1
|
Dong H, Lu N, Hu P, Wang J. Associations of Serum Apolipoprotein A1 and High Density Lipoprotein Cholesterol With Glucose Level in Patients With Coronary Artery Disease. Angiology 2024; 75:849-856. [PMID: 37395634 DOI: 10.1177/00033197231187228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/04/2023]
Abstract
This study determined the associations of apolipoprotein A1 (ApoA1), high-density lipoprotein cholesterol (HDL-C), and HDL-C/ApoA1 ratio with fasting blood glucose (FBG) and evaluated the mediating effects of high-sensitivity C-reactive protein (hsCRP) and body mass index (BMI). A cross-sectional study with 4805 coronary artery disease (CAD) patients was performed. In multivariable analyses, higher ApoA1, HDL-C, and HDL-C/ApoA1 ratio were associated with significantly lower FBG level (Q [quartile] 4 vs Q1: 5.67 vs 5.87 mmol/L for ApoA1; 5.64 vs 5.98 mmol/L for HDL-C; 5.63 vs 6.01 mmol/L for HDL-C/ApoA1 ratio). Moreover, inverse associations of ApoA1, HDL-C, and HDL-C/ApoA1 ratio with abnormal FBG (AFBG) were found with odd ratios (95% confidence interval) of .83 (.70-.98), .60 (.50-.71), and .53 (.45-.64) in Q4 compared with Q1. Path analyses indicated that "ApoA1 (or HDL-C)-FBG" associations were mediated by hsCRP and "HDL-C-FBG" association was mediated by BMI. Our data suggested that higher ApoA1, HDL-C, and HDL-C/ApoA1 ratio were favorably associated with a lower FBG level in CAD patients and these associations might be mediated by hsCRP or BMI. Collectively, higher concentrations of ApoA1, HDL-C, and HDL-C/ApoA1 ratio might decrease the risk of AFBG.
Collapse
Affiliation(s)
- Hongli Dong
- Department of Child Healthcare and Scientific Education Section, Affiliated Maternity & Child Health Care Hospital of Nantong University, Nantong, China
| | - Nan Lu
- Department of Cardiology, First Affiliated Hospital of Shantou University Medical College, Shantou, China
- Department of Psycho-Cardiology, Beijing Anzhen Hospital Affiliated to Capital Medical University, Beijing, China
| | - Ping Hu
- Image Center, Wuhan Asia Heart Hospital, Wuhan, China
| | - Jie Wang
- Image Center, Wuhan Asia Heart Hospital, Wuhan, China
| |
Collapse
|
2
|
Park SH, Baek SJ, Lee M, Shin HA, Lee HJ, Kim OK, Lee J. Extract mixture of plants (OXYLIA) inhibits fat accumulation by blocking FAS-related factors and promoting lipolysis via cAMP-dependent PKA activation. Food Nutr Res 2024; 68:10180. [PMID: 38571921 PMCID: PMC10989236 DOI: 10.29219/fnr.v68.10180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 11/14/2023] [Accepted: 12/13/2023] [Indexed: 04/05/2024] Open
Abstract
Background Obesity is characterized by an imbalance between energy intake and expenditure, leading to the excessive accumulation of triglycerides in adipose tissue. Objective This study investigated the potential of Oxylia to prevent obesity in mice fed with a high-fat diet (HFD). Design C57BL/6J mice were fed with one of the following five diets - AIN93G normal diet (normal control), 60% (HFD; control), HFD containing metformin at 40 mg/kg body weight (b.w.) (Met; positive control), HFD containing Oxylia at 30 mg/kg b.w. (O30), or HFD containing Oxylia at 60 mg/kg b.w. (O60) - for 15 weeks. Results Mice under an HFD supplemented with Oxylia had decreased body weight gain, adipose tissue weight, and adipose tissue mass. In addition, triglyceride (TG), total cholesterol, and VLDL/LDL cholesterol levels were lower in the O60 groups than in the HFD-fed control group. Moreover, Oxylia supplementation decreased the expression of adipogenesis-related mRNAs and lipogenesis-related proteins while increasing the expression of lipolysis-related proteins in white adipose tissue and thermogenesis-related proteins in brown adipose tissue. Conclusions These findings suggest that Oxylia has potential as a functional food ingredient for the prevention and treatment of obesity and related metabolic disorders.
Collapse
Affiliation(s)
- Seong-Hoo Park
- Department of Medical Nutrition, Kyung Hee University, Yongin, Republic of Korea
| | - Sun-Jung Baek
- Department of Medical Nutrition, Kyung Hee University, Yongin, Republic of Korea
| | - Minhee Lee
- Department of Medical Nutrition, Kyung Hee University, Yongin, Republic of Korea
| | | | | | - Ok-Kyung Kim
- Division of Food and Nutrition and Human Ecology Research Institute, Chonnam National University, Gwangju, Republic of Korea
| | - Jeongmin Lee
- Department of Medical Nutrition, Kyung Hee University, Yongin, Republic of Korea
| |
Collapse
|
3
|
Mo Z, Hu H, Han Y, Cao C, Zheng X. Association between high-density lipoprotein cholesterol and reversion to normoglycemia from prediabetes: an analysis based on data from a retrospective cohort study. Sci Rep 2024; 14:35. [PMID: 38168464 PMCID: PMC10762102 DOI: 10.1038/s41598-023-50539-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Accepted: 12/21/2023] [Indexed: 01/05/2024] Open
Abstract
The available evidence on the connection between high-density lipoprotein cholesterol (HDL-C) levels and the reversion from prediabetes (Pre-DM) to normoglycemia is currently limited. The present research sought to examine the connection between HDL-C levels and the regression from Pre-DM to normoglycemia in a population of Chinese adults. This historical cohort study collected 15,420 Pre-DM patients in China who underwent health screening between 2010 and 2016. The present research used the Cox proportional hazards regression model to investigate the connection between HDL-C levels and reversion from Pre-DM to normoglycemia. The Cox proportional hazards regression model with cubic spline functions and smooth curve fitting was employed to ascertain the nonlinear association between HDL-C and reversion from Pre-DM to normoglycemia. Furthermore, a set of sensitivity analyses and subgroup analyses were employed. Following the adjustment of covariates, the findings revealed a positive connection between HDL-C levels and the likelihood of reversion from Pre-DM to normoglycemia (HR 1.898, 95% CI 1.758-2.048, P < 0.001). Furthermore, there was a non-linear relationship between HDL-C and the reversion from Pre-DM to normoglycemia in both genders, and the inflection point of HDL-C was 1.540 mmol/L in males and 1.620 mmol/L in females. We found a strong positive correlation between HDL-C and the reversion from Pre-DM to normoglycemia on the left of the inflection point (Male: HR 2.783, 95% CI 2.373-3.263; Female: HR 2.217, 95% CI 1.802-2.727). Our sensitivity analysis confirmed the robustness of these findings. Subgroup analyses indicated that patients with SBP < 140 mmHg and ever smoker exhibited a more pronounced correlation between HDL-C levels and the reversion from Pre-DM to normoglycemia. In contrast, a less robust correlation was observed among patients with SBP ≥ 140 mmHg, current and never smokers. This study provides evidence of a positive and nonlinear association between HDL-C levels and the reversion from Pre-DM to normoglycemia in Chinese patients. Implementing intensified intervention measures to control the HDL-C levels of patients with Pre-DM around the inflection point may substantially enhance the likelihood of regression to normoglycemia.
Collapse
Affiliation(s)
- Zihe Mo
- Department of Physical Examination, DongGuan Tungwah Hospital, Dongguan, 523000, Guangdong Province, China
| | - Haofei Hu
- Department of Nephrology, Shenzhen Second People's Hospital, The First Affiliated Hospital of Shenzhen University, Shenzhen, 518000, Guangdong Province, China
| | - Yong Han
- Department of Emergency, Shenzhen Second People's Hospital, The First Affiliated Hospital of Shenzhen University, No.3002, Sungang West Road, Futian District, Shenzhen, 518000, Guangdong Province, China.
| | - Changchun Cao
- Department of Rehabilitation, Shenzhen Second People's Hospital, Shenzhen Dapeng New District Nan'ao People's Hospital, No. 6, Renmin Road, Dapeng New District, Shenzhen, 518000, Guangdong Province, China.
| | - Xiaodan Zheng
- Department of Neurology, Shenzhen Samii Medical Center, The Fourth People's Hospital of Shenzhen, No. 1 Jinniu West Road, Shijing Street, Pingshan District, Shenzhen, 518000, Guangdong Province, China.
| |
Collapse
|
4
|
Kontush A, Martin M, Brites F. Sweet swell of burning fat: emerging role of high-density lipoprotein in energy homeostasis. Curr Opin Lipidol 2023; 34:235-242. [PMID: 37797204 DOI: 10.1097/mol.0000000000000904] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/07/2023]
Abstract
PURPOSE OF REVIEW Metabolism of lipids and lipoproteins, including high-density lipoprotein (HDL), plays a central role in energy homeostasis. Mechanisms underlying the relationship between energy homeostasis and HDL however remain poorly studied. RECENT FINDINGS Available evidence reveals that HDL is implicated in energy homeostasis. Circulating high-density lipoprotein-cholesterol (HDL-C) levels are affected by energy production, raising with increasing resting metabolic rate. Lipolysis of triglycerides as a source of energy decreases plasma levels of remnant cholesterol, increases levels of HDL-C, and can be cardioprotective. Switch to preferential energy production from carbohydrates exerts opposite effects. SUMMARY Low HDL-C may represent a biomarker of inefficient energy production from fats. HDL-C-raising can be beneficial when it reflects enhanced energy production from burning fat.
Collapse
Affiliation(s)
- Anatol Kontush
- Sorbonne University, INSERM, Institute of Cardiometabolism and Nutrition (ICAN), UMR_S 1166, Paris, France
| | - Maximiliano Martin
- Laboratory of Lipids and Atherosclerosis, Department of Clinical Biochemistry, INFIBIOC, University of Buenos Aires. CONICET, Buenos Aires, Argentina
| | - Fernando Brites
- Laboratory of Lipids and Atherosclerosis, Department of Clinical Biochemistry, INFIBIOC, University of Buenos Aires. CONICET, Buenos Aires, Argentina
| |
Collapse
|
5
|
Gupta S, Sing JC, Röst HL. Achieving quantitative reproducibility in label-free multisite DIA experiments through multirun alignment. Commun Biol 2023; 6:1101. [PMID: 37903988 PMCID: PMC10616189 DOI: 10.1038/s42003-023-05437-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Accepted: 10/10/2023] [Indexed: 11/01/2023] Open
Abstract
DIA is a mainstream method for quantitative proteomics, but consistent quantification across multiple LC-MS/MS instruments remains a bottleneck in parallelizing data acquisition. One reason for this inconsistency and missing quantification is the retention time shift which current software does not adequately address for runs from multiple sites. We present multirun chromatogram alignment strategies to map peaks across columns, including the traditional reference-based Star method, and two novel approaches: MST and Progressive alignment. These reference-free strategies produce a quantitatively accurate data-matrix, even from heterogeneous multi-column studies. Progressive alignment also generates merged chromatograms from all runs which has not been previously achieved for LC-MS/MS data. First, we demonstrate the effectiveness of multirun alignment strategies on a gold-standard annotated dataset, resulting in a threefold reduction in quantitation error-rate compared to non-aligned DIA results. Subsequently, on a multi-species dataset that DIAlignR effectively controls the quantitative error rate, improves precision in protein measurements, and exhibits conservative peak alignment. We next show that the MST alignment reduces cross-site CV by 50% for highly abundant proteins when applied to a dataset from 11 different LC-MS/MS setups. Finally, the reanalysis of 949 plasma runs with multirun alignment revealed a more than 50% increase in insulin resistance (IR) and respiratory viral infection (RVI) proteins, identifying 11 and 13 proteins respectively, compared to prior analysis without it. The three strategies are implemented in our DIAlignR workflow (>2.3) and can be combined with linear, non-linear, or hybrid pairwise alignment.
Collapse
Affiliation(s)
- Shubham Gupta
- Terrence Donnelly Centre for Cellular & Biomolecular Research, University of Toronto, Toronto, ON, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
| | - Justin C Sing
- Terrence Donnelly Centre for Cellular & Biomolecular Research, University of Toronto, Toronto, ON, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
| | - Hannes L Röst
- Terrence Donnelly Centre for Cellular & Biomolecular Research, University of Toronto, Toronto, ON, Canada.
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada.
- Department of Computer Science, University of Toronto, Toronto, ON, Canada.
| |
Collapse
|
6
|
Song G, Chen J, Deng Y, Sun L, Yan Y. TMT Labeling Reveals the Effects of Exercises on the Proteomic Characteristics of the Subcutaneous Adipose Tissue of Growing High-Fat-Diet-Fed Rats. ACS OMEGA 2023; 8:23484-23500. [PMID: 37426235 PMCID: PMC10324099 DOI: 10.1021/acsomega.3c00627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Accepted: 05/24/2023] [Indexed: 07/11/2023]
Abstract
Aim: Growing period is an important period for fat remodeling. High-fat diet and exercise are reasons for adipose tissue (AT) remodeling, but existing evidence is not enough. Therefore, the effects of moderate-intensity continuous training (MICT) and high-intensity interval training (HIIT) on the proteomic characteristics of the subcutaneous AT of growing rats on normal diet or high-fat diet (HFD) were determined. Methods: Four-week-old male Sprague-Dawley rats (n = 48) were subdivided into six groups: normal diet control group, normal diet-MICT group, normal diet-HIIT group, HFD control group, HFD-MICT group, and HFD-HIIT group. Rats in the training group ran on a treadmill 5 days a week for 8 weeks (MICT: 50 min at 60-70% VO2max intensity; HIIT: 7 min of warm-up and recovery at 70% VO2max intensity, 6 sets of 3 min of 30% VO2max followed by 3 min 90% VO2max). Following physical assessment, inguinal subcutaneous adipose tissue (sWAT) was collected for proteome analysis using tandem mass tag labeling. Results: MICT and HIIT attenuated body fat mass and lean body mass but did not affect weight gain. Proteomics revealed the impact of exercise on ribosome, spliceosome, and the pentose phosphate pathway. However, the effect was reversed on HFD and normal diet. The differentially expressed proteins (DEPs) affected by MICT were related to oxygen transport, ribosome, and spliceosome. In comparison, the DEPs affected by HIIT were related to oxygen transport, mitochondrial electron transport, and mitochondrion protein. In HFD, HIIT was more likely to cause changes in immune proteins than MICT. However, exercise did not seem to reverse the protein effects of HFD. Conclusion: The exercise stress response in the growing period was stronger but increased the energy metabolism and metabolism. MICT and HIIT can reduce fat, increase muscle percentage, and improve maximum oxygen uptake in rats fed with HFD. However, in rats with normal diet, MICT and HIIT triggered more immune responses of sWAT, especially HIIT. In addition, spliceosomes may be the key factors in AT remodeling triggered by exercise and diet.
Collapse
Affiliation(s)
- Ge Song
- Department
of Sport Biochemistry, School of Sport Science, Beijing Sport University, Beijing 100084, China
| | - Junying Chen
- Department
of Sport Biochemistry, School of Sport Science, Beijing Sport University, Beijing 100084, China
- Guangdong
Ersha Sports Training Center, Guangzhou 510105, China
| | - Yimin Deng
- Department
of Sport Biochemistry, School of Sport Science, Beijing Sport University, Beijing 100084, China
- Fuzhou
Medical College of Nanchang University, Fuzhou 344000, China
| | - Lingyu Sun
- Department
of Sport Biochemistry, School of Sport Science, Beijing Sport University, Beijing 100084, China
| | - Yi Yan
- Department
of Sport Biochemistry, School of Sport Science, Beijing Sport University, Beijing 100084, China
- Laboratory
of Sports Stress and Adaptation of General Administration of Sport, Beijing100084, China
- Laboratory
of Physical Fitness and Exercise, Ministry
of Education, Beijing Sport University, Beijing 100084, China
| |
Collapse
|
7
|
Huang M, Zheng J, Chen L, You S, Huang H. Advances in the study of the pathogenesis of obesity: Based on apolipoproteins. Clin Chim Acta 2023; 545:117359. [PMID: 37086940 DOI: 10.1016/j.cca.2023.117359] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 04/14/2023] [Accepted: 04/17/2023] [Indexed: 04/24/2023]
Abstract
Obesity is a state presented by excessive accumulation and abnormal distribution of body fat, with metabolic disorders being one of its distinguishing features. Obesity is associated with dyslipidemia, apolipoproteins are important structural components of plasma lipoproteins, which influence lipid metabolism in the body by participating in lipoprotein metabolism and are closely related to the progression of obesity. Apolipoproteins influence the progression of obesity from lipid metabolism, energy expenditure and inflammatory response. In this review, we discuss the alterations of apolipoproteins in obesity, understand the potential mechanisms by which apolipoproteins affect obesity, as well as provide new targets for the treatment of obesity.
Collapse
Affiliation(s)
- Mingjing Huang
- The Second Clinical Medical College of Fujian Medical University, Quanzhou, Fujian Province China; Department of Endocrinology, the Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian Province, China
| | - Jingyi Zheng
- The Second Clinical Medical College of Fujian Medical University, Quanzhou, Fujian Province China; Department of Endocrinology, the Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian Province, China
| | - Lijun Chen
- Department of Endocrinology, the Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian Province, China
| | - Sufang You
- The Second Clinical Medical College of Fujian Medical University, Quanzhou, Fujian Province China; Department of Endocrinology, the Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian Province, China
| | - Huibin Huang
- Department of Endocrinology, the Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian Province, China.
| |
Collapse
|
8
|
Kitamura Y, Oikawa S, Chang J, Mori Y, Ichihara G, Ichihara S. Carbonylated Proteins as Key Regulators in the Progression of Metabolic Syndrome. Antioxidants (Basel) 2023; 12:antiox12040844. [PMID: 37107219 PMCID: PMC10135001 DOI: 10.3390/antiox12040844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 03/27/2023] [Accepted: 03/28/2023] [Indexed: 04/03/2023] Open
Abstract
Based on the known role of oxidative stress in the pathogenesis and progression of metabolic syndrome, we used two-dimensional gel electrophoresis with immunochemical detection of protein carbonyls (2D-Oxyblot) to characterize the carbonylated proteins induced by oxidative stress in spontaneously hypertensive rats/NDmcr-cp (CP), an animal model of metabolic syndrome. We also profiled the proteins that showed change of expression levels in their epididymal adipose tissue at the pre-symptomatic (6-week-old) and the symptomatic (25-week-old) stages of the metabolic syndrome. Two-dimensional fluorescence difference gel electrophoresis (2D-DIGE) combined with matrix-assisted laser desorption ionization time-of-flight tandem mass spectrometry (MALDI-TOF/TOF MS) was used to analyze proteins extracted from the epididymal adipose tissue. The up-regulated proteins identified at the pre-symptomatic stage were mainly associated with ATP production and redox reaction, while the down-regulated proteins found at the symptomatic stage were involved in antioxidant activity and the tricarboxylic acid (TCA) cycle. Further analysis using the 2D-Oxyblot showed significantly high carbonylation levels of gelsolin and glycerol-3-phosphate dehydrogenase [NAD+] at the symptomatic stage. These results suggest that reduced antioxidant capacity underlies the increased oxidative stress state in the metabolic syndrome. The identified carbonylated proteins, including gelsolin, are potential targets that may act as key regulators in the progression of the metabolic syndrome.
Collapse
Affiliation(s)
- Yuki Kitamura
- Department of Molecular and Environmental Medicine, Mie University Graduate School of Medicine, Tsu 514-8507, Japan
- Department of Environmental and Preventive Medicine, Jichi Medical University School of Medicine, Shimotsuke 329-0498, Japan
| | - Shinji Oikawa
- Department of Molecular and Environmental Medicine, Mie University Graduate School of Medicine, Tsu 514-8507, Japan
| | - Jie Chang
- Graduate School of Regional Innovation Studies, Mie University, Tsu 514-8507, Japan
| | - Yurie Mori
- Department of Molecular and Environmental Medicine, Mie University Graduate School of Medicine, Tsu 514-8507, Japan
| | - Gaku Ichihara
- Department of Occupational and Environmental Health, Tokyo University of Sciences, Noda 278-8510, Japan
| | - Sahoko Ichihara
- Department of Environmental and Preventive Medicine, Jichi Medical University School of Medicine, Shimotsuke 329-0498, Japan
- Graduate School of Regional Innovation Studies, Mie University, Tsu 514-8507, Japan
| |
Collapse
|
9
|
Vourdoumpa A, Paltoglou G, Charmandari E. The Genetic Basis of Childhood Obesity: A Systematic Review. Nutrients 2023; 15:1416. [PMID: 36986146 PMCID: PMC10058966 DOI: 10.3390/nu15061416] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 03/05/2023] [Accepted: 03/10/2023] [Indexed: 03/17/2023] Open
Abstract
Overweight and obesity in childhood and adolescence represents one of the most challenging public health problems of our century owing to its epidemic proportions and the associated significant morbidity, mortality, and increase in public health costs. The pathogenesis of polygenic obesity is multifactorial and is due to the interaction among genetic, epigenetic, and environmental factors. More than 1100 independent genetic loci associated with obesity traits have been currently identified, and there is great interest in the decoding of their biological functions and the gene-environment interaction. The present study aimed to systematically review the scientific evidence and to explore the relation of single-nucleotide polymorphisms (SNPs) and copy number variants (CNVs) with changes in body mass index (BMI) and other measures of body composition in children and adolescents with obesity, as well as their response to lifestyle interventions. Twenty-seven studies were included in the qualitative synthesis, which consisted of 7928 overweight/obese children and adolescents at different stages of pubertal development who underwent multidisciplinary management. The effect of polymorphisms in 92 different genes was assessed and revealed SNPs in 24 genetic loci significantly associated with BMI and/or body composition change, which contribute to the complex metabolic imbalance of obesity, including the regulation of appetite and energy balance, the homeostasis of glucose, lipid, and adipose tissue, as well as their interactions. The decoding of the genetic and molecular/cellular pathophysiology of obesity and the gene-environment interactions, alongside with the individual genotype, will enable us to design targeted and personalized preventive and management interventions for obesity early in life.
Collapse
Affiliation(s)
- Aikaterini Vourdoumpa
- Division of Endocrinology, Metabolism and Diabetes, First Department of Pediatrics, National and Kapodistrian University of Athens Medical School, ‘Aghia Sophia’ Children’s Hospital, 11527 Athens, Greece
| | - George Paltoglou
- Division of Endocrinology, Metabolism and Diabetes, First Department of Pediatrics, National and Kapodistrian University of Athens Medical School, ‘Aghia Sophia’ Children’s Hospital, 11527 Athens, Greece
| | - Evangelia Charmandari
- Division of Endocrinology, Metabolism and Diabetes, First Department of Pediatrics, National and Kapodistrian University of Athens Medical School, ‘Aghia Sophia’ Children’s Hospital, 11527 Athens, Greece
- Division of Endocrinology and Metabolism, Center for Clinical, Experimental Surgery and Translational Research, Biomedical Research Foundation of the Academy of Athens, 11527 Athens, Greece
| |
Collapse
|
10
|
Abstract
PURPOSE OF REVIEW This review aims to detail the current global research state of metabolically healthy obesogenesis with regard to metabolic factors, disease prevalence, comparisons to unhealthy obesity, and targeted interventions to reverse or delay progression from metabolically healthy to unhealthy obesity. RECENT FINDINGS As a long-term condition with increased risk of cardiovascular, metabolic, and all-cause mortality risks, obesity threatens public health on a national level. The recent discovery of metabolically healthy obesity (MHO), a transitional condition during which obese persons carry comparatively lower health risks, has added to confusion about the true effect of visceral fat and subsequent long-term health risks. In this context, the evaluation of fat loss interventions, such as bariatric surgery, lifestyle changes (diet/exercise), and hormonal therapies require re-evaluation in light of evidence that progression to high-risk stages of obesity relies on metabolic status and that strategies to protect the metabolism may be useful in the prevention of metabolically unhealthy obesity. Typical calorie-based exercise and diet interventions have failed to reduce the prevalence of unhealthy obesity. Holistic lifestyle, psychological, hormonal, and pharmacological interventions for MHO, on the other hand, may at least prevent progression to metabolically unhealthy obesity.
Collapse
Affiliation(s)
- Bryan J Mathis
- International Medical Center, University of Tsukuba Hospital, Tsukuba, Ibaraki, 305-8576, Japan.
| | - Kiyoji Tanaka
- Faculty of Health and Sport Sciences, University of Tsukuba, Tsukuba, Ibaraki, 305-8575, Japan
| | - Yuji Hiramatsu
- International Medical Center, University of Tsukuba Hospital, Tsukuba, Ibaraki, 305-8576, Japan
| |
Collapse
|
11
|
LaRussa Z, Kuo HCN, West K, Shen Z, Wisniewski K, Tso P, Coschigano KT, Lo CC. Increased BAT Thermogenesis in Male Mouse Apolipoprotein A4 Transgenic Mice. Int J Mol Sci 2023; 24:4231. [PMID: 36835642 PMCID: PMC9959433 DOI: 10.3390/ijms24044231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 02/15/2023] [Accepted: 02/15/2023] [Indexed: 02/23/2023] Open
Abstract
Dietary lipids induce apolipoprotein A4 (APOA4) production and brown adipose tissue (BAT) thermogenesis. Administration of exogenous APOA4 elevates BAT thermogenesis in chow-fed mice, but not high-fat diet (HFD)-fed mice. Chronic feeding of HFD attenuates plasma APOA4 production and BAT thermogenesis in wildtype (WT) mice. In light of these observations, we sought to determine whether steady production of APOA4 could keep BAT thermogenesis elevated, even in the presence of HFD consumption, with an aim toward eventual reduction of body weight, fat mass and plasma lipid levels. Transgenic mice with overexpression of mouse APOA4 in the small intestine (APOA4-Tg mice) produce greater plasma APOA4 than their WT controls, even when fed an atherogenic diet. Thus, we used these mice to investigate the correlation of levels of APOA4 and BAT thermogenesis during HFD consumption. The hypothesis of this study was that overexpression of mouse APOA4 in the small intestine and increased plasma APOA4 production would increase BAT thermogenesis and consequently reduce fat mass and plasma lipids of HFD-fed obese mice. To test this hypothesis, BAT thermogenic proteins, body weight, fat mass, caloric intake, and plasma lipids in male APOA4-Tg mice and WT mice fed either a chow diet or a HFD were measured. When fed a chow diet, APOA4 levels were elevated, plasma triglyceride (TG) levels were reduced, and BAT levels of UCP1 trended upward, while body weight, fat mass, caloric intake, and plasma lipids were comparable between APOA4-Tg and WT mice. After a four-week feeding of HFD, APOA4-Tg mice maintained elevated plasma APOA4 and reduced plasma TG, but UCP1 levels in BAT were significantly elevated in comparison to WT controls; body weight, fat mass and caloric intake were still comparable. After 10-week consumption of HFD, however, while APOA4-Tg mice still exhibited increased plasma APOA4, UCP1 levels and reduced TG levels, a reduction in body weight, fat mass and levels of plasma lipids and leptin were finally observed in comparison to their WT controls and independent of caloric intake. Additionally, APOA4-Tg mice exhibited increased energy expenditure at several time points when measured during the 10-week HFD feeding. Thus, overexpression of APOA4 in the small intestine and maintenance of elevated levels of plasma APOA4 appear to correlate with elevation of UCP1-dependent BAT thermogenesis and subsequent protection against HFD-induced obesity in mice.
Collapse
Affiliation(s)
- Zachary LaRussa
- Department of Biomedical Sciences, Heritage College of Osteopathic Medicine, and Diabetes Institute, Ohio University, Athens, OH 45701, USA
| | - Hsuan-Chih N Kuo
- Department of Biomedical Sciences, Heritage College of Osteopathic Medicine, and Diabetes Institute, Ohio University, Athens, OH 45701, USA
| | - Kathryn West
- Department of Biomedical Sciences, Heritage College of Osteopathic Medicine, and Diabetes Institute, Ohio University, Athens, OH 45701, USA
| | - Zhijun Shen
- Department of Biomedical Sciences, Heritage College of Osteopathic Medicine, and Diabetes Institute, Ohio University, Athens, OH 45701, USA
| | - Kevin Wisniewski
- Department of Biomedical Sciences, Heritage College of Osteopathic Medicine, and Diabetes Institute, Ohio University, Athens, OH 45701, USA
| | - Patrick Tso
- Department of Pathology and Laboratory Medicine, University of Cincinnati, Cincinnati, OH 45237, USA
| | - Karen T Coschigano
- Department of Biomedical Sciences, Heritage College of Osteopathic Medicine, and Diabetes Institute, Ohio University, Athens, OH 45701, USA
| | - Chunmin C Lo
- Department of Biomedical Sciences, Heritage College of Osteopathic Medicine, and Diabetes Institute, Ohio University, Athens, OH 45701, USA
| |
Collapse
|
12
|
Alizadeh F, Mirzaie Bavil F, Keyhanmanesh R, Lotfi H, Ghiasi F. Association of pro-inflammatory cytokines, inflammatory proteins with atherosclerosis index in obese male subjects. Horm Mol Biol Clin Investig 2023:hmbci-2022-0022. [PMID: 36592952 DOI: 10.1515/hmbci-2022-0022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Accepted: 07/19/2022] [Indexed: 01/04/2023]
Abstract
OBJECTIVES Investigation the association of pro-inflammatory markers interleukin (IL)-1β and IL- 10 expression, serum levels of C-reactive protein (CRP), cyclooxygenase-2 (COX2), High-density lipoprotein (HDL), Apolipoprotein A1 (ApoA1), and ATP Binding Cassette Subfamily A Member 1 (ABCA1) inflammatory proteins with atherosclerosis index (homocysteine) in normal-weight and obese male subjects. METHODS 59 males including 30 obese (Body mass index (BMI) of ≥30 kg/m2) and 29 normal-weight (BMI of 18.5-24.9 kg/m2) were joined to this study. Plasma levels of IL-1β and IL-10 (pg/mL), CRP (pg/mL), COX-2 (ng/mL), APOA1 (mg/dL), ABCA1 (ng/mL), HDL, Cholesterol, and Triglyceride (TG) (mg/dL), and homocysteine (µmol/L) was measured. Association of these biomarkers with homocysteine was determined. RESULTS Obese subjects had higher serum levels of IL10, IL1β, CRP, COX-2, TG, and cholesterol concentrations (all p<0.05 except IL-10 and cholesterol) and low levels of HDL, APOA1, and ABCA1 (non-significant differences) in comparison to normal-weight group. Homocysteine levels were high in obese men with no significant differences between the two groups. In obese subjects, homocysteine had a significant inverse correlation with APOA1, ABCA1, and HDL, and a strong and moderate positive correlation was found with CRP and TG levels, respectively. CONCLUSIONS High level of homocysteine and its correlation with inflammation proteins and markers in obese subjects appear to be contributed with atherosclerosis development.
Collapse
Affiliation(s)
- Farhad Alizadeh
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Physiology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Fariba Mirzaie Bavil
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Physiology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Rana Keyhanmanesh
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Physiology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Hajie Lotfi
- Cellular and Molecular Research Center, Research Institute for prevention of Non-Communicable Disease, Qazvin University of Medical Sciences, Qazvin, Iran.,Student Research Committee, Qazvin University of Medical Sciences, Qazvin, Iran
| | - Fariba Ghiasi
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Physiology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
13
|
Djesevic M, Hasic S, Lepara O, Jahic R, Kurtovic A, Fajkic A. CRP/HDL-C and Monocyte/HDL-C ratios as Predictors of Metabolic Syndrome in Patients With Type 2 Diabetes Mellitus. Acta Inform Med 2023; 31:254-259. [PMID: 38379696 PMCID: PMC10875961 DOI: 10.5455/aim.2023.31.254-259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Accepted: 12/14/2023] [Indexed: 02/22/2024] Open
Abstract
Background Metabolic syndrome (MetS) denotes a cluster of co-occurring medical conditions associated with regulating hyperglycemia and acute cardiovascular events and complications. The escalating frequency of MetS among individuals afflicted with type 2 diabetes mellitus (T2DM) underscores its burgeoning significance as a critical public health concern and a complex clinical conundrum. Timely identification is imperative to avert the expedited progression of diabetic complications. Objective To investigate the role of CRP/HDL-C and Monocyte/HDL ratios in predicting MetS in T2DM individuals. Methods The study was designed as a two-year prospective study and included 80 T2DM patients divided into MetS and non-MetS groups based on MetS development over two years. The patients' serums were analyzed for complete blood count parameters, lipid profile, and C-reactive protein (CRP). Based on the laboratory test results, Monocyte/HDL-C and CRP/HDL-C ratios were calculated and analyzed. The receiver operating characteristic (ROC) curve and their corresponding areas under the curve (AUC) were used to determine prognostic accuracy. Results Monocyte/HDL-C ratio and CRP/HDL-C ratio were significantly higher in MetS-T2DM2 than in nonMetS-T2DM (p=0.003 and p=0.029, respectively). The results of ROC curve analysis have shown that the CRP/HDL-C ratio (AUC of 0.695) and Monocytes/HDL-C ratio (AUC of 0.645) can serve as good predictors of MetS in T2DM patients. Conclusion This study confirms the reliability of the Monocytes/HDL-C and CRP/HDL-C ratios as novel, simple, low-cost, and valuable predictors of MetS development in T2DM.
Collapse
Affiliation(s)
- Miralem Djesevic
- Department of Cardiology, Private Policlinic Center Eurofarm Sarajevo, Sarajevo, Bosnia and Herzegovina
| | - Sabaheta Hasic
- Department of Medical Biochemistry, Faculty of Medicine, University of Sarajevo, Bosnia and Herzegovina
| | - Orhan Lepara
- Department of Physiology, Faculty of Medicine, University of Sarajevo, Bosnia and Herzegovina
| | - Rijad Jahic
- General Hospital “Prim. Dr. Abdulah Nakas” Sarajevo, Bosnia and Herzegovina
| | - Avdo Kurtovic
- Clinical Center, University of Tuzla, Bosnia and Herzegovina
| | - Almir Fajkic
- Department of Pathophysiology, Faculty of Medicine, University of Sarajevo, Bosnia and Herzegovina
| |
Collapse
|
14
|
Su Y, Wang W, Xiao Q, Tang L, Wang T, Xie M, Su Y. Macrophage membrane-camouflaged lipoprotein nanoparticles for effective obesity treatment based on a sustainable self-reinforcement strategy. Acta Biomater 2022; 152:519-531. [DOI: 10.1016/j.actbio.2022.08.055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2022] [Revised: 07/14/2022] [Accepted: 08/23/2022] [Indexed: 11/26/2022]
|
15
|
Association between apolipoprotein B/A1 and the risk of metabolic dysfunction associated fatty liver disease according to different lipid profiles in a Chinese population: A cross-sectional study. Clin Chim Acta 2022; 534:138-145. [PMID: 35905837 DOI: 10.1016/j.cca.2022.07.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 07/16/2022] [Accepted: 07/18/2022] [Indexed: 11/21/2022]
Abstract
BACKGROUND AND AIM Metabolic dysfunction associated fatty liver disease (MAFLD) is the most common liver disease and dyslipidemia is commonly considered a prominent risk factor for MAFLD. This study was to investigate the association between the apolipoprotein B/A1 (apo B/A1) ratio and the risk of MAFLD based on new diagnostic criteria. METHODS We conducted a cross-sectional study on 3341 participants. Restricted cubic spline (RCS) analyses, logistic regression, Synergistic effects analyses and stratified analyses were used to evaluate the association between the apo B/A1 ratio and the risk of MAFLD. RESULTS The apo B/A1 ratio was nonlinearly related to the increased risk of MAFLD and the OR and 95% CI for the apo B/A1 95th percentile was 1.700 (1.004-2.879) compared with the 50th percentile. Each 1 SD increase in apo B/A1 ratio would increase the 1.313-fold risk of the risk of MAFLD in all participants and 1.46-fold risk in normolipidemic participants. Synergistic effects indicated elevated Apo B/A1 ratio and dyslipidemia collectively contributed to an increased risk of MAFLD [OR (95 %CI): 2.496(1.869-3.334)]. CONCLUSIONS The apo B/A 1 ratio was a risk factor of the presence of MAFLD. Dyslipidemia and elevated the Apo B/A1 ratio can synergistically contributed to the risk of MAFLD.
Collapse
|
16
|
Chen Y, Zhang P, Lv S, Su X, Du Y, Xu C, Jin Z. Ectopic fat deposition and its related abnormalities of lipid metabolism followed by nonalcoholic fatty pancreas. Endosc Ultrasound 2022; 11:407-413. [PMID: 35848656 DOI: 10.4103/eus-d-21-00167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Background and Objectives The positive energy balance between caloric intake and caloric output increasing storage of triglycerides (TG) in adipocytes has made nonalcoholic fatty liver disease (NAFLD) one of the major public health problems in China. Excessive lipid deposition in the pancreas is referred to as nonalcoholic fatty pancreas disease (NAFPD). Early assessment of pancreatic fat infiltration will have an increasing role in the clinical management of the metabolic dysregulation and prevention pancreatic complications. Subjects and Methods We retrospectively collected data of inpatients with NAFPD from EUS database between September 2012 and August 2020 at our endoscopic center. The prevalence of NAFPD and factors associated with its development were statistically analyzed. The echogenicity of the pancreas was compared to that of the left renal cortex during the EUS examination by using an existing criterion. Results Four thousand, seven hundred and four consecutive individuals underwent EUS were enrolled. The prevalence of NAFPD was 1.2% (57/4704) . Factors independently associated with NAFPD on multivariate analysis were increasing TG (odds ratios [OR] 4.65, P = 0.014), NAFLD (OR 16.76, P = 0.005) and decreasing apolipoprotein A-1 (OR 0.002, P = 0.0127). We found no association between NAFPD and age, sex, total cholesterol or hypertension. Conclusions We found a meaningful relationship between NAFLD, dyslipidemia, and NAFPD in Chinese. We hypothesized that NAFPD was strongly correlated with ectopic fat deposition and its related abnormalities of lipid metabolism. Early diagnosis of NAFLD provides opportunities to control the progression of NAFPD.
Collapse
Affiliation(s)
- Yan Chen
- Department of Gastroenterology and Digestive Endoscopy Center, Changhai Hospital, Naval Medical University, Shanghai, China
| | - Pingping Zhang
- Department of Gastroenterology and Digestive Endoscopy Center, Changhai Hospital, Naval Medical University, Shanghai, China
| | - Shunli Lv
- Department of Gastroenterology and Digestive Endoscopy Center, Changhai Hospital, Naval Medical University, Shanghai, China
| | - Xiaoju Su
- Department of Gastroenterology and Digestive Endoscopy Center, Changhai Hospital, Naval Medical University, Shanghai, China
| | - Yiqi Du
- Department of Gastroenterology and Digestive Endoscopy Center, Changhai Hospital, Naval Medical University, Shanghai, China
| | - Can Xu
- Department of Gastroenterology and Digestive Endoscopy Center, Changhai Hospital, Naval Medical University, Shanghai, China
| | - Zhendong Jin
- Department of Gastroenterology and Digestive Endoscopy Center, Changhai Hospital, Naval Medical University, Shanghai, China
| |
Collapse
|
17
|
Cao C, Hu H, Zheng X, Zhang X, Wang Y, He Y. Non-linear relationship between high-density lipoprotein cholesterol and incident diabetes mellitus: a secondary retrospective analysis based on a Japanese cohort study. BMC Endocr Disord 2022; 22:163. [PMID: 35717187 PMCID: PMC9206738 DOI: 10.1186/s12902-022-01074-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Accepted: 06/07/2022] [Indexed: 11/14/2022] Open
Abstract
BACKGROUND AND OBJECTIVE High-density lipoprotein cholesterol (HDL-C) may be directly involved in glucose metabolism by enhancing insulin sensitivity and insulin secretion. This current study aimed to explore the association between HDL-C and the risk of diabetes mellitus (DM) in Japanese population. METHODS This retrospective cohort study was based on a publicly available DRYAD dataset. We enrolled 15,388 Japanese participants who received medical examinations from 2004 to 2015 at Murakami Memorial Hospital. Our study selected HDL-C at baseline and incident DM during follow-up as the target independent variable and the dependent variable, respectively. Cox proportional-hazards regression was used to investigate the association between HDL-C and DM, generalized additive models to identify non-linear relationships. RESULTS After adjusting for the demographic and clinical covariates, the result showed low HDL-C levels were associated with increased risk for diabetes (HR = 0.54, 95%CI (0.35, 0.82)). The results remained robust in a series of sensitive analysis. A non-linear relationship was detected between HDL-C and incident DM with an inflection point of HDL-C at 1.72 mmol/L (Log-likelihood ratio test P = 0.005). Subgroup analysis showed that a stronger association could be found in ex-smokers and current-smokers. The same trend was also seen in the community with hypertension (P for interaction = 0.010, HR = 1.324). CONCLUSION This study demonstrates a negative and non-linear relationship between HDL-C and diabetes in the Japanese population. There is a threshold effect between HDL-C and diabetes. When HDL-C is lower than 1.72 mmol/L, the decreased HDL-C levels were associated with an increased risk for diabetes.
Collapse
Affiliation(s)
- Changchun Cao
- Department of Rehabilitation, Shenzhen Dapeng New District Nan’ao People’s Hospital, No. 6 Renmin Road, Dapeng New Distric, Shenzhen, 518000 Guangdong Province China
| | - Haofei Hu
- Department of Nephrology, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People’s Hospital, Shenzhen, 518035 Guangdong China
| | - Xiaodan Zheng
- Department of Rehabilitation, Shenzhen Dapeng New District Nan’ao People’s Hospital, No. 6 Renmin Road, Dapeng New Distric, Shenzhen, 518000 Guangdong Province China
| | - Xiaohua Zhang
- Department of Rehabilitation, Shenzhen Dapeng New District Nan’ao People’s Hospital, No. 6 Renmin Road, Dapeng New Distric, Shenzhen, 518000 Guangdong Province China
| | - Yulong Wang
- Department of Rehabilitation, Shenzhen Dapeng New District Nan’ao People’s Hospital, No. 6 Renmin Road, Dapeng New Distric, Shenzhen, 518000 Guangdong Province China
| | - Yongcheng He
- Department of Nephrology, Shenzhen Hengsheng Hospital, No. 20 Yintian Road, Xixiang Street, Baoan District, Shenzhen, 518000 Guangdong Province China
| |
Collapse
|
18
|
Tardif G, Paré F, Gotti C, Roux-Dalvai F, Droit A, Zhai G, Sun G, Fahmi H, Pelletier JP, Martel-Pelletier J. Mass spectrometry-based proteomics identify novel serum osteoarthritis biomarkers. Arthritis Res Ther 2022; 24:120. [PMID: 35606786 PMCID: PMC9125906 DOI: 10.1186/s13075-022-02801-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Accepted: 05/08/2022] [Indexed: 11/10/2022] Open
Abstract
Background Osteoarthritis (OA) is a slowly developing and debilitating disease, and there are no validated specific biomarkers for its early detection. To improve therapeutic approaches, identification of specific molecules/biomarkers enabling early determination of this disease is needed. This study aimed at identifying, with the use of proteomics/mass spectrometry, novel OA-specific serum biomarkers. As obesity is a major risk factor for OA, we discriminated obesity-regulated proteins to target only OA-specific proteins as biomarkers. Methods Serum from the Osteoarthritis Initiative cohort was used and divided into 3 groups: controls (n=8), OA-obese (n=10) and OA-non-obese (n=10). Proteins were identified and quantified from the liquid chromatography–tandem mass spectrometry analyses using MaxQuant software. Statistical analysis used the Limma test followed by the Benjamini-Hochberg method. To compare the proteomic profiles, the multivariate unsupervised principal component analysis (PCA) followed by the pairwise comparison was used. To select the most predictive/discriminative features, the supervised linear classification model sparse partial least squares regression discriminant analysis (sPLS-DA) was employed. Validation of three differential proteins was performed with protein-specific assays using plasma from a cohort derived from the Newfoundland Osteoarthritis. Results In total, 509 proteins were identified, and 279 proteins were quantified. PCA-pairwise differential comparisons between the 3 groups revealed that 8 proteins were differentially regulated between the OA-obese and/or OA-non-obese with controls. Further experiments using the sPLS-DA revealed two components discriminating OA from controls (component 1, 9 proteins), and OA-obese from OA-non-obese (component 2, 23 proteins). Proteins from component 2 were considered related to obesity. In component 1, compared to controls, 7 proteins were significantly upregulated by both OA groups and 2 by the OA-obese. Among upregulated proteins from both OA groups, some of them alone would not be a suitable choice as specific OA biomarkers due to their rather non-specific role or their strong link to other pathological conditions. Altogether, data revealed that the protein CRTAC1 appears to be a strong OA biomarker candidate. Other potential new biomarker candidates are the proteins FBN1, VDBP, and possibly SERPINF1. Validation experiments revealed statistical differences between controls and OA for FBN1 (p=0.044) and VDPB (p=0.022), and a trend for SERPINF1 (p=0.064). Conclusion Our study suggests that 4 proteins, CRTAC1, FBN1, VDBP, and possibly SERPINF1, warrant further investigation as potential new biomarker candidates for the whole OA population. Supplementary Information The online version contains supplementary material available at 10.1186/s13075-022-02801-1.
Collapse
Affiliation(s)
- Ginette Tardif
- Osteoarthritis Research Unit, University of Montreal Hospital Research Centre (CRCHUM), 900 Saint-Denis, Suite R11.412B, Montreal, QC, H2X 0A9, Canada
| | - Frédéric Paré
- Osteoarthritis Research Unit, University of Montreal Hospital Research Centre (CRCHUM), 900 Saint-Denis, Suite R11.412B, Montreal, QC, H2X 0A9, Canada
| | - Clarisse Gotti
- CHU de Québec Research Center, Laval University, Quebec, QC, G1V 4G2, Canada
| | | | - Arnaud Droit
- CHU de Québec Research Center, Laval University, Quebec, QC, G1V 4G2, Canada
| | - Guangju Zhai
- Division of Biomedical Sciences (Genetics), Memorial University of Newfoundland, St. John's, NL, A1B 3V6, Canada
| | - Guang Sun
- Discipline of Medicine, Memorial University of Newfoundland, St. John's, NL, A1B 3V6, Canada
| | - Hassan Fahmi
- Osteoarthritis Research Unit, University of Montreal Hospital Research Centre (CRCHUM), 900 Saint-Denis, Suite R11.412B, Montreal, QC, H2X 0A9, Canada
| | - Jean-Pierre Pelletier
- Osteoarthritis Research Unit, University of Montreal Hospital Research Centre (CRCHUM), 900 Saint-Denis, Suite R11.412B, Montreal, QC, H2X 0A9, Canada
| | - Johanne Martel-Pelletier
- Osteoarthritis Research Unit, University of Montreal Hospital Research Centre (CRCHUM), 900 Saint-Denis, Suite R11.412B, Montreal, QC, H2X 0A9, Canada.
| |
Collapse
|
19
|
Dong H, Zhang Y, Hu P, Wang J, Lu N. Serum apolipoprotein A1 rather than apolipoprotein B is associated with hypertension prevalence in Chinese people with coronary artery disease. Blood Press Monit 2022; 27:121-127. [PMID: 34873074 DOI: 10.1097/mbp.0000000000000576] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
OBJECTIVE Studies on the association of apolipoprotein A1 (ApoA1) and apolipoprotein B (ApoB) with hypertension (HTN) prevalence in patients with coronary artery disease (CAD) are limited. This cross-sectional study aimed to investigate this association in Chinese people in Wuhan, China. METHODS Serum ApoA1 and ApoB levels were measured by immunoturbidimetry assay. Logistic regression analysis was used to estimate the associations of ApoA1 and ApoB level and ApoB/A1 ratio with HTN prevalence. RESULTS We included 5192 individuals (3060 men, mean age 61 years; 4412 HTN cases) in this study. After adjusting for covariates, serum ApoA1 but not ApoB level or ApoB/A1 ratio was inversely associated with HTN prevalence. HTN prevalence was reduced with the fifth versus first quintile of ApoA1 level [odds ratio = 0.78 (95% confidence interval 0.62-0.98)]. In stratified analyses based on sex, the probability of HTN with the fifth versus first ApoA1 level was 0.71 (0.53-0.96) for men. The probability of HTN with the fifth versus first quintile of ApoB/A1 ratio was 1.54 (1.11-2.13) after adjustment. With quintiles 2-5 versus of ApoB level, the probability of HTN did not differ in both men and women. On path analyses, the association of ApoA1 level and ApoB/A1 ratio with HTN was mediated by BMI (β coefficients: -0.179 to 0.133). CONCLUSION In general, high serum ApoA1 level may be associated with a reduced probability of HTN prevalence in patients with CAD in China, and this association may be mediated by BMI.
Collapse
Affiliation(s)
- Hongli Dong
- Department of Child Healthcare and Scientific Education Section, Affiliated Matern & Child Care Hospital of Nantong University, Nantong
| | - Yaju Zhang
- Finance Section, Affiliated Traditional Chinese Medicine Hospital of Nantong University, Nantong
| | - Ping Hu
- Image Center, Wuhan Asia Heart Hospital, Wuhan
| | - Jie Wang
- Image Center, Wuhan Asia Heart Hospital, Wuhan
| | - Nan Lu
- Image Center, Wuhan Asia Heart Hospital, Wuhan
- Department of Cardiology, the First Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong, China
| |
Collapse
|
20
|
HDL Mimetic Peptides. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2022; 1377:141-151. [DOI: 10.1007/978-981-19-1592-5_11] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
21
|
González-Arostegui LG, Rubio CP, Cerón JJ, Tvarijonaviciute A, Muñoz-Prieto A. Proteomics in dogs: a systematic review. Res Vet Sci 2021; 143:107-114. [PMID: 35007798 DOI: 10.1016/j.rvsc.2021.12.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 12/17/2021] [Accepted: 12/29/2021] [Indexed: 10/19/2022]
Abstract
Proteomic analysis is having a rapid development as a method for the detection of biomarkers of diseases in dogs. Dogs in addition to their importance as companion animals, serve as important animal models for research. This study aims to systematically review evidence regarding the studies performed in proteomics in dogs, and specifically those made in serum, saliva, urine and/or plasma. Information searched in October 2020, January 2021 and August 2021, for English language publications of the last decade (2010-2020) were obtained from electronic databases. Screening, data extraction and risk of bias assessment were undertaken by two investigators. The risk of bias was evaluated using the Review Manager (RevMan 5) tool. Meta-analysis and case report studies were not included in this review. Through the screening process a total of 557 publications were identified after the removal of duplicates. Out of these, 65 were fully evaluated and 44 of these were included in the review. Most studies evaluated the proteome of disease and compared it with a healthy population, and most of the articles included were made on serum, followed by saliva. The overall risk of bias for all studies was high, due to an absence in the generation of random sequence. Overall proteomic analysis has allowed the discovery of new physiopathological pathways of diseases and potential biomarkers in the dog, which are addressed in this review.
Collapse
Affiliation(s)
- Luis Guillermo González-Arostegui
- Interdisciplinary Laboratory of Clinical Analysis (Interlab-UMU), Veterinary School, Campus of Excellence Mare Nostrum, University of Murcia, Campus Espinardo, 30100 Murcia, Spain
| | - Camila Peres Rubio
- Interdisciplinary Laboratory of Clinical Analysis (Interlab-UMU), Veterinary School, Campus of Excellence Mare Nostrum, University of Murcia, Campus Espinardo, 30100 Murcia, Spain; Department of Animal and Food Science, School of Veterinary Science, Universitat Autònoma de Barcelona, 08193, Cerdanyola del Vallès, Barcelona, Spain
| | - José Joaquín Cerón
- Interdisciplinary Laboratory of Clinical Analysis (Interlab-UMU), Veterinary School, Campus of Excellence Mare Nostrum, University of Murcia, Campus Espinardo, 30100 Murcia, Spain
| | - Asta Tvarijonaviciute
- Interdisciplinary Laboratory of Clinical Analysis (Interlab-UMU), Veterinary School, Campus of Excellence Mare Nostrum, University of Murcia, Campus Espinardo, 30100 Murcia, Spain.
| | - Alberto Muñoz-Prieto
- Clinic for Internal Diseases, Faculty of Veterinary Medicine, University of Zagreb, Heinzelova 55, 10000 Zagreb, Croatia
| |
Collapse
|
22
|
Solhi R, Lotfinia M, Gramignoli R, Najimi M, Vosough M. Metabolic hallmarks of liver regeneration. Trends Endocrinol Metab 2021; 32:731-745. [PMID: 34304970 DOI: 10.1016/j.tem.2021.06.002] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Revised: 06/14/2021] [Accepted: 06/15/2021] [Indexed: 12/29/2022]
Abstract
Despite the crucial role of cell metabolism in biological processes, particularly cell division, metabolic aspects of liver regeneration are not well defined. Better understanding of the metabolic activity governing division of liver cells will provide powerful insights into mechanisms of physiological and pathological liver regeneration. Recent studies have provided evidence that metabolic response to liver failure might be a proximal signal to initiate cell proliferation in liver regeneration. In this review, we highlight how lipids, carbohydrates, and proteins dynamically change and orchestrate liver regeneration. In addition, we discuss translational studies in which metabolic intervention has been used to treat chronic liver diseases (CLDs).
Collapse
Affiliation(s)
- Roya Solhi
- Department of Clinical Biochemistry, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran; Department of Regenerative Medicine, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, Academic Center for Education, Culture and Research (ACECR), Tehran, Iran
| | - Majid Lotfinia
- Physiology Research Center, Basic Sciences Research Institute, Kashan University of Medical Sciences, Kashan, Iran; Core Research Lab, Kashan University of Medical Sciences, Kashan, Iran
| | - Roberto Gramignoli
- Department of Laboratory Medicine, Division of Pathology, Karolinska Institutet, Stockholm, Sweden
| | - Mustapha Najimi
- Laboratory of Pediatric Hepatology and Cell Therapy, Institute of Experimental and Clinical Research (IREC), UCLouvain, Brussels, Belgium.
| | - Massoud Vosough
- Department of Regenerative Medicine, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, Academic Center for Education, Culture and Research (ACECR), Tehran, Iran; Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, Academic Center for Education, Culture and Research (ACECR), Tehran, Iran.
| |
Collapse
|
23
|
Liput KP, Lepczyński A, Nawrocka A, Poławska E, Ogłuszka M, Jończy A, Grzybek W, Liput M, Szostak A, Urbański P, Roszczyk A, Pareek CS, Pierzchała M. Effects of Three-Month Administration of High-Saturated Fat Diet and High-Polyunsaturated Fat Diets with Different Linoleic Acid (LA, C18:2n-6) to α-Linolenic Acid (ALA, C18:3n-3) Ratio on the Mouse Liver Proteome. Nutrients 2021; 13:1678. [PMID: 34063343 PMCID: PMC8156955 DOI: 10.3390/nu13051678] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2021] [Accepted: 05/12/2021] [Indexed: 12/13/2022] Open
Abstract
The aim of the study was to evaluate the effect of different types of high-fat diets (HFDs) on the proteomic profile of mouse liver. The analysis included four dietary groups of mice fed a standard diet (STD group), a high-fat diet rich in SFAs (SFA group), and high-fat diets dominated by PUFAs with linoleic acid (LA, C18:2n-6) to α-linolenic acid (ALA, C18:3n-3) ratios of 14:1 (14:1 group) and 5:1 (5:1 group). After three months of diets, liver proteins were resolved by two-dimensional gel electrophoresis (2DE) using 17 cm non-linear 3-10 pH gradient strips. Protein spots with different expression were identified by MALDI-TOF/TOF. The expression of 13 liver proteins was changed in the SFA group compared to the STD group (↓: ALB, APOA1, IVD, MAT1A, OAT and PHB; ↑: ALDH1L1, UniProtKB-Q91V76, GALK1, GPD1, HMGCS2, KHK and TKFC). Eleven proteins with altered expression were recorded in the 14:1 group compared to the SFA group (↓: ARG1, FTL1, GPD1, HGD, HMGCS2 and MAT1A; ↑: APOA1, CA3, GLO1, HDHD3 and IVD). The expression of 11 proteins was altered in the 5:1 group compared to the SFA group (↓: ATP5F1B, FTL1, GALK1, HGD, HSPA9, HSPD1, PC and TKFC; ↑: ACAT2, CA3 and GSTP1). High-PUFA diets significantly affected the expression of proteins involved in, e.g., carbohydrate metabolism, and had varying effects on plasma total cholesterol and glucose levels. The outcomes of this study revealed crucial liver proteins affected by different high-fat diets.
Collapse
Affiliation(s)
- Kamila P. Liput
- Department of Genomics and Biodiversity, Institute of Genetics and Animal Biotechnology of the Polish Academy of Sciences, ul. Postepu 36A, Jastrzebiec, 05-552 Magdalenka, Poland; (K.P.L.); (A.N.); (E.P.); (M.O.); (A.S.); (P.U.); (A.R.)
- Department of Molecular Biology, Institute of Genetics and Animal Biotechnology of the Polish Academy of Sciences, ul. Postepu 36A, Jastrzebiec, 05-552 Magdalenka, Poland;
| | - Adam Lepczyński
- Department of Physiology, Cytobiology and Proteomics, West Pomeranian University of Technology, K. Janickiego 32 Str., 71-270 Szczecin, Poland;
| | - Agata Nawrocka
- Department of Genomics and Biodiversity, Institute of Genetics and Animal Biotechnology of the Polish Academy of Sciences, ul. Postepu 36A, Jastrzebiec, 05-552 Magdalenka, Poland; (K.P.L.); (A.N.); (E.P.); (M.O.); (A.S.); (P.U.); (A.R.)
- Department of Experimental Genomics, Institute of Genetics and Animal Biotechnology of the Polish Academy of Sciences, ul. Postepu 36A, Jastrzebiec, 05-552 Magdalenka, Poland
| | - Ewa Poławska
- Department of Genomics and Biodiversity, Institute of Genetics and Animal Biotechnology of the Polish Academy of Sciences, ul. Postepu 36A, Jastrzebiec, 05-552 Magdalenka, Poland; (K.P.L.); (A.N.); (E.P.); (M.O.); (A.S.); (P.U.); (A.R.)
| | - Magdalena Ogłuszka
- Department of Genomics and Biodiversity, Institute of Genetics and Animal Biotechnology of the Polish Academy of Sciences, ul. Postepu 36A, Jastrzebiec, 05-552 Magdalenka, Poland; (K.P.L.); (A.N.); (E.P.); (M.O.); (A.S.); (P.U.); (A.R.)
| | - Aneta Jończy
- Department of Molecular Biology, Institute of Genetics and Animal Biotechnology of the Polish Academy of Sciences, ul. Postepu 36A, Jastrzebiec, 05-552 Magdalenka, Poland;
| | - Weronika Grzybek
- Department of Biotechnology and Nutrigenomics, Institute of Genetics and Animal Biotechnology of the Polish Academy of Sciences, ul. Postepu 36A, Jastrzebiec, 05-552 Magdalenka, Poland;
| | - Michał Liput
- Department of Stem Cell Bioengineering, Mossakowski Medical Research Institute of the Polish Academy of Sciences, 02-106 Warsaw, Poland;
| | - Agnieszka Szostak
- Department of Genomics and Biodiversity, Institute of Genetics and Animal Biotechnology of the Polish Academy of Sciences, ul. Postepu 36A, Jastrzebiec, 05-552 Magdalenka, Poland; (K.P.L.); (A.N.); (E.P.); (M.O.); (A.S.); (P.U.); (A.R.)
| | - Paweł Urbański
- Department of Genomics and Biodiversity, Institute of Genetics and Animal Biotechnology of the Polish Academy of Sciences, ul. Postepu 36A, Jastrzebiec, 05-552 Magdalenka, Poland; (K.P.L.); (A.N.); (E.P.); (M.O.); (A.S.); (P.U.); (A.R.)
| | - Agnieszka Roszczyk
- Department of Genomics and Biodiversity, Institute of Genetics and Animal Biotechnology of the Polish Academy of Sciences, ul. Postepu 36A, Jastrzebiec, 05-552 Magdalenka, Poland; (K.P.L.); (A.N.); (E.P.); (M.O.); (A.S.); (P.U.); (A.R.)
| | - Chandra S. Pareek
- Institute of Veterinary Medicine, Faculty of Biological and Veterinary Sciences, Nicolaus Copernicus University, 87-100 Toruń, Poland;
- Division of Functional Genomics in Biological and Biomedical Research, Centre for Modern Interdisciplinary Technologies, Nicolaus Copernicus University, 87-100 Torun, Poland
| | - Mariusz Pierzchała
- Department of Genomics and Biodiversity, Institute of Genetics and Animal Biotechnology of the Polish Academy of Sciences, ul. Postepu 36A, Jastrzebiec, 05-552 Magdalenka, Poland; (K.P.L.); (A.N.); (E.P.); (M.O.); (A.S.); (P.U.); (A.R.)
| |
Collapse
|
24
|
Solares I, Izquierdo-Sánchez L, Morales-Conejo M, Jericó D, Castelbón FJ, Córdoba KM, Sampedro A, Lumbreras C, Moreno-Aliaga MJ, Enríquez de Salamanca R, Berraondo P, Fontanellas A. High Prevalence of Insulin Resistance in Asymptomatic Patients with Acute Intermittent Porphyria and Liver-Targeted Insulin as a Novel Therapeutic Approach. Biomedicines 2021; 9:255. [PMID: 33807619 PMCID: PMC8002016 DOI: 10.3390/biomedicines9030255] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Revised: 02/22/2021] [Accepted: 02/27/2021] [Indexed: 02/08/2023] Open
Abstract
Acute porphyria attacks are associated with the strong up-regulation of hepatic heme synthesis and over-production of neurotoxic heme precursors. First-line therapy is based on carbohydrate loading. However, altered glucose homeostasis could affect its efficacy. Our first aim was to investigate the prevalence of insulin resistance (IR) in an observational case-control study including 44 Spanish patients with acute intermittent porphyria (AIP) and 55 age-, gender- and BMI-matched control volunteers. Eight patients (18.2%) and one control (2.3%, p = 0.01) showed a high HOMA-IR index (cut-off ≥ 3.4). Patients with IR and hyperinsulinemia showed clinically stable disease. Thus, the second aim was to evaluate the effect of the co-administration of glucose and a fast-acting or new liver-targeted insulin (the fusion protein of insulin and apolipoprotein A-I, Ins-ApoAI) in AIP mice. The combination of glucose and the Ins-ApoAI promoted partial but sustained protection against hepatic heme synthesis up-regulation compared with glucose alone or co-injected with fast-acting insulin. In a prevention study, Ins-ApoAI improved symptoms associated with a phenobarbital-induced attack but maintained high porphyrin precursor excretion, probably due to the induction of hepatic mitochondrial biogenesis mediated by apolipoprotein A-I. In conclusion, a high prevalence of IR and hyperinsulinemia was observed in patients with AIP. The experimental data provide proof-of-concept for liver-targeted insulin as a way of enhancing glucose therapy for AIP.
Collapse
Affiliation(s)
- Isabel Solares
- Reference Center for Inherited Metabolic Disease-MetabERN, Department of Internal Medicine, University Hospital 12 de Octubre, UCM, 28041 Madrid, Spain; (I.S.); (M.M.-C.); (F.J.C.); (C.L.); (R.E.d.S.)
| | - Laura Izquierdo-Sánchez
- Hepatology Program, Cima Universidad de Navarra, 31008 Pamplona, Spain; (L.I.-S.); (D.J.); (K.M.C.); (A.S.)
- Department of Liver and Gastrointestinal Diseases, Biodonostia Health Research Institute, Donostia University Hospital, University of the Basque Country (UPV/EHU), 20014 San Sebastian, Spain
| | - Montserrat Morales-Conejo
- Reference Center for Inherited Metabolic Disease-MetabERN, Department of Internal Medicine, University Hospital 12 de Octubre, UCM, 28041 Madrid, Spain; (I.S.); (M.M.-C.); (F.J.C.); (C.L.); (R.E.d.S.)
- Grupo de Enfermedades Mitocondriales y Neuromusculares, Instituto de Investigación Hospital 12 de Octubre (i+12), Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Daniel Jericó
- Hepatology Program, Cima Universidad de Navarra, 31008 Pamplona, Spain; (L.I.-S.); (D.J.); (K.M.C.); (A.S.)
- Instituto de Investigación Sanitaria de Navarra (IdiSNA), 31008 Pamplona, Spain; (M.J.M.-A.); (P.B.)
| | - Francisco Javier Castelbón
- Reference Center for Inherited Metabolic Disease-MetabERN, Department of Internal Medicine, University Hospital 12 de Octubre, UCM, 28041 Madrid, Spain; (I.S.); (M.M.-C.); (F.J.C.); (C.L.); (R.E.d.S.)
| | - Karol Marcela Córdoba
- Hepatology Program, Cima Universidad de Navarra, 31008 Pamplona, Spain; (L.I.-S.); (D.J.); (K.M.C.); (A.S.)
- Instituto de Investigación Sanitaria de Navarra (IdiSNA), 31008 Pamplona, Spain; (M.J.M.-A.); (P.B.)
| | - Ana Sampedro
- Hepatology Program, Cima Universidad de Navarra, 31008 Pamplona, Spain; (L.I.-S.); (D.J.); (K.M.C.); (A.S.)
- Instituto de Investigación Sanitaria de Navarra (IdiSNA), 31008 Pamplona, Spain; (M.J.M.-A.); (P.B.)
| | - Carlos Lumbreras
- Reference Center for Inherited Metabolic Disease-MetabERN, Department of Internal Medicine, University Hospital 12 de Octubre, UCM, 28041 Madrid, Spain; (I.S.); (M.M.-C.); (F.J.C.); (C.L.); (R.E.d.S.)
| | - María Jesús Moreno-Aliaga
- Instituto de Investigación Sanitaria de Navarra (IdiSNA), 31008 Pamplona, Spain; (M.J.M.-A.); (P.B.)
- Center for Nutrition Research and Department of Nutrition, Food Science and Physiology, University of Navarra, 31008 Pamplona, Spain
- CIBERobn Physiopathology of Obesity and Nutrition, Carlos III Health Institute, 28029 Madrid, Spain
| | - Rafael Enríquez de Salamanca
- Reference Center for Inherited Metabolic Disease-MetabERN, Department of Internal Medicine, University Hospital 12 de Octubre, UCM, 28041 Madrid, Spain; (I.S.); (M.M.-C.); (F.J.C.); (C.L.); (R.E.d.S.)
| | - Pedro Berraondo
- Instituto de Investigación Sanitaria de Navarra (IdiSNA), 31008 Pamplona, Spain; (M.J.M.-A.); (P.B.)
- Program of Immunology and Immunotherapy, Cima Universidad de Navarra, 31008 Pamplona, Spain
- Centro de Investigación Biomédica en Red de Cáncer, CIBERonc, Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Antonio Fontanellas
- Hepatology Program, Cima Universidad de Navarra, 31008 Pamplona, Spain; (L.I.-S.); (D.J.); (K.M.C.); (A.S.)
- Instituto de Investigación Sanitaria de Navarra (IdiSNA), 31008 Pamplona, Spain; (M.J.M.-A.); (P.B.)
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Instituto de Salud Carlos III, 28029 Madrid, Spain
| |
Collapse
|
25
|
Ardaiz N, Gomar C, Vasquez M, Tenesaca S, Fernandez-Sendin M, Di Trani CA, Belsué V, Escalada J, Werner U, Tennagels N, Berraondo P. Insulin Fused to Apolipoprotein A-I Reduces Body Weight and Steatosis in DB/DB Mice. Front Pharmacol 2021; 11:591293. [PMID: 33679386 PMCID: PMC7934061 DOI: 10.3389/fphar.2020.591293] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Accepted: 12/23/2020] [Indexed: 01/06/2023] Open
Abstract
Background: Targeting long-lasting insulins to the liver may improve metabolic alterations that are not corrected with current insulin replacement therapies. However, insulin is only able to promote lipogenesis but not to block gluconeogenesis in the insulin-resistant liver, exacerbating liver steatosis associated with diabetes. Methods: In order to overcome this limitation, we fused a single-chain insulin to apolipoprotein A-I, and we evaluated the pharmacokinetics and pharmacodynamics of this novel fusion protein in wild type mice and in db/db mice using both recombinant proteins and recombinant adenoassociated virus (AAV). Results: Here, we report that the fusion protein between single-chain insulin and apolipoprotein A-I prolonged the insulin half-life in circulation, and accumulated in the liver. We analyzed the long-term effect of these insulin fused to apolipoprotein A-I or insulin fused to albumin using AAVs in the db/db mouse model of diabetes, obesity, and liver steatosis. While AAV encoding insulin fused to albumin exacerbated liver steatosis in several mice, AAV encoding insulin fused to apolipoprotein A-I reduced liver steatosis. These results were confirmed upon daily subcutaneous administration of the recombinant insulin-apolipoprotein A-I fusion protein for six weeks. The reduced liver steatosis was associated with reduced body weight in mice treated with insulin fused to apolipoprotein A-I. Recombinant apolipoprotein A-I alone significantly reduces body weight and liver weight, indicating that the apolipoprotein A-I moiety is the main driver of these effects. Conclusion: The fusion protein of insulin and apolipoprotein A-I could be a promising insulin derivative for the treatment of diabetic patients with associated fatty liver disease.
Collapse
Affiliation(s)
- Nuria Ardaiz
- Program of Immunology and Immunotherapy, Cima Universidad de Navarra, Pamplona, Spain.,IdiSNA, Navarra Institute for Health Research, Pamplona, Spain
| | - Celia Gomar
- Program of Immunology and Immunotherapy, Cima Universidad de Navarra, Pamplona, Spain.,IdiSNA, Navarra Institute for Health Research, Pamplona, Spain
| | - Marcos Vasquez
- Program of Immunology and Immunotherapy, Cima Universidad de Navarra, Pamplona, Spain.,IdiSNA, Navarra Institute for Health Research, Pamplona, Spain
| | - Shirley Tenesaca
- Program of Immunology and Immunotherapy, Cima Universidad de Navarra, Pamplona, Spain.,IdiSNA, Navarra Institute for Health Research, Pamplona, Spain
| | - Myriam Fernandez-Sendin
- Program of Immunology and Immunotherapy, Cima Universidad de Navarra, Pamplona, Spain.,IdiSNA, Navarra Institute for Health Research, Pamplona, Spain
| | - Claudia Augusta Di Trani
- Program of Immunology and Immunotherapy, Cima Universidad de Navarra, Pamplona, Spain.,IdiSNA, Navarra Institute for Health Research, Pamplona, Spain
| | - Virginia Belsué
- Program of Immunology and Immunotherapy, Cima Universidad de Navarra, Pamplona, Spain.,IdiSNA, Navarra Institute for Health Research, Pamplona, Spain
| | - Javier Escalada
- IdiSNA, Navarra Institute for Health Research, Pamplona, Spain.,Department of Endocrinology, Clínica Universidad de Navarra, Pamplona, Spain.,Centro de Investigación Biomédica en Red de la Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Madrid, Spain
| | - Ulrich Werner
- Sanofi-Aventis Deutschland GmbH, TA Diabetes, Frankfurt am Main, Germany
| | - Norbert Tennagels
- Sanofi-Aventis Deutschland GmbH, TA Diabetes, Frankfurt am Main, Germany
| | - Pedro Berraondo
- Program of Immunology and Immunotherapy, Cima Universidad de Navarra, Pamplona, Spain.,IdiSNA, Navarra Institute for Health Research, Pamplona, Spain.,Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain
| |
Collapse
|
26
|
Gohar A, Shakeel M, Atkinson RL, Haleem DJ. Potential mechanisms of improvement in body weight, metabolic profile, and liver metabolism by honey in rats on a high fat diet. PHARMANUTRITION 2020. [DOI: 10.1016/j.phanu.2020.100227] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
27
|
Nazir S, Jankowski V, Bender G, Zewinger S, Rye KA, van der Vorst EP. Interaction between high-density lipoproteins and inflammation: Function matters more than concentration! Adv Drug Deliv Rev 2020; 159:94-119. [PMID: 33080259 DOI: 10.1016/j.addr.2020.10.006] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Revised: 09/20/2020] [Accepted: 10/13/2020] [Indexed: 02/07/2023]
Abstract
High-density lipoprotein (HDL) plays an important role in lipid metabolism and especially contributes to the reverse cholesterol transport pathway. Over recent years it has become clear that the effect of HDL on immune-modulation is not only dependent on HDL concentration but also and perhaps even more so on HDL function. This review will provide a concise general introduction to HDL followed by an overview of post-translational modifications of HDL and a detailed overview of the role of HDL in inflammatory diseases. The clinical potential of HDL and its main apolipoprotein constituent, apoA-I, is also addressed in this context. Finally, some conclusions and remarks that are important for future HDL-based research and further development of HDL-focused therapies are discussed.
Collapse
|
28
|
Saande CJ, Bries AE, Pritchard SK, Nass CA, Reed CH, Rowling MJ, Schalinske KL. Whole Egg Consumption Decreases Cumulative Weight Gain in Diet-Induced Obese Rats. J Nutr 2020; 150:1818-1823. [PMID: 32359139 DOI: 10.1093/jn/nxaa114] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Revised: 03/10/2020] [Accepted: 04/01/2020] [Indexed: 12/27/2022] Open
Abstract
BACKGROUND Whole egg (WE) consumption has been demonstrated to attenuate body weight (BW) gain and adiposity in genetic animal models of type 2 diabetes (T2D). This finding was accompanied by increased food consumption. OBJECTIVES This study aimed to examine the effects of long-term WE intake on BW gain, fat distribution, and food intake in a rat model of diet-induced obesity (DIO). METHODS Male Sprague Dawley rats (n = 24) were obtained at 5 wk of age and were randomly weight-matched across 1 of 4 dietary intervention groups (6 rats per group): a casein-based diet (CAS), a high-fat high-sucrose CAS diet (HFHS CAS), a whole egg-based diet (EGG), or a high-fat high-sucrose EGG diet (HFHS EGG). All diets provided 20% (w/w) protein and were provided for 33 wk. HFHS diets provided ∼61% of kilocalories from fat and 10% from sucrose. Daily weight gain and food intake were recorded, biochemical parameters were measured via ELISA, and epididymal fat pad weights were recorded at the end of the study. RESULTS At 33 wk, cumulative BW gain in DIO rats fed HFHS EGG resulted in 23% lower weight gain compared with DIO rats fed HFHS CAS (P < 0.0001), but no significant differences in BW gain were observed between the HFHS EGG group and the control EGG and CAS groups (P = 0.71 and P = 0.61, respectively). Relative food intake (grams per kilogram BW) was 23% lower (P < 0.0001) in rats fed HFHS CAS compared with CAS, whereas there was no difference in food intake within the EGG dietary groups. DIO rats fed HFHS EGG exhibited a 22% decrease in epididymal fat weight compared with their counterparts fed the HFHS CAS. CONCLUSIONS Our data demonstrate that consumption of a WE-based diet reduced BW gain and visceral fat in the DIO rat, similar to our previous findings in a genetic rat model with T2D.
Collapse
Affiliation(s)
- Cassondra J Saande
- Department of Food Science and Human Nutrition, Iowa State University, Ames, IA, USA.,Interdepartmental Graduate Program in Nutritional Sciences, Iowa State University, Ames, IA, USA.,USDA National Needs Fellowship
| | - Amanda E Bries
- Department of Food Science and Human Nutrition, Iowa State University, Ames, IA, USA.,Interdepartmental Graduate Program in Nutritional Sciences, Iowa State University, Ames, IA, USA
| | - Samantha K Pritchard
- Department of Food Science and Human Nutrition, Iowa State University, Ames, IA, USA.,Interdepartmental Graduate Program in Nutritional Sciences, Iowa State University, Ames, IA, USA
| | - Caitlyn A Nass
- Department of Food Science and Human Nutrition, Iowa State University, Ames, IA, USA
| | - Carter H Reed
- Department of Food Science and Human Nutrition, Iowa State University, Ames, IA, USA.,Interdepartmental Graduate Program in Nutritional Sciences, Iowa State University, Ames, IA, USA
| | - Matthew J Rowling
- Department of Food Science and Human Nutrition, Iowa State University, Ames, IA, USA.,Interdepartmental Graduate Program in Nutritional Sciences, Iowa State University, Ames, IA, USA
| | - Kevin L Schalinske
- Department of Food Science and Human Nutrition, Iowa State University, Ames, IA, USA.,Interdepartmental Graduate Program in Nutritional Sciences, Iowa State University, Ames, IA, USA
| |
Collapse
|
29
|
Peterson SJ, Dave N, Kothari J. The Effects of Heme Oxygenase Upregulation on Obesity and the Metabolic Syndrome. Antioxid Redox Signal 2020; 32:1061-1070. [PMID: 31880952 DOI: 10.1089/ars.2019.7954] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Significance: Obesity is a chronic condition that is characterized by inflammation and oxidative stress with consequent cardiovascular complications of hypertension, dyslipidemia, and vascular dysfunction. Obesity-induced metabolic syndrome remains an epidemic of global proportions. Recent Advances: Gene targeting of the endothelium with a retrovirus using an endothelium-specific promoter vascular endothelium cadherin (VECAD)-HO-1 offers a potential long-term solution to adiposity by targeting the endothelium. This has resulted in improvements of both vascular function and adiposity attenuation. Critical Issues: Heme oxygenase plays an ever-increasing role in the understanding of human biology in the complex conditions of obesity and the metabolic syndrome. The heme oxygenase 1 (HO-1) system creates biliverdin/bilirubin, which functions as an antioxidant, and carbon monoxide, which has antiapoptotic properties. Future Directions: Upregulation of HO-1 has been shown to improve adiposity as well as vascular function in both animal and human studies.
Collapse
Affiliation(s)
- Stephen J Peterson
- Department of Medicine, Weill Cornell Medicine, New York, New York.,New York Presbyterian Brooklyn Methodist Hospital, Brooklyn, New York
| | - Niel Dave
- New York Presbyterian Brooklyn Methodist Hospital, Brooklyn, New York
| | - Janish Kothari
- New York Presbyterian Brooklyn Methodist Hospital, Brooklyn, New York
| |
Collapse
|
30
|
Fritzen AM, Domingo-Espín J, Lundsgaard AM, Kleinert M, Israelsen I, Carl CS, Nicolaisen TS, Kjøbsted R, Jeppesen JF, Wojtaszewski JFP, Lagerstedt JO, Kiens B. ApoA-1 improves glucose tolerance by increasing glucose uptake into heart and skeletal muscle independently of AMPKα 2. Mol Metab 2020; 35:100949. [PMID: 32244181 PMCID: PMC7082546 DOI: 10.1016/j.molmet.2020.01.013] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Revised: 01/03/2020] [Accepted: 01/24/2020] [Indexed: 12/17/2022] Open
Abstract
OBJECTIVE Acute administration of the main protein component of high-density lipoprotein, apolipoprotein A-I (ApoA-1), improves glucose uptake in skeletal muscle. The molecular mechanisms mediating this are not known, but in muscle cell cultures, ApoA-1 failed to increase glucose uptake when infected with a dominant-negative AMP-activated protein kinase (AMPK) virus. We therefore investigated whether AMPK is necessary for ApoA-1-stimulated glucose uptake in intact heart and skeletal muscle in vivo. METHODS The effect of injection with recombinant human ApoA-1 (rApoA-1) on glucose tolerance, glucose-stimulated insulin secretion, and glucose uptake into skeletal and heart muscle with and without block of insulin secretion by injection of epinephrine (0.1 mg/kg) and propranolol (5 mg/kg), were investigated in 8 weeks high-fat diet-fed (60E%) wild-type and AMPKα2 kinase-dead mice in the overnight-fasted state. In addition, the effect of rApoA-1 on glucose uptake in isolated skeletal muscle ex vivo was studied. RESULTS rApoA-1 lowered plasma glucose concentration by 1.7 mmol/l within 3 h (6.1 vs 4.4 mmol/l; p < 0.001). Three hours after rApoA-1 injection, glucose tolerance during a 40-min glucose tolerance test (GTT) was improved compared to control (area under the curve (AUC) reduced by 45%, p < 0.001). This was accompanied by an increased glucose clearance into skeletal (+110%; p < 0.001) and heart muscle (+100%; p < 0.001) and an increase in glucose-stimulated insulin secretion 20 min after glucose injection (+180%; p < 0.001). When insulin secretion was blocked during a GTT, rApoA-1 still enhanced glucose tolerance (AUC lowered by 20% compared to control; p < 0.001) and increased glucose clearance into skeletal (+50%; p < 0.05) and heart muscle (+270%; p < 0.001). These improvements occurred to a similar extent in both wild-type and AMPKα2 kinase-dead mice and thus independently of AMPKα2 activity in skeletal- and heart muscle. Interestingly, rApoA-1 failed to increase glucose uptake in isolated skeletal muscles ex vivo. CONCLUSIONS In conclusion, ApoA-1 stimulates in vivo glucose disposal into skeletal and heart muscle independently of AMPKα2. The observation that ApoA-1 fails to increase glucose uptake in isolated muscle ex vivo suggests that additional systemic effects are required.
Collapse
Affiliation(s)
- Andreas Mæchel Fritzen
- Section of Molecular Physiology, Department of Nutrition, Exercise, and Sports, Faculty of Science, University of Copenhagen, Copenhagen, Denmark
| | - Joan Domingo-Espín
- Department of Experimental Medical Science, Lund University, S-221 84, Lund, Sweden
| | - Anne-Marie Lundsgaard
- Section of Molecular Physiology, Department of Nutrition, Exercise, and Sports, Faculty of Science, University of Copenhagen, Copenhagen, Denmark
| | - Maximilian Kleinert
- Section of Molecular Physiology, Department of Nutrition, Exercise, and Sports, Faculty of Science, University of Copenhagen, Copenhagen, Denmark; Institute for Diabetes and Obesity, Helmholtz Diabetes Center at Helmholtz Zentrum München, German Research Center for Environmental Health, Germany
| | - Ida Israelsen
- Section of Molecular Physiology, Department of Nutrition, Exercise, and Sports, Faculty of Science, University of Copenhagen, Copenhagen, Denmark
| | - Christian S Carl
- Section of Molecular Physiology, Department of Nutrition, Exercise, and Sports, Faculty of Science, University of Copenhagen, Copenhagen, Denmark
| | - Trine S Nicolaisen
- Section of Molecular Physiology, Department of Nutrition, Exercise, and Sports, Faculty of Science, University of Copenhagen, Copenhagen, Denmark
| | - Rasmus Kjøbsted
- Section of Molecular Physiology, Department of Nutrition, Exercise, and Sports, Faculty of Science, University of Copenhagen, Copenhagen, Denmark
| | | | - Jørgen F P Wojtaszewski
- Section of Molecular Physiology, Department of Nutrition, Exercise, and Sports, Faculty of Science, University of Copenhagen, Copenhagen, Denmark
| | - Jens O Lagerstedt
- Department of Experimental Medical Science, Lund University, S-221 84, Lund, Sweden; Lund Institute of Advanced X-ray and Neutron Science (LINXS), Lund, Sweden.
| | - Bente Kiens
- Section of Molecular Physiology, Department of Nutrition, Exercise, and Sports, Faculty of Science, University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
31
|
Abstract
The last few decades have witnessed a global rise in the number of older individuals. Despite this demographic shift, morbidity within this population group is high. Many factors influence healthspan; however, an obesity pandemic is emerging as a significant determinant of older people's health. It is well established that obesity adversely affects several metabolic systems. However, due to its close association with overall cardiometabolic health, the impact that obesity has on cholesterol metabolism needs to be recognised. The aim of the present review is to critically discuss the effects that obesity has on cholesterol metabolism and to reveal its significance for healthy ageing.
Collapse
|
32
|
Su X, Peng D. The exchangeable apolipoproteins in lipid metabolism and obesity. Clin Chim Acta 2020; 503:128-135. [PMID: 31981585 DOI: 10.1016/j.cca.2020.01.015] [Citation(s) in RCA: 73] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Revised: 01/15/2020] [Accepted: 01/17/2020] [Indexed: 12/29/2022]
Abstract
Dyslipidemia, characterized by increased plasma levels of low-density lipoprotein cholesterol (LDL-C), very low-density lipoprotein cholesterol (VLDL-C), triglyceride (TG), and reduced plasma levels of high-density lipoprotein cholesterol (HDL-C), is confirmed as a hallmark of obesity and cardiovascular diseases (CVD), posing serious risks to the future health of humans. Thus, it is important to understand the molecular metabolism of dyslipidemia, which could help reduce the morbidity and mortality of obesity and CVD. Currently, several exchangeable apolipoproteins, such as apolipoprotein A1 (ApoA1), apolipoprotein A5 (ApoA5), apolipoprotein E (ApoE), and apolipoprotein C3 (ApoC3), have been verified to exert vital effects on modulating lipid metabolism and homeostasis both in plasma and in cells, which consequently affect dyslipidemia. In the present review, we summarize the findings of the effect of exchangeable apolipoproteins on affecting lipid metabolism in adipocytes and hepatocytes. Furthermore, we also provide new insights into the mechanisms by which the exchangeable apolipoproteins influence the pathogenesis of dyslipidemia and its related cardio-metabolic disorders.
Collapse
Affiliation(s)
- Xin Su
- Department of Cardiovascular Medicine, the Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Daoquan Peng
- Department of Cardiovascular Medicine, the Second Xiangya Hospital of Central South University, Changsha, Hunan, China.
| |
Collapse
|
33
|
Zhang T, Chen J, Tang X, Luo Q, Xu D, Yu B. Interaction between adipocytes and high-density lipoprotein:new insights into the mechanism of obesity-induced dyslipidemia and atherosclerosis. Lipids Health Dis 2019; 18:223. [PMID: 31842884 PMCID: PMC6913018 DOI: 10.1186/s12944-019-1170-9] [Citation(s) in RCA: 66] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2019] [Accepted: 12/09/2019] [Indexed: 12/19/2022] Open
Abstract
Obesity is the most common nutritional disorder worldwide and is associated with dyslipidemia and atherosclerotic cardiovascular disease. The hallmark of dyslipidemia in obesity is low high density lipoprotein (HDL) cholesterol (HDL-C) levels. Moreover, the quality of HDL is also changed in the obese setting. However, there are still some disputes on the explanations for this phenomenon. There is increasing evidence that adipose tissue, as an energy storage tissue, participates in several metabolism activities, such as hormone secretion and cholesterol efflux. It can influence overall reverse cholesterol transport and plasma HDL-C level. In obesity individuals, the changes in morphology and function of adipose tissue affect plasma HDL-C levels and HDL function, thus, adipose tissue should be the main target for the treatment of HDL metabolism in obesity. In this review, we will summarize the cross-talk between adipocytes and HDL related to cardiovascular disease and focus on the new insights of the potential mechanism underlying obesity and HDL dysfunction.
Collapse
Affiliation(s)
- Tianhua Zhang
- Department of Cardiovascular Medicine, the Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, People's Republic of China
| | - Jin Chen
- Department of Cardiovascular Medicine, the Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, People's Republic of China
| | - Xiaoyu Tang
- Department of Cardiovascular Medicine, the Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, People's Republic of China
| | - Qin Luo
- Department of Cardiovascular Medicine, the Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, People's Republic of China
| | - Danyan Xu
- Department of Cardiovascular Medicine, the Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, People's Republic of China
| | - Bilian Yu
- Department of Cardiovascular Medicine, the Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, People's Republic of China.
| |
Collapse
|
34
|
Piras C, Morittu VM, Spina AA, Soggiu A, Greco V, Ramé C, Briant E, Mellouk N, Tilocca B, Bonizzi L, Roncada P, Dupont J. Unraveling the Adipose Tissue Proteome of Transition Cows through Severe Negative Energy Balance. Animals (Basel) 2019; 9:E1013. [PMID: 31766506 PMCID: PMC6940989 DOI: 10.3390/ani9121013] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Revised: 11/13/2019] [Accepted: 11/19/2019] [Indexed: 01/05/2023] Open
Abstract
Fat mobilization in high-yielding dairy cows during early lactation occurs to overcome negative energy balance (NEB), caused by insufficient feed intake and the concomitant increased nutritional requirements. For this reason, adipose tissue represents an essential organ for healthy and performant lactation. However, only a few data are known about adipose tissue proteome and its metabolic status during peripartum. The aim of this study was to analyze the differential proteomics profiles of subcutaneous adipose tissue belonging to cows with different NEB scores (low NEB and severe NEB). Both groups were analyzed at three different time points (one month before calving, one and sixteen weeks after calving) that were related to different levels and rates of adipose tissue mobilization. The dataset highlighted the differential expression of the same four key proteins (annexin A2, actin-related protein 10, glyceraldehyde-3-phosphate dehydrogenase, and fatty acid-binding protein) involved in lipid metabolism during all time points and of other 22 proteins typical of the other comparisons among remaining time points. The obtained dataset suggested that the individual variability in adipose tissue metabolism/mobilization/energy availability could be linked to the different outcomes in levels of energy balance and related physical complications among dairy cows during peripartum.
Collapse
Affiliation(s)
- Cristian Piras
- Department of Chemistry, University of Reading, Reading RG66AH, UK;
- Dipartimento di Medicina Veterinaria, Università degli Studi di Milano, 20133 Milano, Italy;
| | - Valeria Maria Morittu
- Department of Health Sciences, University Magna Graæcia, 88100 Catanzaro, Italy; (V.M.M.); (A.A.S.); (B.T.)
| | - Anna Antonella Spina
- Department of Health Sciences, University Magna Graæcia, 88100 Catanzaro, Italy; (V.M.M.); (A.A.S.); (B.T.)
| | - Alessio Soggiu
- Dipartimento di Medicina Veterinaria, Università degli Studi di Milano, 20133 Milano, Italy;
| | - Viviana Greco
- Istituto di Biochimica e Biochimica Clinica, Università Cattolica del Sacro Cuore, 00168 Roma, Italy;
- Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Roma, Italy
| | - Christelle Ramé
- Department of Animal Physiology and Livestock Systems, French National Institute for Agricultural Research—INRA, F-37380 Nouzilly, France; (C.R.); (E.B.); (N.M.)
| | - Eric Briant
- Department of Animal Physiology and Livestock Systems, French National Institute for Agricultural Research—INRA, F-37380 Nouzilly, France; (C.R.); (E.B.); (N.M.)
| | - Namya Mellouk
- Department of Animal Physiology and Livestock Systems, French National Institute for Agricultural Research—INRA, F-37380 Nouzilly, France; (C.R.); (E.B.); (N.M.)
| | - Bruno Tilocca
- Department of Health Sciences, University Magna Graæcia, 88100 Catanzaro, Italy; (V.M.M.); (A.A.S.); (B.T.)
| | - Luigi Bonizzi
- Dipartimento di Scienze Biomediche, Chirurgiche ed Odontoiatriche, Università degli Studi di Milano, 20133 Milano, Italy;
| | - Paola Roncada
- Department of Health Sciences, University Magna Graæcia, 88100 Catanzaro, Italy; (V.M.M.); (A.A.S.); (B.T.)
| | - Joëlle Dupont
- Department of Animal Physiology and Livestock Systems, French National Institute for Agricultural Research—INRA, F-37380 Nouzilly, France; (C.R.); (E.B.); (N.M.)
| |
Collapse
|
35
|
Pirany N, Bakrani Balani A, Hassanpour H, Mehraban H. Differential expression of genes implicated in liver lipid metabolism in broiler chickens differing in weight. Br Poult Sci 2019; 61:10-16. [PMID: 31630531 DOI: 10.1080/00071668.2019.1680802] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
1. Lipid parameters and expression of ACACA, APOA1, CPT1A, FASN, FOXO1, LIPG, PPARα and SIRT1 genes involved in lipid metabolism were investigated in two groups of high (HW) and low (LW) weight broilers from the same strain.2. Blood cholesterol and liver triglyceride levels were significantly increased in HW chickens compared to LW broilers, while other parameters, i.e. blood triglyceride, blood HDL/LDL, liver cholesterol and total liver fat showed no significant changes in either group.3. The relative expression of ACACA, APOA1 and CPT1A genes was significantly lower in the liver tissues of HW broilers than in the LW group. The mRNA levels of these three genes showed a significant negative correlation with abdominal fat deposition and live weight of broilers. However, relative expression of FASN, FOXO1, LIPG, PPARα and SIRT1 hepatic genes did not differ among broilers.4. It was concluded that, of eight hepatic genes implicated in lipid metabolism, only the expression of three (ACACA, APOA1 and CPT1A) were significant for fat and leanness within the same strain of chicken. Since reducing body fat is a major goal in the broiler industry, these data can provide fresh insight into the molecular processes underlying the regulation of fat deposition in broilers.
Collapse
Affiliation(s)
- N Pirany
- Department of Animal Science, Faculty of Agriculture, Shahrekord University, Shahrekord, Iran
| | - A Bakrani Balani
- Department of Animal Science, Faculty of Agriculture, Shahrekord University, Shahrekord, Iran
| | - H Hassanpour
- Department of Basic Sciences, Faculty of Veterinary Medicine, Shahrekord University, Shahrekord, Iran
| | - H Mehraban
- Department of Animal Science, Faculty of Agriculture, Shahrekord University, Shahrekord, Iran
| |
Collapse
|
36
|
Isoform and tissue dependent impact of apolipoprotein E on adipose tissue metabolic activation: The role of apolipoprotein A1. Biochim Biophys Acta Mol Cell Biol Lipids 2019; 1865:158551. [PMID: 31678510 DOI: 10.1016/j.bbalip.2019.158551] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Revised: 09/17/2019] [Accepted: 09/22/2019] [Indexed: 01/27/2023]
Abstract
Adipose organ is made of white (WAT) and brown (BAT) adipose tissue which are primarily responsible for lipid storage and energy production (heat and ATP) respectively. Metabolic activation of WAT may ascribe to this tissue characteristics of BAT, namely non-shivering thermogenesis and ATP production. Recent data indicate that apolipoproteins E (APOE) and A1 (APOA1) regulate WAT mitochondrial metabolic activation. Here, we investigated the functional cross-talk between natural human APOE2 and APOE4 isoforms with APOA1 in this process, using Apoe2knock-in and Apoe4knock-in mice. At baseline when Apoe2knock-in and Apoe4knock-in mice express both APOE and Apoa1, the Apoe2knock-in strain appears to have higher mitochondrial oxidative phosphorylation levels and non-shivering thermogenesis in WAT compared to Apoe4knock-in mice. When mice were switched to a high-fat diet for 18 weeks, circulating levels of endogenous Apoa1 in Apoe2knock-in mice became barely detectable though significant levels of APOE2 were still present. This change was accompanied by a significant reduction in WAT mitochondrial Ucp1 expression while BAT Ucp1 was unaffected. Ectopic APOA1 expression in Apoe2knock-in animals potently stimulated WAT but not BAT mitochondrial Ucp1 expression providing further evidence that APOA1 potently stimulates WAT non-shivering thermogenesis in the presence of APOE2. Ectopic expression of APOA1 in Apoe4knock-in mice stimulated BAT but no WAT mitochondrial Ucp1 levels, suggesting that in the presence of APOE4, APOA1 is a trigger of BAT non-shivering thermogenesis. Overall, our data identified a tissue-specific role of the natural human APOE2 and APOE4 isoforms in WAT- and BAT-metabolic activation respectively, that appears dependent on circulating APOA1 levels.
Collapse
|
37
|
Kornmueller K, Vidakovic I, Prassl R. Artificial High Density Lipoprotein Nanoparticles in Cardiovascular Research. Molecules 2019; 24:E2829. [PMID: 31382521 PMCID: PMC6695986 DOI: 10.3390/molecules24152829] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Revised: 07/31/2019] [Accepted: 08/01/2019] [Indexed: 02/07/2023] Open
Abstract
Lipoproteins are endogenous nanoparticles which are the major transporter of fats and cholesterol in the human body. They play a key role in the regulatory mechanisms of cardiovascular events. Lipoproteins can be modified and manipulated to act as drug delivery systems or nanocarriers for contrast agents. In particular, high density lipoproteins (HDL), which are the smallest class of lipoproteins, can be synthetically engineered either as nascent HDL nanodiscs or spherical HDL nanoparticles. Reconstituted HDL (rHDL) particles are formed by self-assembly of various lipids and apolipoprotein AI (apo-AI). A variety of substances including drugs, nucleic acids, signal emitting molecules, or dyes can be loaded, making them efficient nanocarriers for therapeutic applications or medical diagnostics. This review provides an overview about synthesis techniques, physicochemical properties of rHDL nanoparticles, and structural determinants for rHDL function. We discuss recent developments utilizing either apo-AI or apo-AI mimetic peptides for the design of pharmaceutical rHDL formulations. Advantages, limitations, challenges, and prospects for clinical translation are evaluated with a special focus on promising strategies for the treatment and diagnosis of atherosclerosis and cardiovascular diseases.
Collapse
Affiliation(s)
- Karin Kornmueller
- Gottfried Schatz Research Center for Cell Signaling, Metabolism and Aging, Biophysics, Medical University of Graz, Neue Stiftingtalstraße 6/IV, 8010 Graz, Austria
| | - Ivan Vidakovic
- Gottfried Schatz Research Center for Cell Signaling, Metabolism and Aging, Biophysics, Medical University of Graz, Neue Stiftingtalstraße 6/IV, 8010 Graz, Austria
| | - Ruth Prassl
- Gottfried Schatz Research Center for Cell Signaling, Metabolism and Aging, Biophysics, Medical University of Graz, Neue Stiftingtalstraße 6/IV, 8010 Graz, Austria.
| |
Collapse
|
38
|
Poteryaeva ON, Usynin IF. [Antidiabetic role of high density lipoproteins]. BIOMEDIT︠S︡INSKAI︠A︡ KHIMII︠A︡ 2019; 64:463-471. [PMID: 30632974 DOI: 10.18097/pbmc20186406463] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Disturbance in lipid metabolism can be both a cause and a consequence of the development of diabetes mellitus (DM). One of the most informative indicator of lipid metabolism is the ratio of atherogenic and antiatherogenic fractions of lipoproteins and their protein components. The review summarizes literature data and own results indicating the important role of high-density lipoprotein (HDL) and their main protein component, apolipoprotein A-I (apoA-I), in the pathogenesis of type 2 DM. On the one hand, HDL are involved in the regulation of insulin secretion by b-cells and insulin-independent absorption of glucose. On the other hand, insulin resistance and hyperglycemia lead to a decrease in HDL levels and cause modification of their protein component. In addition, HDL, possessing anti-inflammatory and mitogenic properties, provide anti-diabetic protection through systemic mechanisms. Thus, maintaining a high concentration of HDL and apoA-I in blood plasma and preventing their modification are important issues in the context of prevention and treatment of diabetes.
Collapse
Affiliation(s)
- O N Poteryaeva
- Institute of Biochemistry, Federal Research Center of Fundamental and Translation Medicine, Novosibirsk, Russia
| | - I F Usynin
- Institute of Biochemistry, Federal Research Center of Fundamental and Translation Medicine, Novosibirsk, Russia
| |
Collapse
|
39
|
Wu C, Wang Y, Gong P, Wang L, Liu C, Chen C, Jiang X, Dong X, Cheng B, Li H. Promoter Methylation Regulates ApoA-I Gene Transcription in Chicken Abdominal Adipose Tissue. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2019; 67:4535-4544. [PMID: 30932484 DOI: 10.1021/acs.jafc.9b00007] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
As a central constituent of HDL (high-density lipoprotein), apolipoprotein A-I (ApoA-I) has a vital function in lipid metabolism. Our previous studies confirmed that ApoA-I was differentially expressed in the adipose tissue of the abdomen of lean and fat broilers. The aim of the current work was to evaluate whether the transcription of ApoA-I in chicken abdominal adipose tissue was regulated by DNA methylation. The methylation status of ApoA-I promoter CpG island (PCGI) and promoter non-CpG island (PNCGI) as well as the ApoA-I expression level in adipose tissue of lean and fat broilers were determined using Sequenom MassARRAY and real-time PCR. The correlation analysis results showed that the methylation level of PCGI and the ApoA-I mRNA expression level were negatively correlated. Bisulfite sequencing PCR was used to assess the methylation level of ApoA-I promoter in the ICP1 cells treated with 5-aza-2'-deoxycytidine (5-Aza-CdR: an inhibitor of DNA methyltransferase). The result showed that 5-Aza-CdR caused a reduction in the methylation level of the ApoA-I promoter, thereby causing an increase in expression of the ApoA-I mRNA. Meanwhile, luciferase reporter assays indicated that in vitro methylation of the ApoA-I promoter containing CpG island with CpG methyltransferase led to transcriptional repression. Furthermore, the noticeable activation of NRF1 on ApoA-I transcription was largely enhanced by the demethylation of the ApoA-I PCGI region. These observations indicated that the differential expression of ApoA-I gene in the adipose tissue of broilers could be mediated by transcription regulation, at least in part by DNA methylation in its PCGI region.
Collapse
Affiliation(s)
- Chunyan Wu
- Key Laboratory of Chicken Genetics and Breeding, Ministry of Agriculture and Rural Affairs, Key Laboratory of Animal Genetics, Breeding and Reproduction of Education Department of Heilongjiang Province, College of Animal Science and Technology , Northeast Agricultural University , Harbin 150030 , Heilongjiang , China
| | - Yuxiang Wang
- Key Laboratory of Chicken Genetics and Breeding, Ministry of Agriculture and Rural Affairs, Key Laboratory of Animal Genetics, Breeding and Reproduction of Education Department of Heilongjiang Province, College of Animal Science and Technology , Northeast Agricultural University , Harbin 150030 , Heilongjiang , China
| | - Pengfei Gong
- Key Laboratory of Chicken Genetics and Breeding, Ministry of Agriculture and Rural Affairs, Key Laboratory of Animal Genetics, Breeding and Reproduction of Education Department of Heilongjiang Province, College of Animal Science and Technology , Northeast Agricultural University , Harbin 150030 , Heilongjiang , China
| | - Lijian Wang
- Key Laboratory of Chicken Genetics and Breeding, Ministry of Agriculture and Rural Affairs, Key Laboratory of Animal Genetics, Breeding and Reproduction of Education Department of Heilongjiang Province, College of Animal Science and Technology , Northeast Agricultural University , Harbin 150030 , Heilongjiang , China
| | - Chang Liu
- Key Laboratory of Chicken Genetics and Breeding, Ministry of Agriculture and Rural Affairs, Key Laboratory of Animal Genetics, Breeding and Reproduction of Education Department of Heilongjiang Province, College of Animal Science and Technology , Northeast Agricultural University , Harbin 150030 , Heilongjiang , China
| | - Chong Chen
- Key Laboratory of Chicken Genetics and Breeding, Ministry of Agriculture and Rural Affairs, Key Laboratory of Animal Genetics, Breeding and Reproduction of Education Department of Heilongjiang Province, College of Animal Science and Technology , Northeast Agricultural University , Harbin 150030 , Heilongjiang , China
| | - Xiuying Jiang
- Key Laboratory of Chicken Genetics and Breeding, Ministry of Agriculture and Rural Affairs, Key Laboratory of Animal Genetics, Breeding and Reproduction of Education Department of Heilongjiang Province, College of Animal Science and Technology , Northeast Agricultural University , Harbin 150030 , Heilongjiang , China
| | - Xiangyu Dong
- Key Laboratory of Chicken Genetics and Breeding, Ministry of Agriculture and Rural Affairs, Key Laboratory of Animal Genetics, Breeding and Reproduction of Education Department of Heilongjiang Province, College of Animal Science and Technology , Northeast Agricultural University , Harbin 150030 , Heilongjiang , China
| | - Bohan Cheng
- Key Laboratory of Chicken Genetics and Breeding, Ministry of Agriculture and Rural Affairs, Key Laboratory of Animal Genetics, Breeding and Reproduction of Education Department of Heilongjiang Province, College of Animal Science and Technology , Northeast Agricultural University , Harbin 150030 , Heilongjiang , China
| | - Hui Li
- Key Laboratory of Chicken Genetics and Breeding, Ministry of Agriculture and Rural Affairs, Key Laboratory of Animal Genetics, Breeding and Reproduction of Education Department of Heilongjiang Province, College of Animal Science and Technology , Northeast Agricultural University , Harbin 150030 , Heilongjiang , China
| |
Collapse
|
40
|
Kumar MS. Peptides and Peptidomimetics as Potential Antiobesity Agents: Overview of Current Status. Front Nutr 2019; 6:11. [PMID: 30834248 PMCID: PMC6388543 DOI: 10.3389/fnut.2019.00011] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2018] [Accepted: 01/22/2019] [Indexed: 12/13/2022] Open
Abstract
There is a high occurrence of obesity worldwide without many new medications being approved for its treatment. Therefore, there is an urgent need to introduce new approaches for treating obesity. Bioactive peptides have been used to treat metabolic disorders- such as type-2 diabetes and obesity; while also possessing anti-oxidant, anti-inflammatory, anti-microbial, and anti-viral properties. However, the development of these peptides has taken backstage due to their size, reduced stability, poor delivery and bioavailability, fast rate of degradation etc. But with the emergence of newer techniques for multifunctional peptides, mimetics, peptide analogs, and aptamers, there is a sudden revival in this therapeutic field. An increased attention is required for development of the natural peptides from food and marine sources which can mimic the function of mediators involved in weight management to avoid obesity. Herein, the search for the structures of anti-obesity peptides was carried out in order to establish their potential for drug development in future. An extensive search for the current status of endogenous, food and marine peptides, with reference to novel and interesting experimental approaches based on peptidomimetics for controlling obesity, was performed. Apolipoprotein A-I (apoA-I), melanocortin-4 receptor (MC4R)-specific agonist, GLP-1 dual and triple agonists, neuropeptides and prolactin-releasing peptide mimetics were specifically examined for their anti-obesity role. Novel peptides, mimetics, and synthesis interventions are transpiring and might offer safer alternatives for otherwise scarcely available safe antiobesity drug. A deeper understanding of peptides and their chemistry through the use of peptide engineering can be useful to overcome the disadvantages and select best mimetics and analogs for treatment in future.
Collapse
Affiliation(s)
- Maushmi S Kumar
- Shobhaben Pratapbhai School of Pharmacy and Technology Management, SVKM'S Narsee Monjee Institute of Management Studies-NMIMS, Mumbai, India
| |
Collapse
|
41
|
Apolipoprotein A-I enhances insulin-dependent and insulin-independent glucose uptake by skeletal muscle. Sci Rep 2019; 9:1350. [PMID: 30718702 PMCID: PMC6362284 DOI: 10.1038/s41598-018-38014-3] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2018] [Accepted: 12/04/2018] [Indexed: 01/21/2023] Open
Abstract
Therapeutic interventions that increase plasma high density lipoprotein (HDL) and apolipoprotein (apo) A-I levels have been reported to reduce plasma glucose levels and attenuate insulin resistance. The present study asks if this is a direct effect of increased glucose uptake by skeletal muscle. Incubation of primary human skeletal muscle cells (HSKMCs) with apoA-I increased insulin-dependent and insulin–independent glucose uptake in a time- and concentration-dependent manner. The increased glucose uptake was accompanied by enhanced phosphorylation of the insulin receptor (IR), insulin receptor substrate-1 (IRS-1), the serine/threonine kinase Akt and Akt substrate of 160 kDa (AS160). Cell surface levels of the glucose transporter type 4, GLUT4, were also increased. The apoA-I-mediated increase in glucose uptake by HSKMCs was dependent on phosphatidylinositol-4,5-bisphosphate 3-kinase (PI3K)/Akt, the ATP binding cassette transporter A1 (ABCA1) and scavenger receptor class B type I (SR-B1). Taken together, these results establish that apoA-I increases glucose disposal in skeletal muscle by activating the IR/IRS-1/PI3K/Akt/AS160 signal transduction pathway. The findings suggest that therapeutic agents that increase apoA-I levels may improve glycemic control in people with type 2 diabetes.
Collapse
|
42
|
Méndez-Lara KA, Farré N, Santos D, Rivas-Urbina A, Metso J, Sánchez-Quesada JL, Llorente-Cortes V, Errico TL, Lerma E, Jauhiainen M, Martín-Campos JM, Alonso N, Escolà-Gil JC, Blanco-Vaca F, Julve J. Human ApoA-I Overexpression Enhances Macrophage-Specific Reverse Cholesterol Transport but Fails to Prevent Inherited Diabesity in Mice. Int J Mol Sci 2019; 20:E655. [PMID: 30717414 PMCID: PMC6387412 DOI: 10.3390/ijms20030655] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Revised: 01/26/2019] [Accepted: 01/29/2019] [Indexed: 12/18/2022] Open
Abstract
Human apolipoprotein A-I (hApoA-I) overexpression improves high-density lipoprotein (HDL) function and the metabolic complications of obesity. We used a mouse model of diabesity, the db/db mouse, to examine the effects of hApoA-I on the two main functional properties of HDL, i.e., macrophage-specific reverse cholesterol transport (m-RCT) in vivo and the antioxidant potential, as well as the phenotypic features of obesity. HApoA-I transgenic (hA-I) mice were bred with nonobese control (db/+) mice to generate hApoA-I-overexpressing db/+ offspring, which were subsequently bred to obtain hA-I-db/db mice. Overexpression of hApoA-I significantly increased weight gain and the incidence of fatty liver in db/db mice. Weight gain was mainly explained by the increased caloric intake of hA-I-db/db mice (>1.2-fold). Overexpression of hApoA-I also produced a mixed type of dyslipidemia in db/db mice. Despite these deleterious effects, the overexpression of hApoA-I partially restored m-RCT in db/db mice to levels similar to nonobese control mice. Moreover, HDL from hA-I-db/db mice also enhanced the protection against low-density lipoprotein (LDL) oxidation compared with HDL from db/db mice. In conclusion, overexpression of hApoA-I in db/db mice enhanced two main anti-atherogenic HDL properties while exacerbating weight gain and the fatty liver phenotype. These adverse metabolic side-effects were also observed in obese mice subjected to long-term HDL-based therapies in independent studies and might raise concerns regarding the use of hApoA-I-mediated therapy in obese humans.
Collapse
Affiliation(s)
- Karen Alejandra Méndez-Lara
- Institut de Recerca de l'Hospital de la Santa Creu i Sant Pau i Institut d'Investigació Biomèdica Sant Pau, IIB-Sant Pau, 08025 Barcelona, Spain.
- Departament de Bioquímica i Biologia Molecular, Universitat Autònoma de Barcelona, 08193 Barcelona, Spain.
| | - Núria Farré
- Institut de Recerca de l'Hospital de la Santa Creu i Sant Pau i Institut d'Investigació Biomèdica Sant Pau, IIB-Sant Pau, 08025 Barcelona, Spain.
| | - David Santos
- CIBER de Diabetes y Enfermedades Metabólicas Asociadas, CIBERDEM, 28029 Madrid, Spain.
| | - Andrea Rivas-Urbina
- Institut de Recerca de l'Hospital de la Santa Creu i Sant Pau i Institut d'Investigació Biomèdica Sant Pau, IIB-Sant Pau, 08025 Barcelona, Spain.
- Departament de Bioquímica i Biologia Molecular, Universitat Autònoma de Barcelona, 08193 Barcelona, Spain.
| | - Jari Metso
- Minerva Foundation Institute for Medical Research, Biomedicum 2U and National Institute for Health and Welfare, Genomics and Biomarkers Unit, FIN-00290 Helsinki, Finland.
| | - José Luis Sánchez-Quesada
- Institut de Recerca de l'Hospital de la Santa Creu i Sant Pau i Institut d'Investigació Biomèdica Sant Pau, IIB-Sant Pau, 08025 Barcelona, Spain.
- Departament de Bioquímica i Biologia Molecular, Universitat Autònoma de Barcelona, 08193 Barcelona, Spain.
- CIBER de Diabetes y Enfermedades Metabólicas Asociadas, CIBERDEM, 28029 Madrid, Spain.
| | - Vicenta Llorente-Cortes
- CSIC-ICCC-IIB-Sant Pau i CSIC-Institut d'Investigacions Biomèdiques de Barcelona (IIBB), 08025 Barcelona, Spain.
- CIBER de Enfermedades Cardiovasculares, CIBERCV, 28029 Madrid, Spain.
| | - Teresa L Errico
- Institut de Recerca de l'Hospital de la Santa Creu i Sant Pau i Institut d'Investigació Biomèdica Sant Pau, IIB-Sant Pau, 08025 Barcelona, Spain.
- Departament de Bioquímica i Biologia Molecular, Universitat Autònoma de Barcelona, 08193 Barcelona, Spain.
- CIBER de Diabetes y Enfermedades Metabólicas Asociadas, CIBERDEM, 28029 Madrid, Spain.
| | - Enrique Lerma
- Servei de Bioquímica, Hospital de la Santa Creu i Sant Pau i Institut d'Investigació Biomèdica de l'Hospital de la Santa Creu i Sant Pau, IIB-Sant Pau, 08041 Barcelona, Spain.
- Departament de Patologia, Hospital de la Santa Creu i Sant Pau, 08041 Barcelona, Spain.
- Departament de Ciències Morfològiques, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain.
| | - Matti Jauhiainen
- Minerva Foundation Institute for Medical Research, Biomedicum 2U and National Institute for Health and Welfare, Genomics and Biomarkers Unit, FIN-00290 Helsinki, Finland.
| | - Jesús M Martín-Campos
- Institut de Recerca de l'Hospital de la Santa Creu i Sant Pau i Institut d'Investigació Biomèdica Sant Pau, IIB-Sant Pau, 08025 Barcelona, Spain.
- Departament de Bioquímica i Biologia Molecular, Universitat Autònoma de Barcelona, 08193 Barcelona, Spain.
- CIBER de Diabetes y Enfermedades Metabólicas Asociadas, CIBERDEM, 28029 Madrid, Spain.
| | - Núria Alonso
- CIBER de Diabetes y Enfermedades Metabólicas Asociadas, CIBERDEM, 28029 Madrid, Spain.
- Servei d'Endocrinologia, Hospital Universitari Germans Trias i Pujol, Badalona, 08916 Barcelona, Spain.
| | - Joan Carles Escolà-Gil
- Institut de Recerca de l'Hospital de la Santa Creu i Sant Pau i Institut d'Investigació Biomèdica Sant Pau, IIB-Sant Pau, 08025 Barcelona, Spain.
- Departament de Bioquímica i Biologia Molecular, Universitat Autònoma de Barcelona, 08193 Barcelona, Spain.
- CIBER de Diabetes y Enfermedades Metabólicas Asociadas, CIBERDEM, 28029 Madrid, Spain.
| | - Francisco Blanco-Vaca
- Departament de Bioquímica i Biologia Molecular, Universitat Autònoma de Barcelona, 08193 Barcelona, Spain.
- CIBER de Diabetes y Enfermedades Metabólicas Asociadas, CIBERDEM, 28029 Madrid, Spain.
- Servei de Bioquímica, Hospital de la Santa Creu i Sant Pau i Institut d'Investigació Biomèdica de l'Hospital de la Santa Creu i Sant Pau, IIB-Sant Pau, 08041 Barcelona, Spain.
| | - Josep Julve
- Institut de Recerca de l'Hospital de la Santa Creu i Sant Pau i Institut d'Investigació Biomèdica Sant Pau, IIB-Sant Pau, 08025 Barcelona, Spain.
- Departament de Bioquímica i Biologia Molecular, Universitat Autònoma de Barcelona, 08193 Barcelona, Spain.
- CIBER de Diabetes y Enfermedades Metabólicas Asociadas, CIBERDEM, 28029 Madrid, Spain.
| |
Collapse
|
43
|
Li CX, Chen LL, Li XC, Ng KTP, Yang XX, Lo CM, Guan XY, Man K. ApoA-1 accelerates regeneration of small-for-size fatty liver graft after transplantation. Life Sci 2018; 215:128-135. [PMID: 30473024 DOI: 10.1016/j.lfs.2018.10.053] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2018] [Revised: 10/24/2018] [Accepted: 10/25/2018] [Indexed: 01/22/2023]
Abstract
OBJECTIVES Apolipoprotein A-1 (ApoA-1) is involved in regulating both lipid and energy metabolism, which may play important roles in liver regeneration, especially for the liver with steatosis. We here intended to investigate the role of ApoA-1 in regeneration of small-for-size fatty liver graft and to explore the underlying mechanism. METHODS The association of ApoA-1 expression with liver regeneration was studied in rat liver transplantation models using small-for-size normal graft or small-for-size fatty graft. The direct role of ApoA-1 in liver regeneration was studied in mouse hepatectomy model in vivo and hepatocytes in vitro. RESULTS Compared to small-for-size normal graft, decreased expression of ApoA-1 associated with delayed regeneration were detected in small-for-size fatty liver graft after transplantation. In functional study, the expression of ApoA-1 was decreased in hepatocytes with steatosis and was inversely associated with the concentration of oleic acid. The ApoA-1 administration effectively attenuated hepatocytes steatosis and accelerated hepatocytes proliferation. In mouse model, ApoA-1 treatment promoted liver regeneration at day 2 after major hepatectomy. In addition, the treatment of ApoA-1 increased the expressions of PGC-1α and its target genes Tfam, Ucp2 and SDHB. CONCLUSIONS ApoA-1 may accelerate regeneration of small-for-size fatty liver graft at day 2 after transplantation through regulating mitochondrial function. ApoA-1 may be the potential new therapy of promoting liver regeneration.
Collapse
Affiliation(s)
- Chang Xian Li
- Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University, Key Laboratory of Living Donor Liver Transplantation, Nanjing, Jiangsu Province, China
| | - Lei Lei Chen
- Department of Clinical Oncology, The University of Hong Kong, Hong Kong, China
| | - Xiang Cheng Li
- Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University, Key Laboratory of Living Donor Liver Transplantation, Nanjing, Jiangsu Province, China
| | - Kevin Tak-Pan Ng
- Department of Surgery, The University of Hong Kong, Hong Kong, China
| | - Xin Xiang Yang
- Department of Surgery, The University of Hong Kong, Hong Kong, China
| | - Chung Mau Lo
- Department of Surgery, The University of Hong Kong, Hong Kong, China
| | - Xin Yuan Guan
- Department of Clinical Oncology, The University of Hong Kong, Hong Kong, China
| | - Kwan Man
- Department of Surgery, The University of Hong Kong, Hong Kong, China.
| |
Collapse
|
44
|
Overexpression of apolipoprotein A-I alleviates endoplasmic reticulum stress in hepatocytes. Lipids Health Dis 2017; 16:105. [PMID: 28577569 PMCID: PMC5455103 DOI: 10.1186/s12944-017-0497-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2017] [Accepted: 05/24/2017] [Indexed: 11/10/2022] Open
Abstract
Background Abnormal lipid metabolism may contribute to an increase in endoplasmic reticulum (ER) stress, resulting in the pathogenesis of non-alcoholic steatohepatitis. Apolipoprotein A-I (apoA-I) accepts cellular free cholesterol and phospholipids transported by ATP-binding cassette transporter A1 to generate nascent high density lipoprotein particles. Previous studies have revealed that the overexpression of apoA-I alleviated hepatic lipid levels by modifying lipid transport. Here, we examined the effects of apoA-I overexpression on ER stress and genes involved in lipogenesis in both HepG2 cells and mouse hepatocytes. Methods Human apoA-I was overexpressed in HepG2 hepatocytes, which were then treated with 2 μg/mL tunicamycin or 500 μM palmitic acid. Eight-week-old male apoA-I transgenic or C57BL/6 wild-type mice were intraperitoneally injected with 1 mg/kg body weight tunicamycin or with saline. At 48 h after injecting, blood and liver samples were collected. Results The overexpression of apoA-I in the models above resulted in decreased protein levels of ER stress makers and lipogenic gene products, including sterol regulatory element binding protein 1, fatty acid synthase, and acetyl-CoA carboxylase 1. In addition, the cellular levels of triglycerides and free cholesterol also decreased. Some of gene products which are related to ER stress-associated apoptosis were also affected by apoA-I overexpression. These results suggested that apoA-I overexpression could reduce steatosis by decreasing lipid levels and by suppressing ER stress and lipogenesis in hepatocytes. Conclusion ApoA-I expression could significantly reduce hepatic ER stress and lipogenesis in hepatocytes.
Collapse
|
45
|
Han T, Cheng Y, Tian S, Wang L, Liang X, Duan W, Na L, Sun C. Changes in triglycerides and high-density lipoprotein cholesterol may precede peripheral insulin resistance, with 2-h insulin partially mediating this unidirectional relationship: a prospective cohort study. Cardiovasc Diabetol 2016; 15:154. [PMID: 27814764 PMCID: PMC5095985 DOI: 10.1186/s12933-016-0469-3] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/13/2016] [Accepted: 10/26/2016] [Indexed: 12/31/2022] Open
Abstract
Background Results of longitudinal researches regarding the temporal relationship between dyslipidemia and insulin resistance (IR) are inconsistent. This study assessed temporal relationships of blood lipids with IR and determined whether there are any mediating effects existed in these temporal relationships. Methods This study examined a longitudinal cohort of 3325 subjects aged 20–74 years from China with an average of 4.2 years follow-up. Measurements of fasting blood lipids, as well as fasting and 2-h serum glucose and insulin, were obtained at two time points. The Gutt index and HOMA-IR were calculated as indicators of peripheral IR and hepatic IR. A cross-lagged path analysis was performed to examine the temporal relationships between blood lipids and IR. A mediation analysis was used to examine mediating effect. Results After adjusting for covariates, the cross-lagged path coefficients from baseline TG and HDL-C to follow-up Gutt index were significantly greater than those from baseline Gutt index to follow-up TG and HDL-C (β1 = −0.131 vs β2 = −0.047, P < 0.001 for TG; β1 = 0.134 vs β2 = 0.023, P < 0.001 for HDL-C). The path coefficients from baseline TG and HDL-C to follow-up 2-h insulin were significantly greater than those from baseline 2-h insulin to follow-up TG and HDL-C (β1 = 0.125 vs β2 = 0.040, P < 0.001 for TG; β1 = −0.112 vs β2 = −0.026, P < 0.001 for HDL-C). 2-h insulin partially mediated the effect of TG/HDL-C on Gutt index with a 59.3% mediating effect for TG and 61.0% for HDL-C. Conclusions These findings provide strong evidence that dyslipidemia probably precede peripheral IR and that 2-h insulin partially mediates this unidirectional temporal relationship. Electronic supplementary material The online version of this article (doi:10.1186/s12933-016-0469-3) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Tianshu Han
- National Key Discipline, Department of Nutrition and Food Hygiene, School of Public Health, Harbin Medical University, 157 Baojian Road, Harbin, 150081, People's Republic of China
| | - Yu Cheng
- National Key Discipline, Department of Nutrition and Food Hygiene, School of Public Health, Harbin Medical University, 157 Baojian Road, Harbin, 150081, People's Republic of China
| | - Shuang Tian
- National Key Discipline, Department of Nutrition and Food Hygiene, School of Public Health, Harbin Medical University, 157 Baojian Road, Harbin, 150081, People's Republic of China
| | - Li Wang
- National Key Discipline, Department of Nutrition and Food Hygiene, School of Public Health, Harbin Medical University, 157 Baojian Road, Harbin, 150081, People's Republic of China
| | - Xi Liang
- National Key Discipline, Department of Nutrition and Food Hygiene, School of Public Health, Harbin Medical University, 157 Baojian Road, Harbin, 150081, People's Republic of China
| | - Wei Duan
- National Key Discipline, Department of Nutrition and Food Hygiene, School of Public Health, Harbin Medical University, 157 Baojian Road, Harbin, 150081, People's Republic of China
| | - Lixin Na
- National Key Discipline, Department of Nutrition and Food Hygiene, School of Public Health, Harbin Medical University, 157 Baojian Road, Harbin, 150081, People's Republic of China.
| | - Changhao Sun
- National Key Discipline, Department of Nutrition and Food Hygiene, School of Public Health, Harbin Medical University, 157 Baojian Road, Harbin, 150081, People's Republic of China.
| |
Collapse
|
46
|
Cochran BJ, Ryder WJ, Parmar A, Tang S, Reilhac A, Arthur A, Charil A, Hamze H, Barter PJ, Kritharides L, Meikle SR, Gregoire MC, Rye KA. In vivo PET imaging with [(18)F]FDG to explain improved glucose uptake in an apolipoprotein A-I treated mouse model of diabetes. Diabetologia 2016; 59:1977-84. [PMID: 27193916 DOI: 10.1007/s00125-016-3993-5] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/21/2016] [Accepted: 04/27/2016] [Indexed: 12/12/2022]
Abstract
AIMS/HYPOTHESIS Type 2 diabetes is characterised by decreased HDL levels, as well as the level of apolipoprotein A-I (apoA-I), the main apolipoprotein of HDLs. Pharmacological elevation of HDL and apoA-I levels is associated with improved glycaemic control in patients with type 2 diabetes. This is partly due to improved glucose uptake in skeletal muscle. METHODS This study used kinetic modelling to investigate the impact of increasing plasma apoA-I levels on the metabolism of glucose in the db/db mouse model. RESULTS Treatment of db/db mice with apoA-I for 2 h significantly improved both glucose tolerance (AUC 2574 ± 70 mmol/l × min vs 2927 ± 137 mmol/l × min, for apoA-I and PBS, respectively; p < 0.05) and insulin sensitivity (AUC 388.8 ± 23.8 mmol/l × min vs 194.1 ± 19.6 mmol/l × min, for apoA-I and PBS, respectively; p < 0.001). ApoA-I treatment also increased glucose uptake by skeletal muscle in both an insulin-dependent and insulin-independent manner as evidenced by increased uptake of fludeoxyglucose ([(18)F]FDG) from plasma into gastrocnemius muscle in apoA-I treated mice, both in the absence and presence of insulin. Kinetic modelling revealed an enhanced rate of insulin-mediated glucose phosphorylation (k 3) in apoA-I treated mice (3.5 ± 1.1 × 10(-2) min(-1) vs 2.3 ± 0.7 × 10(-2) min(-1), for apoA-I and PBS, respectively; p < 0.05) and an increased influx constant (3.7 ± 0.6 × 10(-3) ml min(-1) g(-1) vs 2.0 ± 0.3 × 10(-3) ml min(-1) g(-1), for apoA-I and PBS, respectively; p < 0.05). Treatment of L6 rat skeletal muscle cells with apoA-I for 2 h indicated that increased hexokinase activity mediated the increased rate of glucose phosphorylation. CONCLUSIONS/INTERPRETATION These findings indicate that apoA-I improves glucose disposal in db/db mice by improving insulin sensitivity and enhancing glucose phosphorylation.
Collapse
Affiliation(s)
- Blake J Cochran
- School of Medical Sciences, Faculty of Medicine, UNSW Australia, Sydney, 2052, NSW, Australia.
| | - William J Ryder
- Faculty of Health Sciences, University of Sydney, Sydney, NSW, Australia
- Brain and Mind Centre, University of Sydney, Sydney, NSW, Australia
| | | | - Shudi Tang
- School of Medical Sciences, Faculty of Medicine, UNSW Australia, Sydney, 2052, NSW, Australia
| | - Anthonin Reilhac
- Brain and Mind Centre, University of Sydney, Sydney, NSW, Australia
- ANSTO LifeSciences, Sydney, NSW, Australia
| | | | - Arnaud Charil
- Brain and Mind Centre, University of Sydney, Sydney, NSW, Australia
- ANSTO LifeSciences, Sydney, NSW, Australia
| | | | - Philip J Barter
- School of Medical Sciences, Faculty of Medicine, UNSW Australia, Sydney, 2052, NSW, Australia
- Faculty of Medicine, University of Sydney, Sydney, NSW, Australia
| | - Leonard Kritharides
- Faculty of Medicine, University of Sydney, Sydney, NSW, Australia
- Department of Cardiology, Concord Repatriation General Hospital, Sydney, NSW, Australia
| | - Steven R Meikle
- Faculty of Health Sciences, University of Sydney, Sydney, NSW, Australia
- Brain and Mind Centre, University of Sydney, Sydney, NSW, Australia
| | | | - Kerry-Anne Rye
- School of Medical Sciences, Faculty of Medicine, UNSW Australia, Sydney, 2052, NSW, Australia
- Faculty of Medicine, University of Sydney, Sydney, NSW, Australia
| |
Collapse
|
47
|
Wang S, Peng DQ, Yi Y. The unsolved mystery of apoA-I recycling in adipocyte. Lipids Health Dis 2016; 15:35. [PMID: 26911989 PMCID: PMC4765186 DOI: 10.1186/s12944-016-0203-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2015] [Accepted: 02/11/2016] [Indexed: 01/24/2023] Open
Abstract
As the major storage site for triglycerides and free cholesterol, adipose tissue plays a central role in energy metabolism. ApoA-I is the main constituent of HDL and plays an important role in removal of excess cholesterol from peripheral tissues. Recently, multiple studies have shown beneficial effects of apoA-I on adipose metabolism and function. ApoA-I was reported to improve insulin sensitivity and exert anti-inflammatory, anti-obesity effect in animal studies. Interestingly, Uptake and resecretion of apoA-I by adipocytes has been detected. However, the significance of apoA-I recycling by adipocytes is still not clear. This article reviewed methods used to study cellular recycling of apoA-I and summarized the current knowledge on the mechanisms involved in apoA-I uptake by adipocytes. Since the main function of apoA-I is to mediate reverse cholesterol transport from peripheral tissues, the role of apoA-I internalization and re-secretion by adipocytes in intracellular cholesterol transport under physiological and pathological conditions were discussed. In addition, findings on the correlation between apoA-I recycling and obesity were discussed. Finally, it was proposed that during intracellular transport, apoA-I-protein complex may acquire cargoes other than lipids and deliver regulatory information when they were resecreted into the plasma. Although apoA-I recycling by adipocytes is still an unsolved mystery, it's likely that it is more than a redundant pathway especially under pathological conditions.
Collapse
Affiliation(s)
- Shuai Wang
- Department of Cardiology, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Dao-quan Peng
- Department of Cardiology, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China.
| | - Yuhong Yi
- The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| |
Collapse
|
48
|
Abstract
The metabolic syndrome (MetS) is comprised of a cluster of closely related risk factors, including visceral adiposity, insulin resistance, hypertension, high triglyceride, and low high-density lipoprotein cholesterol; all of which increase the risk for the development of type 2 diabetes and cardiovascular disease. A chronic state of inflammation appears to be a central mechanism underlying the pathophysiology of insulin resistance and MetS. In this review, we summarize recent research which has provided insight into the mechanisms by which inflammation underlies the pathophysiology of the individual components of MetS including visceral adiposity, hyperglycemia and insulin resistance, dyslipidemia, and hypertension. On the basis of these mechanisms, we summarize therapeutic modalities to target inflammation in the MetS and its individual components. Current therapeutic modalities can modulate the individual components of MetS and have a direct anti-inflammatory effect. Lifestyle modifications including exercise, weight loss, and diets high in fruits, vegetables, fiber, whole grains, and low-fat dairy and low in saturated fat and glucose are recommended as a first line therapy. The Mediterranean and dietary approaches to stop hypertension diets are especially beneficial and have been shown to prevent development of MetS. Moreover, the Mediterranean diet has been associated with reductions in total and cardiovascular mortality. Omega-3 fatty acids and peroxisome proliferator-activated receptor α agonists lower high levels of triglyceride; their role in targeting inflammation is reviewed. Angiotensin-converting enzyme inhibitors, angiotensin receptor blockers, and aldosterone blockers comprise pharmacologic therapies for hypertension but also target other aspects of MetS including inflammation. Statin drugs target many of the underlying inflammatory pathways involved in MetS.
Collapse
Affiliation(s)
- Francine K Welty
- Division of Cardiology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Mass.
| | - Abdulhamied Alfaddagh
- Division of Cardiology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Mass
| | - Tarec K Elajami
- Division of Cardiology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Mass
| |
Collapse
|
49
|
Lindahl M, Petrlova J, Dalla-Riva J, Wasserstrom S, Rippe C, Domingo-Espin J, Kotowska D, Krupinska E, Berggreen C, Jones HA, Swärd K, Lagerstedt JO, Göransson O, Stenkula KG. ApoA-I Milano stimulates lipolysis in adipose cells independently of cAMP/PKA activation. J Lipid Res 2015; 56:2248-59. [PMID: 26504176 DOI: 10.1194/jlr.m054767] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2014] [Indexed: 11/20/2022] Open
Abstract
ApoA-I, the main protein component of HDL, is suggested to be involved in metabolic homeostasis. We examined the effects of Milano, a naturally occurring ApoA-I variant, about which little mechanistic information is available. Remarkably, high-fat-fed mice treated with Milano displayed a rapid weight loss greater than ApoA-I WT treated mice, and a significantly reduced adipose tissue mass, without an inflammatory response. Further, lipolysis in adipose cells isolated from mice treated with either WT or Milano was increased. In primary rat adipose cells, Milano stimulated cholesterol efflux and increased glycerol release, independently of β-adrenergic stimulation and phosphorylation of hormone sensitive lipase (Ser563) and perilipin (Ser522). Stimulation with Milano had a significantly greater effect on glycerol release compared with WT but similar effect on cholesterol efflux. Pharmacological inhibition or siRNA silencing of ABCA1 did not diminish Milano-stimulated lipolysis, although binding to the cell surface was decreased, as analyzed by fluorescence microscopy. Interestingly, methyl-β-cyclodextrin, a well-described cholesterol acceptor, dose-dependently stimulated lipolysis. Together, these results suggest that decreased fat mass and increased lipolysis following Milano treatment in vivo is partly explained by a novel mechanism at the adipose cell level comprising stimulation of lipolysis independently of the canonical cAMP/protein kinase A signaling pathway.
Collapse
Affiliation(s)
- Maria Lindahl
- Medical Protein Science, Lund University, 221 84 Lund, Sweden Glucose Transport and Protein Trafficking, Lund University, 221 84 Lund, Sweden
| | - Jitka Petrlova
- Medical Protein Science, Lund University, 221 84 Lund, Sweden
| | | | | | - Catarina Rippe
- Cellular Biomechanics, Lund University, 221 84 Lund, Sweden
| | | | - Dorota Kotowska
- Glucose Transport and Protein Trafficking, Lund University, 221 84 Lund, Sweden
| | - Ewa Krupinska
- Medical Protein Science, Lund University, 221 84 Lund, Sweden
| | | | - Helena A Jones
- Molecular Endocrinology, Department of Experimental Medical Science, Biomedical Center, Lund University, 221 84 Lund, Sweden
| | - Karl Swärd
- Cellular Biomechanics, Lund University, 221 84 Lund, Sweden
| | | | - Olga Göransson
- Protein Phosphorylation, Lund University, 221 84 Lund, Sweden
| | - Karin G Stenkula
- Glucose Transport and Protein Trafficking, Lund University, 221 84 Lund, Sweden
| |
Collapse
|
50
|
Song P, Kwon Y, Yea K, Moon HY, Yoon JH, Ghim J, Hyun H, Kim D, Koh A, Berggren PO, Suh PG, Ryu SH. Apolipoprotein a1 increases mitochondrial biogenesis through AMP-activated protein kinase. Cell Signal 2015; 27:1873-81. [DOI: 10.1016/j.cellsig.2015.05.003] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2015] [Accepted: 05/07/2015] [Indexed: 10/23/2022]
|