1
|
Sharma S, Katna S, Sharma A, Istatu PS, Devi N, Kumar A, Singh S. Method validation, residue behaviour and dietary risk assessment of insecticides (cyantraniliprole, acetamiprid, flubendiamide and its metabolite, des-iodo flubendiamide) in or on broccoli using LC-MS/MS. Biomed Chromatogr 2024; 38:e5962. [PMID: 39014970 DOI: 10.1002/bmc.5962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 06/20/2024] [Accepted: 06/28/2024] [Indexed: 07/18/2024]
Abstract
Residue behaviour and dietary risk assessment of cyantraniliprole, flubendiamide and acetamiprid in broccoli were carried out using the QuEChERS (quick, easy, cheap, effective, rugged and safe) technique coupled with LC-MS/MS. The QuEChERS technique was validated on parameters such as linearity, accuracy, precision, robustness, matrix effects, limit of quantification (LOQ), specificity, retention time and ion ratio as per SANTE (Directorate General for Health and Food Safety) guidelines to attest to the specificity, accuracy and precision of the analytical method in estimating insecticide residues in and on broccoli heads and cropped soil. The LOQ of the method for all three insecticides was 0.01 mg/kg. The initial deposits of cyantraniliprole, flubendiamide and acetamiprid reduced to half of its concentration in 1.873-2.354, 1.975-2.484 and 1.371-1.620 days, respectively. No residues were detected in broccoli-cropped soil at harvest time (30 days after last spray). The proposed maximum residue limits (MRLs) of 1.5, 0.5-0.9 and 2.0-3 mg/kg for cyantraniliprole, flubendiamide and acetamiprid were calculated using the Organisation for Economic Co-operation and Development MRL calculator. The acute and chronic dietary risk assessment of the tested insecticides identified no appreciable dietary risk to the Indian population from the consumption of broccoli heads. The findings of no dietary risk highlight the importance of informed pesticide usage in broccoli and the proposed MRL derived from this study offers crucial guidelines for the regulatory authorities, ensuring the safety of broccoli consumption.
Collapse
Affiliation(s)
- Sakshi Sharma
- Department of Entomology, Dr YS Parmar University of Horticulture and Forestry, Solan, Himachal Pradesh, India
| | - Sapna Katna
- Department of Entomology, Dr YS Parmar University of Horticulture and Forestry, Solan, Himachal Pradesh, India
| | - Ajay Sharma
- Department of Entomology, Dr YS Parmar University of Horticulture and Forestry, Solan, Himachal Pradesh, India
| | - Pankaj Sharma Istatu
- Department of Entomology, Dr YS Parmar University of Horticulture and Forestry, Solan, Himachal Pradesh, India
| | - Nisha Devi
- Department of Entomology, Dr YS Parmar University of Horticulture and Forestry, Solan, Himachal Pradesh, India
| | - Arvind Kumar
- Department of Entomology, Dr YS Parmar University of Horticulture and Forestry, Solan, Himachal Pradesh, India
| | - Shubhra Singh
- Department of Entomology, Dr YS Parmar University of Horticulture and Forestry, Solan, Himachal Pradesh, India
| |
Collapse
|
2
|
Bian S, Shao D, Zhao Q, Li Q, Ren Y. Transcriptome-Based Screening of Candidate Low-Temperature-Associated Genes and Analysis of the BocARR-B Transcription Factor Gene Family in Kohlrabi ( Brassica oleracea L. var. caulorapa L.). Int J Mol Sci 2024; 25:9261. [PMID: 39273211 PMCID: PMC11394831 DOI: 10.3390/ijms25179261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 08/21/2024] [Accepted: 08/22/2024] [Indexed: 09/15/2024] Open
Abstract
Low temperature is a significant abiotic stress factor that not only impacts plant growth, development, yield, and quality but also constrains the geographical distribution of numerous wild plants. Kohlrabi (Brassica oleracea L. var. caulorapa L.) belongs to the Brassicaceae family and has a short growing period. In this study, a total of 196,642 unigenes were obtained from kohlrabi seedlings at low temperatures; of these, 52,836 unigenes were identified as differentially expressed genes. Transcription factor family members ARR-B, C3H, B3-ARF, etc. that had a high correlation with biochemical indicators related to low temperature were identified. A total of nineteen BocARR-B genes (named BocARR-B1-BocARR-B19) were obtained, and these genes were distributed unevenly across seven chromosomes. Nineteen BocARR-B genes searched four conserved motifs and were divided into three groups. The relative expression level analysis of 19 BocARR-B genes of kohlrabi showed obvious specificity in different tissues. This study lays a foundation and provides new insight to explain the low-temperature resistance mechanism and response pathways of kohlrabi. It also provides a theoretical basis for the functional analysis of 19 BocARR-B transcription factor gene family members.
Collapse
Affiliation(s)
- Shuanling Bian
- Academy of Agriculture and Forestry Sciences, Qinghai University, Xining 810016, China; (S.B.); (D.S.); (Q.L.)
| | - Dengkui Shao
- Academy of Agriculture and Forestry Sciences, Qinghai University, Xining 810016, China; (S.B.); (D.S.); (Q.L.)
- Laboratory of Research and Utilization of Germplasm Resources in Qinghai-Tibet Plateau, Qinghai University, Xining 810016, China
- Key Laboratory of Germplasm Resources Protection and Genetic Improvement of the Qinghai-Tibet Plateau in Ministry of Agriculture and Rural, Xining 810016, China
| | - Qingsheng Zhao
- College of Agriculture and Animal Husbandry, Qinghai University, Xining 810016, China;
| | - Quanhui Li
- Academy of Agriculture and Forestry Sciences, Qinghai University, Xining 810016, China; (S.B.); (D.S.); (Q.L.)
- Laboratory of Research and Utilization of Germplasm Resources in Qinghai-Tibet Plateau, Qinghai University, Xining 810016, China
- Key Laboratory of Germplasm Resources Protection and Genetic Improvement of the Qinghai-Tibet Plateau in Ministry of Agriculture and Rural, Xining 810016, China
| | - Yanjing Ren
- Academy of Agriculture and Forestry Sciences, Qinghai University, Xining 810016, China; (S.B.); (D.S.); (Q.L.)
- Laboratory of Research and Utilization of Germplasm Resources in Qinghai-Tibet Plateau, Qinghai University, Xining 810016, China
- Key Laboratory of Germplasm Resources Protection and Genetic Improvement of the Qinghai-Tibet Plateau in Ministry of Agriculture and Rural, Xining 810016, China
| |
Collapse
|
3
|
Rahman M, Khatun A, Liu L, Barkla BJ. Brassicaceae Mustards: Phytochemical Constituents, Pharmacological Effects, and Mechanisms of Action against Human Disease. Int J Mol Sci 2024; 25:9039. [PMID: 39201724 PMCID: PMC11354652 DOI: 10.3390/ijms25169039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2024] [Revised: 08/13/2024] [Accepted: 08/16/2024] [Indexed: 09/03/2024] Open
Abstract
The Brassicaceae genus consists of many economically important mustards of value for food and medicinal purposes, namely Asian mustard (Brassica juncea), ball mustard (Neslia paniculata), black mustard (B. nigra), garlic mustard (Alliaria petiolata), hedge mustard (Sisymbrium officinale), Asian hedge mustard (S. orientale), oilseed rape (B. napus), rapeseed (B. rapa), treacle mustard (Erysimum repandum), smooth mustard (S. erysimoides), white ball mustard (Calepina irregularis), white mustard (Sinapis alba), and Canola. Some of these are commercially cultivated as oilseeds to meet the global demand for a healthy plant-derived oil, high in polyunsaturated fats, i.e., B. napus and B. juncea. Other species are foraged from the wild where they grow on roadsides and as a weed of arable land, i.e., E. repandum and S. erysimoides, and harvested for medicinal uses. These plants contain a diverse range of bioactive natural products including sulfur-containing glucosinolates and other potentially valuable compounds, namely omega-3-fatty acids, terpenoids, phenylpropanoids, flavonoids, tannins, S-methyl cysteine sulfoxide, and trace-elements. Various parts of these plants and many of the molecules that are produced throughout the plant have been used in traditional medicines and more recently in the mainstream pharmaceutical and food industries. This study relates the uses of mustards in traditional medicines with their bioactive molecules and possible mechanisms of action and provides an overview of the current knowledge of Brassicaceae oilseeds and mustards, their phytochemicals, and their biological activities.
Collapse
Affiliation(s)
- Mahmudur Rahman
- Southern Cross Analytical Services, Southern Cross University, Lismore, NSW 2480, Australia; (M.R.); (A.K.)
- Faculty of Science and Engineering, Southern Cross University, Lismore, NSW 2480, Australia;
| | - Amina Khatun
- Southern Cross Analytical Services, Southern Cross University, Lismore, NSW 2480, Australia; (M.R.); (A.K.)
- Faculty of Science and Engineering, Southern Cross University, Lismore, NSW 2480, Australia;
| | - Lei Liu
- Faculty of Science and Engineering, Southern Cross University, Lismore, NSW 2480, Australia;
| | - Bronwyn J. Barkla
- Faculty of Science and Engineering, Southern Cross University, Lismore, NSW 2480, Australia;
| |
Collapse
|
4
|
Taviano MF, Arena P, Davì F, Cavò E, Spadaro V, Raimondo FM, Cacciola F, Laganà Vinci R, Mondello L, Miceli N. Contribution of Phenolic Compounds to the Antioxidant Activity of Leaf and Flower Extracts of Sinapis pubescens L. subsp. pubescens (Brassicaceae). Chem Biodivers 2024; 21:e202400272. [PMID: 38489001 DOI: 10.1002/cbdv.202400272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 03/13/2024] [Accepted: 03/14/2024] [Indexed: 03/17/2024]
Abstract
Within a study focused on Sinapis pubescens subsp. pubescens wild from Sicily (Italy), an edible species still unexplored, our earlier published work has demonstrated good in vitro antioxidant properties for the flower and leaf hydroalcoholic extracts, exhibiting quite different qualitative-quantitative phenolic profiles. Herein, further research was designed to elucidate the role played by phenolic compounds in the different antioxidant mechanisms highlighted for the extracts. To achieve this goal, the crude extracts were subjected to liquid-liquid partitioning with solvents of increasing polarity; then, the fractions were investigated for their antioxidant properties using different in vitro assays. For both flowers and leaves, the ethyl acetate fractions exhibited the best activity in DPPH and reducing power assays, followed by n-butanol. The total phenolic content determination indicated these fractions as the phenolic-rich ones, which were characterized by HPLC-PDA/ESI-MS analysis. Conversely, the phenolic-rich fractions did not show any chelating activity, which was highlighted for the more hydrophobic ones.
Collapse
Affiliation(s)
- Maria Fernanda Taviano
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale F. Stagno d'Alcontres 31, 98166, Messina, Italy
| | - Paola Arena
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale F. Stagno d'Alcontres 31, 98166, Messina, Italy
- Foundation "Prof. Antonio Imbesi", University of Messina, Piazza Pugliatti 1, 98122, Messina, Italy
| | - Federica Davì
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale F. Stagno d'Alcontres 31, 98166, Messina, Italy
- Foundation "Prof. Antonio Imbesi", University of Messina, Piazza Pugliatti 1, 98122, Messina, Italy
| | - Emilia Cavò
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale F. Stagno d'Alcontres 31, 98166, Messina, Italy
| | - Vivienne Spadaro
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies, Section of Botany, Anthropology and Zoology, University of Palermo, Via Archirafi 38, 90123, Palermo, Italy
| | - Francesco Maria Raimondo
- PLANTA/Research, Documentation and Training Center, Via Serraglio Vecchio 28, 90123, Palermo, Italy
| | - Francesco Cacciola
- Department of Biomedical, Dental, Morphological and Functional Imaging Sciences, University of Messina, Via Consolare Valeria, 98125, Messina, Italy
| | - Roberto Laganà Vinci
- Messina Institute of Technology c/o Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, former Veterinary School, University of Messina, Viale G. Palatucci snc, 98168 -, Messina, Italy
| | - Luigi Mondello
- Messina Institute of Technology c/o Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, former Veterinary School, University of Messina, Viale G. Palatucci snc, 98168 -, Messina, Italy
- Chromaleont s.r.l., c/o Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, former Veterinary School, University of Messina, Viale G. Palatucci snc, 98168 -, Messina, Italy
| | - Natalizia Miceli
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale F. Stagno d'Alcontres 31, 98166, Messina, Italy
| |
Collapse
|
5
|
Zhao M, Wu Y, Ren Y. Complete Chloroplast Genome Sequence Structure and Phylogenetic Analysis of Kohlrabi ( Brassica oleracea var. gongylodes L.). Genes (Basel) 2024; 15:550. [PMID: 38790180 PMCID: PMC11120933 DOI: 10.3390/genes15050550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 04/22/2024] [Accepted: 04/24/2024] [Indexed: 05/26/2024] Open
Abstract
Kohlrabi is an important swollen-stem cabbage variety belonging to the Brassicaceae family. However, few complete chloroplast genome sequences of this genus have been reported. Here, a complete chloroplast genome with a quadripartite cycle of 153,364 bp was obtained. A total of 132 genes were identified, including 87 protein-coding genes, 37 transfer RNA genes and eight ribosomal RNA genes. The base composition analysis showed that the overall GC content was 36.36% of the complete chloroplast genome sequence. Relative synonymous codon usage frequency (RSCU) analysis showed that most codons with values greater than 1 ended with A or U, while most codons with values less than 1 ended with C or G. Thirty-five scattered repeats were identified and most of them were distributed in the large single-copy (LSC) region. A total of 290 simple sequence repeats (SSRs) were found and 188 of them were distributed in the LSC region. Phylogenetic relationship analysis showed that five Brassica oleracea subspecies were clustered into one group and the kohlrabi chloroplast genome was closely related to that of B. oleracea var. botrytis. Our results provide a basis for understanding chloroplast-dependent metabolic studies and provide new insight for understanding the polyploidization of Brassicaceae species.
Collapse
Affiliation(s)
- Mengliang Zhao
- State Key Laboratory of Plateau Ecology and Agriculture, Qinghai University, Xining 810016, China;
| | - Yanxun Wu
- Qinghai Academy of Agriculture and Forestry Sciences, Xining 810016, China;
| | - Yanjing Ren
- State Key Laboratory of Plateau Ecology and Agriculture, Qinghai University, Xining 810016, China;
- Qinghai Academy of Agriculture and Forestry Sciences, Xining 810016, China;
- Laboratory of Research and Utilization of Germplasm Resources in Qinghai-Tibet Plateau, Xining 810016, China
- Qinghai Provincial Key Laboratory of Vegetable Genetics and Physiology, Xining 810016, China
| |
Collapse
|
6
|
Kim SH, Ochar K, Hwang A, Lee YJ, Kang HJ. Variability of Glucosinolates in Pak Choy ( Brassica rapa subsp. chinensis) Germplasm. PLANTS (BASEL, SWITZERLAND) 2023; 13:9. [PMID: 38202314 PMCID: PMC10780573 DOI: 10.3390/plants13010009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 12/16/2023] [Accepted: 12/18/2023] [Indexed: 01/12/2024]
Abstract
Glucosinolates are sulfur-containing phytochemicals generally abundant in cruciferous vegetables such as pak choy. Glucosinolates participate in a range of biological activities essential for promoting a healthy human body. In this study, we aimed to elucidate glucosinolate variability present in pak choy germplasm that are under conservation at the Rural Development Administration Genebank, Jeonju, Republic of Korea. The Acquity Ultra-Performance Liquid Chromatography (UHPLC) analytical system was used in profiling the glucosinolate content in leaf samples of various accessions. We identified a total of 17 glucosinolates in the germplasm. Based on principal compoment analysis performed, three separate groups of the accessions were obtained. Group 1 contained the cultivar cheongsacholong which recorded high content of glucobrassicin (an indole), glucoerucin (aliphatic), gluconasturtiin (aromatic) and glucoberteroin (aliphatic). Group 2 consisted of six accessions, BRA77/72, Lu ling gaogengbai, 9041, Wuyueman, RP-75 and DH-10, predominatly high in aliphatic compounds including glucoiberin, glucocheirolin, and sinigrin. Group 3 comprised the majority of the accessions which were characterized by high content of glucoraphanin, epiprogoitrin, progoitrin, and glucotropaeolin. These results revealed the presence of variability among the pak choy germplasm based on their glucosinolate content, providing an excellent opprtunity for future breeding for improved glucosinolate content in the crop.
Collapse
Affiliation(s)
- Seong-Hoon Kim
- National Agrobiodiversity Center, National Institute of Agricultural Sciences, Rural Development Administration, Jeonju 5487, Republic of Korea; (K.O.); (A.H.); (Y.-J.L.)
| | - Kingsley Ochar
- National Agrobiodiversity Center, National Institute of Agricultural Sciences, Rural Development Administration, Jeonju 5487, Republic of Korea; (K.O.); (A.H.); (Y.-J.L.)
- Council for Scientific and Industrial Research, Plant Genetic Resources Research Institute, Bunso P.O. Box 7, Ghana
| | - Aejin Hwang
- National Agrobiodiversity Center, National Institute of Agricultural Sciences, Rural Development Administration, Jeonju 5487, Republic of Korea; (K.O.); (A.H.); (Y.-J.L.)
| | - Yoon-Jung Lee
- National Agrobiodiversity Center, National Institute of Agricultural Sciences, Rural Development Administration, Jeonju 5487, Republic of Korea; (K.O.); (A.H.); (Y.-J.L.)
| | - Hae Ju Kang
- Department of Agrofood Resources, National Institute of Agricultural Sciences, Rural Development Administration, Wanju 55365, Republic of Korea;
| |
Collapse
|
7
|
Yeo HJ, Ki WY, Lee S, Kim CY, Kim JK, Park SU, Park CH. Metabolite profiles and biological activities of different phenotypes of Chinese cabbage (Brassica rapa ssp. Pekinensis). Food Res Int 2023; 174:113619. [PMID: 37981381 DOI: 10.1016/j.foodres.2023.113619] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 10/18/2023] [Accepted: 10/21/2023] [Indexed: 11/21/2023]
Abstract
Chinese cabbage is considered as one of the most important cruciferous vegetables in South Korea because of its use in salads, kimchi, and Korean cuisine. Secondary metabolites were quantified in three Chinese cabbage varieties: 65065, interspecific hybrid of Chinese cabbage × red cabbage exhibiting a deep purple color; 85772, interspecific hybrid of Chinese cabbage × red mustard exhibiting a reddish-purple color; and a typical Chinese green cabbage cultivar "CR Carotene" (Brassica rapa subsp. pekinensis cv. CR Carotene). A total of 54 metabolites (2 amines, 2 sugar alcohols, 2 sugar phosphates, 6 carbohydrates, 18 amino acids, 13 organic acids, 8 phenolic compounds, and 3 carotenoids) were detected in 85772. Of them, 52 metabolites excluding β-carotene and 9-cis-β-carotene, and 51 metabolites excluding leucine, β-carotene, and 9-cis-β-carotene, were detected in 65065 and CR Carotene, respectively. Amino acid content was the highest in 85772, followed by 65065 and CR Carotene. The cultivars 65065 and 85772 contained high levels of phenolic compounds and total anthocyanins. Cyanidin-, pelargonidin-, and petunidin-type anthocyanins were detected in 65065 and 85772. However, delphinidin-type anthocyanins which typically impart a deep purple color were identified only in the deep purple phenotype 65065. Furthermore, the total anthocyanin content was the highest in 85772 (4.38 ± 0.65 mg g -1 dry weight) followed by that in 65065 (3.72 ± 0.52 mg g-1 dry weight). Antibacterial and antioxidant analyses revealed remarkable antibacterial effects of the purple cultivars against pathogens Vibrio parahaemolyticus (KCTC 2471), Bacillus cereus (KCTC 3624), Pseudomonas aeruginosa (KCCM 11803), Staphylococcus aureus (KCTC 3881), Chryseobacterium gleum (KCTC 2094), and Proteus mirabilis (KCTC 2510)] and methicillin-resistant pathogenic strains of Pseudomonas aeruginosa (0826, 0225, 0254, 1113, 1378, 1731, p01827, and p01828) compared with the antibacterial effects of CR Carotene. Furthermore, 65065 and 85772 exhibited significantly higher antioxidant activity than that of the CR Carotene. Therefore, the novel purple Chinese cabbages (65065 and 85772), derived from interspecific hybridization, are potentially favorable alternatives to the typical green Chinese cabbage, given the higher content of amino acids, phenolic compounds, anthocyanins, and carotenoids, as well as an increased ability to scavenge free radicals and inhibit pathogen growth.
Collapse
Affiliation(s)
- Hyeon Ji Yeo
- Department of Crop Science, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon 305-764, Republic of Korea
| | - Woo Yeal Ki
- Kwonnong Seed Co., 186 Pungnyeon-ro, Heungdeok-gu, Cheongju 28394, Republic of Korea
| | - Seom Lee
- Major in Biological Sciences, Keimyung University, 1095 Dalgubeol-daero, Dalseo-gu, Daegu 42601, Republic of Korea
| | - Cha Young Kim
- Biological Resource Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 181 Ipsin-gil, Jeongeup 56212, Republic of Korea
| | - Jae Kwang Kim
- Division of Life Sciences and Bio-Resource and Environmental Center, Incheon National University, Incheon 406-772, Republic of Korea
| | - Sang Un Park
- Department of Crop Science, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon 305-764, Republic of Korea; Department of Smart Agriculture Systems, Chungnam National University, 99 Daehak-Ro, Yuseong-gu, Daejeon 34134, Republic of Korea.
| | - Chang Ha Park
- Major in Biological Sciences, Keimyung University, 1095 Dalgubeol-daero, Dalseo-gu, Daegu 42601, Republic of Korea.
| |
Collapse
|
8
|
Paolillo I, Costanzo G, Delicato A, Villano F, Arena C, Calabrò V. Light Quality Potentiates the Antioxidant Properties of Brassica rapa Microgreen Extracts against Oxidative Stress and DNA Damage in Human Cells. Antioxidants (Basel) 2023; 12:1895. [PMID: 37891974 PMCID: PMC10604222 DOI: 10.3390/antiox12101895] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 10/17/2023] [Accepted: 10/19/2023] [Indexed: 10/29/2023] Open
Abstract
Plants are an inexhaustible source of bioactive compounds beneficial for contrasting oxidative stress, leading to many degenerative pathologies. Brassica rapa L. subsp. rapa is well known for its nutraceutical properties among edible vegetable species. In our work, we aimed to explore an eco-friendly way to enhance the beneficial dietary phytochemicals in this vast world of crop-growing plants at selected light quality conditions. White broad-spectrum (W) and red-blue (RB) light regimes were used for growing brassica microgreens. The organic extracts were tested on keratinocytes upon oxidative stress to explore their capability to act as natural antioxidant cell protectors. Our results show that both W and RB extracts caused a notable reduction in reactive oxygen species (ROS) levels induced by H2O2. Interestingly, according to its higher contents of polyphenols and flavonoids, the RB was more efficient in reducing ROS amount and DNA damage than the W extract, particularly at the lowest concentration tested. However, at higher concentrations (up to 100 μg/mL), the antioxidant effect reached a plateau, and there was little added benefit. These findings confirm that RB light effectively increases the antioxidant compounds in Brassica rapa L. microgreens, thus contributing to their enhanced activity against oxidative-induced genotoxicity compared to microgreens grown under W light.
Collapse
Affiliation(s)
- Ida Paolillo
- Department of Biology, University of Naples Federico II, Via Cinthia, 80126 Napoli, Italy; (I.P.); (G.C.); (A.D.); (F.V.); (V.C.)
| | - Giulia Costanzo
- Department of Biology, University of Naples Federico II, Via Cinthia, 80126 Napoli, Italy; (I.P.); (G.C.); (A.D.); (F.V.); (V.C.)
| | - Antonella Delicato
- Department of Biology, University of Naples Federico II, Via Cinthia, 80126 Napoli, Italy; (I.P.); (G.C.); (A.D.); (F.V.); (V.C.)
| | - Filippo Villano
- Department of Biology, University of Naples Federico II, Via Cinthia, 80126 Napoli, Italy; (I.P.); (G.C.); (A.D.); (F.V.); (V.C.)
| | - Carmen Arena
- Department of Biology, University of Naples Federico II, Via Cinthia, 80126 Napoli, Italy; (I.P.); (G.C.); (A.D.); (F.V.); (V.C.)
- NBFC—National Biodiversity Future Center, 90133 Palermo, Italy
| | - Viola Calabrò
- Department of Biology, University of Naples Federico II, Via Cinthia, 80126 Napoli, Italy; (I.P.); (G.C.); (A.D.); (F.V.); (V.C.)
| |
Collapse
|
9
|
Rana N, Sharma A, Rana RS, Lata H, Bansuli, Thakur A, Singh V, Sood A. Morphological and molecular diversity in mid-late and late maturity genotypes of cauliflower. PLoS One 2023; 18:e0290495. [PMID: 37651405 PMCID: PMC10470947 DOI: 10.1371/journal.pone.0290495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Accepted: 08/10/2023] [Indexed: 09/02/2023] Open
Abstract
Genetic diversity is the prerequisite for the success of crop improvement programmes. Keeping in view, the current investigation was undertaken to assess the agro-morphological and molecular diversity involving 36 diverse mid-late and late cauliflower genotypes following α-RBD design during winter season 2021-22. Six morphological descriptors predicted as polymorphic using Shannon diversity index with maximum for leaf margin (0.94). The genotypes grouped into nine clusters based on D2 analysis with four as monogenotypic and gross plant weight (32.38%) revealed maximum contribution towards the genetic diversity. Molecular diversity analysis revealed 2-7 alleles among 36 polymorphic simple sequence repeats (SSR) with average of 4.22. Primer BoESSR492 (0.77) showed maximum polymorphic information content (PIC) with mean of 0.58. SSR analysis revealed two clusters each with two subclusters with a composite pattern of genotype distribution. STRUCTURE analysis showed homogenous mixture with least amount of gene pool introgression within the genotypes. Thus, based on morphological and molecular studies, the diverse genotypes namely, DPCaCMS-1, DPCaf-W4, DPCaf-US, DPCaf-W131W, DPCaf-S121, DPCaf-18, DPCaf-13, DPCaf-29 and DPCaf-CMS5 can be utilized in hybridization to isolate potential transgressive segregants to broaden the genetic base of cauliflower or involve them to exploit heterosis.
Collapse
Affiliation(s)
- Neha Rana
- Department of Vegetable Science & Floriculture, Chaudhary Sarwan Kumar Himachal Pradesh Agricultural University, Palampur, Himachal Pradesh, India
| | - Akhilesh Sharma
- Department of Vegetable Science & Floriculture, Chaudhary Sarwan Kumar Himachal Pradesh Agricultural University, Palampur, Himachal Pradesh, India
| | - Ranbir Singh Rana
- Centre for Geo Informatics Research and Training, Chaudhary Sarwan Kumar Himachal Pradesh Krishi Vishvavidyalaya, Palampur, Himachal Pradesh, India
| | - Hem Lata
- Department of Vegetable Science & Floriculture, Chaudhary Sarwan Kumar Himachal Pradesh Agricultural University, Palampur, Himachal Pradesh, India
| | - Bansuli
- Department of Vegetable Science & Floriculture, Chaudhary Sarwan Kumar Himachal Pradesh Agricultural University, Palampur, Himachal Pradesh, India
| | - Alisha Thakur
- Department of Vegetable Science & Floriculture, Chaudhary Sarwan Kumar Himachal Pradesh Agricultural University, Palampur, Himachal Pradesh, India
| | - Vivek Singh
- Department of Vegetable Science & Floriculture, Chaudhary Sarwan Kumar Himachal Pradesh Agricultural University, Palampur, Himachal Pradesh, India
| | - Aditya Sood
- Department of Vegetable Science & Floriculture, Chaudhary Sarwan Kumar Himachal Pradesh Agricultural University, Palampur, Himachal Pradesh, India
| |
Collapse
|
10
|
AbdElgawad H, Magdy Korany S, Reyad AM, Zahid I, Akhter N, Alsherif E, Sheteiwy MS, Shah AA, Selim S, Hassan AHA, Yaghoubi Khanghahi M, Beemster GTS, Crecchio C. Synergistic Impacts of Plant-Growth-Promoting Bacteria and Selenium Nanoparticles on Improving the Nutritional Value and Biological Activities of Three Cultivars of Brassica Sprouts. ACS OMEGA 2023; 8:26414-26424. [PMID: 37521602 PMCID: PMC10373182 DOI: 10.1021/acsomega.3c02957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Accepted: 06/26/2023] [Indexed: 08/01/2023]
Abstract
Due to the growing world population and increasing environmental stress, improving the production, nutritional quality, and pharmaceutical applications of plants have become an urgent need. Therefore, current research was designed to investigate the impact of seed priming using plant-growth-promoting bacteria (PGPB) along with selenium nanoparticles (SeNPs) treatment on chemical and biological properties of three Brassica oleracea cultivars [Southern star (VA1), Prominence (VA2), Monotop (VA3)]. With this aim, one out of five morphologically different strains of bacteria, namely, JM18, which was further identified via 16S rRNA gene sequencing as a Nocardiopsis species with strong plant-growth-promoting traits, isolated from soil, was used. To explore the growth-promoting potential of Nocardiopsis species, seeds of three varieties of B. oleracea were primed with JM18 individually or in combination with SeNP treatment. Seed treatments increased sprout growth (fresh and dry weights) and glucosinolate accumulation. The activity of myrosinase was significantly increased through brassica sprouts and consequently enhanced the amino-acid-derived glucosinolate induction. Notably, a reduction in effective sulforaphane nitrile was detected, being positively correlated with a decrease in epithiospecifier protein (EP). Consequently, the antioxidant activities of VA2 and VA3, determined by the ferric reducing antioxidant power (FRAP) assay, were increased by 74 and 79%, respectively. Additionally, the antibacterial activities of JM18-treated cultivars were improved. However, a decrease was observed in SeNP- and JM18 + SeNP-treated VA2 and VA3 against Serratia marcescens and Candida glabrata and VA1 against S. marcescens. In conclusion, seed priming with the JM18 extract is a promising method to enhance the health-promoting activities of B. oleracea sprouts.
Collapse
Affiliation(s)
- Hamada AbdElgawad
- Botany
and Microbiology Department, Faculty of Science, Beni-Suef University, Beni−Suef 62521, Egypt
- Integrated
Molecular Plant Physiology Research, Department of Biology, University of Antwerp, 2020 Antwerp, Belgium
| | - Shereen Magdy Korany
- Department
of Biology, College of Science, Princess
Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia
| | - Ahmed Mohamed Reyad
- Botany
and Microbiology Department, Faculty of Science, Beni-Suef University, Beni−Suef 62521, Egypt
| | - Iqra Zahid
- Department
of Biological Sciences, Abasyn University
Islamabad Campus, Islamabad 44000, Pakistan
| | - Nosheen Akhter
- Department
of Biological Sciences, National University
of Medical Sciences, Rawalpindi 46000, Pakistan
| | - Emad Alsherif
- Botany
and Microbiology Department, Faculty of Science, Beni-Suef University, Beni−Suef 62521, Egypt
| | - Mohamed S. Sheteiwy
- Department
of Agronomy, Faculty of Agriculture, Mansoura
University, Mansoura 35516, Egypt
| | - Anis Ali Shah
- Department
of Botany, Division of Science and Technology, University of Education, Lahore 54770, Pakistan
| | - Samy Selim
- Department
of Clinical Laboratory Sciences, College of Applied Medical Sciences, Jouf University, Sakaka 72341, Saudi Arabia
| | | | - Mohammad Yaghoubi Khanghahi
- Department
of Soil, Plant and Food Sciences, University
of Bari Aldo Moro, Via Amendola 165/A, 70126 Bari, Italy
| | - Gerrit T. S. Beemster
- Integrated
Molecular Plant Physiology Research, Department of Biology, University of Antwerp, 2020 Antwerp, Belgium
| | - Carmine Crecchio
- Department
of Soil, Plant and Food Sciences, University
of Bari Aldo Moro, Via Amendola 165/A, 70126 Bari, Italy
| |
Collapse
|
11
|
Sathasivam R, Park SU, Kim JK, Park YJ, Kim MC, Nguyen BV, Lee SY. Metabolic Profiling of Primary and Secondary Metabolites in Kohlrabi ( Brassica oleracea var. gongylodes) Sprouts Exposed to Different Light-Emitting Diodes. PLANTS (BASEL, SWITZERLAND) 2023; 12:plants12061296. [PMID: 36986982 PMCID: PMC10057582 DOI: 10.3390/plants12061296] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 03/06/2023] [Accepted: 03/11/2023] [Indexed: 05/27/2023]
Abstract
Light-emitting diode (LED) technology is one of the most important light sources in the plant industry for enhancing growth and specific metabolites in plants. In this study, we analyzed the growth, primary and secondary metabolites of 10 days old kohlrabi (Brassica oleracea var. gongylodes) sprouts exposed to different LED light conditions. The results showed that the highest fresh weight was achieved under red LED light, whereas the highest shoot and root lengths were recorded below the blue LED light. Furthermore, high-performance liquid chromatography (HPLC) analysis revealed the presence of 13 phenylpropanoid compounds, 8 glucosinolates (GSLs), and 5 different carotenoids. The phenylpropanoid and GSL contents were highest under blue LED light. In contrast, the carotenoid content was found to be maximum beneath white LED light. Principal component analysis (PCA) and partial least-squares discriminant analysis (PLS-DA) of the 71 identified metabolites using HPLC and gas chromatography-time-of-flight mass spectrometry (GC-TOF-MS) showed a clear separation, indicating that different LEDs exhibited variation in the accumulation of primary and secondary metabolites. A heat map and hierarchical clustering analysis revealed that blue LED light accumulated the highest amount of primary and secondary metabolites. Overall, our results demonstrate that exposure of kohlrabi sprouts to blue LED light is the most suitable condition for the highest growth and is effective in increasing the phenylpropanoid and GSL content, whereas white light might be used to enhance carotenoid compounds in kohlrabi sprouts.
Collapse
Affiliation(s)
- Ramaraj Sathasivam
- Department of Crop Science, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon 34134, Republic of Korea
| | - Sang Un Park
- Department of Crop Science, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon 34134, Republic of Korea
- Department of Smart Agriculture Systems, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon 34134, Republic of Korea
| | - Jae Kwang Kim
- Division of Life Sciences and Convergence Research Center for Insect Vectors, College of Life Sciences and Bioengineering, Incheon National University, Yeonsu-gu, Incheon 22012, Republic of Korea
| | - Young Jin Park
- Division of Life Sciences and Convergence Research Center for Insect Vectors, College of Life Sciences and Bioengineering, Incheon National University, Yeonsu-gu, Incheon 22012, Republic of Korea
| | - Min Cheol Kim
- Department of Crop Science, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon 34134, Republic of Korea
| | - Bao Van Nguyen
- Department of Smart Agriculture Systems, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon 34134, Republic of Korea
| | - Sook Young Lee
- Marine Bio Research Center, Chosun University, 61-220 Myeongsasimni, Sinji-myeon, Wando-gun 59146, Republic of Korea
| |
Collapse
|
12
|
Davì F, Taviano MF, Acquaviva R, Malfa GA, Cavò E, Arena P, Ragusa S, Cacciola F, El Majdoub YO, Mondello L, Miceli N. Chemical Profile, Antioxidant and Cytotoxic Activity of a Phenolic-Rich Fraction from the Leaves of Brassica fruticulosa subsp. fruticulosa ( Brassicaceae) Growing Wild in Sicily (Italy). Molecules 2023; 28:molecules28052281. [PMID: 36903527 PMCID: PMC10005747 DOI: 10.3390/molecules28052281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 02/22/2023] [Accepted: 02/28/2023] [Indexed: 03/05/2023] Open
Abstract
Recently, our research team has started a study on Brassica fruticulosa subsp. fruticulosa, an edible plant traditionally used to treat various ailments, little investigated to date. Good in vitro antioxidant properties were highlighted for the leaf hydroalcoholic extract, with the secondary higher than the primary ones. In continuation of the ongoing research, this work was designed to elucidate the antioxidant properties of the phenolic compounds contained in the extract. For this purpose, a phenolic-rich ethyl acetate fraction (Bff-EAF) was obtained from the crude extract by liquid-liquid extraction. The phenolic composition was characterized by HPLC-PDA/ESI-MS analysis and the antioxidant potential was investigated by different in vitro methods. Furthermore, the cytotoxic properties were evaluated by MTT, LDH and ROS determinations on human colorectal epithelial adenocarcinoma cells (CaCo-2) and human normal fibroblasts (HFF-1). Twenty phenolic compounds (flavonoid and phenolic acid derivatives) were identified in Bff-EAF. The fraction exhibited good radical scavenging activity in the DPPH test (IC50 = 0.81 ± 0.02 mg/mL), and moderate reducing power (ASE/mL = 13.10 ± 0.94) and chelating properties (IC50 = 2.27 ± 0.18 mg/mL), contrary to what previously observed for the crude extract. Bff-EAF reduced in a dose-dependent manner CaCo-2 cell proliferation after 72 h of treatment. This effect was accompanied by the destabilization of the cellular redox state due to the antioxidant and pro-oxidant activities displayed by the fraction at lower and higher concentrations. No cytotoxic effect was observed on HFF-1 fibroblasts, used as control cell line.
Collapse
Affiliation(s)
- Federica Davì
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno d’Alcontres 31, 98166 Messina, Italy
- Foundation “Prof. Antonio Imbesi”, University of Messina, Piazza Pugliatti 1, 98122 Messina, Italy
| | - Maria Fernanda Taviano
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno d’Alcontres 31, 98166 Messina, Italy
- Correspondence: ; Tel.: +39-090-6766478
| | - Rosaria Acquaviva
- Department of Drug and Health Sciences, University of Catania, Viale A. Doria 6, 95125 Catania, Italy
- Research Centre on Nutraceuticals and Health Products (CERNUT), University of Catania, Viale A. Doria 6, 95125 Catania, Italy
- PLANTA/Autonomous Center for Research, Documentation and Training, Via Serraglio Vecchio 28, 90123 Palermo, Italy
| | - Giuseppe Antonio Malfa
- Department of Drug and Health Sciences, University of Catania, Viale A. Doria 6, 95125 Catania, Italy
- Research Centre on Nutraceuticals and Health Products (CERNUT), University of Catania, Viale A. Doria 6, 95125 Catania, Italy
- PLANTA/Autonomous Center for Research, Documentation and Training, Via Serraglio Vecchio 28, 90123 Palermo, Italy
| | - Emilia Cavò
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno d’Alcontres 31, 98166 Messina, Italy
- Foundation “Prof. Antonio Imbesi”, University of Messina, Piazza Pugliatti 1, 98122 Messina, Italy
| | - Paola Arena
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno d’Alcontres 31, 98166 Messina, Italy
- Foundation “Prof. Antonio Imbesi”, University of Messina, Piazza Pugliatti 1, 98122 Messina, Italy
| | - Salvatore Ragusa
- PLANTA/Autonomous Center for Research, Documentation and Training, Via Serraglio Vecchio 28, 90123 Palermo, Italy
| | - Francesco Cacciola
- Department of Biomedical, Dental, Morphological and Functional Imaging Sciences, University of Messina, Via Consolare Valeria, 98125 Messina, Italy
| | - Yassine Oulad El Majdoub
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno d’Alcontres 31, 98166 Messina, Italy
| | - Luigi Mondello
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno d’Alcontres 31, 98166 Messina, Italy
- Chromaleont s.r.l., c/o Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Palatucci, 98168 Messina, Italy
- Department of Sciences and Technologies for Human and Environment, University Campus Bio-Medico of Rome, Via Àlvaro del Portillo 21, 00128 Rome, Italy
| | - Natalizia Miceli
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno d’Alcontres 31, 98166 Messina, Italy
| |
Collapse
|
13
|
Malfa GA, Pappalardo F, Miceli N, Taviano MF, Ronsisvalle S, Tomasello B, Bianchi S, Davì F, Spadaro V, Acquaviva R. Chemical, Antioxidant and Biological Studies of Brassica incana subsp. raimondoi (Brassicaceae) Leaf Extract. Molecules 2023; 28:1254. [PMID: 36770919 PMCID: PMC9921728 DOI: 10.3390/molecules28031254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 01/25/2023] [Accepted: 01/25/2023] [Indexed: 01/31/2023] Open
Abstract
Brassica incana subsp. raimondoi is an endemic taxon present in a restricted area located on steep limestone cliffs at an altitude of about 500 m a.s.l. in eastern Sicily. In this research, for the first time, studies on the phytochemical profile, the antioxidant properties in cell-free and cell-based systems, the cytotoxicity on normal and cancer cells by 3-(4,5-Dimethylthiazol-2-yl)-2,5-Diphenyltetrazolium Bromide (MTT) assay, and on Artemia salina Leach, were performed. The total phenolic, flavonoid, and condensed tannin contents of the leaf hydroalcoholic extract were spectrophotometrically determined. Ultra-performance liquid chromatography-tandem mass spectrometer (UPLC-MS/MS) analysis highlighted the presence of several phenolic acids, flavonoids, and carotenoids, while High-Performance Liquid Chromatography with Diode-Array Detection (HPLC-DAD) identified various kaempferol and isorhamnetin derivatives. The extract exhibited different antioxidant properties according to the five in vitro methods used. Cytotoxicity by MTT assay evidenced no impact on normal human fibroblasts (HFF-1) and prostate cancer cells (DU145), and cytotoxicity accompanied by necrotic cell death for colon cancer cells (CaCo-2) and hepatoma cells (HepG2), starting from 100 μg/mL and 500 μg/mL, respectively. No cytotoxic effects were detected by the A. salina lethality bioassay. In the H2O2-induced oxidative stress cell model, the extract counteracted cellular reactive oxygen species (ROS) production and preserved non-protein thiol groups (RSH) affected by H2O2 exposure in HepG2 cells. Results suggest the potential of B. incana subsp. raimondoi as a source of bioactive molecules.
Collapse
Affiliation(s)
- Giuseppe Antonio Malfa
- Department of Drug and Health Science, University of Catania, Viale A. Doria 6, 95125 Catania, Italy
- Research Centre on Nutraceuticals and Health Products (CERNUT), University of Catania, Viale A. Doria 6, 95125 Catania, Italy
- PLANTA/Autonomous Center for Research, Documentation and Training, Via Serraglio Vecchio 28, 90123 Palermo, Italy
| | - Francesco Pappalardo
- Department of Drug and Health Science, University of Catania, Viale A. Doria 6, 95125 Catania, Italy
| | - Natalizia Miceli
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno d’Alcontres 31, 98166 Messina, Italy
| | - Maria Fernanda Taviano
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno d’Alcontres 31, 98166 Messina, Italy
| | - Simone Ronsisvalle
- Department of Drug and Health Science, University of Catania, Viale A. Doria 6, 95125 Catania, Italy
| | - Barbara Tomasello
- Department of Drug and Health Science, University of Catania, Viale A. Doria 6, 95125 Catania, Italy
- Research Centre on Nutraceuticals and Health Products (CERNUT), University of Catania, Viale A. Doria 6, 95125 Catania, Italy
| | - Simone Bianchi
- Department of Drug and Health Science, University of Catania, Viale A. Doria 6, 95125 Catania, Italy
- Research Centre on Nutraceuticals and Health Products (CERNUT), University of Catania, Viale A. Doria 6, 95125 Catania, Italy
| | - Federica Davì
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno d’Alcontres 31, 98166 Messina, Italy
- Foundation “Prof. Antonio Imbesi”, University of Messina, Piazza Pugliatti 1, 98122 Messina, Italy
| | - Vivienne Spadaro
- Department STEBICEF/Section of Botany, Anthropology and Zoology, University of Palermo, Via Archirafi 38, 90123 Palermo, Italy
| | - Rosaria Acquaviva
- Department of Drug and Health Science, University of Catania, Viale A. Doria 6, 95125 Catania, Italy
- Research Centre on Nutraceuticals and Health Products (CERNUT), University of Catania, Viale A. Doria 6, 95125 Catania, Italy
- PLANTA/Autonomous Center for Research, Documentation and Training, Via Serraglio Vecchio 28, 90123 Palermo, Italy
| |
Collapse
|
14
|
Wu J, Cui S, Tang X, Zhang Q, Jin Y, Zhao J, Mao B, Zhang H. Bifidobacterium longum CCFM1206 Promotes the Biotransformation of Glucoraphanin to Sulforaphane That Contributes to Amelioration of Dextran-Sulfate-Sodium-Induced Colitis in Mice. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:1100-1112. [PMID: 36604158 DOI: 10.1021/acs.jafc.2c07090] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Glucoraphanin, rich in broccoli seed extract (BSE), is generally inert but can be biotransformed into active sulforaphane by gut bacteria. This study aimed to screen probiotics with glucoraphanin-metabolizing ability and explore the effect of a combination of strain and BSE on colitis induced by dextran sulfate sodium (DSS) in mice. Bifidobacterium longum CCFM1206 was isolated from healthy adult feces. Ultra-high-performance liquid chromatography Q Exactive mass spectrometry analysis revealed the presence of sulforaphane, sulforaphane-l-cysteine, and erucin in the BSE supernatant fermented by B. longum CCFM1206 in vitro. Combined and individual interventions of BSE and B. longum CCFM1206 were applied to explore the effects on DSS-induced colitis. The results suggested that the combination of B. longum CCFM1206 and BSE could ameliorate colitis symptoms, relieve colonic inflammatory reactions and oxidative stress, and protect the intestinal barrier in DSS-induced mice. In comparison to the BSE intervention alone, the combined intervention of B. longum CCFM1206 and BSE promoted the generation of sulforaphane and sulforaphane-N-acetylcysteine in mice colon from 220.88 ± 19.81 to 333.99 ± 36.46 nmol/g and from 232.04 ± 26.48 to 297.50 ± 40.08 nmol/g dry weight feces, respectively. According to quantitative reverse transcription polymerase chain reaction and immunohistochemical analysis, B. longum CCFM1206 and BSE effectively activated the transcription and expression of genes related to the Nrf2 signaling pathway. These results were intended to elucidate that probiotics could elevate the bioactivity of dietary phytochemicals in vivo, and the combination had potential for therapeutic treatment of colitis.
Collapse
Affiliation(s)
- Jiaying Wu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, People's Republic of China
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, People's Republic of China
| | - Shumao Cui
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, People's Republic of China
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, People's Republic of China
| | - Xin Tang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, People's Republic of China
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, People's Republic of China
| | - Qiuxiang Zhang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, People's Republic of China
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, People's Republic of China
| | - Yan Jin
- The Affiliated Wuxi Second People's Hospital of Nanjing Medical University, Wuxi, Jiangsu 214002, People's Republic of China
| | - Jianxin Zhao
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, People's Republic of China
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, People's Republic of China
| | - Bingyong Mao
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, People's Republic of China
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, People's Republic of China
| | - Hao Zhang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, People's Republic of China
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, People's Republic of China
- National Engineering Research Center for Functional Food, Jiangnan University, Wuxi, Jiangsu 214122, People's Republic of China
| |
Collapse
|
15
|
Genetic Dissection and Germplasm Selection of the Low Crude Fiber Component in Brassica napus L. Shoots. Foods 2023; 12:foods12020403. [PMID: 36673495 PMCID: PMC9857593 DOI: 10.3390/foods12020403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 01/06/2023] [Accepted: 01/11/2023] [Indexed: 01/18/2023] Open
Abstract
BACKGROUND Brassica napus is one of the most important oil crops in the world, and B. napus shoots are nutrient-rich fresh vegetables. The crude fiber (CF) component is one of the most important factors affecting the taste quality of B. napus shoots, but the factors underlying the desirable low-CF trait remain poorly understood. METHODS In this study, a high-density single-nucleotide polymorphism (SNP) map was used to map quantitative trait loci (QTLs) for five CF-related traits in a recombinant inbred population. RESULTS A total of 49 QTLs were obtained in four environments, including eleven, twelve, eight, twelve and six QTLs for content of neutral detergent fiber, acid detergent fiber, acid detergent lignin, hemicellulose and cellulose, respectively. The phenotypic variation explained by single QTL ranged from 4.62% to 14.76%. Eight of these QTLs were further integrated into four unique QTLs, which controlled two different traits simultaneously. Five CF-component-related candidate genes were identified, among which BnaC03g07110D and BnaC07g21271D were considered to be the most likely candidate genes. In addition, five lines with low CF content were selected, which can be used as excellent germplasm resources in breeding. CONCLUSIONS The QTLs identified in this study will contribute to our understanding of the genetic mechanism of CF and can be used as targets for reducing CF content in B. napus shoots. In addition, this study also provided excellent germplasm resources for low CF content breeding.
Collapse
|
16
|
Nartea A, Fanesi B, Pacetti D, Lenti L, Fiorini D, Lucci P, Frega NG, Falcone PM. Cauliflower by-products as functional ingredient in bakery foods: Fortification of pizza with glucosinolates, carotenoids and phytosterols. Curr Res Food Sci 2023; 6:100437. [PMID: 36691589 PMCID: PMC9860266 DOI: 10.1016/j.crfs.2023.100437] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 01/04/2023] [Accepted: 01/05/2023] [Indexed: 01/07/2023] Open
Abstract
Industrial cauliflower by-products still represent a no-value food waste, even though they are rich in bioactive compounds. With the aim of valorizing them, optimized special flours rich in glucobrassicin, lutein, β-carotene, and β-sitosterol obtained from leaves, orange and violet stalks were used at 10 and 30% w/w in the formulation of functional leavened bakery. For the first time, the effect of bioactive compounds enrichment in pizza products as well as the rheological properties were evaluated. As results, pizza making process affected the recovery of the bioactive compounds. The recovery of glucobrassicin and carotenoids in pizza depended on the aerial part of cauliflower. Pizza with violet stalks was the richest in glucobrassicin, providing 8.4 mg per portion (200 g). Pizza with leaves showed the highest carotenoid content with a 90% of recovery rate while pizza with orange stalks provided up to 5.8% of the phytosterols health claim requirement. All 10% enriched pizzas revealed viscoelastic and springiness properties similar to the control, contrary to 30% fortification level. Therefore, the use of 10% special flour in pizza should meet both technological industrial processing and consumer acceptance. Orange stalks are the most promising ingredients for high levels of fortification in pizzas.
Collapse
Affiliation(s)
- Ancuta Nartea
- Dipartimento di Scienze Agrarie, Alimentari e Ambientali, Università Politecnica delle Marche, Via Brecce Bianche, 60131, Ancona, Italy
| | - Benedetta Fanesi
- Dipartimento di Scienze Agrarie, Alimentari e Ambientali, Università Politecnica delle Marche, Via Brecce Bianche, 60131, Ancona, Italy
| | - Deborah Pacetti
- Dipartimento di Scienze Agrarie, Alimentari e Ambientali, Università Politecnica delle Marche, Via Brecce Bianche, 60131, Ancona, Italy
- Corresponding author.
| | - Lucia Lenti
- School of Science and Technology, Chemistry Division, University of Camerino, V. S. Agostino 1, I-62032, Camerino, MC, Italy
| | - Dennis Fiorini
- School of Science and Technology, Chemistry Division, University of Camerino, V. S. Agostino 1, I-62032, Camerino, MC, Italy
| | - Paolo Lucci
- Dipartimento di Scienze Agrarie, Alimentari e Ambientali, Università Politecnica delle Marche, Via Brecce Bianche, 60131, Ancona, Italy
| | - Natale G. Frega
- Dipartimento di Scienze Agrarie, Alimentari e Ambientali, Università Politecnica delle Marche, Via Brecce Bianche, 60131, Ancona, Italy
| | - Pasquale M. Falcone
- Dipartimento di Scienze Agrarie, Alimentari e Ambientali, Università Politecnica delle Marche, Via Brecce Bianche, 60131, Ancona, Italy
| |
Collapse
|
17
|
Cicio A, Serio R, Zizzo MG. Anti-Inflammatory Potential of Brassicaceae-Derived Phytochemicals: In Vitro and In Vivo Evidence for a Putative Role in the Prevention and Treatment of IBD. Nutrients 2022; 15:nu15010031. [PMID: 36615689 PMCID: PMC9824272 DOI: 10.3390/nu15010031] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 12/12/2022] [Accepted: 12/18/2022] [Indexed: 12/24/2022] Open
Abstract
Inflammatory bowel disease (IBD) is a group of intestinal disorders, of unknown etiology, characterized by chronic inflammation within the gut. They are gradually becoming critical because of the increasing incidence worldwide and improved diagnosis. Due to the important side effects observed during conventional therapy, natural bioactive components are now under intense investigation for the prevention and treatment of chronic illnesses. The Brassicaceae family comprises vegetables widely consumed all over the world. In recent decades, a growing body of literature has reported that extracts from the Brassicaceae family and their purified constituents have anti-inflammatory properties, which has generated interest from both the scientific community and clinicians. In this review, data from the literature are scrutinized and concisely presented demonstrating that Brassicaceae may have anti-IBD potential. The excellent biological activities of Brassicacea are widely attributable to their ability to regulate the levels of inflammatory and oxidant mediators, as well as their capacity for immunomodulatory regulation, maintenance of intestinal barrier integrity and intestinal flora balance. Possible future applications of bioactive-derived compounds from Brassicaceae for promoting intestinal health should be investigated.
Collapse
Affiliation(s)
- Adele Cicio
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Viale delle Scienze, ed 16, 90128 Palermo, Italy
| | - Rosa Serio
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Viale delle Scienze, ed 16, 90128 Palermo, Italy
| | - Maria Grazia Zizzo
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Viale delle Scienze, ed 16, 90128 Palermo, Italy
- ATeN (Advanced Technologies Network) Center, Viale delle Scienze, University of Palermo, 90128 Palermo, Italy
- Correspondence:
| |
Collapse
|
18
|
Glucosinolates and Omega-3 Fatty Acids from Mustard Seeds: Phytochemistry and Pharmacology. PLANTS 2022; 11:plants11172290. [PMID: 36079672 PMCID: PMC9459965 DOI: 10.3390/plants11172290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 08/29/2022] [Accepted: 08/30/2022] [Indexed: 11/22/2022]
Abstract
Seeds from mustard (genera Brassica spp. and Sinapsis spp.), are known as a rich source of glucosinolates and omega-3 fatty acids. These compounds are widely known for their health benefits that include reducing inflammation and lowering the risk of cardiovascular diseases and cancer. This review presented a synthesis of published literature from Google Scholar, PubMed, Scopus, Sci Finder, and Web of Science regarding the different glucosinolates and omega-3 fatty acids isolated from mustard seeds. We presented an overview of extraction, isolation, purification, and structure elucidation of glucosinolates from the seeds of mustard plants. Moreover, we presented a compilation of in vitro, in vivo, and clinical studies showing the potential health benefits of glucosinolates and omega-3 fatty acids. Previous studies showed that glucosinolates have antimicrobial, antipain, and anticancer properties while omega-3 fatty acids are useful for their pharmacologic effects against sleep disorders, anxiety, cerebrovascular disease, neurodegenerative disease, hypercholesterolemia, and diabetes. Further studies are needed to investigate other naturally occurring glucosinolates and omega-3 fatty acids, improve and standardize the extraction and isolation methods from mustard seeds, and obtain more clinical evidence on the pharmacological applications of glucosinolates and omega-3 fatty acids from mustard seeds.
Collapse
|
19
|
Baky MH, Shamma SN, Xiao J, Farag MA. Comparative aroma and nutrients profiling in six edible versus nonedible cruciferous vegetables using MS based metabolomics. Food Chem 2022; 383:132374. [PMID: 35172226 DOI: 10.1016/j.foodchem.2022.132374] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Revised: 01/29/2022] [Accepted: 02/05/2022] [Indexed: 02/08/2023]
Abstract
Cruciferous vegetables, also known as brassicaceae vegetables, are widely consumed worldwide for their nutritive and substantial health benefits. Compositional heterogeneity was explored in six cruciferous vegetables viz, cauliflower, turnip, broccoli, watercress, radish and cabbage leaves targeting their aroma and nutrients profile. A headspace solid-phase micro extraction (HS-SPME) technique combined with gas chromatography-mass spectrometry (GC-MS) was employed for metabolite profiling. Results revealed extensive variation in volatiles and nonvolatile profiles among the six cruciferous vegetables. A total of 55 nutrient metabolites were identified, whereas a total of 190 volatiles were detected. Aldehydes and ketones appeared as the most discriminatory among leaves, accounting for its distinct aroma. Furthermore, chemometric analysis of both datasets showed clear classification of the six vegetables, with several key novel markers. This study provides the first comparative study between edible and inedible parts of cruciferous vegetables, suggesting novel uses as functional foods.
Collapse
Affiliation(s)
- Mostafa H Baky
- Department of Pharmacognosy, Faculty of Pharmacy, Egyptian Russian University, Badr City 11829, Cairo, Egypt
| | - Samir Nabhan Shamma
- Institute of Global Health and Human Ecology, School of Sciences and Engineering, The American University in Cairo, P.O. Box 74, New Cairo 11835, Egypt
| | - Jianbo Xiao
- International Research Center for Food Nutrition and Safety, Jiangsu University, Zhenjiang 212013, China; Department of Analytical Chemistry and Food Science, Faculty of Food Science and Technology, University of Vigo-Ourense Campus, E-32004 Ourense, Spain
| | - Mohamed A Farag
- Pharmacognosy Department, College of Pharmacy, Cairo University, 11562 Cairo, Egypt.
| |
Collapse
|
20
|
Guimarães AS, Guimarães JS, Rodrigues LM, Fontes PR, Ramos ADLS, Ramos EM. Assessment of Japanese radish derivatives as nitrite substitute on the physicochemical properties, sensorial profile, and consumer acceptability of restructured cooked hams. Meat Sci 2022; 192:108897. [PMID: 35760025 DOI: 10.1016/j.meatsci.2022.108897] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 06/16/2022] [Accepted: 06/17/2022] [Indexed: 11/18/2022]
Abstract
This study aimed to evaluate the technological and sensory properties of restructured cooked hams prepared with natural curing agents (0.5% radish powder, HRP; 3% radish juice, HRJ; and 0.5% radish pulp powder, HRPP) and with 40 and 150 mg/kg sodium nitrite (HN40 and HN150, respectively). No difference was observed for pH, proximate composition, or cooking loss. Higher residual nitrite contents were observed in the HN150, followed by the radish derivatives hams and HN40. All radish derivatives hams had a similar hue (h) color to HN40, but the h values of HRJ also did not differ from the HN150 ones. The stability of the cured color was not affected. Consumers perceived a non-characteristic aroma and flavor in the radish derivatives hams, but the HRJ had the best acceptance scores. The HRJ appearance was similar to the HN150, and the other sensory attributes were like the HN40. The potential use of radish derivatives, especially radish juice, as natural curing agents was confirmed.
Collapse
Affiliation(s)
- Angélica Sousa Guimarães
- Departamento de Ciência dos Alimentos, Universidade Federal de Lavras, Lavras, Minas Gerais, Brazil
| | - Jéssica Sousa Guimarães
- Departamento de Ciência dos Alimentos, Universidade Federal de Lavras, Lavras, Minas Gerais, Brazil
| | - Lorena Mendes Rodrigues
- Departamento de Ciência dos Alimentos, Universidade Federal de Lavras, Lavras, Minas Gerais, Brazil
| | - Paulo Rogério Fontes
- Departamento de Tecnologia de Alimentos, Universidade Federal de Viçosa, Viçosa, Minas Gerais, Brazil
| | | | - Eduardo Mendes Ramos
- Departamento de Ciência dos Alimentos, Universidade Federal de Lavras, Lavras, Minas Gerais, Brazil.
| |
Collapse
|
21
|
Jiang H, Li Y, He R, Tan J, Liu K, Chen Y, Liu H. Effect of Supplemental UV-A Intensity on Growth and Quality of Kale under Red and Blue Light. Int J Mol Sci 2022; 23:ijms23126819. [PMID: 35743261 PMCID: PMC9223683 DOI: 10.3390/ijms23126819] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 06/10/2022] [Accepted: 06/17/2022] [Indexed: 02/06/2023] Open
Abstract
Different intensities of UV-A (6, 12, 18 μmol·m-2s-1) were applied in a plant factory to evaluate the combined influences of supplemental UV-A and red and blue light (Red:Blue = 1:1 at PPFD of 250 μmol·m-2 s-1) on the biomass, antioxidant activity and phytochemical accumulation of kale. Supplemental UV-A treatments (T1: 6 μmol·m-2 s-1, T2: 12 μmol·m-2 s-1 and T3: 18 μmol·m-2 s-1) resulted in higher moisture content, higher pigment content, and greater leaf area of kale while T2 reached its highest point. T2 treatment positively enhanced the antioxidant capacity, increased the contents of soluble protein, soluble sugar and reduced the nitrate content. T1 treatment markedly increased the content of aliphatic glucosinolate (GSL), whereas T2 treatment highly increased the contents of indolic GSL and total GSL. Genes related to GSL biosynthesis were down-regulated in CK and T3 treatments, while a majority of them were greatly up-regulated by T1 and T2. Hence, supplemental 12 μmol·m-2 s-1 UV-A might be a promising strategy to enhance the growth and quality of kale in a plant factory.
Collapse
|
22
|
Li L, Sun Y, Liu H, Song S. The increase of antioxidant capacity of broccoli sprouts subject to slightly acidic electrolyzed water. FOOD BIOSCI 2022. [DOI: 10.1016/j.fbio.2022.101856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
23
|
Jabeen M, Akram NA, Ashraf M, Tyagi A, El-Sheikh MA, Ahmad P. Thiamin stimulates growth, yield quality and key biochemical processes of cauliflower (Brassica oleracea L. var. Botrytis) under arid conditions. PLoS One 2022; 17:e0266372. [PMID: 35613077 PMCID: PMC9132317 DOI: 10.1371/journal.pone.0266372] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Accepted: 03/20/2022] [Indexed: 11/18/2022] Open
Abstract
Thiamin is a crucial vitamin with a vast variety of anti-oxidative and physiological roles in plants subjected to abiotic stresses. We examined the efficiency of foliar-applied thiamin (50 and 100 mM) on growth, yield quality and key-biochemical characteristics of two cultivars (FD1 and FD3) of cauliflower (Brassica oleracea L.) under water-deficit stress. Water stress at the rate of 50% field capacity (F.C.) markedly decreased the plant biomass, leaf total phenolics and ascorbic acid (AsA) contents. In contrast, drought-induced increase was noted in the leaf [hydrogen peroxide (H2O2), AsA, proline, malondialdehyde (MDA), glycinebetaine (GB), total soluble proteins and oxidative defense system in terms of high activities of peroxidase (POD), and catalase (CAT) enzymes] and the inflorescence (total phenolics, proline, GB, MDA, H2O2, and activities of SOD and CAT enzymes) characteristics of cauliflower. However, foliar-applied thiamin significantly improved growth and physio-biochemical attributes except leaf and inflorescence MDA and H2O2 contents of both cauliflower cultivars under water stress. Overall, application of thiamin enhanced the plant growth may be associated with suppressed reactive oxygen species (ROS) and upregulated antioxidants defense system of cauliflower.
Collapse
Affiliation(s)
- Munifa Jabeen
- Department of Botany, Government College University, Faisalabad, Pakistan
| | - Nudrat Aisha Akram
- Department of Botany, Government College University, Faisalabad, Pakistan
- * E-mail: (NAA); (PA)
| | | | - Anshika Tyagi
- Department of Biotechnology, Yeungnam University, Gyeongsan, South Korea
| | - Mohamed A. El-Sheikh
- Botany and Microbiology Department, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Parvaiz Ahmad
- Department of Botany, Govt. Degree College, Pulwama, Srinagar, Jammu and Kashmir, India
- * E-mail: (NAA); (PA)
| |
Collapse
|
24
|
Cavò E, Taviano MF, Davì F, Cacciola F, Oulad El Majdoub Y, Mondello L, Ragusa M, Condurso C, Merlino M, Verzera A, Miceli N. Phenolic and Volatile Composition and Antioxidant Properties of the Leaf Extract of Brassica fruticulosa subsp. fruticulosa ( Brassicaceae) Growing Wild in Sicily (Italy). Molecules 2022; 27:2768. [PMID: 35566126 PMCID: PMC9101789 DOI: 10.3390/molecules27092768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 04/21/2022] [Accepted: 04/22/2022] [Indexed: 11/16/2022] Open
Abstract
In continuation of research conducted on species of the spontaneous flora of Sicily (Italy) belonging to the Brassicaceae family, Brassica fruticulosa subsp. fruticulosa was selected. It is an edible species utilized in Sicilian traditional medicine. In this study, for the first time, the phenolic and the volatile compounds and the antioxidant properties of the hydroalcoholic extract obtained from the leaves of B. fruticulosa subsp. fruticulosa were characterized. Through HPLC-PDA/ESI-MS analysis, a total of 22 polyphenolic compounds (20 flavonoids and 2 phenolic acids) were identified, with 3-hydroxiferuloylsophoroside-7-O-glucoside (1.30 mg/g ± 0.01) and kaempferol-3-O-feruloylsophoroside-7-O-glucoside (1.28 mg/g ± 0.01) as the most abundant compounds. Through SPME-GC/MS several volatiles belonging to different chemical classes were characterized, with nitriles and aldehydes accounting for more than 54% of the whole volatile fraction. The extract of B. fruticulosa subsp. fruticulosa showed moderate activity in the DPPH assay (IC50 = 1.65 ± 0.08 mg/mL), weak reducing power (17.47 ± 0.65 ASE/mL), and good chelating properties (IC50 = 0.38 ± 0.02 mg/mL), reaching approximately 90% activity at the highest tested concentration. Lastly, the extract was non-toxic against Artemia salina, indicating its potential safety. According to the findings, it can be stated that B. fruticulosa subsp. fruticulosa represents a new valuable source of bioactive compounds.
Collapse
Affiliation(s)
- Emilia Cavò
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno d’Alcontres 31, 98166 Messina, Italy; (E.C.); (F.D.); (Y.O.E.M.); (L.M.); (N.M.)
| | - Maria Fernanda Taviano
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno d’Alcontres 31, 98166 Messina, Italy; (E.C.); (F.D.); (Y.O.E.M.); (L.M.); (N.M.)
| | - Federica Davì
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno d’Alcontres 31, 98166 Messina, Italy; (E.C.); (F.D.); (Y.O.E.M.); (L.M.); (N.M.)
- Foundation “Prof. Antonio Imbesi”, University of Messina, Piazza Pugliatti 1, 98122 Messina, Italy
| | - Francesco Cacciola
- Department of Biomedical, Dental, Morphological and Functional Imaging Sciences, University of Messina, Via Consolare Valeria, 98125 Messina, Italy;
| | - Yassine Oulad El Majdoub
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno d’Alcontres 31, 98166 Messina, Italy; (E.C.); (F.D.); (Y.O.E.M.); (L.M.); (N.M.)
| | - Luigi Mondello
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno d’Alcontres 31, 98166 Messina, Italy; (E.C.); (F.D.); (Y.O.E.M.); (L.M.); (N.M.)
- Chromaleont s.r.l., c/o Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Palatucci, 98168 Messina, Italy
- Department of Sciences and Technologies for Human and Environment, University Campus Bio-Medico of Rome, Via Àlvaro del Portillo 21, 00128 Rome, Italy
| | - Monica Ragusa
- Complex Structure of Surgical Sciences and Technologies, IRCCS Istituto Ortopedico Rizzoli, Via di Barbiano 1/10, 40136 Bologna, Italy;
| | - Concetta Condurso
- Department of Veterinary Sciences, University of Messina, Viale Palatucci, 98168 Messina, Italy; (C.C.); (M.M.); (A.V.)
| | - Maria Merlino
- Department of Veterinary Sciences, University of Messina, Viale Palatucci, 98168 Messina, Italy; (C.C.); (M.M.); (A.V.)
| | - Antonella Verzera
- Department of Veterinary Sciences, University of Messina, Viale Palatucci, 98168 Messina, Italy; (C.C.); (M.M.); (A.V.)
| | - Natalizia Miceli
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno d’Alcontres 31, 98166 Messina, Italy; (E.C.); (F.D.); (Y.O.E.M.); (L.M.); (N.M.)
| |
Collapse
|
25
|
Wu J, Cui S, Liu J, Tang X, Zhao J, Zhang H, Mao B, Chen W. The recent advances of glucosinolates and their metabolites: Metabolism, physiological functions and potential application strategies. Crit Rev Food Sci Nutr 2022:1-18. [PMID: 35389274 DOI: 10.1080/10408398.2022.2059441] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Glucosinolates and their metabolites from Brassicaceae plants have received widespread attention due to their anti-inflammatory effects. Glucosinolates occurs an "enterohepatic circulation" in the body, and the glucosinolates metabolism mainly happens in the intestine. Glucosinolates can be converted into isothiocyanates by intestinal bacteria, which are active substances with remarkable anti-inflammatory, anti-cancer, anti-obesity and neuroprotective properties. This biotransformation can greatly improve the bioactivities of glucosinolates. However, multiple factors in the environment can affect the biotransformation to isothiocyanates, including acidic pH, ferrous ions and thiocyanate-forming protein. The derivatives of glucosinolates under those conditions are usually nitriles and thiocyanates, which may impair the potential health benefits. In addition, isothiocyanates are extremely unstable because of an active sulfhydryl group, which limits their applications. This review mainly summarizes the classification, synthesis, absorption, metabolism, physiological functions and potential application strategies of glucosinolates and their metabolites.
Collapse
Affiliation(s)
- Jiaying Wu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China.,School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Shumao Cui
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China.,School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Junsheng Liu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China.,School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Xin Tang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China.,School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Jianxin Zhao
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China.,School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Hao Zhang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China.,School of Food Science and Technology, Jiangnan University, Wuxi, China.,National Engineering Research Center for Functional Food, Jiangnan University, China
| | - Bingyong Mao
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China.,School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Wei Chen
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China.,School of Food Science and Technology, Jiangnan University, Wuxi, China.,National Engineering Research Center for Functional Food, Jiangnan University, China
| |
Collapse
|
26
|
Abstract
Radish (Raphanus sativus) is a Brassica vegetable important for human nutrition and health because it is rich in diverse metabolites. Although previous studies have evaluated various metabolites, few studies have comprehensively profiled the primary and secondary metabolites in the roots of white- and green-colored radishes. Thus, this study aimed to provide information about the contents of metabolites beneficial for human health in both cultivars and to investigate the relationships between the various metabolites detected. In particular, among the 55 metabolites detected in radish roots, the levels of most amino acids and phenolic acids, vital to nutrition and health, were higher in green radish roots, while slightly higher levels of glucosinolates were observed in white radish roots—information which can be used to develop an effective strategy to promote vegetable consumption. Furthermore, glutamic acid, as a metabolic precursor of amino acids and chlorophylls, was positively correlated with other amino acids (cysteine, tryptophan, asparagine, alanine, serine, phenylalanine, valine, isoleucine, proline, leucine, beta-alanine, lysine, and GABA), and chlorophylls (chlorophyll a and chlorophyll b) detected in radish roots and phenylalanine, a metabolic precursor of phenolic compounds, were positively correlated with kaempferol, 4-hydroxybenzoate, and catechin. In addition, strong positive correlations between carbohydrates (sucrose and glucose) and phenolics were observed in this study, indicating that sucrose and glucose function as energy sources for phenolic compounds.
Collapse
|
27
|
Chen D, Yang Y, Niu G, Shan X, Zhang X, Jiang H, Liu L, Wen Z, Ge X, Zhao Q, Yao X, Sun D. Metabolic and RNA sequencing analysis of cauliflower curds with different types of pigmentation. AOB PLANTS 2022; 14:plac001. [PMID: 35414860 PMCID: PMC8994856 DOI: 10.1093/aobpla/plac001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Accepted: 01/25/2022] [Indexed: 06/14/2023]
Abstract
Cauliflower (Brassica oleracea var. botrytis) is a popular vegetable worldwide due to its delicious taste, high nutritional value and anti-cancer properties. Cauliflower normally produces white curds, and natural spontaneous mutations lead to the production of orange, purple or green curds. However, some white cauliflowers show uneven purple pigmentation in their curds, which seriously affects the appearance quality and economic value of this crop. The underlying mechanism is still unclear. In this study, we performed comparative transcriptional and metabolic profiling analysis of light orange, white and purplish cauliflower curds. Metabolite analysis revealed that the pigments conferring purple colouration were delphinin and cyanin. Transcriptome analysis showed that the anthocyanin metabolism-related structural genes DFR, ANS and UGT and the transcription factor genes PAP2, TT8, GL3, EGL3 and TTG1 were upregulated in purplish versus white curds. These findings shed light on the formation of purplish curds, which could facilitate the breeding of purely white or red cauliflower.
Collapse
Affiliation(s)
- Daozong Chen
- College of Life Sciences, Ganzhou Key Laboratory of Greenhouse Vegetable, Gannan Normal University, Ganzhou 341000, China
| | - Yingxia Yang
- Tianjin Academy of Agricultural Sciences, The State Key Laboratory of Vegetable Germplasm Innovation, The Tianjin Key Laboratory of Vegetable Genetics and Breeding, Tianjin 300384, China
| | - Guobao Niu
- Tianjin Academy of Agricultural Sciences, The State Key Laboratory of Vegetable Germplasm Innovation, The Tianjin Key Laboratory of Vegetable Genetics and Breeding, Tianjin 300384, China
| | - Xiaozheng Shan
- Tianjin Academy of Agricultural Sciences, The State Key Laboratory of Vegetable Germplasm Innovation, The Tianjin Key Laboratory of Vegetable Genetics and Breeding, Tianjin 300384, China
| | - Xiaoli Zhang
- Tianjin Academy of Agricultural Sciences, The State Key Laboratory of Vegetable Germplasm Innovation, The Tianjin Key Laboratory of Vegetable Genetics and Breeding, Tianjin 300384, China
| | - Hanmin Jiang
- Tianjin Academy of Agricultural Sciences, The State Key Laboratory of Vegetable Germplasm Innovation, The Tianjin Key Laboratory of Vegetable Genetics and Breeding, Tianjin 300384, China
| | - Lili Liu
- Tianjin Academy of Agricultural Sciences, The State Key Laboratory of Vegetable Germplasm Innovation, The Tianjin Key Laboratory of Vegetable Genetics and Breeding, Tianjin 300384, China
| | - Zhenghua Wen
- Tianjin Academy of Agricultural Sciences, The State Key Laboratory of Vegetable Germplasm Innovation, The Tianjin Key Laboratory of Vegetable Genetics and Breeding, Tianjin 300384, China
| | - Xianhong Ge
- National Key Laboratory of Crop Genetic Improvement, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Qiancheng Zhao
- Tianjin Huierjia Seeds Industry Technology Co., Ltd, Tianjin 300392, China
| | - Xingwei Yao
- Tianjin Academy of Agricultural Sciences, The State Key Laboratory of Vegetable Germplasm Innovation, The Tianjin Key Laboratory of Vegetable Genetics and Breeding, Tianjin 300384, China
| | - Deling Sun
- Tianjin Academy of Agricultural Sciences, The State Key Laboratory of Vegetable Germplasm Innovation, The Tianjin Key Laboratory of Vegetable Genetics and Breeding, Tianjin 300384, China
| |
Collapse
|
28
|
Gupta S, Burman S, Nair AB, Chauhan S, Sircar D, Roy P, Dhanwat M, Lahiri D, Mehta D, Das R, Khalil HE. Brassica oleracea Extracts Prevent Hyperglycemia in Type 2 Diabetes Mellitus. Prev Nutr Food Sci 2022; 27:50-62. [PMID: 35465108 PMCID: PMC9007711 DOI: 10.3746/pnf.2022.27.1.50] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Revised: 01/07/2022] [Accepted: 01/16/2022] [Indexed: 11/25/2022] Open
Abstract
This study investigated the protective effect of extracts from flowers of Brassica oleracea L. var. italica Plenck on type 2 diabetes mellitus and its associated disorders. Three different doses of each extract (petroleum ether, ethanol, and aqueous) were administered orally for 42 days. Biochemical parameters, behavioral studies, and histological studies were measured at different periods. Mortality was found to be nil up to 2,000 mg/kg. Statistically significant (P<0.001) improvement in serum glucose level was observed in the groups receiving 400 mg/kg of petroleum ether, aqueous, or ethanol extracts compared with the negative control group. Insulin level was decreased by aqueous extracts, whereas lipid profiles were improved by aqueous and ethanol extracts. A reduction in transfer latency was observed in treatments of all three extract types. Ethanol extract treatment (400 mg/kg) showed maximum percentage inhibition in a lipid peroxidation assay. Additionally, the aqueous and ethanol extract treatments markedly reduced tumor necrosis factor-α, interleukin-6, and glycosylated hemoglobin levels. Histological results showed that high doses of extracts alleviated the damages induced by type 2 diabetes mellitus in various organs and bones. Based on the results of this study, it can be concluded that B. oleracea has the potential to alleviate type 2 diabetes mellitus.
Collapse
Affiliation(s)
- Sumeet Gupta
- Department of Pharmaceutical Sciences, M.M. College of Pharmacy, Maharishi Markandeshwar (Deemed to be University), Ambala, Haryana 133207, India
| | - Satish Burman
- Department of Pharmaceutical Sciences, M.M. College of Pharmacy, Maharishi Markandeshwar (Deemed to be University), Ambala, Haryana 133207, India
| | - Anroop B. Nair
- Department of Pharmaceutical Sciences, College of Clinical Pharmacy, King Faisal University, Al-Ahsa 31982, Saudi Arabia
| | - Samrat Chauhan
- Department of Pharmaceutical Sciences, M.M. College of Pharmacy, Maharishi Markandeshwar (Deemed to be University), Ambala, Haryana 133207, India
| | - Debabrata Sircar
- Department of Biotechnology, Indian Institute of Technology-Roorkee, Uttarakhand 247667, India
| | - Partha Roy
- Department of Biotechnology, Indian Institute of Technology-Roorkee, Uttarakhand 247667, India
| | - Meenakshi Dhanwat
- Department of Pharmaceutical Sciences, M.M. College of Pharmacy, Maharishi Markandeshwar (Deemed to be University), Ambala, Haryana 133207, India
| | - Debrupa Lahiri
- Department of Metallurgical and Materials Engineering and Centre of Nanotechnology, Indian Institute of Technology-Roorkee, Uttarakhand 247667, India
| | - Dinesh Mehta
- Department of Pharmaceutical Sciences, M.M. College of Pharmacy, Maharishi Markandeshwar (Deemed to be University), Ambala, Haryana 133207, India
| | - Rina Das
- Department of Pharmaceutical Sciences, M.M. College of Pharmacy, Maharishi Markandeshwar (Deemed to be University), Ambala, Haryana 133207, India
| | - Hany Ezzat Khalil
- Department of Pharmaceutical Sciences, College of Clinical Pharmacy, King Faisal University, Al-Ahsa 31982, Saudi Arabia
- Department of Pharmacognosy, Faculty of Pharmacy, Minia University, Minia 61519, Egypt
| |
Collapse
|
29
|
Ragusa M, Miceli N, Piras C, Bosco A, Castagna F, Rinaldi L, Musella V, Taviano MF, Britti D. In Vitro Anthelmintic Activity of Isatis tinctoria Extracts against Ewes' Gastrointestinal Nematodes (GINs), a Possible Application for Animal Welfare. Vet Sci 2022; 9:vetsci9030129. [PMID: 35324857 PMCID: PMC8949818 DOI: 10.3390/vetsci9030129] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 03/03/2022] [Accepted: 03/04/2022] [Indexed: 11/16/2022] Open
Abstract
Sheep gastrointestinal nematode (GIN) infestation represents a limiting factor for sheep farming and milk production in Italy. The development of anthelmintic resistance to conventionally used drugs suggests the path towards the use of natural remedies as a possible alternative. The purpose of this study is to evaluate the in vitro anthelmintic efficacy of the hydroalcoholic extracts of basal leaves (It-BL), cauline leaves (It-CL) and flowers (It-F) of Isatis tinctoria (Brassicaceae), a spontaneous Sicilian species renowned as an important source of bioactive compounds. The dry extracts of the different parts of the plant were tested using the egg hatch test (EHT) in vitro to verify the efficacy against ovine GIN at different concentrations (1.00, 0.5, 0.25, 0.125 mg/mL). Thiabendazole and deionized water were used as positive and negative controls, respectively. The results obtained from EHT indicated that all the I. tinctoria extracts were highly effective (p < 0.0001) in inhibiting egg hatching within 48 h of exposure. The in vitro inhibitory effect was never less than 84% in all doses tested, and it was only slightly lower than the standard drug thiabendazole (95.6%). The current study documents the anthelmintic activity of I. tinctoria against sheep’s GIN, suggesting its application as alternative natural method to limit the use of antiparasitic drugs.
Collapse
Affiliation(s)
- Monica Ragusa
- Department of Experimental and Clinical Medicine, University “Magna Græcia” of Catanzaro, Viale Europa, 88100 Catanzaro, Italy
- Interdepartmental Center Veterinary Service for Human and Animal Health, CISVetSUA, University “Magna Græcia” of Catanzaro, 88100 Catanzaro, Italy; (F.C.); (V.M.); (D.B.)
- Correspondence: (M.R.); (C.P.)
| | - Natalizia Miceli
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 98166 Messina, Italy; (N.M.); (M.F.T.)
| | - Cristian Piras
- Interdepartmental Center Veterinary Service for Human and Animal Health, CISVetSUA, University “Magna Græcia” of Catanzaro, 88100 Catanzaro, Italy; (F.C.); (V.M.); (D.B.)
- Department of Health Sciences, University “Magna Græcia” of Catanzaro, Viale Europa, 88100 Catanzaro, Italy
- Correspondence: (M.R.); (C.P.)
| | - Antonio Bosco
- Department of Veterinary Medicine and Animal Productions, University of Naples Federico II, 80137 Napoli, Italy; (A.B.); (L.R.)
- Centro Regionale per il Monitoraggio delle Parassitosi (CREMOPAR), Regione Campania, 84025 Eboli, Italy
| | - Fabio Castagna
- Interdepartmental Center Veterinary Service for Human and Animal Health, CISVetSUA, University “Magna Græcia” of Catanzaro, 88100 Catanzaro, Italy; (F.C.); (V.M.); (D.B.)
- Department of Health Sciences, University “Magna Græcia” of Catanzaro, Viale Europa, 88100 Catanzaro, Italy
| | - Laura Rinaldi
- Department of Veterinary Medicine and Animal Productions, University of Naples Federico II, 80137 Napoli, Italy; (A.B.); (L.R.)
- Centro Regionale per il Monitoraggio delle Parassitosi (CREMOPAR), Regione Campania, 84025 Eboli, Italy
| | - Vincenzo Musella
- Interdepartmental Center Veterinary Service for Human and Animal Health, CISVetSUA, University “Magna Græcia” of Catanzaro, 88100 Catanzaro, Italy; (F.C.); (V.M.); (D.B.)
- Department of Health Sciences, University “Magna Græcia” of Catanzaro, Viale Europa, 88100 Catanzaro, Italy
| | - Maria Fernanda Taviano
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 98166 Messina, Italy; (N.M.); (M.F.T.)
| | - Domenico Britti
- Interdepartmental Center Veterinary Service for Human and Animal Health, CISVetSUA, University “Magna Græcia” of Catanzaro, 88100 Catanzaro, Italy; (F.C.); (V.M.); (D.B.)
- Department of Health Sciences, University “Magna Græcia” of Catanzaro, Viale Europa, 88100 Catanzaro, Italy
| |
Collapse
|
30
|
Enhancement of Glucosinolate Formation in Broccoli Sprouts by Hydrogen Peroxide Treatment. Foods 2022; 11:foods11050655. [PMID: 35267288 PMCID: PMC8909455 DOI: 10.3390/foods11050655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 02/13/2022] [Accepted: 02/17/2022] [Indexed: 02/04/2023] Open
Abstract
Broccoli sprouts are known as a rich source of health-beneficial phytonutrients: glucosinolates and phenolic compounds. The production of phytonutrients can be stimulated by elicitors that activate the plant stress response. The aim of this study was enhancing the nutritional value of broccoli sprouts using hydrogen peroxide (H2O2) as an elicitor. Daily spraying with H2O2 (500-1000 mM) enhanced the accumulation of glucosinolates, doubling their content in the cotyledons of 16/8 h photoperiod-grown 7-day sprouts compared to the water-treated controls. The application of H2O2 on dark-grown sprouts showed a smaller extent of glucosinolate stimulation than with light exposure. The treatment affected sprout morphology without reducing their yield. The H2O2-treated sprouts had shorter hypocotyls and roots, negative root tropism and enhanced root branching. The activated glucosinolate production became evident 24 h after the first H2O2 application and continued steadily until harvest. Applying the same treatment to greenhouse-grown wild rocket plants caused scattered leaf bleaching, a certain increase in glucosinolates but decline in phenolics content. The H2O2 treatment of broccoli sprouts caused a 3.5-fold upregulation of APK1, a gene related to sulfur mobilization for glucosinolate synthesis. Comparing the APK1 expression with the competing gene GSH1 using sulfur for antioxidant glutathione production indicated that glutathione synthesis prevailed in the sprouts over the formation of glucosinolates.
Collapse
|
31
|
Ebert AW. Sprouts and Microgreens-Novel Food Sources for Healthy Diets. PLANTS (BASEL, SWITZERLAND) 2022; 11:plants11040571. [PMID: 35214902 PMCID: PMC8877763 DOI: 10.3390/plants11040571] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Revised: 02/17/2022] [Accepted: 02/18/2022] [Indexed: 05/09/2023]
Abstract
With the growing interest of society in healthy eating, the interest in fresh, ready-to-eat, functional food, such as microscale vegetables (sprouted seeds and microgreens), has been on the rise in recent years globally. This review briefly describes the crops commonly used for microscale vegetable production, highlights Brassica vegetables because of their health-promoting secondary metabolites (polyphenols, glucosinolates), and looks at consumer acceptance of sprouts and microgreens. Apart from the main crops used for microscale vegetable production, landraces, wild food plants, and crops' wild relatives often have high phytonutrient density and exciting flavors and tastes, thus providing the scope to widen the range of crops and species used for this purpose. Moreover, the nutritional value and content of phytochemicals often vary with plant growth and development within the same crop. Sprouted seeds and microgreens are often more nutrient-dense than ungerminated seeds or mature vegetables. This review also describes the environmental and priming factors that may impact the nutritional value and content of phytochemicals of microscale vegetables. These factors include the growth environment, growing substrates, imposed environmental stresses, seed priming and biostimulants, biofortification, and the effect of light in controlled environments. This review also touches on microgreen market trends. Due to their short growth cycle, nutrient-dense sprouts and microgreens can be produced with minimal input; without pesticides, they can even be home-grown and harvested as needed, hence having low environmental impacts and a broad acceptance among health-conscious consumers.
Collapse
Affiliation(s)
- Andreas W Ebert
- World Vegetable Center, 60 Yi-Min Liao, Shanhua, Tainan 74151, Taiwan
| |
Collapse
|
32
|
Parada RB, Marguet E, Campos CA, Vallejo M. Improving the nutritional properties of Brassica L. vegetables by spontaneous fermentation. FOODS AND RAW MATERIALS 2022. [DOI: 10.21603/2308-4057-2022-1-97-105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Introduction. Brassica L. vegetables are rich in fiber, minerals, and bioactive compounds. Lactic fermentation can improve their nutritional value. The goal of this study was to evaluate phytase, calcium, phytic acid, total phenolic content, and antioxidants during spontaneous fermentation of white cabbage, red cabbage, and Chinese cabbage.
Study objects and methods. The research featured samples of water extract, methanol extract, and brine. The procedure involved monitoring lactic bacteria and pH during cabbage fermentation. Diphenyl-1-picrylhydrazyl radical (DPPH) scavenging assay and cupric reducing antioxidant capacity (CUPRAC) assay were used to measure the antioxidant activity and Folin-Ciocalteau method to determine total phenolic content in the water and methanol extracts. In the brine samples, we studied calcium, phytic acid, and phytase activity.
Results and discussion. The samples of white and red cabbage displayed the highest phytase activity on days 5–10 and had a maximal decrease of phytic acid and increase of calcium concentration, while in Chinese cabbage these processes occurred gradually throughout the fermentation. The total phenolic content in the brine and extracts was very similar for all the cultivars throughout the fermentation process. A continuous release from the solid phase to brine could be observed during the first ten days of fermentation. DPPH and CUPRAC assays revealed a similar phenomenon for the total phenolic content. The antioxidant capacity decreased in the water and methanol extracts and increased in the brine. At the end of fermentation, the red cabbage samples demonstrated a significant increase in the total phenolic content and total antioxidant activity, which was less prominent in the Chinese cabbage. The samples of white cabbage, on the contrary, showed a decrease in these parameters.
Conclusion. Fermentation made it possible to increase the concentration of free calcium in white, red, and Chinese cabbages, as well as improve the antioxidant capacity of red and Chinese cabbages.
Collapse
|
33
|
Melim C, Lauro MR, Pires IM, Oliveira PJ, Cabral C. The Role of Glucosinolates from Cruciferous Vegetables (Brassicaceae) in Gastrointestinal Cancers: From Prevention to Therapeutics. Pharmaceutics 2022; 14:pharmaceutics14010190. [PMID: 35057085 PMCID: PMC8777706 DOI: 10.3390/pharmaceutics14010190] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Revised: 12/31/2021] [Accepted: 01/10/2022] [Indexed: 02/04/2023] Open
Abstract
The gastrointestinal (GI) tract is composed of rapidly renewing cells, which increase the likelihood of cancer. Colorectal cancer is one of the most frequently diagnosed GI cancers and currently stands in second place regarding cancer-related mortality. Unfortunately, the treatment of GI is limited, and few developments have occurred in the field over the years. With this in mind, new therapeutic strategies involving biologically active phytocompounds are being evaluated as anti-cancer agents. Vegetables such as broccoli, brussels sprouts, cabbage, cauliflower, and radish, all belonging to the Brassicaceae family, are high in dietary fibre, minerals, vitamins, carotenoids, polyphenols, and glucosinolates. The latter compound is a secondary metabolite characteristic of this family and, when biologically active, has demonstrated anti-cancer properties. This article reviews the literature regarding the potential of Cruciferous vegetables in the prevention and/or treatment of GI cancers and the relevance of appropriate compound formulations for improving the stability and bioaccessibility of the major Cruciferous compounds, with a particular focus on glucosinolates.
Collapse
Affiliation(s)
- Catarina Melim
- Faculty of Medicine, Clinic Academic Center of Coimbra (CACC), Coimbra Institute for Clinical and Biomedical Research (iCBR), University of Coimbra, 3000-548 Coimbra, Portugal;
- Center for Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, 3000-548 Coimbra, Portugal;
| | - Maria R. Lauro
- Department of Pharmacy, University of Salerno, Via Giovanni Paolo II, 84084 Fisciano, Italy;
| | - Isabel M. Pires
- Department of Biomedical Sciences, Faculty of Health Sciences, University of Hull, Hull HU6 7RX, UK;
| | - Paulo J. Oliveira
- Center for Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, 3000-548 Coimbra, Portugal;
- CNC—Center for Neuroscience and Cell Biology, University of Coimbra, 3004-517 Coimbra, Portugal
| | - Célia Cabral
- Faculty of Medicine, Clinic Academic Center of Coimbra (CACC), Coimbra Institute for Clinical and Biomedical Research (iCBR), University of Coimbra, 3000-548 Coimbra, Portugal;
- Center for Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, 3000-548 Coimbra, Portugal;
- Center for Functional Ecology, Department of Life Sciences, University of Coimbra, Calçada Martim de Freitas, 3000-456 Coimbra, Portugal
- Correspondence: ; Tel.: +351-239-480-066
| |
Collapse
|
34
|
Alfawaz HA, Wani K, Alrakayan H, Alnaami AM, Al-Daghri NM. Awareness, Knowledge and Attitude towards 'Superfood' Kale and Its Health Benefits among Arab Adults. Nutrients 2022; 14:nu14020245. [PMID: 35057426 PMCID: PMC8782012 DOI: 10.3390/nu14020245] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Revised: 01/03/2022] [Accepted: 01/05/2022] [Indexed: 02/01/2023] Open
Abstract
This cross-sectional online survey aimed to determine the awareness of Arab adults on the benefits of consuming nutrient-dense foods, such as kale. A total of 1200 respondents completed the survey. The questionnaire included questions related to socio-economic information, e.g., whether the participants have consumed kale, if they observed any health effects, and 13 other questions to test their knowledge on this superfood. Only 276 (23%) of the participants had previously consumed kale, with 64.5% reporting favorable health outcomes, the most common of which was weight reduction, and only 17.8% reporting side effects, such as constipation and gastrointestinal irritation. From the 13 kale knowledge questions, the average total knowledge score, scaled from 0 to 10, was 3.5 and 3.7 for males and females, respectively. The regression analysis revealed that age, income, and educational status were significant contributors for predicting better knowledge scores, as older individuals with a higher income and higher education scored higher (odds ratio of 2.96, 2.00 and 4.58, respectively). To summarize, there is a dearth of awareness about kale and its health benefits in Saudi Arabia. Kale should be promoted as a super food in all segments, particularly among the younger, lower-income, and less-educated sections of the population.
Collapse
Affiliation(s)
- Hanan A. Alfawaz
- Department of Food Science & Nutrition, College of Food Science & Agriculture, King Saud University, Riyadh 11495, Saudi Arabia; (H.A.A.); (H.A.)
| | - Kaiser Wani
- Biochemistry Department, College of Science, King Saud University, Riyadh 11451, Saudi Arabia; (K.W.); (A.M.A.)
| | - Haya Alrakayan
- Department of Food Science & Nutrition, College of Food Science & Agriculture, King Saud University, Riyadh 11495, Saudi Arabia; (H.A.A.); (H.A.)
| | - Abdullah M. Alnaami
- Biochemistry Department, College of Science, King Saud University, Riyadh 11451, Saudi Arabia; (K.W.); (A.M.A.)
| | - Nasser M. Al-Daghri
- Biochemistry Department, College of Science, King Saud University, Riyadh 11451, Saudi Arabia; (K.W.); (A.M.A.)
- Correspondence: ; Tel.: +966-(11)-467-5939
| |
Collapse
|
35
|
Influence of isolation techniques on the composition of glucosinolate breakdown products, their antiproliferative activity and gastrointestinal stability of allyl isothiocyanate. Eur Food Res Technol 2021. [DOI: 10.1007/s00217-021-03903-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
36
|
Guimarães AS, Guimarães JS, Araújo ABS, Rodrigues LM, Carvalho EEN, Ramos ADLS, Ramos EM. Characterization of natural curing agents from Japanese radish (Raphanus sativus L.) for their use in clean label restructured cooked meat products. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2021.111970] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
37
|
Kim J, Sohn SI, Sathasivam R, Khaskheli AJ, Kim MC, Kim NS, Park SU. Targeted Metabolic and In-Silico Analyses Highlight Distinct Glucosinolates and Phenolics Signatures in Korean Rapeseed Cultivars. PLANTS (BASEL, SWITZERLAND) 2021; 10:2027. [PMID: 34685838 PMCID: PMC8537057 DOI: 10.3390/plants10102027] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 09/16/2021] [Accepted: 09/25/2021] [Indexed: 12/02/2022]
Abstract
Rapeseed is an economically important oilseed crop throughout the world. We examined the content and composition of glucosinolates (GSLs) and phenolics in the sprouts of seven Korean cultivars. A total of eight GSLs that include four aliphatic GSLs (AGSLs) (progoitrin, gluconapin, gluconapoleiferin, and glucobrassicanapin) and four indole GSLs (IGSLs) (4-methoxyglucobrassicin, 4-hydroxyglucobrassicin, neoglucobrassicin, and glucobrassicin) were identified in these cultivars. Of the total GSLs, the highest level was detected for progoitrin, while the lowest level was identified for glucobrassicanapin in all the cultivars. Phenolics that include chlorogenic acid, catechin hydrate, 4-hydroxybenzoic acid, gallic acid, ferulic acid, p-coumaric acid, epicatechin, caffeic acid, rutin, quercetin, trans-cinnamic acid, benzoic acid, and kaempferol were present in all the cultivars. Of these, rutin was identified with the highest level while trans-cinnamic acid was identified with the lowest level in all the cultivars. Cluster analysis revealed the unique metabolic signature of eight GSLs and thirteen phenolics for the seven cultivars of rapeseed, which implies that genomic commonality and variability resulted from the previous breeding program. Further, gene expression and cis-regulatory elements suggest that the biosynthesis of GSLs and phenolics of these cultivars appears to be regulated through transcription factors associated with stress responses, phytohormones, and cellular growth.
Collapse
Affiliation(s)
- Joonyup Kim
- Department of Horticultural Science, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon 34134, Korea;
| | - Soo In Sohn
- Biosafety Division, Department of Agricultural Biotechnology, Jeonju 54874, Korea;
| | - Ramaraj Sathasivam
- Department of Crop Science, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon 34134, Korea; (R.S.); (M.C.K.)
| | - Allah Jurio Khaskheli
- Department of Horticultural Science, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon 34134, Korea;
| | - Min Cheol Kim
- Department of Crop Science, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon 34134, Korea; (R.S.); (M.C.K.)
| | - Nam Su Kim
- Korea Research Institute of Bioscience and Biotechnology, 30 Yeongudanji-ro, Ochang-eup, Cheongju 28116, Korea;
| | - Sang Un Park
- Department of Crop Science, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon 34134, Korea; (R.S.); (M.C.K.)
- Department of Smart Agriculture Systems, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon 34134, Korea
| |
Collapse
|
38
|
Current Methods for the Extraction and Analysis of Isothiocyanates and Indoles in Cruciferous Vegetables. ANALYTICA 2021. [DOI: 10.3390/analytica2040011] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Cruciferous vegetables are characterized by the presence of sulfur-containing secondary plant metabolites known as glucosinolates (GLS). The consumption of cruciferous vegetables such as broccoli, cabbage, rocket salad, and cauliflower has been related to the prevention of non-communicable diseases. Their beneficial effects are attributed to the enzymatic degradation products of GLS, e.g., isothiocyanates and indoles. Owing to these properties, there has been a shift in the last few years towards the research of these compounds and a wide range of methods for their extraction and analytical determination have been developed. The aim of this review is to present the sample preparation and extraction procedures of isothiocyanates and indoles from cruciferous vegetables and the analytical methods for their determination. The majority of the references that have been reviewed are from the last decade. Although efforts towards the application of eco-friendly non-conventional extraction methods have been made, the use of conventional solvent extraction is mainly applied. The major analytical techniques employed for the qualitative and quantitative analysis of isothiocyanates and indoles are high-performance liquid chromatography and gas chromatography coupled with or without mass spectrometry detection. Nevertheless, the analytical determination of isothiocyanates presents several problems due to their instability and the absence of chromophores, making the simultaneous determination of isothiocyanates and indoles a challenging task.
Collapse
|
39
|
Takahashi S, Namioka Y, Azis HR, Sano T, Aono M, Koshiyama M, Fujisawa H, Isoda H. Prohydrojasmon Promotes the Accumulation of Phenolic Compounds in Red Leaf Lettuce. PLANTS 2021; 10:plants10091920. [PMID: 34579452 PMCID: PMC8468872 DOI: 10.3390/plants10091920] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 09/13/2021] [Accepted: 09/13/2021] [Indexed: 11/16/2022]
Abstract
Prohydrojasmon (PDJ) is a synthetic jasmonate derivative that is primarily used as a growth regulator, but its mechanism of action is unclear. In this study, we elucidated the effects of PDJ on phytochemical production in red leaf lettuce. The PDJ treatments promoted the accumulation of phenolic compounds in aerial plant parts. An LC-MS analysis revealed that these accumulated compounds were identified as cyanidin-3-O-glucoside, cyanidin-3-O-(6″-O-malonyl)-glucoside and cyanidin-3-O-(6″-O-malonyl)-glucoside methyl ester. The abundance of these compounds in lettuce extracts increased significantly in response to the PDJ treatment. Additionally, the LC-MS analysis also identified the accumulated phenolic compounds in the extracts of PDJ-treated lettuce, including caffeoyltartaric acid, chlorogenic acid, caffeoylmalic acid, chicoric acid, and dicaffeoylquinic acid. Gene expression analyses indicated the PDJ treatments upregulated the expression of PAL, F3H, and ANS genes in lettuce. These results suggest that PDJ treatments enhance the expression of genes involved in the synthesis of anthocyanins and phenolic compounds, resulting in an increase in the quantities of these compounds, which reportedly have various functions affecting human physiology.
Collapse
Affiliation(s)
- Shinya Takahashi
- Faculty of Life and Environmental Sciences, University of Tsukuba, Tsukuba 305-8572, Japan;
- Alliance for Research on the Mediterranean and North Africa (ARENA), University of Tsukuba, Tsukuba 305-8572, Japan;
- Master’s Program in Life Science Innovation (T-LSI), University of Tsukuba, Tsukuba 305-8572, Japan; (Y.N.); (M.A.)
- Correspondence:
| | - Yui Namioka
- Master’s Program in Life Science Innovation (T-LSI), University of Tsukuba, Tsukuba 305-8572, Japan; (Y.N.); (M.A.)
| | - Haidar Rafid Azis
- Alliance for Research on the Mediterranean and North Africa (ARENA), University of Tsukuba, Tsukuba 305-8572, Japan;
| | - Tomoharu Sano
- Health and Environmental Risk Division, National Institute for Environmental Studies, Tsukuba 305-8506, Japan;
| | - Mitsuko Aono
- Master’s Program in Life Science Innovation (T-LSI), University of Tsukuba, Tsukuba 305-8572, Japan; (Y.N.); (M.A.)
- Biodiversity Division, National Institute for Environmental Studies, Tsukuba 305-8506, Japan
| | - Masami Koshiyama
- Specialty Chemicals Division, Zeon Corporation, Chiyoda, Tokyo 104-8246, Japan;
| | | | - Hiroko Isoda
- Faculty of Life and Environmental Sciences, University of Tsukuba, Tsukuba 305-8572, Japan;
- Alliance for Research on the Mediterranean and North Africa (ARENA), University of Tsukuba, Tsukuba 305-8572, Japan;
- Master’s Program in Life Science Innovation (T-LSI), University of Tsukuba, Tsukuba 305-8572, Japan; (Y.N.); (M.A.)
| |
Collapse
|
40
|
Shao D, Ma Y, Li X, Ga S, Ren Y. The sequence structure and phylogenetic analysis by complete mitochondrial genome of kohlrabi ( Brassica oleracea var. gongylodes L.). Mitochondrial DNA B Resour 2021; 6:2714-2716. [PMID: 34435131 PMCID: PMC8382015 DOI: 10.1080/23802359.2021.1966341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022] Open
Affiliation(s)
- Dengkui Shao
- Qinghai University (Qinghai Academy of Agriculture and Forestry Sciences), Xining, PR China
- Qinghai Key Laboratory of Vegetable Genetics and Physiology, Xining, PR China
| | - Yidong Ma
- Qinghai University (Qinghai Academy of Agriculture and Forestry Sciences), Xining, PR China
| | - Xiaojuan Li
- Qinghai University (Qinghai Academy of Agriculture and Forestry Sciences), Xining, PR China
| | - Sang Ga
- Comprehensive Agriculture and Animal Husbandry Service Center of Yushu Tibetan Autonomous Prefecture, Yushu, PR China
| | - Yanjing Ren
- Qinghai University (Qinghai Academy of Agriculture and Forestry Sciences), Xining, PR China
- Qinghai Key Laboratory of Vegetable Genetics and Physiology, Xining, PR China
| |
Collapse
|
41
|
Leite PM, Freitas A, Amorim J, Figueiredo RCD, Bertolucci S, Faraco A, Martins M, Carvalho MG, Castilho R. In vitro anticoagulant activity of selected medicinal plants: potential interactions with warfarin and development of new anticoagulants. J Basic Clin Physiol Pharmacol 2021; 33:499-510. [PMID: 34273917 DOI: 10.1515/jbcpp-2021-0079] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Accepted: 06/28/2021] [Indexed: 12/26/2022]
Abstract
OBJECTIVES Warfarin is the most widely used anticoagulant in the world, but it has several limitations including its narrow therapeutic range, need for dose adjustment and high potential for interactions. The simultaneous use of other drugs or even medicinal plants and certain foods could interfere with its therapeutic activity. In this context, this study aims to investigate the in vitro anticoagulant potential and phytochemical constitution of 17 plants selected from a previous clinical cross-sectional study (2014), that investigated the habits of plant utilization among patients taking warfarin. METHODS Ethanol extracts and essential oils were evaluated, in vitro, as to their effect in the prothrombin time (PT) and activated partial thromboplastin time (aPTT) tests. Four species that presented aPTT >50 s were selected for phytochemical evaluation. RESULTS Thirteen of the 17 plants selected demonstrated a significant anticoagulant effect in at least one of the evaluated parameters. Citrus sinensis (PT=14.75 and aPTT=53.15), Mentha crispa (aPTT=51.25), Mikania laevigata (PT=14.90 and aPTT=52.10), and Nasturtium officinale (aPTT=50.55) showed greater anticoagulant potential compared to normal plasma pool (PT=12.25 and aPTT=37.73). Chemical profiles of these four species were obtained, and certain compounds were identified: rosmarinic acid from M. crispa and isoorientin from N. officinale. CONCLUSIONS Thus, the results of this study could be a useful indicator for clinical practice towards the possibility of interaction between these plants and anticoagulants, although further clinical research is needed taking into consideration the limitations of in vitro studies. These findings also suggest that further research into the action of these plants could be of real clinical value in identifying potential alternative anticoagulant therapies.
Collapse
Affiliation(s)
| | - Aline Freitas
- Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Juliana Amorim
- Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | | | | | - André Faraco
- Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Maria Martins
- Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Maria G Carvalho
- Departamento de Análises Clínicas e Toxicológicas, Faculdade de Farmácia, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Rachel Castilho
- Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| |
Collapse
|
42
|
Sharma S, Katoch V, Kumar S, Chatterjee S. Functional relationship of vegetable colors and bioactive compounds: Implications in human health. J Nutr Biochem 2021; 92:108615. [PMID: 33705954 DOI: 10.1016/j.jnutbio.2021.108615] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Revised: 12/26/2020] [Accepted: 02/02/2021] [Indexed: 01/16/2023]
Abstract
Vegetables are essential protective diet ingredients that supply ample amounts of minerals, vitamins, carbohydrates, proteins, dietary fiber, and various nutraceutical compounds for protection against various disease conditions. Color is the most important quality parameter for the farmers to access the harvest maturity while for the consumer's reliable indices to define acceptability or rejection. The colored vegetables contain functional compounds like chlorophylls, carotenoids, betalains, anthocyanins, etc. well recognized for their antioxidant, antimicrobial, hypolipidemic, neuroprotective, antiaging, diuretic, and antidiabetic properties. Recently, there has been a shift in food consumption patterns from processed to semi-processed or fresh fruits and vegetables to ensure a healthy disease-free life. This shifted the focus of agriculture scientists and food processors from food security to nutrition security. This has resulted in recent improvements to existing crops like blue tomato, orange cauliflower, colored and/or black carrots, with improved color, and thus enriched bioactive compounds. Exhaustive laboratory trials though are required to document and establish their minimum effective concentrations, bioavailability, and specific health benefits. Efforts should also be directed to breed color-rich cultivars or to improve the existing varieties through conventional and molecular breeding approaches. The present review has been devoted to a better understanding of vegetable colors with specific health benefits and to provide in-hand information about the effect of specific pigment on body organs, the effect of processing on their bioavailability, and recent improvements in colors to ensure a healthy lifestyle.
Collapse
Affiliation(s)
- Shweta Sharma
- Department of Vegetable Science and Floriculture, CSK HPKV, Palampur-176062 (H.P.), India; MS Swaminathan School of Agriculture, Shoolini University of Biotechnology and Management Sciences, Solan-173229 (H.P.), India.
| | - Viveka Katoch
- Department of Vegetable Science and Floriculture, CSK HPKV, Palampur-176062 (H.P.), India
| | - Satish Kumar
- College of Horticulture and Forestry, Thunag, Mandi, Dr. YS Parmar University of Horticulture and Forestry, Nauni, Solan, 173230 (H.P.), India
| | - Subhrajyoti Chatterjee
- Department of Horticulture, MSSSOA, Centurion University of Technology and Management, Odisha, India
| |
Collapse
|
43
|
Salehi B, Quispe C, Butnariu M, Sarac I, Marmouzi I, Kamle M, Tripathi V, Kumar P, Bouyahya A, Capanoglu E, Ceylan FD, Singh L, Bhatt ID, Sawicka B, Krochmal-Marczak B, Skiba D, El Jemli M, El Jemli Y, Coy-Barrera E, Sharifi-Rad J, Kamiloglu S, Cádiz-Gurrea MDLL, Segura-Carretero A, Kumar M, Martorell M. Phytotherapy and food applications from Brassica genus. Phytother Res 2021; 35:3590-3609. [PMID: 33666283 DOI: 10.1002/ptr.7048] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Revised: 12/28/2020] [Accepted: 01/25/2021] [Indexed: 01/26/2023]
Abstract
Plants of the genus Brassica occupy the top place among vegetables in the world. This genus, which contains a group of six related species of a global economic significance, three of which are diploid: Brassica nigra (L.) K. Koch, Brassica oleracea L., and Brassica rapa L. and three are amphidiploid species: Brassica carinata A. Braun, Brassica juncea (L.) Czern., and Brassica napus L. These varieties are divided into oily, fodder, spice, and vegetable based on their morphological structure, chemical composition, and usefulness of plant organs. The present review provides information about habitat, phytochemical composition, and the bioactive potential of Brassica plants, mainly antioxidant, antimicrobial, anticancer activities, and clinical studies in human. Brassica vegetables are of great economic importance around the world. At present, Brassica plants are grown together with cereals and form the basis of global food supplies. They are distinguished by high nutritional properties from other vegetable plants, such as low fat and protein content and high value of vitamins, fibers along with minerals. In addition, they possess several phenolic compounds and have a unique type of compounds namely glucosinolates that differentiate these crops from other vegetables. These compounds are also responsible for numerous biological activities to the genus Brassica as described in this review.
Collapse
Affiliation(s)
- Bahare Salehi
- Medical Ethics and Law Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Cristina Quispe
- Facultad de Ciencias de la Salud, Universidad Arturo Prat, Iquique, Chile
| | - Monica Butnariu
- Banat's University of Agricultural Sciences and Veterinary Medicine "King Michael I of Romania", Timisoara, Romania
| | - Ioan Sarac
- Banat's University of Agricultural Sciences and Veterinary Medicine "King Michael I of Romania", Timisoara, Romania
| | - Ilias Marmouzi
- Laboratoire de Pharmacologie et Toxicologie, Faculté de Médecine et de Pharmacie, Mohammed V University in Rabat, Rabat, Morocco
| | - Madhu Kamle
- Department of Forestry, North Eastern Regional Institute of Science and Technology, Nirjuli, India
| | - Vijay Tripathi
- Department of Molecular and Cellular Engineering, Jacob Institute of Biotechnology and Bioengineering, Sam Higginbottom University of Agriculture, Technology and Sciences, Allahabad, India
| | - Pradeep Kumar
- Department of Forestry, North Eastern Regional Institute of Science and Technology, Nirjuli, India
| | - Abdelhakim Bouyahya
- Laboratory of Human Pathologies Biology, Department of Biology, Faculty of Sciences, and Genomic Center of Human Pathologies, Mohammed V University, Rabat, Morocco
| | - Esra Capanoglu
- Faculty of Chemical & Metallurgical Engineering, Food Engineering Department, Istanbul Technical University, Istanbul, Turkey
| | - Fatma Duygu Ceylan
- Faculty of Chemical & Metallurgical Engineering, Food Engineering Department, Istanbul Technical University, Istanbul, Turkey
| | - Laxman Singh
- G.B. Pant National Institute of Himalayan Environment and Sustainable Development, Almora, India
| | - Indra D Bhatt
- G.B. Pant National Institute of Himalayan Environment and Sustainable Development, Almora, India
| | - Barbara Sawicka
- Department of Plant Production Technology and Commodities Science, University of Life Sciences, Lublin, Poland
| | - Barbara Krochmal-Marczak
- Department of Production and Food Safety, State Higher Vocational School named after Stanislaw Pigon, Krosno, Poland
| | - Dominika Skiba
- Department of Plant Production Technology and Commodities Science, University of Life Sciences, Lublin, Poland
| | - Meryem El Jemli
- Pharmacodynamy Research Team ERP, Laboratory of Pharmacology and Toxicology, Faculty of Medicine and Pharmacy, Mohammed V University in Rabat, Rabat, Morocco
| | - Yousra El Jemli
- Faculty of Science and Technology, University of Cadi Ayyad Marrakech, Marrakesh, Morocco
| | - Ericsson Coy-Barrera
- Bioorganic Chemistry Laboratory, Facultad de Ciencias Básicas y Aplicadas, Universidad Militar Nueva Granada, Campus Nueva Granada, Cajicá, Colombia
| | - Javad Sharifi-Rad
- Phytochemistry Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.,Facultad de Medicina, Universidad del Azuay, Cuenca, Ecuador
| | - Senem Kamiloglu
- Science and Technology Application and Research Center (BITAUM), Bursa Uludag University, Bursa, Turkey
| | - María de la Luz Cádiz-Gurrea
- Department of Analytical Chemistry, Faculty of Sciences, University of Granada, Granada, Spain.,Research and Development Functional Food Centre (CIDAF), University of Granada, Granada, Spain
| | - Antonio Segura-Carretero
- Department of Analytical Chemistry, Faculty of Sciences, University of Granada, Granada, Spain.,Research and Development Functional Food Centre (CIDAF), University of Granada, Granada, Spain
| | - Manoj Kumar
- Chemical and Biochemical Processing Division, ICAR - Central Institute for Research on Cotton Technology, Mumbai, India
| | - Miquel Martorell
- Department of Nutrition and Dietetics, Faculty of Pharmacy, and Centre for Healthy Living, University of Concepción, Concepción, Chile.,Universidad de Concepción, Unidad de Desarrollo Tecnológico, UDT, Concepcion, Chile
| |
Collapse
|
44
|
Stegmayer MI, Fernández LN, Álvarez NH, Seimandi GM, Reutemann AG, Derita MG. In Vitro Antifungal Screening of Argentine Native or Naturalized Plants against the Phytopathogen Monilinia fructicola. Comb Chem High Throughput Screen 2021; 25:1158-1166. [PMID: 33475070 DOI: 10.2174/1386207324666210121113648] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 12/07/2020] [Accepted: 12/30/2020] [Indexed: 11/22/2022]
Abstract
BACKGROUND One of the main problems that fruit health has gone through in recent years is the difficult eradication of their fungal pathogens during crops or the post-harvest stage. This concerns the whole world because it represents huge production losses, fruit export restrictions and consumer distrust. Consequently, new alternatives are sought to avoid the increasing use of fungicides that cause important damage to fruit consumers and to the environment. One of the alternatives to solve this problem could be the exploration of plants and their active compounds applied to the treatment of fruit health. MATERIALS AND METHODS This article describes peach production worldwide and particularly in Argentina, in addition to the main fungal rot that causes the greatest economic losses. Furthermore, experimental in-vitro studies of 69 extracts obtained from 18 plants growing in the central region of Argentina were displayed against the devastating fungus Monilinia fructicola, which greatly affects stone fruits. A simple and effective method developed in agar plate was applied to evaluate a large number of samples in a short time. RESULTS Results showed that approximately 36% of the samples tested were strongly active against this pathogen, 12% were moderately active and 52% demonstrated to be inactive. CONCLUSION These findings support the possible use of natural products for fruit health and the importance of deepening in this field of science.
Collapse
Affiliation(s)
- María Inés Stegmayer
- ICiAgro Litoral, Universidad Nacional del Litoral, CONICET, Facultad de Ciencias Agrarias, Kreder 2805, Esperanza, 3080HOF. Argentina
| | - Laura Noemí Fernández
- ICiAgro Litoral, Universidad Nacional del Litoral, CONICET, Facultad de Ciencias Agrarias, Kreder 2805, Esperanza, 3080HOF. Argentina
| | - Norma Hortensia Álvarez
- ICiAgro Litoral, Universidad Nacional del Litoral, CONICET, Facultad de Ciencias Agrarias, Kreder 2805, Esperanza, 3080HOF. Argentina
| | - Gisela Marisol Seimandi
- ICiAgro Litoral, Universidad Nacional del Litoral, CONICET, Facultad de Ciencias Agrarias, Kreder 2805, Esperanza, 3080HOF. Argentina
| | - Andrea Guadalupe Reutemann
- ICiAgro Litoral, Universidad Nacional del Litoral, CONICET, Facultad de Ciencias Agrarias, Kreder 2805, Esperanza, 3080HOF. Argentina
| | - Marcos Gabriel Derita
- ICiAgro Litoral, Universidad Nacional del Litoral, CONICET, Facultad de Ciencias Agrarias, Kreder 2805, Esperanza, 3080HOF. Argentina
| |
Collapse
|
45
|
Marchyshyn S, Slobodianiuk L, Budniak L, Skrynchuk O. Analysis of carboxylic acids of Crambe cordifolia Steven. PHARMACIA 2021. [DOI: 10.3897/pharmacia.68.e56715] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Crambe cordifolia Steven is a perennial herb and contains many biologically active substances, including amino acids, quercetin and glycosides of kaempferol. In continuation of the investigation of these plant compounds, it is advisable to study the qualitative composition and quantitative contents of carboxylic acids. Using a HPLC method the quantitative content of the following organic acids was identified and determined: pyruvic (40.66 mg/g), isocitric (12.88 mg/g), citric (8.71 mg/g), succinic (38.03 mg/g) and malic (0.75 mg/g). Among fatty acids the saturated and unsaturated acids were determined by the GC/MS method. The content of polyunsaturated fatty acids of the total fatty acids was 56.97%, saturated – 38.53% and monounsaturated – 4.50%. Linolenic and palmitic acids dominated among the determined 7 fatty acids, their content was 9.68 mg/g (47.87%) and 4.88 mg/g (24.14%). The results of the study show that Crambe cordifolia Steven leaves is a source of carboxylic acids.
Collapse
|
46
|
Li G, Shah AA, Khan WU, Yasin NA, Ahmad A, Abbas M, Ali A, Safdar N. Hydrogen sulfide mitigates cadmium induced toxicity in Brassica rapa by modulating physiochemical attributes, osmolyte metabolism and antioxidative machinery. CHEMOSPHERE 2021; 263:127999. [PMID: 33297036 DOI: 10.1016/j.chemosphere.2020.127999] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2020] [Revised: 08/07/2020] [Accepted: 08/10/2020] [Indexed: 05/04/2023]
Abstract
Hydrogen sulfide (H2S) is helpful for maintaining plant growth under abiotic stresses. The current study elucidated the physiological and biochemical strategies by which sodium hydrosulfide (NaHS), a donor of H2S, alleviated cadmium (Cd) toxicity in Brassica rapa. B. rapa plants growing under 50 mgkg-1 Cd stress showed reduced leaf relative water contents (LRWC), photosynthetic pigments, total soluble proteins, minerals uptake, antioxidants and growth. Furthermore, enhanced accumulation of Cd contents caused augmentation in levels of electrolyte leakage (EL) and methylglyoxal (MG). Nevertheless, improved physiochemical parameters in B. rapa seedlings obtained from seeds primed with 1.5 mM NaHS resulted better phenotype, growth and biomass production in Cd stressed plants. Protective stimulus of H2S regulated minerals and Cd homeostasis besides increased activity of antioxidants which decreased level of reactive oxygen species (ROS), EL, malondialdehyde (MDA) and MG in Cd regimes. Furthermore, H2S treated seedlings exhibited reduction in Cd content and revealed an active participation in the indole acetic acid (IAA) mediated pathway during stress. The findings of current study propose that H2S improved stress tolerance and mitigated Cd stress in B. rapa by modulating growth biomarkers and antioxidative system.
Collapse
Affiliation(s)
- Guihua Li
- Guangdong Key Laboratory for New Technology Research of Vegetables/Vegetable Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, China
| | - Anis Ali Shah
- Department of Botany, University of Narowal, Narowal, Pakistan
| | - Waheed Ullah Khan
- College of Earth and Environmental Sciences, University of the Punjab, Lahore, Pakistan
| | - Nasim Ahmad Yasin
- Senior Superintendent Garden, University of the Punjab, Lahore, Pakistan.
| | - Aqeel Ahmad
- Guangdong Key Laboratory for New Technology Research of Vegetables/Vegetable Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, China
| | - Muhammad Abbas
- Department of Microbiology and Molecular Genetics, University of the Punjab, Lahore, Pakistan
| | - Aamir Ali
- Department of Botany, University of Sargodha, Sargodha, Pakistan
| | - Naeem Safdar
- National Agriculture Research Centre, Islamabad, Pakistan
| |
Collapse
|
47
|
GÖK V, ÇAĞLAR MY, TOMAR O. Comparison of chemical properties, antioxidant capacity, and phenolic acids of autoclaved and unautoclaved ground mustard seeds. FOOD SCIENCE AND TECHNOLOGY 2021. [DOI: 10.1590/fst.09020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
48
|
Eltamany EE, Elhady SS, Ahmed HA, Badr JM, Noor AO, Ahmed SA, Nafie MS. Chemical Profiling, Antioxidant, Cytotoxic Activities and Molecular Docking Simulation of Carrichtera annua DC. (Cruciferae). Antioxidants (Basel) 2020; 9:E1286. [PMID: 33339242 PMCID: PMC7766671 DOI: 10.3390/antiox9121286] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Revised: 12/13/2020] [Accepted: 12/14/2020] [Indexed: 12/13/2022] Open
Abstract
Our investigation intended to analyze the chemical composition and the antioxidant activity of Carrichtera annua and to evaluate the antiproliferative effect of C. annua crude and phenolics extracts by MTT assay on a panel of cancerous and non-cancerous breast and liver cell lines. The total flavonoid and phenolic contents of C. annua were 47.3 ± 17.9 mg RE/g and 83.8 ± 5.3 mg respectively. C. annua extract exhibited remarkable antioxidant capacity (50.92 ± 5.64 mg GAE/g) in comparison with BHT (74.86 ± 3.92 mg GAE/g). Moreover, the extract exhibited promising reduction ability (1.17 mMol Fe+2/g) in comparison to the positive control (ascorbic acid with 2.75 ± 0.91) and it displayed some definite radical scavenging effect on DPPH (IC50 values of 211.9 ± 3.7 µg/mL). Chemical profiling of C. annua extract was achieved by LC-ESI-TOF-MS/MS analysis. Forty-nine hits mainly polyphenols were detected. Flavonoid fraction of C. annua was more active than the crude extract. It demonstrated selective cytotoxicity against the MCF-7 and HepG2 cells (IC50 = 13.04 and 19.3 µg/mL respectively), induced cell cycle arrest at pre-G1 and G2/M-phases and displayed apoptotic effect. Molecular docking studies supported our findings and revealed that kaempferol-3,7-O-bis-α-L-rhamnoside and kaempferol-3-rutinoside were the most active inhibitors of Bcl-2. Therefore, C. annua herb seems to be a promising candidate to further advance anticancer research. In extrapolation, the intake of C. annua phenolics might be adventitious for alleviating breast and liver malignancies and tumoral proliferation in humans.
Collapse
Affiliation(s)
- Enas E. Eltamany
- Department of Pharmacognosy, Faculty of Pharmacy, Suez Canal University, Ismailia 41522, Egypt; (E.E.E.); (H.A.A.); (J.M.B.)
| | - Sameh S. Elhady
- Department of Natural Products, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia;
| | - Haidy A. Ahmed
- Department of Pharmacognosy, Faculty of Pharmacy, Suez Canal University, Ismailia 41522, Egypt; (E.E.E.); (H.A.A.); (J.M.B.)
- Ismailia Health Affairs Directorate, Ismailia 41525, Egypt
| | - Jihan M. Badr
- Department of Pharmacognosy, Faculty of Pharmacy, Suez Canal University, Ismailia 41522, Egypt; (E.E.E.); (H.A.A.); (J.M.B.)
| | - Ahmad O. Noor
- Department of Pharmacy Practice, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia;
| | - Safwat A. Ahmed
- Department of Pharmacognosy, Faculty of Pharmacy, Suez Canal University, Ismailia 41522, Egypt; (E.E.E.); (H.A.A.); (J.M.B.)
| | - Mohamed S. Nafie
- Department of Chemistry, Faculty of Science, Suez Canal University, Ismailia 41522, Egypt;
| |
Collapse
|
49
|
Hu WS, Min Nam D, Kim JS, Koo OK. Synergistic anti-biofilm effects of Brassicaceae plant extracts in combination with proteinase K against Escherichia coli O157:H7. Sci Rep 2020; 10:21090. [PMID: 33273563 PMCID: PMC7712827 DOI: 10.1038/s41598-020-77868-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Accepted: 11/03/2020] [Indexed: 02/01/2023] Open
Abstract
Bacteria can form biofilms, complex microbial communities protected from environmental stress, on food contact surfaces. Brassicaceae plant has been shown to contain bioactive compounds with antimicrobial activities. The objective of this study was to evaluate the synergistic effects of Brassicaceae species and proteinase K against E. coli O157:H7 biofilm. We determined the minimum biofilm inhibitory concentration, the fractional inhibitory concentration indexes, and the synergistic inhibitory effect of Raphanus sativus var. longipinnatus, R. sativus, and Brassica oleracea var. acephala extracts with proteinase K on E. coli O157:H7. The biofilm showed a 49% reduction with 2 mg/mL R. sativus. The combination of proteinase K 25 µg/mL significantly increased the effect of 2 mg/mL R. sativus var. longipinnatus and the combined treatment yielded up to 2.68 log reduction on stainless steel coupons. The results showed that the combination of R. sativus var. longipinnatus extract and proteinase K could serve as an anti-biofilm agent with synergistic effects for inhibiting E. coli O157:H7 biofilm on stainless steel surfaces.
Collapse
Affiliation(s)
- Wen Si Hu
- Department of Food and Nutrition, Gyeongsang National University, Jinju, Republic of Korea
| | - Da Min Nam
- Department of Food and Nutrition, Gyeongsang National University, Jinju, Republic of Korea
| | - Joo-Sung Kim
- Research Group of Consumer Safety, Korea Food Research Institute, Wanju-gun, Jeollabuk-do, Republic of Korea.,Department of Food Biotechnology, Korea University of Science and Technology, Daejeon, Republic of Korea
| | - Ok Kyung Koo
- Department of Food and Nutrition, Gyeongsang National University, Jinju, Republic of Korea. .,Institute of Agriculture and Life Science, Gyeongsang National University, Jinju, Republic of Korea.
| |
Collapse
|
50
|
Utilizing Anaerobic Digestates as Nutrient Solutions in Hydroponic Production Systems. SUSTAINABILITY 2020. [DOI: 10.3390/su122310076] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Moving food production into the urban and peri-urban areas is one way of facilitating a closed-loop approach, integrating waste handling with food production in order to recirculate nutrients and at the same time reduce the use of mined and fossil resources in the production. Using anaerobic digestion as a way of converting urban wastes to an energy source (methane) and a nutrient-rich biodigestate with subsequent use as fertilizer for food production seems like a feasible approach. However, utilizing urban wastes in plant production systems implies some challenges, such as high salinity of the waste, imbalanced composition of nutrients, and abundance of less favorable forms of nitrogen. In a series of experiments, these problems were addressed. Vegetables (Pak Choi) were cultivated hydroponically in a controlled climate. Experiments included increased salinity, elevated levels of nitrite, and different concentrations of the biogas digestate-based nutrient solution, with mineral based solutions as controls. In general, the mineral controls yielded around 50% higher fresh biomass than the organic solutions. However, the quality of the produce with respect to content of secondary metabolites such as vitamins was enhanced when the plants were cultivated with organic nutrient solutions. Increasing the concentration of NaCl to 241 mg Cl L−1 did not negatively affect plant performance. Increasing the concentration of nitrite negatively affected plant growth, with reductions in biomass production by up to 50%. Given this well-functioning nitrification process that did not result in high nitrite concentrations, the use of anaerobic digestates seems feasible for hydroponic production of vegetables.
Collapse
|