1
|
Scupham AJ, Tong C. Detection of equine parvovirus-hepatitis and efficacy of governmental regulation for equine biologics purity. J Vet Diagn Invest 2024:10406387241292343. [PMID: 39506428 PMCID: PMC11559848 DOI: 10.1177/10406387241292343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2024] Open
Abstract
In 2018, a new virus, named equine parvovirus-hepatitis (EqPV-H), was discovered in a biologic product that had been administered to horses that subsequently developed clinical signs of equine serum hepatitis (Theiler disease). Further correlation of the virus with the disease sparked federal requirements that all equine biologics be free of EqPV-H. The initial quantitative real-time PCR (qPCR) test for EqPV-H has proved to be sensitive to co-extracted PCR inhibitors in template nucleic acids, causing false-negative results. We investigated the use of digital PCR (dPCR) as a more robust test. Examination of 227 equine biologic product lots available for purchase both before and after regulatory implementation using both detection methods indicated that dPCR is a more reliable platform. Nevertheless, use of the qPCR method for product screening had reduced the fraction of serials with EqPV-H detected from 39.6% prior to regulation to 6.8% after regulatory implementation. Adoption of dPCR testing is an opportunity to further decrease the prevalence of EqPV-H in equine biologics.
Collapse
Affiliation(s)
- Alexandra J. Scupham
- Center for Veterinary Biologics, Animal and Plant Health Inspection Service, USDA, Ames, IA, USA
| | - Christopher Tong
- Center for Veterinary Biologics, Animal and Plant Health Inspection Service, USDA, Ames, IA, USA
| |
Collapse
|
2
|
Qu W, Liu J, Guo L, Wang F, Gong Z, Liu Y, Liu Y, Jia H, Rong H, Li M, Wei P, Wen D, Wang C, Xu R, Tang X, Chen S, Fu X, Li X, Wang Y, Wang Y, Zhang T, Wang Y, Chen L, Li J, Liu Y, Cai J, Jiang B, Zha L. Validation of the PowerPlex ®35GY System: a novel eight-dye STR multiplex kit on the Spectrum Compact CE System. Int J Legal Med 2024; 138:2299-2314. [PMID: 39134883 DOI: 10.1007/s00414-024-03308-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Accepted: 08/07/2024] [Indexed: 10/20/2024]
Abstract
The PowerPlex® 35GY System (Promega, USA) is an advanced eight-dye multiplex STR kit, incorporating twenty-three autosomal STR loci, eleven Y chromosome STR loci, one sex determining marker Amelogenin, and two quality indicators. This multiplex system includes 20 CODIS loci and up to 15 mini-STR loci with sizing values less than 250 bases. In this study, validation for PowerPlex® 35GY System was conducted following the guidelines of SWGDAM, encompassing sensitivity, precision, accuracy, concordance, species specificity, stutter, mixture, stability, and degraded DNA. The results from experiments demonstrated that the PowerPlex® 35GY System could effectively amplify DNA samples, with complete allele detection achieved at 125 pg. Moreover, over 90% of alleles from minor contributors were detected at a mixed ratio of 1:4. Additionally, the system was found to yield full profiles even in the presence of hematin, humic acid, and indigo. The PowerPlex® 35GY System demonstrated superior performance in the sensitivity and degraded DNA studies compared to a six-dye STR kit. Hence, it is evident that the PowerPlex® 35GY System is well-suited for forensic practice, whether in casework or for database samples. These findings provide strong support for the efficacy and reliability of the PowerPlex® 35GY System in forensic applications.
Collapse
Affiliation(s)
- Weifeng Qu
- Department of Forensic Science, School of Basic Medical Sciences, Central South University, No. 172. Tongzipo Road, Changsha, 410013, China
| | - Jinjie Liu
- Criminal Investigation Detachment, Beijing Municipal Public Security Bureau, No. 44. Banbuqiao Road, Beijing, 102611, China
| | - Lei Guo
- Criminial Institute, Anqing Municipal Public Security Bureau, No. 110. Zhenfeng Avenue, Anqing, 246000, China
| | - Feng Wang
- The First Research Institute, Ministry of Public Security of P.R.C, No.1. Shouti South Road, Beijing, 100044, China
| | - Zheng Gong
- Criminal Technology Detachment, Harbin Municipal Public Security Bureau, No. 35. Dongfeng Road, Harbin, 150010, China
| | - Yanan Liu
- Ministry of Education's Key Laboratory of Contemporary Anthropology, School of Life Sciences, Fudan University, No. 220. Handan Road, Shanghai, 200438, China
- Key Laboratory of Forensic Evidence and Science Technology, No. 803. Zhongshan North Road, Shanghai, 200083, China
| | - Yi Liu
- Department of Forensic Science, School of Basic Medical Sciences, Central South University, No. 172. Tongzipo Road, Changsha, 410013, China
| | - Hongtao Jia
- Department of Forensic Science, School of Basic Medical Sciences, Central South University, No. 172. Tongzipo Road, Changsha, 410013, China
| | - Haibo Rong
- The First Research Institute, Ministry of Public Security of P.R.C, No.1. Shouti South Road, Beijing, 100044, China
| | - Mao Li
- The First Research Institute, Ministry of Public Security of P.R.C, No.1. Shouti South Road, Beijing, 100044, China
| | - Penghua Wei
- The First Research Institute, Ministry of Public Security of P.R.C, No.1. Shouti South Road, Beijing, 100044, China
| | - Dan Wen
- Department of Forensic Science, School of Basic Medical Sciences, Central South University, No. 172. Tongzipo Road, Changsha, 410013, China
| | - Chudong Wang
- Department of Forensic Science, School of Basic Medical Sciences, Central South University, No. 172. Tongzipo Road, Changsha, 410013, China
| | - Ruyi Xu
- Department of Forensic Science, School of Basic Medical Sciences, Central South University, No. 172. Tongzipo Road, Changsha, 410013, China
| | - Xuan Tang
- Department of Forensic Science, School of Basic Medical Sciences, Central South University, No. 172. Tongzipo Road, Changsha, 410013, China
| | - Siqi Chen
- Department of Forensic Science, School of Basic Medical Sciences, Central South University, No. 172. Tongzipo Road, Changsha, 410013, China
| | - Xiaoyi Fu
- Department of Forensic Science, School of Basic Medical Sciences, Central South University, No. 172. Tongzipo Road, Changsha, 410013, China
| | - Xue Li
- Department of Forensic Science, School of Basic Medical Sciences, Central South University, No. 172. Tongzipo Road, Changsha, 410013, China
| | - Yue Wang
- Department of Forensic Science, School of Basic Medical Sciences, Central South University, No. 172. Tongzipo Road, Changsha, 410013, China
| | - Yuepeng Wang
- Department of Forensic Science, School of Basic Medical Sciences, Central South University, No. 172. Tongzipo Road, Changsha, 410013, China
| | - Tao Zhang
- The First Research Institute, Ministry of Public Security of P.R.C, No.1. Shouti South Road, Beijing, 100044, China
| | - Yuguang Wang
- The First Research Institute, Ministry of Public Security of P.R.C, No.1. Shouti South Road, Beijing, 100044, China
| | - Li Chen
- The First Research Institute, Ministry of Public Security of P.R.C, No.1. Shouti South Road, Beijing, 100044, China
| | - Jienan Li
- Department of Forensic Science, School of Basic Medical Sciences, Central South University, No. 172. Tongzipo Road, Changsha, 410013, China
| | - Ying Liu
- Department of Forensic Science, School of Basic Medical Sciences, Central South University, No. 172. Tongzipo Road, Changsha, 410013, China
| | - Jifeng Cai
- Department of Forensic Science, School of Basic Medical Sciences, Central South University, No. 172. Tongzipo Road, Changsha, 410013, China.
| | - Bowei Jiang
- The First Research Institute, Ministry of Public Security of P.R.C, No.1. Shouti South Road, Beijing, 100044, China.
| | - Lagabaiyila Zha
- Department of Forensic Science, School of Basic Medical Sciences, Central South University, No. 172. Tongzipo Road, Changsha, 410013, China.
| |
Collapse
|
3
|
Child HT, Wierzbicki L, Joslin GR, Tennant RK. Comparative evaluation of soil DNA extraction kits for long read metagenomic sequencing. Access Microbiol 2024; 6:000868.v3. [PMID: 39346682 PMCID: PMC11432601 DOI: 10.1099/acmi.0.000868.v3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Accepted: 09/12/2024] [Indexed: 10/01/2024] Open
Abstract
Metagenomics has been transformative in our understanding of the diversity and function of soil microbial communities. Applying long read sequencing to whole genome shotgun metagenomics has the potential to revolutionise soil microbial ecology through improved taxonomic classification, functional characterisation and metagenome assembly. However, optimisation of robust methods for long read metagenomics of environmental samples remains undeveloped. In this study, Oxford Nanopore sequencing using samples from five commercially available soil DNA extraction kits was compared across four soil types, in order to optimise read length and reproducibility for comparative long read soil metagenomics. Average extracted DNA lengths varied considerably between kits, but longer DNA fragments did not translate consistently into read lengths. Highly variable decreases in the length of resulting reads from some kits were associated with poor classification rate and low reproducibility in microbial communities identified between technical repeats. Replicate samples from other kits showed more consistent conversion of extracted DNA fragment size into read length and resulted in more congruous microbial community representation. Furthermore, extraction kits showed significant differences in the community representation and structure they identified across all soil types. Overall, the QIAGEN DNeasy PowerSoil Pro Kit displayed the best suitability for reproducible long-read WGS metagenomic sequencing, although further optimisation of DNA purification and library preparation may enable translation of higher molecular weight DNA from other kits into longer read lengths. These findings provide a novel insight into the importance of optimising DNA extraction for achieving replicable results from long read metagenomic sequencing of environmental samples.
Collapse
Affiliation(s)
- Harry T. Child
- Geography, Faculty of Environment, Science and Economy, University of Exeter, Amory Building, Rennes Drive, Exeter, Devon, EX4 4RJ, UK
| | - Lucy Wierzbicki
- Geography, Faculty of Environment, Science and Economy, University of Exeter, Amory Building, Rennes Drive, Exeter, Devon, EX4 4RJ, UK
| | - Gabrielle R. Joslin
- Geography, Faculty of Environment, Science and Economy, University of Exeter, Amory Building, Rennes Drive, Exeter, Devon, EX4 4RJ, UK
| | - Richard K. Tennant
- Geography, Faculty of Environment, Science and Economy, University of Exeter, Amory Building, Rennes Drive, Exeter, Devon, EX4 4RJ, UK
| |
Collapse
|
4
|
Oberreiter V, Gelabert P, Brück F, Franz S, Zelger E, Szedlacsek S, Cheronet O, Cano FT, Exler F, Zagorc B, Karavanić I, Banda M, Gasparyan B, Straus LG, Gonzalez Morales MR, Kappelman J, Stahlschmidt M, Rattei T, Kraemer SM, Sawyer S, Pinhasi R. Maximizing efficiency in sedimentary ancient DNA analysis: a novel extract pooling approach. Sci Rep 2024; 14:19388. [PMID: 39169089 PMCID: PMC11339378 DOI: 10.1038/s41598-024-69741-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Accepted: 08/08/2024] [Indexed: 08/23/2024] Open
Abstract
In the last few decades, the field of ancient DNA has taken a new direction towards using sedimentary ancient DNA (sedaDNA) for studying human and mammalian population dynamics as well as past ecosystems. However, the screening of numerous sediment samples from archaeological sites remains a time-consuming and costly endeavor, particularly when targeting hominin DNA. Here, we present a novel high-throughput method that facilitates the fast and efficient analysis of sediment samples by applying a pooled testing approach. This method combines multiple extracts, enabling early parallelization of laboratory procedures and effective aDNA screening. Pooled samples with detectable aDNA signals undergo detailed analysis, while empty pools are discarded. We have successfully applied our method to multiple sediment samples from Middle and Upper Paleolithic sites in Europe, Asia, and Africa. Notably, our results reveal that an aDNA signal remains discernible even when pooled with four negative samples. We also demonstrate that the DNA yield of double-stranded libraries increases significantly when reducing the extract input, potentially mitigating the effects of inhibition. By embracing this innovative approach, researchers can analyze large numbers of sediment samples for aDNA preservation, achieving significant cost reductions of up to 70% and reducing hands-on laboratory time to one-fifth.
Collapse
Affiliation(s)
- Victoria Oberreiter
- Department of Evolutionary Anthropology, University of Vienna, Vienna, Austria
- Human Evolution and Archaeological Sciences (HEAS), University of Vienna, Vienna, Austria
| | - Pere Gelabert
- Department of Evolutionary Anthropology, University of Vienna, Vienna, Austria.
- Human Evolution and Archaeological Sciences (HEAS), University of Vienna, Vienna, Austria.
- Departament de Biologia Animal, de Biologia Vegetal i d'Ecologia, Universitat Autònoma de Barcelona, Bellaterra, Spain.
| | - Florian Brück
- Department of Botany and Biodiversity Research, University of Vienna, Vienna, Austria
| | - Stefan Franz
- Department of Evolutionary Anthropology, University of Vienna, Vienna, Austria
| | - Evelyn Zelger
- Department of Evolutionary Anthropology, University of Vienna, Vienna, Austria
| | - Sophie Szedlacsek
- Department of Evolutionary Anthropology, University of Vienna, Vienna, Austria
| | - Olivia Cheronet
- Department of Evolutionary Anthropology, University of Vienna, Vienna, Austria
- Human Evolution and Archaeological Sciences (HEAS), University of Vienna, Vienna, Austria
| | | | - Florian Exler
- Department of Evolutionary Anthropology, University of Vienna, Vienna, Austria
- Human Evolution and Archaeological Sciences (HEAS), University of Vienna, Vienna, Austria
- Department of Environmental Geosciences, Centre for Microbiology and Environmental Systems Science, University of Vienna, Vienna, Austria
| | - Brina Zagorc
- Department of Evolutionary Anthropology, University of Vienna, Vienna, Austria
- Human Evolution and Archaeological Sciences (HEAS), University of Vienna, Vienna, Austria
| | - Ivor Karavanić
- Department of Archaeology, Faculty of Humanities and Social Sciences, University of Zagreb, Zagreb, Croatia
| | - Marko Banda
- Department of Archaeology, Faculty of Humanities and Social Sciences, University of Zagreb, Zagreb, Croatia
| | - Boris Gasparyan
- Institute of Archaeology and Ethnography, National Academy of Sciences of the Republic of Armenia, Yerevan, Armenia
| | - Lawrence Guy Straus
- Department of Anthropology, University of New Mexico, Albuquerque, USA
- EvoAdapta Group Universidad de Cantabria, Santander, Spain
| | - Manuel R Gonzalez Morales
- Instituto Internacional de Investigaciones Prehistóricas de Cantabria, Universidad de Cantabria, Gobierno de Cantabria, Banco Santander, Spain
| | - John Kappelman
- Department of Anthropology and Department of Earth and Planetary Sciences, The University of Texas, Austin, TX, USA
| | - Mareike Stahlschmidt
- Department of Evolutionary Anthropology, University of Vienna, Vienna, Austria
- Human Evolution and Archaeological Sciences (HEAS), University of Vienna, Vienna, Austria
| | - Thomas Rattei
- Division of Computational Systems Biology, Centre for Microbiology and Environmental Systems Science, University of Vienna, Vienna, Austria
| | - Stephan M Kraemer
- Human Evolution and Archaeological Sciences (HEAS), University of Vienna, Vienna, Austria
- Department of Environmental Geosciences, Centre for Microbiology and Environmental Systems Science, University of Vienna, Vienna, Austria
- Institut für Analytische Chemie, University of Vienna, Vienna, Austria
- Forschungsverbund Umwelt und Klima, University of Vienna, Vienna, Austria
| | - Susanna Sawyer
- Department of Evolutionary Anthropology, University of Vienna, Vienna, Austria.
- Human Evolution and Archaeological Sciences (HEAS), University of Vienna, Vienna, Austria.
| | - Ron Pinhasi
- Department of Evolutionary Anthropology, University of Vienna, Vienna, Austria.
- Human Evolution and Archaeological Sciences (HEAS), University of Vienna, Vienna, Austria.
| |
Collapse
|
5
|
Xiang R, Liu GY, Hou Y, Xie LX, Wang QS, Hu SQ. Double domain fusion improves the reverse transcriptase activity and inhibitor tolerance of Bst DNA polymerase. Int J Biol Macromol 2024; 274:133243. [PMID: 38901507 DOI: 10.1016/j.ijbiomac.2024.133243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 06/09/2024] [Accepted: 06/16/2024] [Indexed: 06/22/2024]
Abstract
To enhance the DNA/RNA amplification efficiency and inhibitor tolerance of Bst DNA polymerase, four chimeric Bst DNA polymerase by fusing with a DNA-binding protein Sto7d and/or a highly hydrophobic protein Hp47 to Bst DNA polymerase large fragment. One of chimeric protein HpStBL exhibited highest inhibitor tolerance, which retained high active under 0.1 U/μL sodium heparin, 0.8 ng/μL humic acid, 2.5× SYBR Green I, 8 % (v/v) whole blood, 20 % (v/v) tissue, and 2.5 % (v/v) stool. Meanwhile, HpStBL showed highest sensitivity (93.75 %) to crude whole blood infected with the African swine fever virus. Moreover, HpStBL showed excellent reverse transcriptase activity in reverse transcription loop-mediated isothermal amplification, which could successfully detect 0.5 pg/μL severe acute respiratory syndrome coronavirus 2 RNA in the presence of 1 % (v/v) stools. The fusion of two domains with different functions to Bst DNA polymerase would be an effective strategy to improve Bst DNA polymerase performance in direct loop-mediated isothermal amplification and reverse transcription loop-mediated isothermal amplification detection, and HpStBL would be a promising DNA polymerase for direct African swine fever virus/severe acute respiratory syndrome coronavirus 2 detection due to simultaneously increased inhibitor tolerance and reverse transcriptase activity.
Collapse
Affiliation(s)
- Rong Xiang
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China
| | - Guang-Yi Liu
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China; Guangzhou Enzyvalley Biotech Co., Ltd., Guangzhou 510555, China
| | - Yi Hou
- State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou 510640, China
| | - Long-Xu Xie
- Guangzhou Hybribio Pharmaceutical Technology Co., Ltd., Guangzhou 510700, China
| | - Qing-Song Wang
- Guangzhou Hybribio Pharmaceutical Technology Co., Ltd., Guangzhou 510700, China
| | - Song-Qing Hu
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China.
| |
Collapse
|
6
|
Sakatoku A, Suzuki T, Hatano K, Seki M, Tanaka D, Nakamura S, Suzuki N, Isshiki T. Inhibitors of LAMP used to detect Tenacibaculum sp. strain Pbs-1 associated with black-spot shell disease in Akoya pearl oysters, and additives to reduce the effect of the inhibitors. J Microbiol Methods 2024; 223:106986. [PMID: 38969181 DOI: 10.1016/j.mimet.2024.106986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Revised: 06/30/2024] [Accepted: 06/30/2024] [Indexed: 07/07/2024]
Abstract
Black-spot shell disease is an unresolved disease that decreases pearl quality and threatens pearl oyster survival. In previous studies, the bacterium Tenacibaculum sp. strain Pbs-1 was isolated from diseased Akoya pearl oysters Pinctada fucata, and a rapid, specific, and sensitive loop-mediated isothermal amplification (LAMP) assay for detecting this pathogen was established. This technology has considerable potential for routine diagnosis of strain Pbs-1 in oyster hatcheries and/or pearl farms; therefore, it is vital to identify substances in environmental samples that might inhibit LAMP and to find additives that can reduce the inhibition. In this study, we investigated the effects of six chemicals or proteins, otherwise known as conventional PCR inhibitors, on LAMP, using the DNA of strain Pbs-1 as template: humic acid, urea, iron (III) chloride hexahydrate, melanin, myoglobin, and Ethylenediamine-N,N,N',N'-tetraacetic acid, disodium salt, dihydrate (EDTA; pH 6.5). Next, to reduce the effects of identified inhibitors, we tested the addition of bovine serum albumin (BSA) or T4 gene 32 protein (gp32) to the LAMP assay. When 50 ng of DNA template was used, 4 ng/μL of humic acid, 0.05% melanin, and 10 mM of EDTA (pH 6.5) inhibited the LAMP reaction, whereas myoglobin, urea, and FeCl3 had no effect. When 50 pg of DNA template was used, 4 ng/μL of humic acid, 0.05% melanin, 4 μg/μL of myoglobin, 10 μg/μL of urea, and 10 mM of EDTA inhibited the LAMP reaction. Thus, it was shown that the gene-amplification inhibitory effect of melanin, humic acid, and urea could be reduced by adding BSA or gp32 to the LAMP reaction mixture. This technique could be applied as part of a protocol to prevent mass mortalities of pearl oysters; moreover, the results enhance our knowledge about substances that inhibit LAMP and methods to reduce the inhibition, which have rarely been reported.
Collapse
Affiliation(s)
- Akihiro Sakatoku
- School of Science, Academic Assembly, University of Toyama, Toyama 930-8555, Japan.
| | - Takaya Suzuki
- School of Science, Academic Assembly, University of Toyama, Toyama 930-8555, Japan
| | - Kaito Hatano
- Noto Marine Laboratory, Institute of Nature and Environmental Technology, Kanazawa University, Ogi, Noto-cho, Ishikawa 927-0553, Japan
| | - Makoto Seki
- School of Science, Academic Assembly, University of Toyama, Toyama 930-8555, Japan
| | - Daisuke Tanaka
- School of Science, Academic Assembly, University of Toyama, Toyama 930-8555, Japan
| | - Shogo Nakamura
- School of Science, Academic Assembly, University of Toyama, Toyama 930-8555, Japan
| | - Nobuo Suzuki
- Noto Marine Laboratory, Institute of Nature and Environmental Technology, Kanazawa University, Ogi, Noto-cho, Ishikawa 927-0553, Japan
| | - Tadashi Isshiki
- Graduate School of Bioresources, Mie University, 1577 Kurimamachiya, Tsu, Mie 514-8507, Japan
| |
Collapse
|
7
|
Lewis M, Lainé K, Dawnay L, Lamont D, Scott K, Mariani S, Hӓnfling B, Dawnay N. The forensic potential of environmental DNA (eDNA) in freshwater wildlife crime investigations: From research to application. Sci Justice 2024; 64:443-454. [PMID: 39025568 DOI: 10.1016/j.scijus.2024.06.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 06/07/2024] [Accepted: 06/15/2024] [Indexed: 07/20/2024]
Abstract
Environmental DNA (eDNA) is widely used in biodiversity, conservation, and ecological studies but despite its successes, similar approaches have not yet been regularly applied to assist in wildlife crime investigations. The purpose of this paper is to review current eDNA methods and assess their potential forensic application in freshwater environments considering collection, transport and persistence, analysis, and interpretation, while identifying additional research required to present eDNA evidence in court. An extensive review of the literature suggests that commonly used collection methods can be easily adapted for forensic frameworks providing they address the appropriate investigative questions and take into consideration the uniqueness of the target species, its habitat, and the requirements of the end user. The use of eDNA methods to inform conservationists, monitor biodiversity and impacts of climate change, and detect invasive species and pathogens shows confidence within the scientific community, making the acceptance of these methods by the criminal justice system highly possible. To contextualise the potential application of eDNA on forensic investigations, two test cases are explored involving i) species detection and ii) species localisation. Recommendations for future work within the forensic eDNA discipline include development of suitable standardised collection methods, considered collection strategies, forensically validated assays and publication of procedures and empirical research studies to support implementation within the legal system.
Collapse
Affiliation(s)
- Matthew Lewis
- School of Pharmacy and Biomolecular Sciences, Liverpool John Moores University, Byrom Street, Liverpool, UK
| | - Katie Lainé
- School of Pharmacy and Biomolecular Sciences, Liverpool John Moores University, Byrom Street, Liverpool, UK
| | - Louise Dawnay
- School of Pharmacy and Biomolecular Sciences, Liverpool John Moores University, Byrom Street, Liverpool, UK; International Study Centre, Liverpool John Moores University, Mount Pleasant, Liverpool, UK
| | - David Lamont
- School of Pharmacy and Biomolecular Sciences, Liverpool John Moores University, Byrom Street, Liverpool, UK; Forensic Research Institute, Liverpool John Moores University, Byrom Street, Liverpool, UK
| | - Kirstie Scott
- School of Biological and Environmental Sciences, Liverpool John Moores University, Byrom Street, Liverpool, UK; Forensic Research Institute, Liverpool John Moores University, Byrom Street, Liverpool, UK
| | - Stefano Mariani
- School of Biological and Environmental Sciences, Liverpool John Moores University, Byrom Street, Liverpool, UK; Forensic Research Institute, Liverpool John Moores University, Byrom Street, Liverpool, UK
| | - Bernd Hӓnfling
- Institute for Biodiversity and Freshwater Conservation, University of the Highlands and Islands, Inverness, UK
| | - Nick Dawnay
- School of Pharmacy and Biomolecular Sciences, Liverpool John Moores University, Byrom Street, Liverpool, UK; Forensic Research Institute, Liverpool John Moores University, Byrom Street, Liverpool, UK.
| |
Collapse
|
8
|
Kasu M, Ristow PG, Burrows AM, Kuplik Z, Gibbons MJ, D'Amato ME. Novel buffer for long-term preservation of DNA in biological material at room temperature. Biotechniques 2024; 76:357-370. [PMID: 38949197 DOI: 10.1080/07366205.2024.2360813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Accepted: 05/24/2024] [Indexed: 07/02/2024] Open
Abstract
The collection and preservation of biological material before DNA analysis is critical for inter alia biomedical research, medical diagnostics, forensics and biodiversity conservation. In this study, we evaluate an in-house formulated buffer called the Forensic DNA Laboratory-buffer (FDL-buffer) for preservation of biological material for long term at room temperature. Human saliva stored in the buffer for 8 years, human blood stored for 3 years and delicate animal tissues from the jellyfish Pelagia noctiluca comb jelly Beroe sp., stored for 4 and 6 years respectively consistently produced high-quality DNA. FDL-buffer exhibited compatibility with standard organic, salting out and spin-column extraction methods, making it versatile and applicable to a wide range of applications, including automation.
Collapse
Affiliation(s)
- Mohaimin Kasu
- Department of Biotechnology, Forensic DNA Laboratory, University of the Western Cape, Bellville, Western Cape, 7535, South Africa
| | - Peter G Ristow
- Department of Biotechnology, Forensic DNA Laboratory, University of the Western Cape, Bellville, Western Cape, 7535, South Africa
| | - Adria Michelle Burrows
- Department of Biotechnology, Forensic DNA Laboratory, University of the Western Cape, Bellville, Western Cape, 7535, South Africa
| | - Zafrir Kuplik
- Department of Biodiversity & Conservation Biology, University of the Western Cape, Bellville, Western Cape, 7535, South Africa
- The Steinhardt Museum of Natural History, Tel Aviv University, Tel Aviv, Israel
| | - Mark J Gibbons
- Department of Biodiversity & Conservation Biology, University of the Western Cape, Bellville, Western Cape, 7535, South Africa
| | - Maria E D'Amato
- Department of Biotechnology, Forensic DNA Laboratory, University of the Western Cape, Bellville, Western Cape, 7535, South Africa
| |
Collapse
|
9
|
Averill JR, Lin JC, Jung J, Jung H. Novel insights into the role of translesion synthesis polymerase in DNA incorporation and bypass of 5-fluorouracil in colorectal cancer. Nucleic Acids Res 2024; 52:4295-4312. [PMID: 38416579 PMCID: PMC11077093 DOI: 10.1093/nar/gkae102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Revised: 01/12/2024] [Accepted: 02/01/2024] [Indexed: 03/01/2024] Open
Abstract
5-Fluorouracil (5-FU) is the first-line chemotherapeutic agent in colorectal cancer, and resistance to 5-FU easily emerges. One of the mechanisms of drug action and resistance of 5-FU is through DNA incorporation. Our quantitative reverse-transcription PCR data showed that one of the translesion synthesis (TLS) DNA polymerases, DNA polymerase η (polη), was upregulated within 72 h upon 5-FU administration at 1 and 10 μM, indicating that polη is one of the first responding polymerases, and the only TLS polymerase, upon the 5-FU treatment to incorporate 5-FU into DNA. Our kinetic studies revealed that 5-fluoro-2'-deoxyuridine triphosphate (5FdUTP) was incorporated across dA 41 and 28 times more efficiently than across dG and across inosine, respectively, by polη indicating that the mutagenicity of 5-FU incorporation is higher in the presence of inosine and that DNA lesions could lead to more mutagenic incorporation of 5-FU. Our polη crystal structures complexed with DNA and 5FdUTP revealed that dA:5FdUTP base pair is like dA:dTTP in the active site of polη, while 5FdUTP adopted 4-enol tautomer in the base pairs with dG and HX increasing the insertion efficiency compared to dG:dTTP for the incorrect insertions. These studies confirm that polη engages in the DNA incorporation and bypass of 5-FU.
Collapse
Affiliation(s)
- Jameson R Averill
- Division of Medicinal Chemistry, School of Pharmacy, University of Connecticut, Storrs, CT 06269, USA
| | - Jackson C Lin
- Division of Medicinal Chemistry, School of Pharmacy, University of Connecticut, Storrs, CT 06269, USA
| | - John Jung
- Division of Medicinal Chemistry, School of Pharmacy, University of Connecticut, Storrs, CT 06269, USA
| | - Hunmin Jung
- Division of Medicinal Chemistry, School of Pharmacy, University of Connecticut, Storrs, CT 06269, USA
| |
Collapse
|
10
|
Bonsu DNO, Higgins D, Simon C, Henry JM, Austin JJ. Metal-DNA interactions: Exploring the impact of metal ions on key stages of forensic DNA analysis. Electrophoresis 2024; 45:779-793. [PMID: 37638716 DOI: 10.1002/elps.202300070] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 06/15/2023] [Accepted: 08/18/2023] [Indexed: 08/29/2023]
Abstract
Forensic DNA analysis continues to be hampered by the complex interactions between metals and DNA. Metal ions may cause direct DNA damage, inhibit DNA extraction and polymerase chain reaction (PCR) amplification or both. This study evaluated the impact of metal ions on DNA extraction, quantitation, and short tandem repeat profiling using cell-free and cellular (saliva) DNA. Of the 11 metals assessed, brass exhibited the strongest PCR inhibitory effects, for both custom and Quantifiler Trio quantitation assays. Metal ion inhibition varied across the two quantitative PCR assays and the amount of DNA template used. The Quantifiler Trio internal PCR control (IPC) only revealed evidence of PCR inhibition at higher metal ion concentrations, limiting the applicability of IPC as an indicator of the presence of metal inhibitor in a sample. Notably, ferrous ions were found to significantly decrease the extraction efficiency of the DNA-IQ DNA extraction system. The amount of DNA degradation and inhibition in saliva samples caused by metal ions increased with a dilution of the sample, suggesting that the saliva matrix provides protection from metal ion effects.
Collapse
Affiliation(s)
- Dan Nana Osei Bonsu
- Chemistry and Forensic Science, School of Environment and Science, Griffith University, Nathan, Queensland, Australia
- Forensic Research Group, Australian Centre for Ancient DNA (ACAD), School of Biological Sciences, The University of Adelaide, Adelaide, South Australia, Australia
| | - Denice Higgins
- Forensic Research Group, Australian Centre for Ancient DNA (ACAD), School of Biological Sciences, The University of Adelaide, Adelaide, South Australia, Australia
- School of Dentistry, Health and Medical Sciences, The University of Adelaide, Adelaide, South Australia, Australia
| | - Claire Simon
- Forensic Science SA, Attorney-General's Department, Adelaide, South Australia, Australia
| | - Julianne M Henry
- Forensic Science SA, Attorney-General's Department, Adelaide, South Australia, Australia
| | - Jeremy J Austin
- Forensic Research Group, Australian Centre for Ancient DNA (ACAD), School of Biological Sciences, The University of Adelaide, Adelaide, South Australia, Australia
| |
Collapse
|
11
|
McDonald C, Taylor D, Linacre A. PCR in Forensic Science: A Critical Review. Genes (Basel) 2024; 15:438. [PMID: 38674373 PMCID: PMC11049589 DOI: 10.3390/genes15040438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 03/26/2024] [Accepted: 03/27/2024] [Indexed: 04/28/2024] Open
Abstract
The polymerase chain reaction (PCR) has played a fundamental role in our understanding of the world, and has applications across a broad range of disciplines. The introduction of PCR into forensic science marked the beginning of a new era of DNA profiling. This era has pushed PCR to its limits and allowed genetic data to be generated from trace DNA. Trace samples contain very small amounts of degraded DNA associated with inhibitory compounds and ions. Despite significant development in the PCR process since it was first introduced, the challenges of profiling inhibited and degraded samples remain. This review examines the evolution of the PCR from its inception in the 1980s, through to its current application in forensic science. The driving factors behind PCR evolution for DNA profiling are discussed along with a critical comparison of cycling conditions used in commercial PCR kits. Newer PCR methods that are currently used in forensic practice and beyond are examined, and possible future directions of PCR for DNA profiling are evaluated.
Collapse
Affiliation(s)
- Caitlin McDonald
- College of Science & Engineering, Flinders University, GPO Box 2100, Adelaide, SA 5001, Australia; (C.M.); (A.L.)
| | - Duncan Taylor
- College of Science & Engineering, Flinders University, GPO Box 2100, Adelaide, SA 5001, Australia; (C.M.); (A.L.)
- Forensic Science SA, GPO Box 2790, Adelaide, SA 5001, Australia
| | - Adrian Linacre
- College of Science & Engineering, Flinders University, GPO Box 2100, Adelaide, SA 5001, Australia; (C.M.); (A.L.)
| |
Collapse
|
12
|
Nwe MK, Jangpromma N, Taemaitree L. Evaluation of molecular inhibitors of loop-mediated isothermal amplification (LAMP). Sci Rep 2024; 14:5916. [PMID: 38467647 PMCID: PMC10928092 DOI: 10.1038/s41598-024-55241-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Accepted: 02/21/2024] [Indexed: 03/13/2024] Open
Abstract
Loop-mediated isothermal amplification (LAMP) is a cost-effective and easy-to-perform assay that enables the direct detection of DNA. Its use in point-of-care diagnostic tests is growing, while it has the potential to be used in presumptive on-the-field forensic tests. Samples are often collected from complex matrices that contain high levels of contaminants. Herein, we evaluate the effect of seven common DNA amplification inhibitors on LAMP - bile salts, calcium chloride, hematin, humic acid, immunoglobulin G, tannic acid and urea. We study the effect of each inhibitor individually in real-time detection systems coupled with end-point measurements to delineate their inhibitory effects from the matrix in which they may be found. Our studies show LAMP inhibitors generally delay the onset of amplicon formation and quench fluorescence at similar or higher concentrations compared to PCR, but that end-point measurements of LAMP amplicons are unaffected. This is important as LAMP amplicons can be detected in non-fluorometric ways thus contributing to the assertions that LAMP is more robust to inhibitors than PCR.
Collapse
Affiliation(s)
- May Khat Nwe
- Department of Integrated Science, Forensic Science Program, Faculty of Science, Khon Kaen University, Khon Kaen, 40002, Thailand
| | - Nisachon Jangpromma
- Protein and Proteomics Research Center for Commercial and Industrial Purposes (ProCCI), Faculty of Science, Khon Kaen University, Khon Kaen, 40002, Thailand
- Department of Biochemistry, Faculty of Science, Khon Kaen University, Khon Kaen, 40002, Thailand
| | - Lapatrada Taemaitree
- Department of Integrated Science, Forensic Science Program, Faculty of Science, Khon Kaen University, Khon Kaen, 40002, Thailand.
| |
Collapse
|
13
|
Hymus CM, Baxter FO, Ta H, Tran T, de Sousa C, Mountford NS, Tay JW. A comparison of six adhesive tapes as tape lifts for efficient trace DNA recovery without the transfer of PCR inhibitors. Leg Med (Tokyo) 2024; 67:102330. [PMID: 37802731 DOI: 10.1016/j.legalmed.2023.102330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 09/05/2023] [Accepted: 09/27/2023] [Indexed: 10/08/2023]
Abstract
Tape-lifting is a non-destructive method employed in the laboratory to recover and collect trace DNA evidence from crime scene exhibits with porous surfaces. The success of tape-lifting is a balance between capturing the biological material and compatibility with downstream DNA extraction processes to ensure efficient release of the tape-lifted material during DNA extraction. In this study, six commercially available low-, regular- and high-tack adhesive tapes were evaluated. The low-tack S183 tape and the highly adhesive S-Hold tape were compared for DNA recovery efficiency from different materials commonly encountered in casework. All tape-lifts were processed using PrepFiler Express™ BTA and AutoMate Express™ Forensic DNA extraction systems, DNA samples quantitated by Quantifiler TRIO, amplified using Powerplex® 21 and VeriFiler™ PLUS (VFP), and analysed on a 3500xl genetic analyser to evaluate the quality of the resultant STR profiles obtained. The more adhesive S-Hold tape recovered comparable or more DNA than the low-tack S183 tape from the majority of materials tested. However, STR profiles obtained from S183 tape-lifts were of markedly higher quality compared to S-Hold tape-lifts. This was most evident for towel, denim and printed chiffon, where S-Hold samples exhibited severe PCR inhibition, with VFP internal quality markers confirming the presence of inhibitors. The findings suggest that strong adhesion is not necessarily beneficial for tape-lifting, as the low tack S183 tape was able to efficiently recover cellular material from the surface of porous substrates commonly encountered in casework, while avoiding the co-transfer of PCR-inhibitory substances from the sampled material.
Collapse
Affiliation(s)
- Colby M Hymus
- Forensic Biology Department, PathWest Laboratory Medicine, Western Australia, Australia
| | - Fiona O Baxter
- Forensic Biology Department, PathWest Laboratory Medicine, Western Australia, Australia
| | - Hoan Ta
- Forensic Biology Department, PathWest Laboratory Medicine, Western Australia, Australia
| | - Teresa Tran
- Forensic Biology Department, PathWest Laboratory Medicine, Western Australia, Australia
| | - Clare de Sousa
- Forensic Biology Department, PathWest Laboratory Medicine, Western Australia, Australia
| | - Nicholas S Mountford
- Forensic Biology Department, PathWest Laboratory Medicine, Western Australia, Australia
| | - Jasmine W Tay
- Forensic Biology Department, PathWest Laboratory Medicine, Western Australia, Australia.
| |
Collapse
|
14
|
Ren Q, Guo X, Yang D, Zhao C, Zhang X, Xia X. A wide survey of heavy metals-induced in-vitro DNA replication stress characterized by rate-limited replication. Curr Res Toxicol 2024; 6:100152. [PMID: 38327637 PMCID: PMC10848000 DOI: 10.1016/j.crtox.2024.100152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 01/12/2024] [Accepted: 01/25/2024] [Indexed: 02/09/2024] Open
Abstract
Heavy metals (HMs) are environmental pollutants that pose a threat to human health and have been accepted to cause various diseases, including cancer and developmental disorders. DNA replication stress has been identified to be associated with such diseases. However, the effect of HMs exclusively on DNA replication stress is still not well understood. In this study, DNA replication stress induced by thirteen HMs was assessed using a simplified in-vitro DNA replication model. Two parameters, Cte/Ctc reflecting the cycle threshold value alteration and Ke/Kc reflecting the linear phase slope change, were calculated based on the DNA replication amplification curve to evaluate the rate of exponential and linear phases. These parameters were used to detect the replication rate reflecting in-vitro DNA replication stress induced by tested HMs. According to the effective concentrations and rate-limiting degree, HMs were ranked as follows: Hg, Ce > Pb > Zn > Cr > Cd > Co > Fe > Mn, Cu, Bi, Sr, Ni. Additionally, EDTA could relieve the DNA replication stress induced by some HMs. In conclusion, this study highlights the potential danger of HMs themselves on DNA replication and provides new insight into the possible links between HMs and DNA replication-related diseases.
Collapse
Affiliation(s)
- Qidong Ren
- Key Laboratory of Novel Food Resources Processing, Ministry of Agriculture and Rural Affairs/Key Laboratory of Agro-Products Processing Technology of Shandong Province/Institute of Agro-Food Science and Technology, Shandong Academy of Agricultural Sciences, 23788 Gongye North Road, Jinan 250100, China
- State Key Laboratory of Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, China
| | - Xuejun Guo
- State Key Laboratory of Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, China
| | - Dong Yang
- Gene Engineering and Biotechnology Beijing Key Laboratory, College of Life Sciences, Beijing Normal University, Beijing 100875, China
| | - Chuanfang Zhao
- State Key Laboratory of Environmental Chemistry and Eco-Toxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Xiangyuan Zhang
- State Key Laboratory of Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, China
| | - Xinghui Xia
- State Key Laboratory of Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, China
| |
Collapse
|
15
|
Maizatul-Suriza M, Dickinson M, Al-Jaf B, Madihah AZ. Cross-pathogenicity of Phytophthora palmivora associated with bud rot disease of oil palm and development of biomarkers for detection. World J Microbiol Biotechnol 2024; 40:55. [PMID: 38165501 DOI: 10.1007/s11274-023-03860-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Accepted: 11/27/2023] [Indexed: 01/03/2024]
Abstract
Phytophthora palmivora has caused disease in many crops including oil palm in the South America region. The pathogen has had a significant economic impact on oil palm cultivation in Colombia, and therefore poses a threat to oil palm cultivation in other regions of the World, especially in Southeast Asia, the largest producer of the crop. This study aimed to look at the ability of isolates from Malaysia, Colombia, and other regions to cross-infect Malaysian oil palm, durian, and cocoa and to develop specific biomarkers and assays for identification, detection, and diagnosis of P. palmivora as a key component for the oil palm biosecurity continuum in order to contain the disease especially at the ports of entry. We have developed specific molecular biomarkers to identify and detect Phytophthora palmivora using polymerase chain reaction (PCR) and real-time loop mediated isothermal amplification (rt-LAMP) in various sample types such as soil and plants. The limit of detection (DNA template, pure culture assay) for the PCR assay is 5.94 × 10-2 ng µl-1 and for rt-LAMP is 9.28 × 10-4 ng µl-1. Diagnosis using rt-LAMP can be achieved within 30 min of incubation. In addition, PCR primer pair AV3F/AV3R developed successfully distinguished the Colombian and Malaysian P. palmivora isolates.
Collapse
Affiliation(s)
- Mohamed Maizatul-Suriza
- Malaysian Palm Oil Board, 6, Persiaran Institusi, Bandar Baru Bangi, 43000, Kajang, Selangor, Malaysia.
- Plant and Crop Sciences, School of Biosciences, University of Nottingham, Sutton Bonington Campus, Loughborough, LE12 5RD, Leicestershire, UK.
| | - Matthew Dickinson
- Plant and Crop Sciences, School of Biosciences, University of Nottingham, Sutton Bonington Campus, Loughborough, LE12 5RD, Leicestershire, UK
| | - Bryar Al-Jaf
- Plant and Crop Sciences, School of Biosciences, University of Nottingham, Sutton Bonington Campus, Loughborough, LE12 5RD, Leicestershire, UK
- Horticulture Department, College of Agricultural Engineering Sciences, University of Sulaimani, Sulaimani, Iraq
| | - Ahmad Zairun Madihah
- Malaysian Palm Oil Board, 6, Persiaran Institusi, Bandar Baru Bangi, 43000, Kajang, Selangor, Malaysia
| |
Collapse
|
16
|
Ginart S, Garrigos Calivares L, Caputo M, Corach D, Sala A. Improving the efficiency of Y-chromosome detection and the quality of STR typing in forensic casework with an in-house made qPCR and HRM system based on SYTO™ 9 chemistry. Forensic Sci Int 2024; 354:111893. [PMID: 38064775 DOI: 10.1016/j.forsciint.2023.111893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 11/13/2023] [Accepted: 11/21/2023] [Indexed: 01/12/2024]
Abstract
DNA quantification prior to STR amplification is a crucial step in forensic casework. Obtaining good-quality genetic STR profiles depends mainly on the amount and integrity of the DNA input in the PCR. In addition, the detection of male trace DNA provides key information for forensic investigation. AIM To evaluate the correlation between the quantification results obtained with the previously developed Amel-Y system, and its ability to detect Y-chromosome DNA by HRM, with the resulting STR profiles, and to ultimately show that Amel-Y can be routinely used in forensic casework to improve STR and Y-STR results. MATERIAL & METHODS Biological samples derived from forensic casework (85 reference and 391 evidence samples) were quantified by the Amel-Y system (a duplex qPCR/HRM based on SYTO™ 9 chemistry) using Rotor-Gene 6000. STRs were amplified and analyzed with GeneAmp™ PCR System 9700 or Veriti™ Thermal Cyclers and ABI 3500 Genetic Analyzer, respectively. RESULTS After DNA normalization, a total of 386 STR profiles were obtained (305 full and 81 partial). Sex typing by HRM was 100% successful in reference samples. Male DNA was detected by HRM in 210 evidence samples. 80/201 were mixed with an excess of female DNA. In addition, Amel-Y was able to detect Y-chromosome DNA in mixed samples that did not amplify the Y-variant of Amelogenin marker with commercial STR kits. The reproducibility and precision of the Amel-Y system were demonstrated (CVCt% ≤ 9.55) within the dynamic range analyzed (0.016-50 ng/µL; 41 independent runs). Amel-Y also proved to be compatible with other real-time PCR platforms. CONCLUSION We demonstrated that Amel-Y is a robust quantification system that can be routinely used in forensic casework to obtain reliable autosomal STR profiles and can be suitable as a predictor for Y-STR typing success when male DNA is detected. HRM can be used as a rapid screening tool for male DNA detection in mixed samples. Alternative designs like Amel-Y offer independence from commercial quantification kits in forensic labs.
Collapse
Affiliation(s)
- S Ginart
- Centro de referencia en Identificación Genética Humana de la Universidad de Buenos Aires, Cátedra de Genética Forense y Servicio de Huellas Digitales Genéticas, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Junín 956 CP 1113, Ciudad Autónoma de Buenos Aires, Argentina; Consejo Nacional de Investigaciones Científicas y Tecnológicas-CONICET, Godoy Cruz 2290 CP 1425, Ciudad Autónoma de Buenos Aires, Argentina.
| | - L Garrigos Calivares
- Centro de referencia en Identificación Genética Humana de la Universidad de Buenos Aires, Cátedra de Genética Forense y Servicio de Huellas Digitales Genéticas, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Junín 956 CP 1113, Ciudad Autónoma de Buenos Aires, Argentina; Consejo Nacional de Investigaciones Científicas y Tecnológicas-CONICET, Godoy Cruz 2290 CP 1425, Ciudad Autónoma de Buenos Aires, Argentina
| | - M Caputo
- Centro de referencia en Identificación Genética Humana de la Universidad de Buenos Aires, Cátedra de Genética Forense y Servicio de Huellas Digitales Genéticas, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Junín 956 CP 1113, Ciudad Autónoma de Buenos Aires, Argentina; Consejo Nacional de Investigaciones Científicas y Tecnológicas-CONICET, Godoy Cruz 2290 CP 1425, Ciudad Autónoma de Buenos Aires, Argentina
| | - D Corach
- Centro de referencia en Identificación Genética Humana de la Universidad de Buenos Aires, Cátedra de Genética Forense y Servicio de Huellas Digitales Genéticas, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Junín 956 CP 1113, Ciudad Autónoma de Buenos Aires, Argentina; Consejo Nacional de Investigaciones Científicas y Tecnológicas-CONICET, Godoy Cruz 2290 CP 1425, Ciudad Autónoma de Buenos Aires, Argentina
| | - A Sala
- Centro de referencia en Identificación Genética Humana de la Universidad de Buenos Aires, Cátedra de Genética Forense y Servicio de Huellas Digitales Genéticas, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Junín 956 CP 1113, Ciudad Autónoma de Buenos Aires, Argentina; Consejo Nacional de Investigaciones Científicas y Tecnológicas-CONICET, Godoy Cruz 2290 CP 1425, Ciudad Autónoma de Buenos Aires, Argentina
| |
Collapse
|
17
|
Wang L, Zhou JC, Li ZH, Zhang X, Leung KMY, Yuan L, Sheng GP. Facet-Specific Photocatalytic Degradation of Extracellular Antibiotic Resistance Genes by Hematite Nanoparticles in Aquatic Environments. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:21835-21845. [PMID: 38085064 DOI: 10.1021/acs.est.3c06571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2023]
Abstract
The persistence of extracellular antibiotic resistance genes (ARGs) in aquatic environments has attracted increasing attention due to their potential threat to public health and the environment. However, the fate of extracellular ARGs in receiving water remains largely unknown. This study investigated the influence of hematite nanoparticles, a widespread natural mineral, on the photodegradation of extracellular ARGs in river water. Results showed that under exposure to visible light, hematite nanoparticles, at environmental concentrations, resulted in a 3-5 orders of magnitude reduction in extracellular ARGs. This photodegradation of extracellular ARGs is shown to be facet-dependent; the (001) facet of hematite demonstrates a higher removal rate than that of the (100) facet, which is ascribed to its enhanced adsorption capability and higher hydroxyl radical (•OH) production. Density functional theory (DFT) calculations corroborate this finding, indicating elevated iron density, larger adsorption energy, and lower energy barrier of •OH formation on the (001) facet, providing more active sites and •OH generation for extracellular ARG interaction. Gel electrophoresis and atomic force microscopy analyses further confirm that the (001) facet causes more substantial damage to extracellular ARGs than the (100) facet. These findings pave the way for predicting the photodegradation efficiency of hematite nanoparticles with varied facets, thereby shedding light on the inherent self-purification capacity for extracellular ARGs in both natural and engineered aquatic environments.
Collapse
Affiliation(s)
- Li Wang
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei 230026, China
- USTC-CityU Joint Advanced Research Center, Suzhou Institute for Advanced Research, University of Science and Technology of China, Suzhou 215123, China
| | - Jing-Chen Zhou
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei 230026, China
| | - Zheng-Hao Li
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei 230026, China
| | - Xin Zhang
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei 230026, China
| | - Kenneth Mei Yee Leung
- State Key Laboratory of Marine Pollution and Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong 999077, China
| | - Li Yuan
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei 230026, China
| | - Guo-Ping Sheng
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei 230026, China
| |
Collapse
|
18
|
Bessière P, Hayes B, Filaire F, Lèbre L, Vergne T, Pinson M, Croville G, Guérin JL. Optimizing environmental viral surveillance: bovine serum albumin increases RT-qPCR sensitivity for high pathogenicity avian influenza H5Nx virus detection from dust samples. Microbiol Spectr 2023; 11:e0305523. [PMID: 37982626 PMCID: PMC10715206 DOI: 10.1128/spectrum.03055-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Accepted: 10/15/2023] [Indexed: 11/21/2023] Open
Abstract
IMPORTANCE With the circulation of high pathogenicity avian influenza viruses having intensified considerably in recent years, the European Union is considering the vaccination of farmed birds. A prerequisite for this vaccination is the implementation of drastic surveillance protocols. Environmental sampling is a relevant alternative to animal sampling. However, environmental samples often contain inhibitory compounds in large enough quantities to inhibit RT-qPCR reactions. As bovine serum albumin is a molecule used in many fields to overcome this inhibitory effect, we tested its use on dust samples from poultry farms in areas heavily affected by HPAIV epizootics. Our results show that its use significantly increases the sensitivity of the method.
Collapse
Affiliation(s)
| | - Brandon Hayes
- IHAP, Université de Toulouse, INRAE, ENVT, Toulouse, France
| | - Fabien Filaire
- IHAP, Université de Toulouse, INRAE, ENVT, Toulouse, France
- THESEO France, LanXess Biosecurity, LanXess Group, Laval, France
| | - Laetitia Lèbre
- IHAP, Université de Toulouse, INRAE, ENVT, Toulouse, France
| | | | | | | | | |
Collapse
|
19
|
Yang C, He M, Liu C, Liu X, Lun M, Su Q, Han X, Liu H, Wang M, Chen L, Liu C. Development and validation of a custom panel including 114 InDels using massively parallel sequencing for forensic application. Electrophoresis 2023; 44:1704-1713. [PMID: 37622566 DOI: 10.1002/elps.202300044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 05/13/2023] [Accepted: 08/04/2023] [Indexed: 08/26/2023]
Abstract
Insertion/deletion polymorphisms (InDels) have particular characteristics, such as a relatively low mutation rate, small amplicon size, and no stutter artifacts when genotyped via the capillary electrophoresis platform. It would be an important complementary tool for individual identification and certain kinship analyses. At present, massively parallel sequencing (MPS) has shown excellent application value in forensic studies. Therefore, in this study, we developed a custom MPS InDel panel that contains 114 InDels [77 autosomal InDels (A-InDels), 32 X-chromosomal InDels (X-InDels), and 5 Y-chromosomal InDels) based on previous studies. To assess this panel's performance, several validation experiments were performed, including sensitivity, inhibitor, degraded DNA testing, species specificity, concordance, repeatability, case-type samples, and population studies. The results showed that the lowest DNA input was 0.25 ng. All genotypes were obtained in the presence of 80 ng/µL humic acid, 2000 µmol/L calcium, 3000 µmol/L EDTA and indigo. In degraded DNA testing, 90% of loci could be detected for 16-day-old formalin-fixed hearts. In addition, this panel has good species specificity. The values of combined power of discrimination and the combined power of exclusion for 77 A-InDels were 1-3.9951 × 10-32 and 1-4.2956 × 10-7 , respectively. The combined mean exclusion chance for 32 X-InDels was 0.99999 in trios and 0.99904 in duos. The validation results indicate that this newly developed MPS multiplex system is a robust tool for forensic applications.
Collapse
Affiliation(s)
- Chengliang Yang
- Guangzhou Key Laboratory of Forensic Multi-Omics for Precision Identification, School of Forensic Medicine, Southern Medical University, Guangzhou, P. R. China
| | - Meiyun He
- Guangzhou Key Laboratory of Forensic Multi-Omics for Precision Identification, School of Forensic Medicine, Southern Medical University, Guangzhou, P. R. China
| | - Changhui Liu
- Guangzhou Forensic Science Institute, Guangzhou, P. R. China
| | - Xueyuan Liu
- Guangzhou Key Laboratory of Forensic Multi-Omics for Precision Identification, School of Forensic Medicine, Southern Medical University, Guangzhou, P. R. China
| | - Miaoqiang Lun
- Guangzhou Key Laboratory of Forensic Multi-Omics for Precision Identification, School of Forensic Medicine, Southern Medical University, Guangzhou, P. R. China
| | - Qin Su
- Guangzhou Forensic Science Institute, Guangzhou, P. R. China
- Faculty of Forensic Medicine, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, P. R. China
| | - Xiaolong Han
- Guangzhou Forensic Science Institute, Guangzhou, P. R. China
| | - Hong Liu
- Guangzhou Forensic Science Institute, Guangzhou, P. R. China
| | - Mengge Wang
- Guangzhou Forensic Science Institute, Guangzhou, P. R. China
- Faculty of Forensic Medicine, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, P. R. China
| | - Ling Chen
- Guangzhou Key Laboratory of Forensic Multi-Omics for Precision Identification, School of Forensic Medicine, Southern Medical University, Guangzhou, P. R. China
| | - Chao Liu
- Guangzhou Key Laboratory of Forensic Multi-Omics for Precision Identification, School of Forensic Medicine, Southern Medical University, Guangzhou, P. R. China
- National Anti-Drug Laboratory Guangdong Regional Center, Guangzhou, P. R. China
| |
Collapse
|
20
|
Liu Y, Fan J, Zhang M, Liu Z, Wang J, Liu J, Li Z, Yang F, Zhang G. A human identification system for hair shaft using RNA polymorphism. Forensic Sci Int Genet 2023; 67:102929. [PMID: 37611365 DOI: 10.1016/j.fsigen.2023.102929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2023] [Revised: 08/06/2023] [Accepted: 08/08/2023] [Indexed: 08/25/2023]
Abstract
Hair is one of the common pieces of evidence at crime scenes, with abundant mitochondrial DNA but limited nuclear DNA in its shaft. It also helps to narrow the investigation scope to maternal lineage but fails to provide unique individual information. We assumed that RNA in hair shafts would be an alternative resource used to perform human identification based on the facts that (1) RNA retains the polymorphic information; (2) the multi-copy of RNA in a cell resists degradation as compared to the one-copy of nuclear DNA. In this study, we explored the potential of RNA polymorphism in hair shafts for forensic individual identification. A SNaPshot typing system was constructed using 18 SNPs located on 11 genes (ABCA13, AHNAK, EXPH5, KMT2D, KRT35, PPP1R15A, RBM33, S100A5, TBC1D4, TMC5, TRPV2). The RNA typing system was evaluated for sensitivity, species specificity, and feasibility for aged hair samples. Hair samples from a Shanxi population in China were used for the population study of the system. The detection limit of the assay was 2 ng RNA. The CDP of these 11 genes was 0.999969 in the Shanxi population. We also identified the concordance of the RNA and DNA typing results. In summary, we developed an RNA typing method to perform human identification from hair shafts, which performed as accurately as nuclear DNA typing. Our method provides a potential basis for solving the human identification problem from hair shafts, as well as other biological materials that lack nuclear DNA.
Collapse
Affiliation(s)
- Yao Liu
- School of Forensic Medicine, Shanxi Medical University, Jinzhong 030619, Shanxi, China
| | - Jiajia Fan
- School of Forensic Medicine, Shanxi Medical University, Jinzhong 030619, Shanxi, China
| | - Mingming Zhang
- School of Forensic Medicine, Shanxi Medical University, Jinzhong 030619, Shanxi, China
| | - Zidong Liu
- School of Forensic Medicine, Shanxi Medical University, Jinzhong 030619, Shanxi, China
| | - Jiaqi Wang
- School of Forensic Medicine, Shanxi Medical University, Jinzhong 030619, Shanxi, China
| | - Jinding Liu
- School of Forensic Medicine, Shanxi Medical University, Jinzhong 030619, Shanxi, China
| | - Zeqin Li
- School of Forensic Medicine, Shanxi Medical University, Jinzhong 030619, Shanxi, China
| | - Fan Yang
- Institute of Forensic Science, Ministry of Public Security, Beijing 100038, China.
| | - Gengqian Zhang
- School of Forensic Medicine, Shanxi Medical University, Jinzhong 030619, Shanxi, China.
| |
Collapse
|
21
|
Abboosh TS, Kassab AC, Al-Dogmi AM, Safhi FA, Alshehri E, Alotaibi AM, Al-Qahtani WS. Identification, forensic evidences and effect of the most used lip cosmetics on the human STR profiling at Kingdom of Saudi Arabia. Forensic Sci Int 2023; 350:111684. [PMID: 37536076 DOI: 10.1016/j.forsciint.2023.111684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 04/04/2023] [Accepted: 04/09/2023] [Indexed: 08/05/2023]
Abstract
This study aimed to identify the DNA STR profiles that were obtained from the lips with various lip cosmetics involved in lip pencil, lipsticks and lip gloss for a brand - Makeup Forever and lip balms (Labello brand) - have been popularly used by Saudi women at KSA. The study was involved 35 unrelated participants (healthy female donors) aged between 26 and 32. The swabbing of lip cosmetics was done prior to using them as negative control samples, other sterilized swabs were collected from the used lip cosmetics which contained the lip cells for each participant as a study sample. Moreover, the buccal swabs were firmly collected from the cleaned oral cavities for the same donors as reference samples. The air-drying of the collected swabs was done for ten minutes at room temperature and then stored them at - 20 °C before the DNA analysis. The 7500 Real-Time PCR (qRT-PCR) was quantified the extracted DNA. The amplification of 16 STR loci was done using the AmpFlSTR® Identifiler® PCR amplification kit using the Thermocycler ABI 9700 to amplify the extracted DNA. The Applied Bio-systems 3130™ Genetic Analyzer with Gene Mapper® ID-X Software v3.5 was used to analyze the PCR products. The data for quantifying DNA recorded significant decrease in the concentrations of DNA samples ranged from 0.15 to 0.55 ng/µL in comparison to the reference samples, while DNA was not detected in all the negative control samples. Some STR loci showed considerably high inhibition and low heterozygosity loss in the study samples compared to the reference and negative samples. The possibility of extracting DNA samples from lip cosmetics were used in the present study could be useful and successful in some cases due to the effect of the chemical compositions such as heavy pigments, organic components, and aromatic wax on the STR profiles in the lip cosmetics, especially in the lipsticks, lip glosses and lip pencils.
Collapse
Affiliation(s)
- Tahani Saeed Abboosh
- Ministry of Interior, Public Security, Forensic Evidence Laboratories, Criminal Examinations, Riyadh, Saudi Arabia
| | - Ahmed Ch Kassab
- Department of Forensic Sciences, College of Criminal Justice, Naif Arab University for Security Sciences, P.O. Box 6830, Riyadh 11452, Saudi Arabia.
| | - Amal M Al-Dogmi
- Department of Biology, College of Science, Jouf University, Sakakah, Saudi Arabia
| | - Fatmah Ahmed Safhi
- Department of Biology, College of Science, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia
| | - Eman Alshehri
- Department of Zoology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | | | - Wedad Saeed Al-Qahtani
- Department of Forensic Sciences, College of Criminal Justice, Naif Arab University for Security Sciences, P.O. Box 6830, Riyadh 11452, Saudi Arabia.
| |
Collapse
|
22
|
Xavier C, Sutter C, Amory C, Niederstätter H, Parson W. NuMY-A qPCR Assay Simultaneously Targeting Human Autosomal, Y-Chromosomal, and Mitochondrial DNA. Genes (Basel) 2023; 14:1645. [PMID: 37628695 PMCID: PMC10454206 DOI: 10.3390/genes14081645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 08/13/2023] [Accepted: 08/14/2023] [Indexed: 08/27/2023] Open
Abstract
The accurate quantification of DNA in forensic samples is of utmost importance. These samples are often present in limited amounts; therefore, it is indicated to use the appropriate analysis route with the optimum DNA amount (when possible). Also, DNA quantification can inform about the degradation stage and therefore support the decision on which downstream genotyping method to use. Consequently, DNA quantification aids in getting the best possible results from a forensic sample, considering both its DNA quantity and quality limitations. Here, we introduce NuMY, a new quantitative real-time PCR (qPCR) method for the parallel quantification of human nuclear (n) and mitochondrial (mt) DNA, assessing the male portion in mixtures of both sexes and testing for possible PCR inhibition. NuMY is based on previous work and follows the MIQE guidelines whenever applicable. Although quantification of nuclear (n)DNA by simultaneously analyzing autosomal and male-specific targets is available in commercial qPCR kits, tools that include the quantification of mtDNA are sparse. The quantification of mtDNA has proven relevant for samples with low nDNA content when conventional DNA fingerprinting techniques cannot be followed. Furthermore, the development and use of new massively parallel sequencing assays that combine multiple marker types, i.e., autosomal, Y-chromosomal, and mtDNA, can be optimized when precisely knowing the amount of each DNA component present in the input sample. For high-quality DNA extracts, NuMY provided nDNA results comparable to those of another quantification technique and has also proven to be a reliable tool for challenging, forensically relevant samples such as mixtures, inhibited, and naturally degraded samples.
Collapse
Affiliation(s)
- Catarina Xavier
- Institute of Legal Medicine, Medical University of Innsbruck, 6020 Innsbruck, Austria; (C.S.); (C.A.); (H.N.)
- i3S—Institute for Research and Innovation in Health, University of Porto, 4099-002 Porto, Portugal
| | - Charlotte Sutter
- Institute of Legal Medicine, Medical University of Innsbruck, 6020 Innsbruck, Austria; (C.S.); (C.A.); (H.N.)
| | - Christina Amory
- Institute of Legal Medicine, Medical University of Innsbruck, 6020 Innsbruck, Austria; (C.S.); (C.A.); (H.N.)
| | - Harald Niederstätter
- Institute of Legal Medicine, Medical University of Innsbruck, 6020 Innsbruck, Austria; (C.S.); (C.A.); (H.N.)
| | - Walther Parson
- Institute of Legal Medicine, Medical University of Innsbruck, 6020 Innsbruck, Austria; (C.S.); (C.A.); (H.N.)
- Forensic Science Program, The Pennsylvania State University, University Park, PA 16801, USA
| |
Collapse
|
23
|
Schröder HM, Niebergall-Roth E, Norrick A, Esterlechner J, Ganss C, Frank MH, Kluth MA. Drug Regulatory-Compliant Validation of a qPCR Assay for Bioanalysis Studies of a Cell Therapy Product with a Special Focus on Matrix Interferences in a Wide Range of Organ Tissues. Cells 2023; 12:1788. [PMID: 37443822 PMCID: PMC10340683 DOI: 10.3390/cells12131788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 06/23/2023] [Accepted: 07/04/2023] [Indexed: 07/15/2023] Open
Abstract
Quantitative polymerase chain reaction (qPCR) has emerged as an important bioanalytical method for assessing the pharmacokinetics of human-cell-based medicinal products after xenotransplantation into immunodeficient mice. A particular challenge in bioanalytical qPCR studies is that the different tissues of the host organism can affect amplification efficiency and amplicon detection to varying degrees, and ignoring these matrix effects can easily cause a significant underestimation of the true number of target cells in a sample. Here, we describe the development and drug regulatory-compliant validation of a TaqMan® qPCR assay for the quantification of mesenchymal stromal cells in the range of 125 to 20,000 cells/200 µL lysate via the amplification of a human-specific, highly repetitive α-satellite DNA sequence of the chromosome 17 centromere region HSSATA17. An assessment of matrix effects in 14 different mouse tissues and blood revealed a wide range of spike recovery rates across the different tissue types, from 11 to 174%. Based on these observations, we propose performing systematic spike-and-recovery experiments during assay validation and correcting for the effects of the different tissue matrices on cell quantification in subsequent bioanalytical studies by multiplying the back-calculated cell number by tissue-specific factors derived from the inverse of the validated percent recovery rate.
Collapse
Affiliation(s)
| | | | | | | | | | - Markus H. Frank
- Department of Dermatology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA
- Harvard Stem Cell Institute, Harvard University, Cambridge, MA 02138, USA
- Transplant Research Program, Boston Children’s Hospital, Harvard Medical School, Boston, MA 02115, USA
- School of Medical and Health Sciences, Edith Cowan University, Perth, WA 6027, Australia
| | | |
Collapse
|
24
|
Hatfield RG, Ryder D, Tidy AM, Hartnell DM, Dean KJ, Batista FM. Combining Nanopore Sequencing with Recombinase Polymerase Amplification Enables Identification of Dinoflagellates from the Alexandrium Genus, Providing a Rapid, Field Deployable Tool. Toxins (Basel) 2023; 15:372. [PMID: 37368673 DOI: 10.3390/toxins15060372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 05/24/2023] [Accepted: 05/26/2023] [Indexed: 06/29/2023] Open
Abstract
The armoured dinoflagellate Alexandrium can be found throughout many of the world's temperate and tropical marine environments. The genus has been studied extensively since approximately half of its members produce a family of potent neurotoxins, collectively called saxitoxin. These compounds represent a significant threat to animal and environmental health. Moreover, the consumption of bivalve molluscs contaminated with saxitoxin poses a threat to human health. The identification of Alexandrium cells collected from sea water samples using light microscopy can provide early warnings of a toxic event, giving harvesters and competent authorities time to implement measures that safeguard consumers. However, this method cannot reliably resolve Alexandrium to a species level and, therefore, is unable to differentiate between toxic and non-toxic variants. The assay outlined in this study uses a quick recombinase polymerase amplification and nanopore sequencing method to first target and amplify a 500 bp fragment of the ribosomal RNA large subunit and then sequence the amplicon so that individual species from the Alexandrium genus can be resolved. The analytical sensitivity and specificity of the assay was assessed using seawater samples spiked with different Alexandrium species. When using a 0.22 µm membrane to capture and resuspend cells, the assay was consistently able to identify a single cell of A. minutum in 50 mL of seawater. Phylogenetic analysis showed the assay could identify the A. catenella, A. minutum, A. tamutum, A. tamarense, A. pacificum, and A. ostenfeldii species from environmental samples, with just the alignment of the reads being sufficient to provide accurate, real-time species identification. By using sequencing data to qualify when the toxic A. catenella species was present, it was possible to improve the correlation between cell counts and shellfish toxicity from r = 0.386 to r = 0.769 (p ≤ 0.05). Furthermore, a McNemar's paired test performed on qualitative data highlighted no statistical differences between samples confirmed positive or negative for toxic species of Alexandrium by both phylogenetic analysis and real time alignment with the presence or absence of toxins in shellfish. The assay was designed to be deployed in the field for the purposes of in situ testing, which required the development of custom tools and state-of-the-art automation. The assay is rapid and resilient to matrix inhibition, making it suitable as a potential alternative detection method or a complementary one, especially when applying regulatory controls.
Collapse
Affiliation(s)
- Robert G Hatfield
- Centre for Environment Fisheries and Aquaculture Science, Weymouth DT48UB, UK
| | - David Ryder
- Centre for Environment Fisheries and Aquaculture Science, Weymouth DT48UB, UK
| | - Annabel M Tidy
- Centre for Environment Fisheries and Aquaculture Science, Weymouth DT48UB, UK
| | - David M Hartnell
- Centre for Environment Fisheries and Aquaculture Science, Weymouth DT48UB, UK
| | - Karl J Dean
- Centre for Environment Fisheries and Aquaculture Science, Weymouth DT48UB, UK
| | - Frederico M Batista
- Centre for Environment Fisheries and Aquaculture Science, Weymouth DT48UB, UK
| |
Collapse
|
25
|
Rochard V, Cochard T, Crapart S, Delafont V, Moyen JL, Héchard Y, Biet F. Presence of Non-Tuberculous Mycobacteria Including Mycobacterium avium subsp. paratuberculosis Associated with Environmental Amoebae. Animals (Basel) 2023; 13:1781. [PMID: 37665671 PMCID: PMC10251955 DOI: 10.3390/ani13111781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 05/08/2023] [Accepted: 05/26/2023] [Indexed: 09/06/2023] Open
Abstract
One of the obstacles to eradicating paratuberculosis or Johne's Disease (JD) seems to be the persistence of Mycobacterium avium subsp. paratuberculosis (Map) in the environment due to its ability to survive alone or vectorized. It has been shown that Map is widely distributed in soils and water. Previously, we isolated amoebae associated with Map strains in the environment of bovines from an infected herd. This work aims to verify our working hypothesis, which suggests that amoebae may play a role in the transmission of JD. In this study, we sampled water in the vicinity of herds infected with Map or Mycobacterium bovis (M. bovis) and searched for amoebae and mycobacteria. Live amoebae were recovered from all samples. Among these amoebae, four isolates associated with the presence of mycobacteria were identified and characterized. Map and other mycobacterial species were detected by qPCR and, in some cases, by culture. This study suggests that amoebae and Map may be found in the same environment and might represent a risk of exposure of animals to pathogenic mycobacteria. These data open up new perspectives on the control measures to be put in place to prevent contamination by Map.
Collapse
Affiliation(s)
- Vincent Rochard
- Laboratoire Ecologie et Biologie des Interactions, UMR Centre National de la Recherche Scientifique 7267, Université de Poitiers, Equipe Microbiologie de l’Eau, F-86073 Poitiers, France (V.D.); (Y.H.)
| | - Thierry Cochard
- Institut National de Recherche pour l’Agriculture—INRAE, Université de Tours, ISP, F-37390 Nouzilly, France;
| | - Stéphanie Crapart
- Laboratoire Ecologie et Biologie des Interactions, UMR Centre National de la Recherche Scientifique 7267, Université de Poitiers, Equipe Microbiologie de l’Eau, F-86073 Poitiers, France (V.D.); (Y.H.)
| | - Vincent Delafont
- Laboratoire Ecologie et Biologie des Interactions, UMR Centre National de la Recherche Scientifique 7267, Université de Poitiers, Equipe Microbiologie de l’Eau, F-86073 Poitiers, France (V.D.); (Y.H.)
| | - Jean-Louis Moyen
- Laboratoire Départemental d’Analyse et de Recherche de la Dordogne, F-24660 Coulounieix-Chamiers, France
| | - Yann Héchard
- Laboratoire Ecologie et Biologie des Interactions, UMR Centre National de la Recherche Scientifique 7267, Université de Poitiers, Equipe Microbiologie de l’Eau, F-86073 Poitiers, France (V.D.); (Y.H.)
| | - Franck Biet
- Institut National de Recherche pour l’Agriculture—INRAE, Université de Tours, ISP, F-37390 Nouzilly, France;
| |
Collapse
|
26
|
Zhang C, McIntosh KD, Sienkiewicz N, Stelzer EA, Graham JL, Lu J. Using cyanobacteria and other phytoplankton to assess trophic conditions: A qPCR-based, multi-year study in twelve large rivers across the United States. WATER RESEARCH 2023; 235:119679. [PMID: 37011576 PMCID: PMC10123349 DOI: 10.1016/j.watres.2023.119679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 01/24/2023] [Accepted: 01/27/2023] [Indexed: 06/19/2023]
Abstract
Phytoplankton is the essential primary producer in fresh surface water ecosystems. However, excessive phytoplankton growth due to eutrophication significantly threatens ecologic, economic, and public health. Therefore, phytoplankton identification and quantification are essential to understanding the productivity and health of freshwater ecosystems as well as the impacts of phytoplankton overgrowth (such as Cyanobacterial blooms) on public health. Microscopy is the gold standard for phytoplankton assessment but is time-consuming, has low throughput, and requires rich experience in phytoplankton morphology. Quantitative polymerase chain reaction (qPCR) is accurate and straightforward with high throughput. In addition, qPCR does not require expertise in phytoplankton morphology. Therefore, qPCR can be a useful alternative for molecular identification and enumeration of phytoplankton. Nonetheless, a comprehensive study is missing which evaluates and compares the feasibility of using qPCR and microscopy to assess phytoplankton in fresh water. This study 1) compared the performance of qPCR and microscopy in identifying and quantifying phytoplankton and 2) evaluated qPCR as a molecular tool to assess phytoplankton and indicate eutrophication. We assessed phytoplankton using both qPCR and microscopy in twelve large freshwater rivers across the United States from early summer to late fall in 2017, 2018, and 2019. qPCR- and microscope-based phytoplankton abundance had a significant positive linear correlation (adjusted R2 = 0.836, p-value < 0.001). Phytoplankton abundance had limited temporal variation within each sampling season and over the three years studied. The sampling sites in the midcontinent rivers had higher phytoplankton abundance than those in the eastern and western rivers. For instance, the concentration (geometric mean) of Bacillariophyta, Cyanobacteria, Chlorophyta, and Dinoflagellates at the sampling sites in the midcontinent rivers was approximately three times that at the sampling sites in the western rivers and approximately 18 times that at the sampling sites in the eastern rivers. Welch's analysis of variance indicates that phytoplankton abundance at the sampling sites in the midcontinent rivers was significantly higher than that at the sampling sites in the eastern rivers (p-value = 0.013) but was comparable to that at the sampling sites in the western rivers (p-value = 0.095). The higher phytoplankton abundance at the sampling sites in the midcontinent rivers was presumably because these rivers were more eutrophic. Indeed, low phytoplankton abundance occurred in oligotrophic or low trophic sites, whereas eutrophic sites had greater phytoplankton abundance. This study demonstrates that qPCR-based phytoplankton abundance can be a useful numerical indicator of the trophic conditions and water quality in freshwater rivers.
Collapse
Affiliation(s)
- Chiqian Zhang
- Department of Civil and Environmental Engineering, College of Sciences and Engineering, Southern University and A&M College, Baton Rouge, LA 70813, United States
| | - Kyle D McIntosh
- Oak Ridge Institute for Science and Education at the United States Environmental Protection Agency's Office of Research and Development, Oak Ridge, TN 37830, United States
| | - Nathan Sienkiewicz
- Office of Research and Development, United States Environmental Protection Agency, Cincinnati, OH 45268, United States
| | - Erin A Stelzer
- U.S. Geological Survey, Columbus, OH 43229, United States
| | | | - Jingrang Lu
- Office of Research and Development, United States Environmental Protection Agency, Cincinnati, OH 45268, United States.
| |
Collapse
|
27
|
Rey Gomez LM, Hirani R, Care A, Inglis DW, Wang Y. Emerging Microfluidic Devices for Sample Preparation of Undiluted Whole Blood to Enable the Detection of Biomarkers. ACS Sens 2023; 8:1404-1421. [PMID: 37011238 DOI: 10.1021/acssensors.2c02696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/05/2023]
Abstract
Blood testing allows for diagnosis and monitoring of numerous conditions and illnesses; it forms an essential pillar of the health industry that continues to grow in market value. Due to the complex physical and biological nature of blood, samples must be carefully collected and prepared to obtain accurate and reliable analysis results with minimal background signal. Examples of common sample preparation steps include dilutions, plasma separation, cell lysis, and nucleic acid extraction and isolation, which are time-consuming and can introduce risks of sample cross-contamination or pathogen exposure to laboratory staff. Moreover, the reagents and equipment needed can be costly and difficult to obtain in point-of-care or resource-limited settings. Microfluidic devices can perform sample preparation steps in a simpler, faster, and more affordable manner. Devices can be carried to areas that are difficult to access or that do not have the resources necessary. Although many microfluidic devices have been developed in the last 5 years, few were designed for the use of undiluted whole blood as a starting point, which eliminates the need for blood dilution and minimizes blood sample preparation. This review will first provide a short summary on blood properties and blood samples typically used for analysis, before delving into innovative advances in microfluidic devices over the last 5 years that address the hurdles of blood sample preparation. The devices will be categorized by application and the type of blood sample used. The final section focuses on devices for the detection of intracellular nucleic acids, because these require more extensive sample preparation steps, and the challenges involved in adapting this technology and potential improvements are discussed.
Collapse
Affiliation(s)
| | - Rena Hirani
- Australian Red Cross Lifeblood, Sydney, New South Wales 2015, Australia
| | - Andrew Care
- School of Life Sciences, University of Technology Sydney, Ultimo, New South Wales 2007, Australia
| | - David W Inglis
- School of Engineering, Faculty of Science and Engineering and △School of Natural Sciences, Faculty of Science and Engineering, Macquarie University, Sydney, New South Wales 2109, Australia
| | | |
Collapse
|
28
|
Fan G, Zhao Q, Wuo NA, Li Q, Mao Z. Developmental validation of a complementary Y-STR system for the amplification of forensic samples. Forensic Sci Int 2023; 346:111667. [PMID: 37003122 DOI: 10.1016/j.forsciint.2023.111667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 03/17/2023] [Accepted: 03/27/2023] [Indexed: 03/30/2023]
Abstract
In this study, a new complementary Y-STR system that includes 31 loci was developed (DYS522, DYS388, DYF387S1a/b, DYS510, DYS587, DYS645, DYS531, DYS593, DYS617, GATA_A10, DYS622, DYS552, DYS508, DYS447, DYS527a/b, DYS446, DYS459a/b, DYS444, DYS557, DYS443, DYS626, DYS630, DYS526a, DYF404S1a/b, DYS520, DYS518, and DYS526b). This 31-plex Y-STR system, SureID® Y-comp, is designed for biological samples from forensic casework and reference samples from forensic DNA database. To validate the suitability of this novel kit, many developmental works including size precision testing, sensitivity, male specificity testing, species specificity, PCR inhibitors, stutter precision, reproducibility, suitability for use on DNA mixture and parallel testing of different capillary electrophoresis devices were performed. Mutation rates were investigated using 295 DNA-confirmed father-son pairs. The results demonstrate that the SureID® Y-comp Kit is time-efficient, accurate, and reliable for various case-type samples. It possessed a higher discrimination power and can be a stand-alone kit for male identification. Moreover, the simply acquired additional Y-STR loci will be conductive to construct a robust database. Even if various commercial Y-STR kits are used in distinct forensic laboratories, a wider trans-database retrieval will become feasible with the effort of the SureID® Y-comp Kit.
Collapse
Affiliation(s)
- Guangyao Fan
- Forensic Center, School of Medicine, Shaoxing University, Shaoxing 312000, China.
| | - Qian Zhao
- Shanghai Xuhui District Dahua Hospital, Shanghai 200031, China
| | - Nixon Austin Wuo
- College of Life Sciences, Shaoxing University, Shaoxing 312000, China
| | - Qinghao Li
- Tongshan District Branch of Xuzhou Public Security Bureau, Xuzhou 221100, China
| | - Zemin Mao
- Ningbo Health Gene Technologies Co. Ltd., Ningbo 315040, China
| |
Collapse
|
29
|
Kubo S, Niimi H, Kitajima I. Improved reverse transcription-recombinase polymerase amplification assay for blood mRNA screening: comparison with one-step RT-qPCR assay. Forensic Sci Int Genet 2023; 63:102808. [PMID: 36462298 DOI: 10.1016/j.fsigen.2022.102808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 10/07/2022] [Accepted: 11/18/2022] [Indexed: 11/22/2022]
Abstract
mRNA profiling is effective for body fluid identification because of its sensitivity, specificity, and multiplexing capability. Body fluid mRNA markers can typically be detected using RT-qPCR, RT-PCR followed by capillary electrophoresis, or targeted RNA sequencing. However, due to the multiple handling steps involved, the analysis of many forensic samples using these methods requires time and effort. Here, we describe a rapid and simple method for detecting the blood mRNA marker hemoglobin β (HBB), intended for use in screening before definitive blood identification. We employed a reverse transcription-recombinase polymerase amplification (RT-RPA) assay that can detect target mRNA within 20 min in a single tube. For comparison, we used a one-step RT-qPCR assay. We optimized the RT-RPA assay and found that it could detect HBB from 10-3-10-4 ng of leukocyte RNA and approximately 10-3 µL of blood. The sensitivity was 10-fold lower than that of the one-step RT-qPCR assay but higher than that of the comprehensive analysis methods for definitive blood identification. Thus, the rapidity and sensitivity of the RT-RPA assay support its use as a screening tool. We also found that the RT-RPA assay was highly tolerant to common inhibitors such as humic acid, hematin, tannic acid, and melanin. Considering the inhibitor tolerability, we integrated a simple lysis method (addition of TCEP/EDTA and heating at 95 °C for 5 min) without the RNA purification process into the RT-RPA assay. This direct assay successfully detected HBB in crude blood samples. Our findings suggest that the RT-RPA assay for HBB is a promising strategy for mRNA-based blood screening.
Collapse
Affiliation(s)
- Seiji Kubo
- Department of Clinical Laboratory and Molecular Pathology, Faculty of Medicine, Academic Assembly, University of Toyama, 2630 Sugitani, Toyama 930-0194, Japan; Forensic Science Laboratory, Ishikawa Prefectural Police Headquarters, 1-1 Kuratsuki, Kanazawa 920-8553, Japan.
| | - Hideki Niimi
- Department of Clinical Laboratory and Molecular Pathology, Faculty of Medicine, Academic Assembly, University of Toyama, 2630 Sugitani, Toyama 930-0194, Japan.
| | - Isao Kitajima
- Administrative office, University of Toyama, 3190 Gofuku, Toyama 930-8555, Japan
| |
Collapse
|
30
|
Chen Y, Tournayre O, Tian H, Lougheed SC. Assessing the breeding phenology of a threatened frog species using eDNA and automatic acoustic monitoring. PeerJ 2023; 11:e14679. [PMID: 36710869 PMCID: PMC9879156 DOI: 10.7717/peerj.14679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Accepted: 12/13/2022] [Indexed: 01/25/2023] Open
Abstract
Background Climate change has driven shifts in breeding phenology of many amphibians, causing phenological mismatches (e.g., predator-prey interactions), and potentially population declines. Collecting data with high spatiotemporal sensitivity on hibernation emergence and breeding times can inform conservation best practices. However, monitoring the phenology of amphibians can be challenging because of their cryptic nature over much of their life cycle. Moreover, most salamanders and caecilians do not produce conspicuous breeding calls like frogs and toads do, presenting additional monitoring challenges. Methods In this study, we designed and evaluated the performance of an environmental DNA (eDNA) droplet digital PCR (ddPCR) assay as a non-invasive tool to assess the breeding phenology of a Western Chorus Frog population (Pseudacris maculata mitotype) in Eastern Ontario and compared eDNA detection patterns to hourly automatic acoustic monitoring. For two eDNA samples with strong PCR inhibition, we tested three methods to diminish the effect of inhibitors: diluting eDNA samples, adding bovine serum albumin to PCR reactions, and purifying eDNA using a commercial clean-up kit. Results We recorded the first male calling when the focal marsh was still largely frozen. Chorus frog eDNA was detected on April 6th, 6 days after acoustic monitoring revealed this first calling male, but only 2 days after males attained higher chorus activity. eDNA signals were detected at more sampling locales within the marsh and eDNA concentrations increased as more males participated in the chorus, suggesting that eDNA may be a reasonable proxy for calling assemblage size. Internal positive control revealed strong inhibition in some samples, limiting detection probability and quantification accuracy in ddPCR. We found diluting samples was the most effective in reducing inhibition and improving eDNA quantification. Conclusions Altogether, our results showed that eDNA ddPCR signals lagged behind male chorusing by a few days; thus, acoustic monitoring is preferable if the desire is to document the onset of male chorusing. However, eDNA may be an effective, non-invasive monitoring tool for amphibians that do not call and may provide a useful complement to automated acoustic recording. We found inhibition patterns were heterogeneous across time and space and we demonstrate that an internal positive control should always be included to assess inhibition for eDNA ddPCR signal interpretations.
Collapse
|
31
|
Karima B, Amima H, Ahlam M, Zoubida B, Benoît T, Yolande D, Anissa LHS. Native Arbuscular Mycorrhizal Inoculum Modulates Growth, Oxidative Metabolism and Alleviates Salinity Stresses in Legume Species. Curr Microbiol 2023; 80:66. [PMID: 36604346 DOI: 10.1007/s00284-022-03145-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Accepted: 12/07/2022] [Indexed: 01/07/2023]
Abstract
Soil salinity constitutes a major abiotic stress that contributes to soil degradation and crop yield reduction. Using arbuscular mycorrhizal fungi (AMF) inoculation can help to alleviate these deleterious effects. Most researches on AMF application are dealing with ecological restoration, whereas little consideration has been given to agriculture and legume production. The comparison of the efficacy of two AMF inoculums, one native originating from Algerian semiarid saline soils and one commercial inoculum, was carried out regarding their effects on the growth and the mineral nutrition of several legumes species, Medicago sativa, Medicago falcata, Trifolium repens and Trifolium alexandrinum, cultivated in semiarid Algerian saline soil under greenhouse conditions. Our results showed that native mycorrhizal inoculum enhanced shoot biomasses by 20%, mycorrhizal rate by 30%, shoot phosphorus content by 25% and K+/Na+ ratio by 45% for studied plants when compared with commercial inoculum. The best efficiency of the native AMF inoculum is probably due to the complementarity between the AMF strains which composed the inoculum. Funneliformis geosporum was the most abundant species recorded at the end of the experience in all plant roots especially with native inoculum. Our findings pointed out the effectiveness of native AMF inoculum application to promote agricultural production in semiarid saline soils.
Collapse
Affiliation(s)
- Bencherif Karima
- Nature and Life Sciences Faculty, University of Djelfa, Moudjbara Road, P.O.BOX 3117, 17000, Djelfa, Algeria. .,Unité de Chimie Environnementale et Interactions sur le Vivant (UCEIV), UR 4492, SFR Condorcet FR CNRS 3417, Université du Littoral Côte d'Opale, 50 Rue Ferdinand Buisson, 62228, Calais Cedex, France.
| | - Hasbaya Amima
- Nature and Life Sciences Faculty, University of Djelfa, Moudjbara Road, P.O.BOX 3117, 17000, Djelfa, Algeria
| | - Misoumi Ahlam
- Nature and Life Sciences Faculty, University of Djelfa, Moudjbara Road, P.O.BOX 3117, 17000, Djelfa, Algeria
| | - Bouzekri Zoubida
- Nature and Life Sciences Faculty, University of Djelfa, Moudjbara Road, P.O.BOX 3117, 17000, Djelfa, Algeria
| | - Tisserant Benoît
- Unité de Chimie Environnementale et Interactions sur le Vivant (UCEIV), UR 4492, SFR Condorcet FR CNRS 3417, Université du Littoral Côte d'Opale, 50 Rue Ferdinand Buisson, 62228, Calais Cedex, France
| | - Dalpé Yolande
- Ottawa Research and Development Centre, Agriculture and Agri-Food Canada, 960 Carling Avenue, Ottawa, ON, K1A 0C6, Canada
| | - Lounés-Hadj Sahraoui Anissa
- Unité de Chimie Environnementale et Interactions sur le Vivant (UCEIV), UR 4492, SFR Condorcet FR CNRS 3417, Université du Littoral Côte d'Opale, 50 Rue Ferdinand Buisson, 62228, Calais Cedex, France
| |
Collapse
|
32
|
Schreiber L, Castellanos‐Galindo GA, Robertson DR, Torchin M, Chavarria K, Laakmann S, Saltonstall K. Environmental DNA (eDNA) reveals potential for interoceanic fish invasions across the Panama Canal. Ecol Evol 2023; 13:e9675. [PMID: 36726876 PMCID: PMC9884569 DOI: 10.1002/ece3.9675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 11/18/2022] [Accepted: 12/05/2022] [Indexed: 02/03/2023] Open
Abstract
Interoceanic canals can facilitate biological invasions as they connect the world's oceans and remove dispersal barriers between bioregions. As a consequence, multiple opportunities for biotic exchange arise and the resulting establishment of migrant species often causes adverse ecological and economic impacts. The Panama Canal is a key region for biotic exchange as it connects the Pacific and Atlantic Oceans in Central America. In this study, we used two complementary methods (environmental DNA (eDNA) metabarcoding and gillnetting) to survey fish communities in this unique waterway. Using COI (cytochrome oxidase subunit I) metabarcoding, we detected a total of 142 fish species, including evidence for the presence of sixteen Atlantic and eight Pacific marine fish in different freshwater sections of the Canal. Of these, nine are potentially new records. Molecular data did not capture all species caught with gillnets, but generally provided a more complete image of the known fish fauna as more small-bodied fish species were detected. Diversity indices based on eDNA surveys revealed significant differences across different sections of the Canal reflecting in part the prevailing environmental conditions. The observed increase in the presence of marine fish species in the Canal indicates a growing potential for interoceanic fish invasions. The potential ecological and evolutionary consequences of this increase in marine fishes are not only restricted to the fish fauna in the Canal as they could also impact adjacent ecosystems in the Pacific and Atlantic Oceans.
Collapse
Affiliation(s)
- Lennart Schreiber
- Smithsonian Tropical Research InstituteBalboaPanama
- Faculty of Biology & ChemistryUniversity of BremenBremenGermany
| | - Gustavo A. Castellanos‐Galindo
- Smithsonian Tropical Research InstituteBalboaPanama
- Leibniz Institute of Freshwater Ecology and Inland Fisheries (IGB)BerlinGermany
| | | | - Mark Torchin
- Smithsonian Tropical Research InstituteBalboaPanama
| | | | - Silke Laakmann
- Helmholtz Institute for Functional Marine Biodiversity at the University of Oldenburg (HIFMB)OldenburgGermany
- Alfred‐Wegener‐Institute, Helmholtz Centre for Polar and Marine ResearchBremerhavenGermany
| | | |
Collapse
|
33
|
Yao Y, Sun K, Yang Q, Zhou Z, Qian J, Li Z, Shao C, Qian X, Tang Q, Xie J. Development of a multiplex panel with 31 multi-allelic InDels for forensic DNA typing. Int J Legal Med 2023; 137:1-12. [PMID: 36326889 DOI: 10.1007/s00414-022-02907-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Accepted: 10/20/2022] [Indexed: 11/06/2022]
Abstract
Insertion/Deletion (InDel) polymorphic genetic markers are abundant in human genomes. Diallelic InDel markers have been widely studied for forensic purposes, yet the low polymorphic information content limits their application and current InDel panels remain to be improved. In this study, multi-allelic InDels located out of low complexity sequence regions were selected in the datasets from East Asian populations, and a multiplex amplification system containing 31 multi-allelic InDel markers and the Amelogenin marker (FA-HID32plex) was constructed and optimized. The preliminary study on sensitivity, species specificity, inhibitor tolerance, mixture resolution, and the detection of degraded samples demonstrates that the FA-HID32plex is highly sensitive, specific, and robust for traces and degraded samples. The combined power of discrimination (CPD) of 31 multi-allelic InDel markers was 0.999 999 999 999 999 999 85, and the cumulative probability of exclusion (CPE) was 0.999 920 in a Chinese Han population, which indicates a high discrimination power. Altogether, the FA-HID32plex panel could provide reliable supplements or stand-alone information in individual identification and paternity testing, especially for challenging samples.
Collapse
Affiliation(s)
- Yining Yao
- Department of Forensic Medicine, School of Basic Medical Sciences, Fudan University, 138 Yixueyuan Road, Shanghai, 200032, China
| | - Kuan Sun
- Department of Forensic Medicine, School of Basic Medical Sciences, Fudan University, 138 Yixueyuan Road, Shanghai, 200032, China.,Department of Fetal Medicine and Prenatal Diagnosis Center, Shanghai First Maternity and Infant Hospital, Tongji University School of Medicine, 2699 West Gaoke Rd, 201204, Shanghai, China.,Shanghai Key Laboratory of Maternal Fetal Medicine, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai, 200092, China
| | - Qinrui Yang
- Department of Forensic Medicine, School of Basic Medical Sciences, Fudan University, 138 Yixueyuan Road, Shanghai, 200032, China
| | - Zhihan Zhou
- Department of Forensic Medicine, School of Basic Medical Sciences, Fudan University, 138 Yixueyuan Road, Shanghai, 200032, China
| | - Jinglei Qian
- Department of Forensic Medicine, School of Basic Medical Sciences, Fudan University, 138 Yixueyuan Road, Shanghai, 200032, China
| | - Zhimin Li
- Department of Forensic Medicine, School of Basic Medical Sciences, Fudan University, 138 Yixueyuan Road, Shanghai, 200032, China
| | - Chengchen Shao
- Department of Forensic Medicine, School of Basic Medical Sciences, Fudan University, 138 Yixueyuan Road, Shanghai, 200032, China
| | - Xiaoqin Qian
- Department of Forensic Medicine, School of Basic Medical Sciences, Fudan University, 138 Yixueyuan Road, Shanghai, 200032, China
| | - Qiqun Tang
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fudan University, Shanghai, 200032, China
| | - Jianhui Xie
- Department of Forensic Medicine, School of Basic Medical Sciences, Fudan University, 138 Yixueyuan Road, Shanghai, 200032, China.
| |
Collapse
|
34
|
An Assessment of DNA Extraction Methods from Blood-Stained Soil in Forensic Science. Forensic Sci Int 2022; 341:111502. [DOI: 10.1016/j.forsciint.2022.111502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2022] [Revised: 10/03/2022] [Accepted: 10/16/2022] [Indexed: 11/06/2022]
|
35
|
Sources and Drivers of ARGs in Urban Streams in Atlanta, Georgia, USA. Microorganisms 2022; 10:microorganisms10091804. [PMID: 36144405 PMCID: PMC9503305 DOI: 10.3390/microorganisms10091804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 09/01/2022] [Accepted: 09/01/2022] [Indexed: 11/16/2022] Open
Abstract
The spread of antibiotic resistance genes (ARGs) in the aquatic environment is an emerging concern in the interest of protecting public health. Stemming the environmental dissemination of ARGs will require a better understanding of the sources and drivers of ARGs in the water environment. In this study, we used direct measurement of sewage-associated molecular markers, the class 1 integron gene, standard water quality parameters, and watershed characteristics to evaluate the sources and drivers of ARGs in an urban watershed impacted by a gradient of human activities. Quantitative polymerase chain reaction (qPCR) was used to quantify the abundance of the sewage-associated HF183, the E. coli fecal indicator, class 1 integron gene (int1), and the ARGs sulI, sulII, tetW, tetM, ampC, and blaSHV in stream water samples collected from the Proctor Creek watershed in Atlanta, Georgia. Our findings show that ARGs were widely distributed, with detection frequencies of 96% (sulI and sulII), 82% (tetW and tetM), and 49% (ampC and blaSHV). All the ARGs were positively and significantly correlated (r > 0.5) with the HF183 and E. coli markers. Non-linear machine learning models developed using generalized boosting show that more than 70% of the variation in ARG loads in the watershed could be explained by fecal source loading, with other factors such as class 1 integron, which is associated with acquired antibiotic resistance, and environmental factors contributing < 30% to ARG variation. These results suggest that input from fecal sources is a more critical driver of ARG dissemination than environmental stressors or horizontal gene transfer in aquatic environments highly impacted by anthropogenic pollution. Finally, our results provide local watershed managers and stakeholders with information to mitigate the burden of ARGs and fecal bacteria in urban streams.
Collapse
|
36
|
Tiwari A, Ahmed W, Oikarinen S, Sherchan SP, Heikinheimo A, Jiang G, Simpson SL, Greaves J, Bivins A. Application of digital PCR for public health-related water quality monitoring. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 837:155663. [PMID: 35523326 DOI: 10.1016/j.scitotenv.2022.155663] [Citation(s) in RCA: 41] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 04/28/2022] [Accepted: 04/29/2022] [Indexed: 05/25/2023]
Abstract
Digital polymerase chain reaction (dPCR) is emerging as a reliable platform for quantifying microorganisms in the field of water microbiology. This paper reviews the fundamental principles of dPCR and its application for health-related water microbiology. The relevant literature indicates increasing adoption of dPCR for measuring fecal indicator bacteria, microbial source tracking marker genes, and pathogens in various aquatic environments. The adoption of dPCR has accelerated recently due to increasing use for wastewater surveillance of Severe Acute Respiratory Coronavirus 2 (SARS-CoV-2) - the virus that causes Coronavirus Disease 2019 (COVID-19). The collective experience in the scientific literature indicates that well-optimized dPCR assays can quantify genetic material from microorganisms without the need for a calibration curve and often with superior analytical performance (i.e., greater sensitivity, precision, and reproducibility) than quantitative polymerase chain reaction (qPCR). Nonetheless, dPCR should not be viewed as a panacea for the fundamental uncertainties and limitations associated with measuring microorganisms in water microbiology. With dPCR platforms, the sample analysis cost and processing time are typically greater than qPCR. However, if improved analytical performance (i.e., sensitivity and accuracy) is critical, dPCR can be an alternative option for quantifying microorganisms, including pathogens, in aquatic environments.
Collapse
Affiliation(s)
- Ananda Tiwari
- Department of Food Hygiene and Environmental Health, Faculty of Veterinary Medicine, University of Helsinki, Finland
| | - Warish Ahmed
- CSIRO Land and Water, Ecosciences Precinct, Queensland, Australia
| | - Sami Oikarinen
- Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Samendra P Sherchan
- Department of Environmental Health Sciences, Tulane University, New Orleans, LA, USA; Department of Biology, Morgan State University, Baltimore, MD 21251, USA; BioEnvironmental Science Program, Department of Biology, Morgan State University, Baltimore, MD 21251, USA
| | - Annamari Heikinheimo
- Department of Food Hygiene and Environmental Health, Faculty of Veterinary Medicine, University of Helsinki, Finland; Finnish Food Authority, Seinäjoki, Finland
| | - Guangming Jiang
- School of Civil, Mining and Environmental Engineering, University of Wollongong, Australia; Illawarra Health and Medical Research Institute (IHMRI), University of Wollongong, Wollongong, Australia
| | | | - Justin Greaves
- School of Environmental Sustainability, Loyola University Chicago, 6364 N. Sheridan Rd, Chicago, IL 60660, USA
| | - Aaron Bivins
- Department of Civil & Environmental Engineering, Louisiana State University, LA, USA.
| |
Collapse
|
37
|
Kulaš A, Gligora Udovič M, Tapolczai K, Žutinić P, Orlić S, Levkov Z. Diatom eDNA metabarcoding and morphological methods for bioassessment of karstic river. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 829:154536. [PMID: 35304150 DOI: 10.1016/j.scitotenv.2022.154536] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 02/20/2022] [Accepted: 03/08/2022] [Indexed: 06/14/2023]
Abstract
Karst ecosystems play a unique role as exceptional natural habitats in sustaining biodiversity. This study focuses on diatoms, a diverse group of microeukaryotes in the periphytic community of a karstic river. In a multi-microhabitat study along the Krka River (Croatia), our goal was to obtain a detailed overview of diatom diversity and community structure using morphological and molecular approaches, and to assess the applicability of eDNA metabarcoding as a reliable tool for biomonitoring assessment. The results revealed a relatively low agreement in the diatom community composition between the two approaches, but also provided complementary information, with no differences in beta diversity detected between microhabitats. The SIMPER analysis underlined the importance of the molecular approach in identifying diatom community composition, due to errors in distinguishing between deposited diatom cells that occurred in the morphological analysis. In contrast, the morphological approach indicated a clear diatom community separation along the river with a strong location effect. Despite certain differences, both approaches provided a feasible assessment of the ecological status according to the relationship to environmental pressures, classifying the Krka River as High (morphological approach) or Good (molecular approach) throughout the most of its course. Moreover, diatom diversity based on both approaches provides a reliable dataset applicable in routine monitoring assessment and offers a deeper understanding of the presented ecological status. The incompleteness of a reference database presents one major drawback of the molecular approach, which needs further updating in order to improve routine diatom metabarcoding.
Collapse
Affiliation(s)
- Antonija Kulaš
- University of Zagreb, Faculty of Science, Department of Biology, Rooseveltov trg 6, HR-10000 Zagreb, Croatia.
| | - Marija Gligora Udovič
- University of Zagreb, Faculty of Science, Department of Biology, Rooseveltov trg 6, HR-10000 Zagreb, Croatia
| | - Kálmán Tapolczai
- Premium Postdoctoral Research Program, Hungarian Academy of Sciences, Budapest, Hungary; Research Group of Limnology, Center for Natural Science, University of Pannonia, Egyetem u. 10, H-8200 Veszprém, Hungary; Balaton Limnological Research Institute, Eötvös Loránd Research Network (ELKH), Klebelsberg Kuno u. 3, Tihany, Hungary
| | - Petar Žutinić
- University of Zagreb, Faculty of Science, Department of Biology, Rooseveltov trg 6, HR-10000 Zagreb, Croatia
| | - Sandi Orlić
- Ruđer Bošković Institute, Bijenička cesta 54, HR-10000 Zagreb, Croatia; Center of Excellence for Science and Technology Integrating Mediterranean Region (STIM), HR-10000 Zagreb, Croatia
| | - Zlatko Levkov
- Institute of Biology, Faculty of Natural Science, Ss Cyril and Methodius University, Skopje, Macedonia
| |
Collapse
|
38
|
Griffin A, Henry J, Kirkbride KP, Painter B, Linacre A. A survey of the effects of common illicit drugs on forensic DNA analysis. Forensic Sci Int 2022; 336:111314. [DOI: 10.1016/j.forsciint.2022.111314] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 04/10/2022] [Accepted: 04/19/2022] [Indexed: 11/17/2022]
|
39
|
Xiong C, Yang C, Wu W, Zeng Y, Lin T, Chen L, Liu H, Liu C, Du W, Wang M, Sun H, Liu C. Development and Validation of A Multiplex Typing System With 32 Y-STRs for Forensic Application. Forensic Sci Int 2022; 339:111409. [DOI: 10.1016/j.forsciint.2022.111409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 06/13/2022] [Accepted: 07/21/2022] [Indexed: 11/26/2022]
|
40
|
Kitpipit T, Chuaythan W, Thanakiatkrai P. Direct STR profiling from laundered bloodstains: an investigation of different factors of laundering. Int J Legal Med 2022; 136:1237-1245. [PMID: 35715652 DOI: 10.1007/s00414-022-02858-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Accepted: 06/08/2022] [Indexed: 10/18/2022]
Abstract
Bloodstains on fabrics may be washed or cleaned to eliminate incriminating evidence. These actions reduce the chances of obtaining an interpretable DNA profile. Previous studies have shown that conventional short-tandem repeat (STR) typing is affected by various factors associated with washing or laundering of stains. Here, we aim to increase the chances of obtaining interpretable STR profiles from laundered bloodstains using direct PCR. Preliminary investigations showed direct STR typing resulted in more alleles compared to conventional STR typing. We then further investigated the following factors with direct STR typing: fabric type (cotton, polyester, and denim), washing method (hand-washing and machine-washing), type of detergents (powder and liquid), washing temperature (cold to 90 °C), pretreatment agents (sodium hypochlorite and hydrogen peroxide), and the number of washes (one, three, and five). Direct PCR could be successfully used for STR typing from laundered bloodstains with very high success rates. Among the three fabric types, only denim negatively affected direct STR typing, while laundering of bloodstains on cotton and polyester had a negligible effect as mostly full profiles were obtained. Multiple washes resulted in a decrease in both the numbers of alleles and peak heights. Surprisingly, washing method, type of detergent, washing temperature, and pretreatment agents only had minimal to no effect on STR profile quality. Due to the robustness and sensitivity of direct STR typing from laundered bloodstains, the method could be beneficial for violent crime investigations in forensic DNA laboratories worldwide.
Collapse
Affiliation(s)
- Thitika Kitpipit
- Forensic Science Program, Division of Health and Applied Sciences, Faculty of Science, Prince of Songkla University, 15 Kanjanavanich Road, Songkhla, 90110, Hat Yai, Thailand
- Forensic Science Innovation and Service Center, Prince of Songkla University, 15 Kanjanavanich Road, Songkhla, 90110, Hat Yai, Thailand
| | - Wichyaporn Chuaythan
- Chemistry-Biology Program, Division of Health and Applied Sciences, Faculty of Science, Prince of Songkla University, 15 Kanjanavanich Road, Songkhla, 90110, Hat Yai, Thailand
| | - Phuvadol Thanakiatkrai
- Forensic Science Program, Division of Health and Applied Sciences, Faculty of Science, Prince of Songkla University, 15 Kanjanavanich Road, Songkhla, 90110, Hat Yai, Thailand.
- Forensic Science Innovation and Service Center, Prince of Songkla University, 15 Kanjanavanich Road, Songkhla, 90110, Hat Yai, Thailand.
| |
Collapse
|
41
|
Wang Y, Zheng G, Wang D, Zhou L. Occurrence of bacterial and viral fecal markers in municipal sewage sludge and their removal during sludge conditioning processes. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2022; 310:114802. [PMID: 35228166 DOI: 10.1016/j.jenvman.2022.114802] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 02/08/2022] [Accepted: 02/22/2022] [Indexed: 06/14/2023]
Abstract
Fecal contamination in wastewater treatment system may pose severe threats to human health, but the detailed contamination of fecal bacterial and viral pathogens in municipal sewage sludge remains unclear. In addition, it is also unclear how sludge conditioning treatments would impact the distribution of fecal markers in conditioned sewage sludge. Before addressing these two issues, the possible polymerase chain reaction (PCR) inhibition effect when determining the abundances of fecal markers in both sludge solids and sludge supernatants should be solved, and methods of effectively concentrating fecal markers from sludge supernatant should also be developed. In the present study, we found that the serial tenfold dilution effectively reduced the PCR inhibition effect when determining the abundances of fecal markers including cross-assembly phages (CrAssphage), JC polyomavirus (JCPyV), human-specific HF183 bacteroides (HF183), human BK polyomavirus (BKPyV), human adenovirus (HAdV) and Escherichia coli (EC), while the utilization of negatively charged HA membrane was effective to recover fecal markers from sludge supernatant. The results of a six-month monitoring revealed that gene markers of CrAssphage, JCPyV, HF183, BKPyV, HAdV, and EC can be detected in municipal sewage sludge collected from a local wastewater treatment plant. Among the investigated four chemical conditioning methods, i.e., chemical conditioning with polyacrylamide (PAM), Fe[III]/CaO, or Fenton's reagent, and chemical acidification conditioning, chemical conditioning with Fenton's reagent was much more effective than the other three conditioning methods to reduce the abundances of fecal markers in the supernatant and solid of conditioned sewage sludge. Furthermore, the investigated fecal markers in the conditioned sewage sludge can be simultaneously attenuated by employing suitable conditioning methods, consequently reducing the associated environmental risks.
Collapse
Affiliation(s)
- Yuhang Wang
- Department of Environmental Engineering, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, China; College of Materials and Chemical Engineering, Pingxiang University, Pingxiang, 337055, China
| | - Guanyu Zheng
- Department of Environmental Engineering, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, China; Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing, 210095, China.
| | - Dianzhan Wang
- Department of Environmental Engineering, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| | - Lixiang Zhou
- Department of Environmental Engineering, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, China; Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing, 210095, China
| |
Collapse
|
42
|
Komatsu H, Inui A, Odmaa E, Ito Y, Hoshino H, Umetsu S, Tsunoda T, Fujisawa T. Signature of chronic hepatitis B virus infection in nails and hair. BMC Infect Dis 2022; 22:431. [PMID: 35509029 PMCID: PMC9066816 DOI: 10.1186/s12879-022-07400-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Accepted: 04/20/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Hepatitis B virus (HBV) is detected in extrahepatic tissues of individuals with HBV infection. Whether nails and hair contain HBV has been unknown. METHODS We examined two patient groups: those with chronic HBV infection alone (n = 71), and those with both chronic HBV and hepatitis delta virus (HDV) infections (n = 15). HBV DNA in the patients' fingernails and hair were measured by real-time PCR. Hepatitis B surface antigen (HBsAg) of fingernails was evaluated by an enzyme immunoassay. HDV RNA in fingernails was measured by real-time PCR. Immunochemical staining was performed on nails. We used chimeric mice with humanized livers to evaluate the infectivity of nails. RESULTS Of the 71 pairs of HBV-alone nail and hair samples, 70 (99%) nail and 60 (85%) hair samples were positive for β-actin DNA. Of those 70 nail samples, 65 (93%) were HBV DNA-positive. Of the 60 hair samples, 49 (82%) were HBV DNA-positive. The serum HBV DNA level of the nail HBV DNA-positive patients was significantly higher than that of the nail HBV DNA-negative patients (p < 0.001). The hair HBV DNA-positive patients' serum HBV DNA level was significantly higher compared to the hair HBV DNA-negative patients (p < 0.001). The nail HBV DNA level was significantly higher than the hair HBV DNA level (p < 0.001). The nails and hair HBV DNA levels were correlated (r = 0.325, p < 0.05). A phylogenetic tree analysis of the complete genome sequence of HBV isolated from nails and hair identified the infection source. Of the 64 nail samples, 38 (59%) were HBsAg-positive. All 15 pairs of chronic HBV/HDV infection nail and hair samples were β-actin DNA-positive. However, nail HBV DNA was detected in two patients (13%). None of the 15 patients were positive for hair HBV DNA. Nail HDV RNA was detected in three patients (20%). Of the 15 patients, eight (53%) were nail HBsAg-positive. HBsAg and hepatitis delta (HD) antigen were detected in the nails by immunochemical staining. Chimeric mice were not infected with PBS containing HBsAg and HBV DNA elucidated from nails. CONCLUSIONS Nails and hair were the reservoir of HBV DNA. Moreover, nails can contain HBsAg, HDV RNA, and HD antigen.
Collapse
Affiliation(s)
- Haruki Komatsu
- Department of Pediatrics, Toho University, Sakura Medical Center, 564-1 Shimoshizu Sakura, Chiba, 285-8741, Japan.
| | - Ayano Inui
- Department of Pediatric Hepatology and Gastroenterology, Eastern Yokohama Hospital, Yokohama, Kanagawa, Japan
| | | | - Yoshinori Ito
- Department of Pediatrics, Nagoya University Graduate School of Medicine, Nagoya, Aichi, Japan
| | - Hiroki Hoshino
- Department of Pediatrics, Toho University, Sakura Medical Center, 564-1 Shimoshizu Sakura, Chiba, 285-8741, Japan
| | - Shuichiro Umetsu
- Department of Pediatric Hepatology and Gastroenterology, Eastern Yokohama Hospital, Yokohama, Kanagawa, Japan
| | - Tomoyuki Tsunoda
- Department of Pediatric Hepatology and Gastroenterology, Eastern Yokohama Hospital, Yokohama, Kanagawa, Japan
| | - Tomoo Fujisawa
- Department of Pediatric Hepatology and Gastroenterology, Eastern Yokohama Hospital, Yokohama, Kanagawa, Japan
| |
Collapse
|
43
|
Long S. In pursuit of sensitivity: Lessons learned from viral nucleic acid detection and quantification on the Raindance ddPCR platform. Methods 2022; 201:82-95. [PMID: 33839286 PMCID: PMC8501152 DOI: 10.1016/j.ymeth.2021.04.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 03/27/2021] [Accepted: 04/06/2021] [Indexed: 12/11/2022] Open
Abstract
Sensitive PCR detection of viral nucleic acids plays a critical role in infectious disease research, diagnosis and monitoring. In the context of SARS-CoV-2 detection, recent reports indicate that digital PCR-based tests are significantly more sensitive than traditional qPCR tests. Numerous factors can influence digital PCR reaction sensitivity. In this review, using a model for human HIV infection and the Raindance ddPCR platform as an example, we describe technical aspects that contribute to sensitive viral signal detection in DNA and RNA from tissue samples, which often harbor viral reservoirs and serve as better predictors of disease outcome and indicators of treatment efficacy.
Collapse
Affiliation(s)
- Samuel Long
- AIDS and Cancer Virus Program, Frederick National Laboratory for Cancer Research, Frederick, MD 21702, United States.
| |
Collapse
|
44
|
Jeremiah Matson M, Ricotta E, Feldmann F, Massaquoi M, Sprecher A, Giuliani R, Edwards JK, Rosenke K, de Wit E, Feldmann H, Chertow DS, Munster VJ. Evaluation of viral load in patients with Ebola virus disease in Liberia: a retrospective observational study. THE LANCET MICROBE 2022; 3:e533-e542. [PMID: 35617976 PMCID: PMC9254266 DOI: 10.1016/s2666-5247(22)00065-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Revised: 02/15/2022] [Accepted: 03/09/2022] [Indexed: 11/30/2022] Open
Abstract
Background Viral load in patients with Ebola virus disease affects case fatality rate and is an important parameter used for diagnostic cutoffs, stratification in randomised controlled trials, and epidemiological studies. However, viral load in Ebola virus disease is currently estimated using numerous different assays and protocols that were not developed or validated for this purpose. Here, our aim was to conduct a laboratory-based re-evaluation of the viral loads of a large cohort of Liberian patients with Ebola virus disease and analyse these data in the broader context of the west Africa epidemic. Methods In this retrospective observational study, whole blood samples from patients at the Eternal Love Winning Africa Ebola treatment unit (Monrovia, Liberia) were re-extracted with an optimised protocol and analysed by droplet digital PCR (ddPCR) using a novel semi-strand specific assay to measure viral load. To allow for more direct comparisons, the ddPCR viral loads were also back-calculated to cycle threshold (Ct) values. The new viral load data were then compared with the Ct values from the original diagnostic quantitative RT-PCR (qRT-PCR) testing to identify differing trends and discrepancies. Findings Between Aug 28 and Dec 18, 2014, 727 whole blood samples from 528 individuals were collected. 463 (64%) were first-draw samples and 409 (56%) were from patients positive for Ebola virus (EBOV), species Zaire ebolavirus. Of the 307 first-draw EBOV-positive samples, 127 (41%) were from survivors and 180 (59%) were from non-survivors; 155 (50%) were women, 145 (47%) were men, and seven (2%) were not recorded, and the mean age was 29·3 (SD 15·0) years for women and 31·8 (SD 14·8) years for men. Survivors had significantly lower mean viral loads at presentation than non-survivors in both the reanalysed dataset (5·61 [95% CI 5·34–5·87] vs 7·19 [6·99–7·38] log10 EBOV RNA copies per mL; p<0·0001) and diagnostic dataset (Ct value 28·72 [27·97–29·47] vs 26·26 [25·72–26·81]; p<0·0001). However, the prognostic capacity of viral load increased with the reanalysed dataset (odds ratio [OR] of death 8·06 [95% CI 4·81–13·53], p<0·0001 for viral loads above 6·71 log10 EBOV RNA copies per mL vs OR of death 2·02 [1·27–3·20], p=0·0028 for Ct values below 27·37). Diagnostic qRT-PCR significantly (p<0·0001) underestimated viral load in both survivors and non-survivors (difference in diagnostic Ct value minus laboratory Ct value of 1·79 [95% CI 1·16–2·43] for survivors and 5·15 [4·43–5·87] for non-survivors). Six samples that were reported negative by diagnostic testing were found to be positive upon reanalysis and had high viral loads. Interpretation Inaccurate viral load estimation from diagnostic Ct values is probably multifactorial; however, unaddressed PCR inhibition from tissue damage in patients with fulminant Ebola virus disease could largely account for the discrepancies observed in our study. Testing protocols for Ebola virus disease require further standardisation and validation to produce accurate viral load estimates, minimise false negatives, and allow for reliable epidemiological investigation.
Collapse
Affiliation(s)
- M Jeremiah Matson
- Laboratory of Virology, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, USA; Marshall University Joan C Edwards School of Medicine, Huntington, WV, USA
| | - Emily Ricotta
- Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Disease, National Institutes of Health, Bethesda, MD, USA
| | - Friederike Feldmann
- Rocky Mountain Veterinary Branch, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, USA
| | | | | | | | | | - Kyle Rosenke
- Laboratory of Virology, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, USA
| | - Emmie de Wit
- Laboratory of Virology, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, USA
| | - Heinz Feldmann
- Laboratory of Virology, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, USA
| | - Daniel S Chertow
- Critical Care Medicine Department, Clinical Center, National Institute of Allergy and Infectious Disease, National Institutes of Health, Bethesda, MD, USA; Laboratory of Immunoregulation, National Institute of Allergy and Infectious Disease, National Institutes of Health, Bethesda, MD, USA
| | - Vincent J Munster
- Laboratory of Virology, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, USA.
| |
Collapse
|
45
|
Wei X, Song F, Wang X, Wang S, Jiang L, Zhang K, Zhou Y, Wang Z, Liao M, Zha L, Luo H. Validation of the AGCU Expressmarker 20 + 20Y Kit: A 6-dye multiplex assay for forensic application. Forensic Sci Int 2022; 336:111342. [DOI: 10.1016/j.forsciint.2022.111342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 04/15/2022] [Accepted: 05/07/2022] [Indexed: 11/04/2022]
|
46
|
Harrel M, Holmes AS. Review of direct PCR and Rapid DNA approaches to streamline sexual assault kit testing. J Forensic Sci 2022; 67:1336-1347. [PMID: 35442526 DOI: 10.1111/1556-4029.15044] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 03/28/2022] [Accepted: 03/30/2022] [Indexed: 01/07/2023]
Abstract
Crime laboratories have been faced with large casework backlogs due to lengthy processing times, limited resources and scientists, and rising crime rates. Evidence related to sexual assault crimes, specifically sexual assault kits (SAKs), heavily contribute to the reported backlogs. Although more sensitive, faster chemistries and automated techniques have been implemented over the years, the traditional STR workflow remains relatively unchanged. Enhanced workflows such as direct PCR and Rapid DNA have the potential to streamline the processing of forensic evidence items including those commonly submitted in SAKs, but the FBI QAS guidelines restrict CODIS-approved labs from implementing these methods for forensic samples. Recent studies have shown decreased turnaround times and improved or comparable profiling success with both approaches. However, review of the literature shows a lack of in-depth research comparing traditional DNA workflows to faster and more sensitive direct PCR and/or Rapid DNA approaches for evidentiary samples, especially for SAKs. By providing the forensic science and criminal justice communities with the strengths and limitations of direct PCR and Rapid DNA methods, stakeholders and policy makers may be better informed.
Collapse
Affiliation(s)
- Michelle Harrel
- Center for Advanced Genomics, Signature Science, LLC, Charlottesville, Virginia, USA
| | - Amy S Holmes
- Center for Advanced Genomics, Signature Science, LLC, Charlottesville, Virginia, USA
| |
Collapse
|
47
|
Hrdy J, Vasickova P. Virus detection methods for different kinds of food and water samples – The importance of molecular techniques. Food Control 2022. [DOI: 10.1016/j.foodcont.2021.108764] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
48
|
Kubo S, Niimi H, Kitajima I. Rapid and direct detection of male DNA by recombinase polymerase amplification assay. Forensic Sci Int Genet 2022; 59:102704. [DOI: 10.1016/j.fsigen.2022.102704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Revised: 03/31/2022] [Accepted: 04/01/2022] [Indexed: 11/04/2022]
|
49
|
Kim S, Kennedy LC, Wolfe MK, Criddle CS, Duong DH, Topol A, White BJ, Kantor RS, Nelson KL, Steele JA, Langlois K, Griffith JF, Zimmer-Faust AG, McLellan SL, Schussman MK, Ammerman M, Wigginton KR, Bakker KM, Boehm AB. SARS-CoV-2 RNA is enriched by orders of magnitude in primary settled solids relative to liquid wastewater at publicly owned treatment works. ENVIRONMENTAL SCIENCE : WATER RESEARCH & TECHNOLOGY 2022. [PMID: 35433013 DOI: 10.1101/2021.11.10.21266138] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Wastewater-based epidemiology has gained attention throughout the world for detection of SARS-CoV-2 RNA in wastewater to supplement clinical testing. Raw wastewater consists of small particles, or solids, suspended in liquid. Methods have been developed to measure SARS-CoV-2 RNA in the liquid and the solid fraction of wastewater, with some studies reporting higher concentrations in the solid fraction. To investigate this relationship further, six laboratories collaborated to conduct a study across five publicly owned treatment works (POTWs) where both primary settled solids obtained from primary clarifiers and raw wastewater influent samples were collected and quantified for SARS-CoV-2 RNA. Settled solids and influent samples were processed by participating laboratories using their respective methods and retrospectively paired based on date of collection. SARS-CoV-2 RNA concentrations, on a mass equivalent basis, were higher in settled solids than in influent by approximately three orders of magnitude. Concentrations in matched settled solids and influent were positively and significantly correlated at all five POTWs. RNA concentrations in both settled solids and influent were correlated to COVID-19 incidence rates in the sewersheds and thus representative of disease occurrence; the settled solids methods appeared to produce a comparable relationship between SARS-CoV-2 RNA concentration measurements and incidence rates across all POTWs. Settled solids and influent methods showed comparable sensitivity, N gene detection frequency, and calculated empirical incidence rate lower limits. Analysis of settled solids for SARS-CoV-2 RNA has the advantage of using less sample volume to achieve similar sensitivity to influent methods.
Collapse
Affiliation(s)
- Sooyeol Kim
- Dept of Civil and Environmental Engineering, Stanford University Stanford CA 94305 USA
| | - Lauren C Kennedy
- Dept of Civil and Environmental Engineering, Stanford University Stanford CA 94305 USA
| | - Marlene K Wolfe
- Dept of Civil and Environmental Engineering, Stanford University Stanford CA 94305 USA
- Rollins School of Public Health, Emory University Atlanta GA 30329 USA
| | - Craig S Criddle
- Dept of Civil and Environmental Engineering, Stanford University Stanford CA 94305 USA
| | | | - Aaron Topol
- Verily Life Sciences South San Francisco CA 94080 USA
| | | | - Rose S Kantor
- Dept of Civil and Environmental Engineering, University of California Berkeley CA 94720 USA
| | - Kara L Nelson
- Dept of Civil and Environmental Engineering, University of California Berkeley CA 94720 USA
| | - Joshua A Steele
- Southern California Coastal Water Research Project Costa Mesa CA 92626 USA
| | - Kylie Langlois
- Southern California Coastal Water Research Project Costa Mesa CA 92626 USA
| | - John F Griffith
- Southern California Coastal Water Research Project Costa Mesa CA 92626 USA
| | | | - Sandra L McLellan
- School of Freshwater Sciences, University of Wisconsin-Milwaukee Milwaukee WI 53204 USA
| | - Melissa K Schussman
- School of Freshwater Sciences, University of Wisconsin-Milwaukee Milwaukee WI 53204 USA
| | - Michelle Ammerman
- Department of Civil and Environmental Engineering, University of Michigan Ann Arbor MI 48109 USA
| | - Krista R Wigginton
- Department of Civil and Environmental Engineering, University of Michigan Ann Arbor MI 48109 USA
| | - Kevin M Bakker
- Department of Epidemiology, University of Michigan Ann Arbor MI 48109 USA
| | - Alexandria B Boehm
- Dept of Civil and Environmental Engineering, Stanford University Stanford CA 94305 USA
| |
Collapse
|
50
|
Kim S, Kennedy LC, Wolfe MK, Criddle CS, Duong DH, Topol A, White BJ, Kantor RS, Nelson KL, Steele JA, Langlois K, Griffith JF, Zimmer-Faust AG, McLellan SL, Schussman MK, Ammerman M, Wigginton KR, Bakker KM, Boehm AB. SARS-CoV-2 RNA is enriched by orders of magnitude in primary settled solids relative to liquid wastewater at publicly owned treatment works. ENVIRONMENTAL SCIENCE : WATER RESEARCH & TECHNOLOGY 2022; 8:757-770. [PMID: 35433013 PMCID: PMC8969789 DOI: 10.1039/d1ew00826a] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Accepted: 02/04/2022] [Indexed: 05/21/2023]
Abstract
Wastewater-based epidemiology has gained attention throughout the world for detection of SARS-CoV-2 RNA in wastewater to supplement clinical testing. Raw wastewater consists of small particles, or solids, suspended in liquid. Methods have been developed to measure SARS-CoV-2 RNA in the liquid and the solid fraction of wastewater, with some studies reporting higher concentrations in the solid fraction. To investigate this relationship further, six laboratories collaborated to conduct a study across five publicly owned treatment works (POTWs) where both primary settled solids obtained from primary clarifiers and raw wastewater influent samples were collected and quantified for SARS-CoV-2 RNA. Settled solids and influent samples were processed by participating laboratories using their respective methods and retrospectively paired based on date of collection. SARS-CoV-2 RNA concentrations, on a mass equivalent basis, were higher in settled solids than in influent by approximately three orders of magnitude. Concentrations in matched settled solids and influent were positively and significantly correlated at all five POTWs. RNA concentrations in both settled solids and influent were correlated to COVID-19 incidence rates in the sewersheds and thus representative of disease occurrence; the settled solids methods appeared to produce a comparable relationship between SARS-CoV-2 RNA concentration measurements and incidence rates across all POTWs. Settled solids and influent methods showed comparable sensitivity, N gene detection frequency, and calculated empirical incidence rate lower limits. Analysis of settled solids for SARS-CoV-2 RNA has the advantage of using less sample volume to achieve similar sensitivity to influent methods.
Collapse
Affiliation(s)
- Sooyeol Kim
- Dept of Civil and Environmental Engineering, Stanford University Stanford CA 94305 USA
| | - Lauren C Kennedy
- Dept of Civil and Environmental Engineering, Stanford University Stanford CA 94305 USA
| | - Marlene K Wolfe
- Dept of Civil and Environmental Engineering, Stanford University Stanford CA 94305 USA
- Rollins School of Public Health, Emory University Atlanta GA 30329 USA
| | - Craig S Criddle
- Dept of Civil and Environmental Engineering, Stanford University Stanford CA 94305 USA
| | | | - Aaron Topol
- Verily Life Sciences South San Francisco CA 94080 USA
| | | | - Rose S Kantor
- Dept of Civil and Environmental Engineering, University of California Berkeley CA 94720 USA
| | - Kara L Nelson
- Dept of Civil and Environmental Engineering, University of California Berkeley CA 94720 USA
| | - Joshua A Steele
- Southern California Coastal Water Research Project Costa Mesa CA 92626 USA
| | - Kylie Langlois
- Southern California Coastal Water Research Project Costa Mesa CA 92626 USA
| | - John F Griffith
- Southern California Coastal Water Research Project Costa Mesa CA 92626 USA
| | | | - Sandra L McLellan
- School of Freshwater Sciences, University of Wisconsin-Milwaukee Milwaukee WI 53204 USA
| | - Melissa K Schussman
- School of Freshwater Sciences, University of Wisconsin-Milwaukee Milwaukee WI 53204 USA
| | - Michelle Ammerman
- Department of Civil and Environmental Engineering, University of Michigan Ann Arbor MI 48109 USA
| | - Krista R Wigginton
- Department of Civil and Environmental Engineering, University of Michigan Ann Arbor MI 48109 USA
| | - Kevin M Bakker
- Department of Epidemiology, University of Michigan Ann Arbor MI 48109 USA
| | - Alexandria B Boehm
- Dept of Civil and Environmental Engineering, Stanford University Stanford CA 94305 USA
| |
Collapse
|