1
|
Ma Y, Liu Y, Zhong Y, Li X, Xu Y, Chen L, Gong L, Huang H, Chen X, He Y, Qiang L. Oroxylin A attenuates psoriasiform skin inflammation by direct targeting p62 (sequestosome 1) via suppressing M1 macrophage polarization. Br J Pharmacol 2024. [PMID: 39313956 DOI: 10.1111/bph.17349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 08/21/2024] [Accepted: 08/22/2024] [Indexed: 09/25/2024] Open
Abstract
BACKGROUND AND PURPOSE Psoriasis results from the interplay of innate and adaptive immunity in the skin. Oroxylin A (OA) has shown anti-inflammatory effects in various disorders. This study explores oroxylin A potential in treating psoriasis, particularly its impact on type I macrophage (Mφ1) polarization. EXPERIMENTAL APPROACH Oroxylin A-mediated therapeutic effects were evaluated using imiquimod-induced or IL-23-injected psoriatic mice models, followed by proteomics assays to predict potential signalling and targeting proteins. Immunofluorescence and immunoblot assays verified that oroxylin A suppresses NF-kB signalling in M1 macrophages. Co-immunoprecipitation and microscale thermophoresis (MST) assays further demonstrated that p62 (sequestosome 1) is the target protein for oroxylin A in macrophages. Oroxylin A-p62-mediated suppression of psoriasis was validated in an imiquimod-induced p62 conditional knockout (cKO) mice model. KEY RESULTS Oroxylin A demonstrated therapeutic efficacy in murine models induced by imiquimod or IL-23 by attenuating cutaneous inflammation and mitigating Mφ1 polarization via NF-κB signalling. Proteomics analysis suggested SQSTM1/p62 as a key target, confirmed to interact directly with oroxylin A. Oroxylin A disrupted the p62-PKCζ interaction by binding to PB1 domain of p62. Its anti-inflammatory effects were significantly reduced in macrophages from p62 cKO mice compared to the wild-type (WT) mice in psoriasis model, supporting oroxylin A role in suppressing Mφ1 polarization through its interaction with p62. CONCLUSION AND IMPLICATIONS Our findings demonstrated oroxylin A suppressed psoriasiform skin inflammation in mouse models by blocking the PKCζ-p62 interaction, subsequently inhibiting the activation of NF-κB p65 phosphorylation in macrophages.
Collapse
Affiliation(s)
- Yuxiang Ma
- State Key Laboratory of Natural Medicines, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, China
- Department of Pharmacology, Guilin Medical University, Guilin, China
| | - Yunyao Liu
- State Key Laboratory of Natural Medicines, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, China
- Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIs, Institute of Dermatology, Chinese Academy of Medical Sciences & Peking Union Medical College, Nanjing, China
| | - You Zhong
- Zhuhai United Laboratories Co., Ltd., Zhuhai, Guangdong, China
| | - Xiangzheng Li
- State Key Laboratory of Natural Medicines, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Yujiao Xu
- State Key Laboratory of Natural Medicines, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Leyi Chen
- State Key Laboratory of Natural Medicines, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Litong Gong
- Jiangsu Chia Tai-Tianqing Pharmaceutical Co., Ltd., Nanjing, China
| | - He Huang
- State Key Laboratory of Chemical Biology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Xu Chen
- Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIs, Institute of Dermatology, Chinese Academy of Medical Sciences & Peking Union Medical College, Nanjing, China
- Key Laboratory of Basic and Translational Research on Immune-Mediated Skin Diseases, Chinese Academy of Medical Sciences, Nanjing, China
| | - Yuan He
- State Key Laboratory of Natural Medicines, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Lei Qiang
- State Key Laboratory of Natural Medicines, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, China
- Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIs, Institute of Dermatology, Chinese Academy of Medical Sciences & Peking Union Medical College, Nanjing, China
| |
Collapse
|
2
|
Alfadda AA, Abdel Rahman AM, Benabdelkamel H, AlMalki R, Alsuwayni B, Alhossan A, Aldhwayan MM, Abdeen GN, Miras AD, Masood A. Metabolomic Effects of Liraglutide Therapy on the Plasma Metabolomic Profile of Patients with Obesity. Metabolites 2024; 14:500. [PMID: 39330507 PMCID: PMC11433991 DOI: 10.3390/metabo14090500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Revised: 09/09/2024] [Accepted: 09/14/2024] [Indexed: 09/28/2024] Open
Abstract
BACKGROUND Liraglutide, a long-acting glucagon-like peptide-1 receptor agonist (GLP1RA), is a well-established anti-diabetic drug, has also been approved for the treatment of obesity at a dose of 3 mg. There are a limited number of studies in the literature that have looked at changes in metabolite levels before and after liraglutide treatment in patients with obesity. To this end, in the present study we aimed to explore the changes in the plasma metabolomic profile, using liquid chromatography-high resolution mass spectrometry (LC-HRMS) in patients with obesity. METHODS A single-center prospective study was undertaken to evaluate the effectiveness of 3 mg liraglutide therapy in twenty-three patients (M/F: 8/15) with obesity, mean BMI 40.81 ± 5.04 kg/m2, and mean age of 36 ± 10.9 years, in two groups: at baseline (pre-treatment) and after 12 weeks of treatment (post-treatment). An untargeted metabolomic profiling was conducted in plasma from the pre-treatment and post-treatment groups using LC-HRMS, along with bioinformatics analysis using ingenuity pathway analysis (IPA). RESULTS The metabolomics analysis revealed a significant (FDR p-value ≤ 0.05, FC 1.5) dysregulation of 161 endogenous metabolites (97 upregulated and 64 downregulated) with distinct separation between the two groups. Among the significantly dysregulated metabolites, the majority of them were identified as belonging to the class of oxidized lipids (oxylipins) that includes arachidonic acid and its derivatives, phosphorglycerophosphates, N-acylated amino acids, steroid hormones, and bile acids. The biomarker analysis conducted using MetaboAnalyst showed PGP (a21:0/PG/F1alpha), an oxidized lipid, as the first metabolite among the list of the top 15 biomarkers, followed by cysteine and estrone. The IPA analysis showed that the dysregulated metabolites impacted the pathway related to cell signaling, free radical scavenging, and molecular transport, and were focused around the dysregulation of NF-κB, ERK, MAPK, PKc, VEGF, insulin, and pro-inflammatory cytokine signaling pathways. CONCLUSIONS The findings suggest that liraglutide treatment reduces inflammation and modulates lipid metabolism and oxidative stress. Our study contributes to a better understanding of the drug's multifaceted impact on overall metabolism in patients with obesity.
Collapse
Affiliation(s)
- Assim A. Alfadda
- Proteomics Resource Unit, Obesity Research Center, College of Medicine, King Saud University, Riyadh 11461, Saudi Arabia; (H.B.); (A.M.)
- Strategic Center for Diabetes Research, College of Medicine, King Saud University, Riyadh 11461, Saudi Arabia
- Department of Medicine, College of Medicine, King Saud University, Riyadh 11461, Saudi Arabia
| | - Anas M. Abdel Rahman
- Metabolomics Section, Department of Clinical Genomics, Center for Genomics Medicine, King Faisal Specialist Hospital and Research Centre, Riyadh 11211, Saudi Arabia; (A.M.A.R.); (R.A.)
| | - Hicham Benabdelkamel
- Proteomics Resource Unit, Obesity Research Center, College of Medicine, King Saud University, Riyadh 11461, Saudi Arabia; (H.B.); (A.M.)
| | - Reem AlMalki
- Metabolomics Section, Department of Clinical Genomics, Center for Genomics Medicine, King Faisal Specialist Hospital and Research Centre, Riyadh 11211, Saudi Arabia; (A.M.A.R.); (R.A.)
| | - Bashayr Alsuwayni
- Corporate of Pharmacy Services, King Saud University Medical City, Riyadh 11461, Saudi Arabia;
| | - Abdulaziz Alhossan
- Department of Clinical Pharmacy, College of Pharmacy, King Saud University, Riyadh 11461, Saudi Arabia;
| | - Madhawi M. Aldhwayan
- Department of Community Health Science, Clinical Nutrition, College of Applied Medical Sciences, King Saud University, Riyadh 11461, Saudi Arabia; (M.M.A.); (G.N.A.)
| | - Ghalia N. Abdeen
- Department of Community Health Science, Clinical Nutrition, College of Applied Medical Sciences, King Saud University, Riyadh 11461, Saudi Arabia; (M.M.A.); (G.N.A.)
| | - Alexander Dimitri Miras
- Section of Investigative Medicine, Division of Diabetes, Endocrinology and Metabolic Medicine, Hammersmith Hospital, Imperial College London, London SW7 2AZ, UK;
- School of Medicine, Ulster University, Derry BT1 6DN, UK
| | - Afshan Masood
- Proteomics Resource Unit, Obesity Research Center, College of Medicine, King Saud University, Riyadh 11461, Saudi Arabia; (H.B.); (A.M.)
| |
Collapse
|
3
|
Zhang R, Zhang L, Du W, Tang J, Yang L, Geng D, Cheng Y. Caffeine alleviate lipopolysaccharide-induced neuroinflammation and depression through regulating p-AKT and NF-κB. Neurosci Lett 2024; 837:137923. [PMID: 39106918 DOI: 10.1016/j.neulet.2024.137923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 07/17/2024] [Accepted: 08/02/2024] [Indexed: 08/09/2024]
Abstract
Caffeine, a nonselective adenosine receptor antagonist, is the major component of coffee and the most consumed psychostimulant at nontoxic doses in the world. It has been identified that caffeine consumption reduces the risk of several neurological diseases. However, the mechanisms by which it impacts the pathophysiology of neurological diseases remain to be elucidated. In this study, we investigated whether caffeine exerts anti-inflammatory effects on lipopolysaccharide (LPS)-induced inflammation and depression in vivo and explored the potential mechanism of caffeine through LPS-induced brain injury. Adult male Sprague-Dawley (SD) rats were intraperitoneal injected with various concentrations of LPS to induce the neuroinflammation and depressive-like behavior. Then SD rats were treated with caffeine in the presence or absence of LPS. Open-filed and closed-field tests were applied to detect the behaviors of SD rats, while western blot was performed to measure the phosphorylation level of protein kinase B (p-AKT) and nuclear factor κB (NF-κB) in the cortex after caffeine was orally administered. Our findings indicated that caffeine markedly improved the neuroinflammation and depressive-like behavior of LPS-treated SD rats. Mechanistic investigations demonstrated that caffeine down-regulated the expression of p-AKT and NF-κB in LPS-induced SD rats cortex. Taken together, these results indicated that caffeine, a potential agent for preventing inflammatory diseases, may suppress LPS-induced inflammatory and depressive responses by regulating AKT phosphorylation and NF-κB.
Collapse
Affiliation(s)
- Ruicheng Zhang
- Department of Neurology, Affiliated Hospital of Xuzhou Medical University, Xuzhou 221002, PR China
| | - Lei Zhang
- Department of Neurology, the People's Hospital of Jiawang District of Xuzhou City, Xuzhou 221004, PR China
| | - Wenqi Du
- Department of Human Anatomy, Xuzhou Medical University, Xuzhou 221004, PR China
| | - Jiao Tang
- Department of Neurology, the First People's Hospital of Yan Cheng City, Yan Cheng 224000, PR China
| | - Long Yang
- Department of Neurology, Affiliated Hospital of Xuzhou Medical University, Xuzhou 221002, PR China
| | - Deqin Geng
- Department of Neurology, Affiliated Hospital of Xuzhou Medical University, Xuzhou 221002, PR China.
| | - Yanbo Cheng
- Department of Neurology, Affiliated Hospital of Xuzhou Medical University, Xuzhou 221002, PR China.
| |
Collapse
|
4
|
Sun L, Apweiler M, Tirkey A, Klett D, Normann C, Dietz GPH, Lehner MD, Fiebich BL. Anti-Neuroinflammatory Effects of Ginkgo biloba Extract EGb 761 in LPS-Activated BV2 Microglial Cells. Int J Mol Sci 2024; 25:8108. [PMID: 39125680 PMCID: PMC11312056 DOI: 10.3390/ijms25158108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 07/12/2024] [Accepted: 07/17/2024] [Indexed: 08/12/2024] Open
Abstract
Inflammatory processes in the brain can exert important neuroprotective functions. However, in neurological and psychiatric disorders, it is often detrimental due to chronic microglial over-activation and the dysregulation of cytokines and chemokines. Growing evidence indicates the emerging yet prominent pathophysiological role of neuroinflammation in the development and progression of these disorders. Despite recent advances, there is still a pressing need for effective therapies, and targeting neuroinflammation is a promising approach. Therefore, in this study, we investigated the anti-neuroinflammatory potential of a marketed and quantified proprietary herbal extract of Ginkgo biloba leaves called EGb 761 (10-500 µg/mL) in BV2 microglial cells stimulated by LPS (10 ng/mL). Our results demonstrate significant inhibition of LPS-induced expression and release of cytokines tumor necrosis factor-α (TNF-α) and Interleukin 6 (IL-6) and chemokines C-X-C motif chemokine ligand 2 (CXCL2), CXCL10, c-c motif chemokine ligand 2 (CCL2) and CCL3 in BV2 microglial cells. The observed effects are possibly mediated by the mitogen-activated protein kinases (MAPK), p38 MAPK and ERK1/2, as well as the protein kinase C (PKC) and the nuclear factor (NF)-κB signaling cascades. The findings of this in vitro study highlight the anti-inflammatory properties of EGb 761 and its therapeutic potential, making it an emerging candidate for the treatment of neuroinflammatory diseases and warranting further research in pre-clinical and clinical settings.
Collapse
Affiliation(s)
- Lu Sun
- Neuroimmunology and Neurochemistry Research Group, Department of Psychiatry and Psychotherapy, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, 79104 Freiburg, Germany; (L.S.); (M.A.); (A.T.); (D.K.)
| | - Matthias Apweiler
- Neuroimmunology and Neurochemistry Research Group, Department of Psychiatry and Psychotherapy, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, 79104 Freiburg, Germany; (L.S.); (M.A.); (A.T.); (D.K.)
| | - Ashwini Tirkey
- Neuroimmunology and Neurochemistry Research Group, Department of Psychiatry and Psychotherapy, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, 79104 Freiburg, Germany; (L.S.); (M.A.); (A.T.); (D.K.)
| | - Dominik Klett
- Neuroimmunology and Neurochemistry Research Group, Department of Psychiatry and Psychotherapy, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, 79104 Freiburg, Germany; (L.S.); (M.A.); (A.T.); (D.K.)
| | - Claus Normann
- Department of Psychiatry and Psychotherapy, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, 79104 Freiburg, Germany;
| | - Gunnar P. H. Dietz
- Universitätsmedizin Göttingen, Robert-Koch-Str. 40, 37075 Göttingen, Germany;
| | - Martin D. Lehner
- Dr. Willmar Schwabe GmbH & Co. KG, Willmar-Schwabe-Straße 4, 76227 Karlsruhe, Germany;
| | - Bernd L. Fiebich
- Neuroimmunology and Neurochemistry Research Group, Department of Psychiatry and Psychotherapy, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, 79104 Freiburg, Germany; (L.S.); (M.A.); (A.T.); (D.K.)
| |
Collapse
|
5
|
Cai X, Warburton C, Perez OF, Wang Y, Ho L, Finelli C, Ehlen QT, Wu C, Rodriguez CD, Kaplan L, Best TM, Huang CY, Meng Z. Hippo-PKCζ-NFκB signaling axis: A druggable modulator of chondrocyte responses to mechanical stress. iScience 2024; 27:109983. [PMID: 38827404 PMCID: PMC11140209 DOI: 10.1016/j.isci.2024.109983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 03/04/2024] [Accepted: 05/13/2024] [Indexed: 06/04/2024] Open
Abstract
Recent studies have implicated a crucial role of Hippo signaling in cell fate determination by biomechanical signals. Here we show that mechanical loading triggers the activation of a Hippo-PKCζ-NFκB pathway in chondrocytes, resulting in the expression of NFκB target genes associated with inflammation and matrix degradation. Mechanistically, mechanical loading activates an atypical PKC, PKCζ, which phosphorylates NFκB p65 at Serine 536, stimulating its transcriptional activation. This mechanosensitive activation of PKCζ and NFκB p65 is impeded in cells with gene deletion or chemical inhibition of Hippo core kinases LATS1/2, signifying an essential role of Hippo signaling in this mechanotransduction. A PKC inhibitor AEB-071 or PKCζ knockdown prevents p65 Serine 536 phosphorylation. Our study uncovers that the interplay of the Hippo signaling, PKCζ, and NFκB in response to mechanical loading serves as a therapeutic target for knee osteoarthritis and other conditions resulting from mechanical overloading or Hippo signaling deficiencies.
Collapse
Affiliation(s)
- Xiaomin Cai
- Department of Molecular and Cellular Pharmacology, Miller School of Medicine, Miami, FL, USA
- Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Christopher Warburton
- USOAR Scholar Program, Medical Education, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Olivia F. Perez
- USOAR Scholar Program, Medical Education, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Ying Wang
- Department of Molecular and Cellular Pharmacology, Miller School of Medicine, Miami, FL, USA
- Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Lucy Ho
- Department of Biomedical Engineering, University of Miami, Coral Gables, FL, USA
| | - Christina Finelli
- Department of Biomedical Engineering, University of Miami, Coral Gables, FL, USA
| | - Quinn T. Ehlen
- USOAR Scholar Program, Medical Education, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Chenzhou Wu
- Department of Molecular and Cellular Pharmacology, Miller School of Medicine, Miami, FL, USA
- Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Carlos D. Rodriguez
- Department of Molecular and Cellular Pharmacology, Miller School of Medicine, Miami, FL, USA
- Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Lee Kaplan
- Department of Biomedical Engineering, University of Miami, Coral Gables, FL, USA
- Department of Orthopedics, University of Miami, Miami, FL, USA
- UHealth Sports Medicine Institute, University of Miami, Miami, FL, USA
| | - Thomas M. Best
- Department of Biomedical Engineering, University of Miami, Coral Gables, FL, USA
- Department of Orthopedics, University of Miami, Miami, FL, USA
- UHealth Sports Medicine Institute, University of Miami, Miami, FL, USA
| | - Chun-Yuh Huang
- Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL, USA
- USOAR Scholar Program, Medical Education, University of Miami Miller School of Medicine, Miami, FL, USA
- Department of Biomedical Engineering, University of Miami, Coral Gables, FL, USA
- UHealth Sports Medicine Institute, University of Miami, Miami, FL, USA
| | - Zhipeng Meng
- Department of Molecular and Cellular Pharmacology, Miller School of Medicine, Miami, FL, USA
- Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL, USA
- USOAR Scholar Program, Medical Education, University of Miami Miller School of Medicine, Miami, FL, USA
| |
Collapse
|
6
|
Singh N, Nandy SK, Jyoti A, Saxena J, Sharma A, Siddiqui AJ, Sharma L. Protein Kinase C (PKC) in Neurological Health: Implications for Alzheimer's Disease and Chronic Alcohol Consumption. Brain Sci 2024; 14:554. [PMID: 38928554 PMCID: PMC11201589 DOI: 10.3390/brainsci14060554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 05/24/2024] [Accepted: 05/28/2024] [Indexed: 06/28/2024] Open
Abstract
Protein kinase C (PKC) is a diverse enzyme family crucial for cell signalling in various organs. Its dysregulation is linked to numerous diseases, including cancer, cardiovascular disorders, and neurological problems. In the brain, PKC plays pivotal roles in synaptic plasticity, learning, memory, and neuronal survival. Specifically, PKC's involvement in Alzheimer's Disease (AD) pathogenesis is of significant interest. The dysregulation of PKC signalling has been linked to neurological disorders, including AD. This review elucidates PKC's pivotal role in neurological health, particularly its implications in AD pathogenesis and chronic alcohol addiction. AD, characterised by neurodegeneration, implicates PKC dysregulation in synaptic dysfunction and cognitive decline. Conversely, chronic alcohol consumption elicits neural adaptations intertwined with PKC signalling, exacerbating addictive behaviours. By unravelling PKC's involvement in these afflictions, potential therapeutic avenues emerge, offering promise for ameliorating their debilitating effects. This review navigates the complex interplay between PKC, AD pathology, and alcohol addiction, illuminating pathways for future neurotherapeutic interventions.
Collapse
Affiliation(s)
- Nishtha Singh
- Department of Pharmacology, School of Pharmaceutical Sciences, Shoolini University of Biotechnology, and Management Sciences, Solan 173229, Himachal Pradesh, India; (N.S.); (A.S.)
| | - Shouvik Kumar Nandy
- School of Pharmacy, Techno India University, Sector-V, Kolkata 700091, West Bengal, India;
| | - Anupam Jyoti
- Department of Life Science, Parul Institute of Applied Science, Parul University, Vadodara 391760, Gujarat, India;
| | - Juhi Saxena
- Department of Biotechnology, Parul Institute of Technology, Parul University, Vadodara 391760, Gujarat, India;
| | - Aditi Sharma
- Department of Pharmacology, School of Pharmaceutical Sciences, Shoolini University of Biotechnology, and Management Sciences, Solan 173229, Himachal Pradesh, India; (N.S.); (A.S.)
| | - Arif Jamal Siddiqui
- Department of Biology, College of Science, University of Hail, Hail 55476, Saudi Arabia
| | - Lalit Sharma
- Department of Pharmacology, School of Pharmaceutical Sciences, Shoolini University of Biotechnology, and Management Sciences, Solan 173229, Himachal Pradesh, India; (N.S.); (A.S.)
| |
Collapse
|
7
|
Kazanietz MG, Cooke M. Protein kinase C signaling "in" and "to" the nucleus: Master kinases in transcriptional regulation. J Biol Chem 2024; 300:105692. [PMID: 38301892 PMCID: PMC10907189 DOI: 10.1016/j.jbc.2024.105692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 01/08/2024] [Accepted: 01/09/2024] [Indexed: 02/03/2024] Open
Abstract
PKC is a multifunctional family of Ser-Thr kinases widely implicated in the regulation of fundamental cellular functions, including proliferation, polarity, motility, and differentiation. Notwithstanding their primary cytoplasmic localization and stringent activation by cell surface receptors, PKC isozymes impel prominent nuclear signaling ultimately impacting gene expression. While transcriptional regulation may be wielded by nuclear PKCs, it most often relies on cytoplasmic phosphorylation events that result in nuclear shuttling of PKC downstream effectors, including transcription factors. As expected from the unique coupling of PKC isozymes to signaling effector pathways, glaring disparities in gene activation/repression are observed upon targeting individual PKC family members. Notably, specific PKCs control the expression and activation of transcription factors implicated in cell cycle/mitogenesis, epithelial-to-mesenchymal transition and immune function. Additionally, PKCs isozymes tightly regulate transcription factors involved in stepwise differentiation of pluripotent stem cells toward specific epithelial, mesenchymal, and hematopoietic cell lineages. Aberrant PKC expression and/or activation in pathological conditions, such as in cancer, leads to profound alterations in gene expression, leading to an extensive rewiring of transcriptional networks associated with mitogenesis, invasiveness, stemness, and tumor microenvironment dysregulation. In this review, we outline the current understanding of PKC signaling "in" and "to" the nucleus, with significant focus on established paradigms of PKC-mediated transcriptional control. Dissecting these complexities would allow the identification of relevant molecular targets implicated in a wide spectrum of diseases.
Collapse
Affiliation(s)
- Marcelo G Kazanietz
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA.
| | - Mariana Cooke
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA.
| |
Collapse
|
8
|
Gupta P, Ekbbal R. Liraglutide Improves Diabetic Cardiomyopathy by Downregulation of Cardiac Inflammatory and Apoptosis Markers. Curr Drug Res Rev 2024; 16:289-299. [PMID: 37966282 DOI: 10.2174/0125899775243787231103075804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 09/28/2023] [Accepted: 10/09/2023] [Indexed: 11/16/2023]
Abstract
BACKGROUND Diabetic cardiomyopathy is one of the leading causes of mortality for people with diabetes worldwide. The majority of the formalistic alterations in the heart associated with diabetic cardiomyopathy have been found to be primarily caused by the ongoing oxidative stress brought on by hyperglycemia, which leads to the dysfunctional reactions of apoptosis and inflammation. Liraglutide, a long-acting counterpart of glucagon-like peptide-1, has been demonstrated to have a number of therapeutic applications in medicine and other biological processes. METHODS The PubMed database was searched using the terms liraglutide, DCM, and all associated inflammatory markers. RESULTS There has been a lot of research on liraglutide's potential to protect the heart from cardiomyopathy brought on by diabetes. Liraglutide's therapeutic actions as an antioxidant, antihyperglycemic, anti-apoptotic, and anti-inflammatory medicine may help to lessen diabetic cardiomyopathy. CONCLUSION The most recent studies on the effects of liraglutide therapy on DCM are presented in this review, along with an explanation of the underlying mechanisms.
Collapse
Affiliation(s)
- Polly Gupta
- Department of Pharmaceutical Sciences, IIMT College of Medical Sciences (Pharmacy), IIMT University, Meerut, UP, India
| | - Rustam Ekbbal
- Department of Pharmacology, IIMT College of Medical Sciences (Pharmacy), IIMT University, Meerut, UP, India
| |
Collapse
|
9
|
Zou H, Cao Y, Hao P, Jin Z, Ding R, Bai X, Zhang K, Xue Y. New insights into the downregulation of cytochrome P450 2E1 via nuclear factor κB-dependent pathways in immune-mediated liver injury. Heliyon 2023; 9:e22641. [PMID: 38046176 PMCID: PMC10687058 DOI: 10.1016/j.heliyon.2023.e22641] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 10/06/2023] [Accepted: 11/15/2023] [Indexed: 12/05/2023] Open
Abstract
The extent of immune-mediated hepatic damage (such as in viral hepatitis) is characterised by the downregulation of cytochrome P450s (CYPs), a class of drug-metabolising enzymes. However, whether this downregulation aids liver cells in maintaining their homeostasis or whether the damage is aggravated remains largely unexplored. Herein, we evaluated the effects of phosphorylation mediated by the protein kinase C (PKC)/cAMP-response element binding protein (CREB) and nitration mediated by inducible nitric oxide synthase (iNOS) on the downregulation of CYP2E1 during immune-mediated liver injury. Additionally, we investigated the regulatory mechanism mediated by the nuclear factor κB (NF-κB). The rat model of immune-mediated liver injury was replicated by administering a single i.v. injection of Bacillus Calmette-Guerin (BCG, 125 mg/kg) vaccine and three i.p. injections of ammonium pyrrolidine dithiocarbamate (25, 50, 100 mg/kg/d, days 11, 12, and 13); blood was then collected on day 14. Subsequently, the livers were extracted to identify the different pharmacokinetic and biochemical indicators involved in the process. Our study reports new findings on the dependence between PKC-mediated CREB phosphorylation in the anti-inflammatory pathway and nitration emergency induced by iNOS in pro-inflammatory pathways in the NF-κB pathway. The interaction of these two pathways leads to the downregulation and recovery of CYP2E1, thus alleviating inflammation and nitration stress. Our results confirm that BCG-mediated downregulation of CYP2E1 is linked to iNOS-induced nitration and PKC/NF-κB-mediated CREB phosphorylation, and that NF-κB is an important molecular target in this process. These findings suggest that the downregulation of CYP2E1 may be an autonomous process characteristic of liver cells, helping them adapt to environmental changes, alleviate further hypoxia in inflamed tissues, and minimise exposure to toxic and harmful metabolites.
Collapse
Affiliation(s)
- Huiqiong Zou
- Institute of Pharmacokinetics and Liver Molecular Pharmacology, Department of Pharmacology, Baotou Medical College, No. 31 Jianshe Road, Donghe District, Baotou 014060, China
| | - Yingying Cao
- Institute of Pharmacokinetics and Liver Molecular Pharmacology, Department of Pharmacology, Baotou Medical College, No. 31 Jianshe Road, Donghe District, Baotou 014060, China
| | - Peipei Hao
- Institute of Pharmacokinetics and Liver Molecular Pharmacology, Department of Pharmacology, Baotou Medical College, No. 31 Jianshe Road, Donghe District, Baotou 014060, China
| | - Ziqi Jin
- Institute of Pharmacokinetics and Liver Molecular Pharmacology, Department of Pharmacology, Baotou Medical College, No. 31 Jianshe Road, Donghe District, Baotou 014060, China
| | - Ruifeng Ding
- Department of Gastroenterology, First Affiliated Hospital, Baotou Medical College, No. 41 linyin Road, Kundurun District, Baotou 014010, China
| | - Xuefeng Bai
- Department of Pathology, Baotou Cancer Hospital, No. 18 Tuanjie Street, Qingshan District, Baotou 014000, China
| | - Kun Zhang
- Institute of Pharmacokinetics and Liver Molecular Pharmacology, Department of Pharmacology, Baotou Medical College, No. 31 Jianshe Road, Donghe District, Baotou 014060, China
| | - Yongzhi Xue
- Institute of Pharmacokinetics and Liver Molecular Pharmacology, Department of Pharmacology, Baotou Medical College, No. 31 Jianshe Road, Donghe District, Baotou 014060, China
| |
Collapse
|
10
|
Song S, Jia C, Li C, Ma Y. The causal association between thyroid disease and gout: A Mendelian randomization study. Medicine (Baltimore) 2023; 102:e35817. [PMID: 37932979 PMCID: PMC10627627 DOI: 10.1097/md.0000000000035817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Accepted: 10/05/2023] [Indexed: 11/08/2023] Open
Abstract
Observational studies have reported some associations between thyroid disease and gout, but the causal relationship between the 2 is not clear. We used Mendelian randomization (MR) Analysis to investigate the causal association between some thyroid diseases (autoimmune hypothyroidism, autoimmune hyperthyroidism, thyroid nodules, and thyroid cancer) and gout. GWAS data were used for analysis. The exposure factors were autoimmune hypothyroidism, autoimmune hyperthyroidism, thyroid nodules and thyroid cancer, and the outcome variables were gout. IVW, MR-Egger, Weighted median and Weighted mode were used for MR analysis. Cochran Q test MR-PRESSO and MR-Egger intercept analysis were used to detect heterogeneity and multi directivity. Autoimmune hypothyroidism has a causal effect on gout, IVW results show (OR = 1.13, 95% CI = 1.03-1.21, PFDR = 0.0336); Autoimmune hyperthyroidism has a causal effect on gout, IVW results show (OR = 1.07, 95% CI = 1.01-1.12, PFDR = 0.0314); Thyroid cancer has no causal effect on gout, IVW results show (OR = 1.03, 95% CI = 0.98-1.09, PFDR = 0.297); Thyroid nodules has no causal effect on gout, IVW results show (OR = 1.03, 95% CI = 0.98-1.08, PFDR = 0.225); Reverse MR Studies show that gout have no causal effect on the above thyroid diseases. Autoimmune hypothyroidism and autoimmune hyperthyroidism increase the risk of gout.
Collapse
Affiliation(s)
- Shuai Song
- Department of Traditional Chinese Medicine External Treatment Center, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
| | - Congcong Jia
- Department of Nephrology, Shandong First Medical University Affiliated Occupational Disease Hospital, Jinan, Shandong, China
| | - ChunJing Li
- College of Acupuncture and Tuina, Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
| | - Yuxia Ma
- College of Acupuncture and Tuina, Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
| |
Collapse
|
11
|
Márquez Álvarez CDM, Hernández-Cruz EY, Pedraza-Chaverri J. Oxidative stress in animal models of obesity caused by hypercaloric diets: A systematic review. Life Sci 2023; 331:122019. [PMID: 37567497 DOI: 10.1016/j.lfs.2023.122019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 08/06/2023] [Accepted: 08/07/2023] [Indexed: 08/13/2023]
Abstract
Obesity is a global health difficulty characterized by an excessive accumulation of fat that increases body weight. Obesity has been studied in multiple animal models, of which those in which it is induced by diet stand out. Due to the increase in this condition, other mechanisms have been addressed that are triggered by states of overweight or obesity, such as the appearance of oxidative stress. These models aim to relate obesity caused by diet and how it influences the development of oxidative stress. In this study, a systematic review of the literature of 39 articles that studied obesity due to the consumption of hypercaloric diets and the appearance of oxidative stress in different animal models was carried out. This review identified the models with the most excellent use and the characteristics of the most appropriate diets to characterize states of oxidative stress due to obesity. In addition, the advantages and disadvantages of each model used are provided, as well as the techniques used for the assessment of obesity, and oxidative stress, providing the information in such a way that there is a general overview of the existing models of the parameters that allow to adequately establish both variables studied, providing information that allows the researcher to choose the appropriate model and factors according to the interest and objectives of the present research.
Collapse
Affiliation(s)
- Corazón de María Márquez Álvarez
- Laboratory for Research in Metabolic and Infectious Diseases, Multidisciplinary Academic División of Comalco, Juarez Autonomous University of Tabasco, Ranchería Sur, Cuarta Sección, 866500, Comalco, Tabasco, Mexico
| | - Estefani Yaquelin Hernández-Cruz
- Posgrado en Ciencias Biológicas, Universidad Nacional Autónoma de México, Ciudad de México, 04510, Mexico; Departamento de Biología, Facultad de Química, Universidad Nacional Autónoma de México, Ciudad de México, Mexico.
| | - José Pedraza-Chaverri
- Departamento de Biología, Facultad de Química, Universidad Nacional Autónoma de México, Ciudad de México, Mexico.
| |
Collapse
|
12
|
Liu Z, Yao X, Jiang W, Zhou Z, Yang M. Sodium butyrate enhances titanium nail osseointegration in ovariectomized rats by inhibiting the PKCα/NOX4/ROS/NF-κB pathways. J Orthop Surg Res 2023; 18:556. [PMID: 37528483 PMCID: PMC10394859 DOI: 10.1186/s13018-023-04013-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Accepted: 07/14/2023] [Indexed: 08/03/2023] Open
Abstract
BACKGROUND Elevated levels of oxidative stress as a consequence of estrogen deficiency serve as a key driver of the onset of osteoporosis (OP). In addition to increasing the risk of bone fractures, OP can reduce the bone volume proximal to titanium nails implanted to treat these osteoporotic fractures, thereby contributing to titanium nail loosening. Sodium butyrate (NaB) is a short-chain fatty acid produced by members of the gut microbiota that exhibits robust antioxidant and anti-inflammatory properties. METHODS OP fracture model rats parameters including bone mineral density (BMD), new bone formation, and the number of bonelets around the implanted nail were analyzed via micro-CT scans, H&E staining, and Masson's staining. The protective effects of NaB on such osseointegration and the underlying mechanisms were further studied in vitro using MC3T3-E1 cells treated with carbonyl cyanide m-chlorophenylhydrazone (CCCP) to induce oxidative stress. Techniques including Western immunoblotting, electron microscopy, flow cytometry, alkaline phosphatase (ALP) staining, and osteoblast mineralization assays were employed to probe behaviors such as reactive oxygen species production, mineralization activity, ALP activity, protein expression, and the ability of cells to attach to and survive on titanium plates. RESULTS NaB treatment was found to enhance ALP activity, mineralization capacity, and Coll-I, BMP2, and OCN expression levels in CCCP-treated MC3T3-E1 cells, while also suppressing PKC and NF-κB expression and enhancing Nrf2 and HO-1 expression in these cells. NaB further suppressed intracellular ROS production and malondialdehyde levels within the cytosol while enhancing superoxide dismutase activity and lowering the apoptotic death rate. In line with these results, in vivo work revealed an increase in BMD in NaB-treated rats that was associated with enhanced bone formation surrounding titanium nails. CONCLUSION These findings indicate that NaB may represent a valuable compound that can be postoperatively administered to aid in treating OP fractures through the enhancement of titanium nail osseointegration.
Collapse
Affiliation(s)
- Zhiyi Liu
- Department of Trauma Orthopedics, The First Affiliated Hospital of Wannan Medical College, Yijishan Hospital, Wuhu, Anhui, 241001, People's Republic of China
| | - Xuewei Yao
- Department of Trauma Orthopedics, The First Affiliated Hospital of Wannan Medical College, Yijishan Hospital, Wuhu, Anhui, 241001, People's Republic of China
| | - Wenkai Jiang
- Department of Trauma Orthopedics, The First Affiliated Hospital of Wannan Medical College, Yijishan Hospital, Wuhu, Anhui, 241001, People's Republic of China
| | - Zhi Zhou
- Department of Trauma Orthopedics, The First Affiliated Hospital of Wannan Medical College, Yijishan Hospital, Wuhu, Anhui, 241001, People's Republic of China
| | - Min Yang
- Department of Trauma Orthopedics, The First Affiliated Hospital of Wannan Medical College, Yijishan Hospital, Wuhu, Anhui, 241001, People's Republic of China.
| |
Collapse
|
13
|
Aquino A, Bianchi N, Terrazzan A, Franzese O. Protein Kinase C at the Crossroad of Mutations, Cancer, Targeted Therapy and Immune Response. BIOLOGY 2023; 12:1047. [PMID: 37626933 PMCID: PMC10451643 DOI: 10.3390/biology12081047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 07/18/2023] [Accepted: 07/21/2023] [Indexed: 08/27/2023]
Abstract
The frequent PKC dysregulations observed in many tumors have made these enzymes natural targets for anticancer applications. Nevertheless, this considerable interest in the development of PKC modulators has not led to the expected therapeutic benefits, likely due to the complex biological activities regulated by PKC isoenzymes, often playing ambiguous and protective functions, further driven by the occurrence of mutations. The structure, regulation and functions of PKCs have been extensively covered in other publications. Herein, we focused on PKC alterations mostly associated with complete functional loss. We also addressed the modest yet encouraging results obtained targeting PKC in selected malignancies and the more frequent negative clinical outcomes. The reported observations advocate the need for more selective molecules and a better understanding of the involved pathways. Furthermore, we underlined the most relevant immune mechanisms controlled by PKC isoforms potentially impacting the immune checkpoint inhibitor blockade-mediated immune recovery. We believe that a comprehensive examination of the molecular features of the tumor microenvironment might improve clinical outcomes by tailoring PKC modulation. This approach can be further supported by the identification of potential response biomarkers, which may indicate patients who may benefit from the manipulation of distinctive PKC isoforms.
Collapse
Affiliation(s)
- Angelo Aquino
- Department of Systems Medicine, University of Rome Tor Vergata, 00133 Rome, Italy;
| | - Nicoletta Bianchi
- Department of Translational Medicine, University of Ferrara, 44121 Ferrara, Italy; (N.B.); (A.T.)
| | - Anna Terrazzan
- Department of Translational Medicine, University of Ferrara, 44121 Ferrara, Italy; (N.B.); (A.T.)
- Laboratory for Advanced Therapy Technologies (LTTA), University of Ferrara, 44121 Ferrara, Italy
| | - Ornella Franzese
- Department of Systems Medicine, University of Rome Tor Vergata, 00133 Rome, Italy;
| |
Collapse
|
14
|
Yang X, Liang M, Tang Y, Ma D, Li M, Yuan C, Hou Y, Sun C, Liu J, Wei Q, Chang Y, Wang C, Zhang J. KLF7 promotes adipocyte inflammation and glucose metabolism disorder by activating the PKCζ/NF-κB pathway. FASEB J 2023; 37:e23033. [PMID: 37342904 DOI: 10.1096/fj.202300005r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Revised: 05/21/2023] [Accepted: 06/02/2023] [Indexed: 06/23/2023]
Abstract
In the obesity context, inflammatory cytokines secreted by adipocytes lead to insulin resistance and are key to metabolic syndrome development. In our previous study, we found that the transcription factor KLF7 promoted the expression of p-p65 and IL-6 in adipocytes. However, the specific molecular mechanism remained unclear. In the present study, we found that the expression of KLF7, PKCζ, p-IκB, p-p65, and IL-6 in epididymal white adipose tissue (Epi WAT) in mice fed a high-fat diet (HFD) was significantly increased. In contrast, the expression of PKCζ, p-IκB, p-p65, and IL-6 was significantly decreased in Epi WAT of KLF7 fat conditional knockout mice. In 3T3-L1 adipocytes, KLF7 promoted the expression of IL-6 via the PKCζ/NF-κB pathway. In addition, we performed luciferase reporter and chromatin immunoprecipitation assays, which confirmed that KLF7 upregulated the expression of PKCζ transcripts in HEK-293T cells. Collectively, our results show that KLF7 promotes the expression of IL-6 by upregulating PKCζ expression and activating the NF-κB signaling pathway in adipocytes.
Collapse
Affiliation(s)
- Xin Yang
- Department of Medical Genetics, Medical College of Shihezi University, Shihezi, China
| | - Maodi Liang
- Department of Medical Genetics, Medical College of Shihezi University, Shihezi, China
| | - Yihan Tang
- Department of Medical Genetics, Medical College of Shihezi University, Shihezi, China
| | - Dingling Ma
- Department of Medical Genetics, Medical College of Shihezi University, Shihezi, China
| | - Menghuan Li
- Department of Medical Genetics, Medical College of Shihezi University, Shihezi, China
| | - Chenggang Yuan
- Department of Medical Genetics, Medical College of Shihezi University, Shihezi, China
| | - Yanting Hou
- Department of Medical Genetics, Medical College of Shihezi University, Shihezi, China
| | - Chaoyue Sun
- Department of Medical Genetics, Medical College of Shihezi University, Shihezi, China
| | - Jie Liu
- Department of Medical Genetics, Medical College of Shihezi University, Shihezi, China
| | - Qianqian Wei
- Department of Medical Genetics, Medical College of Shihezi University, Shihezi, China
| | - Yongsheng Chang
- Department of Medical Genetics, Medical College of Shihezi University, Shihezi, China
- Department of Physiology and Pathophysiology, Tianjin Medical University, Tianjin, China
| | - Cuizhe Wang
- Department of Medical Genetics, Medical College of Shihezi University, Shihezi, China
| | - Jun Zhang
- Department of Medical Genetics, Medical College of Shihezi University, Shihezi, China
| |
Collapse
|
15
|
Cai X, Warburton C, Perez OF, Wang Y, Ho L, Finelli C, Ehlen QT, Wu C, Rodriguez CD, Kaplan L, Best TM, Huang CY, Meng Z. Hippo Signaling Modulates the Inflammatory Response of Chondrocytes to Mechanical Compressive Loading. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.06.09.544419. [PMID: 37662374 PMCID: PMC10473729 DOI: 10.1101/2023.06.09.544419] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/05/2023]
Abstract
Knee osteoarthritis (KOA) is a degenerative disease resulting from mechanical overload, where direct physical impacts on chondrocytes play a crucial role in disease development by inducing inflammation and extracellular matrix degradation. However, the signaling cascades that sense these physical impacts and induce the pathogenic transcriptional programs of KOA remain to be defined, which hinders the identification of novel therapeutic approaches. Recent studies have implicated a crucial role of Hippo signaling in osteoarthritis. Since Hippo signaling senses mechanical cues, we aimed to determine its role in chondrocyte responses to mechanical overload. Here we show that mechanical loading induces the expression of inflammatory and matrix-degrading genes by activating the nuclear factor-kappaB (NFκB) pathway in a Hippo-dependent manner. Applying mechanical compressional force to 3-dimensional cultured chondrocytes activated NFκB and induced the expression of NFκB target genes for inflammation and matrix degradation (i.e., IL1β and ADAMTS4). Interestingly, deleting the Hippo pathway effector YAP or activating YAP by deleting core Hippo kinases LATS1/2 blocked the NFκB pathway activation induced by mechanical loading. Consistently, treatment with a LATS1/2 kinase inhibitor abolished the upregulation of IL1β and ADAMTS4 caused by mechanical loading. Mechanistically, mechanical loading activates Protein Kinase C (PKC), which activates NFκB p65 by phosphorylating its Serine 536. Furthermore, the mechano-activation of both PKC and NFκB p65 is blocked in LATS1/2 or YAP knockout cells, indicating that the Hippo pathway is required by this mechanoregulation. Additionally, the mechanical loading-induced phosphorylation of NFκB p65 at Ser536 is blocked by the LATS1/2 inhibitor Lats-In-1 or the PKC inhibitor AEB-071. Our study suggests that the interplay of the Hippo signaling and PKC controls NFκB-mediated inflammation and matrix degradation in response to mechanical loading. Chemical inhibitors targeting Hippo signaling or PKC can prevent the mechanoresponses of chondrocytes associated with inflammation and matrix degradation, providing a novel therapeutic strategy for KOA.
Collapse
Affiliation(s)
- Xiaomin Cai
- Department of Molecular and Cellular Pharmacology, Miller School of Medicine, Miami, FL
- Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, FL
- These authors contributed equally to this work
| | - Christopher Warburton
- USOAR Scholar Program, Medical Education, University of Miami Miller School of Medicine, Miami, FL
- These authors contributed equally to this work
| | - Olivia F. Perez
- USOAR Scholar Program, Medical Education, University of Miami Miller School of Medicine, Miami, FL
- These authors contributed equally to this work
| | - Ying Wang
- Department of Molecular and Cellular Pharmacology, Miller School of Medicine, Miami, FL
- Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, FL
- These authors contributed equally to this work
| | - Lucy Ho
- Department of Biomedical Engineering, University of Miami, FL
| | | | - Quinn T. Ehlen
- USOAR Scholar Program, Medical Education, University of Miami Miller School of Medicine, Miami, FL
| | - Chenzhou Wu
- Department of Molecular and Cellular Pharmacology, Miller School of Medicine, Miami, FL
- Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, FL
| | - Carlos D. Rodriguez
- Department of Molecular and Cellular Pharmacology, Miller School of Medicine, Miami, FL
- Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, FL
| | - Lee Kaplan
- Department of Biomedical Engineering, University of Miami, FL
- Department of Orthopedics, University of Miami, Miami, FL
- UHealth Sports Medicine Institute, University of Miami, Miami, FL
| | - Thomas M. Best
- Department of Biomedical Engineering, University of Miami, FL
- Department of Orthopedics, University of Miami, Miami, FL
- UHealth Sports Medicine Institute, University of Miami, Miami, FL
| | - Chun-Yuh Huang
- USOAR Scholar Program, Medical Education, University of Miami Miller School of Medicine, Miami, FL
- Department of Biomedical Engineering, University of Miami, FL
- UHealth Sports Medicine Institute, University of Miami, Miami, FL
| | - Zhipeng Meng
- Department of Molecular and Cellular Pharmacology, Miller School of Medicine, Miami, FL
- Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, FL
- USOAR Scholar Program, Medical Education, University of Miami Miller School of Medicine, Miami, FL
| |
Collapse
|
16
|
Roos K, Berkholz J. LDL Affects the Immunomodulatory Response of Endothelial Cells by Modulation of the Promyelocytic Leukemia Protein (PML) Expression via PKC. Int J Mol Sci 2023; 24:ijms24087306. [PMID: 37108469 PMCID: PMC10138343 DOI: 10.3390/ijms24087306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 04/04/2023] [Accepted: 04/10/2023] [Indexed: 04/29/2023] Open
Abstract
In addition to its function as an intravascular lipid transporter, LDL also triggers signal transduction in endothelial cells (ECs), which, among other things, trigger immunomodulatory cascades, e.g., IL-6 upregulation. However, the molecular mechanisms of how these LDL-triggered immunological responses in ECs are realized are not fully understood. Since promyelocytic leukemia protein (PML) plays a role in promoting inflammatory processes, we examined the relationship between LDL, PML, and IL-6 in human ECs (HUVECs and EA.hy926 cells). RT-qPCR, immunoblotting, and immunofluorescence analyses showed that LDL but not HDL induced higher PML expression and higher numbers of PML-nuclear bodies (PML-NBs). Transfection of the ECs with a PML gene-encoding vector or PML-specific siRNAs demonstrated PML-regulated IL-6 and IL-8 expression and secretion after LDL exposure. Moreover, incubation with the PKC inhibitor sc-3088 or the PKC activator PMA showed that LDL-induced PKC activity leads to the upregulation of PML mRNA and PML protein. In summary, our experimental data suggest that high LDL concentrations trigger PKC activity in ECs to upregulate PML expression, which then increases production and secretion of IL-6 and IL-8. This molecular cascade represents a novel cellular signaling pathway with immunomodulatory effects in ECs in response to LDL exposure.
Collapse
Affiliation(s)
- Kerrin Roos
- Institute of Physiology, Charité-Universitätsmedizin, 10117 Berlin, Germany
| | - Janine Berkholz
- Institute of Physiology, Charité-Universitätsmedizin, 10117 Berlin, Germany
- DZHK (German Centre for Cardiovascular Research), Partner Site Berlin, 10785 Berlin, Germany
| |
Collapse
|
17
|
Rajan S, Tryphena KP, Khan S, Vora L, Srivastava S, Singh SB, Khatri DK. Understanding the involvement of innate immunity and the Nrf2-NLRP3 axis on mitochondrial health in Parkinson's disease. Ageing Res Rev 2023; 87:101915. [PMID: 36963313 DOI: 10.1016/j.arr.2023.101915] [Citation(s) in RCA: 25] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 02/01/2023] [Accepted: 03/19/2023] [Indexed: 03/26/2023]
Abstract
Parkinson's disease (PD), a multifactorial movement disorder, is interlinked with numerous molecular pathways, including neuroinflammation, which is a critical factor in the development and progression of PD. Microglia play a central role in driving neuroinflammation through activation and overexpression of the M1 phenotype, which has a significant impact on mitochondria. Multiple regulators converge together, and among these, the NOD-like receptor family pyrin domain-containing 3 (NLRP3) inflammasomes have been implicated in transmitting inflammatory and deleterious components to the mitochondria. Nuclear factor erythroid 2-related factor 2 (Nrf2) regulates the NLRP3 inflammasome and acts as the saviour of the mitochondria. Together, the NLRP3-Nrf2 axis functions in regulating mitochondrial function in the case of PD. It regulates fundamental processes such as oxidative stress, mitochondrial respiratory function, and mitochondrial dynamics. In this review, we discuss the contributions that a variety of miRNAs make to the regulation of the NLRP3 inflammasome and Nrf2, which can be used to target this important axis and contribute to the preservation of mitochondrial integrity. This axis may prove to be a crucial target for extending the lives of Parkinson's patients by deferring neuroinflammatory damage to mitochondria.
Collapse
Affiliation(s)
- Shruti Rajan
- Molecular and Cellular Neuroscience Lab, Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER)-Hyderabad, Telangana 500037, India
| | - Kamatham Pushpa Tryphena
- Molecular and Cellular Neuroscience Lab, Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER)-Hyderabad, Telangana 500037, India
| | - Sabiya Khan
- Molecular and Cellular Neuroscience Lab, Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER)-Hyderabad, Telangana 500037, India
| | - Lalitkumar Vora
- School of Pharmacy, Queen's University Belfast, 97 Lisburn Road, Belfast BT9 7BL, UK.
| | - Saurabh Srivastava
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER)-Hyderabad, Telangana 500037, India.
| | - Shashi Bala Singh
- Molecular and Cellular Neuroscience Lab, Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER)-Hyderabad, Telangana 500037, India
| | - Dharmendra Kumar Khatri
- Molecular and Cellular Neuroscience Lab, Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER)-Hyderabad, Telangana 500037, India.
| |
Collapse
|
18
|
Potential Role of Oxidative Stress in the Production of Volatile Organic Compounds in Obesity. Antioxidants (Basel) 2023; 12:antiox12010129. [PMID: 36670991 PMCID: PMC9854577 DOI: 10.3390/antiox12010129] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 12/30/2022] [Accepted: 01/03/2023] [Indexed: 01/06/2023] Open
Abstract
Obesity is associated with numerous health issues such as sleep disorders, asthma, hepatic dysfunction, cancer, renal dysfunction, diabetes, cardiovascular complications, and infertility. Previous research has shown that the distribution of excess body fat, rather than excess body weight, determines obesity-related risk factors. It is widely accepted that abdominal fat is a serious risk factor for illnesses associated with obesity and the accumulation of visceral fat promotes the release of pro-oxidants, pro-inflammatory, and reactive oxygen species (ROS). The metabolic process in the human body produces several volatile organic compounds (VOCs) via urine, saliva, breath, blood, skin secretions, milk, and feces. Several studies have shown that VOCs are released by the interaction of ROS with underlying cellular components leading to increased protein oxidation, lipid peroxidation, or DNA damage. These VOCs released via oxidative stress in obese individuals may serves as a biomarker for obesity-related metabolic alterations and disease. In this review, we focus on the relationship between oxidative stress and VOCs in obesity.
Collapse
|
19
|
García-Fojeda B, Minutti CM, Montero-Fernández C, Stamme C, Casals C. Signaling Pathways That Mediate Alveolar Macrophage Activation by Surfactant Protein A and IL-4. Front Immunol 2022; 13:860262. [PMID: 35444643 PMCID: PMC9014242 DOI: 10.3389/fimmu.2022.860262] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2022] [Accepted: 03/14/2022] [Indexed: 01/03/2023] Open
Abstract
Activation of tissue repair program in macrophages requires the integration of IL-4/IL-13 cytokines and tissue-specific signals. In the lung, surfactant protein A (SP-A) is a tissue factor that amplifies IL-4Rα-dependent alternative activation and proliferation of alveolar macrophages (AMs) through the myosin18A receptor. However, the mechanism by which SP-A and IL-4 synergistically increase activation and proliferation of AMs is unknown. Here we show that SP-A amplifies IL-4-mediated phosphorylation of STAT6 and Akt by binding to myosin18A. Blocking PI3K activity or the myosin18A receptor abrogates SP-A´s amplifying effects on IL-4 signaling. SP-A alone activates Akt, mTORC1, and PKCζ and inactivates GSK3α/β by phosphorylation, but it cannot activate arginase-1 activity or AM proliferation on its own. The combined effects of IL-4 and SP-A on the mTORC1 and GSK3 branches of PI3K-Akt signaling contribute to increased AM proliferation and alternative activation, as revealed by pharmacological inhibition of Akt (inhibitor VIII) and mTORC1 (rapamycin and torin). On the other hand, the IL-4+SP-A-driven PKCζ signaling axis appears to intersect PI3K activation with STAT6 phosphorylation to achieve more efficient alternative activation of AMs. Consistent with IL-4+SP-A-driven activation of mTORC1 and mTORC2, both agonists synergistically increased mitochondrial respiration and glycolysis in AMs, which are necessary for production of energy and metabolic intermediates for proliferation and alternative activation. We conclude that SP-A signaling in AMs activates PI3K-dependent branched pathways that amplify IL-4 actions on cell proliferation and the acquisition of AM effector functions.
Collapse
Affiliation(s)
- Belén García-Fojeda
- Department of Biochemistry and Molecular Biology, Complutense University of Madrid, Madrid, Spain
| | - Carlos M Minutti
- Department of Biochemistry and Molecular Biology, Complutense University of Madrid, Madrid, Spain
| | - Carlos Montero-Fernández
- Department of Biochemistry and Molecular Biology, Complutense University of Madrid, Madrid, Spain
| | - Cordula Stamme
- Division of Cellular Pneumology, Research Center Borstel, Leibniz Lung Center, Borstel, Germany.,Department of Anesthesiology and Intensive Care, University of Lübeck, Lübeck, Germany
| | - Cristina Casals
- Department of Biochemistry and Molecular Biology, Complutense University of Madrid, Madrid, Spain
| |
Collapse
|
20
|
Cao YJ, Li JY, Wang PX, Lin ZR, Yu WJ, Zhang JG, Lu J, Liu PQ. PKC-ζ Aggravates Doxorubicin-Induced Cardiotoxicity by Inhibiting Wnt/β-Catenin Signaling. Front Pharmacol 2022; 13:798436. [PMID: 35237161 PMCID: PMC8883055 DOI: 10.3389/fphar.2022.798436] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Accepted: 01/03/2022] [Indexed: 11/25/2022] Open
Abstract
Doxorubicin (Dox) is a chemotherapeutic drug used to treat a wide range of cancers, but its clinical application is limited due to its cardiotoxicity. Protein kinase C-ζ (PKC-ζ) is a serine/threonine kinase belonging to atypical protein kinase C (PKC) subfamily, and is activated by its phosphorylation. We and others have reported that PKC-ζ induced cardiac hypertrophy by activating the inflammatory signaling pathway. This study focused on whether PKC-ζ played an important role in Dox-induced cardiotoxicity. We found that PKC-ζ phosphorylation was increased by Dox treatment in vivo and in vitro. PKC-ζ overexpression exacerbated Dox-induced cardiotoxicity. Conversely, knockdown of PKC-ζ by siRNA relieved Dox-induced cardiotoxicity. Similar results were observed when PKC-ζ enzyme activity was inhibited by its pseudosubstrate inhibitor, Myristoylated. PKC-ζ interacted with β-catenin and inhibited Wnt/β-catenin signaling pathway. Activation of Wnt/β-catenin signaling by LiCl protected against Dox-induced cardiotoxicity. The Wnt/β-catenin inhibitor XAV-939 aggravated Dox-caused decline of β-catenin and cardiomyocyte apoptosis and mitochondrial damage. Moreover, activation of Wnt/β-catenin suppressed aggravation of Dox-induced cardiotoxicity due to PKC-ζ overexpression. Taken together, our study revealed that inhibition of PKC-ζ activity was a potential cardioprotective approach to preventing Dox-induced cardiac injury.
Collapse
Affiliation(s)
- Yan-Jun Cao
- National and Local United Engineering Lab of Druggability and New Drugs Evaluation, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China
| | - Jing-Yan Li
- National and Local United Engineering Lab of Druggability and New Drugs Evaluation, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China
- School of Pharmaceutical Science, International Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Pan-Xia Wang
- National and Local United Engineering Lab of Druggability and New Drugs Evaluation, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China
| | - Zhi-Rong Lin
- National and Local United Engineering Lab of Druggability and New Drugs Evaluation, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China
| | - Wen-Jing Yu
- National and Local United Engineering Lab of Druggability and New Drugs Evaluation, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China
| | - Ji-Guo Zhang
- School of Pharmaceutical Sciences, Shandong Academy of Medical Sciences, Shandong First Medical University, Taian, China
- *Correspondence: Ji-Guo Zhang, ; Jing Lu, ; Pei-Qing Liu,
| | - Jing Lu
- National and Local United Engineering Lab of Druggability and New Drugs Evaluation, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China
- *Correspondence: Ji-Guo Zhang, ; Jing Lu, ; Pei-Qing Liu,
| | - Pei-Qing Liu
- National and Local United Engineering Lab of Druggability and New Drugs Evaluation, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China
- School of Pharmaceutical Sciences, Shandong Academy of Medical Sciences, Shandong First Medical University, Taian, China
- *Correspondence: Ji-Guo Zhang, ; Jing Lu, ; Pei-Qing Liu,
| |
Collapse
|
21
|
Sanchez-Burgos L, Gómez-López G, Al-Shahrour F, Fernandez-Capetillo O. An in silico analysis identifies drugs potentially modulating the cytokine storm triggered by SARS-CoV-2 infection. Sci Rep 2022; 12:1626. [PMID: 35102208 PMCID: PMC8803893 DOI: 10.1038/s41598-022-05597-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Accepted: 01/11/2022] [Indexed: 12/12/2022] Open
Abstract
The ongoing COVID-19 pandemic is one of the biggest health challenges of recent decades. Among the causes of mortality triggered by SARS-CoV-2 infection, the development of an inflammatory "cytokine storm" (CS) plays a determinant role. Here, we used transcriptomic data from the bronchoalveolar lavage fluid (BALF) of COVID-19 patients undergoing a CS to obtain gene-signatures associated to this pathology. Using these signatures, we interrogated the Connectivity Map (CMap) dataset that contains the effects of over 5000 small molecules on the transcriptome of human cell lines, and looked for molecules which effects on transcription mimic or oppose those of the CS. As expected, molecules that potentiate immune responses such as PKC activators are predicted to worsen the CS. In addition, we identified the negative regulation of female hormones among pathways potentially aggravating the CS, which helps to understand the gender-related differences in COVID-19 mortality. Regarding drugs potentially counteracting the CS, we identified glucocorticoids as a top hit, which validates our approach as this is the primary treatment for this pathology. Interestingly, our analysis also reveals a potential effect of MEK inhibitors in reverting the COVID-19 CS, which is supported by in vitro data that confirms the anti-inflammatory properties of these compounds.
Collapse
Affiliation(s)
- Laura Sanchez-Burgos
- Genomic Instability Group, Spanish National Cancer Research Centre, 28029, Madrid, Spain
| | - Gonzalo Gómez-López
- Bioinformatics Unit, Spanish National Cancer Research Centre, 28029, Madrid, Spain
| | - Fátima Al-Shahrour
- Bioinformatics Unit, Spanish National Cancer Research Centre, 28029, Madrid, Spain
| | - Oscar Fernandez-Capetillo
- Genomic Instability Group, Spanish National Cancer Research Centre, 28029, Madrid, Spain.
- Science for Life Laboratory, Division of Genome Biology, Department of Medical Biochemistry and Biophysics, Karolinska Institute, 171 21, Stockholm, Sweden.
| |
Collapse
|
22
|
Chen XZ, Huang Q, Yu XY, Dai C, Shen Y, Lin ZH. Insights into the structural requirements of PKCζ inhibitors as potential anti-arthritis agents based on 3D-QSAR, homology modeling and docking approach. J Mol Struct 2021. [DOI: 10.1016/j.molstruc.2021.131148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
23
|
Agas D, Sabbieti MG. Autophagic Mediators in Bone Marrow Niche Homeostasis. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1376:61-75. [PMID: 34480334 DOI: 10.1007/5584_2021_666] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The bone marrow serves as a reservoir for a multifunctional assortment of stem, progenitor, and mature cells, located in functional anatomical micro-areas termed niches. Within the niche, hematopoietic and mesenchymal progenies establish a symbiotic relationship characterized by interdependency and interconnectedness. The fine-tuned physical and molecular interactions that occur in the niches guarantee physiological bone turnover, blood cell maturation and egression, and moderation of inflammatory and oxidative intramural stressful conditions. The disruption of bone marrow niche integrity causes severe local and systemic pathological settings, and thus bone marrow inhabitants have been the object of extensive study. In this context, research has revealed the importance of the autophagic apparatus for niche homeostatic maintenance. Archetypal autophagic players such as the p62 and the Atg family proteins have been found to exert a variety of actions, some autophagy-related and others not; they moderate the essential features of mesenchymal and hematopoietic stem cells and switch their operational schedules. This chapter focuses on our current understanding of bone marrow functionality and the role of the executive autophagic apparatus in the niche framework. Autophagic mediators such as p62 and Atg7 are currently considered the most important orchestrators of stem and mature cell dynamics in the bone marrow.
Collapse
Affiliation(s)
- Dimitrios Agas
- School of Biosciences and Veterinary Medicine, University of Camerino, Camerino, MC, Italy.
| | | |
Collapse
|
24
|
Yang C, He Z, Zhang Q, Lu M, Zhao J, Chen W, Gao L. TSH Activates Macrophage Inflammation by G13- and G15-dependent Pathways. Endocrinology 2021; 162:6225351. [PMID: 33851697 DOI: 10.1210/endocr/bqab077] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Indexed: 12/17/2022]
Abstract
Thyroid-stimulating hormone (TSH) treatment activates inhibitor of NF-κB/nuclear factor κB (IκB/NFκB) and extracellular signal-regulated kinase (ERK)-P38 in macrophages, but how these pathways are activated, and how they contribute to the proinflammatory effect of TSH on macrophages remain unknown. The TSH receptor (TSHR) is coupled to 4 subfamilies of G proteins (Gs, Gi/o, Gq/11, and G12/13) for its downstream signaling. This study investigated the G protein subtypes responsible for the proinflammatory effect of TSH on macrophages. qPCR showed that Gi2, Gi3, Gas, Gq, G11, G12, G13, and G15 are abundantly expressed by macrophages. The contribution of different G protein pathways to the proinflammatory effect was studied by the corresponding inhibitors or siRNA interference. While TSH-induced IκB phosphorylation was not inhibited by Gs inhibitor NF449, Gi inhibitor pertussis toxin, or Gq or G11 siRNA, it was blocked by phospholipase C inhibitor U73122 or G15 siRNA interference. TSH-induced ERK and P38 phosphorylation was blocked by G13 but not G12 siRNA interference. Interference of either G13 or G15 could block the proinflammatory effect of TSH on macrophages. The present study demonstrate that TSH activates macrophage inflammation by the G13/ERK-P38/Rho GTPase and G15/phospholipase C (PLC)/protein kinases C (PKCs)/IκB pathways.
Collapse
Affiliation(s)
- Chongbo Yang
- Department of Endocrinology, Shandong Provincial Hospital affiliated to Shandong First Medical University, Shandong Key Laboratory of Endocrinology and Lipid Metabolism, Institute of Endocrinology and Metabolism, Shandong Academy of Clinical Medicine, Jinan, Shandong, China
| | - Zhao He
- Department of Endocrinology, Shandong Provincial Hospital affiliated to Shandong First Medical University, Shandong Key Laboratory of Endocrinology and Lipid Metabolism, Institute of Endocrinology and Metabolism, Shandong Academy of Clinical Medicine, Jinan, Shandong, China
- Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Qunye Zhang
- Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
- Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education and Ministry of Public Health, the State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Ming Lu
- Department of Endocrinology, Shandong Provincial Hospital affiliated to Shandong First Medical University, Shandong Key Laboratory of Endocrinology and Lipid Metabolism, Institute of Endocrinology and Metabolism, Shandong Academy of Clinical Medicine, Jinan, Shandong, China
| | - Jiajun Zhao
- Department of Endocrinology, Shandong Provincial Hospital affiliated to Shandong First Medical University, Shandong Key Laboratory of Endocrinology and Lipid Metabolism, Institute of Endocrinology and Metabolism, Shandong Academy of Clinical Medicine, Jinan, Shandong, China
| | - Wenbin Chen
- Scientific Center, Shandong Provincial Hospital affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Ling Gao
- Scientific Center, Shandong Provincial Hospital affiliated to Shandong First Medical University, Jinan, Shandong, China
| |
Collapse
|
25
|
Chen L, Shi D, Guo M. The roles of PKC-δ and PKC-ε in myocardial ischemia/reperfusion injury. Pharmacol Res 2021; 170:105716. [PMID: 34102229 DOI: 10.1016/j.phrs.2021.105716] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 05/01/2021] [Accepted: 06/03/2021] [Indexed: 01/14/2023]
Abstract
Ischemia and reperfusion (I/R) cause a reduction in arterial blood supply to tissues, followed by the restoration of perfusion and consequent reoxygenation. The reestablishment of blood flow triggers further damage to ischemic tissue through reactive oxygen species (ROS) accumulation, interference with cellular ion homeostasis, opening of mitochondrial permeability transition pores (mPTPs) and promotion of cell death (apoptosis or necrosis). PKC-δ and PKC-ε, belonging to a family of serine/threonine kinases, have been demonstrated to play important roles during I/R injury in cardiovascular diseases. However, the cardioprotective mechanisms of PKC-δ and PKC-ε in I/R injury have not been elaborated until now. This article discusses the roles of PKC-δ and PKC-ε during myocardial I/R in redox regulation (redox signaling and oxidative stress), cell death (apoptosis and necrosis), Ca2+ overload, and mitochondrial dysfunction.
Collapse
Affiliation(s)
- Li Chen
- Peking University Traditional Chinese Medicine Clinical Medical School (Xi yuan), Beijing, China; National Clinical Research Center for Chinese Medicine Cardiology, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Dazhuo Shi
- National Clinical Research Center for Chinese Medicine Cardiology, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China.
| | - Ming Guo
- National Clinical Research Center for Chinese Medicine Cardiology, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China.
| |
Collapse
|
26
|
Jubaidi FF, Zainalabidin S, Taib IS, Hamid ZA, Budin SB. The Potential Role of Flavonoids in Ameliorating Diabetic Cardiomyopathy via Alleviation of Cardiac Oxidative Stress, Inflammation and Apoptosis. Int J Mol Sci 2021; 22:ijms22105094. [PMID: 34065781 PMCID: PMC8151300 DOI: 10.3390/ijms22105094] [Citation(s) in RCA: 54] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Revised: 04/20/2021] [Accepted: 04/30/2021] [Indexed: 12/15/2022] Open
Abstract
Diabetic cardiomyopathy is one of the major mortality risk factors among diabetic patients worldwide. It has been established that most of the cardiac structural and functional alterations in the diabetic cardiomyopathy condition resulted from the hyperglycemia-induced persistent oxidative stress in the heart, resulting in the maladaptive responses of inflammation and apoptosis. Flavonoids, the most abundant phytochemical in plants, have been reported to exhibit diverse therapeutic potential in medicine and other biological activities. Flavonoids have been widely studied for their effects in protecting the heart against diabetes-induced cardiomyopathy. The potential of flavonoids in alleviating diabetic cardiomyopathy is mainly related with their remedial actions as anti-hyperglycemic, antioxidant, anti-inflammatory, and anti-apoptotic agents. In this review, we summarize the latest findings of flavonoid treatments on diabetic cardiomyopathy as well as elucidating the mechanisms involved.
Collapse
Affiliation(s)
- Fatin Farhana Jubaidi
- Center for Diagnostic, Therapeutic and Investigative Studies, Faculty of Health Sciences, Universiti Kebangsaan Malaysia, Kuala Lumpur 50300, Malaysia; (F.F.J.); (I.S.T.); (Z.A.H.)
| | - Satirah Zainalabidin
- Center for Toxicology and Health Risk Research, Faculty of Health Sciences, Universiti Kebangsaan Malaysia, Kuala Lumpur 50300, Malaysia;
| | - Izatus Shima Taib
- Center for Diagnostic, Therapeutic and Investigative Studies, Faculty of Health Sciences, Universiti Kebangsaan Malaysia, Kuala Lumpur 50300, Malaysia; (F.F.J.); (I.S.T.); (Z.A.H.)
| | - Zariyantey Abd Hamid
- Center for Diagnostic, Therapeutic and Investigative Studies, Faculty of Health Sciences, Universiti Kebangsaan Malaysia, Kuala Lumpur 50300, Malaysia; (F.F.J.); (I.S.T.); (Z.A.H.)
| | - Siti Balkis Budin
- Center for Diagnostic, Therapeutic and Investigative Studies, Faculty of Health Sciences, Universiti Kebangsaan Malaysia, Kuala Lumpur 50300, Malaysia; (F.F.J.); (I.S.T.); (Z.A.H.)
- Correspondence: ; Tel.: +603-9289-7645
| |
Collapse
|
27
|
Wang JS, Li X, Chen ZL, Feng JL, Bao BH, Deng S, Dai HH, Meng FC, Wang B, Li HS. Effect of leech-centipede medicine on improving erectile function in DIED rats via PKC signalling pathway-related molecules. JOURNAL OF ETHNOPHARMACOLOGY 2021; 267:113463. [PMID: 33049347 DOI: 10.1016/j.jep.2020.113463] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Revised: 10/05/2020] [Accepted: 10/07/2020] [Indexed: 06/11/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Leeches (pinyin name Shui Zhi; Latin scientific name Hirudo; Hirudinea; Hirudinidae) and centipedes (pinyin name Wu Gong; Latin scientific name Scolopendridae; Chilopoda; Scolopendridae) are traditional Chinese medicines, and they belong to the family entomology. A combination of leech and centipede is used as an effective medicine to promote blood circulation and remove blood stasis in traditional Chinese medicine, and "leech-centipede" medicine has been used in many prescriptions to treat diabetic vascular disease, including diabetic erectile dysfunction (DIED). However, its specific mechanism remains unclear and requires in-depth study. AIM OF THE STUDY This study aimed to investigate the mechanism of "leech-centipede" medicine to improve erectile dysfunction-associated diabetes by detecting PKC pathway-related molecules. MATERIALS AND METHODS The active ingredients of "leech-centipede" medicine were identified using high performance liquid chromatography (HPLC). Fifty male SPF rats were injected with streptozotocin to induce the DM model. Eight weeks later, the DMED model was validated with apomorphine. The DIED rats were divided into five groups-T,P,DD,DZ, and DG-and were separately treated with tadalafil, pathway inhibitor LY333531 and low-, medium-, and high-dose "leech-centipede" medicine for 8 weeks. After treatment, the blood glucose level was measured, erectile function with apomorphine was assessed, the LOX-1, sE-selectin, sICAM-1, SOD, and MDA in serum was evaluated by enzyme-linked immunosorbent assay, and flow cytometry was performed. After the collection of penile tissue, the related protein and mRNA expression was assessed by Western blotting and PCR, and the tissue and ultrastructure were analysed by HE staining, immunohistochemistry and scanning electron microscopy. RESULTS After treatment, the erectile function of rats was significantly improved in the T,P,DD,DZ, and DG groups compared with that in the model group. Thus, "leech-centipede" medicine can significantly reduce the levels of LOX-1, sE-selectin, sICAM-1, EMPs and CD62P to protect vascular endothelial function and anti-platelet activation, improving DIED rat erectile function. Additionally, "leech-centipede" medicine can increase SOD expression and decrease MDA expression, reducing the possibility of oxidative stress injury in DIED rats and improving the antioxidant capacity. Moreover, "leech-centipede" therapy can dramatically reduce the protein and mRNA expression of DAG, PKCβ, NF-κB, and ICAM-1, improve vascular endothelial injury in DIED rats and inhibit abnormal platelet activation. CONCLUSION "leech-centipede" medicine can improve erectile dysfunction by inhibiting the expression of PKC pathway-related molecules in DIED rats and protects endothelial function and anti-platelet activation.
Collapse
Affiliation(s)
- Ji-Sheng Wang
- First Clinical Medical College, Beijing University of Chinese Medicine, Beijing, 100029, China; Andrology Department, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, 100700, China.
| | - Xiao Li
- The First Affiliated Hospital, Henan University of Chinese Medicine, Zhengzhou, 450000, China.
| | - Zi-Long Chen
- First Clinical Medical College, Beijing University of Chinese Medicine, Beijing, 100029, China; Andrology Department, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, 100700, China.
| | - Jun-Long Feng
- First Clinical Medical College, Beijing University of Chinese Medicine, Beijing, 100029, China; Andrology Department, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, 100700, China.
| | - Bing-Hao Bao
- First Clinical Medical College, Beijing University of Chinese Medicine, Beijing, 100029, China; Andrology Department, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, 100700, China.
| | - Sheng Deng
- First Clinical Medical College, Beijing University of Chinese Medicine, Beijing, 100029, China; Andrology Department, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, 100700, China.
| | - Heng-Heng Dai
- First Clinical Medical College, Beijing University of Chinese Medicine, Beijing, 100029, China; Andrology Department, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, 100700, China.
| | - Fan-Chao Meng
- First Clinical Medical College, Beijing University of Chinese Medicine, Beijing, 100029, China; Andrology Department, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, 100700, China.
| | - Bin Wang
- Andrology Department, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, 100700, China.
| | - Hai-Song Li
- Andrology Department, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, 100700, China.
| |
Collapse
|
28
|
Wu H, Chu Y, Sun S, Li G, Xu S, Zhang X, Jiang Y, Gao S, Wang Q, Zhang J, Pang D. Hypoxia-Mediated Complement 1q Binding Protein Regulates Metastasis and Chemoresistance in Triple-Negative Breast Cancer and Modulates the PKC-NF-κB-VCAM-1 Signaling Pathway. Front Cell Dev Biol 2021; 9:607142. [PMID: 33708767 PMCID: PMC7940382 DOI: 10.3389/fcell.2021.607142] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Accepted: 01/29/2021] [Indexed: 12/24/2022] Open
Abstract
Objectives Complement 1q binding protein (C1QBP/HABP1/p32/gC1qR) has been found to be overexpressed in triple-negative breast cancer (TNBC). However, the underlying mechanisms of high C1QBP expression and its role in TNBC remain largely unclear. Hypoxia is a tumor-associated microenvironment that promotes metastasis and paclitaxel (PTX) chemoresistance in tumor cells. In this study, we aimed to assess C1QBP expression and explore its role in hypoxia-related metastasis and chemoresistance in TNBC. Materials and Methods RNA-sequencing of TNBC cells under hypoxia was performed to identify C1QBP. The effect of hypoxia inducible factor 1 subunit alpha (HIF-1α) on C1QBP expression was investigated using chromatin immunoprecipitation (ChIP) assay. The role of C1QBP in mediating metastasis, chemoresistance to PTX, and regulation of metastasis-linked vascular cell adhesion molecule 1 (VCAM-1) expression were studied using in vitro and in vivo experiments. Clinical tissue microarrays were used to verify the correlation of C1QBP with the expression of HIF-1α, VCAM-1, and RELA proto-oncogene nuclear factor-kappa B subunit (P65). Results We found that hypoxia-induced HIF-1α upregulated C1QBP. The inhibition of C1QBP notably blocked metastasis of TNBC cells and increased their sensitivity to PTX under hypoxic conditions. Depletion of C1QBP decreased VCAM-1 expression by reducing the amount of P65 in the nucleus and suppressed the activation of hypoxia-induced protein kinase C-nuclear factor-kappa B (PKC-NF-κB) signaling.immunohistochemistry (IHC) staining of the tissue microarray showed positive correlations between the C1QBP level and those of HIF-1α, P65, and VCAM-1. Conclusion Targeting C1QBP along with PTX treatment might be a potential treatment for TNBC patients.
Collapse
Affiliation(s)
- Hao Wu
- Sino-Russian Medical Research Center, Harbin Medical University Cancer Hospital, Harbin, China.,Translational Medicine Research and Cooperation Center of Northern China, Harbin Medical University, Harbin, China.,Heilongjiang Academy of Medical Sciences, Harbin, China
| | - Yijun Chu
- Translational Medicine Research and Cooperation Center of Northern China, Harbin Medical University, Harbin, China.,Heilongjiang Academy of Medical Sciences, Harbin, China.,Department of Breast Surgery, Harbin Medical University Cancer Hospital, Harbin, China
| | - Shanshan Sun
- Translational Medicine Research and Cooperation Center of Northern China, Harbin Medical University, Harbin, China.,Heilongjiang Academy of Medical Sciences, Harbin, China.,Department of Breast Surgery, Harbin Medical University Cancer Hospital, Harbin, China
| | - Guozheng Li
- Translational Medicine Research and Cooperation Center of Northern China, Harbin Medical University, Harbin, China.,Heilongjiang Academy of Medical Sciences, Harbin, China.,Department of Breast Surgery, Harbin Medical University Cancer Hospital, Harbin, China
| | - Shouping Xu
- Translational Medicine Research and Cooperation Center of Northern China, Harbin Medical University, Harbin, China.,Heilongjiang Academy of Medical Sciences, Harbin, China.,Department of Breast Surgery, Harbin Medical University Cancer Hospital, Harbin, China
| | - Xianyu Zhang
- Translational Medicine Research and Cooperation Center of Northern China, Harbin Medical University, Harbin, China.,Heilongjiang Academy of Medical Sciences, Harbin, China.,Department of Breast Surgery, Harbin Medical University Cancer Hospital, Harbin, China
| | - Yongdong Jiang
- Translational Medicine Research and Cooperation Center of Northern China, Harbin Medical University, Harbin, China.,Heilongjiang Academy of Medical Sciences, Harbin, China.,Department of Breast Surgery, Harbin Medical University Cancer Hospital, Harbin, China
| | - Song Gao
- Translational Medicine Research and Cooperation Center of Northern China, Harbin Medical University, Harbin, China.,Heilongjiang Academy of Medical Sciences, Harbin, China.,Department of Breast Surgery, Harbin Medical University Cancer Hospital, Harbin, China
| | - Qin Wang
- Sino-Russian Medical Research Center, Harbin Medical University Cancer Hospital, Harbin, China.,Translational Medicine Research and Cooperation Center of Northern China, Harbin Medical University, Harbin, China.,Heilongjiang Academy of Medical Sciences, Harbin, China
| | - Jian Zhang
- Department of Breast Surgery, Harbin Medical University Cancer Hospital, Harbin, China
| | - Da Pang
- Sino-Russian Medical Research Center, Harbin Medical University Cancer Hospital, Harbin, China.,Translational Medicine Research and Cooperation Center of Northern China, Harbin Medical University, Harbin, China.,Heilongjiang Academy of Medical Sciences, Harbin, China.,Department of Breast Surgery, Harbin Medical University Cancer Hospital, Harbin, China
| |
Collapse
|
29
|
Agas D, Sabbieti MG. Archetypal autophagic players through new lenses for bone marrow stem/mature cells regulation. J Cell Physiol 2021; 236:6101-6114. [PMID: 33492700 DOI: 10.1002/jcp.30296] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Revised: 01/04/2021] [Accepted: 01/11/2021] [Indexed: 12/11/2022]
Abstract
The bone marrow landscape consists of specialized and stem/progenitor cells, which coordinate important tissue-related and systemic physiological features. Within the marrow cavity, stem/progenitor and differentiated hematopoietic and skeletal cells congregate into dynamic functional assemblies throughout specific anatomical regions, termed niches. There is a need for better understanding of the bone marrow microareas, through exploration of the intramural physical and molecular interactions of the distinctive cell populations. The elective liaisons established among the mesenchymal/stromal stem cell and hematopoietic stem cell lineage trees play a key role in orchestrating the stem/mature cell behavior and customized hierarchies within bone marrow cell populations. Recently, the autophagic apparatus has been discovered to be an important feature of bone marrow homeostasis. Autophagy-related factors involved in the labyrinthic and highly dynamic bone marrow workshop redesign the niche framework by coordinating the operational schedule of pluripotent stem and mature cells. The following report summarizes the most recent breakthroughs in our understanding of the intramural relationships between bone marrow cells and key autophagic mediators. Doubtless, the consideration of the autophagy-related and unrelated functions of main players, such as p62, Atg7, Atg5, and Beclin-1 remains a compelling task to thoroughly understand the complex relations between the heterogenic cell types that populate bone marrow.
Collapse
Affiliation(s)
- Dimitrios Agas
- School of Biosciences and Veterinary Medicine, University of Camerino, Camerino, Macerata, Italy
| | - Maria Giovanna Sabbieti
- School of Biosciences and Veterinary Medicine, University of Camerino, Camerino, Macerata, Italy
| |
Collapse
|
30
|
Ridzuan N, Zakaria N, Widera D, Sheard J, Morimoto M, Kiyokawa H, Mohd Isa SA, Chatar Singh GK, Then KY, Ooi GC, Yahaya BH. Human umbilical cord mesenchymal stem cell-derived extracellular vesicles ameliorate airway inflammation in a rat model of chronic obstructive pulmonary disease (COPD). Stem Cell Res Ther 2021; 12:54. [PMID: 33436065 PMCID: PMC7805108 DOI: 10.1186/s13287-020-02088-6] [Citation(s) in RCA: 49] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Accepted: 12/08/2020] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Chronic obstructive pulmonary disease (COPD) is an incurable and debilitating chronic disease characterized by progressive airflow limitation associated with abnormal levels of tissue inflammation. Therefore, stem cell-based approaches to tackle the condition are currently a focus of regenerative therapies for COPD. Extracellular vesicles (EVs) released by all cell types are crucially involved in paracrine, extracellular communication. Recent advances in the field suggest that stem cell-derived EVs possess a therapeutic potential which is comparable to the cells of their origin. METHODS In this study, we assessed the potential anti-inflammatory effects of human umbilical cord mesenchymal stem cell (hUC-MSC)-derived EVs in a rat model of COPD. EVs were isolated from hUC-MSCs and characterized by the transmission electron microscope, western blotting, and nanoparticle tracking analysis. As a model of COPD, male Sprague-Dawley rats were exposed to cigarette smoke for up to 12 weeks, followed by transplantation of hUC-MSCs or application of hUC-MSC-derived EVs. Lung tissue was subjected to histological analysis using haematoxylin and eosin staining, Alcian blue-periodic acid-Schiff (AB-PAS) staining, and immunofluorescence staining. Gene expression in the lung tissue was assessed using microarray analysis. Statistical analyses were performed using GraphPad Prism 7 version 7.0 (GraphPad Software, USA). Student's t test was used to compare between 2 groups. Comparison among more than 2 groups was done using one-way analysis of variance (ANOVA). Data presented as median ± standard deviation (SD). RESULTS Both transplantation of hUC-MSCs and application of EVs resulted in a reduction of peribronchial and perivascular inflammation, alveolar septal thickening associated with mononuclear inflammation, and a decreased number of goblet cells. Moreover, hUC-MSCs and EVs ameliorated the loss of alveolar septa in the emphysematous lung of COPD rats and reduced the levels of NF-κB subunit p65 in the tissue. Subsequent microarray analysis revealed that both hUC-MSCs and EVs significantly regulate multiple pathways known to be associated with COPD. CONCLUSIONS In conclusion, we show that hUC-MSC-derived EVs effectively ameliorate by COPD-induced inflammation. Thus, EVs could serve as a new cell-free-based therapy for the treatment of COPD.
Collapse
Affiliation(s)
- Noridzzaida Ridzuan
- Lung Stem Cell and Gene Therapy Group, Regenerative Medicine Cluster, Advanced Medical and Dental Institute (IPPT), SAINS@BERTAM, Universiti Sains Malaysia, 13200, Bertam, Penang, Malaysia
| | - Norashikin Zakaria
- Lung Stem Cell and Gene Therapy Group, Regenerative Medicine Cluster, Advanced Medical and Dental Institute (IPPT), SAINS@BERTAM, Universiti Sains Malaysia, 13200, Bertam, Penang, Malaysia
| | - Darius Widera
- Stem Cell Biology and Regenerative Medicine, School of Pharmacy, University of Reading, Reading, RG6 6AP, UK
| | - Jonathan Sheard
- Stem Cell Biology and Regenerative Medicine, School of Pharmacy, University of Reading, Reading, RG6 6AP, UK
| | - Mitsuru Morimoto
- RIKEN Centre for Developmental Biology, 2-2-3 Minatojima-minamimachi, Chuou-ku, Kobe, 650-0047, Japan
| | - Hirofumi Kiyokawa
- RIKEN Centre for Developmental Biology, 2-2-3 Minatojima-minamimachi, Chuou-ku, Kobe, 650-0047, Japan
| | - Seoparjoo Azmel Mohd Isa
- Department of Pathology, School of Medical Sciences, Health Campus, Universiti Sains Malaysia, 16150, Kubang Kerian, Malaysia
| | - Gurjeet Kaur Chatar Singh
- Institute for Research in Molecular Medicine (INFORMM), Universiti Sains Malaysia, 11800, Gelugor, Penang, Malaysia
| | - Kong-Yong Then
- CryoCord Sdn Bhd, Bio-X Centre, 63000, Cyberjaya, Selangor, Malaysia
| | - Ghee-Chien Ooi
- CryoCord Sdn Bhd, Bio-X Centre, 63000, Cyberjaya, Selangor, Malaysia
| | - Badrul Hisham Yahaya
- Lung Stem Cell and Gene Therapy Group, Regenerative Medicine Cluster, Advanced Medical and Dental Institute (IPPT), SAINS@BERTAM, Universiti Sains Malaysia, 13200, Bertam, Penang, Malaysia.
- USM-RIKEN International Centre for Ageing Science (URICAS), Universiti Sains Malaysia, 11800, Gelugor, Penang, Malaysia.
| |
Collapse
|
31
|
Deng W, Li Y, Ren Z, He Q, Jia Y, Liu Y, Zhang W, Gan X, Liu D. Thioredoxin-interacting protein: a critical link between autophagy disorders and pancreatic β-cell dysfunction. Endocrine 2020; 70:526-537. [PMID: 32892310 DOI: 10.1007/s12020-020-02471-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/28/2019] [Accepted: 08/23/2020] [Indexed: 12/18/2022]
Abstract
Thioredoxin-interacting protein (TXNIP) is a known important regulatory protein of islet β-cell biology and function, but the detailed mechanism is not clear. Autophagy plays a pivotal role in maintaining cellular homoeostasis. This study aimed to elucidate the influence of TXNIP on the autophagy of β-cell. In this study, C57BL/6 mice and TXNIP-/- mice were fed with a standard diet (SD) or a high-fat and high-sugar diet (HFSD), and then we analysed biochemical and autophagy related indexes in the mice. We infected MIN6 cells with LV-TXNIP and siRNA TXNIP, then the cells were treated with free fatty acid (FFA), autophagic activator rapamycin (RAP), inhibitors of autophagy chloroquine (CQ) and bafilomycin A1(BAF), finally, we examined the changes of autophagy in MIN6 cells. The results showed that HFSD led to β-cell dysfunction and autophagy dysregulation, which was improved by TXNIP knockout in mice. In vitro experiments, TXNIP gene silencing enhanced LC3B-I conversion to LC3B-II, reduced the protein level of P62, decreased autophagosome accumulation induced by FFA treatment, increased the glucose-stimulated insulin secretion (GSIS) and autophagic flux inhibited by treatment with CQ. TXNIP overexpression induced upregulation of LC3B-I, LC3B-II and P62, accentuating the increase in autophagy and organelle destruction induced by FFA, and exacerbated the effect of BAF on the accumulation of autophagy proteins. Increasing TXNIP levels reduced GSIS, which was reversed by treatment with RAP. In summary, our study suggested that TXNIP is a critical link between autophagy disorders and pancreatic β-cell dysfunction.
Collapse
Affiliation(s)
- Wenzhen Deng
- Department of Endocrinology, The Second Affiliated Hospital of Chongqing Medical University, 400010, Chongqing, China
- Department of Endocrinology, Qianjiang Central Hospital of Chongqing, 409000, Chongqing, China
| | - Yang Li
- Department of Endocrinology, The Second Affiliated Hospital of Chongqing Medical University, 400010, Chongqing, China
| | - Ziyu Ren
- Department of Endocrinology, The Second Affiliated Hospital of Chongqing Medical University, 400010, Chongqing, China
| | - Qirui He
- Department of Endocrinology, The Second Affiliated Hospital of Chongqing Medical University, 400010, Chongqing, China
| | - Yanjun Jia
- Department of Endocrinology, The Second Affiliated Hospital of Chongqing Medical University, 400010, Chongqing, China
| | - Yongjian Liu
- Department of Endocrinology, The Second Affiliated Hospital of Chongqing Medical University, 400010, Chongqing, China
| | - Weiwei Zhang
- Department of Endocrinology, The Second Affiliated Hospital of Chongqing Medical University, 400010, Chongqing, China
| | - Xianfeng Gan
- Department of Hepatobiliary Surgery, Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, 610072, Chengdu, China.
| | - Dongfang Liu
- Department of Endocrinology, The Second Affiliated Hospital of Chongqing Medical University, 400010, Chongqing, China.
| |
Collapse
|
32
|
Zhang YL, Duan XD, Feng L, Jiang WD, Wu P, Liu Y, Kuang SY, Tang L, Zhou XQ. Soybean glycinin impaired immune function and caused inflammation associated with PKC-ζ/NF-κb and mTORC1 signaling in the intestine of juvenile grass carp (Ctenopharyngodon idella). FISH & SHELLFISH IMMUNOLOGY 2020; 106:393-403. [PMID: 32800984 DOI: 10.1016/j.fsi.2020.08.008] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Revised: 08/02/2020] [Accepted: 08/04/2020] [Indexed: 06/11/2023]
Abstract
Glycinin is a major protein and antinutritional factor of soybean. However, how dietary glycinin affect intestinal immune function of fish were largely unknown. In this study, we used juvenile grass carp as a model to investigate the impacts of glycinin on intestinal immune function of fish and involved mechanisms. We set three treatments including control, glycinin and glycinin + glutamine in this trial. For immune components, results revealed that compared with control group, glycinin group had lower acid phosphatase activities in the foregut, midgut and hindgut, lower C3 and C4 content, and lower mRNA abundances of IgM, IgZ, hepcidin, LEAP-2A, LEAP-2B and β-defensin-1 in the midgut and hindgut rather than foregut of grass carp. For pro-inflammatory cytokines and relevant signaling, glycinin elevated mRNA abundances of IL-1β, IL-8, IL-12p35, IL-12p40 and IL-17D in the midgut and IL-1β, IFN-γ2, IL-6, IL-8, IL-12p35, IL-12p40 and IL-17D in the hindgut, and increased protein abundances of PKC-ζ and nuclear NF-κB p65 in the midgut and hindgut in comparison to control. For anti-inflammatory cytokines and relevant signaling, glycinin reduced mRNA abundances of TGF-β1, TGF-β2, IL-4/13B (rather than IL-4/13A), IL-10 and IL-11 in the midgut and hindgut, and reduced p-mTOR (Ser 2448), p-S6K1 (Thr 389) and p-4EBP1 (Thr 37/46) protein abundances in the midgut and hindgut rather than foregut. Co-administration of glutamine with glycinin could partially enhance intestinal function and reduce intestinal inflammation compared with glycinin treatment. Concluded, glycinin decreased intestinal immune components and caused intestinal inflammation associated with PKC-ζ/NF-κB and mTORC1 signaling.
Collapse
Affiliation(s)
- Ya-Lin Zhang
- Animal Nutrition Institute, Sichuan Agricultural University, Sichuan, Chengdu, 611130, China
| | - Xu-Dong Duan
- Animal Nutrition Institute, Sichuan Agricultural University, Sichuan, Chengdu, 611130, China
| | - Lin Feng
- Animal Nutrition Institute, Sichuan Agricultural University, Sichuan, Chengdu, 611130, China; Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Sichuan, Chengdu, 611130, China; Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Sichuan Agricultural University, Sichuan, Chengdu, 611130, China
| | - Wei-Dan Jiang
- Animal Nutrition Institute, Sichuan Agricultural University, Sichuan, Chengdu, 611130, China; Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Sichuan, Chengdu, 611130, China; Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Sichuan Agricultural University, Sichuan, Chengdu, 611130, China
| | - Pei Wu
- Animal Nutrition Institute, Sichuan Agricultural University, Sichuan, Chengdu, 611130, China; Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Sichuan, Chengdu, 611130, China; Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Sichuan Agricultural University, Sichuan, Chengdu, 611130, China
| | - Yang Liu
- Animal Nutrition Institute, Sichuan Agricultural University, Sichuan, Chengdu, 611130, China; Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Sichuan, Chengdu, 611130, China; Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Sichuan Agricultural University, Sichuan, Chengdu, 611130, China
| | - Sheng-Yao Kuang
- Animal Nutrition Institute, Sichuan Academy of Animal Science, Chengdu, 610066, China
| | - Ling Tang
- Animal Nutrition Institute, Sichuan Academy of Animal Science, Chengdu, 610066, China
| | - Xiao-Qiu Zhou
- Animal Nutrition Institute, Sichuan Agricultural University, Sichuan, Chengdu, 611130, China; Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Sichuan, Chengdu, 611130, China; Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Sichuan Agricultural University, Sichuan, Chengdu, 611130, China.
| |
Collapse
|
33
|
Atobe M, Serizawa T, Yamakawa N, Takaba K, Nagano Y, Yamaura T, Tanaka E, Tazumi A, Bito S, Ishiguro M, Kawanishi M. Discovery of 4,6- and 5,7-Disubstituted Isoquinoline Derivatives as a Novel Class of Protein Kinase C ζ Inhibitors with Fragment-Merging Strategy. J Med Chem 2020; 63:7143-7162. [DOI: 10.1021/acs.jmedchem.0c00449] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Masakazu Atobe
- Laboratory for Medicinal Chemistry, Pharmaceutical Research Center, Asahi Kasei Pharma Corporation, 632-1 Mifuku, Izunokuni, Shizuoka 410-2321, Japan
| | - Takayuki Serizawa
- Laboratory for Medicinal Chemistry, Pharmaceutical Research Center, Asahi Kasei Pharma Corporation, 632-1 Mifuku, Izunokuni, Shizuoka 410-2321, Japan
| | - Natsumi Yamakawa
- Laboratory for Medicinal Chemistry, Pharmaceutical Research Center, Asahi Kasei Pharma Corporation, 632-1 Mifuku, Izunokuni, Shizuoka 410-2321, Japan
| | - Kenichiro Takaba
- Laboratory for Medicinal Chemistry, Pharmaceutical Research Center, Asahi Kasei Pharma Corporation, 632-1 Mifuku, Izunokuni, Shizuoka 410-2321, Japan
| | - Yukiko Nagano
- Research Coordination, Pharmaceutical Research Center, Asahi Kasei Pharma Corporation, 632-1 Mifuku, Izunokuni, Shizuoka 410-2321, Japan
| | - Toshiaki Yamaura
- Laboratory for Drug Discovery, Pharmaceutical Research Center, Asahi Kasei Pharma Corporation, 632-1 Mifuku, Izunokuni, Shizuoka 410-2321, Japan
| | - Eiichi Tanaka
- Laboratory for Drug Discovery, Pharmaceutical Research Center, Asahi Kasei Pharma Corporation, 632-1 Mifuku, Izunokuni, Shizuoka 410-2321, Japan
| | - Atsutoshi Tazumi
- Laboratory for Pharmacology, Pharmaceutical Research Center, Asahi Kasei Pharma Corporation, 632-1 Mifuku, Izunokuni, Shizuoka 410-2321, Japan
| | - Shino Bito
- Laboratory for Safety Assessment & ADME, Pharmaceutical Research Center, Asahi Kasei Pharma Corporation, 632-1 Mifuku, Izunokuni Shizuoka 410-2321, Japan
| | - Masashi Ishiguro
- Laboratory for Safety Assessment & ADME, Pharmaceutical Research Center, Asahi Kasei Pharma Corporation, 632-1 Mifuku, Izunokuni Shizuoka 410-2321, Japan
| | - Masashi Kawanishi
- Laboratory for Medicinal Chemistry, Pharmaceutical Research Center, Asahi Kasei Pharma Corporation, 632-1 Mifuku, Izunokuni, Shizuoka 410-2321, Japan
| |
Collapse
|
34
|
Moret-Tatay I, Cerrillo E, Sáez-González E, Hervás D, Iborra M, Sandoval J, Busó E, Tortosa L, Nos P, Beltrán B. Identification of Epigenetic Methylation Signatures With Clinical Value in Crohn's Disease. Clin Transl Gastroenterol 2019; 10:e00083. [PMID: 31663908 PMCID: PMC6919449 DOI: 10.14309/ctg.0000000000000083] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Accepted: 08/16/2019] [Indexed: 02/07/2023] Open
Abstract
INTRODUCTION DNA methylation is an epigenetic mechanism that regulates gene expression and represents an important link between genotype, environment, and disease. It is a reversible and inheritable mechanism that could offer treatment targets. We aimed to assess the methylation changes on specific genes previously associated with Crohn's disease (CD) and to study their possible associations with the pathology. METHODS We included 103 participants and grouped them into 2 cohorts (a first [n = 31] and a second validation [n = 72] cohort), with active CD (aCD) and inactive CD (iCD) and healthy participants (CTR). DNA was obtained from the peripheral blood and analyzed by the Agena platform. The selected genes were catalase (CAT), α-defensin 5 (DEFA5), FasR, FasL, tumor necrosis factor (TNF), TNFRSF1A, TNFRSF1B, PPA2, ABCB1, NOD2, PPARγ, and PKCζ. We used the elastic net algorithm and R software. RESULTS We studied 240 CpGs. Sixteen CpGs showed differential methylation profiles among aCD, iCD, and CTR. We selected for validation those with the greatest differences: DEFA5 CpG_11; CpG_13; CAT CpG_31.32; TNF CpG_4, CpG_12; and ABCB1 CpG_21. Our results validated the genes DEFA5 (methylation gain) and TNF (methylation loss) with P values < 0.001. In both cases, the methylation level was maintained and did not change with CD activity (aCD vs iCD). The subanalysis comparison between aCD and iCD showed significant differential methylation profiles in other CpGs: TNF, FAS, ABCB1, CAT, and TNFRS1BF genes. DISCUSSION The methylation status of DEFA5 and TNF genes provides a signature biomarker that characterizes patients with CD and supports the possible implication of the environment and the immune system in CD pathogenesis.
Collapse
Affiliation(s)
- Inés Moret-Tatay
- Inflammatory Bowel Disease Research Group, Health Research Institute La Fe (IIS La Fe), Valencia, Spain
- Biomedical Research Centre, Hepatic and Digestive Diseases Network (Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas [CIBEREHD]), Madrid, Spain
| | - Elena Cerrillo
- Inflammatory Bowel Disease Research Group, Health Research Institute La Fe (IIS La Fe), Valencia, Spain
- Department of Gastroenterology, Hospital La Fe, Valencia, Spain
| | - Esteban Sáez-González
- Inflammatory Bowel Disease Research Group, Health Research Institute La Fe (IIS La Fe), Valencia, Spain
- Department of Gastroenterology, Hospital La Fe, Valencia, Spain
| | - David Hervás
- Department of Gastroenterology, Hospital La Fe, Valencia, Spain
| | - Marisa Iborra
- Inflammatory Bowel Disease Research Group, Health Research Institute La Fe (IIS La Fe), Valencia, Spain
- Biomedical Research Centre, Hepatic and Digestive Diseases Network (Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas [CIBEREHD]), Madrid, Spain
- Department of Gastroenterology, Hospital La Fe, Valencia, Spain
| | - Juan Sandoval
- Biomarkers and Precision Medicine Unit, Health Research Institute La Fe (IIS La Fe), Valencia, Spain
| | - Enrique Busó
- Central Unit for Research in Medicine (UCIM),University of Valencia, Valencia, Spain
| | - Luis Tortosa
- Inflammatory Bowel Disease Research Group, Health Research Institute La Fe (IIS La Fe), Valencia, Spain
- Biomedical Research Centre, Hepatic and Digestive Diseases Network (Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas [CIBEREHD]), Madrid, Spain
| | - Pilar Nos
- Inflammatory Bowel Disease Research Group, Health Research Institute La Fe (IIS La Fe), Valencia, Spain
- Biomedical Research Centre, Hepatic and Digestive Diseases Network (Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas [CIBEREHD]), Madrid, Spain
- Department of Gastroenterology, Hospital La Fe, Valencia, Spain
| | - Belén Beltrán
- Inflammatory Bowel Disease Research Group, Health Research Institute La Fe (IIS La Fe), Valencia, Spain
- Biomedical Research Centre, Hepatic and Digestive Diseases Network (Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas [CIBEREHD]), Madrid, Spain
- Department of Gastroenterology, Hospital La Fe, Valencia, Spain
| |
Collapse
|
35
|
Reina-Campos M, Diaz-Meco MT, Moscat J. The Dual Roles of the Atypical Protein Kinase Cs in Cancer. Cancer Cell 2019; 36:218-235. [PMID: 31474570 PMCID: PMC6751000 DOI: 10.1016/j.ccell.2019.07.010] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Revised: 06/24/2019] [Accepted: 07/30/2019] [Indexed: 02/08/2023]
Abstract
Atypical protein kinase C (aPKC) isozymes, PKCλ/ι and PKCζ, are now considered fundamental regulators of tumorigenesis. However, the specific separation of functions that determine their different roles in cancer is still being unraveled. Both aPKCs have pleiotropic context-dependent functions that can translate into tumor-promoter or -suppressive functions. Here, we review early and more recent literature to discuss how the different tumor types, and their microenvironments, might account for the selective signaling of each aPKC isotype. This is of clinical relevance because a better understanding of the roles of these kinases is essential for the design of new anti-cancer treatments.
Collapse
Affiliation(s)
- Miguel Reina-Campos
- Cancer Metabolism and Signaling Networks Program, Sanford Burnham Prebys Medical Discovery Institute, 10901 N. Torrey Pines Road, La Jolla, CA 92037, USA
| | - Maria T Diaz-Meco
- Cancer Metabolism and Signaling Networks Program, Sanford Burnham Prebys Medical Discovery Institute, 10901 N. Torrey Pines Road, La Jolla, CA 92037, USA
| | - Jorge Moscat
- Cancer Metabolism and Signaling Networks Program, Sanford Burnham Prebys Medical Discovery Institute, 10901 N. Torrey Pines Road, La Jolla, CA 92037, USA.
| |
Collapse
|
36
|
Bando H, Pradipta A, Iwanaga S, Okamoto T, Okuzaki D, Tanaka S, Vega-Rodríguez J, Lee Y, Ma JS, Sakaguchi N, Soga A, Fukumoto S, Sasai M, Matsuura Y, Yuda M, Jacobs-Lorena M, Yamamoto M. CXCR4 regulates Plasmodium development in mouse and human hepatocytes. J Exp Med 2019; 216:1733-1748. [PMID: 31189656 PMCID: PMC6683982 DOI: 10.1084/jem.20182227] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Revised: 03/20/2019] [Accepted: 05/08/2019] [Indexed: 11/04/2022] Open
Abstract
In the livers of Plasmodium-infected mammalian hosts, the rod-shaped mosquito-stage parasites develop into spherical exoerythrocytic forms, subsequently forming the erythrocyte-stage parasites and eventually causing malaria. Here, Bando et al. identify CXCR4 as a host factor for Plasmodium liver-stage development. The liver stage of the etiological agent of malaria, Plasmodium, is obligatory for successful infection of its various mammalian hosts. Differentiation of the rod-shaped sporozoites of Plasmodium into spherical exoerythrocytic forms (EEFs) via bulbous expansion is essential for parasite development in the liver. However, little is known about the host factors regulating the morphological transformation of Plasmodium sporozoites in this organ. Here, we show that sporozoite differentiation into EEFs in the liver involves protein kinase C ζ–mediated NF-κB activation, which robustly induces the expression of C-X-C chemokine receptor type 4 (CXCR4) in hepatocytes and subsequently elevates intracellular Ca2+ levels, thereby triggering sporozoite transformation into EEFs. Blocking CXCR4 expression by genetic or pharmacological intervention profoundly inhibited the liver-stage development of the Plasmodium berghei rodent malaria parasite and the human Plasmodium falciparum parasite. Collectively, our experiments show that CXCR4 is a key host factor for Plasmodium development in the liver, and CXCR4 warrants further investigation for malaria prophylaxis.
Collapse
Affiliation(s)
- Hironori Bando
- Department of Immunoparasitology, Osaka University, Osaka, Japan
| | - Ariel Pradipta
- Department of Immunoparasitology, Osaka University, Osaka, Japan
| | - Shiroh Iwanaga
- Department of Environmental Parasitology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan.,Department of Medical Zoology, Mie University School of Medicine, Mie, Japan
| | - Toru Okamoto
- Department of Molecular Virology, Research Institute for Microbial Diseases, Osaka University, Osaka, Japan
| | - Daisuke Okuzaki
- Genome Information Research Center, Osaka University, Osaka, Japan
| | - Shun Tanaka
- Department of Immunoparasitology, Osaka University, Osaka, Japan.,Laboratory of Immunoparasitology, World Premier International Immunology Frontier Research Center, Osaka University, Osaka, Japan
| | - Joel Vega-Rodríguez
- Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Johns Hopkins Malaria Research Institute, Baltimore, MD
| | - Youngae Lee
- Laboratory of Immunoparasitology, World Premier International Immunology Frontier Research Center, Osaka University, Osaka, Japan
| | - Ji Su Ma
- Department of Immunoparasitology, Osaka University, Osaka, Japan.,Laboratory of Immunoparasitology, World Premier International Immunology Frontier Research Center, Osaka University, Osaka, Japan
| | - Naoya Sakaguchi
- Department of Immunoparasitology, Osaka University, Osaka, Japan.,Laboratory of Immunoparasitology, World Premier International Immunology Frontier Research Center, Osaka University, Osaka, Japan
| | - Akira Soga
- National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Obihiro, Japan
| | - Shinya Fukumoto
- National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Obihiro, Japan
| | - Miwa Sasai
- Department of Immunoparasitology, Osaka University, Osaka, Japan.,Laboratory of Immunoparasitology, World Premier International Immunology Frontier Research Center, Osaka University, Osaka, Japan
| | - Yoshiharu Matsuura
- Department of Molecular Virology, Research Institute for Microbial Diseases, Osaka University, Osaka, Japan
| | - Masao Yuda
- Department of Medical Zoology, Mie University School of Medicine, Mie, Japan
| | - Marcelo Jacobs-Lorena
- Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Johns Hopkins Malaria Research Institute, Baltimore, MD
| | - Masahiro Yamamoto
- Department of Immunoparasitology, Osaka University, Osaka, Japan .,Laboratory of Immunoparasitology, World Premier International Immunology Frontier Research Center, Osaka University, Osaka, Japan
| |
Collapse
|
37
|
Čebatariūnienė A, Kriaučiūnaitė K, Prunskaitė J, Tunaitis V, Pivoriūnas A. Extracellular Vesicles Suppress Basal and Lipopolysaccharide-Induced NFκB Activity in Human Periodontal Ligament Stem Cells. Stem Cells Dev 2019; 28:1037-1049. [PMID: 31017040 DOI: 10.1089/scd.2019.0021] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Periodontitis is an infectious disease characterized by chronic inflammation and progressive destruction of periodontal tissues. Chronic inflammatory environment may affect immunomodulatory function of periodontal ligament stem cells (PDLSCs) and promote shift toward proinflammatory phenotype contributing to propagation of periodontitis. Therefore, suppression of inflammatory response in PDLSCs represents a novel therapeutic approach. Extracellular vesicles (EVs) have been shown to display anti-inflammatory and immunosuppressive actions in different tissues and could represent a potent therapeutic tools against chronic inflammation during periodontitis. In the present study, we investigated the effects of EVs on the basal and lipopolysaccharide (LPS)-induced activity of NFκB signaling pathway in PDLSCs. We also examined the impact of EVs on the osteogenic differentiation and expression of osteogenesis-related genes. EVs were purified by differential ultracentrifugation from PDLSCs grown on gelatin-coated alginate microcarriers in a bioreactor. NFκB reporter assays demonstrated that EVs permanently suppressed basal and LPS-induced activity of NFκB in PDLSCs. Combined treatment with EVs and anti-TLR4 antibody (Ab) resulted in attenuation of the inhibitory effect on the NFκB activity, suggesting a possible interference through a competition for TLR4 signaling pathway. EVs also increased phosphorylation of Akt and its downstream target GSK3β (Ser 9) indicating that PI3K/Akt signaling pathway may act as suppressor of NFκB activity. LPS stimulated osteogenic mineralization of PDLSCs. Unexpectedly, anti-TLR4 blocking Ab per se significantly decreased osteogenic mineralization of PDLSCs. EVs did not affect osteogenic mineralization, but partially suppressed inhibitory effect of anti-TLR4 blocking Ab. Gene expression studies revealed significant effects of EVs on osteogenesis-related genes and possible interference with TLR4 signaling in PDLSCs. In conclusion, our study demonstrates that EVs suppress basal and LPS-induced activity of NFκB signaling pathway in PDLSCs and could potentially be used for targeting of chronic inflammation during periodontitis.
Collapse
Affiliation(s)
- Alina Čebatariūnienė
- Department of Stem Cell Biology, State Research Institute Centre for Innovative Medicine, Vilnius, Lithuania
| | - Karolina Kriaučiūnaitė
- Department of Stem Cell Biology, State Research Institute Centre for Innovative Medicine, Vilnius, Lithuania
| | - Justina Prunskaitė
- Department of Stem Cell Biology, State Research Institute Centre for Innovative Medicine, Vilnius, Lithuania
| | - Virginijus Tunaitis
- Department of Stem Cell Biology, State Research Institute Centre for Innovative Medicine, Vilnius, Lithuania
| | - Augustas Pivoriūnas
- Department of Stem Cell Biology, State Research Institute Centre for Innovative Medicine, Vilnius, Lithuania
| |
Collapse
|
38
|
Ma S, Attarwala IY, Xie XQ. SQSTM1/p62: A Potential Target for Neurodegenerative Disease. ACS Chem Neurosci 2019; 10:2094-2114. [PMID: 30657305 DOI: 10.1021/acschemneuro.8b00516] [Citation(s) in RCA: 104] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Neurodegenerative diseases, characterized by a progressive loss of brain function, affect the lives of millions of individuals worldwide. The complexity of the brain poses a challenge for scientists trying to map the biochemical and physiological pathways to identify areas of pathological errors. Brain samples of patients with neurodegenerative diseases have been shown to contain large amounts of misfolded and abnormally aggregated proteins, resulting in dysfunction in certain brain centers. Removal of these abnormal molecules is essential in maintaining protein homeostasis and overall neuronal health. Macroautophagy is a major route by which cells achieve this. Administration of certain autophagy-enhancing compounds has been shown to provide therapeutic effects for individuals with neurodegenerative conditions. SQSTM1/p62 is a scaffold protein closely involved in the macroautophagy process. p62 functions to anchor the ubiquitinated proteins to the autophagosome membrane, promoting degradation of unwanted molecules. Modulators targeting p62 to induce autophagy and promote its protective pathways for aggregate protein clearance have high potential in the treatment of these conditions. Additionally, causal relationships have been found between errors in regulation of SQSTM1/p62 and the development of a variety of neurodegenerative disorders, including Alzheimer's, Parkinson's, Huntington's, amyotrophic lateral sclerosis, and frontotemporal lobar degeneration. Furthermore, SQSTM1/p62 also serves as a signaling hub for multiple pathways associated with neurodegeneration, providing a potential therapeutic target in the treatment of neurodegenerative diseases. However, rational design of a p62-oriented autophagy modulator that can balance the negative and positive functions of multiple domains in p62 requires further efforts in the exploration of the protein structure and pathological basis.
Collapse
Affiliation(s)
| | | | - Xiang-Qun Xie
- ID4Pharma LLC, Bridgeville, Pennsylvania 15017, United States
| |
Collapse
|
39
|
The Role of Tyrosine Phosphorylation of Protein Kinase C Delta in Infection and Inflammation. Int J Mol Sci 2019; 20:ijms20061498. [PMID: 30917487 PMCID: PMC6471617 DOI: 10.3390/ijms20061498] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Revised: 03/15/2019] [Accepted: 03/22/2019] [Indexed: 12/30/2022] Open
Abstract
Protein Kinase C (PKC) is a family composed of phospholipid-dependent serine/threonine kinases that are master regulators of inflammatory signaling. The activity of different PKCs is context-sensitive and these kinases can be positive or negative regulators of signaling pathways. The delta isoform (PKCδ) is a critical regulator of the inflammatory response in cancer, diabetes, ischemic heart disease, and neurodegenerative diseases. Recent studies implicate PKCδ as an important regulator of the inflammatory response in sepsis. PKCδ, unlike other members of the PKC family, is unique in its regulation by tyrosine phosphorylation, activation mechanisms, and multiple subcellular targets. Inhibition of PKCδ may offer a unique therapeutic approach in sepsis by targeting neutrophil-endothelial cell interactions. In this review, we will describe the overall structure and function of PKCs, with a focus on the specific phosphorylation sites of PKCδ that determine its critical role in cell signaling in inflammatory diseases such as sepsis. Current genetic and pharmacological tools, as well as in vivo models, that are used to examine the role of PKCδ in inflammation and sepsis are presented and the current state of emerging tools such as microfluidic assays in these studies is described.
Collapse
|
40
|
Khair DO, Bax HJ, Mele S, Crescioli S, Pellizzari G, Khiabany A, Nakamura M, Harris RJ, French E, Hoffmann RM, Williams IP, Cheung A, Thair B, Beales CT, Touizer E, Signell AW, Tasnova NL, Spicer JF, Josephs DH, Geh JL, MacKenzie Ross A, Healy C, Papa S, Lacy KE, Karagiannis SN. Combining Immune Checkpoint Inhibitors: Established and Emerging Targets and Strategies to Improve Outcomes in Melanoma. Front Immunol 2019; 10:453. [PMID: 30941125 PMCID: PMC6435047 DOI: 10.3389/fimmu.2019.00453] [Citation(s) in RCA: 163] [Impact Index Per Article: 32.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2018] [Accepted: 02/20/2019] [Indexed: 12/13/2022] Open
Abstract
The immune system employs several checkpoint pathways to regulate responses, maintain homeostasis and prevent self-reactivity and autoimmunity. Tumor cells can hijack these protective mechanisms to enable immune escape, cancer survival and proliferation. Blocking antibodies, designed to interfere with checkpoint molecules CTLA-4 and PD-1/PD-L1 and counteract these immune suppressive mechanisms, have shown significant success in promoting immune responses against cancer and can result in tumor regression in many patients. While inhibitors to CTLA-4 and the PD-1/PD-L1 axis are well-established for the clinical management of melanoma, many patients do not respond or develop resistance to these interventions. Concerted efforts have focused on combinations of approved therapies aiming to further augment positive outcomes and survival. While CTLA-4 and PD-1 are the most-extensively researched targets, results from pre-clinical studies and clinical trials indicate that novel agents, specific for checkpoints such as A2AR, LAG-3, IDO and others, may further contribute to the improvement of patient outcomes, most likely in combinations with anti-CTLA-4 or anti-PD-1 blockade. This review discusses the rationale for, and results to date of, the development of inhibitory immune checkpoint blockade combination therapies in melanoma. The clinical potential of new pipeline therapeutics, and possible future therapy design and directions that hold promise to significantly improve clinical prognosis compared with monotherapy, are discussed.
Collapse
Affiliation(s)
- Duaa O. Khair
- St. John's Institute of Dermatology, School of Basic & Medical Biosciences, Guy's Hospital, King's College London, London, United Kingdom
| | - Heather J. Bax
- St. John's Institute of Dermatology, School of Basic & Medical Biosciences, Guy's Hospital, King's College London, London, United Kingdom
- School of Cancer & Pharmaceutical Sciences, Guy's Hospital, King's College London, London, United Kingdom
| | - Silvia Mele
- St. John's Institute of Dermatology, School of Basic & Medical Biosciences, Guy's Hospital, King's College London, London, United Kingdom
| | - Silvia Crescioli
- St. John's Institute of Dermatology, School of Basic & Medical Biosciences, Guy's Hospital, King's College London, London, United Kingdom
| | - Giulia Pellizzari
- St. John's Institute of Dermatology, School of Basic & Medical Biosciences, Guy's Hospital, King's College London, London, United Kingdom
| | - Atousa Khiabany
- St. John's Institute of Dermatology, School of Basic & Medical Biosciences, Guy's Hospital, King's College London, London, United Kingdom
| | - Mano Nakamura
- St. John's Institute of Dermatology, School of Basic & Medical Biosciences, Guy's Hospital, King's College London, London, United Kingdom
| | | | - Elise French
- St. John's Institute of Dermatology, School of Basic & Medical Biosciences, Guy's Hospital, King's College London, London, United Kingdom
| | - Ricarda M. Hoffmann
- St. John's Institute of Dermatology, School of Basic & Medical Biosciences, Guy's Hospital, King's College London, London, United Kingdom
- School of Cancer & Pharmaceutical Sciences, Guy's Hospital, King's College London, London, United Kingdom
| | - Iwan P. Williams
- St. John's Institute of Dermatology, School of Basic & Medical Biosciences, Guy's Hospital, King's College London, London, United Kingdom
| | - Anthony Cheung
- St. John's Institute of Dermatology, School of Basic & Medical Biosciences, Guy's Hospital, King's College London, London, United Kingdom
- Breast Cancer Now Research Unit, School of Cancer & Pharmaceutical Sciences, Guy's Cancer Centre, King's College London, London, United Kingdom
| | - Benjamin Thair
- St. John's Institute of Dermatology, School of Basic & Medical Biosciences, Guy's Hospital, King's College London, London, United Kingdom
| | - Charlie T. Beales
- St. John's Institute of Dermatology, School of Basic & Medical Biosciences, Guy's Hospital, King's College London, London, United Kingdom
| | - Emma Touizer
- St. John's Institute of Dermatology, School of Basic & Medical Biosciences, Guy's Hospital, King's College London, London, United Kingdom
| | - Adrian W. Signell
- St. John's Institute of Dermatology, School of Basic & Medical Biosciences, Guy's Hospital, King's College London, London, United Kingdom
| | - Nahrin L. Tasnova
- St. John's Institute of Dermatology, School of Basic & Medical Biosciences, Guy's Hospital, King's College London, London, United Kingdom
| | - James F. Spicer
- School of Cancer & Pharmaceutical Sciences, Guy's Hospital, King's College London, London, United Kingdom
| | - Debra H. Josephs
- St. John's Institute of Dermatology, School of Basic & Medical Biosciences, Guy's Hospital, King's College London, London, United Kingdom
- School of Cancer & Pharmaceutical Sciences, Guy's Hospital, King's College London, London, United Kingdom
| | - Jenny L. Geh
- Department of Plastic Surgery at Guy's, King's, and St. Thomas' Hospitals, London, United Kingdom
| | - Alastair MacKenzie Ross
- Department of Plastic Surgery at Guy's, King's, and St. Thomas' Hospitals, London, United Kingdom
| | - Ciaran Healy
- Department of Plastic Surgery at Guy's, King's, and St. Thomas' Hospitals, London, United Kingdom
| | - Sophie Papa
- School of Cancer & Pharmaceutical Sciences, Guy's Hospital, King's College London, London, United Kingdom
| | - Katie E. Lacy
- St. John's Institute of Dermatology, School of Basic & Medical Biosciences, Guy's Hospital, King's College London, London, United Kingdom
| | - Sophia N. Karagiannis
- St. John's Institute of Dermatology, School of Basic & Medical Biosciences, Guy's Hospital, King's College London, London, United Kingdom
| |
Collapse
|
41
|
Reina-Campos M, Linares JF, Duran A, Cordes T, L'Hermitte A, Badur MG, Bhangoo MS, Thorson PK, Richards A, Rooslid T, Garcia-Olmo DC, Nam-Cha SY, Salinas-Sanchez AS, Eng K, Beltran H, Scott DA, Metallo CM, Moscat J, Diaz-Meco MT. Increased Serine and One-Carbon Pathway Metabolism by PKCλ/ι Deficiency Promotes Neuroendocrine Prostate Cancer. Cancer Cell 2019; 35:385-400.e9. [PMID: 30827887 PMCID: PMC6424636 DOI: 10.1016/j.ccell.2019.01.018] [Citation(s) in RCA: 131] [Impact Index Per Article: 26.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/25/2018] [Revised: 11/13/2018] [Accepted: 01/28/2019] [Indexed: 12/18/2022]
Abstract
Increasingly effective therapies targeting the androgen receptor have paradoxically promoted the incidence of neuroendocrine prostate cancer (NEPC), the most lethal subtype of castration-resistant prostate cancer (PCa), for which there is no effective therapy. Here we report that protein kinase C (PKC)λ/ι is downregulated in de novo and during therapy-induced NEPC, which results in the upregulation of serine biosynthesis through an mTORC1/ATF4-driven pathway. This metabolic reprogramming supports cell proliferation and increases intracellular S-adenosyl methionine (SAM) levels to feed epigenetic changes that favor the development of NEPC characteristics. Altogether, we have uncovered a metabolic vulnerability triggered by PKCλ/ι deficiency in NEPC, which offers potentially actionable targets to prevent therapy resistance in PCa.
Collapse
Affiliation(s)
- Miguel Reina-Campos
- Cancer Metabolism and Signaling Networks Program, Sanford Burnham Prebys Medical Discovery Institute, 10901 N. Torrey Pines Road, La Jolla, CA 92037, USA; Sanford Burnham Prebys Graduate School of Biomedical Sciences, 10901 N. Torrey Pines Road, La Jolla, CA 92037, USA
| | - Juan F Linares
- Cancer Metabolism and Signaling Networks Program, Sanford Burnham Prebys Medical Discovery Institute, 10901 N. Torrey Pines Road, La Jolla, CA 92037, USA
| | - Angeles Duran
- Cancer Metabolism and Signaling Networks Program, Sanford Burnham Prebys Medical Discovery Institute, 10901 N. Torrey Pines Road, La Jolla, CA 92037, USA
| | - Thekla Cordes
- Department of Bioengineering, University of California, San Diego, La Jolla, CA 92093, USA
| | - Antoine L'Hermitte
- Cancer Metabolism and Signaling Networks Program, Sanford Burnham Prebys Medical Discovery Institute, 10901 N. Torrey Pines Road, La Jolla, CA 92037, USA
| | - Mehmet G Badur
- Department of Bioengineering, University of California, San Diego, La Jolla, CA 92093, USA
| | - Munveer S Bhangoo
- Division of Hematology-Oncology Scripps Clinic, 10666 N. Torrey Pines Road, La Jolla, CA 92037, USA
| | - Phataraporn K Thorson
- Depatment of Pathology, Scripps Clinic Medical Group, 10666 Torrey Pines Road, La Jolla, CA 92037, USA
| | - Alicia Richards
- Proteomics Facility, Sanford Burnham Prebys Medical Discovery Institute, 10901 N. Torrey Pines Road, La Jolla, CA 92037, USA
| | - Tarmo Rooslid
- Conrad Prebys Center for Drug Discovery, Sanford Burnham Prebys Medical Discovery Institute, 10901 N. Torrey Pines Road, La Jolla, CA 92037, USA
| | - Dolores C Garcia-Olmo
- Centre de Recerca Experimental Biomèdica Aplicada (CREBA), IRBLLEIDA, 25138 Lleida, Spain
| | - Syongh Y Nam-Cha
- Pathology Department, Director of the Research Unit Biobank, University of Castilla-La Mancha, School of Medicine, 02006 Albacete, Spain
| | - Antonio S Salinas-Sanchez
- Urology Department, Research Unit, University Hospital Complex of Albacete, School of Medicine, 02006 Albacete, Spain
| | - Ken Eng
- Department of Computational Biomedicine, Weill Cornell Medicine, New York, NY 10065, USA
| | - Himisha Beltran
- Department of Medical Oncology, Dana Farber Cancer Institute, Harvard Medical School, Boston, MA 02215, USA
| | - David A Scott
- Cancer Metabolism Core, Sanford Burnham Prebys Medical Discovery Institute, 10901 N. Torrey Pines Road, La Jolla, CA 92037, USA
| | - Christian M Metallo
- Department of Bioengineering, University of California, San Diego, La Jolla, CA 92093, USA
| | - Jorge Moscat
- Cancer Metabolism and Signaling Networks Program, Sanford Burnham Prebys Medical Discovery Institute, 10901 N. Torrey Pines Road, La Jolla, CA 92037, USA
| | - Maria T Diaz-Meco
- Cancer Metabolism and Signaling Networks Program, Sanford Burnham Prebys Medical Discovery Institute, 10901 N. Torrey Pines Road, La Jolla, CA 92037, USA.
| |
Collapse
|
42
|
Jakšić D, Kocsubé S, Bencsik O, Kecskeméti A, Szekeres A, Jelić D, Kopjar N, Vágvölgyi C, Varga J, Šegvić Klarić M. Aflatoxin production and in vitro toxicity of Aspergilli section Flavi isolated from air samples collected from different environments. Mycotoxin Res 2019; 35:217-230. [PMID: 30877631 DOI: 10.1007/s12550-019-00345-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2018] [Revised: 02/04/2019] [Accepted: 02/22/2019] [Indexed: 01/09/2023]
Abstract
Aspergilli section Flavi, originally isolated from air samples collected from inhabited apartments (AP), unoccupied basements (BS), and processing facilities of a grain mill (GM), were analyzed for their potential to produce aflatoxin B1 (AFB1) on solid media. The isolates were further characterized with regard to their cytotoxic, genotoxic, and pro-inflammatory properties in vitro. Aspergilli were identified based on partial calmodulin (CaM) gene sequencing; the producing capacities of isolates were analyzed by HPLC/FLD and confirmed by genes in biosynthesis (aflR, norA, omtA). In the grain mill, the Aspergilli section Flavi (up to 1.3 × 106 cfu/m3) dominated by AFB1-producing Aspergillus flavus (71%, 4.5-5254 ng/ml) which showed a serious health risk for workers. Living environments were not relevant sources of exposure. After 24 h, AFB1 (1-100 μmol/l) reduced cell viability (MTT test) in both A549 cells and THP-1 macrophage-like cells without reaching IC50. In A549 cells, the extract of the AFB1-producing A. flavus significantly decreased cell viability but not below 50%. THP-1 macrophage-like cells were more sensitive to both extracts, but IC50 was obtained only for the AFB1-producing strain (0.37 mg/ml; AFB1 2.78 μmol/l). AFB1 (1 and 10 μmol/l) induced significant DNA damage (tail intensity, alkaline comet assay) in A549 cells in contrast to Aspergilli extracts. AFB1 elevated IL-6 and IL-8, while Aspergilli extracts increased IL-1β, TNF-α, and IL-17 release in THP-1 macrophages (ELISA). Chronic exposure to AFB1 and/or other metabolites in airborne A. flavus from occupational environments may stimulate epithelial damage of airways accompanied by lowered macrophage viability.
Collapse
Affiliation(s)
- Daniela Jakšić
- Department of Microbiology, Faculty of Pharmacy and Biochemistry, University of Zagreb, Schrottova 39, 10000, Zagreb, Croatia
| | - Sándor Kocsubé
- Department of Microbiology, Faculty of Science and Informatics, University of Szeged, H-6726, Szeged, Közép fasor 52, Hungary
| | - Ottó Bencsik
- Department of Microbiology, Faculty of Science and Informatics, University of Szeged, H-6726, Szeged, Közép fasor 52, Hungary
| | - Anita Kecskeméti
- Department of Microbiology, Faculty of Science and Informatics, University of Szeged, H-6726, Szeged, Közép fasor 52, Hungary
| | - András Szekeres
- Department of Microbiology, Faculty of Science and Informatics, University of Szeged, H-6726, Szeged, Közép fasor 52, Hungary
| | - Dubravko Jelić
- Fidelta Ltd., Prilaz baruna Filipovića 29, 10000, Zagreb, Croatia
| | - Nevenka Kopjar
- Mutagenesis Unit, Institute for Medical Research and Occupational Health, Ksaverska cesta 2, 10000, Zagreb, Croatia
| | - Csaba Vágvölgyi
- Department of Microbiology, Faculty of Science and Informatics, University of Szeged, H-6726, Szeged, Közép fasor 52, Hungary
| | - János Varga
- Department of Microbiology, Faculty of Science and Informatics, University of Szeged, H-6726, Szeged, Közép fasor 52, Hungary
| | - Maja Šegvić Klarić
- Department of Microbiology, Faculty of Pharmacy and Biochemistry, University of Zagreb, Schrottova 39, 10000, Zagreb, Croatia.
| |
Collapse
|
43
|
Jung HY, Fattet L, Tsai JH, Kajimoto T, Chang Q, Newton AC, Yang J. Apical-basal polarity inhibits epithelial-mesenchymal transition and tumour metastasis by PAR-complex-mediated SNAI1 degradation. Nat Cell Biol 2019; 21:359-371. [PMID: 30804505 PMCID: PMC6546105 DOI: 10.1038/s41556-019-0291-8] [Citation(s) in RCA: 86] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2018] [Accepted: 01/21/2019] [Indexed: 01/06/2023]
Abstract
Loss of apical-basal polarity and activation of epithelial-mesenchymal transition (EMT) both contribute to carcinoma progression and metastasis. Here, we report that apical-basal polarity inhibits EMT to suppress metastatic dissemination. Using mouse and human epithelial three-dimensional organoid cultures, we show that the PAR-atypical protein kinase C (aPKC) polarity complex inhibits EMT and invasion by promoting degradation of the SNAIL family protein SNAI1. Under intact apical-basal polarity, aPKC kinases phosphorylate S249 of SNAI1, which leads to protein degradation. Loss of apical-basal polarity prevents aPKC-mediated SNAI1 phosphorylation and stabilizes the SNAI1 protein to promote EMT and invasion. In human breast tumour xenografts, inhibition of the PAR-complex-mediated SNAI1 degradation mechanism promotes tumour invasion and metastasis. Analyses of human breast tissue samples reveal negative correlations between PAR3 and SNAI1 protein levels. Our results demonstrate that apical-basal polarity functions as a critical checkpoint of EMT to precisely control epithelial-mesenchymal plasticity during tumour metastasis.
Collapse
Affiliation(s)
- Hae-Yun Jung
- Department of Pharmacology, Moores Cancer Center, University of California, San Diego, La Jolla, CA, USA
| | - Laurent Fattet
- Department of Pharmacology, Moores Cancer Center, University of California, San Diego, La Jolla, CA, USA
| | - Jeff H Tsai
- Department of Pharmacology, Moores Cancer Center, University of California, San Diego, La Jolla, CA, USA
| | - Taketoshi Kajimoto
- Department of Pharmacology, Moores Cancer Center, University of California, San Diego, La Jolla, CA, USA
| | - Qiang Chang
- Department of Medical Genetics and Department of Neurology, Waisman Center, University of Wisconsin-Madison, Madison, WI, USA
| | - Alexandra C Newton
- Department of Pharmacology, Moores Cancer Center, University of California, San Diego, La Jolla, CA, USA
| | - Jing Yang
- Department of Pharmacology, Moores Cancer Center, University of California, San Diego, La Jolla, CA, USA.
- Department of Pediatrics, School of Medicine, University of California San Diego, La Jolla, CA, USA.
| |
Collapse
|
44
|
Kajimoto T, Caliman AD, Tobias IS, Okada T, Pilo CA, Van AAN, Andrew McCammon J, Nakamura SI, Newton AC. Activation of atypical protein kinase C by sphingosine 1-phosphate revealed by an aPKC-specific activity reporter. Sci Signal 2019; 12:eaat6662. [PMID: 30600259 PMCID: PMC6657501 DOI: 10.1126/scisignal.aat6662] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Atypical protein kinase C (aPKC) isozymes are unique in the PKC superfamily in that they are not regulated by the lipid second messenger diacylglycerol, which has led to speculation about whether a different second messenger acutely controls their function. Here, using a genetically encoded reporter that we designed, aPKC-specific C kinase activity reporter (aCKAR), we found that the lipid mediator sphingosine 1-phosphate (S1P) promoted the cellular activity of aPKC. Intracellular S1P directly bound to the purified kinase domain of aPKC and relieved autoinhibitory constraints, thereby activating the kinase. In silico studies identified potential binding sites on the kinase domain, one of which was validated biochemically. In HeLa cells, S1P-dependent activation of aPKC suppressed apoptosis. Together, our findings identify a previously undescribed molecular mechanism of aPKC regulation, a molecular target for S1P in cell survival regulation, and a tool to further explore the biochemical and biological functions of aPKC.
Collapse
Affiliation(s)
- Taketoshi Kajimoto
- Department of Pharmacology, University of California at San Diego, La Jolla, CA 92037, USA.
- Division of Biochemistry, Department of Biochemistry and Molecular Biology, Graduate School of Medicine, Kobe University, Kobe 650-0017, Japan
| | - Alisha D Caliman
- Department of Pharmacology, University of California at San Diego, La Jolla, CA 92037, USA
| | - Irene S Tobias
- Department of Pharmacology, University of California at San Diego, La Jolla, CA 92037, USA
| | - Taro Okada
- Division of Biochemistry, Department of Biochemistry and Molecular Biology, Graduate School of Medicine, Kobe University, Kobe 650-0017, Japan
| | - Caila A Pilo
- Department of Pharmacology, University of California at San Diego, La Jolla, CA 92037, USA
| | - An-Angela N Van
- Department of Pharmacology, University of California at San Diego, La Jolla, CA 92037, USA
| | - J Andrew McCammon
- Department of Pharmacology, University of California at San Diego, La Jolla, CA 92037, USA
| | - Shun-Ichi Nakamura
- Division of Biochemistry, Department of Biochemistry and Molecular Biology, Graduate School of Medicine, Kobe University, Kobe 650-0017, Japan
| | - Alexandra C Newton
- Department of Pharmacology, University of California at San Diego, La Jolla, CA 92037, USA.
| |
Collapse
|
45
|
Garg R, Blando JM, Perez CJ, Lal P, Feldman MD, Smyth EM, Ricciotti E, Grosser T, Benavides F, Kazanietz MG. COX-2 mediates pro-tumorigenic effects of PKCε in prostate cancer. Oncogene 2018; 37:4735-4749. [PMID: 29765153 PMCID: PMC6195867 DOI: 10.1038/s41388-018-0318-9] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Revised: 03/22/2018] [Accepted: 04/20/2018] [Indexed: 12/31/2022]
Abstract
The pro-oncogenic kinase PKCε is overexpressed in human prostate cancer and cooperates with loss of the tumor suppressor Pten for the development of prostatic adenocarcinoma. However, the effectors driving PKCε-mediated phenotypes remain poorly defined. Here, using cellular and mouse models, we showed that PKCε overexpression acts synergistically with Pten loss to promote NF-κB activation and induce cyclooxygenase-2 (COX-2) expression, phenotypic traits which are also observed in human prostate tumors. Targeted disruption of PKCε from prostate cancer cells impaired COX-2 induction and PGE2 production. Notably, COX-2 inhibitors selectively killed prostate epithelial cells overexpressing PKCε, and this ability was greatly enhanced by Pten loss. Long-term COX-2 inhibition markedly reduced adenocarcinoma formation, as well as angiogenesis in a mouse model of prostate-specific PKCε expression and Pten loss. Overall, our results provide strong evidence for the involvement of the canonical NF-κB pathway and its target gene COX2 as PKCε effectors, and highlight the potential of PKCε as a useful biomarker for the use of COX inhibition for chemopreventive and/or chemotherapeutic purposes in prostate cancer.
Collapse
Affiliation(s)
- Rachana Garg
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Jorge M Blando
- Department of Immunology, Immunopathology Laboratory, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Carlos J Perez
- Department of Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Smithville, TX, 78957, USA
- The University of Texas Graduate School of Biomedical Sciences, Houston, TX, 77030, USA
| | - Priti Lal
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Michael D Feldman
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Emer M Smyth
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Emanuela Ricciotti
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Tilo Grosser
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Fernando Benavides
- Department of Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Smithville, TX, 78957, USA
- The University of Texas Graduate School of Biomedical Sciences, Houston, TX, 77030, USA
| | - Marcelo G Kazanietz
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA.
| |
Collapse
|
46
|
Feng W, Li J, Liao S, Ma S, Li F, Zhong C, Li G, Wei Y, Huang H, Wei Q, Yao J, Liu Y. Gö6983 attenuates titanium particle-induced osteolysis and RANKL mediated osteoclastogenesis through the suppression of NFκB/JNK/p38 pathways. Biochem Biophys Res Commun 2018; 503:62-70. [PMID: 29856998 DOI: 10.1016/j.bbrc.2018.05.177] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2018] [Accepted: 05/26/2018] [Indexed: 10/14/2022]
Abstract
Osteoclast activation by wear particles has caused major difficulties for surgeons. Wear particles are the main causes of aseptic prosthetic loosening. Gö6983, a protein kinase C inhibitor, inhibits five subtypes of protein kinase C family members. Here, we found that Gö6983 had an obviously inhibitory effect on wear-particles-induced osteolysis in vivo. In vitro, Gö6983 inhibited RANKL-stimulated osteoclast formation and function by inhibiting the RANKL-stimulated nuclear factor-κB/JNK/p38 signaling pathway. We also observed that Go6983 had no effect on the differentiation of osteoblasts and osteoblast-associated genes expression. According to our data, Gö6983 has potential therapeutic effects for aseptic prosthetic loosening caused by osteoclast activation.
Collapse
Affiliation(s)
- Wenyu Feng
- Departments of Orthopedics, The First Affliated Hospital of Guangxi Medical University, Nanning, Guangxi, China; Research Centre for Regenerative Medicine, Guangxi Key Laboratory of Regenerative Medicine, Guangxi Medical University, Nanning, Guangxi, China
| | - Jia Li
- Departments of Pathology, The First Affliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Shijie Liao
- Departments of Orthopedics, The First Affliated Hospital of Guangxi Medical University, Nanning, Guangxi, China; Research Centre for Regenerative Medicine, Guangxi Key Laboratory of Regenerative Medicine, Guangxi Medical University, Nanning, Guangxi, China
| | - Shiting Ma
- Departments of Orthopedics, The First Affliated Hospital of Guangxi Medical University, Nanning, Guangxi, China; Research Centre for Regenerative Medicine, Guangxi Key Laboratory of Regenerative Medicine, Guangxi Medical University, Nanning, Guangxi, China
| | - Feicui Li
- Departments of General Medicine, The First Affliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Chaoyi Zhong
- Research Centre for Regenerative Medicine, Guangxi Key Laboratory of Regenerative Medicine, Guangxi Medical University, Nanning, Guangxi, China
| | - Guodong Li
- Research Centre for Regenerative Medicine, Guangxi Key Laboratory of Regenerative Medicine, Guangxi Medical University, Nanning, Guangxi, China
| | - Yan Wei
- Departments of Pathology, The First Affliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Huading Huang
- Departments of Cardiothoracic Surgery, The First Affliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Qingjun Wei
- Departments of Orthopedics, The First Affliated Hospital of Guangxi Medical University, Nanning, Guangxi, China; Research Centre for Regenerative Medicine, Guangxi Key Laboratory of Regenerative Medicine, Guangxi Medical University, Nanning, Guangxi, China.
| | - Jun Yao
- Departments of Orthopedics, The First Affliated Hospital of Guangxi Medical University, Nanning, Guangxi, China; Research Centre for Regenerative Medicine, Guangxi Key Laboratory of Regenerative Medicine, Guangxi Medical University, Nanning, Guangxi, China.
| | - Yun Liu
- Departments of Orthopedics, The First Affliated Hospital of Guangxi Medical University, Nanning, Guangxi, China; Research Centre for Regenerative Medicine, Guangxi Key Laboratory of Regenerative Medicine, Guangxi Medical University, Nanning, Guangxi, China.
| |
Collapse
|
47
|
Abdel-Halim M, Abadi AH, Engel M. Design and synthesis of novel 1,3,5-triphenyl pyrazolines as potential anti-inflammatory agents through allosteric inhibition of protein kinase Czeta (PKCζ). MEDCHEMCOMM 2018; 9:1076-1082. [PMID: 30108997 PMCID: PMC6072096 DOI: 10.1039/c8md00100f] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2018] [Accepted: 04/25/2018] [Indexed: 01/01/2023]
Abstract
Much light has been shed on the vital role of protein kinase Czeta (PKCζ) in NF-κB activation and the potential use of PKCζ inhibitors as anti-inflammatory agents. We previously reported a series of 1,3,5-trisubstituted pyrazolines as potent and selective allosteric inhibitors of PKCζ; in that series of compounds, the phenolic OH at the 5-phenyl was essential for binding to the PKCζ PIF pocket. In the present study, we surprisingly found that replacing it by a halogen and at the same time moving the OH to the 3-phenyl still resulted in active compounds. An extension of this class of compounds with a new focused library is presented herein, where the phenolic OH at the 5-phenyl, which was reported to be an irreplaceable feature for activity, was moved to the 3-phenyl and replaced by halogen. The new set of compounds maintained the same level of potency against PKCζ and selectivity against PKC isoforms, and showed reduced potency against the PIF pocket mutant PKCζ[Val297Leu]. Of note, the repositioning of the key functional groups resulted in a marked enhancement of cellular potency. One of the most potent new PKCζ inhibitors, 2h, was able to suppress NO production in RAW 264.7 macrophage cells with 8 times higher efficacy than the previous series, and inhibited the NF-κB transcriptional activity in U937 cells with a sub-micromolar IC50.
Collapse
Affiliation(s)
- Mohammad Abdel-Halim
- Department of Pharmaceutical Chemistry , Faculty of Pharmacy and Biotechnology , German University in Cairo , Cairo 11835 , Egypt
| | - Ashraf H Abadi
- Department of Pharmaceutical Chemistry , Faculty of Pharmacy and Biotechnology , German University in Cairo , Cairo 11835 , Egypt
| | - Matthias Engel
- Pharmaceutical and Medicinal Chemistry , Saarland University , Campus C2.3 , D-66123 Saarbrücken , Germany . ; http://www.pharmmedchem.de ; ; Tel: +49 681 302 70312
| |
Collapse
|
48
|
Long M, Li X, Li L, Dodson M, Zhang DD, Zheng H. Multifunctional p62 Effects Underlie Diverse Metabolic Diseases. Trends Endocrinol Metab 2017; 28:818-830. [PMID: 28966079 DOI: 10.1016/j.tem.2017.09.001] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/10/2017] [Revised: 09/03/2017] [Accepted: 09/05/2017] [Indexed: 12/17/2022]
Abstract
p62, a protein capable of binding both ubiquitin and autophagy substrates, is well established as a key regulator in cancer and neurodegenerative diseases. Recently, there has been accumulating evidence that p62 is also a pivotal regulator in metabolic diseases, such as obesity, T2DM, NAFLD, metabolic bone disease, gout and thyroid disease. This review summarizes the emerging role of p62 on these diseases by considering its functional domains, phenotypes in genetically modified animals, clinically observed alterations, and its effects on downstream metabolic signaling pathways. At the same time, we highlight the need to explore the roles played by p62 in the gastrointestinal environment and immune system, and the extent to which its elevated expression may confer protection against metabolic disorders.
Collapse
Affiliation(s)
- Min Long
- Department of Endocrinology, Translational Research Key Laboratory for Diabetes, Xinqiao Hospital, Third Military Medical University, Chongqing 400037, China; These authors contributed equally to this work
| | - Xing Li
- Department of Endocrinology, Translational Research Key Laboratory for Diabetes, Xinqiao Hospital, Third Military Medical University, Chongqing 400037, China; These authors contributed equally to this work
| | - Li Li
- Department of Endocrinology, Translational Research Key Laboratory for Diabetes, Xinqiao Hospital, Third Military Medical University, Chongqing 400037, China; These authors contributed equally to this work
| | - Matthew Dodson
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Arizona, Tucson, AZ 85721, USA
| | - Donna D Zhang
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Arizona, Tucson, AZ 85721, USA
| | - Hongting Zheng
- Department of Endocrinology, Translational Research Key Laboratory for Diabetes, Xinqiao Hospital, Third Military Medical University, Chongqing 400037, China.
| |
Collapse
|
49
|
Future Directions and Molecular Basis of Ventilator Associated Pneumonia. Can Respir J 2017; 2017:2614602. [PMID: 29162982 PMCID: PMC5661065 DOI: 10.1155/2017/2614602] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2017] [Accepted: 09/14/2017] [Indexed: 12/26/2022] Open
Abstract
Mechanical ventilation is a lifesaving treatment and has complications such as ventilator associated pneumonia (VAP) that lead to high morbidity and mortality. Moreover VAP is the second most common hospital-acquired infection in pediatric intensive care units. Although it is still not well understood, understanding molecular pathogenesis is essential for preventing and treating pneumonia. A lot of microbes are detected as a causative agent of VAP. The most common isolated VAP pathogens in pediatric patients are Staphylococcus aureus, Pseudomonas aeruginosa, and other gram negative bacteria. All of the bacteria have different pathogenesis due to their different virulence factors and host reactions. This review article focused on mechanisms of VAP with molecular pathogenesis of the causative bacteria one by one from the literature. We hope that we know more about molecular pathogenesis of VAP and we can investigate and focus on the management of the disease in near future.
Collapse
|
50
|
Cai X, Zhu H, Li Y. PKCζ, MMP‑2 and MMP‑9 expression in lung adenocarcinoma and association with a metastatic phenotype. Mol Med Rep 2017; 16:8301-8306. [PMID: 28983601 DOI: 10.3892/mmr.2017.7634] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2017] [Accepted: 08/01/2017] [Indexed: 11/06/2022] Open
Abstract
The aim of the present study was to investigate protein kinase C ζ type (PKCζ), matrix metalloproteinase (MMP)‑2 and MMP‑9 expression in lung adenocarcinoma and to define their association with in vitro invasion and metastatic capacity. PKCζ, MMP‑2 and MMP‑9 expression was assessed by immunohistochemistry in 110 cases of lung adenocarcinoma. PKCζ small interfering (si)RNA was transfected into A549 cells, and western blotting was used to confirm PKCζ‑knockdown in transfected cells and to measure MMP‑2 and MMP‑9 levels. A Transwell invasion assay was used to detect in vitro invasive capacity. The rates of positive PKCζ, MMP‑2 and MMP‑9 staining in lung adenocarcinoma tissues were 52.73, 55.45 and 61.82%, respectively. PKCζ expression was increased in malignant tissues compared with adjacent normal lung tissues and was associated with lymph node metastasis (P<0.05), although it was not associated with any other clinicopathological parameters, including sex, age, tumor size, smoking status or distant metastases (all P>0.05). PKCζ, MMP‑2 and MMP‑9 expression was markedly decreased in siPKCζ‑treated A549 cells, which exhibited a significantly decreased invasive capacity in the Transwell invasion assay (P<0.05). In conclusion, PKCζ promoted lung adenocarcinoma invasion and metastasis, and its expression was associated with MMP‑2 and MMP‑9 expression. PKCζ may be a potential target for gene therapy in lung adenocarcinoma.
Collapse
Affiliation(s)
- Xiaoshan Cai
- Department of Pathology, Second People's Hospital of Weifang, Weifang, Shandong 261041, P.R. China
| | - Hongguang Zhu
- Department of Dentistry, Weifang People's Hospital, Weifang, Shandong 261000, P.R. China
| | - Ying Li
- Department of Pathology, Second People's Hospital of Weifang, Weifang, Shandong 261041, P.R. China
| |
Collapse
|