1
|
Agyapong PD, Jack D, Kaali S, Colicino E, Mujtaba MN, Chillrud SN, Osei M, Gennings C, Agyei O, Kinney PL, Kwarteng A, Perzanowski M, Dwommoh Prah RK, Tawiah T, Asante KP, Lee AG. Household Air Pollution and Child Lung Function: The Ghana Randomized Air Pollution and Health Study. Am J Respir Crit Care Med 2024; 209:716-726. [PMID: 38016085 DOI: 10.1164/rccm.202303-0623oc] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Accepted: 11/28/2023] [Indexed: 11/30/2023] Open
Abstract
Rationale: The impact of a household air pollution (HAP) stove intervention on child lung function has been poorly described. Objectives: To assess the effect of a HAP stove intervention for infants prenatally to age 1 on, and exposure-response associations with, lung function at child age 4. Methods: The Ghana Randomized Air Pollution and Health Study randomized pregnant women to liquefied petroleum gas (LPG), improved biomass, or open-fire (control) stove conditions through child age 1. We quantified HAP exposure by repeated maternal and child personal carbon monoxide (CO) exposure measurements. Children performed oscillometry, an effort-independent lung function measurement, at age 4. We examined associations between Ghana Randomized Air Pollution and Health Study stove assignment and prenatal and infant CO measurements and oscillometry using generalized linear regression models. We used reverse distributed lag models to examine time-varying associations between prenatal CO and oscillometry. Measurements and Main Results: The primary oscillometry measure was reactance at 5 Hz, X5, a measure of elastic and inertial lung properties. Secondary measures included total, large airway, and small airway resistance at 5 Hz, 20 Hz, and the difference in resistance at 5 Hz and 20 Hz (R5, R20, and R5-20, respectively); area of reactance (AX); and resonant frequency. Of the 683 children who attended the lung function visit, 567 (83%) performed acceptable oscillometry. A total of 221, 106, and 240 children were from the LPG, improved biomass, and control arms, respectively. Compared with control, the improved biomass stove condition was associated with lower reactance at 5 Hz (X5 z-score: β = -0.25; 95% confidence interval [CI] = -0.39, -0.11), higher large airway resistance (R20 z-score: β = 0.34; 95% CI = 0.23, 0.44), and higher AX (AX z-score: β = 0.16; 95% CI = 0.06, 0.26), which is suggestive of overall worse lung function. The LPG stove condition was associated with higher X5 (X5 score: β = 0.16; 95% CI = 0.01, 0.31) and lower small airway resistance (R5-20 z-score: β = -0.15; 95% CI = -0.30, 0.0), which is suggestive of better small airway function. Higher average prenatal CO exposure was associated with higher R5 and R20, and distributed lag models identified sensitive windows of exposure between CO and X5, R5, R20, and R5-20. Conclusions: These data support the importance of prenatal HAP exposure on child lung function. Clinical trial registered with www.clinicaltrials.gov (NCT01335490).
Collapse
Affiliation(s)
- Prince Darko Agyapong
- Kintampo Health Research Centre, Research and Development, Division Ghana Health Service, Bono East Region Kintampo North, Ghana
| | - Darby Jack
- Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University, New York, New York
| | - Seyram Kaali
- Kintampo Health Research Centre, Research and Development, Division Ghana Health Service, Bono East Region Kintampo North, Ghana
| | | | - Mohammed Nuhu Mujtaba
- Kintampo Health Research Centre, Research and Development, Division Ghana Health Service, Bono East Region Kintampo North, Ghana
| | - Steven N Chillrud
- Lamont-Doherty Earth Observatory at Columbia University, Palisades, New York; and
| | - Musah Osei
- Kintampo Health Research Centre, Research and Development, Division Ghana Health Service, Bono East Region Kintampo North, Ghana
| | - Chris Gennings
- Department of Environmental Medicine and Public Health
- Institute for Exposomic Research, and
| | - Oscar Agyei
- Kintampo Health Research Centre, Research and Development, Division Ghana Health Service, Bono East Region Kintampo North, Ghana
| | - Patrick L Kinney
- Department of Environmental Health, Boston University School of Public Health, Boston, Massachusetts
| | - Adolphine Kwarteng
- Kintampo Health Research Centre, Research and Development, Division Ghana Health Service, Bono East Region Kintampo North, Ghana
| | - Matthew Perzanowski
- Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University, New York, New York
| | - Rebecca Kyerewaa Dwommoh Prah
- Kintampo Health Research Centre, Research and Development, Division Ghana Health Service, Bono East Region Kintampo North, Ghana
| | - Theresa Tawiah
- Kintampo Health Research Centre, Research and Development, Division Ghana Health Service, Bono East Region Kintampo North, Ghana
| | - Kwaku Poku Asante
- Kintampo Health Research Centre, Research and Development, Division Ghana Health Service, Bono East Region Kintampo North, Ghana
| | - Alison G Lee
- Division of Pulmonary, Critical Care and Sleep Medicine, Icahn School of Medicine at Mount Sinai, New York, New York
| |
Collapse
|
2
|
McCarthy CE, Duffney PF, Nogales A, Post CM, Lawrence BP, Martinez-Sobrido L, Thatcher TH, Phipps RP, Sime PJ. Dung biomass smoke exposure impairs resolution of inflammatory responses to influenza infection. Toxicol Appl Pharmacol 2022; 450:116160. [PMID: 35817128 PMCID: PMC10211473 DOI: 10.1016/j.taap.2022.116160] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 07/01/2022] [Accepted: 07/05/2022] [Indexed: 01/26/2023]
Abstract
Epidemiological studies associate biomass smoke with an increased risk for respiratory infections in children and adults in the developing world, with 500,000 premature deaths each year attributed to biomass smoke-related acute respiratory infections including infections caused by respiratory viruses. Animal dung is a biomass fuel of particular concern because it generates more toxic compounds per amount burned than wood, and is a fuel of last resort for the poorest households. Currently, there is little biological evidence on the effects of dung biomass smoke exposure on immune responses to respiratory viral infections. Here, we investigated the impact of dung biomass exposure on respiratory infection using a mouse model of dung biomass smoke and cultured primary human small airway epithelial cells (SAECs). Mice infected with influenza A virus (IAV) after dung biomass smoke exposure had increased mortality, lung inflammation and virus mRNA levels, and suppressed expression of innate anti-viral mediators compared to air exposed mice. Importantly, there was still significant tissue inflammation 14 days after infection in dung biomass smoke-exposed mice even after inflammation had resolved in air-exposed mice. Dung biomass smoke exposure also suppressed the production of anti-viral cytokines and interferons in cultured SAECs treated with poly(I:C) or IAV. This study shows that dung biomass smoke exposure impairs the immune response to respiratory viruses and contributes to biomass smoke-related susceptibility to respiratory viral infections, likely due to a failure to resolve the inflammatory effects of biomass smoke exposure.
Collapse
Affiliation(s)
| | - Parker F Duffney
- United States Environmental Protection Agency, Integrated Health Assessment Branch, Research Triangle Park, NC, USA
| | - Aitor Nogales
- Centro de Investigación en Sanidad Animal (CISA), INIA-CSIC, Madrid, Spain
| | - Christina M Post
- Department of Environmental Medicine, University of Rochester, Rochester NY, New York, United States
| | - B Paige Lawrence
- Department of Environmental Medicine, University of Rochester, Rochester NY, New York, United States
| | | | - Thomas H Thatcher
- Division of Pulmonary Disease and Critical Care Medicine, Department of Internal Medicine, Virginia Commonwealth University, Richmond, VA, USA
| | | | - Patricia J Sime
- Division of Pulmonary Disease and Critical Care Medicine, Department of Internal Medicine, Virginia Commonwealth University, Richmond, VA, USA.
| |
Collapse
|
3
|
Morakinyo OM, Mokgobu MI. Indoor Household Exposures and Associated Morbidity and Mortality Outcomes in Children and Adults in South Africa. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph19159471. [PMID: 35954827 PMCID: PMC9367742 DOI: 10.3390/ijerph19159471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/11/2022] [Revised: 07/07/2022] [Accepted: 07/18/2022] [Indexed: 11/23/2022]
Abstract
Human exposure to indoor pollution is one of the most well-established ways that housing affects health. We conducted a review to document evidence on the morbidity and mortality outcomes associated with indoor household exposures in children and adults in South Africa. The authors conducted a scientific review of the publicly available literature up to April 2022 using different search engines (PubMed, ProQuest, Science Direct, Scopus and Google Scholar) to identify the literature that assessed the link between indoor household exposures and morbidity and mortality outcomes in children and adults. A total of 16 studies with 16,920 participants were included. Bioaerosols, allergens, dampness, tobacco smoking, household cooking and heating fuels, particulate matter, gaseous pollutants and indoor spray residue play a significant role in different morbidity outcomes. These health outcomes include dental caries, asthma, tuberculosis, severe airway inflammation, airway blockage, wheeze, rhinitis, bronchial hyperresponsiveness, phlegm on the chest, current rhinoconjunctivitis, hay fever, poor early life immune function, hypertensive disorders of pregnancy, gestational hypertension, and increased incidence of nasopharyngeal bacteria, which may predispose people to lower respiratory tract infections. The findings of this research highlight the need for more initiatives, programs, strategies, and policies to better reduce the negative consequences of indoor household exposures.
Collapse
Affiliation(s)
- Oyewale Mayowa Morakinyo
- Department of Environmental Health, Faculty of Science, Tshwane University of Technology, Private Bag X680, Pretoria 0001, South Africa;
- Department of Environmental Health Sciences, Faculty of Public Health, College of Medicine, University of Ibadan, Ibadan 200284, Nigeria
- Correspondence:
| | - Matlou Ingrid Mokgobu
- Department of Environmental Health, Faculty of Science, Tshwane University of Technology, Private Bag X680, Pretoria 0001, South Africa;
| |
Collapse
|
4
|
Li M, Chen WJ, Yang J, Charvat H, Xie SH, Li T, Ling W, Lu YQ, Liu Q, Hong MH, Cao SM. Association between solid fuel use and seropositivity against Epstein-Barr virus in a high-risk area for nasopharyngeal carcinoma. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 304:119184. [PMID: 35341821 DOI: 10.1016/j.envpol.2022.119184] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Revised: 03/14/2022] [Accepted: 03/17/2022] [Indexed: 06/14/2023]
Abstract
Epstein-Barr virus (EBV) is one of the risk factors of nasopharyngeal carcinoma (NPC), and understanding the modifiable risk factors of EBV activation is crucial in the prevention of NPC. In this study, we aimed to investigate the association between solid fuel use and EBV seropositivity in a high-risk area of NPC. Our study was based on the baseline findings from an ongoing population-based prospective cohort in Sihui county in Southern China. We explored the association between current use of solid fuel in cooking and EBV seropositivity, and NPC-related EBV activation, using logistic regression models. Stratification analyses were further conducted to assess potential effect modifiers. We also examined the impact of frequency and duration of solid fuel use, and switch in fuel types, on EBV seropositivity among ever users. Of the 12,579 participants included in our analysis, 4088 (32.5%) were EBV seropositive and 421 (3.3%) were high risk for NPC-related EBV activation. Solid fuel use was associated with a higher risk of EBV seropositivity and NPC-related EBV activation, with odds ratios (ORs) of 1.33 (95%CI: 1.01, 1.76) and 1.81 (95%CI: 1.03, 3.18), respectively. Higher risk of EBV seropositivity was observed for those who did not use ventilation apparatus and those who consumed salted food. Among ever users, OR was highest for participants with more than 40 years of solid fuel exposure (1.17, 95%CI: 1.00-1.37) and who have been constantly using solid fuel (1.30, 95%CI: 0.96-1.75). We did not find a statistically significant impact of cooking frequency on EBV seropositivity. The identification of solid fuel as a risk factor for EBV activation is of great value for understanding the etiology of NPC. Our findings also have important public health implications given the fact that a third of the global population still lack access to clean cooking, especially in low resource settings.
Collapse
Affiliation(s)
- Mengmeng Li
- Department of Cancer Prevention, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Wen-Jie Chen
- Department of Cancer Prevention, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Jun Yang
- School of Public Health, Guangzhou Medical University, Guangzhou, China
| | - Hadrien Charvat
- Division of International Collaborative Research, Center for Public Health Sciences, National Cancer Center, Tokyo, Japan
| | - Shang-Hang Xie
- Department of Cancer Prevention, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Tong Li
- Department of Cancer Prevention, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Wei Ling
- Sihui Cancer Institute, Sihui, China
| | | | - Qing Liu
- Department of Cancer Prevention, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Ming-Huang Hong
- Department of Clinical Trial Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Su-Mei Cao
- Department of Cancer Prevention, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China.
| |
Collapse
|
5
|
Nazaroff WW. 30+ years of knowledge creation: Indoor Air 1991-2021. INDOOR AIR 2022; 32:e13074. [PMID: 35904388 DOI: 10.1111/ina.13074] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2022] [Revised: 06/20/2022] [Accepted: 06/24/2022] [Indexed: 06/15/2023]
Affiliation(s)
- William W Nazaroff
- Department of Civil and Environmental Engineering, University of California, Berkeley, California, USA
| |
Collapse
|
6
|
Shen H, Luo Z, Xiong R, Liu X, Zhang L, Li Y, Du W, Chen Y, Cheng H, Shen G, Tao S. A critical review of pollutant emission factors from fuel combustion in home stoves. ENVIRONMENT INTERNATIONAL 2021; 157:106841. [PMID: 34438232 DOI: 10.1016/j.envint.2021.106841] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2021] [Revised: 08/15/2021] [Accepted: 08/17/2021] [Indexed: 06/13/2023]
Abstract
A large population does not have access to modern household energy and relies on solid fuels such as coal and biomass fuels. Burning of these solid fuels in low-efficiency home stoves produces high amounts of multiple air pollutants, causing severe air pollution and adverse health outcomes. In evaluating impacts on human health and climate, it is critical to understand the formation and emission processes of air pollutants from these combustion sources. Air pollutant emission factors (EFs) from indoor solid fuel combustion usually highly vary among different testing protocols, fuel-stove systems, sampling and analysis instruments, and environmental conditions. In this critical review, we focus on the latest developments in pollutant emission factor studies, with emphases on the difference between lab and field studies, fugitive emission quantification, and factors that contribute to variabilities in EFs. Field studies are expected to provide more realistic EFs for emission inventories since lab studies typically do not simulate real-world burning conditions well. However, the latter has considerable advantages in evaluating formation mechanisms and variational influencing factors in observed pollutant EFs. One main challenge in field emission measurement is the suitable emission sampling system. Reasons for the field and lab differences have yet to be fully elucidated, and operator behavior can have a significant impact on such differences. Fuel properties and stove designs affect emissions, and the variations are complexly affected by several factors. Stove classification is a challenge in the comparison of EF results from different studies. Lab- and field-based methods for quantifying fugitive emissions, as an important contributor to indoor air pollution, have been developed, and priority work is to develop a database covering different fuel-stove combinations. Studies on the dynamics of the combustion process and evolution of air pollutant formation and emissions are scarce, and these factors should be an important aspect of future work.
Collapse
Affiliation(s)
- Huizhong Shen
- School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Zhihan Luo
- Laboratory of Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing 100871, China
| | - Rui Xiong
- Laboratory of Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing 100871, China
| | - Xinlei Liu
- Laboratory of Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing 100871, China
| | - Lu Zhang
- Laboratory of Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing 100871, China
| | - Yaojie Li
- Laboratory of Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing 100871, China
| | - Wei Du
- Key Laboratory of Geographic Information Science of the Ministry of Education, School of Geographic Sciences, East China Normal University, Shanghai 200241, China
| | - Yuanchen Chen
- College of Environment, Research Centre of Environmental Science, Zhejiang University of Technology, Hangzhou 310032, China
| | - Hefa Cheng
- Laboratory of Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing 100871, China
| | - Guofeng Shen
- Laboratory of Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing 100871, China.
| | - Shu Tao
- School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China; Laboratory of Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing 100871, China
| |
Collapse
|
7
|
Li S, Cao S, Duan X, Zhang Y, Gong J, Xu X, Guo Q, Meng X, Bertrand M, Zhang JJ. Children's lung function in relation to changes in socioeconomic, nutritional, and household factors over 20 years in Lanzhou. J Thorac Dis 2021; 13:4574-4588. [PMID: 34422383 PMCID: PMC8339784 DOI: 10.21037/jtd-20-2232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Accepted: 04/15/2021] [Indexed: 11/15/2022]
Abstract
Background Lanzhou has experienced rapid urbanization, leading to changes in socioeconomic, nutritional, and household factors. These changes may affect children’s lung function. Methods Two cross-sectional studies of school-age children (6–13 years of age) from the urban (Chengguan) (Period 1 in 1996 with n=390; Period 2 in 2017 with n=192) and the suburban (Xigu) (Period 1 n=344; Period 2 n=492) district were conducted. Demographic information, household factors, and nutrition status were obtained via a questionnaire survey. Forced vital capacity (FVC) and forced expiratory volume in the first second (FEV1) were measured in each period. Student’s t-test analysis of variance was used to assess the differences in FVC and FEV1 between Periods 1 and 2. Generalized linear models were used to analyze the associations between questionnaire derived factors and lung function. Analyses were done separately for girls and boys. Results Children had significantly lower mean FEV1 and FVC measures in Period 2 than in Period 1. This reduction was greater in children living in the urban area than those living in the suburban area. Obese children had significantly lower lung function but this was only statistically significant in Period 1. Conclusions Children’s lung function (FVC and FEV1) were lower in 2017 than in 1996. Rapid urbanization may have contributed to the decline of lung function. Obesity may be a risk factor for impaired lung function in children living in Lanzhou and possibly elsewhere.
Collapse
Affiliation(s)
- Sai Li
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing, China
| | - Suzhen Cao
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing, China
| | - Xiaoli Duan
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing, China
| | - Yaqun Zhang
- Gansu Provincial Design and Research Institute of Environmental Science, Lanzhou, China
| | - Jicheng Gong
- Beijing Innovation Center for Engineering Science and Advanced Technology, State Key Joint Laboratory for Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, And Center for Environment and Health, Peking University, Beijing, China
| | - Xiangyu Xu
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing, China
| | - Qian Guo
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing, China
| | - Xin Meng
- Beijing Innovation Center for Engineering Science and Advanced Technology, State Key Joint Laboratory for Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, And Center for Environment and Health, Peking University, Beijing, China
| | - Mcswain Bertrand
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing, China
| | - Junfeng Jim Zhang
- Global Health Research Center, Duke Kunshan University, Kunshan, China.,Nicholas School of the Environment and Duke Global Health Institute, Duke University, Durham, USA.,Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| |
Collapse
|
8
|
Cao X, Coyle JP, Xiong R, Wang Y, Heflich RH, Ren B, Gwinn WM, Hayden P, Rojanasakul L. Invited review: human air-liquid-interface organotypic airway tissue models derived from primary tracheobronchial epithelial cells-overview and perspectives. In Vitro Cell Dev Biol Anim 2020; 57:104-132. [PMID: 33175307 PMCID: PMC7657088 DOI: 10.1007/s11626-020-00517-7] [Citation(s) in RCA: 74] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Accepted: 09/29/2020] [Indexed: 02/07/2023]
Abstract
The lung is an organ that is directly exposed to the external environment. Given the large surface area and extensive ventilation of the lung, it is prone to exposure to airborne substances, such as pathogens, allergens, chemicals, and particulate matter. Highly elaborate and effective mechanisms have evolved to protect and maintain homeostasis in the lung. Despite these sophisticated defense mechanisms, the respiratory system remains highly susceptible to environmental challenges. Because of the impact of respiratory exposure on human health and disease, there has been considerable interest in developing reliable and predictive in vitro model systems for respiratory toxicology and basic research. Human air-liquid-interface (ALI) organotypic airway tissue models derived from primary tracheobronchial epithelial cells have in vivo–like structure and functions when they are fully differentiated. The presence of the air-facing surface allows conducting in vitro exposures that mimic human respiratory exposures. Exposures can be conducted using particulates, aerosols, gases, vapors generated from volatile and semi-volatile substances, and respiratory pathogens. Toxicity data have been generated using nanomaterials, cigarette smoke, e-cigarette vapors, environmental airborne chemicals, drugs given by inhalation, and respiratory viruses and bacteria. Although toxicity evaluations using human airway ALI models require further standardization and validation, this approach shows promise in supplementing or replacing in vivo animal models for conducting research on respiratory toxicants and pathogens.
Collapse
Affiliation(s)
- Xuefei Cao
- Division of Genetic and Molecular Toxicology, National Center for Toxicological Research, US Food and Drug Administration, 3900 NCTR Rd., AR, Jefferson, USA.
| | - Jayme P Coyle
- Allergy and Clinical Immunology Branch, Health Effects Laboratory Division, National Institute for Occupational Safety and Health, Centers for Disease Control and Prevention, Morgantown, WV, USA
| | - Rui Xiong
- Division of Genetic and Molecular Toxicology, National Center for Toxicological Research, US Food and Drug Administration, 3900 NCTR Rd., AR, Jefferson, USA
| | - Yiying Wang
- Division of Genetic and Molecular Toxicology, National Center for Toxicological Research, US Food and Drug Administration, 3900 NCTR Rd., AR, Jefferson, USA
| | - Robert H Heflich
- Division of Genetic and Molecular Toxicology, National Center for Toxicological Research, US Food and Drug Administration, 3900 NCTR Rd., AR, Jefferson, USA
| | - Baiping Ren
- Division of Genetic and Molecular Toxicology, National Center for Toxicological Research, US Food and Drug Administration, 3900 NCTR Rd., AR, Jefferson, USA
| | - William M Gwinn
- Division of the National Toxicology Program, National Institute of Environmental Health Sciences, Durham, NC, USA
| | | | - Liying Rojanasakul
- Allergy and Clinical Immunology Branch, Health Effects Laboratory Division, National Institute for Occupational Safety and Health, Centers for Disease Control and Prevention, Morgantown, WV, USA
| |
Collapse
|
9
|
KC B, Mahapatra PS, Thakker D, Henry AP, Billington CK, Sayers I, Puppala SP, Hall IP. Proinflammatory Effects in Ex Vivo Human Lung Tissue of Respirable Smoke Extracts from Indoor Cooking in Nepal. Ann Am Thorac Soc 2020; 17:688-698. [PMID: 32079410 PMCID: PMC7258415 DOI: 10.1513/annalsats.201911-827oc] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Accepted: 02/05/2020] [Indexed: 11/20/2022] Open
Abstract
Rationale: Exposure to biomass smoke is believed to increase the risk of developing chronic obstructive pulmonary disease. However, little is known about the mechanisms underlying responses to biomass smoke in human lungs.Objectives: This study had two objectives: first, to quantify "real-life" exposures to particulate matter <2 μm in diameter (PM2.5) and carbon monoxide (CO) measured during cooking on stoves in rural areas of Nepal in different geographical settings; and second, to assess the effect of biomass smoke extracts on inflammatory responses in ex vivo human lung tissue.Methods: Personal exposures to PM2.5 and indoor near-stove CO concentrations were measured during cooking on a range of stoves in 103 households in 4 different Nepalese villages situated at altitudes between ∼100 and 4,000 m above sea level. Inflammatory profiles to smoke extracts collected in the field were assessed by incubating extracts with human lung tissue fragments and subsequent Luminex analysis.Results: In households using traditional cooking stoves, the overall mean personal exposure to PM2.5 during cooking was 276.1 μg/m3 (standard deviation [SD], 265 μg/m3), and indoor CO concentration was 16.3 ppm (SD, 19.65 ppm). The overall mean PM2.5 exposure was reduced by 51% (P = 0.04) in households using biomass fuel in improved cook stoves, and 80% (P < 0.0001) in households using liquefied petroleum gas. Similarly, the indoor CO concentration was reduced by 72% (P < 0.001) and 86% (P < 0.0001) in households using improved cook stoves and liquefied petroleum gas, respectively. Significant increases occurred in 7 of the 17 analytes measured after biomass smoke extract stimulation of human lung tissue (IL-8 [interleukin-8], IL-6, TNF-α [tumor necrosis factor-α], IL-1β, CCL2, CCL3, and CCL13).Conclusions: High levels of real-life exposures to PM2.5 and CO occur during cooking events in rural Nepal. These exposures induce lung inflammation ex vivo, which may partially explain the increased risk of chronic obstructive pulmonary disease in these communities.
Collapse
Affiliation(s)
- Binaya KC
- Division of Respiratory Medicine, National Institute for Health Research Nottingham Biomedical Research Centre, University of Nottingham, Nottingham, United Kingdom; and
- Water and Air Theme, Atmosphere Initiative, International Centre for Integrated Mountain Development, Kathmandu, Nepal
| | - Parth Sarathi Mahapatra
- Water and Air Theme, Atmosphere Initiative, International Centre for Integrated Mountain Development, Kathmandu, Nepal
| | - Dhruma Thakker
- Division of Respiratory Medicine, National Institute for Health Research Nottingham Biomedical Research Centre, University of Nottingham, Nottingham, United Kingdom; and
| | - Amanda P. Henry
- Division of Respiratory Medicine, National Institute for Health Research Nottingham Biomedical Research Centre, University of Nottingham, Nottingham, United Kingdom; and
| | - Charlotte K. Billington
- Division of Respiratory Medicine, National Institute for Health Research Nottingham Biomedical Research Centre, University of Nottingham, Nottingham, United Kingdom; and
| | - Ian Sayers
- Division of Respiratory Medicine, National Institute for Health Research Nottingham Biomedical Research Centre, University of Nottingham, Nottingham, United Kingdom; and
| | - Siva Praveen Puppala
- Water and Air Theme, Atmosphere Initiative, International Centre for Integrated Mountain Development, Kathmandu, Nepal
| | - Ian P. Hall
- Division of Respiratory Medicine, National Institute for Health Research Nottingham Biomedical Research Centre, University of Nottingham, Nottingham, United Kingdom; and
| |
Collapse
|
10
|
Akintunde JK, Abioye JB, Ebinama ON. Potential Protective Effects of Naringin on Oculo-Pulmonary Injury Induced by PM 10 (Wood Smoke) Exposure by Modulation of Oxidative Damage and Acetylcholine Esterase Activity in a Rat Model. CURRENT THERAPEUTIC RESEARCH 2020; 92:100586. [PMID: 32419878 PMCID: PMC7214769 DOI: 10.1016/j.curtheres.2020.100586] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Accepted: 04/02/2020] [Indexed: 12/11/2022]
Abstract
BACKGROUND Millions of households in the world depend on wood and biomass for cooking and heating. This dependence leads to undesirable toxic effects, such as ocular and pulmonary toxicity. OBJECTIVES The present study examined the potential oculoprotective and pulmonary protective activity of naringin (NRG), a naturally occurring flavonoid, against wood smoke (WS)-induced toxicity in a rat model. METHODS Forty-eight adult male albino rats were randomly distributed into six (n=8) groups. All rats were fed, given water, and observed for 21 days, Group I (control) received only distilled water and no WS exposure, Group II was exposed to WS, Group III was exposed to WS and given 50 mg/kg/d α-tocopherol (vitamin E), Group IV was exposed to WS and given 80 mg/kg/day NRG, Group V was administered only 80 mg/kg/d NRG only, and Group VI was administered only 50 mg/kg/d vitamin E. WS exposure was for 20 min/d. The effect of NRG treatment on acetylcholinesterase activity, nitric oxide radical production, malondialdehyde level, and antioxidant enzymes (ie, superoxide dismustase and catalase) in WS-exposed rats was examined. RESULTS Subchronic (21 day) exposure to WS induced ocular and pulmonary toxicity manifested by the infiltration of parenchyma, atrophy, and inflammation of the cells, which was correlated with alterations in antioxidant enzyme concentrations. Cell damage was associated with an increase in acetylcholinesterase activity and nitric oxide radical concentrations. The toxicity triggered by WS was modulated by the coadministration of NRG. CONCLUSION These results suggest that NRG treatment may be useful to reduce WS-induced oxidative stress and related ocular and pulmonary damage in rats. (Curr Ther Res Clin Exp. 2012; 73:XXX-XXX).
Collapse
Affiliation(s)
- Jacob K. Akintunde
- Applied Biochemistry and Molecular Toxicology Research Group, Department of Biochemistry, College of Biosciences, Federal University of Agriculture,Abeokuta, Ogun State, Nigeria
- Toxicology and Safety Unit, Department of Environmental Health Sciences, Faculty of Public Health, College of Medicine, University of Ibadan, Ibadan, Oyo, Nigeria
| | - Joseph B. Abioye
- Toxicology and Safety Unit, Department of Environmental Health Sciences, Faculty of Public Health, College of Medicine, University of Ibadan, Ibadan, Oyo, Nigeria
| | - Owen N. Ebinama
- Toxicology and Safety Unit, Department of Environmental Health Sciences, Faculty of Public Health, College of Medicine, University of Ibadan, Ibadan, Oyo, Nigeria
| |
Collapse
|
11
|
Lai AM, Clark S, Carter E, Shan M, Ni K, Yang X, Baumgartner J, Schauer JJ. Impacts of stove/fuel use and outdoor air pollution on chemical composition of household particulate matter. INDOOR AIR 2020; 30:294-305. [PMID: 31880849 DOI: 10.1111/ina.12636] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2019] [Revised: 12/15/2019] [Accepted: 12/19/2019] [Indexed: 06/10/2023]
Abstract
Biomass combustion for cooking and heating releases particulate matter (PM2.5 ) that contributes to household air pollution. Fuel and stove types affect the chemical composition of household PM, as does infiltration of outdoor PM. Characterization of these impacts can inform future exposure assessments and epidemiologic studies, but is currently limited. In this study, we measured chemical components of PM2.5 (water-soluble organic matter [WSOM], ions, black carbon, elements, organic tracers) in rural Chinese households using traditional biomass stoves, semi-gasifier stoves with pelletized biomass, and/or non-biomass stoves. We distinguished households using one stove type (traditional, semi-gasifier, or LPG/electric) from those using multiple stoves/fuels. WSOM concentrations were higher in households using only semi-gasifier or traditional stoves (31%-33%) than in those with exclusive LPG/electric stove (13%) or mixed stove use (12%-22%). Inorganic ions comprised 14% of PM in exclusive LPG/electric households, compared to 1%-5% of PM in households using biomass. Total PAH content was much higher in households that used traditional stoves (0.8-2.8 mg/g PM) compared to those that did not (0.1-0.3 mg/g PM). Source apportionment revealed that biomass burning comprised 27%-84% of PM2.5 in households using biomass. In all samples, identified outdoor sources (vehicles, dust, coal combustion, secondary aerosol) contributed 10%-20% of household PM2.5 .
Collapse
Affiliation(s)
- Alexandra M Lai
- Environmental Chemistry and Technology Program, University of Wisconsin-Madison, Madison, WI, USA
| | - Sierra Clark
- Department of Epidemiology, Biostatistics, and Occupational Health, McGill University, Montreal, QC, Canada
| | - Ellison Carter
- Department of Civil and Environmental Engineering, Colorado State University, CO, USA
| | - Ming Shan
- Department of Building Science, Tsinghua University, Beijing, China
| | - Kun Ni
- Department of Building Science, Tsinghua University, Beijing, China
| | - Xudong Yang
- Department of Building Science, Tsinghua University, Beijing, China
| | - Jill Baumgartner
- Department of Epidemiology, Biostatistics, and Occupational Health, McGill University, Montreal, QC, Canada
- Institute for Health and Social Policy, McGill University, Montreal, QC, Canada
| | - James J Schauer
- Environmental Chemistry and Technology Program, University of Wisconsin-Madison, Madison, WI, USA
- Wisconsin State Laboratory of Hygiene, University of Wisconsin-Madison, Madison, WI, USA
| |
Collapse
|
12
|
Bilsback KR, Dahlke J, Fedak KM, Good N, Hecobian A, Herckes P, L'Orange C, Mehaffy J, Sullivan A, Tryner J, Van Zyl L, Walker ES, Zhou Y, Pierce JR, Wilson A, Peel JL, Volckens J. A Laboratory Assessment of 120 Air Pollutant Emissions from Biomass and Fossil Fuel Cookstoves. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2019; 53:7114-7125. [PMID: 31132247 DOI: 10.1021/acs.est.8b07019] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
Cookstoves emit many pollutants that are harmful to human health and the environment. However, most of the existing scientific literature focuses on fine particulate matter (PM2.5) and carbon monoxide (CO). We present an extensive data set of speciated air pollution emissions from wood, charcoal, kerosene, and liquefied petroleum gas (LPG) cookstoves. One-hundred and twenty gas- and particle-phase constituents-including organic carbon, elemental carbon (EC), ultrafine particles (10-100 nm), inorganic ions, carbohydrates, and volatile/semivolatile organic compounds (e.g., alkanes, alkenes, alkynes, aromatics, carbonyls, and polycyclic aromatic hydrocarbons (PAHs))-were measured in the exhaust from 26 stove/fuel combinations. We find that improved biomass stoves tend to reduce PM2.5 emissions; however, certain design features (e.g., insulation or a fan) tend to increase relative levels of other coemitted pollutants (e.g., EC ultrafine particles, carbonyls, or PAHs, depending on stove type). In contrast, the pressurized kerosene and LPG stoves reduced all pollutants relative to a traditional three-stone fire (≥93% and ≥79%, respectively). Finally, we find that PM2.5 and CO are not strong predictors of coemitted pollutants, which is problematic because these pollutants may not be indicators of other cookstove smoke constituents (such as formaldehyde and acetaldehyde) that may be emitted at concentrations that are harmful to human health.
Collapse
Affiliation(s)
- Kelsey R Bilsback
- Department of Mechanical Engineering , Colorado State University , 1374 Campus Delivery , Fort Collins , Colorado 80523 , United States
| | - Jordyn Dahlke
- Department of Mechanical Engineering , Colorado State University , 1374 Campus Delivery , Fort Collins , Colorado 80523 , United States
| | - Kristen M Fedak
- Department of Environmental and Radiological Health Sciences , Colorado State University , 1681 Campus Delivery , Fort Collins , Colorado 80523 , United States
| | - Nicholas Good
- Department of Environmental and Radiological Health Sciences , Colorado State University , 1681 Campus Delivery , Fort Collins , Colorado 80523 , United States
| | - Arsineh Hecobian
- Department of Atmospheric Science , Colorado State University , 1371 Campus Delivery , Fort Collins , Colorado 80523 , United States
| | - Pierre Herckes
- School of Molecular Sciences , Arizona State University , 1604 Campus Delivery , Tempe , Arizona 85287 , United States
| | - Christian L'Orange
- Department of Mechanical Engineering , Colorado State University , 1374 Campus Delivery , Fort Collins , Colorado 80523 , United States
| | - John Mehaffy
- Department of Mechanical Engineering , Colorado State University , 1374 Campus Delivery , Fort Collins , Colorado 80523 , United States
| | - Amy Sullivan
- Department of Atmospheric Science , Colorado State University , 1371 Campus Delivery , Fort Collins , Colorado 80523 , United States
| | - Jessica Tryner
- Department of Mechanical Engineering , Colorado State University , 1374 Campus Delivery , Fort Collins , Colorado 80523 , United States
| | - Lizette Van Zyl
- Department of Mechanical Engineering , Colorado State University , 1374 Campus Delivery , Fort Collins , Colorado 80523 , United States
| | - Ethan S Walker
- Department of Environmental and Radiological Health Sciences , Colorado State University , 1681 Campus Delivery , Fort Collins , Colorado 80523 , United States
| | - Yong Zhou
- Department of Atmospheric Science , Colorado State University , 1371 Campus Delivery , Fort Collins , Colorado 80523 , United States
| | - Jeffrey R Pierce
- Department of Atmospheric Science , Colorado State University , 1371 Campus Delivery , Fort Collins , Colorado 80523 , United States
| | - Ander Wilson
- Department of Statistics , Colorado State University , 1877 Campus Delivery , Fort Collins , Colorado 80523 , United States
| | - Jennifer L Peel
- Department of Environmental and Radiological Health Sciences , Colorado State University , 1681 Campus Delivery , Fort Collins , Colorado 80523 , United States
| | - John Volckens
- Department of Mechanical Engineering , Colorado State University , 1374 Campus Delivery , Fort Collins , Colorado 80523 , United States
| |
Collapse
|
13
|
Surratt JD, Lin YH, Arashiro M, Vizuete WG, Zhang Z, Gold A, Jaspers I, Fry RC. Understanding the Early Biological Effects of Isoprene-Derived Particulate Matter Enhanced by Anthropogenic Pollutants. Res Rep Health Eff Inst 2019; 2019:1-54. [PMID: 31872748 PMCID: PMC7271660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/10/2023] Open
Abstract
INTRODUCTION Airborne fine particulate matter (PM2.5; particulate matter ≤ 2.5 μm in aerodynamic diameter) plays a key role in air quality, climate, and public health. Globally, the largest mass fraction of PM2.5 is organic, dominated by secondary organic aerosol (SOA) formed from atmospheric oxidation of volatile organic compounds (VOCs). Isoprene from vegetation is the most abundant nonmethane VOC emitted into Earth's atmosphere. Isoprene has been recently recognized as one of the major sources of global SOA production that is enhanced by the presence of anthropogenic pollutants, such as acidic sulfate derived from sulfur dioxide (SO2), through multiphase chemistry of its oxidation products. Considering the abundance of isoprene-derived SOA in the atmosphere, understanding mechanisms of adverse health effects through inhalation exposure is critical to mitigating its potential impact on public health. Although previous studies have examined the toxicological effects of certain isoprene-derived gas-phase oxidation products, to date, no systematic studies have examined the potential toxicological effects of isoprene-derived SOA, its constituents, or its SOA precursors on human lung cells. SPECIFIC AIMS The overall objective of this study was to investigate the early biological effects of isoprene-derived SOA and its subtypes on BEAS-2B cells (a human bronchial epithelial cell line), with a particular focus on the alteration of oxidative stress- and inflammation-related genes. To achieve this objective, there were two specific aims. 1. Examine toxicity and early biological effects of SOA derived from the photochemical oxidation of isoprene, considering both urban and downwind-urban types of chemistry. 2. Examine toxicity and early biological effects of SOA derived directly from downstream oxidation products of isoprene (i.e., epoxides and hydroperoxides). METHODS Isoprene-derived SOA was first generated by photooxidation of isoprene under natural sunlight in the presence of nitric oxide (NO) and acidified sulfate aerosols. Experiments were conducted in a 120-m3 outdoor Teflon-film chamber located on the roof of the Gillings School of Global Public Health, University of North Carolina at Chapel Hill (UNC-Chapel Hill). BEAS-2B cells were exposed to chamber- generated isoprene-derived SOA using the Electrostatic Aerosol in Vitro Exposure System (EAVES). This approach allowed us to generate atmospherically relevant compositions of isoprene-derived SOA and to examine its toxicity through in vitro exposures at an air-liquid interface, providing a more biologically relevant exposure model. Isoprene-derived SOA samples were also collected, concurrently with EAVES sampling, onto Teflon membrane filters for in vitro resuspension exposures and for analysis of aerosol chemical composition by gas chromatography/electron ionization-quadrupole mass spectrometry (GC/EI-MS) with prior trimethylsilylation and ultra-performance liquid-chromatography coupled to high-resolution quadrupole time-of-flight mass spectrometry equipped with electrospray ionization (UPLC/ESI-HR-QTOFMS). Isoprene-derived SOA samples were also analyzed by the dithiothreitol (DTT) assay in order to characterize their reactive oxygen species (ROS)-generation potential. Organic synthesis of known isoprene-derived SOA precursors, which included isoprene epoxydiols (IEPOX), methacrylic acid epoxide (MAE), and isoprene-derived hydroxyhydroperoxides (ISOPOOH), was conducted in order to isolate major isoprene-derived SOA formation pathways from each other and to determine which of these pathways (or SOA types) is potentially more toxic. Since IEPOX and MAE produce SOA through multiphase chemistry onto acidic sulfate aerosol, dark reactive uptake experiments of IEPOX and MAE in the presence of acidic sulfate aerosol were performed in a 10-m3 flexible Teflon indoor chamber at UNC-Chapel Hill. Since the generation of SOA from ISOPOOH (through a non-IEPOX route) requires a hydroxyl radical (•OH)-initiated oxidation, ozonolysis of tetramethylethylene (TME) was used to form the needed •OH radicals in the indoor chamber. The resultant low-volatility multifunctional hydroperoxides condensed onto nonacidified sulfate aerosol, yielding the ISOPOOH-derived SOA needed for exposures. Similar to the outdoor chamber SOAs, IEPOX, MAE- and ISOPOOH-derived SOAs were collected onto Teflon membrane filters and were subsequently chemically characterized by GC/EI-MS and UPLC/ESI-HR-QTOFMS as well as for ROS-generation potential using the DTT assay. These filters were also used for resuspension in vitro exposures. By conducting gene expression profiling, we provided mechanistic insights into the potential health effects of isoprene-derived SOA. First, gene expression profiling of 84 oxidative stress- and 249 inflammation-associated human genes was performed for cells exposed to isoprene-derived SOA generated in our outdoor chamber experiments in EAVES or by resuspension. Two pathway-focused panels were utilized for this purpose: (1) nCounter GX Human Inflammation Kit comprised of 249 human genes (NanoString), and (2) Human Oxidative Stress Plus RT2 Profiler PCR Array (Qiagen) comprised of 84 oxidative stress-associated genes. We compared the gene expression levels in cells exposed to SOA generated in an outdoor chamber from photochemical oxidation of isoprene in the presence of NO and acidified sulfate seed aerosol to cells exposed to a dark control mixture of isoprene, NO, and acidified sulfate seed aerosol to isolate the effects of the isoprene-derived SOA on the cells using the EAVES and resuspension exposure methods. Pathway-based analysis was performed for significantly altered genes using the ConsensusPathDB database, which is a database system for the integration of human gene functional interactions to provide biological pathway information for a gene set of interest. Pathway annotation was performed to provide biological pathway information for each gene set. The gene-gene interaction networks were constructed and visualized using the GeneMANIA Cytoscape app (version 3.4.1) to predict the putative function of altered genes. Lastly, isoprene-derived SOA collected onto filters was used in resuspension exposures to measure select inflammatory biomarkers, including interleukin 8 (IL-8) and prostaglandin-endoperoxide synthase 2 (PTGS2) genes, in BEAS-2B cells to ensure that effects observed from EAVES exposures were attributable to particle-phase organic products. Since EAVES and resuspension exposures compared well, gene expression profiling for IEPOX-, MAE- and ISOPOOH-derived SOA were conducted using only resuspension exposures. RESULTS AND CONCLUSIONS Chemical characterization coupled with biological analyses show that atmospherically relevant compositions of isoprene-derived SOA alter the levels of 41 oxidative stress-related genes. Of the different composition types of isoprene-derived SOA, MAE- and ISOPOOH-derived SOA altered the greatest number of genes, suggesting that carbonyl and hydroperoxide functional groups are oxidative stress promoters. Taken together, the different composition types accounted for 34 of the genes altered by the total isoprene-derived SOA mixture, while 7 remained unique to the total mixture exposures, indicating that there is either a synergistic effect of the different isoprene-derived SOA components or an unaccounted component in the mixture. The high-oxides of nitrogen (NOx) regime, which yielded MAE- and methacrolein (MACR)-derived SOA, had a higher ROS-generation potential (as measured by the DTT assay) than the low- NOx regime, which included IEPOX- and isoprene-derived SOA. However, ISOPOOH-derived SOA, which also formed in the low- NOx regime, had the highest ROS-generation potential, similar to 1,4-naphthoquinone (1,4-NQ). This suggests that aerosol-phase organic peroxides contribute significantly to particulate matter (PM) oxidative potential. MAE- and MACR- derived SOA showed equal or greater ROS-generation potential than was reported in prior UNC-Chapel Hill studies on diesel exhaust PM, highlighting the importance of a comprehensive investigation of the toxicity of isoprene-derived SOA. Notably, ISOPOOH-derived SOA was one order of magnitude higher in ROS-generation potential than diesel exhaust particles previously examined at UNC-Chapel Hill. As an acellular assay, the DTT assay may not be predictive of oxidative stress; therefore, we also focused on the gene expression results from the cellular exposures. We have demonstrated that the nuclear factor (erythroid-derived 2)-like 2 (Nrf2) and the redox-sensitive activation protein-1 (AP-1) transcription factor networks have been significantly altered upon exposure to isoprene-derived SOA. The identification of Nrf2 pathway in cells exposed to isoprene-derived SOA is in accordance with our findings using the DTT assay, which measures the thiol reactivity of PM samples as a surrogate for their ROS-generation potential. Specifically, our results point to the cysteine-thiol modifications within cells that lead to activation of Nrf2-related gene expression. However, based on our gene expression results showing no clear relationship between DTT activity and the number of altered oxidative stress-related genes, the DTT activity of isoprene-derived SOA may not be directly indicative of toxicity relative to other SOA types. While activation of Nrf2-associated genes has been identified with responses to oxidative stress and linked to traffic related air pollution exposure in both toxicological and epidemiological studies, their implicit involvement in this study suggests that activation of Nrf2-related gene expression may occur with exposures to all sorts of PM types. By controlling the exposure time, method, and dose we demonstrated that among the SOA derived from previously identified individual precursors of isoprene-derived SOA, ISOPOOH-derived SOA alters more oxidative stress related genes than does IEPOX-derived SOA, but fewer than MAE-derived SOA. This suggests that the composition of MAE-derived SOA may be the greatest contributor to alterations of oxidative stress-related gene expression observed due to isoprene-derived SOA exposure. Further study on induced levels of protein expression and specific toxicological endpoints is necessary to determine if the observed gene expression changes lead to adverse health effects. In addition, such studies have implications for pollution-control strategies because NOx and SO2 are controllable pollutants that can alter the composition of SOA, and in turn alter its effects on gene expression. The mass fraction of different components of atmospheric isoprene derived SOA should be considered, but altering the fraction of high- NOx isoprene-derived SOA (e.g., MAE derived SOA) may yield greater changes in gene expression than altering the fraction of low- NOx isoprene derived SOA types (ISOPOOH- or IEPOX-derived SOA). Finally, this study confirms that total isoprene-derived SOA alters the expression of a greater number of genes than does SOA derived from the tested precursors. This warrants further work to determine the underlying explanation for this observation, which may be uncharacterized components of isoprene-derived SOA or the potential for synergism between the studied components.
Collapse
Affiliation(s)
- J D Surratt
- Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, University of North Carolina, Chapel Hill
| | - Y-H Lin
- Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, University of North Carolina, Chapel Hill
| | - M Arashiro
- Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, University of North Carolina, Chapel Hill
| | - W G Vizuete
- Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, University of North Carolina, Chapel Hill
| | - Z Zhang
- Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, University of North Carolina, Chapel Hill
| | - A Gold
- Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, University of North Carolina, Chapel Hill
| | - I Jaspers
- Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, University of North Carolina, Chapel Hill
- Center for Environmental Medicine, Asthma, and Lung Biology, School of Medicine, University of North Carolina, Chapel Hill
- Curriculum in Toxicology, University of North Carolina, Chapel Hill
- Department of Pediatrics, School of Medicine, University of North Carolina, Chapel Hill
- Department of Microbiology and Immunology, School of Medicine, University of North Carolina, Chapel Hill
| | - R C Fry
- Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, University of North Carolina, Chapel Hill
- Curriculum in Toxicology, University of North Carolina, Chapel Hill
| |
Collapse
|
14
|
Investigating the Effects of Stove Emissions on Ocular and Cancer Cells. Sci Rep 2019; 9:1870. [PMID: 30755694 PMCID: PMC6372759 DOI: 10.1038/s41598-019-38803-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2018] [Accepted: 12/20/2018] [Indexed: 12/19/2022] Open
Abstract
More than a third of the world’s population relies on solid fuels for cooking and heating, with major health consequences. Although solid fuel combustion emissions are known to increase the prevalence of illnesses such as chronic obstructive pulmonary disease and lung cancer, however, their effect on the eyes is underexplored. This study assesses the acute toxicity of solid fuel combustion emissions on healthy ocular cells and a cancer cell line. Three healthy ocular cell lines (corneal, lens, and retinal epithelial cells) and a cancer cell line (Chinese hamster ovary cells) were exposed to liquid and gas phase emissions from applewood and coal combustion. Following the exposure, real-time cell attachment behavior was monitored for at least 120 hours with electrical cell impedance spectroscopy. The viability of the cells, amount of apoptotic cells, and generation of reactive oxygen species (ROS) were quantified with MTT, ApoTox-Glo, and ROS-Glo H2O2 assays, respectively. The results showed that coal emissions compromised the viability of ocular cells more than applewood emissions. Interestingly, the cancer cells, although their viability was not compromised, generated 1.7 to 2.7 times more ROS than healthy cells. This acute exposure study provides compelling proof that biomass combustion emissions compromise the viability of ocular cells and increase ROS generation. The increased ROS generation was fatal for ocular cells, but it promoted the growth of cancer cells.
Collapse
|
15
|
Emgård M, Msuya SE, Nyombi BM, Mosha D, Gonzales-Siles L, Nordén R, Geravandi S, Mosha V, Blomqvist J, Franzén S, Sahlgren F, Andersson R, Skovbjerg S. Carriage of penicillin-non-susceptible pneumococci among children in northern Tanzania in the 13-valent pneumococcal vaccine era. Int J Infect Dis 2019; 81:156-166. [PMID: 30685588 DOI: 10.1016/j.ijid.2019.01.035] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2018] [Revised: 01/18/2019] [Accepted: 01/19/2019] [Indexed: 10/27/2022] Open
Abstract
OBJECTIVES To determine the antibiotic susceptibility and serotype distribution of colonizing Streptococcus pneumoniae in Tanzanian children. Serial cross-sectional surveys were performed following the national introduction of the 13-valent pneumococcal conjugate vaccine (PCV13) in December 2012. METHODS A total of 775 children less than 2 years of age were recruited at primary health centres in Moshi, Tanzania between 2013 and 2015, and samples were obtained from the nasopharynx. S. pneumoniae were isolated by culture and tested for antibiotic susceptibility by disc diffusion and E-test methods; molecular testing was used to determine serotype/group. RESULTS Penicillin non-susceptibility in the isolated pneumococci increased significantly from 31% (36/116) in 2013, to 47% (30/64) in 2014 and 53% (32/60) in 2015. Non-susceptibility to amoxicillin/ampicillin and ceftriaxone was low (n=8 and n=9, respectively), while 97% (236/244) of the isolates were non-susceptible to trimethoprim-sulfamethoxazole. The majority of the children (54%, n=418) had been treated with antibiotics in the past 3 months, and amoxicillin/ampicillin were overall the most commonly used antibiotics. Carriage of penicillin-non-susceptible pneumococci was more common in children with many siblings. The prevalence of PCV13 serotypes among the detected serotypes/groups decreased from 56% (40/71) in 2013 to 23% (13/56) in 2015. CONCLUSIONS Penicillin non-susceptibility in S. pneumoniae colonizing Tanzanian children increased during an observation period shortly after the introduction of PCV13. Measures to ensure rational use of antibiotics and more effective systems for surveillance of antibiotic resistance and serotype distribution are needed to assure continued effective treatment of pneumococcal disease.
Collapse
Affiliation(s)
- Matilda Emgård
- Department of Infectious Diseases, Institute of Biomedicine, University of Gothenburg, Gothenburg, Sweden; Centre for Antibiotic Resistance Research (CARe), University of Gothenburg, Gothenburg, Sweden.
| | - Sia E Msuya
- Institute of Public Health, Kilimanjaro Christian Medical University College (KCMUCo), Moshi, Tanzania; Department of Community Medicine, Kilimanjaro Christian Medical Centre (KCMC), Moshi, Tanzania
| | - Balthazar M Nyombi
- Institute of Public Health, Kilimanjaro Christian Medical University College (KCMUCo), Moshi, Tanzania; Department of Community Medicine, Kilimanjaro Christian Medical Centre (KCMC), Moshi, Tanzania
| | - Dominic Mosha
- Institute of Public Health, Kilimanjaro Christian Medical University College (KCMUCo), Moshi, Tanzania
| | - Lucia Gonzales-Siles
- Department of Infectious Diseases, Institute of Biomedicine, University of Gothenburg, Gothenburg, Sweden
| | - Rickard Nordén
- Department of Infectious Diseases, Institute of Biomedicine, University of Gothenburg, Gothenburg, Sweden
| | - Shadi Geravandi
- Department of Infectious Diseases, Institute of Biomedicine, University of Gothenburg, Gothenburg, Sweden
| | - Victor Mosha
- Institute of Public Health, Kilimanjaro Christian Medical University College (KCMUCo), Moshi, Tanzania
| | - Josefine Blomqvist
- Department of Infectious Diseases, Institute of Biomedicine, University of Gothenburg, Gothenburg, Sweden
| | - Sofie Franzén
- Department of Infectious Diseases, Institute of Biomedicine, University of Gothenburg, Gothenburg, Sweden
| | - Fredrika Sahlgren
- Department of Infectious Diseases, Institute of Biomedicine, University of Gothenburg, Gothenburg, Sweden
| | - Rune Andersson
- Department of Infectious Diseases, Institute of Biomedicine, University of Gothenburg, Gothenburg, Sweden; Centre for Antibiotic Resistance Research (CARe), University of Gothenburg, Gothenburg, Sweden
| | - Susann Skovbjerg
- Department of Infectious Diseases, Institute of Biomedicine, University of Gothenburg, Gothenburg, Sweden; Centre for Antibiotic Resistance Research (CARe), University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|
16
|
Velali E, Papachristou E, Pantazaki A, Besis A, Samara C, Labrianidis C, Lialiaris T. In vitro cellular toxicity induced by extractable organic fractions of particles exhausted from urban combustion sources - Role of PAHs. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2018; 243:1166-1176. [PMID: 30266006 DOI: 10.1016/j.envpol.2018.09.075] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2018] [Revised: 09/05/2018] [Accepted: 09/15/2018] [Indexed: 05/26/2023]
Abstract
The bioactivity of the extractable organic matter (EOM) of particulate matter (PM) exhausted from major urban combustion sources, including residential heating installations (wood-burning fireplace and oil-fired boiler) and vehicular exhaust from gasoline and diesel cars), was investigated in vitro by employing multiple complementary cellular and bacterial assays. Cytotoxic responses were investigated by applying the MTT ((3-(4, 5-dimethylthiazolyl-2)-2, 5-diphenyltetrazolium bromide)) bioassay and the lactate dehydrogenase (LDH) release bioassay on human lung cells (MRC-5). Sister Chromatids Exchange (SCE) genotoxicity was measured on human peripheral lymphocytes. Lipid peroxidation potential via reactive oxygen species (ROS) was evaluated on E. coli bacterial cells by measuring the malondialdehyde (MDA) end product. Furthermore, the DNA damage induced by the organic PM fractions was evaluated by the reporter (β-galactosidase) gene expression assay in the bacterial cells, and, by examining the fragmentation of chromosomal DNA on agarose gel electrophoresis. The correlations between the source PM-induced biological endpoints and the PM content in polycyclic aromatic hydrocarbons (PAHs), as typical molecular markers of combustion, were investigated. Fireplace wood smoke particles exhibited by far the highest content in total and carcinogenic PAHs followed by oil boilers, diesel and gasoline emissions. However, in all bioassays, the total EOM-induced toxicity, normalized to PM mass, was highest for diesel cars equipped with Diesel Particle Filter (DPF). No correlation between the toxicological endpoints and the PAHs content was observed suggesting that cytotoxicity and genotoxicity are probably driven by other extractable organic compounds than the commonly measured unsubstituted PAHs. Clearly, further research is needed to elucidate the role of PAHs in the biological effects induced by both, combustion emissions, and ambient air particles.
Collapse
Affiliation(s)
- Ekaterini Velali
- Laboratory of Biochemistry, Department of Chemistry, Aristotle University of Thessaloniki, GR-54124, Thessaloniki, Greece
| | - Eleni Papachristou
- Laboratory of Biochemistry, Department of Chemistry, Aristotle University of Thessaloniki, GR-54124, Thessaloniki, Greece
| | - Anastasia Pantazaki
- Laboratory of Biochemistry, Department of Chemistry, Aristotle University of Thessaloniki, GR-54124, Thessaloniki, Greece
| | - Athanasios Besis
- Environmental Pollution Control Laboratory, Department of Chemistry, Aristotle University of Thessaloniki, GR-54124, Thessaloniki, Greece
| | - Constantini Samara
- Environmental Pollution Control Laboratory, Department of Chemistry, Aristotle University of Thessaloniki, GR-54124, Thessaloniki, Greece.
| | - Christos Labrianidis
- Department of Genetics, Faculty of Medicine, Demokrition University of Thrace, GR-68100, Alexandroupolis, Greece
| | - Theodore Lialiaris
- Department of Genetics, Faculty of Medicine, Demokrition University of Thrace, GR-68100, Alexandroupolis, Greece
| |
Collapse
|
17
|
Patel S, Leavey A, Sheshadri A, Kumar P, Kandikuppa S, Tarsi J, Mukhopadhyay K, Johnson P, Balakrishnan K, Schechtman KB, Castro M, Yadama G, Biswas P. Associations between household air pollution and reduced lung function in women and children in rural southern India. J Appl Toxicol 2018; 38:1405-1415. [PMID: 30047157 PMCID: PMC10545302 DOI: 10.1002/jat.3659] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2018] [Revised: 05/08/2018] [Accepted: 06/04/2018] [Indexed: 12/25/2022]
Abstract
Half of the world's population still relies on solid fuels to fulfill its energy needs for cooking and space heating, leading to high levels of household air pollution (HAP), adversely affecting human health and the environment. A cross-sectional cohort study was conducted to investigate any associations between: (1) HAP metrics (mass concentration of particulate matter of aerodynamic size less than 2.5 μm (PM2.5 ), lung-deposited surface area (LDSA) and carbon monoxide (CO)); (2) a range of household and socio-demographic characteristics; and (3) lung function for women and children exposed daily to biomass cookstove emissions, in rural southern India. HAP measurements were collected inside the kitchen of 96 households, and pulmonary function tests were performed for the women and child in each enrolled household. Detailed questionnaires captured household characteristics, health histories and various socio-demographic parameters. Simple linear and logistic regression analysis was performed to examine possible associations between the HAP metrics, lung function and all household/socio-demographic variables. Obstructive lung defects (forced vital capacity (FVC) ≥ lower limit of normal (LLN) and forced expiratory volume in 1 second (FEV1 )/FVC < LLN) were found in 8% of mothers and 9% of children, and restrictive defects (FVC < LLN and FEV1 /FVC ≥ LLN) were found in 17% of mothers and 15% of children. A positive association between LDSA, included for the first time in this type of epidemiological study, and lung function was observed, indicating LDSA is a superior metric compared to PM2.5 to assess effects of PM on lung function. HAP demonstrated a moderate association with subnormal lung function in children. The results emphasize the need to look beyond mass-based PM metrics to assess fully the association between HAP and lung function.
Collapse
Affiliation(s)
- Sameer Patel
- Dept. of Energy, Environmental and Chemical Engineering, Washington University in St. Louis, One Brookings Drive, St. Louis, MO 63130, USA
| | - Anna Leavey
- Dept. of Energy, Environmental and Chemical Engineering, Washington University in St. Louis, One Brookings Drive, St. Louis, MO 63130, USA
| | - Ajay Sheshadri
- Department of Pulmonary Medicine, The University of Texas MD Anderson Cancer Center, 1400 Pressler St., Unit 1462, Houston, TX 77030-1402, USA
| | - Praveen Kumar
- Boston College School of Social Work, Chestnut Hill, MA 02467, USA
| | - Sandeep Kandikuppa
- Curriculum in Environment and Ecology, University of North Carolina, Chapel Hill, 3202 Murray Hall, Chapel Hill, NC 27599-3135, USA
| | - Jaime Tarsi
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Washington University in St. Louis, One Brookings Drive, St. Louis, MO 63130, USA
| | - Krishnendu Mukhopadhyay
- Department of Environmental Health Engineering, Sri Ramachandra Nagar, Porur, Chennai – 600116, India
| | - Priscilla Johnson
- Department of Physiology, Sri Ramachandra University, Sri Ramachandra Nagar, Porur, Chennai – 600116, India
| | - Kalpana Balakrishnan
- Department of Environmental Health Engineering, Sri Ramachandra Nagar, Porur, Chennai – 600116, India
| | - Kenneth B. Schechtman
- Division of Biostatistics, Washington University in St. Louis, One Brookings Drive, St. Louis, MO 63130, USA
| | - Mario Castro
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Washington University in St. Louis, One Brookings Drive, St. Louis, MO 63130, USA
| | - Gautam Yadama
- Boston College School of Social Work, Chestnut Hill, MA 02467, USA
| | - Pratim Biswas
- Dept. of Energy, Environmental and Chemical Engineering, Washington University in St. Louis, One Brookings Drive, St. Louis, MO 63130, USA
| |
Collapse
|
18
|
Misra A, Longnecker MP, Dionisio KL, Bornman RMS, Travlos GS, Brar S, Whitworth KW. Household fuel use and biomarkers of inflammation and respiratory illness among rural South African Women. ENVIRONMENTAL RESEARCH 2018; 166:112-116. [PMID: 29885612 PMCID: PMC6110960 DOI: 10.1016/j.envres.2018.05.016] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2017] [Revised: 04/16/2018] [Accepted: 05/12/2018] [Indexed: 05/24/2023]
Abstract
Though literature suggests a positive association between use of biomass fuel for cooking and inflammation, few studies among women in rural South Africa exist. We included 415 women from the South African Study of Women and Babies (SOWB), recruited from 2010 to 2011. We obtained demographics, general medical history and usual source of cooking fuel (wood, electricity) via baseline questionnaire. A nurse obtained height, weight, blood pressure, and blood samples. We measured plasma concentrations of a suite of inflammatory markers (e.g., interleukins, tumor necrosis factor-α, C-reactive protein). We assessed associations between cooking fuel and biomarkers of inflammation and respiratory symptoms/illness using crude and adjusted linear and logistic regression models. We found little evidence of an association between fuel-use and biomarkers of inflammation, pre-hypertension/hypertension, or respiratory illnesses. Though imprecise, we found 41% (95% confidence interval (CI) = 0.72-2.77) higher odds of self-reported wheezing/chest tightness among wood-users compared with electricity-users. Though studies among other populations report positive findings between biomass fuel use and inflammation, it is possible that women in the present study experience lower exposures to household air pollution given the cleaner burning nature of wood compared with other biomass fuels (e.g., coal, dung).
Collapse
Affiliation(s)
- Ankita Misra
- Department of Epidemiology, Human Genetics and Environmental Sciences, UTHealth School of Public Health in San Antonio, San Antonio, TX, USA
| | - Matthew P Longnecker
- Epidemiology Branch, National Institute for Environmental Health Sciences, National Institutes of Health, DHHS, Research Triangle Park, NC, USA
| | - Kathie L Dionisio
- National Exposure Research Laboratory, Environmental Protection Agency, Research Triangle Park, NC, USA
| | - Riana M S Bornman
- Department of Urology, University of Pretoria, Pretoria, South Africa; Cellular and Molecular Pathology Branch, National Institute of Environmental Health Sciences, NIH, DHHS, Research Triangle Park, NC, USA; The University of Pretoria Centre for Sustainable Malaria Control, University of Pretoria, Pretoria, South Africa
| | - Gregory S Travlos
- Cellular and Molecular Pathology Branch, National Institute of Environmental Health Sciences, NIH, DHHS, Research Triangle Park, NC, USA
| | - Sukhdev Brar
- Cellular and Molecular Pathology Branch, National Institute of Environmental Health Sciences, NIH, DHHS, Research Triangle Park, NC, USA
| | - Kristina W Whitworth
- Department of Epidemiology, Human Genetics and Environmental Sciences, UTHealth School of Public Health in San Antonio, San Antonio, TX, USA; Southwest Center for Occupational and Environmental Health, UTHealth School of Public Health, Houston, TX, USA.
| |
Collapse
|
19
|
Gibbs-Flournoy EA, Gilmour MI, Higuchi M, Jetter J, George I, Copeland L, Harrison R, Moser VC, Dye JA. Differential exposure and acute health impacts of inhaled solid-fuel emissions from rudimentary and advanced cookstoves in female CD-1 mice. ENVIRONMENTAL RESEARCH 2018; 161:35-48. [PMID: 29100208 PMCID: PMC6143295 DOI: 10.1016/j.envres.2017.10.043] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2017] [Revised: 09/25/2017] [Accepted: 10/24/2017] [Indexed: 05/04/2023]
Abstract
BACKGROUND There is an urgent need to provide access to cleaner end user energy technologies for the nearly 40% of the world's population who currently depend on rudimentary cooking and heating systems. Advanced cookstoves (CS) are designed to cut emissions and solid-fuel consumption, thus reducing adverse human health and environmental impacts. STUDY PREMISE We hypothesized that, compared to a traditional (Tier 0) three-stone (3-S) fire, acute inhalation of solid-fuel emissions from advanced natural-draft (ND; Tier 2) or forced-draft (FD; Tier 3) stoves would reduce exposure biomarkers and lessen pulmonary and innate immune system health effects in exposed mice. RESULTS Across two simulated cooking cycles (duration ~ 3h), emitted particulate mass concentrations were reduced 80% and 62% by FD and ND stoves, respectively, compared to the 3-S fire; with corresponding decreases in particles visible within murine alveolar macrophages. Emitted carbon monoxide was reduced ~ 90% and ~ 60%, respectively. Only 3-S-fire-exposed mice had increased carboxyhemoglobin levels. Emitted volatile organic compounds were FD ≪ 3-S-fire ≤ ND stove; increased expression of genes involved in xenobiotic metabolism (COX-2, NQO1, CYP1a1) was detected only in ND- and 3-S-fire-exposed mice. Diminished macrophage phagocytosis was observed in the ND group. Lung glutathione was significantly depleted across all CS groups, however the FD group had the most severe, ongoing oxidative stress. CONCLUSIONS These results are consistent with reports associating exposure to solid fuel stove emissions with modulation of the innate immune system and increased susceptibility to infection. Lower respiratory infections continue to be a leading cause of death in low-income economies. Notably, 3-S-fire-exposed mice were the only group to develop acute lung injury, possibly because they inhaled the highest concentrations of hazardous air toxicants (e.g., 1,3-butadiene, toluene, benzene, acrolein) in association with the greatest number of particles, and particles with the highest % organic carbon. However, no Tier 0-3 ranked CS group was without some untoward health effect indicating that access to still cleaner, ideally renewable, energy technologies for cooking and heating is warranted.
Collapse
Affiliation(s)
| | - M Ian Gilmour
- National Health and Environmental Research Laboratory (NHEERL), Office of Research and Development, US Environmental Protection Agency, Research Triangle Park, NC 27711, USA
| | - Mark Higuchi
- National Health and Environmental Research Laboratory (NHEERL), Office of Research and Development, US Environmental Protection Agency, Research Triangle Park, NC 27711, USA
| | - James Jetter
- National Risk Management Research Laboratory (NRMRL), Office of Research and Development, US Environmental Protection Agency, Research Triangle Park, NC 27711, USA
| | - Ingrid George
- National Risk Management Research Laboratory (NRMRL), Office of Research and Development, US Environmental Protection Agency, Research Triangle Park, NC 27711, USA
| | - Lisa Copeland
- National Health and Environmental Research Laboratory (NHEERL), Office of Research and Development, US Environmental Protection Agency, Research Triangle Park, NC 27711, USA
| | - Randy Harrison
- National Health and Environmental Research Laboratory (NHEERL), Office of Research and Development, US Environmental Protection Agency, Research Triangle Park, NC 27711, USA
| | - Virginia C Moser
- National Health and Environmental Research Laboratory (NHEERL), Office of Research and Development, US Environmental Protection Agency, Research Triangle Park, NC 27711, USA
| | - Janice A Dye
- National Health and Environmental Research Laboratory (NHEERL), Office of Research and Development, US Environmental Protection Agency, Research Triangle Park, NC 27711, USA.
| |
Collapse
|
20
|
Spann K, Snape N, Baturcam E, Fantino E. The Impact of Early-Life Exposure to Air-borne Environmental Insults on the Function of the Airway Epithelium in Asthma. Ann Glob Health 2018; 82:28-40. [PMID: 27325066 DOI: 10.1016/j.aogh.2016.01.007] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
The airway epithelium is both a physical barrier protecting the airways from environmental insults and a significant component of the innate immune response. There is growing evidence that exposure of the airway epithelium to environmental insults in early life may lead to permanent changes in structure and function that underlie the development of asthma. Here we review the current published evidence concerning the link between asthma and epithelial damage within the airways and identify gaps in knowledge for future studies.
Collapse
Affiliation(s)
- Kirsten Spann
- School of Biomedical Sciences, Queensland University of Technology, Queensland, Australia.
| | - Natale Snape
- Children's Health Research Centre, University of Queensland, Queensland, Australia
| | - Engin Baturcam
- Children's Health Research Centre, University of Queensland, Queensland, Australia
| | - Emmanuelle Fantino
- Children's Health Research Centre, University of Queensland, Queensland, Australia
| |
Collapse
|
21
|
SHEN G, Gaddam CK, Ebersviller SM, Vander Wal RL, Williams C, Faircloth JW, Jetter JJ, Hays MD. A Laboratory Comparison of Emission Factors, Number Size Distributions, and Morphology of Ultrafine Particles from 11 Different Household Cookstove-Fuel Systems. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2017; 51:6522-6532. [PMID: 28485591 PMCID: PMC6217968 DOI: 10.1021/acs.est.6b05928] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Ultrafine particle (UFP) emissions and particle number size distributions (PNSD) are critical in the evaluation of air pollution impacts; however, data on UFP number emissions from cookstoves, which are a major source of many pollutants, are limited. In this study, 11 fuel-stove combinations covering a variety of fuels and different stoves are investigated for UFP emissions and PNSD. The combustion of LPG and alcohol (∼1011 particles per useful energy delivered, particles/MJd), and kerosene (∼1013 particles/MJd), produced emissions that were lower by 2-3 orders of magnitude than solid fuels (1014-1015 particles/MJd). Three different PNSD types-unimodal distributions with peaks ∼30-40 nm, unimodal distributions with peaks <30 nm, and bimodal distributions-were observed as the result of both fuel and stove effects. The fractions of particles smaller than 30 nm (F30) varied among the tested systems, ranging from 13% to 88%. The burning of LPG and alcohol had the lowest PM2.5 mass emissions, UFP number emissions, and F30 (13-21% for LPG and 35-41% for alcohol). Emissions of PM2.5 and UFP from kerosene were also low compared with solid fuel burning but had a relatively high F30 value of approximately 73-80%.
Collapse
Affiliation(s)
- Guofeng SHEN
- Oak Ridge Institute for Science and Education (ORISE) Postdoctoral Fellow at U.S. Environmental Protection Agency, Office of Research and Development, 109 T.W. Alexander Drive, Research Triangle Park, NC 27709, USA
| | - Chethan K. Gaddam
- John and Willie Leone Family Department of Energy and Mineral Engineering and the EMS Energy Institute, Penn State University, University Park, PA 16802, USA
| | | | - Randy L. Vander Wal
- John and Willie Leone Family Department of Energy and Mineral Engineering and the EMS Energy Institute, Penn State University, University Park, PA 16802, USA
| | - Craig Williams
- CSS-Dynamac Inc., 1910 Sedwick Road, Durham, NC 27713, USA
| | - Jerroll W. Faircloth
- Jacobs Technology Inc., 600 William Northern Boulevard, Tullahoma, TN 37388, USA
| | - James J. Jetter
- U.S. Environmental Protection Agency, Office of Research and Development, 109 T.W. Alexander Drive, Research Triangle Park, NC 27709, USA
- Corresponding author: James J. Jetter, U.S. Environmental Protection Agency, Tel: 919-541-4830; Fax: 919-541-2157;
| | - Michael D. Hays
- U.S. Environmental Protection Agency, Office of Research and Development, 109 T.W. Alexander Drive, Research Triangle Park, NC 27709, USA
| |
Collapse
|
22
|
Maikawa CL, Zimmerman N, Rais K, Shah M, Hawley B, Pant P, Jeong CH, Delgado-Saborit JM, Volckens J, Evans G, Wallace JS, Godri Pollitt KJ. Murine precision-cut lung slices exhibit acute responses following exposure to gasoline direct injection engine emissions. THE SCIENCE OF THE TOTAL ENVIRONMENT 2016; 568:1102-1109. [PMID: 27369091 DOI: 10.1016/j.scitotenv.2016.06.173] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2016] [Revised: 06/03/2016] [Accepted: 06/21/2016] [Indexed: 06/06/2023]
Abstract
Gasoline direct injection (GDI) engines are increasingly prevalent in the global vehicle fleet. Particulate matter emissions from GDI engines are elevated compared to conventional gasoline engines. The pulmonary effects of these higher particulate emissions are unclear. This study investigated the pulmonary responses induced by GDI engine exhaust using an ex vivo model. The physiochemical properties of GDI engine exhaust were assessed. Precision cut lung slices were prepared using Balb/c mice to evaluate the pulmonary response induced by one-hour exposure to engine-out exhaust from a laboratory GDI engine operated at conditions equivalent to vehicle highway cruise conditions. Lung slices were exposed at an air-liquid interface using an electrostatic aerosol in vitro exposure system. Particulate and gaseous exhaust was fractionated to contrast mRNA production related to polycyclic aromatic hydrocarbon (PAH) metabolism and oxidative stress. Exposure to GDI engine exhaust upregulated genes involved in PAH metabolism, including Cyp1a1 (2.71, SE=0.22), and Cyp1b1 (3.24, SE=0.12) compared to HEPA filtered air (p<0.05). GDI engine exhaust further increased Cyp1b1 expression compared to filtered GDI engine exhaust (i.e., gas fraction only), suggesting this response was associated with the particulate fraction. Exhaust particulate was dominated by high molecular weight PAHs. Hmox1, an oxidative stress marker, exhibited increased expression after exposure to GDI (1.63, SE=0.03) and filtered GDI (1.55, SE=0.04) engine exhaust compared to HEPA filtered air (p<0.05), likely attributable to a combination of the gas and particulate fractions. Exposure to GDI engine exhaust contributes to upregulation of genes related to the metabolism of PAHs and oxidative stress.
Collapse
Affiliation(s)
- Caitlin L Maikawa
- Department of Environmental Health Sciences, School of Public Health and Health Sciences, University of Massachusetts, Amherst, MA, 01003, USA; Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, Ontario, M5S 3E5, Canada
| | - Naomi Zimmerman
- Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, Ontario, M5S 3E5, Canada; Mechanical and Industrial Engineering, University of Toronto, Toronto, Ontario, M5S 3G8, Canada
| | - Khaled Rais
- Mechanical and Industrial Engineering, University of Toronto, Toronto, Ontario, M5S 3G8, Canada
| | - Mittal Shah
- Institute of Musculoskeletal Sciences, University College London, Brockley Hill, Stanmore, London HA7 4LP, United Kingdom
| | - Brie Hawley
- Department of Environmental and Radiological Health Sciences, Colorado State University, Fort Collins, CO 80523, USA; Respiratory Health Division, National Institute for Occupational Safety and Health, Morgantown, WV 26505, USA
| | - Pallavi Pant
- Division of Environmental Health & Risk Management, School of Geography, Earth & Environmental Sciences, University of Birmingham, Edgbaston, Birmingham, B15 2TT, United Kingdom
| | - Cheol-Heon Jeong
- Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, Ontario, M5S 3E5, Canada
| | - Juana Maria Delgado-Saborit
- Division of Environmental Health & Risk Management, School of Geography, Earth & Environmental Sciences, University of Birmingham, Edgbaston, Birmingham, B15 2TT, United Kingdom
| | - John Volckens
- Department of Environmental and Radiological Health Sciences, Colorado State University, Fort Collins, CO 80523, USA; Department of Mechanical Engineering, Colorado State University, Fort Collins, CO 80521, USA
| | - Greg Evans
- Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, Ontario, M5S 3E5, Canada
| | - James S Wallace
- Mechanical and Industrial Engineering, University of Toronto, Toronto, Ontario, M5S 3G8, Canada
| | - Krystal J Godri Pollitt
- Department of Environmental Health Sciences, School of Public Health and Health Sciences, University of Massachusetts, Amherst, MA, 01003, USA.
| |
Collapse
|
23
|
Rapp VH, Caubel JJ, Wilson DL, Gadgil AJ. Reducing Ultrafine Particle Emissions Using Air Injection in Wood-Burning Cookstoves. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2016; 50:8368-8374. [PMID: 27348315 DOI: 10.1021/acs.est.6b01333] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
In order to address the health risks and climate impacts associated with pollution from cooking on biomass fires, researchers have focused on designing new cookstoves that improve cooking performance and reduce harmful emissions, specifically particulate matter (PM). One method for improving cooking performance and reducing emissions is using air injection to increase turbulence of unburned gases in the combustion zone. Although air injection reduces total PM mass emissions, the effect on PM size distribution and number concentration has not been thoroughly investigated. Using two new wood-burning cookstove designs from Lawrence Berkeley National Laboratory, this research explores the effect of air injection on cooking performance, PM and gaseous emissions, and PM size distribution and number concentration. Both cookstoves were created using the Berkeley-Darfur Stove as the base platform to isolate the effects of air injection. The thermal performance, gaseous emissions, PM mass emissions, and particle concentrations (ranging from 5 nm to 10 μm in diameter) of the cookstoves were measured during multiple high-power cooking tests. The results indicate that air injection improves cookstove performance and reduces total PM mass but increases total ultrafine (less than 100 nm in diameter) PM concentration over the course of high-power cooking.
Collapse
Affiliation(s)
- Vi H Rapp
- Environmental Technologies Area, Lawrence Berkeley National Laboratory , Berkeley, California 94720, United States
| | - Julien J Caubel
- Environmental Technologies Area, Lawrence Berkeley National Laboratory , Berkeley, California 94720, United States
| | - Daniel L Wilson
- Environmental Technologies Area, Lawrence Berkeley National Laboratory , Berkeley, California 94720, United States
| | - Ashok J Gadgil
- Environmental Technologies Area, Lawrence Berkeley National Laboratory , Berkeley, California 94720, United States
| |
Collapse
|
24
|
Mebratu YA, Smith KR, Agga GE, Tesfaigzi Y. Inflammation and emphysema in cigarette smoke-exposed mice when instilled with poly (I:C) or infected with influenza A or respiratory syncytial viruses. Respir Res 2016; 17:75. [PMID: 27363862 PMCID: PMC4929744 DOI: 10.1186/s12931-016-0392-x] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2016] [Accepted: 06/23/2016] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND The length of time for cigarette smoke (CS) exposure to cause emphysema in mice is drastically reduced when CS exposure is combined with viral infection. However, the extent of inflammatory responses and lung pathologies of mice exposed to CS and infected with influenza A virus (IAV), respiratory syncytial virus (RSV), or treated with the viral derivative dsRNA (polyinosine-polycytidylic acid [poly (I:C)] have not been compared. METHODS Mice were exposed to CS or filtered air for 4 weeks and received a single dose of vehicle, AV, or RSV infection and extent of inflammation and emphysema was evaluated 14 d later. In another set of experiments, mice were instilled with poly (I:C) twice a week during the third and fourth weeks of CS exposure and immediately analyzed for extent of inflammation and lung pathologies. RESULTS In CS-exposed mice, inflammation was characterized mainly by macrophages, lymphocytes, and neutrophils after IAV infection, mainly by lymphocytes, and neutrophils after RSV infection, and mainly by lymphocytes and neutrophils after poly (I:C) instillations. Despite increased inflammation, extent of emphysema by poly (I:C) was very mild; but was robust and similar for both IAV and RSV infections with enhanced MMP-12 mRNA expression and TUNEL positivity. Both IAV and RSV infections increased the levels of IL-17, IL-1β, IL-12b, IL-18, IL-23a, Ccl-2, Ccl-7 mRNAs in the lungs of CS-exposed mice with IAV causing more increases than RSV. CONCLUSION CS-induced inflammatory responses and extent of emphysematous changes differ depending on the type of viral infection. These animal models may be useful to study the mechanisms by which different viruses exacerbate CS-induced inflammation and emphysema.
Collapse
Affiliation(s)
- Yohannes A Mebratu
- COPD Program, Lovelace Respiratory Research Institute, 2425 Ridgecrest Drive SE, Albuquerque, NM, 87108, USA.
| | - Kevin R Smith
- COPD Program, Lovelace Respiratory Research Institute, 2425 Ridgecrest Drive SE, Albuquerque, NM, 87108, USA
| | - Getahun E Agga
- Agricultural Research Service, U.S. Department of Agriculture, R, Clay Center, Nebraska, USA
| | - Yohannes Tesfaigzi
- COPD Program, Lovelace Respiratory Research Institute, 2425 Ridgecrest Drive SE, Albuquerque, NM, 87108, USA
| |
Collapse
|
25
|
Anderman TL, DeFries RS, Wood SA, Remans R, Ahuja R, Ulla SE. Biogas Cook Stoves for Healthy and Sustainable Diets? A Case Study in Southern India. Front Nutr 2015; 2:28. [PMID: 26442274 PMCID: PMC4584993 DOI: 10.3389/fnut.2015.00028] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2015] [Accepted: 08/27/2015] [Indexed: 11/13/2022] Open
Abstract
Alternative cook stoves that replace solid fuels with cleaner energy sources, such as biogas, are gaining popularity in low-income settings across Asia, Africa, and South America. Published research on these technologies focuses on their potential to reduce indoor air pollution and improve respiratory health. Effects on other cooking-related aspects, such as diets and women's time management, are less understood. In this study, in southern India, we investigate if using biogas cook stoves alters household diets and women's time management. We compare treatment households who are supplied with a biogas cook stove with comparison households who do not have access to these stoves, while controlling for several socio-economic factors. We find that diets of treatment households are more diverse than diets of comparison households. In addition, women from treatment households spend on average 40 min less cooking and 70 min less collecting firewood per day than women in comparison households. This study illustrates that alongside known benefits for respiratory health, using alternative cook stoves may benefit household diets and free up women's time. To inform development investments and ensure these co-benefits, we argue that multiple dimensions of sustainability should be considered in evaluating the impact of alternative cook stoves.
Collapse
Affiliation(s)
| | - Ruth S DeFries
- Department of Ecology, Evolution, and Environmental Biology, Columbia University , New York, NY , USA
| | - Stephen A Wood
- Department of Ecology, Evolution, and Environmental Biology, Columbia University , New York, NY , USA ; Agriculture and Food Security Center, The Earth Institute, Columbia University , New York, NY , USA
| | - Roseline Remans
- Agriculture and Food Security Center, The Earth Institute, Columbia University , New York, NY , USA ; Bioversity International , Addis Ababa , Ethiopia
| | - Richie Ahuja
- Environmental Defense Fund , San Francisco, CA , USA
| | - Shujayath E Ulla
- Department of Social Work, St. Joseph's College , Bangalore , India
| |
Collapse
|
26
|
Gordon SB, Bruce NG, Grigg J, Hibberd PL, Kurmi OP, Lam KBH, Mortimer K, Asante KP, Balakrishnan K, Balmes J, Bar-Zeev N, Bates MN, Breysse PN, Buist S, Chen Z, Havens D, Jack D, Jindal S, Kan H, Mehta S, Moschovis P, Naeher L, Patel A, Perez-Padilla R, Pope D, Rylance J, Semple S, Martin WJ. Respiratory risks from household air pollution in low and middle income countries. THE LANCET RESPIRATORY MEDICINE 2014; 2:823-60. [PMID: 25193349 DOI: 10.1016/s2213-2600(14)70168-7] [Citation(s) in RCA: 525] [Impact Index Per Article: 52.5] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
A third of the world's population uses solid fuel derived from plant material (biomass) or coal for cooking, heating, or lighting. These fuels are smoky, often used in an open fire or simple stove with incomplete combustion, and result in a large amount of household air pollution when smoke is poorly vented. Air pollution is the biggest environmental cause of death worldwide, with household air pollution accounting for about 3·5-4 million deaths every year. Women and children living in severe poverty have the greatest exposures to household air pollution. In this Commission, we review evidence for the association between household air pollution and respiratory infections, respiratory tract cancers, and chronic lung diseases. Respiratory infections (comprising both upper and lower respiratory tract infections with viruses, bacteria, and mycobacteria) have all been associated with exposure to household air pollution. Respiratory tract cancers, including both nasopharyngeal cancer and lung cancer, are strongly associated with pollution from coal burning and further data are needed about other solid fuels. Chronic lung diseases, including chronic obstructive pulmonary disease and bronchiectasis in women, are associated with solid fuel use for cooking, and the damaging effects of exposure to household air pollution in early life on lung development are yet to be fully described. We also review appropriate ways to measure exposure to household air pollution, as well as study design issues and potential effective interventions to prevent these disease burdens. Measurement of household air pollution needs individual, rather than fixed in place, monitoring because exposure varies by age, gender, location, and household role. Women and children are particularly susceptible to the toxic effects of pollution and are exposed to the highest concentrations. Interventions should target these high-risk groups and be of sufficient quality to make the air clean. To make clean energy available to all people is the long-term goal, with an intermediate solution being to make available energy that is clean enough to have a health impact.
Collapse
Affiliation(s)
- Stephen B Gordon
- Department of Clinical Sciences, Liverpool School of Tropical Medicine, Liverpool, UK.
| | - Nigel G Bruce
- Department of Public Health and Policy, University of Liverpool, Liverpool, UK
| | - Jonathan Grigg
- Centre for Paediatrics, Blizard Institute, Queen Mary, University of London, London, UK
| | - Patricia L Hibberd
- Division of Global Health, Department of Pediatrics, Massachusetts General Hospital, and Harvard Medical School, Boston, MA, USA
| | - Om P Kurmi
- Clinical Trials Service Unit and Epidemiological Studies Unit, Nuffield Department of Population Health, University of Oxford, Oxford, UK
| | - Kin-bong Hubert Lam
- Institute of Occupational and Environmental Medicine, School of Health and Population Sciences, University of Birmingham, Birmingham, UK
| | - Kevin Mortimer
- Department of Clinical Sciences, Liverpool School of Tropical Medicine, Liverpool, UK
| | - Kwaku Poku Asante
- Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University, New York, NY, USA
| | - Kalpana Balakrishnan
- Department of Environmental Health Engineering, Sri Ramachandra University, Chennai, India
| | - John Balmes
- Department of Medicine, University of California San Francisco, San Francisco, CA, USA; Environmental Health Sciences, School of Public Health, University of California, Berkeley, CA, USA
| | - Naor Bar-Zeev
- Malawi-Liverpool-Wellcome Trust Clinical Research Programme, College of Medicine, University of Malawi, Blantyre, Malawi; Institute of Infection and Global Health, University of Liverpool, Liverpool, UK
| | - Michael N Bates
- Divisions of Epidemiology and Environmental Health Sciences, School of Public Health, University of California, Berkeley, CA, USA
| | - Patrick N Breysse
- Department of Environmental Health Sciences, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Sonia Buist
- Oregon Health and Science University, Portland, OR, USA
| | - Zhengming Chen
- Clinical Trials Service Unit and Epidemiological Studies Unit, Nuffield Department of Population Health, University of Oxford, Oxford, UK
| | - Deborah Havens
- Department of Clinical Sciences, Liverpool School of Tropical Medicine, Liverpool, UK
| | - Darby Jack
- Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University, New York, NY, USA
| | | | - Haidong Kan
- School of Public Health, Fudan University, Shanghai, China
| | - Sumi Mehta
- Health Effects Institute, Boston, MA, USA
| | - Peter Moschovis
- Division of Global Health, Department of Pediatrics, Massachusetts General Hospital, and Harvard Medical School, Boston, MA, USA
| | - Luke Naeher
- The University of Georgia, College of Public Health, Department of Environmental Health Science, Athens, GA, USA
| | | | | | - Daniel Pope
- Department of Public Health and Policy, University of Liverpool, Liverpool, UK
| | - Jamie Rylance
- Malawi-Liverpool-Wellcome Trust Clinical Research Programme, College of Medicine, University of Malawi, Blantyre, Malawi
| | - Sean Semple
- University of Aberdeen, Scottish Centre for Indoor Air, Division of Applied Health Sciences, Royal Aberdeen Children's Hospital, Aberdeen, UK
| | - William J Martin
- Division of Environmental Health Sciences, College of Public Health, The Ohio State University, Columbus, OH, USA.
| |
Collapse
|
27
|
Zavala J, Lichtveld K, Ebersviller S, Carson JL, Walters GW, Jaspers I, Jeffries HE, Sexton KG, Vizuete W. The Gillings Sampler--an electrostatic air sampler as an alternative method for aerosol in vitro exposure studies. Chem Biol Interact 2014; 220:158-68. [PMID: 25010910 DOI: 10.1016/j.cbi.2014.06.026] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2014] [Revised: 06/23/2014] [Accepted: 06/29/2014] [Indexed: 11/17/2022]
Abstract
There is growing interest in studying the toxicity and health risk of exposure to multi-pollutant mixtures found in ambient air, and the U.S. Environmental Protection Agency (EPA) is moving towards setting standards for these types of mixtures. Additionally, the Health Effects Institute's strategic plan aims to develop and apply next-generation multi-pollutant approaches to understanding the health effects of air pollutants. There's increasing concern that conventional in vitro exposure methods are not adequate to meet EPA's strategic plan to demonstrate a direct link between air pollution and health effects. To meet the demand for new in vitro technology that better represents direct air-to-cell inhalation exposures, a new system that exposes cells at the air-liquid interface was developed. This new system, named the Gillings Sampler, is a modified two-stage electrostatic precipitator that provides a viable environment for cultured cells. Polystyrene latex spheres were used to determine deposition efficiencies (38-45%), while microscopy and imaging techniques were used to confirm uniform particle deposition. Negative control A549 cell exposures indicated the sampler can be operated for up to 4h without inducing any significant toxic effects on cells, as measured by lactate dehydrogenase (LDH) and interleukin-8 (IL-8). A novel positive aerosol control exposure method, consisting of a p-tolualdehyde (TOLALD) impregnated mineral oil aerosol (MOA), was developed to test this system. Exposures to the toxic MOA at a 1 ng/cm(2) dose of TOLALD yielded a reproducible 1.4 and 2-fold increase in LDH and IL-8 mRNA levels over controls. This new system is intended to be used as an alternative research tool for aerosol in vitro exposure studies. While further testing and optimization is still required to produce a "commercially ready" system, it serves as a stepping-stone in the development of cost-effective in vitro technology that can be made accessible to researchers in the near future.
Collapse
Affiliation(s)
- Jose Zavala
- Department of Environmental Sciences & Engineering, University of North Carolina at Chapel Hill, United States
| | - Kim Lichtveld
- Department of Environmental Sciences & Engineering, University of North Carolina at Chapel Hill, United States
| | - Seth Ebersviller
- Department of Environmental Sciences & Engineering, University of North Carolina at Chapel Hill, United States
| | - Johnny L Carson
- Department of Pediatrics, University of North Carolina at Chapel Hill, United States; Center for Environmental Medicine and Lung Biology, University of North Carolina at Chapel Hill, United States
| | - Glenn W Walters
- Department of Environmental Sciences & Engineering, University of North Carolina at Chapel Hill, United States
| | - Ilona Jaspers
- Department of Environmental Sciences & Engineering, University of North Carolina at Chapel Hill, United States; Department of Pediatrics, University of North Carolina at Chapel Hill, United States; Center for Environmental Medicine and Lung Biology, University of North Carolina at Chapel Hill, United States
| | - Harvey E Jeffries
- Department of Environmental Sciences & Engineering, University of North Carolina at Chapel Hill, United States
| | - Kenneth G Sexton
- Department of Environmental Sciences & Engineering, University of North Carolina at Chapel Hill, United States
| | - William Vizuete
- Department of Environmental Sciences & Engineering, University of North Carolina at Chapel Hill, United States.
| |
Collapse
|
28
|
Goh F, Shaw JG, Savarimuthu Francis SM, Vaughan A, Morrison L, Relan V, Marshall HM, Dent AG, O'Hare PE, Hsiao A, Bowman RV, Fong KM, Yang IA. Personalizing and targeting therapy for COPD: the role of molecular and clinical biomarkers. Expert Rev Respir Med 2013; 7:593-605. [PMID: 24160750 DOI: 10.1586/17476348.2013.842468] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Chronic obstructive pulmonary disease (COPD) is a heterogeneous disease characterized by persistent airflow limitation. It is the third leading cause of death worldwide, and there are currently no curative strategies for this disease. Many factors contribute to COPD susceptibility, progression and exacerbations. These include cigarette smoking, environmental and occupational pollutants, respiratory infections and comorbidities. As the clinical phenotypes of COPD are so variable, it has been difficult to devise an individualized treatment plan for patients with this complex chronic disease. This review will highlight how potential clinical, inflammatory, genomic and epigenomic biomarkers for COPD could be used to personalize treatment, leading to improved disease management and prevention for our patients.
Collapse
Affiliation(s)
- Felicia Goh
- Department of Thoracic Medicine, The Prince Charles Hospital, Brisbane, Australia
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|