I, Brambilla M, Camera M, Tremoli E, Contoli M, Spadaro S, Campo G, Ferrari R, Caselli E, Rizzo P. Serum from COVID-19 patients promotes endothelial cell dysfunction through protease-activated receptor 2. Inflamm Res 2024; 73:117-130. [PMID: 38117300 DOI: 10.1007/s00011-023-01823-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 10/06/2023] [Accepted: 11/13/2023] [Indexed: 12/21/2023] Open
Abstract
BACKGROUND Endothelial dysfunction plays a central role in the pathophysiology of COVID-19 and is closely linked to the severity and mortality of the disease. The inflammatory response to SARS-CoV-2 infection can alter the capacity of the endothelium to regulate vascular tone, immune responses, and the balance between anti-thrombotic and pro-thrombotic properties. However, the specific endothelial pathways altered during COVID-19 still need to be fully understood. OBJECTIVE In this study, we sought to identify molecular changes in endothelial cells induced by circulating factors characteristic of COVID-19. METHODS AND RESULTS To this aim, we cultured endothelial cells with sera from patients with COVID-19 or non-COVID-19 pneumonia. Through transcriptomic analysis, we were able to identify a distinctive endothelial phenotype that is induced by sera from COVID-19 patients. We confirmed and expanded this observation in vitro by showing that COVID-19 serum alters functional properties of endothelial cells leading to increased apoptosis, loss of barrier integrity, and hypercoagulability. Furthermore, we demonstrated that these endothelial dysfunctions are mediated by protease-activated receptor 2 (PAR-2), as predicted by transcriptome network analysis validated by in vitro functional assays. CONCLUSION Our findings provide the rationale for further studies to evaluate whether targeting PAR-2 may be a clinically effective strategy to counteract endothelial dysfunction in COVID-19.
Collapse
Affiliation(s)
| | | | | | | | | | - Alessia Ascierto
- Department of Translational Medicine and Laboratory for Technologies of Advanced Therapies (LTTA), University of Ferrara, Ferrara, Italy
| | - Luisa Marracino
- Department of Translational Medicine and Laboratory for Technologies of Advanced Therapies (LTTA), University of Ferrara, Ferrara, Italy
| | - Paolo Severi
- Department of Translational Medicine and Laboratory for Technologies of Advanced Therapies (LTTA), University of Ferrara, Ferrara, Italy
| | - Maria D'Accolti
- Department of Chemical, Pharmaceutical, and Agricultural Sciences, and LTTA, Section of Microbiology, University of Ferrara, Ferrara, Italy
| | - Irene Soffritti
- Department of Chemical, Pharmaceutical, and Agricultural Sciences, and LTTA, Section of Microbiology, University of Ferrara, Ferrara, Italy
| | | | - Marina Camera
- Centro Cardiologico Monzino IRCCS, Milan, Italy
- Department of Pharmaceutical Sciences, Università degli Studi di Milano, Milan, Italy
| | - Elena Tremoli
- Maria Cecilia Hospital, GVM Care & Research, Cotignola, Italy
| | - Marco Contoli
- Respiratory Section, Department of Translational Medicine, University of Ferrara, Ferrara, Italy
| | - Savino Spadaro
- Intensive Care Unit, Department of Translational Medicine, University of Ferrara, Ferrara, Italy
| | - Gianluca Campo
- Cardiology Unit, Azienda Ospedaliero-Universitaria di Ferrara, University of Ferrara, Ferrara, Italy
| | - Roberto Ferrari
- Department of Translational Medicine and Laboratory for Technologies of Advanced Therapies (LTTA), University of Ferrara, Ferrara, Italy
| | - Elisabetta Caselli
- Department of Chemical, Pharmaceutical, and Agricultural Sciences, and LTTA, Section of Microbiology, University of Ferrara, Ferrara, Italy
| | - Paola Rizzo
- Maria Cecilia Hospital, GVM Care & Research, Cotignola, Italy
- Department of Translational Medicine and Laboratory for Technologies of Advanced Therapies (LTTA), University of Ferrara, Ferrara, Italy
| |
Collapse
|
2
|
Falco L, Tessitore V, Ciccarelli G, Malvezzi M, D’Andrea A, Imbalzano E, Golino P, Russo V. Antioxidant Properties of Oral Antithrombotic Therapies in Atherosclerotic Disease and Atrial Fibrillation. Antioxidants (Basel) 2023; 12:1185. [PMID: 37371915 PMCID: PMC10294911 DOI: 10.3390/antiox12061185] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 05/22/2023] [Accepted: 05/29/2023] [Indexed: 06/29/2023] Open
Abstract
The thrombosis-related diseases are one of the leading causes of illness and death in the general population, and despite significant improvements in long-term survival due to remarkable advances in pharmacologic therapy, they continue to pose a tremendous burden on healthcare systems. The oxidative stress plays a role of pivotal importance in thrombosis pathophysiology. The anticoagulant and antiplatelet drugs commonly used in the management of thrombosis-related diseases show several pleiotropic effects, beyond the antithrombotic effects. The present review aims to describe the current evidence about the antioxidant effects of the oral antithrombotic therapies in patients with atherosclerotic disease and atrial fibrillation.
Collapse
Affiliation(s)
- Luigi Falco
- Cardiology Unit, Department of Medical Translational Science, University of Campania “Luigi Vanvitelli”—Monaldi Hospital, 80126 Naples, Italy; (L.F.); (V.T.); (G.C.); (M.M.); (P.G.)
| | - Viviana Tessitore
- Cardiology Unit, Department of Medical Translational Science, University of Campania “Luigi Vanvitelli”—Monaldi Hospital, 80126 Naples, Italy; (L.F.); (V.T.); (G.C.); (M.M.); (P.G.)
| | - Giovanni Ciccarelli
- Cardiology Unit, Department of Medical Translational Science, University of Campania “Luigi Vanvitelli”—Monaldi Hospital, 80126 Naples, Italy; (L.F.); (V.T.); (G.C.); (M.M.); (P.G.)
| | - Marco Malvezzi
- Cardiology Unit, Department of Medical Translational Science, University of Campania “Luigi Vanvitelli”—Monaldi Hospital, 80126 Naples, Italy; (L.F.); (V.T.); (G.C.); (M.M.); (P.G.)
| | | | - Egidio Imbalzano
- Department of Clinical and Experimental Medicine, University of Messina, 98122 Messina, Italy;
| | - Paolo Golino
- Cardiology Unit, Department of Medical Translational Science, University of Campania “Luigi Vanvitelli”—Monaldi Hospital, 80126 Naples, Italy; (L.F.); (V.T.); (G.C.); (M.M.); (P.G.)
| | - Vincenzo Russo
- Cardiology Unit, Department of Medical Translational Science, University of Campania “Luigi Vanvitelli”—Monaldi Hospital, 80126 Naples, Italy; (L.F.); (V.T.); (G.C.); (M.M.); (P.G.)
| |
Collapse
|
3
|
Anwar MM, Sah R, Shrestha S, Ozaki A, Roy N, Fathah Z, Rodriguez-Morales AJ. Disengaging the COVID-19 Clutch as a Discerning Eye Over the Inflammatory Circuit During SARS-CoV-2 Infection. Inflammation 2022; 45:1875-1894. [PMID: 35639261 PMCID: PMC9153229 DOI: 10.1007/s10753-022-01674-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 03/29/2022] [Accepted: 04/18/2022] [Indexed: 01/08/2023]
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) causes the cytokine release syndrome (CRS) and leads to multiorgan dysfunction. Mitochondrial dynamics are fundamental to protect against environmental insults, but they are highly susceptible to viral infections. Defective mitochondria are potential sources of reactive oxygen species (ROS). Infection with SARS-CoV-2 damages mitochondria, alters autophagy, reduces nitric oxide (NO), and increases both nicotinamide adenine dinucleotide phosphate oxidases (NOX) and ROS. Patients with coronavirus disease 2019 (COVID-19) exhibited activated toll-like receptors (TLRs) and the Nucleotide-binding and oligomerization domain (NOD-), leucine-rich repeat (LRR-), pyrin domain-containing protein 3 (NLRP3) inflammasome. The activation of TLRs and NLRP3 by SARS-CoV-2 induces interleukin 6 (IL-6), IL-1β, IL-18, and lactate dehydrogenase (LDH). Herein, we outline the inflammatory circuit of COVID-19 and what occurs behind the scene, the interplay of NOX/ROS and their role in hypoxia and thrombosis, and the important role of ROS scavengers to reduce COVID-19-related inflammation.
Collapse
Affiliation(s)
- Mohammed Moustapha Anwar
- Department of Biotechnology, Institute of Graduate Studies and Research (IGSR), Alexandria University, Alexandria, Egypt.
| | - Ranjit Sah
- Tribhuvan University Institute of Medicine, Kathmandu, Nepal
| | - Sunil Shrestha
- Department of Pharmaceutical and Health Service Research, Nepal Health Research and Innovation Foundation, Lalitpur, Nepal
| | - Akihiko Ozaki
- Department of Breast Surgery, Jyoban Hospital of Tokiwa Foundation, Iwaki, Japan
- Medical Governance Research Institute, Tokyo, Japan
| | - Namrata Roy
- SRM University, SRM Nagar, Kattankulathur, Chengalpattu, Tamil Nadu, 603203, India
| | - Zareena Fathah
- Kings College London, London, UK
- College of Medicine and Health Sciences, United Arab University, Abu Dhabi, United Arab Emirates
| | - Alfonso J Rodriguez-Morales
- Grupo de Investigación Biomedicina, Faculty of Medicine, Fundacion Universitaria Autonoma de Las Americas, Pereira, Risaralda, Colombia.
- Institución Universitaria Visión de Las Americas, Pereira, Risaralda, Colombia.
- Faculty of Health Sciences, Universidad Cientifica del Sur, Lima, Peru.
- School of Medicine, Universidad Privada Franz Tamayo (UNIFRANZ), Cochabamba, Bolivia.
| |
Collapse
|
4
|
Jia Z, Wang P, Xu Y, Feng G, Wang Q, He X, Song Y, Liu P, Chen J. Trypsin inhibitor LH011 inhibited DSS-induced mice colitis via alleviating inflammation and oxidative stress. Front Pharmacol 2022; 13:986510. [PMID: 36238566 PMCID: PMC9551103 DOI: 10.3389/fphar.2022.986510] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Accepted: 09/05/2022] [Indexed: 11/13/2022] Open
Abstract
Background: Ulcerative colitis (UC) is one type of inflammatory bowel disease, characterized by inflammation with infiltration and activation of macrophages in colonic tissue. LH011 is a trypsin inhibitor with potential anti-inflammatory effect. Purpose: Here, we aim to assay the effects of LH011 on UC and further investigate the potential mechanisms in vitro and in vivo. Methods: Dextran sulfate sodium (DSS, 3.5%, w/v) was used to induce UC, and lipopolysaccharide (LPS) was used to induce inflammation in RAW 264.7 cells. LH011 was administrated to mice in vivo or to RAW 264.7 cells in vitro at different concentrations. The cytokines (IL-1β, IL-6, and TNF-α) and the changes of NF-κB and Nrf2 pathways were detected. Results: The results showed that LH011 improved DSS-induced mice colitis, including loss of weight, disease activity index (DAI), and colonic pathological damage. In addition, LH011 inhibited the expressions of IL-1β, IL-6, and TNF-α and strengthened the anti-oxidative capacity. Mechanically, LH011 downregulated the nuclear localization of NF-κB p65 and upregulated the protein expression of Nrf2. Conclusion: These results demonstrated that LH011 alleviated inflammation and oxidative stress during UC by inhibiting TLR4/NF-κB and activating Nrf2/Keap1/HO-1 signaling pathways.
Collapse
Affiliation(s)
- Zhenmao Jia
- Laboratory of Pharmacology and Toxicology, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China
| | - Panxia Wang
- Laboratory of Pharmacology and Toxicology, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China
- School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou, China
| | | | - Guodong Feng
- Laboratory of Pharmacology and Toxicology, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China
| | - Quan Wang
- Laboratory of Pharmacology and Toxicology, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China
| | - Xiangjun He
- Laboratory of Pharmacology and Toxicology, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China
| | - Yan Song
- Guangzhou Link Health Group, Guangzhou, China
- *Correspondence: Yan Song, ; Peiqing Liu, ; Jianwen Chen,
| | - Peiqing Liu
- Laboratory of Pharmacology and Toxicology, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China
- Department of National and Local United Engineering Lab of Druggability and New Drugs Evaluation, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, China
- *Correspondence: Yan Song, ; Peiqing Liu, ; Jianwen Chen,
| | - Jianwen Chen
- Laboratory of Pharmacology and Toxicology, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China
- Department of National and Local United Engineering Lab of Druggability and New Drugs Evaluation, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Chiral Molecule and Drug Discovery, Guangzhou, China
- *Correspondence: Yan Song, ; Peiqing Liu, ; Jianwen Chen,
| |
Collapse
|
5
|
Inhibition of protein disulfide isomerase with PACMA-31 regulates monocyte tissue factor through transcriptional and posttranscriptional mechanisms. Thromb Res 2022; 220:48-59. [DOI: 10.1016/j.thromres.2022.09.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 09/09/2022] [Accepted: 09/28/2022] [Indexed: 11/17/2022]
|
6
|
Forceville X, Van Antwerpen P, Preiser JC. Selenocompounds and Sepsis: Redox Bypass Hypothesis for Early Diagnosis and Treatment: Part A-Early Acute Phase of Sepsis: An Extraordinary Redox Situation (Leukocyte/Endothelium Interaction Leading to Endothelial Damage). Antioxid Redox Signal 2021; 35:113-138. [PMID: 33567962 DOI: 10.1089/ars.2020.8063] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Significance: Sepsis is a health disaster. In sepsis, an initial, beneficial local immune response against infection evolves rapidly into a generalized, dysregulated response or a state of chaos, leading to multiple organ failure. Use of life-sustaining supportive therapies creates an unnatural condition, enabling the complex cascades of the sepsis response to develop in patients who would otherwise die. Multiple attempts to control sepsis at an early stage have been unsuccessful. Recent Advances: Major events in early sepsis include activation and binding of leukocytes and endothelial cells in the microcirculation, damage of the endothelial surface layer (ESL), and a decrease in the plasma concentration of the antioxidant enzyme, selenoprotein-P. These events induce an increase in intracellular redox potential and lymphocyte apoptosis, whereas apoptosis is delayed in monocytes and neutrophils. They also induce endothelial mitochondrial and cell damage. Critical Issues: Neutrophil production increases dramatically, and aggressive immature forms are released. Leukocyte cross talk with other leukocytes and with damaged endothelial cells amplifies the inflammatory response. The release of large quantities of reactive oxygen, halogen, and nitrogen species as a result of the leukocyte respiratory burst, endothelial mitochondrial damage, and ischemia/reperfusion processes, along with the marked decrease in selenoprotein-P concentrations, leads to peroxynitrite damage of the ESL, reducing flow and damaging the endothelial barrier. Future Directions: Endothelial barrier damage by activated leukocytes is a time-sensitive event in sepsis, occurring within hours and representing the first step toward organ failure and death. Reducing or stopping this event is necessary before irreversible damage occurs.
Collapse
Affiliation(s)
- Xavier Forceville
- Medico-Surgical Intensive Care Unit, Great Hospital of East Francilien-Meaux Site, Hôpital Saint Faron, Meaux, France.,Clinical Investigation Center (CIC Inserm 1414), CHU de Rennes, Université de Rennes 1, Rennes, France
| | - Pierre Van Antwerpen
- Pharmacognosy, Bioanalysis and Drug Discovery and Analytical Platform of the Faculty of Pharmacy, Université libre de Bruxelles (ULB), Bruxelles, Belgium
| | | |
Collapse
|
7
|
Abstract
The association between inflammation, infection, and venous thrombosis has long been recognized; yet, only in the last decades have we begun to understand the mechanisms through which the immune and coagulation systems interact and reciprocally regulate one another. These interconnected networks mount an effective response to injury and pathogen invasion, but if unregulated can result in pathological thrombosis and organ damage. Neutrophils, monocytes, and platelets interact with each other and the endothelium in host defense and also play critical roles in the formation of venous thromboembolism. This knowledge has advanced our understanding of both human physiology and pathophysiology, as well as identified mechanisms of anticoagulant resistance and novel therapeutic targets for the prevention and treatment of thrombosis. In this review, we discuss the contributions of inflammation and infection to venous thromboembolism.
Collapse
Affiliation(s)
- Meaghan E. Colling
- Hematology Branch, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, MD, USA
- Clinical Division of Haematology and Haemostaseology, Department of Medicine I, Medical University of Vienna, Vienna, Austria
| | - Benjamin E. Tourdot
- Experimental Hematology and Cancer Biology, Cincinnati Children’s Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Yogendra Kanthi
- Laboratory of Vascular Thrombosis and Inflammation, Division of Intramural Research, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
8
|
Ngo ATP, Parra-Izquierdo I, Aslan JE, McCarty OJT. Rho GTPase regulation of reactive oxygen species generation and signalling in platelet function and disease. Small GTPases 2021; 12:440-457. [PMID: 33459160 DOI: 10.1080/21541248.2021.1878001] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
Abstract
Platelets are master regulators and effectors of haemostasis with increasingly recognized functions as mediators of inflammation and immune responses. The Rho family of GTPase members Rac1, Cdc42 and RhoA are known to be major components of the intracellular signalling network critical to platelet shape change and morphological dynamics, thus playing a major role in platelet spreading, secretion and thrombus formation. Initially linked to the regulation of actomyosin contraction and lamellipodia formation, recent reports have uncovered non-canonical functions of platelet RhoGTPases in the regulation of reactive oxygen species (ROS), where intrinsically generated ROS modulate platelet function and contribute to thrombus formation. Platelet RhoGTPases orchestrate oxidative processes and cytoskeletal rearrangement in an interconnected manner to regulate intracellular signalling networks underlying platelet activity and thrombus formation. Herein we review our current knowledge of the regulation of platelet ROS generation by RhoGTPases and their relationship with platelet cytoskeletal reorganization, activation and function.
Collapse
Affiliation(s)
- Anh T P Ngo
- Department of Biomedical Engineering, Oregon Health & Science University, Portland, Oregon, USA
| | - Ivan Parra-Izquierdo
- Department of Biomedical Engineering, Oregon Health & Science University, Portland, Oregon, USA.,Knight Cardiovascular Institute, Oregon Health & Science University, Portland, Oregon, USA
| | - Joseph E Aslan
- Department of Biomedical Engineering, Oregon Health & Science University, Portland, Oregon, USA.,Knight Cardiovascular Institute, Oregon Health & Science University, Portland, Oregon, USA.,Department of Chemical Physiology and Biochemistry, Oregon Health & Science University, Portland, Oregon, USA
| | - Owen J T McCarty
- Department of Biomedical Engineering, Oregon Health & Science University, Portland, Oregon, USA
| |
Collapse
|
9
|
Chang R, Mamun A, Dominic A, Le NT. SARS-CoV-2 Mediated Endothelial Dysfunction: The Potential Role of Chronic Oxidative Stress. Front Physiol 2021; 11:605908. [PMID: 33519510 PMCID: PMC7844210 DOI: 10.3389/fphys.2020.605908] [Citation(s) in RCA: 80] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2020] [Accepted: 12/09/2020] [Indexed: 01/08/2023] Open
Abstract
Endothelial cells have emerged as key players in SARS-CoV-2 infection and COVID-19 inflammatory pathologies. Dysfunctional endothelial cells can promote chronic inflammation and disease processes like thrombosis, atherosclerosis, and lung injury. In endothelial cells, mitochondria regulate these inflammatory pathways via redox signaling, which is primarily achieved through mitochondrial reactive oxygen species (mtROS). Excess mtROS causes oxidative stress that can initiate and exacerbate senescence, a state that promotes inflammation and chronic endothelial dysfunction. Oxidative stress can also activate feedback loops that perpetuate mitochondrial dysfunction, mtROS overproduction, and inflammation. In this review, we provide an overview of phenotypes mediated by mtROS in endothelial cells - such as mitochondrial dysfunction, inflammation, and senescence - as well as how these chronic states may be initiated by SARS-CoV-2 infection of endothelial cells. We also propose that SARS-CoV-2 activates mtROS-mediated feedback loops that cause long-term changes in host redox status and endothelial function, promoting cardiovascular disease and lung injury after recovery from COVID-19. Finally, we discuss the implications of these proposed pathways on long-term vascular health and potential treatments to address these chronic conditions.
Collapse
Affiliation(s)
- Ryan Chang
- College of Arts & Sciences, Washington University in St. Louis, St. Louis, MO, United States
| | - Abrar Mamun
- Wiess School of Natural Sciences, Rice University, Houston, TX, United States
| | - Abishai Dominic
- Department of Molecular and Cellular Medicine, College of Medicine, Texas A&M University, College Station, TX, United States
- Department of Cardiovascular Sciences, Center for Cardiovascular Regeneration, Houston Methodist Research Institute, Houston, TX, United States
| | - Nhat-Tu Le
- Department of Cardiovascular Sciences, Center for Cardiovascular Regeneration, Houston Methodist Research Institute, Houston, TX, United States
| |
Collapse
|
10
|
Qing J, Zhang Z, Novák P, Zhao G, Yin K. Mitochondrial metabolism in regulating macrophage polarization: an emerging regulator of metabolic inflammatory diseases. Acta Biochim Biophys Sin (Shanghai) 2020; 52:917-926. [PMID: 32785581 DOI: 10.1093/abbs/gmaa081] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2020] [Indexed: 12/24/2022] Open
Abstract
As a major type of immune cells with heterogeneity and plasticity, macrophages are classically divided into inflammatory (M1) and alternative/anti-inflammatory (M2) types and play a crucial role in the progress of the inflammatory diseases. Recent studies have shown that metabolism is an important determinant of macrophage phenotype. Mitochondria, one of the most important compartments involving cell metabolism, are closely associated with the regulation of cell functions. In most types of cell, mitochondrial oxidative phosphorylation (OXPHOS) is the primary mode of cellular energy production. However, mitochondrial OXPHOS is inhibited in activated M1 macrophages, rendering them unable to be converted into M2 phenotype. Thus, mitochondrial metabolism is a crucial regulator in macrophage functions. This review summarizes the roles of mitochondria in macrophage polarization and analyzes the molecular mechanisms underlying mitochondrial metabolism and function, which may provide new approaches for the treatment of metabolic inflammatory diseases.
Collapse
Affiliation(s)
- Jina Qing
- The Second Affiliated Hospital of Guilin Medical University, Guangxi Key Laboratory of Diabetic Systems Medicine, Guilin Medical University, Guilin 541100, China
- Research Lab of translational medicine, Hengyang Medical College, University of South China, Hengyang 421001, China
| | - Zizhen Zhang
- School of Medicine, Hunan Polytechnic of Environment and Biology, Hengyang 421001, China
| | - Petr Novák
- The Second Affiliated Hospital of Guilin Medical University, Guangxi Key Laboratory of Diabetic Systems Medicine, Guilin Medical University, Guilin 541100, China
| | - Guojun Zhao
- The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan City People's Hospital, Qingyuan 511518, China
| | - Kai Yin
- The Second Affiliated Hospital of Guilin Medical University, Guangxi Key Laboratory of Diabetic Systems Medicine, Guilin Medical University, Guilin 541100, China
- Research Lab of translational medicine, Hengyang Medical College, University of South China, Hengyang 421001, China
| |
Collapse
|
11
|
Porembskaya O, Toropova Y, Tomson V, Lobastov K, Laberko L, Kravchuk V, Saiganov S, Brill A. Pulmonary Artery Thrombosis: A Diagnosis That Strives for Its Independence. Int J Mol Sci 2020; 21:ijms21145086. [PMID: 32708482 PMCID: PMC7404175 DOI: 10.3390/ijms21145086] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Revised: 07/15/2020] [Accepted: 07/16/2020] [Indexed: 12/13/2022] Open
Abstract
According to a widespread theory, thrombotic masses are not formed in the pulmonary artery (PA) but result from migration of blood clots from the venous system. This concept has prevailed in clinical practice for more than a century. However, a new technologic era has brought forth more diagnostic possibilities, and it has been shown that thrombotic masses in the PA could, in many cases, be found without any obvious source of emboli. Chronic obstructive pulmonary disease, asthma, sickle cell anemia, emergency and elective surgery, viral pneumonia, and other conditions could be complicated by PA thrombosis development without concomitant deep vein thrombosis (DVT). Different pathologies have different causes for local PA thrombotic process. As evidenced by experimental results and clinical observations, endothelial and platelet activation are the crucial mechanisms of this process. Endothelial dysfunction can impair antithrombotic function of the arterial wall through downregulation of endothelial nitric oxide synthase (eNOS) or via stimulation of adhesion receptor expression. Hypoxia, proinflammatory cytokines, or genetic mutations may underlie the procoagulant phenotype of the PA endothelium. Both endotheliocytes and platelets could be activated by protease mediated receptor (PAR)- and receptors for advanced glycation end (RAGE)-dependent mechanisms. Hypoxia, in particular induced by high altitudes, could play a role in thrombotic complications as a trigger of platelet activity. In this review, we discuss potential mechanisms of PA thrombosis in situ.
Collapse
Affiliation(s)
- Olga Porembskaya
- Mechnikov North-Western State Medical University, Saint Petersburg 191015, Russia; (V.K.); (S.S.)
- Institute of Experimental Medicine, Saint Petersburg 197376, Russia
- Correspondence: (O.P.); (A.B.); Tel.: +7-92-1310-6629 (O.P.); Tel.: +44-12-1415-8679 (A.B.)
| | - Yana Toropova
- Institute of Experimental Medicine, Almazov National Medical Research Center, Saint Petersburg 197341, Russia;
| | | | - Kirill Lobastov
- Pirogov Russian National Research Medical University, Moscow 117997, Russia; (K.L.); (L.L.)
| | - Leonid Laberko
- Pirogov Russian National Research Medical University, Moscow 117997, Russia; (K.L.); (L.L.)
| | - Viacheslav Kravchuk
- Mechnikov North-Western State Medical University, Saint Petersburg 191015, Russia; (V.K.); (S.S.)
| | - Sergey Saiganov
- Mechnikov North-Western State Medical University, Saint Petersburg 191015, Russia; (V.K.); (S.S.)
| | - Alexander Brill
- Institute of Cardiovascular Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham B152TT, UK
- Department of Pathophysiology, Sechenov First Moscow State Medical University (Sechenov University), Moscow 119991, Russia
- Correspondence: (O.P.); (A.B.); Tel.: +7-92-1310-6629 (O.P.); Tel.: +44-12-1415-8679 (A.B.)
| |
Collapse
|
12
|
Gutmann C, Siow R, Gwozdz AM, Saha P, Smith A. Reactive Oxygen Species in Venous Thrombosis. Int J Mol Sci 2020; 21:E1918. [PMID: 32168908 PMCID: PMC7139897 DOI: 10.3390/ijms21061918] [Citation(s) in RCA: 62] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Revised: 03/02/2020] [Accepted: 03/04/2020] [Indexed: 01/03/2023] Open
Abstract
Reactive oxygen species (ROS) have physiological roles as second messengers, but can also exert detrimental modifications on DNA, proteins and lipids if resulting from enhanced generation or reduced antioxidant defense (oxidative stress). Venous thrombus (DVT) formation and resolution are influenced by ROS through modulation of the coagulation, fibrinolysis, proteolysis and the complement system, as well as the regulation of effector cells such as platelets, endothelial cells, erythrocytes, neutrophils, mast cells, monocytes and fibroblasts. Many conditions that carry an elevated risk of venous thrombosis, such as the Antiphospholipid Syndrome, have alterations in their redox homeostasis. Dietary and pharmacological antioxidants can modulate several important processes involved in DVT formation, but their overall effect is unknown and there are no recommendations regarding their use. The development of novel antioxidant treatments that aim to abrogate the formation of DVT or promote its resolution will depend on the identification of targets that enable ROS modulation confined to their site of interest in order to prevent off-target effects on physiological redox mechanisms. Subgroups of patients with increased systemic oxidative stress might benefit from unspecific antioxidant treatment, but more clinical studies are needed to bring clarity to this issue.
Collapse
Affiliation(s)
- Clemens Gutmann
- King’s British Heart Foundation Centre, King’s College London, 125 Coldharbour Lane, London SE5 9NU, UK;
| | - Richard Siow
- Vascular Biology & Inflammation Section, School of Cardiovascular Medicine & Sciences, British Heart Foundation of Research Excellence, King’s College London, SE1 9NH, UK;
| | - Adam M. Gwozdz
- Academic Department of Surgery, School of Cardiovascular Medicine & Sciences, British Heart Foundation of Research Excellence, King’s College London, London SE1 7EH, UK; (A.M.G.); (P.S.)
| | - Prakash Saha
- Academic Department of Surgery, School of Cardiovascular Medicine & Sciences, British Heart Foundation of Research Excellence, King’s College London, London SE1 7EH, UK; (A.M.G.); (P.S.)
| | - Alberto Smith
- Academic Department of Surgery, School of Cardiovascular Medicine & Sciences, British Heart Foundation of Research Excellence, King’s College London, London SE1 7EH, UK; (A.M.G.); (P.S.)
| |
Collapse
|
13
|
Martinez Fernandez A, Regazzoni L, Brioschi M, Gianazza E, Agostoni P, Aldini G, Banfi C. Pro-oxidant and pro-inflammatory effects of glycated albumin on cardiomyocytes. Free Radic Biol Med 2019; 144:245-255. [PMID: 31260731 DOI: 10.1016/j.freeradbiomed.2019.06.023] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Revised: 06/13/2019] [Accepted: 06/19/2019] [Indexed: 12/14/2022]
Abstract
Human serum albumin (HSA) is the most abundant circulating protein in the body and presents an extensive range of biological functions. As such, it is prone to undergo post-translational modifications (PTMs). The non-enzymatic early glycation of HSA, one of the several PTMs undergone by HSA, arises from the addition of reducing sugars to amine group residues, thus modifying the structure of HSA. These changes may affect HSA functions impairing its biological activity, finally leading to cell damage. The aim of this study was to quantitate glycated-HSA (GA) levels in the plasma of heart failure (HF) patients and to evaluate the biological effects of GA on HL-1 cardiomyocytes. Plasma GA content from HF patients and healthy subjects was measured by direct infusion electrospray ionization mass spectrometry (ESI-MS). Results pointed out a significant increase of GA in HF patients with respect to the control group (p < 0.05). Additionally, after stimulation with GA, proteomic analysis of HL-1 secreted proteins showed the modulation of several proteins involved, among other processes, in the response to stress. Further, stimulated cells showed a rapid increase in ROS generation, higher mRNA levels of the inflammatory cytokine interleukin-6 (IL-6) and tumor necrosis factor alpha (TNF-α), and higher levels of the oxidative 4-HNE-protein adducts and carbonylated proteins. Our findings show that plasma GA is increased in HF patients. Further, GA exerts pro-inflammatory and pro-oxidant effects on cardiomyocytes, which suggest a causal role in the etiopathogenesis of HF.
Collapse
MESH Headings
- Aged
- Case-Control Studies
- Cell Death
- Cell Line
- Dyslipidemias/blood
- Dyslipidemias/genetics
- Dyslipidemias/pathology
- Female
- Gene Expression Profiling
- Gene Ontology
- Glycation End Products, Advanced
- Glycosylation
- HSP90 Heat-Shock Proteins/genetics
- HSP90 Heat-Shock Proteins/metabolism
- Heart Failure/blood
- Heart Failure/genetics
- Heart Failure/pathology
- Humans
- Hypertension/blood
- Hypertension/genetics
- Hypertension/pathology
- Interleukin-6/genetics
- Interleukin-6/metabolism
- Lysine/analogs & derivatives
- Lysine/blood
- Male
- Middle Aged
- Molecular Sequence Annotation
- Myocardium/metabolism
- Myocardium/pathology
- Myocytes, Cardiac/drug effects
- Myocytes, Cardiac/metabolism
- Myocytes, Cardiac/pathology
- Natriuretic Peptide, Brain/blood
- Natriuretic Peptide, Brain/genetics
- Protein Carbonylation
- Protein Processing, Post-Translational
- Reactive Oxygen Species/agonists
- Reactive Oxygen Species/metabolism
- Serum Albumin/pharmacology
- Serum Albumin, Human/chemistry
- Serum Albumin, Human/genetics
- Serum Albumin, Human/metabolism
- Tumor Necrosis Factor-alpha/genetics
- Tumor Necrosis Factor-alpha/metabolism
- Glycated Serum Albumin
Collapse
Affiliation(s)
| | - Luca Regazzoni
- Department of Pharmaceutical Sciences, University of Milan, Milan, Italy
| | | | | | - Piergiuseppe Agostoni
- Centro Cardiologico Monzino, IRCCS, Milan, Italy; Department of Clinical Sciences and Community Health, Cardiovascular Section, University of Milan, Milan, Italy
| | - Giancarlo Aldini
- Department of Pharmaceutical Sciences, University of Milan, Milan, Italy
| | | |
Collapse
|
14
|
Mohamed DI, Khairy E, Khedr SA, Habib EK, Elayat WM, El-Kharashi OA. N-acetylcysteine (NAC) alleviates the peripheral neuropathy associated with liver cirrhosis via modulation of neural MEG3/PAR2/ NF-ҡB axis. Neurochem Int 2019; 132:104602. [PMID: 31751619 DOI: 10.1016/j.neuint.2019.104602] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Revised: 11/07/2019] [Accepted: 11/11/2019] [Indexed: 12/13/2022]
Abstract
BACKGROUND AND AIM Oxidative stress (OS) is accused in pathogenesis of many diseases, including liver cirrhosis by many mechanisms. One of them is the disturbance of long non coding maternally expressed 3 (MEG3)/protease activated receptor 2 (PAR2) downstream pathway. We aimed to investigate the role of this axis in cirrhotic neuropathy and whether an antioxidant compound such as N-acetylcysteine (NAC) could improve the peripheral nerve function through repression of MEG3/PAR2. METHODS Thirty Wistar rats were used and divided into 5 groups; naive, thiacetamide (TAA) (200 mg/kg 3 times/week. i.p. for 8 weeks) and TAA+NAC (50 or 100 or 200 mg/kg/day) groups. Von Frey (VF) test for mechanical nociceptive responses, hepatic& neural MEG3, NF-ҡB and neural PAR2 expression by PCR, histological studies for liver and sciatic nerve together with the dorsopedal skin thickness were done. RESULTS TAA induced significant decrease in liver function, negative VF test, an increase in the expression of hepatic& neural MEG3, NF-ҡB and neural PAR2. The histological studies showed cirrhotic changes with atrophy of the sciatic nerve and the dorsal skin. NAC improved the liver function together with reversal of the neural: functional, biochemical and histological changes in a dose dependent manner. CONCLUSIONS NAC could improve the peripheral neuropathy in cirrhotic rat through suppression of MEG3/PAR2 expression.
Collapse
Affiliation(s)
- Doaa I Mohamed
- Department of Clinical Pharmacology, Faculty of Medicine, Ain Shams University, Cairo, Egypt.
| | - Eman Khairy
- Department of Medical Biochemistry and Molecular Biology, Faculty of Medicine, Ain Shams University, Cairo, Egypt.
| | - Sara A Khedr
- Department of Clinical Pharmacology, Faculty of Medicine, Ain Shams University, Cairo, Egypt.
| | - Eman K Habib
- Department of Anatomy and Embryology, Faculty of Medicine, Ain Shams University, Cairo, Egypt.
| | - Wael M Elayat
- Department of Medical Biochemistry and Molecular Biology, Faculty of Medicine, Ain Shams University, Cairo, Egypt.
| | - Omnyah A El-Kharashi
- Department of Clinical Pharmacology, Faculty of Medicine, Ain Shams University, Cairo, Egypt.
| |
Collapse
|
15
|
Chang WC, Yu YM, Cheng AC. Curcumin suppresses pro-inflammatory adhesion response in Human Umbilical Vein Endothelial Cells. J Food Biochem 2018. [DOI: 10.1111/jfbc.12623] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- Weng-Cheng Chang
- Department of Otolaryngology; Taichung Tzu Chi Hospital; Buddhist Tzu Chi Medical Foundation; Taiwan
| | - Ya-Mei Yu
- Department of Senior Citizen Service Management; National Taichung University of Science and Technology; Taichung Taiwan
| | - An-Chin Cheng
- Department of Nutrition and Health Sciences; Chang Jung Christian University; Tainan Taiwan
| |
Collapse
|
16
|
Frombach J, Lohan SB, Lemm D, Gruner P, Hasler J, Ahlberg S, Blume-Peytavi U, Unbehauen M, Haag R, Meinke MC, Vogt A. Protease-mediated Inflammation: An In Vitro Human Keratinocyte-based Screening Tool for Anti-inflammatory Drug Nanocarrier Systems. ACTA ACUST UNITED AC 2018. [DOI: 10.1515/zpch-2017-1048] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Abstract
Background:
Refined encapsulation approaches in dermatotherapy gain increased interest. There is need of reproducible in vitro systems representing disease features to screen drug delivery systems for preclinical assessment. Inflammatory human skin diseases are commonly accompanied by abnormal epidermal differentiation and barrier impairment. Serine proteases (SPs) and their inhibitors play a critical role in such dysfunctional differentiation. SPs also initiate cellular pathways via activation of protease-activated receptors, which contribute to inflammation. Thus, function and activity of SPs should be considered for the design of new therapies of such disorders.
Objectives:
Herein, we established a novel simplified cell culture model, based on SP-mediated inflammation suitable to assess nanocarriers loaded with anti-inflammatory drugs.
Methods:
SP-mediated inflammation and the regulatory effect of free or encapsulated dexamethasone were determined by measuring interleukin-6 and interleukin-8 in culture medium of HaCaT (human adult low calcium temperature)-keratinocytes. Additionally, radical formation was analyzed by electron paramagnetic resonance spectroscopy. Cellular uptake of core-multishell nanocarriers was investigated by fluorescence microscopy. Cytotoxicity of all additives was determined by a viability assay.
Results:
SP-Stimulation of keratinocytes resulted in increased radical production and release of inflammatory cytokines without affecting cell viability. Induced inflammation was successfully downregulated by addition of free or encapsulated dexamethasone.
Conclusion:
SP-addition can be used as inflammatory stimulus in cell culture to mimic effects of aberrant enzymatic activities found in skin of atopic dermatitis patients. The set-up is appropriate as a preliminary test to examine the effectiveness of new molecules or delivery-systems to counteract serine protease-mediated inflammatory processes prior to skin studies.
Collapse
Affiliation(s)
- Janna Frombach
- Clinical Research Center for Hair and Skin Science , Department of Dermatology, Venerology and Allergy , Charité – Universitätsmedizin Berlin , Berlin , Germany
| | - Silke B. Lohan
- Center of Experimental and Applied Cutaneous Physiology , Department of Dermatology, Venerology and Allergy , Charité – Universitätsmedizin Berlin , Berlin , Germany
| | - Davina Lemm
- Clinical Research Center for Hair and Skin Science , Department of Dermatology, Venerology and Allergy , Charité – Universitätsmedizin Berlin , Berlin , Germany
| | - Paul Gruner
- Clinical Research Center for Hair and Skin Science , Department of Dermatology, Venerology and Allergy , Charité – Universitätsmedizin Berlin , Berlin , Germany
| | - Julia Hasler
- Center of Experimental and Applied Cutaneous Physiology , Department of Dermatology, Venerology and Allergy , Charité – Universitätsmedizin Berlin , Berlin , Germany
| | - Sebastian Ahlberg
- Center of Experimental and Applied Cutaneous Physiology , Department of Dermatology, Venerology and Allergy , Charité – Universitätsmedizin Berlin , Berlin , Germany
| | - Ulrike Blume-Peytavi
- Clinical Research Center for Hair and Skin Science , Department of Dermatology, Venerology and Allergy , Charité – Universitätsmedizin Berlin , Berlin , Germany
| | - Michael Unbehauen
- Freie Universität Berlin , Institut für Chemie und Biochemie , Berlin , Germany
| | - Rainer Haag
- Freie Universität Berlin , Institut für Chemie und Biochemie , Berlin , Germany
| | - Martina C. Meinke
- Center of Experimental and Applied Cutaneous Physiology , Department of Dermatology, Venerology and Allergy , Charité – Universitätsmedizin Berlin , Berlin , Germany
| | - Annika Vogt
- Clinical Research Center for Hair and Skin Science , Department of Dermatology, Venerology and Allergy , Charité – Universitätsmedizin Berlin, Charitéplatz 1 , Berlin , Germany , Phone: +4930450518207, 10117
| |
Collapse
|
17
|
Prinz N, Clemens N, Canisius A, Lackner K. Endosomal NADPH-oxidase is critical for induction of the tissue factor gene in monocytes and endothelial cells. Thromb Haemost 2017; 109:525-31. [DOI: 10.1160/th12-06-0421] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2012] [Accepted: 12/05/2012] [Indexed: 11/05/2022]
Abstract
SummaryAntiphospholipid antibodies (aPL) have been shown to induce tissue factor (TF) expression in monocytes and endothelial cells. However, the underlying signal transduction has been more or less elusive in the past. We have recently shown that aPL enter the lysosomal route in monocytes and dendritic cells, and subsequently activate endosomal NADPH-oxidase (NOX). The generation of superoxide which is dismutated to hydrogen peroxide upregulates the intracellular toll like receptors (TLR) 7 and 8, and leads to robust production of inflammatory cytokines. Here we show that induction of TF by aPL follows the same signaling pathway. Inhibition of endosomal NOX by the anion channel blocker niflumic acid or capture of superoxide by the radical scavenger N-acetylcysteine blocks TF induction by aPL. Furthermore, monocytes from mice deficient in NOX2 do not increase TF surface expression in response to aPL, while cells from mice deficient in glutathione peroxidase- 1 (GPx-1) show an increased response. Unexpectedly, also induction of TF by tumour necrosis factor (TNF)⍺ and lipopolysaccharide (LPS) was strongly dependent on the activation of endosomal NOX. While TNF⍺ apparently depends almost fully on endosomal NOX, signalling of LPS is only partially dependent on this pathway. These data provide further insight into the well-known role of reactive oxygen species in the induction of TF expression and suggest that endosomal signalling may represent a central coordinating point in this process.
Collapse
|
18
|
Silva GC, Abbas M, Khemais-Benkhiat S, Burban M, Ribeiro TP, Toti F, Idris-Khodja N, Côrtes SF, Schini-Kerth VB. Replicative senescence promotes prothrombotic responses in endothelial cells: Role of NADPH oxidase- and cyclooxygenase-derived oxidative stress. Exp Gerontol 2017; 93:7-15. [PMID: 28412252 DOI: 10.1016/j.exger.2017.04.006] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2016] [Revised: 03/01/2017] [Accepted: 04/11/2017] [Indexed: 12/15/2022]
Abstract
Endothelial senescence has been suggested to promote endothelial dysfunction in age-related vascular disorders. This study evaluated the prothrombotic properties of senescent endothelial cells (ECs) and the underlying mechanism. Serial passaging from passage (P)1 to P4 (replicative senescence) of porcine coronary artery ECs, or treatment of P1 ECs with the endothelial nitric oxide synthase (eNOS) inhibitor L-NAME (premature senescence) induced acquisition of markers of senescence including increased senescence-associated-β-galactosidase (SA-β-gal) activity and p53, p21, p16 expression. Approximately 55% of P3 cells were senescent with a high level oxidative stress, and decreased eNOS-derived nitric oxide (NO) formation associated with increased expression of NADPH oxidase subunits (gp91phox, p47phox), cyclooxygenase (COX)-2 but not COX-1, and a decreased eNOS expression leading to a reduced ability of ECs to inhibit platelet aggregation. P3 cells also presented increased expression and activity of tissue factor (TF), a key initiator of the coagulation cascade. Treatment of senesecent cells with a NADPH oxidase inhibitor (VAS-2870) or by a COX inhibitor (indomethacin) reduced oxidative stress, decreased TF activity and expression, and reduced the expression of gp91phox, p47phox and COX-2 and restored the ability of ECs to inhibit effectively platelet aggregation. Thus, replicative endothelial senescence promotes a prothrombotic response involving the down-regulation of the protective NO pathway and the upregulation of the NADPH oxidase- and COXs-dependent oxidative stress pathway promoting TF expression and activity.
Collapse
Affiliation(s)
- Grazielle Caroline Silva
- Laboratoire de Biophotonique et Pharmacologie, UMR CNRS 7213, Faculté de Pharmacie, Université de Strasbourg, France; Department of Pharmacology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Malak Abbas
- Laboratoire de Biophotonique et Pharmacologie, UMR CNRS 7213, Faculté de Pharmacie, Université de Strasbourg, France
| | - Sonia Khemais-Benkhiat
- Laboratoire de Biophotonique et Pharmacologie, UMR CNRS 7213, Faculté de Pharmacie, Université de Strasbourg, France
| | - Melanie Burban
- Laboratoire de Biophotonique et Pharmacologie, UMR CNRS 7213, Faculté de Pharmacie, Université de Strasbourg, France
| | - Thais Porto Ribeiro
- Laboratoire de Biophotonique et Pharmacologie, UMR CNRS 7213, Faculté de Pharmacie, Université de Strasbourg, France
| | - Florence Toti
- Laboratoire de Biophotonique et Pharmacologie, UMR CNRS 7213, Faculté de Pharmacie, Université de Strasbourg, France
| | - Noureddine Idris-Khodja
- Laboratoire de Biophotonique et Pharmacologie, UMR CNRS 7213, Faculté de Pharmacie, Université de Strasbourg, France
| | - Steyner F Côrtes
- Department of Pharmacology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Valérie B Schini-Kerth
- Laboratoire de Biophotonique et Pharmacologie, UMR CNRS 7213, Faculté de Pharmacie, Université de Strasbourg, France.
| |
Collapse
|
19
|
Recent Progress in Research on the Pathogenesis of Pulmonary Thromboembolism: An Old Story with New Perspectives. BIOMED RESEARCH INTERNATIONAL 2017; 2017:6516791. [PMID: 28484717 PMCID: PMC5397627 DOI: 10.1155/2017/6516791] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/17/2016] [Revised: 02/26/2017] [Accepted: 03/27/2017] [Indexed: 12/25/2022]
Abstract
Pulmonary thromboembolism (PTE) is part of a larger clinicopathological entity, venous thromboembolism. It is also a complex, multifactorial disorder divided into four major disease processes including venous thrombosis, thrombus in transit, acute pulmonary embolism, and pulmonary circulation reconstruction. Even when treated, some patients develop chronic thromboembolic pulmonary hypertension. PTE is also a common fatal type of pulmonary vascular disease worldwide, but earlier studies primarily focused on the pathological changes in the blood component of the disease. With contemporary advances in molecular and cellular biology, people are becoming increasingly aware of coagulation pathways, the function of vascular smooth muscle cells, microparticles, and the inflammatory pathways that play key roles in PTE. Combined hypoxia and immune research has revealed that PTE should be regarded as a class of complex diseases caused by multiple factors involving the vascular microenvironment and vascular cell dysfunction.
Collapse
|
20
|
Hayashi S, Oe Y, Fushima T, Sato E, Sato H, Ito S, Takahashi N. Protease-activated receptor 2 exacerbates adenine-induced renal tubulointerstitial injury in mice. Biochem Biophys Res Commun 2016; 483:547-552. [PMID: 28025140 DOI: 10.1016/j.bbrc.2016.12.108] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2016] [Accepted: 12/16/2016] [Indexed: 01/08/2023]
Abstract
Hypercoagulability is associated with chronic kidney disease (CKD). Tissue factor/factor VIIa complex and factor Xa in the coagulation cascade are known to activate protease-activated receptor 2 (PAR2), and to cause inflammation and tissue injury. Although PAR2 is highly expressed in the kidney, it is unclear whether PAR2 plays a pathogenic role in CKD. To test this, we fed the mice lacking Par2 (F2rl1-/-) and wild type (F2rl1+/+) mice with adenine diet to induce tubulointerstitial injury, a hallmark of CKD. Adenine-treated mice showed severe renal dysfunction, tubular atrophy, and fibrosis. Fibrin deposition and the expression of tissue factor and PARs markedly increased in their kidneys. Lack of Par2 attenuated renal histological damage and reduced the expression levels of genes related to inflammation, fibrosis, and oxidative stress. Our data indicate that PAR2 is critically important in the pathogenesis of adenine-induced tubular injury. PAR2 antagonists under development could be useful to treat and prevent CKD.
Collapse
Affiliation(s)
- Sakiko Hayashi
- Division of Clinical Pharmacology and Therapeutics, Tohoku University Graduate School of Pharmaceutical Sciences & Faculty of Pharmaceutical Sciences, Sendai 980-8578, Japan
| | - Yuji Oe
- Division of Nephrology, Endocrinology, and Vascular Medicine, Tohoku University Graduate School of Medicine, Sendai 980-8574, Japan
| | - Tomofumi Fushima
- Division of Clinical Pharmacology and Therapeutics, Tohoku University Graduate School of Pharmaceutical Sciences & Faculty of Pharmaceutical Sciences, Sendai 980-8578, Japan
| | - Emiko Sato
- Division of Clinical Pharmacology and Therapeutics, Tohoku University Graduate School of Pharmaceutical Sciences & Faculty of Pharmaceutical Sciences, Sendai 980-8578, Japan; Division of Nephrology, Endocrinology, and Vascular Medicine, Tohoku University Graduate School of Medicine, Sendai 980-8574, Japan
| | - Hiroshi Sato
- Division of Clinical Pharmacology and Therapeutics, Tohoku University Graduate School of Pharmaceutical Sciences & Faculty of Pharmaceutical Sciences, Sendai 980-8578, Japan; Division of Nephrology, Endocrinology, and Vascular Medicine, Tohoku University Graduate School of Medicine, Sendai 980-8574, Japan
| | - Sadayoshi Ito
- Division of Nephrology, Endocrinology, and Vascular Medicine, Tohoku University Graduate School of Medicine, Sendai 980-8574, Japan
| | - Nobuyuki Takahashi
- Division of Clinical Pharmacology and Therapeutics, Tohoku University Graduate School of Pharmaceutical Sciences & Faculty of Pharmaceutical Sciences, Sendai 980-8578, Japan; Division of Nephrology, Endocrinology, and Vascular Medicine, Tohoku University Graduate School of Medicine, Sendai 980-8574, Japan.
| |
Collapse
|
21
|
Kirsch J, Schneider H, Pagel JI, Rehberg M, Singer M, Hellfritsch J, Chillo O, Schubert KM, Qiu J, Pogoda K, Kameritsch P, Uhl B, Pircher J, Deindl E, Müller S, Kirchner T, Pohl U, Conrad M, Beck H. Endothelial Dysfunction, and A Prothrombotic, Proinflammatory Phenotype Is Caused by Loss of Mitochondrial Thioredoxin Reductase in Endothelium. Arterioscler Thromb Vasc Biol 2016; 36:1891-9. [DOI: 10.1161/atvbaha.116.307843] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2015] [Accepted: 06/24/2016] [Indexed: 02/07/2023]
Abstract
Objective—
Although the investigation on the importance of mitochondria-derived reactive oxygen species (ROS) in endothelial function has been gaining momentum, little is known on the precise role of the individual components involved in the maintenance of a delicate ROS balance. Here we studied the impact of an ongoing dysregulated redox homeostasis by examining the effects of endothelial cell–specific deletion of murine thioredoxin reductase 2 (Txnrd2), a key enzyme of mitochondrial redox control.
Approach and Results—
We analyzed the impact of an inducible, endothelial cell–specific deletion of Txnrd2 on vascular remodeling in the adult mouse after femoral artery ligation. Laser Doppler analysis and histology revealed impaired angiogenesis and arteriogenesis. In addition, endothelial loss of Txnrd2 resulted in a prothrombotic, proinflammatory vascular phenotype, manifested as intravascular cellular deposits, as well as microthrombi. This phenotype was confirmed by an increased leukocyte response toward interleukin-1 in the mouse cremaster model. In vitro, we could confirm the attenuated angiogenesis measured in vivo, which was accompanied by increased ROS and an impaired mitochondrial membrane potential. Ex vivo analysis of femoral arteries revealed reduced flow-dependent vasodilation in endothelial cell Txnrd2-deficient mice. This endothelial dysfunction could be, at least partly, ascribed to inadequate nitric oxide signaling.
Conclusions—
We conclude that the maintenance of mitochondrial ROS via Txnrd2 in endothelial cells is necessary for an intact vascular homeostasis and remodeling and that Txnrd2 plays a vitally important role in balancing mitochondrial ROS production in the endothelium.
Collapse
Affiliation(s)
- Julian Kirsch
- From the Walter Brendel Centre of Experimental Medicine, Ludwig-Maximilians-University, Munich, Germany (J.K., H.S., J.-I.P., M.R., M.S., J.H., O.C., K.M.S., J.Q., K.P., P.K., B.U., J.P., E.D., U.P., H.B.); Stress and Immunity Lab, Department of Anesthesiology, Ludwig-Maximilians-University Hospital of Munich, Munich, Germany (J.-I.P.); Munich Cluster for Systems Neurology (SyNergy), Munich, Germany (U.P.); Partner site Munich Heart Alliance, Munich, Germany (U.P.); Institute of Pathology, Ludwig
| | - Holger Schneider
- From the Walter Brendel Centre of Experimental Medicine, Ludwig-Maximilians-University, Munich, Germany (J.K., H.S., J.-I.P., M.R., M.S., J.H., O.C., K.M.S., J.Q., K.P., P.K., B.U., J.P., E.D., U.P., H.B.); Stress and Immunity Lab, Department of Anesthesiology, Ludwig-Maximilians-University Hospital of Munich, Munich, Germany (J.-I.P.); Munich Cluster for Systems Neurology (SyNergy), Munich, Germany (U.P.); Partner site Munich Heart Alliance, Munich, Germany (U.P.); Institute of Pathology, Ludwig
| | - Judith-Irina Pagel
- From the Walter Brendel Centre of Experimental Medicine, Ludwig-Maximilians-University, Munich, Germany (J.K., H.S., J.-I.P., M.R., M.S., J.H., O.C., K.M.S., J.Q., K.P., P.K., B.U., J.P., E.D., U.P., H.B.); Stress and Immunity Lab, Department of Anesthesiology, Ludwig-Maximilians-University Hospital of Munich, Munich, Germany (J.-I.P.); Munich Cluster for Systems Neurology (SyNergy), Munich, Germany (U.P.); Partner site Munich Heart Alliance, Munich, Germany (U.P.); Institute of Pathology, Ludwig
| | - Markus Rehberg
- From the Walter Brendel Centre of Experimental Medicine, Ludwig-Maximilians-University, Munich, Germany (J.K., H.S., J.-I.P., M.R., M.S., J.H., O.C., K.M.S., J.Q., K.P., P.K., B.U., J.P., E.D., U.P., H.B.); Stress and Immunity Lab, Department of Anesthesiology, Ludwig-Maximilians-University Hospital of Munich, Munich, Germany (J.-I.P.); Munich Cluster for Systems Neurology (SyNergy), Munich, Germany (U.P.); Partner site Munich Heart Alliance, Munich, Germany (U.P.); Institute of Pathology, Ludwig
| | - Miriam Singer
- From the Walter Brendel Centre of Experimental Medicine, Ludwig-Maximilians-University, Munich, Germany (J.K., H.S., J.-I.P., M.R., M.S., J.H., O.C., K.M.S., J.Q., K.P., P.K., B.U., J.P., E.D., U.P., H.B.); Stress and Immunity Lab, Department of Anesthesiology, Ludwig-Maximilians-University Hospital of Munich, Munich, Germany (J.-I.P.); Munich Cluster for Systems Neurology (SyNergy), Munich, Germany (U.P.); Partner site Munich Heart Alliance, Munich, Germany (U.P.); Institute of Pathology, Ludwig
| | - Juliane Hellfritsch
- From the Walter Brendel Centre of Experimental Medicine, Ludwig-Maximilians-University, Munich, Germany (J.K., H.S., J.-I.P., M.R., M.S., J.H., O.C., K.M.S., J.Q., K.P., P.K., B.U., J.P., E.D., U.P., H.B.); Stress and Immunity Lab, Department of Anesthesiology, Ludwig-Maximilians-University Hospital of Munich, Munich, Germany (J.-I.P.); Munich Cluster for Systems Neurology (SyNergy), Munich, Germany (U.P.); Partner site Munich Heart Alliance, Munich, Germany (U.P.); Institute of Pathology, Ludwig
| | - Omary Chillo
- From the Walter Brendel Centre of Experimental Medicine, Ludwig-Maximilians-University, Munich, Germany (J.K., H.S., J.-I.P., M.R., M.S., J.H., O.C., K.M.S., J.Q., K.P., P.K., B.U., J.P., E.D., U.P., H.B.); Stress and Immunity Lab, Department of Anesthesiology, Ludwig-Maximilians-University Hospital of Munich, Munich, Germany (J.-I.P.); Munich Cluster for Systems Neurology (SyNergy), Munich, Germany (U.P.); Partner site Munich Heart Alliance, Munich, Germany (U.P.); Institute of Pathology, Ludwig
| | - Kai Michael Schubert
- From the Walter Brendel Centre of Experimental Medicine, Ludwig-Maximilians-University, Munich, Germany (J.K., H.S., J.-I.P., M.R., M.S., J.H., O.C., K.M.S., J.Q., K.P., P.K., B.U., J.P., E.D., U.P., H.B.); Stress and Immunity Lab, Department of Anesthesiology, Ludwig-Maximilians-University Hospital of Munich, Munich, Germany (J.-I.P.); Munich Cluster for Systems Neurology (SyNergy), Munich, Germany (U.P.); Partner site Munich Heart Alliance, Munich, Germany (U.P.); Institute of Pathology, Ludwig
| | - Jiehua Qiu
- From the Walter Brendel Centre of Experimental Medicine, Ludwig-Maximilians-University, Munich, Germany (J.K., H.S., J.-I.P., M.R., M.S., J.H., O.C., K.M.S., J.Q., K.P., P.K., B.U., J.P., E.D., U.P., H.B.); Stress and Immunity Lab, Department of Anesthesiology, Ludwig-Maximilians-University Hospital of Munich, Munich, Germany (J.-I.P.); Munich Cluster for Systems Neurology (SyNergy), Munich, Germany (U.P.); Partner site Munich Heart Alliance, Munich, Germany (U.P.); Institute of Pathology, Ludwig
| | - Kristin Pogoda
- From the Walter Brendel Centre of Experimental Medicine, Ludwig-Maximilians-University, Munich, Germany (J.K., H.S., J.-I.P., M.R., M.S., J.H., O.C., K.M.S., J.Q., K.P., P.K., B.U., J.P., E.D., U.P., H.B.); Stress and Immunity Lab, Department of Anesthesiology, Ludwig-Maximilians-University Hospital of Munich, Munich, Germany (J.-I.P.); Munich Cluster for Systems Neurology (SyNergy), Munich, Germany (U.P.); Partner site Munich Heart Alliance, Munich, Germany (U.P.); Institute of Pathology, Ludwig
| | - Petra Kameritsch
- From the Walter Brendel Centre of Experimental Medicine, Ludwig-Maximilians-University, Munich, Germany (J.K., H.S., J.-I.P., M.R., M.S., J.H., O.C., K.M.S., J.Q., K.P., P.K., B.U., J.P., E.D., U.P., H.B.); Stress and Immunity Lab, Department of Anesthesiology, Ludwig-Maximilians-University Hospital of Munich, Munich, Germany (J.-I.P.); Munich Cluster for Systems Neurology (SyNergy), Munich, Germany (U.P.); Partner site Munich Heart Alliance, Munich, Germany (U.P.); Institute of Pathology, Ludwig
| | - Bernd Uhl
- From the Walter Brendel Centre of Experimental Medicine, Ludwig-Maximilians-University, Munich, Germany (J.K., H.S., J.-I.P., M.R., M.S., J.H., O.C., K.M.S., J.Q., K.P., P.K., B.U., J.P., E.D., U.P., H.B.); Stress and Immunity Lab, Department of Anesthesiology, Ludwig-Maximilians-University Hospital of Munich, Munich, Germany (J.-I.P.); Munich Cluster for Systems Neurology (SyNergy), Munich, Germany (U.P.); Partner site Munich Heart Alliance, Munich, Germany (U.P.); Institute of Pathology, Ludwig
| | - Joachim Pircher
- From the Walter Brendel Centre of Experimental Medicine, Ludwig-Maximilians-University, Munich, Germany (J.K., H.S., J.-I.P., M.R., M.S., J.H., O.C., K.M.S., J.Q., K.P., P.K., B.U., J.P., E.D., U.P., H.B.); Stress and Immunity Lab, Department of Anesthesiology, Ludwig-Maximilians-University Hospital of Munich, Munich, Germany (J.-I.P.); Munich Cluster for Systems Neurology (SyNergy), Munich, Germany (U.P.); Partner site Munich Heart Alliance, Munich, Germany (U.P.); Institute of Pathology, Ludwig
| | - Elisabeth Deindl
- From the Walter Brendel Centre of Experimental Medicine, Ludwig-Maximilians-University, Munich, Germany (J.K., H.S., J.-I.P., M.R., M.S., J.H., O.C., K.M.S., J.Q., K.P., P.K., B.U., J.P., E.D., U.P., H.B.); Stress and Immunity Lab, Department of Anesthesiology, Ludwig-Maximilians-University Hospital of Munich, Munich, Germany (J.-I.P.); Munich Cluster for Systems Neurology (SyNergy), Munich, Germany (U.P.); Partner site Munich Heart Alliance, Munich, Germany (U.P.); Institute of Pathology, Ludwig
| | - Susanna Müller
- From the Walter Brendel Centre of Experimental Medicine, Ludwig-Maximilians-University, Munich, Germany (J.K., H.S., J.-I.P., M.R., M.S., J.H., O.C., K.M.S., J.Q., K.P., P.K., B.U., J.P., E.D., U.P., H.B.); Stress and Immunity Lab, Department of Anesthesiology, Ludwig-Maximilians-University Hospital of Munich, Munich, Germany (J.-I.P.); Munich Cluster for Systems Neurology (SyNergy), Munich, Germany (U.P.); Partner site Munich Heart Alliance, Munich, Germany (U.P.); Institute of Pathology, Ludwig
| | - Thomas Kirchner
- From the Walter Brendel Centre of Experimental Medicine, Ludwig-Maximilians-University, Munich, Germany (J.K., H.S., J.-I.P., M.R., M.S., J.H., O.C., K.M.S., J.Q., K.P., P.K., B.U., J.P., E.D., U.P., H.B.); Stress and Immunity Lab, Department of Anesthesiology, Ludwig-Maximilians-University Hospital of Munich, Munich, Germany (J.-I.P.); Munich Cluster for Systems Neurology (SyNergy), Munich, Germany (U.P.); Partner site Munich Heart Alliance, Munich, Germany (U.P.); Institute of Pathology, Ludwig
| | - Ulrich Pohl
- From the Walter Brendel Centre of Experimental Medicine, Ludwig-Maximilians-University, Munich, Germany (J.K., H.S., J.-I.P., M.R., M.S., J.H., O.C., K.M.S., J.Q., K.P., P.K., B.U., J.P., E.D., U.P., H.B.); Stress and Immunity Lab, Department of Anesthesiology, Ludwig-Maximilians-University Hospital of Munich, Munich, Germany (J.-I.P.); Munich Cluster for Systems Neurology (SyNergy), Munich, Germany (U.P.); Partner site Munich Heart Alliance, Munich, Germany (U.P.); Institute of Pathology, Ludwig
| | - Marcus Conrad
- From the Walter Brendel Centre of Experimental Medicine, Ludwig-Maximilians-University, Munich, Germany (J.K., H.S., J.-I.P., M.R., M.S., J.H., O.C., K.M.S., J.Q., K.P., P.K., B.U., J.P., E.D., U.P., H.B.); Stress and Immunity Lab, Department of Anesthesiology, Ludwig-Maximilians-University Hospital of Munich, Munich, Germany (J.-I.P.); Munich Cluster for Systems Neurology (SyNergy), Munich, Germany (U.P.); Partner site Munich Heart Alliance, Munich, Germany (U.P.); Institute of Pathology, Ludwig
| | - Heike Beck
- From the Walter Brendel Centre of Experimental Medicine, Ludwig-Maximilians-University, Munich, Germany (J.K., H.S., J.-I.P., M.R., M.S., J.H., O.C., K.M.S., J.Q., K.P., P.K., B.U., J.P., E.D., U.P., H.B.); Stress and Immunity Lab, Department of Anesthesiology, Ludwig-Maximilians-University Hospital of Munich, Munich, Germany (J.-I.P.); Munich Cluster for Systems Neurology (SyNergy), Munich, Germany (U.P.); Partner site Munich Heart Alliance, Munich, Germany (U.P.); Institute of Pathology, Ludwig
| |
Collapse
|
22
|
Ettelaie C, Collier ME, Featherby S, Benelhaj NE, Greenman J, Maraveyas A. Analysis of the potential of cancer cell lines to release tissue factor-containing microvesicles: correlation with tissue factor and PAR2 expression. Thromb J 2016; 14:2. [PMID: 26793031 PMCID: PMC4719208 DOI: 10.1186/s12959-016-0075-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2015] [Accepted: 01/10/2016] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Despite the association of cancer-derived circulating tissue factor (TF)-containing microvesicles and hypercoagulable state, correlations with the incidence of thrombosis remain unclear. METHODS In this study the upregulation of TF release upon activation of various cancer cell lines, and the correlation with TF and PAR2 expression and/or activity was examined. Microvesicle release was induced by PAR2 activation in seventeen cell lines and released microvesicle density, microvesicle-associated TF activity, and phoshpatidylserine-mediated activity were measured. The time-course for TF release was monitored over 90 min in each cell line. In addition, TF mRNA expression, cellular TF protein and cell-surface TF activities were quantified. Moreover, the relative expression of PAR2 mRNA and cellular protein were analysed. Any correlations between the above parameters were examined by determining the Pearson's correlation coefficients. RESULTS TF release as microvesicles peaked between 30-60 min post-activation in the majority of cell lines tested. The magnitude of the maximal TF release positively correlated with TF mRNA (c = 0.717; p < 0.001) and PAR2 mRNA (c = 0.770; p < 0.001) expressions while the percentage increase correlated with PAR2 mRNA (c = 0.601; p = 0.011) and protein (c = 0.714; p < 0.001). There was only a weak correlation between resting TF release, and microvesicle release. However, TF release in resting cells did not significantly correlate with any of the parameters examined. Furthermore, TF mRNA expression correlated with PAR2 mRNA expression (c = 0.745; p < 0.001). DISCUSSION AND CONCLUSIONS In conclusion, our data suggest that TF and PAR2 mRNA, and PAR2 protein are better indicators of the ability of cancer cells to release TF and may constitute more accurate predictors of risk of thrombosis.
Collapse
Affiliation(s)
- Camille Ettelaie
- Biomedical Section, Department of Biological Sciences, University of Hull, Cottingham Road, Hull, HU6 7RX UK
| | - Mary Ew Collier
- Biomedical Section, Department of Biological Sciences, University of Hull, Cottingham Road, Hull, HU6 7RX UK ; Department of Cardiovascular Sciences, University of Leicester, Clinical Sciences Wing, Glenfield General Hospital, Leicester, LE3 9QP UK
| | - Sophie Featherby
- Biomedical Section, Department of Biological Sciences, University of Hull, Cottingham Road, Hull, HU6 7RX UK
| | - Naima E Benelhaj
- Biomedical Section, Department of Biological Sciences, University of Hull, Cottingham Road, Hull, HU6 7RX UK ; Division of Cancer-Hull York Medical School, University of Hull, Cottingham Road, Hull, HU6 7RX UK
| | - John Greenman
- Biomedical Section, Department of Biological Sciences, University of Hull, Cottingham Road, Hull, HU6 7RX UK
| | - Anthony Maraveyas
- Division of Cancer-Hull York Medical School, University of Hull, Cottingham Road, Hull, HU6 7RX UK
| |
Collapse
|
23
|
Mechanism of interleukin-13 production by granulocyte-macrophage colony-stimulating factor-dependent macrophages via protease-activated receptor-2. Blood Cells Mol Dis 2015; 55:21-6. [DOI: 10.1016/j.bcmd.2015.03.006] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2015] [Accepted: 03/27/2015] [Indexed: 11/18/2022]
|
24
|
Lento S, Brioschi M, Barcella S, Nasim MT, Ghilardi S, Barbieri SS, Tremoli E, Banfi C. Proteomics of tissue factor silencing in cardiomyocytic cells reveals a new role for this coagulation factor in splicing machinery control. J Proteomics 2015; 119:75-89. [DOI: 10.1016/j.jprot.2015.01.021] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2014] [Revised: 01/08/2015] [Accepted: 01/25/2015] [Indexed: 12/12/2022]
|
25
|
Expression of protease-activated receptor 1 and 2 and anti-tubulogenic activity of protease-activated receptor 1 in human endothelial colony-forming cells. PLoS One 2014; 9:e109375. [PMID: 25289673 PMCID: PMC4188577 DOI: 10.1371/journal.pone.0109375] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2014] [Accepted: 09/04/2014] [Indexed: 11/19/2022] Open
Abstract
Endothelial colony-forming cells (ECFCs) are obtained from the culture of human peripheral blood mononuclear cell (hPBMNC) fractions and are characterised by high proliferative and pro-vasculogenic potential, which makes them of great interest for cell therapy. Here, we describe the detection of protease-activated receptor (PAR) 1 and 2 amongst the surface proteins expressed in ECFCs. Both receptors are functionally coupled to extracellular signal-regulated kinase (ERK) 1 and 2, which become activated and phosphorylated in response to selective PAR1- or PAR2-activating peptides. Specific stimulation of PAR1, but not PAR2, significantly inhibits capillary-like tube formation by ECFCs in vitro, suggesting that tubulogenesis is negatively regulated by proteases able to stimulate PAR1 (e.g. thrombin). The activation of ERKs is not involved in the regulation of tubulogenesis in vitro, as suggested by use of the MEK inhibitor PD98059 and by the fact that PAR2 stimulation activates ERKs without affecting capillary tube formation. Both qPCR and immunoblotting showed a significant downregulation of vascular endothelial growth factor 2 (VEGFR2) in response to PAR1 stimulation. Moreover, the addition of VEGF (50-100 ng/ml) but not basic Fibroblast Growth Factor (FGF) (25-100 ng/ml) rescued tube formation by ECFCs treated with PAR1-activating peptide. Therefore, we propose that reduction of VEGF responsiveness resulting from down-regulation of VEGFR2 is underlying the anti-tubulogenic effect of PAR1 activation. Although the role of PAR2 remains elusive, this study sheds new light on the regulation of the vasculogenic activity of ECFCs and suggests a potential link between adult vasculogenesis and the coagulation cascade.
Collapse
|
26
|
Salidroside stimulates mitochondrial biogenesis and protects against H₂O₂-induced endothelial dysfunction. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2014; 2014:904834. [PMID: 24868319 PMCID: PMC4020198 DOI: 10.1155/2014/904834] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/13/2014] [Accepted: 03/19/2014] [Indexed: 02/07/2023]
Abstract
Salidroside (SAL) is an active component of Rhodiola rosea with documented antioxidative properties. The purpose of this study is to explore the mechanism of the protective effect of SAL on hydrogen peroxide- (H2O2-) induced endothelial dysfunction. Pretreatment of the human umbilical vein endothelial cells (HUVECs) with SAL significantly reduced the cytotoxicity brought by H2O2. Functional studies on the rat aortas found that SAL rescued the endothelium-dependent relaxation and reduced superoxide anion (O2∙−) production induced by H2O2. Meanwhile, SAL pretreatment inhibited H2O2-induced nitric oxide (NO) production. The underlying mechanisms involve the inhibition of H2O2-induced activation of endothelial nitric oxide synthase (eNOS), adenosine monophosphate-activated protein kinase (AMPK), and Akt, as well as the redox sensitive transcription factor, NF-kappa B (NF-κB). SAL also increased mitochondrial mass and upregulated the mitochondrial biogenesis factors, peroxisome proliferator-activated receptor gamma-coactivator-1alpha (PGC-1α), and mitochondrial transcription factor A (TFAM) in the endothelial cells. H2O2-induced mitochondrial dysfunction, as demonstrated by reduced mitochondrial membrane potential (Δψm) and ATP production, was rescued by SAL pretreatment. Taken together, these findings implicate that SAL could protect endothelium against H2O2-induced injury via promoting mitochondrial biogenesis and function, thus preventing the overactivation of oxidative stress-related downstream signaling pathways.
Collapse
|
27
|
Liu ZQ, Song JP, Liu X, Jiang J, Chen X, Yang L, Hu T, Zheng PY, Liu ZG, Yang PC. Mast cell-derived serine proteinase regulates T helper 2 polarization. Sci Rep 2014; 4:4649. [PMID: 24721951 PMCID: PMC3983597 DOI: 10.1038/srep04649] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2013] [Accepted: 03/26/2014] [Indexed: 01/10/2023] Open
Abstract
Although mast cells play a critical role in allergic reactions, the cells are also involved in the protective immunity in the body. This study aims to investigate the role of mast cells in immune regulation during aberrant T helper (Th)2 responses. In this study, an adoptive antigen-specific Th2 response model was established with mast cell-deficient mice to test the role of mast cell in the immune regulation. Cell culture was employed to test the role of mast cells in the modulation of the expression of B cell lymphoma 6 protein (Bcl-6) in Th2 cells. The results showed that after adoptive transfer with immune cells, the mast cell-deficient mice showed stronger Th2 pattern responses in the intestine than that in the mast cell-sufficient mice. Mast cell-derived mouse mast cell protease-6 increased the expression of Bcl-6 in Th2 cells. Bcl-6 inhibited the expression of GATA-3 in Th2 cells, subsequently, forkhead box P3 was increased and the Th2 cytokines were reduced in the cells; the cells thus showed the immune regulatory properties similar to regulatory T cells. We conclude that bedsides initiating immune inflammation, mast cells also contribute to the immune regulation on Th2 polarization.
Collapse
Affiliation(s)
- Zhi-Qiang Liu
- 1] ENT Institute of Shenzhen University, State Key Laboratory of Respiratory Disease for Allergy at Shenzhen University, Shenzhen Key Laboratory of Allergy & Immunology, Shenzhen University School of Medicine, Shenzhen, China [2] Longgang Central Hospital, ENT Hospital, Shenzhen ENT Institute, Shenzhen, China [3]
| | - Jiang-Ping Song
- 1] State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China [2]
| | - Xiaoyu Liu
- 1] ENT Institute of Shenzhen University, State Key Laboratory of Respiratory Disease for Allergy at Shenzhen University, Shenzhen Key Laboratory of Allergy & Immunology, Shenzhen University School of Medicine, Shenzhen, China [2]
| | - Jing Jiang
- 1] ENT Institute of Shenzhen University, State Key Laboratory of Respiratory Disease for Allergy at Shenzhen University, Shenzhen Key Laboratory of Allergy & Immunology, Shenzhen University School of Medicine, Shenzhen, China [2] Longgang Central Hospital, ENT Hospital, Shenzhen ENT Institute, Shenzhen, China [3]
| | - Xiao Chen
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Litao Yang
- Longgang Central Hospital, ENT Hospital, Shenzhen ENT Institute, Shenzhen, China
| | - Tianyong Hu
- Longgang Central Hospital, ENT Hospital, Shenzhen ENT Institute, Shenzhen, China
| | - Peng-Yuan Zheng
- Department of Gastroenterology, Zhengzhou University, Zhengzhou, China
| | - Zhi-Gang Liu
- ENT Institute of Shenzhen University, State Key Laboratory of Respiratory Disease for Allergy at Shenzhen University, Shenzhen Key Laboratory of Allergy & Immunology, Shenzhen University School of Medicine, Shenzhen, China
| | - Ping-Chang Yang
- ENT Institute of Shenzhen University, State Key Laboratory of Respiratory Disease for Allergy at Shenzhen University, Shenzhen Key Laboratory of Allergy & Immunology, Shenzhen University School of Medicine, Shenzhen, China
| |
Collapse
|
28
|
Kim JY, Kim DY, Son H, Kim YJ, Oh SH. Protease-activated receptor-2 activates NQO-1 via Nrf2 stabilization in keratinocytes. J Dermatol Sci 2014; 74:48-55. [DOI: 10.1016/j.jdermsci.2013.11.010] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2013] [Revised: 10/30/2013] [Accepted: 11/18/2013] [Indexed: 12/29/2022]
|
29
|
Francischetti IMB, Gordon E, Bizzarro B, Gera N, Andrade BB, Oliveira F, Ma D, Assumpção TCF, Ribeiro JMC, Pena M, Qi CF, Diouf A, Moretz SE, Long CA, Ackerman HC, Pierce SK, Sá-Nunes A, Waisberg M. Tempol, an intracellular antioxidant, inhibits tissue factor expression, attenuates dendritic cell function, and is partially protective in a murine model of cerebral malaria. PLoS One 2014; 9:e87140. [PMID: 24586264 PMCID: PMC3938406 DOI: 10.1371/journal.pone.0087140] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2013] [Accepted: 12/18/2013] [Indexed: 01/19/2023] Open
Abstract
Background The role of intracellular radical oxygen species (ROS) in pathogenesis of cerebral malaria (CM) remains incompletely understood. Methods and Findings We undertook testing Tempol—a superoxide dismutase (SOD) mimetic and pleiotropic intracellular antioxidant—in cells relevant to malaria pathogenesis in the context of coagulation and inflammation. Tempol was also tested in a murine model of CM induced by Plasmodium berghei Anka infection. Tempol was found to prevent transcription and functional expression of procoagulant tissue factor in endothelial cells (ECs) stimulated by lipopolysaccharide (LPS). This effect was accompanied by inhibition of IL-6, IL-8, and monocyte chemoattractant protein (MCP-1) production. Tempol also attenuated platelet aggregation and human promyelocytic leukemia HL60 cells oxidative burst. In dendritic cells, Tempol inhibited LPS-induced production of TNF-α, IL-6, and IL-12p70, downregulated expression of co-stimulatory molecules, and prevented antigen-dependent lymphocyte proliferation. Notably, Tempol (20 mg/kg) partially increased the survival of mice with CM. Mechanistically, treated mice had lowered plasma levels of MCP-1, suggesting that Tempol downmodulates EC function and vascular inflammation. Tempol also diminished blood brain barrier permeability associated with CM when started at day 4 post infection but not at day 1, suggesting that ROS production is tightly regulated. Other antioxidants—such as α-phenyl N-tertiary-butyl nitrone (PBN; a spin trap), MnTe-2-PyP and MnTBAP (Mn-phorphyrin), Mitoquinone (MitoQ) and Mitotempo (mitochondrial antioxidants), M30 (an iron chelator), and epigallocatechin gallate (EGCG; polyphenol from green tea) did not improve survival. By contrast, these compounds (except PBN) inhibited Plasmodium falciparum growth in culture with different IC50s. Knockout mice for SOD1 or phagocyte nicotinamide adenine dinucleotide phosphate (NADPH) oxidase (gp91phox–/–) or mice treated with inhibitors of SOD (diethyldithiocarbamate) or NADPH oxidase (diphenyleneiodonium) did not show protection or exacerbation for CM. Conclusion Results with Tempol suggest that intracellular ROS contribute, in part, to CM pathogenesis. Therapeutic targeting of intracellular ROS in CM is discussed.
Collapse
Affiliation(s)
- Ivo M. B. Francischetti
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, Maryland, United States of America
- * E-mail: (IMBF); (MW)
| | - Emile Gordon
- Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, Maryland, United States of America
| | - Bruna Bizzarro
- Laboratory of Experimental Immunology, Department of Immunology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, SP, Brazil
| | - Nidhi Gera
- Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, Maryland, United States of America
| | - Bruno B. Andrade
- Laboratory of Parasitic Diseases, NIAID/NIH, Bethesda, Maryland, United States of America
| | - Fabiano Oliveira
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, Maryland, United States of America
| | - Dongying Ma
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, Maryland, United States of America
| | - Teresa C. F. Assumpção
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, Maryland, United States of America
| | - José M. C. Ribeiro
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, Maryland, United States of America
| | - Mirna Pena
- Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, Maryland, United States of America
| | - Chen-Feng Qi
- Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, Maryland, United States of America
| | - Ababacar Diouf
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, Maryland, United States of America
| | - Samuel E. Moretz
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, Maryland, United States of America
| | - Carole A. Long
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, Maryland, United States of America
| | - Hans C. Ackerman
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, Maryland, United States of America
| | - Susan K. Pierce
- Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, Maryland, United States of America
| | - Anderson Sá-Nunes
- Laboratory of Experimental Immunology, Department of Immunology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, SP, Brazil
| | - Michael Waisberg
- Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, Maryland, United States of America
- University of Virginia, Department of Pathology, Charlottesville, Virginia, United States of America
- * E-mail: (IMBF); (MW)
| |
Collapse
|
30
|
Kwon KJ, Cho KS, Kim JN, Kim MK, Lee EJ, Kim SY, Jeon SJ, Kim KC, Han JE, Kang YS, Kim S, Kim HY, Han SH, Bahn G, Choi JW, Shin CY. Proteinase 3 induces oxidative stress-mediated neuronal death in rat primary cortical neuron. Neurosci Lett 2013; 548:67-72. [DOI: 10.1016/j.neulet.2013.05.060] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2013] [Revised: 05/20/2013] [Accepted: 05/21/2013] [Indexed: 11/15/2022]
|
31
|
Yamashita N, Abe R, Nixon AM, Rochier AL, Madri JA, Sumpio BE. Cyclic strain delays the expression of tissue factor induced by thrombin in human umbilical vein endothelial cells. Int J Angiol 2012; 20:157-66. [PMID: 22942631 DOI: 10.1055/s-0031-1284475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022] Open
Abstract
Most studies of tissue factor (TF) expression in endothelial cells (EC) are performed under stationary culture conditions. The purpose of this study was to determine the influence of mechanical stimuli such as cyclic strain (CS) on the expression of TF in EC exposed to thrombin (Thr). Human umbilical vein endothelial cells (HUVEC) were exposed to 4 U·mL(-1) Thr in the presence or absence of 10% average CS at 60 cycles·min(-1) and then TF expression was measured. TF messenger RNA (mRNA) expression peaked at 2 hours in HUVEC exposed to Thr, but at 4 hours in HUVEC exposed to both Thr + CS. TF expression was inhibited by p38 and extracellular signal-regulated protein kinase (ERK) inhibitors. For both Thr or Thr + CS stimuli, p38 and ERK activity peaked at 5 minutes (p < 0.05). Nuclear factor-kappa B levels remained high in the Thr group but not in the Thr + CS group, while Egr-1 levels were elevated in the Thr + CS group. We demonstrated CS-delayed, Thr-induced TF mRNA expression in HUVEC, which may be modulated by p38 and ERK inhibitors.
Collapse
|
32
|
Osada M, Inoue O, Ding G, Shirai T, Ichise H, Hirayama K, Takano K, Yatomi Y, Hirashima M, Fujii H, Suzuki-Inoue K, Ozaki Y. Platelet activation receptor CLEC-2 regulates blood/lymphatic vessel separation by inhibiting proliferation, migration, and tube formation of lymphatic endothelial cells. J Biol Chem 2012; 287:22241-52. [PMID: 22556408 DOI: 10.1074/jbc.m111.329987] [Citation(s) in RCA: 153] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
The platelet activation receptor CLEC-2 plays crucial roles in thrombosis/hemostasis, tumor metastasis, and lymphangiogenesis, although its role in thrombosis/hemostasis remains controversial. An endogenous ligand for CLEC-2, podoplanin, is expressed in lymphatic endothelial cells (LECs). We and others have reported that CLEC-2-deficiency is lethal at mouse embryonic/neonatal stages associated with blood-filled lymphatics, indicating that CLEC-2 is essential for blood/lymphatic vessel separation. However, its mechanism, and whether CLEC-2 in platelets is necessary for this separation, remains unknown. We found that specific deletion of CLEC-2 from platelets leads to the misconnection of blood/lymphatic vessels. CLEC-2(+/+) platelets, but not by CLEC-2(-/-) platelets, inhibited LEC migration, proliferation, and tube formation but had no effect on human umbilical vein endothelial cells. Additionally, supernatants from activated platelets significantly inhibited these three functions in LECs, suggesting that released granule contents regulate blood/lymphatic vessel separation. Bone morphologic protein-9 (BMP-9), which we found to be present in platelets and released upon activation, appears to play a key role in regulating LEC functions. Only BMP-9 inhibited tube formation, although other releasates including transforming growth factor-β and platelet factor 4 inhibited proliferation and/or migration. We propose that platelets regulate blood/lymphatic vessel separation by inhibiting the proliferation, migration, and tube formation of LECs, mainly because of the release of BMP-9 upon activation by CLEC-2/podoplanin interaction.
Collapse
Affiliation(s)
- Makoto Osada
- Department of Clinical and Laboratory Medicine, Faculty of Medicine, University of Yamanashi, 1110 Shimokato, Chuo, Yamanashi 409-3898, Japan
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Chia E, Kagota S, Wijekoon EP, McGuire JJ. Protection of protease-activated receptor 2 mediated vasodilatation against angiotensin II-induced vascular dysfunction in mice. BMC Pharmacol 2011; 11:10. [PMID: 21955547 PMCID: PMC3192660 DOI: 10.1186/1471-2210-11-10] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2011] [Accepted: 09/28/2011] [Indexed: 12/31/2022] Open
Abstract
Background Under conditions of cardiovascular dysfunction, protease-activated receptor 2 (PAR2) agonists maintain vasodilatation activity, which has been attributed to increased cyclooxygenase-2, nitric oxide synthase and calcium-activated potassium channel (SK3.1) activities. Protease-activated receptor 2 agonist mediated vasodilatation is unknown under conditions of dysfunction caused by angiotensin II. The main purpose of our study was to determine whether PAR2-induced vasodilatation of resistance arteries was attenuated by prolonged angiotensin II treatment in mice. We compared the vasodilatation of resistance-type arteries (mesenteric) from angiotensin II-treated PAR2 wild-type mice (WT) induced by PAR2 agonist 2-furoyl-LIGRLO-amide (2fly) to the responses obtained in controls (saline treatment). We also investigated arterial vasodilatation in angiotensin II-treated PAR2 deficient (PAR2-/-) mice. Results 2fly-induced relaxations of untreated arteries from angiotensin II-treated WT were not different than saline-treated WT. Treatment of arteries with nitric oxide synthase inhibitor and SK3.1 inhibitor (L-NAME + TRAM-34) blocked 2fly in angiotensin II-treated WT. Protein and mRNA expression of cyclooxygenase-1 and -2 were increased, and cyclooxygenase activity increased the sensitivity of arteries to 2fly in only angiotensin II-treated WT. These protective vasodilatation mechanisms were selective for 2fly compared with acetylcholine- and nitroprusside-induced relaxations which were attenuated by angiotensin II; PAR2-/- were protected against this attenuation of nitroprusside. Conclusions PAR2-mediated vasodilatation of resistance type arteries is protected against the negative effects of angiotensin II-induced vascular dysfunction in mice. In conditions of endothelial dysfunction, angiotensin II induction of cyclooxygenases increases sensitivity to PAR2 agonist and the preserved vasodilatation mechanism involves activation of SK3.1.
Collapse
Affiliation(s)
- Elizabeth Chia
- Memorial University, St, John's, Newfoundland and Labrador, Canada
| | | | | | | |
Collapse
|
34
|
Widlansky ME, Gutterman DD. Regulation of endothelial function by mitochondrial reactive oxygen species. Antioxid Redox Signal 2011; 15:1517-30. [PMID: 21194353 PMCID: PMC3151425 DOI: 10.1089/ars.2010.3642] [Citation(s) in RCA: 143] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/12/2010] [Revised: 12/07/2010] [Accepted: 01/01/2011] [Indexed: 12/19/2022]
Abstract
Mitochondria are well known for their central roles in ATP production, calcium homeostasis, and heme and steroid biosynthesis. However, mitochondrial reactive oxygen species (ROS), including superoxide and hydrogen peroxide, once thought to be toxic byproducts of mitochondrial physiologic activities, have recently been recognized as important cell-signaling molecules in the vascular endothelium, where their production, conversion, and destruction are highly regulated. Mitochondrial reactive oxygen species appear to regulate important vascular homeostatic functions under basal conditions in a variety of vascular beds, where, in particular, they contribute to endothelium-dependent vasodilation. On exposure to cardiovascular risk factors, endothelial mitochondria produce excessive ROS in concert with other cellular ROS sources. Mitochondrial ROS, in this setting, act as important signaling molecules activating prothrombotic and proinflammatory pathways in the vascular endothelium, a process that initially manifests itself as endothelial dysfunction and, if persistent, may lead to the development of atherosclerotic plaques. This review concentrates on emerging appreciation of the importance of mitochondrial ROS as cell-signaling molecules in the vascular endothelium under both physiologic and pathophysiologic conditions. Future potential avenues of research in this field also are discussed.
Collapse
Affiliation(s)
- Michael E Widlansky
- Department of Medicine, Cardiovascular Medicine Division and Department of Pharmacology, Medical College of Wisconsin , Milwaukee, Wisconsin
| | | |
Collapse
|
35
|
Banfi C, Brioschi M, Lento S, Pirillo A, Galli S, Cosentino S, Tremoli E, Mussoni L. Statins prevent tissue factor induction by protease-activated receptors 1 and 2 in human umbilical vein endothelial cells in vitro. J Thromb Haemost 2011; 9:1608-19. [PMID: 21605334 DOI: 10.1111/j.1538-7836.2011.04366.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
BACKGROUND Protease-activated receptors (PARs) are G-protein-coupled receptors that function in hemostasis and thrombosis, as well as in the inflammatory and proliferative responses triggered by tissue injury. We have previously shown that PAR1 or PAR2 occupancy by specific PAR-agonist peptides (PAR-APs) induces tissue factor (TF) expression in human umbilical vein endothelial cells (HUVECs), where TF regulation by PAR1 (but not by PAR2) requires intact endothelial caveolin-enriched membrane microdomains in which PAR1 and caveolin-1 associate. OBJECTIVES The aim of this study was to determine the effects of cholesterol-lowering agents (statins) and cholesterol-loading lipoprotein on PAR1-AP-mediated and PAR2-AP-mediated TF induction in HUVECs. RESULTS Statins completely prevented TF induction by PAR-APs in an isoprenoid-independent manner, induced the delocalization of PAR1 from caveolin-enriched membrane microdomains without affecting PAR1 mRNA, and decreased PAR2 mRNA and protein levels. Statins also prevented PAR-AP-mediated extracellular signal-related kinase 1/2 activation, which is crucial for TF induction. The redistribution of PAR1 is accompanied by the relocation of the membrane microdomain-associated G-protein α, caveolin-1, and Src, which we previously showed to play a key role in signal transduction and TF induction. Conversely, cholesterol loading potently amplified PAR1-AP-induced TF, probably as a result of the increased abundance of PAR1 and the Src and G-protein α signaling molecules in the caveolin-1-enriched fraction, without affecting PAR1 mRNA. CONCLUSIONS As PARs have important functions in hemostasis, cancer, thrombosis, and inflammatory processes, our findings that statins prevent TF induction by PAR-APs altering the membrane localization of PAR1 and the expression of PAR2 suggest that they may provide health benefits other than reducing atherosclerosis.
Collapse
Affiliation(s)
- C Banfi
- Centro Cardiologico Monzino IRCCS, Milan, Italy.
| | | | | | | | | | | | | | | |
Collapse
|
36
|
Bovill EG, van der Vliet A. Venous valvular stasis-associated hypoxia and thrombosis: what is the link? Annu Rev Physiol 2011; 73:527-45. [PMID: 21034220 DOI: 10.1146/annurev-physiol-012110-142305] [Citation(s) in RCA: 125] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
This review focuses on the role of the venous valves in the genesis of thrombus formation in venous thromboembolic disease (VTE). Clinical VTE and the evidence for the valvular origin of venous thrombosis are reviewed. Virchow's triad is then used as a framework for discussion to approach the question posed regarding the link between venous valvular stasis-associated hypoxia and thrombosis. Thus, the effects of blood flow stasis, hypercoagulability of blood, and the characteristics of the vessel wall within the venous valvular sinus are assessed in turn.
Collapse
Affiliation(s)
- Edwin G Bovill
- Department of Pathology, University of Vermont College of Medicine, Burlington, 05405, USA.
| | | |
Collapse
|
37
|
Rowlands DJ, Islam MN, Das SR, Huertas A, Quadri SK, Horiuchi K, Inamdar N, Emin MT, Lindert J, Ten VS, Bhattacharya S, Bhattacharya J. Activation of TNFR1 ectodomain shedding by mitochondrial Ca2+ determines the severity of inflammation in mouse lung microvessels. J Clin Invest 2011; 121:1986-99. [PMID: 21519143 DOI: 10.1172/jci43839] [Citation(s) in RCA: 82] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2010] [Accepted: 02/09/2011] [Indexed: 12/25/2022] Open
Abstract
Shedding of the extracellular domain of cytokine receptors allows the diffusion of soluble receptors into the extracellular space; these then bind and neutralize their cytokine ligands, thus dampening inflammatory responses. The molecular mechanisms that control this process, and the extent to which shedding regulates cytokine-induced microvascular inflammation, are not well defined. Here, we used real-time confocal microscopy of mouse lung microvascular endothelium to demonstrate that mitochondria are key regulators of this process. The proinflammatory cytokine soluble TNF-α (sTNF-α) increased mitochondrial Ca2+, and the purinergic receptor P2Y2 prolonged the response. Concomitantly, the proinflammatory receptor TNF-α receptor-1 (TNFR1) was shed from the endothelial surface. Inhibiting the mitochondrial Ca2+ increase blocked the shedding and augmented inflammation, as denoted by increases in endothelial expression of the leukocyte adhesion receptor E-selectin and in microvascular leukocyte recruitment. The shedding was also blocked in microvessels after knockdown of a complex III component and after mitochondria-targeted catalase overexpression. Endothelial deletion of the TNF-α converting enzyme (TACE) prevented the TNF-α receptor shedding response, which suggests that exposure of microvascular endothelium to sTNF-α induced a Ca2+-dependent increase of mitochondrial H2O2 that caused TNFR1 shedding through TACE activation. These findings provide what we believe to be the first evidence that endothelial mitochondria regulate TNFR1 shedding and thereby determine the severity of sTNF-α-induced microvascular inflammation.
Collapse
Affiliation(s)
- David J Rowlands
- Lung Biology Laboratory, Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, Columbia University College of Physicians and Surgeons, New York, New York, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Park Y, Yang J, Zhang H, Chen X, Zhang C. Effect of PAR2 in regulating TNF-α and NAD(P)H oxidase in coronary arterioles in type 2 diabetic mice. Basic Res Cardiol 2010; 106:111-23. [PMID: 20972877 DOI: 10.1007/s00395-010-0129-9] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/18/2010] [Revised: 10/05/2010] [Accepted: 10/18/2010] [Indexed: 12/27/2022]
Abstract
Protease-activated receptor-2 (PAR2) is expressed in endothelial cells and mediates endothelium-dependent vasodilation. We hypothesized that PAR2 regulates tumor necrosis factor-alpha (TNF-α)-induced coronary arteriolar dysfunction in type 2 diabetic (db/db) mice. To test this, coronary arterioles from WT control, db/db, db/db mice treated with PAR2 antagonist FSLLRY-NH₂ (db/db+FSLLRY-NH₂) and db/db mice null for TNF (db(TNF-)/db(TNF-)) were isolated and pressurized (60 cmH₂O) without flow. Although vasodilation to the endothelium-independent vasodilator sodium nitroprusside (SNP) was not different among WT, db/db, db/db+FSLLRY-NH₂ and db(TNF-)/db(TNF-), endothelium-dependent acetylcholine (ACh)- and flow-mediated vasodilation were impaired in db/db mice but were enhanced in db(TNF-)/db(TNF-) mice and db/db mice treated with PAR2 antagonist. NOS inhibitor N (G)-nitro-L-arginine-methyl ester (L-NAME) significantly reduced ACh-induced dilation in WT, db(TNF-)/db(TNF-) and db/db+FSLLRY-NH₂, but did not alter the vasodilation in db/db mice. In contrast, cyclooxygenase (COX) inhibitor indomethacin (Indo) did not alter ACh-induced vasodilation in these four groups of mice. PAR2-activating peptide (PAR2-AP, 2-Furoyl-LIGRLO-am)-induced dilation was higher in db/db mice than that in WT, db(TNF-)/db(TNF-) and db/db mice treated with PAR2 antagonist. These effects were abolished by denudation, or in the presence of L-NAME or Indo. Protein expressions of TNF-α, PAR2, gp91(phox) and p47(phox) in the heart and isolated coronary arterioles were higher in db/db mice compared to WT mice. Administration of PAR2 antagonist to db/db mice reduced protein expression of TNF-α, gp91(phox) and PAR2. Protein expression of gp91(phox) and p47(phox) was lower in db(TNF-)/db(TNF-) compared to db/db mice. These results indicate that PAR2 plays a pivotal role in endothelial dysfunction in type 2 diabetes by up-regulating the expression/production of TNF-α and activating NAD(P)H oxidase subunit p47(phox).
Collapse
Affiliation(s)
- Yoonjung Park
- Division of Cardiovascular Medicine, Department of Internal Medicine, Medical Pharmacology and Physiology and Nutrition and Exercise Physiology, Dalton Cardiovascular Research Center, University of Missouri-Columbia, Columbia, MO 65211, USA
| | | | | | | | | |
Collapse
|
39
|
Borensztajn K, von der Thüsen JH, Peppelenbosch MP, Spek CA. The coagulation factor Xa/protease activated receptor-2 axis in the progression of liver fibrosis: a multifaceted paradigm. J Cell Mol Med 2009; 14:143-53. [PMID: 19968736 PMCID: PMC3837617 DOI: 10.1111/j.1582-4934.2009.00980.x] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Hepatic fibrosis is a common response to virtually all forms of chronic liver injury independent of the etiologic agent. Despite the relatively large population of patients suffering from hepatic fibrosis and cirrhosis, no efficient and well-tolerated drugs are available for the treatment of this disorder. The lack of efficient treatment options is at least partly because the underlying cellular mechanisms leading to hepatic fibrosis are only partly understood. It is thus of pivotal importance to better understand the cellular processes contributing to the progression of hepatic fibrosis. Interestingly in this perspective, a common feature of fibrotic disease of various organs is the activation of the coagulation cascade and hepatic fibrosis is also accompanied by a local hypercoagulable state. Activated blood coagulation factors directly target liver cells by activating protease-activated receptors (PAR) thereby inducing a plethora of cellular responses like (among others) proliferation, migration and extracellular matrix production. Coagulation factor driven PAR activation thus establishes a potential link between activation of the coagulation cascade and the progression of fibrosis. The current review focuses on blood coagulation factor Xa and summarizes the variety of cellular functions induced by factor Xa-driven PAR-2 activation and the subsequent consequences for tissue repair and hepatic fibrosis.
Collapse
Affiliation(s)
- Keren Borensztajn
- Center for Experimental and Molecular Medicine, Academic Medical Center, Meibergdreef, Amsterdam, The Netherlands.
| | | | | | | |
Collapse
|
40
|
Rottenberg H, Covian R, Trumpower BL. Membrane potential greatly enhances superoxide generation by the cytochrome bc1 complex reconstituted into phospholipid vesicles. J Biol Chem 2009; 284:19203-10. [PMID: 19478336 DOI: 10.1074/jbc.m109.017376] [Citation(s) in RCA: 85] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The mitochondrial cytochrome bc(1) complex (ubiquinol/cytochrome c oxidoreductase) is generally thought to generate superoxide anion that participates in cell signaling and contributes to cellular damage in aging and degenerative disease. However, the isolated, detergent-solubilized bc(1) complex does not generate measurable amounts of superoxide except when inhibited by antimycin. In addition, indirect measurements of superoxide production by cells and isolated mitochondria have not clearly resolved the contribution of the bc(1) complex to the generation of superoxide by mitochondria in vivo, nor did they establish the effect, if any, of membrane potential on superoxide formation by this enzyme complex. In this study we show that the yeast cytochrome bc(1) complex does generate significant amounts of superoxide when reconstituted into phospholipid vesicles. The rate of superoxide generation by the reconstituted bc(1) complex increased exponentially with increased magnitude of the membrane potential, a finding that is compatible with the suggestion that membrane potential inhibits electron transfer from the cytochrome b(L) to b(H) hemes, thereby promoting the formation of a ubisemiquinone radical that interacts with oxygen to generate superoxide. When the membrane potential was further increased, by the addition of nigericin or by the imposition of a diffusion potential, the rate of generation of superoxide was further accelerated and approached the rate obtained with antimycin. These findings suggest that the bc(1) complex may contribute significantly to superoxide generation by mitochondria in vivo, and that the rate of superoxide generation can be controlled by modulation of the mitochondrial membrane potential.
Collapse
Affiliation(s)
- Hagai Rottenberg
- Department of Biochemistry, Dartmouth Medical School, Hanover, New Hampshire 03755, USA.
| | | | | |
Collapse
|
41
|
Sato T, Marbán E. The role of mitochondrial K(ATP) channels in cardioprotection. Basic Res Cardiol 2001; 107:233. [PMID: 22167343 PMCID: PMC3252036 DOI: 10.1007/s00395-011-0233-5] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/16/2011] [Revised: 11/15/2011] [Accepted: 11/30/2011] [Indexed: 01/04/2023]
Abstract
Pro-coagulant and pro-inflammatory intramyocardial (micro)vasculature plays an important role in acute myocardial infarction (AMI). Currently, inhibition of serine protease dipeptidyl peptidase 4 (DPP4) receives a lot of interest as an anti-hyperglycemic therapy in type 2 diabetes patients. However, DPP4 also possesses anti-thrombotic properties and may behave as an immobilized anti-coagulant on endothelial cells. Here, we studied the expression and activity of endothelial DPP4 in human myocardial infarction in relation to a prothrombogenic endothelial phenotype. Using (immuno)histochemistry, DPP4 expression and activity were found on the endothelium of intramyocardial blood vessels in autopsied control hearts (n = 9). Within the infarction area of AMI patients (n = 73), this DPP4 expression and activity were significantly decreased, coinciding with an increase in Tissue Factor expression. In primary human umbilical vein endothelial cells (HUVECs), Western blot analysis and digital imaging fluorescence microscopy revealed that DPP4 expression was strongly decreased after metabolic inhibition, also coinciding with Tissue Factor upregulation. Interestingly, inhibition of DPP4 activity with diprotin A also enhanced the amount of Tissue Factor encountered and induced the adherence of platelets under flow conditions. Ischemia induces loss of coronary microvascular endothelial DPP4 expression and increased Tissue Factor expression in AMI as well as in vitro in HUVECs. Our data suggest that the loss of DPP4 activity affects the anti-thrombogenic nature of the endothelium.
Collapse
Affiliation(s)
- T Sato
- Department of Physiology, Oita Medical University, Japan.
| | | |
Collapse
|