1
|
Liu M, Wu B, Yang F, Jiang D, Izadikhah I, Chen Y, Li N, Yan B. Understanding the hierarchical structure of collagen fibers of the human periodontal ligament: Implications for biomechanical characteristics. Acta Biomater 2024; 188:253-265. [PMID: 39299626 DOI: 10.1016/j.actbio.2024.09.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 09/03/2024] [Accepted: 09/11/2024] [Indexed: 09/22/2024]
Abstract
The periodontal ligament (PDL) is a unique fibrous connective tissue that regulates periodontal homeostasis mechanisms. Its biomechanical properties primarily reside in the hierarchical and non-uniform collagenous network. This study aimed to investigate the region-specific structure and composition of collagen fibers in the PDL at various scales and to explore their relationship with mechanical properties in a split-mouth design. Fresh human cadaver transverse PDL specimens of maxillary anterior teeth were categorized into cervical, middle, and apical groups. These specimens were analyzed via Masson's trichrome staining, scanning electron microscopy, picrosirius red (PSR) staining, three-dimensional (3D) reconstruction, Raman spectroscopy, and uniaxial tensile test. Statistical analyses were performed to compare the structural, compositional, and tensile properties among the groups. Notably, the middle PDL samples exhibited superior tensile strength and higher fiber area fraction than the other two transverse sections. Despite a higher mineral-to-matrix ratio and a different collagen secondary structure, the apical PDL demonstrated a relatively weaker tensile strength, possibly associated with its discovered sparser collagen fiber areal fraction. The cervical region, characterized by a mediocre fiber areal fraction, displayed diminished tensile strength. The 3D reconstructed collagenous network model and PSR staining exposed the fiber interaction and the micropores. Microscale porosity and variations in collagen secondary structure, particularly in the apical region, suggest adaptive mechanisms for accommodating compressive forces and maintaining functional integrity. Variance in the tensile properties of samples in different force directions indicated the significant influence of fiber orientation and root level on tissue mechanics. STATEMENT OF SIGNIFICANCE: This study provides critical insights into the biomechanical and structural properties of the human periodontal ligament (PDL), particularly focusing on the underexplored anterior teeth. Through advanced techniques like SEM, histological staining, 3D reconstruction, Raman spectroscopy, and tensile testing, we reveal significant regional variations in PDL collagen organization, composition, and biomechanical properties. Our findings address a crucial knowledge gap concerning the material mechanics of the PDL, offering a foundational understanding for future periodontal tissue engineering and biomimetic material development. This multi-scale analysis underscores the importance of both mesoscale structural characteristics and nanoscale molecular structures in maintaining PDL mechanical integrity.
Collapse
Affiliation(s)
- Mao Liu
- Department of Orthodontics, The Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing 210029, China; State Key Laboratory Cultivation Base of Research, Prevention and Treatment for Oral Diseases, Nanjing Medical University, Nanjing 210029, China; Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing 210029, China
| | - Bin Wu
- College of Mechanical and Electronic Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Fan Yang
- Department of Orthodontics, The Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing 210029, China; State Key Laboratory Cultivation Base of Research, Prevention and Treatment for Oral Diseases, Nanjing Medical University, Nanjing 210029, China; Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing 210029, China
| | - Di Jiang
- College of Mechanical and Electronic Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Iman Izadikhah
- Department of Orthodontics, The Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing 210029, China; State Key Laboratory Cultivation Base of Research, Prevention and Treatment for Oral Diseases, Nanjing Medical University, Nanjing 210029, China; Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing 210029, China
| | - Yingyu Chen
- Department of Orthodontics, The Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing 210029, China; State Key Laboratory Cultivation Base of Research, Prevention and Treatment for Oral Diseases, Nanjing Medical University, Nanjing 210029, China; Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing 210029, China
| | - Na Li
- College of Mechanical and Electronic Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Bin Yan
- Department of Orthodontics, The Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing 210029, China; State Key Laboratory Cultivation Base of Research, Prevention and Treatment for Oral Diseases, Nanjing Medical University, Nanjing 210029, China; Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing 210029, China.
| |
Collapse
|
2
|
Xing J, Zhang G, Sun M, Pan H, Zhang C, Liu Y, Li K, He Z, Zhang K, Wang J, Luo E, Zhang B. Clinical insights into tooth extraction via torsion method: a biomechanical analysis of the tooth-periodontal ligament complex. Front Bioeng Biotechnol 2024; 12:1479751. [PMID: 39450328 PMCID: PMC11500037 DOI: 10.3389/fbioe.2024.1479751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Accepted: 09/26/2024] [Indexed: 10/26/2024] Open
Abstract
Traditionally, extracting single, flat- or curved-rooted teeth through twisting is unfeasible. However, our clinical practice suggests that such teeth can be extracted efficiently through moderate twisting in a minimally invasive manner. Given the lack of studies on biomechanics of the tooth-periodontal ligament (PDL) complex during torsion, which has further constrained its application, we assessed the feasibility of the torsion method for extracting single-rooted teeth and evaluated its minimally invasive potential. Using three-dimensional finite element analysis, we examined the stress distribution of the tooth and PDL during torsion. Then, we examined changes in the optimal torsion angle (OTA) and stress distribution across various anatomical scenarios. During torsion loading, stress concentration was primarily observed on the sing-rooted tooth surface near the alveolar crest, whereas molars at the root furcation. The OTA was found to increase under conditions such as narrowing of root width, decrease in the root apical curvature, change from type I to IV bone, alveolar bone loss, and shortening of root length. Moreover, the clinically validated model demonstrated that 74% of outcomes fell within the standard OTA range. In conclusion, the decrease in PDL area necessitated a larger angle for complete PDL tearing. Single-rooted teeth with root width-to-thickness ratios of ≥0.42 and apical curvatures of ≤30°are suitable for extraction using the torsion method. This study confirms the feasibility of the torsion method for minimally invasive tooth extraction and expands its indications, laying the theoretical foundation and essential insights for its clinical application.
Collapse
Affiliation(s)
- Jiawei Xing
- Department (Hospital) of Stomatology, Lanzhou University, Lanzhou, China
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Guangzeng Zhang
- Department (Hospital) of Stomatology, Lanzhou University, Lanzhou, China
| | - Mingliang Sun
- Department (Hospital) of Stomatology, Lanzhou University, Lanzhou, China
| | - Hao Pan
- Department (Hospital) of Stomatology, Lanzhou University, Lanzhou, China
| | - Congdi Zhang
- Department (Hospital) of Stomatology, Lanzhou University, Lanzhou, China
| | - Yao Liu
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Kehan Li
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Ze He
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Kailiang Zhang
- Department (Hospital) of Stomatology, Lanzhou University, Lanzhou, China
| | - Jizeng Wang
- Key Laboratory of Mechanics on Disaster and Environment in Western China, Ministry of Education, College of Civil Engineering and Mechanics, Lanzhou University, Lanzhou, China
| | - En Luo
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Baoping Zhang
- Department (Hospital) of Stomatology, Lanzhou University, Lanzhou, China
- Key Lab of Maxillofacial Reconstruction and Intelligent Manufacturing, Lanzhou, Gansu, China
| |
Collapse
|
3
|
Behm C, Miłek O, Schwarz K, Kovar A, Derdak S, Rausch-Fan X, Moritz A, Andrukhov O. Heterogeneity in Dental Tissue-Derived MSCs Revealed by Single-Cell RNA-seq. J Dent Res 2024; 103:1141-1152. [PMID: 39327720 PMCID: PMC11500480 DOI: 10.1177/00220345241271997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/28/2024] Open
Abstract
Mesenchymal stromal cells (MSCs) are multipotent, progenitor cells that reside in tissues across the human body, including the periodontal ligament (PDL) and gingiva. They are a promising therapeutic tool for various degenerative and inflammatory diseases. However, different heterogeneity levels caused by tissue-to-tissue and donor-to-donor variability, and even intercellular differences within a given MSCs population, restrict their therapeutic potential. There are considerable efforts to decipher these heterogeneity levels using different "omics" approaches, including single-cell transcriptomics. Previous studies applied this approach to compare MSCs isolated from various tissues of different individuals, but distinguishing between donor-to-donor and tissue-to-tissue variability is still challenging. In this study, MSCs were isolated from the PDL and gingiva of 5 periodontally healthy individuals and cultured in vitro. A total of 3,844 transcriptomes were generated using single-cell mRNA sequencing. Clustering across the 2 different tissues per donor identified PDL- and gingiva-specific and tissue-spanning MSCs subpopulations with unique upregulated gene sets. Gene/pathway enrichment and protein-protein interaction (PPI) network analysis revealed differences restricted to several cellular processes between tissue-specific subpopulations, indicating a limited tissue-of-origin variability in MSCs. Gene expression, pathway enrichment, and PPI network analysis across all donors' PDL- or gingiva-specific subpopulations showed significant but limited donor-to-donor differences. In conclusion, this study demonstrates tissue- and donor-specific variabilities in the transcriptome level of PDL- and gingiva-derived MSCs, which seem restricted to specific cellular processes. Identifying tissue-specific and tissue-spanning subpopulations highlights the intercellular differences in dental tissue-derived MSCs. It could be reasonable to control MSCs at a single-cell level to ensure their properties before transplantation.
Collapse
Affiliation(s)
- C. Behm
- Competence Center for Periodontal Research, University Clinic of Dentistry, Medical University of Vienna, Austria
| | - O. Miłek
- Competence Center for Periodontal Research, University Clinic of Dentistry, Medical University of Vienna, Austria
| | - K. Schwarz
- Competence Center for Periodontal Research, University Clinic of Dentistry, Medical University of Vienna, Austria
| | - A. Kovar
- Competence Center for Periodontal Research, University Clinic of Dentistry, Medical University of Vienna, Austria
| | - S. Derdak
- Core Facilities, Medical University of Vienna, Vienna, Austria
| | - X. Rausch-Fan
- Clinical Division of Conservative Dentistry and Periodontology, University Clinic of Dentistry, Medical University of Vienna, Austria
- Center for Clinical Research, University Clinic of Dentistry, Medical University of Vienna, Austria
| | - A. Moritz
- Clinical Division of Conservative Dentistry and Periodontology, University Clinic of Dentistry, Medical University of Vienna, Austria
| | - O. Andrukhov
- Competence Center for Periodontal Research, University Clinic of Dentistry, Medical University of Vienna, Austria
| |
Collapse
|
4
|
Pakpahan ND, Kyawsoewin M, Manokawinchoke J, Termkwancharoen C, Egusa H, Limraksasin P, Osathanon T. Effects of mechanical loading on matrix homeostasis and differentiation potential of periodontal ligament cells: A scoping review. J Periodontal Res 2024; 59:877-906. [PMID: 38736036 DOI: 10.1111/jre.13284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Revised: 04/22/2024] [Accepted: 04/23/2024] [Indexed: 05/14/2024]
Abstract
Various mechanical loadings, including mechanical stress, orthodontics forces, and masticatory force, affect the functions of periodontal ligament cells. Regulation of periodontal tissue destruction, formation, and differentiation functions are crucial processes for periodontal regeneration therapy. Numerous studies have reported that different types of mechanical loading play a role in maintaining periodontal tissue matrix homeostasis, and osteogenic differentiation of the periodontal ligament cells. This scoping review aims to evaluate the studies regarding the effects of various mechanical loadings on the secretion of extracellular matrix (ECM) components, regulation of the balance between formation and destruction of periodontal tissue matrix, osteogenic differentiation, and multiple differentiation functions of the periodontal ligament. An electronic search for this review has been conducted on two databases; MEDLINE via PubMed and SCOPUS. Study selection criteria included original research written in English that reported the effects of different mechanical loadings on matrix homeostasis and differentiation potential of periodontal ligament cells. The final 204 articles were mainly included in the present scoping review. Mechanical forces of the appropriate magnitude, duration, and pattern have a positive influence on the secretion of ECM components such as collagen, as well as regulate the secretion of matrix metalloproteinases and tissue inhibitors of matrix metalloproteinases. Additionally, these forces regulate a balance between osteoblastic and osteoclast differentiation. Conversely, incorrect mechanical loadings can lead to abnormal formation and destruction of both soft and hard tissue. This review provides additional insight into how mechanical loadings impact ECM homeostasis and multiple differentiation functions of periodontal ligament cells (PDLCs), thus making it valuable for regenerative periodontal treatment. In combination with advancing technologies, the utilization of ECM components, application of different aspects of mechanical force, and differentiation potential of PDLCs could bring potential benefits to future periodontal regeneration therapy.
Collapse
Affiliation(s)
- Novena Dameria Pakpahan
- Center of Excellence for Dental Stem Cell Biology and Department of Anatomy, Faculty of Dentistry, Chulalongkorn University, Bangkok, Thailand
- Center of Excellence for Regenerative Dentistry, Chulalongkorn University, Bangkok, Thailand
| | - Maythwe Kyawsoewin
- Center of Excellence for Dental Stem Cell Biology and Department of Anatomy, Faculty of Dentistry, Chulalongkorn University, Bangkok, Thailand
- Center of Excellence for Regenerative Dentistry, Chulalongkorn University, Bangkok, Thailand
| | - Jeeranan Manokawinchoke
- Center of Excellence for Dental Stem Cell Biology and Department of Anatomy, Faculty of Dentistry, Chulalongkorn University, Bangkok, Thailand
- Center of Excellence for Regenerative Dentistry, Chulalongkorn University, Bangkok, Thailand
| | - Chutimon Termkwancharoen
- Center of Excellence for Dental Stem Cell Biology and Department of Anatomy, Faculty of Dentistry, Chulalongkorn University, Bangkok, Thailand
- Center of Excellence for Regenerative Dentistry, Chulalongkorn University, Bangkok, Thailand
| | - Hiroshi Egusa
- Division of Molecular and Regenerative Prosthodontics, Tohoku University Graduate School of Dentistry, Sendai, Miyagi, Japan
- Center for Advanced Stem Cell and Regenerative Research, Tohoku University Graduate School of Dentistry, Sendai, Miyagi, Japan
| | - Phoonsuk Limraksasin
- Center of Excellence for Dental Stem Cell Biology and Department of Anatomy, Faculty of Dentistry, Chulalongkorn University, Bangkok, Thailand
- Center of Excellence for Regenerative Dentistry, Chulalongkorn University, Bangkok, Thailand
- Division of Molecular and Regenerative Prosthodontics, Tohoku University Graduate School of Dentistry, Sendai, Miyagi, Japan
| | - Thanaphum Osathanon
- Center of Excellence for Dental Stem Cell Biology and Department of Anatomy, Faculty of Dentistry, Chulalongkorn University, Bangkok, Thailand
- Center of Excellence for Regenerative Dentistry, Chulalongkorn University, Bangkok, Thailand
| |
Collapse
|
5
|
Behm C, Miłek O, Schwarz K, Rausch-Fan X, Moritz A, Andrukhov O. 1,25-dihydroxyvitamin-D 3 distinctly impacts the paracrine and cell-to-cell contact interactions between hPDL-MSCs and CD4 + T lymphocytes. Front Immunol 2024; 15:1448597. [PMID: 39372405 PMCID: PMC11449738 DOI: 10.3389/fimmu.2024.1448597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Accepted: 08/30/2024] [Indexed: 10/08/2024] Open
Abstract
Introduction Human periodontal ligament-derived mesenchymal stromal cells (hPDL-MSCs) possess a strong ability to modulate the immune response, executed via cytokine-boosted paracrine and direct cell-to-cell contact mechanisms. This reciprocal interaction between immune cells and hPDL-MSCs is influenced by 1,25-dihydroxyvitamin-D3 (1,25(OH)2D3). In this study, the participation of different immunomodulatory mechanisms on the hPDL-MSCs-based effects of 1,25(OH)2D3 on CD4+ T lymphocytes will be elucidated using different co-culture models with various cytokine milieus. Material and methods hPDL-MSCs and CD4+ T lymphocytes were co-cultured indirectly and directly with inserts (paracrine interaction only) or directly without inserts (paracrine and direct cell-to-cell contact interaction). They were stimulated with TNF-α or IL-1β in the absence/presence of 1,25(OH)2D3. After five days of co-cultivation, the CD4+ T lymphocyte proliferation, viability, and cytokine secretion were analyzed. Additionally, the gene expression of soluble and membrane-bound immunomediators was determined in hPDL-MSCs. Results In the indirect and direct co-culture model with inserts, 1,25(OH)2D3 decreased CD4+ T lymphocyte proliferation and viability. The direct co-culture model without inserts caused the opposite effect. 1,25(OH)2D3 mainly decreased the CD4+ T lymphocyte-associated secretion of cytokines via hPDL-MSCs. The degree of these inhibitions varied between the different co-culture setups. 1,25(OH)2D3 predominantly decreased the expression of the soluble and membrane-bound immunomediators in hPDL-MSCs to a different extent, depending on the co-culture models. The degree of all these effects depended on the absence and presence of exogenous TNF-α and IL-1β. Conclusion These data assume that 1,25(OH)2D3 differently affects CD4+ T lymphocytes via the paracrine and direct cell-to-cell contact mechanisms of hPDL-MSCs, showing anti- or pro-inflammatory effects depending on the co-culture model type. The local cytokine microenvironment seems to be involved in fine-tuning these effects. Future studies should consider this double-edged observation by executing different co-culture models in parallel.
Collapse
Affiliation(s)
- Christian Behm
- Competence Center for Periodontal Research, University Clinic of Dentistry, Medical University of Vienna, Vienna, Austria
| | - Oliwia Miłek
- Competence Center for Periodontal Research, University Clinic of Dentistry, Medical University of Vienna, Vienna, Austria
| | - Katharina Schwarz
- Competence Center for Periodontal Research, University Clinic of Dentistry, Medical University of Vienna, Vienna, Austria
| | - Xiaohui Rausch-Fan
- Clinical Division of Conservative Dentistry and Periodontology, University Clinic of Dentistry, Medical University of Vienna, Vienna, Austria
| | - Andreas Moritz
- Clinical Division of Conservative Dentistry and Periodontology, University Clinic of Dentistry, Medical University of Vienna, Vienna, Austria
| | - Oleh Andrukhov
- Competence Center for Periodontal Research, University Clinic of Dentistry, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
6
|
Mulimani P, Mazzawi N, Goldstein A, Obenaus A, Baggett S, Truong D, Popowics T, Sniadecki N. Engineered 3D Periodontal Ligament Model with Magnetic Tensile Loading. J Dent Res 2024; 103:1008-1016. [PMID: 39185630 PMCID: PMC11465412 DOI: 10.1177/00220345241264792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/27/2024] Open
Abstract
In vitro models are invaluable tools for deconstructing the biological complexity of the periodontal ligament (PDL). Model systems that closely reproduce the 3-dimensional (3D) configuration of cell-cell and cell-matrix interactions in native tissue can deliver physiologically relevant insights. However, 3D models of the PDL that incorporate mechanical loading are currently lacking. Hence, we developed a model where periodontal tissue constructs (PTCs) are made by casting PDL cells in a collagen gel suspended between a pair of slender, silicone posts for magnetic tensile loading. Specifically, one of the posts was rigid and the other was flexible with a magnet embedded in its tip so that PTCs could be subjected to tensile loading with an external magnet. Additionally, the deflection of the flexible post could be used to measure the contractile force of PDL cells in the PTCs. Prior to tensile loading, second harmonics generation analysis of collagen fibers in PTCs revealed that incorporation of PDL cells resulted in collagen remodeling. Biomechanical testing of PTCs by tensile loading revealed an elastic response at 4 h, permanent deformation by 1 d, and creep elongation by 1 wk. Subsequently, contractile forces of PDL cells were substantially lower for PTCs under tensile loading. Immunofluorescence analysis revealed that tensile loading caused PDL cells to increase in number, express higher levels of F-actin and α-smooth muscle actin, and become aligned to the tensile axis. Second harmonics generation analysis indicated that collagen fibers in PTCs progressively remodeled over time with tensile loading. Gene expression analysis also confirmed tension-mediated upregulation of the F-actin/Rho pathway and osteogenic genes. Our model is novel in demonstrating the mechanobiological behavior that results in cell-mediated remodeling of the PDL tissue in a 3D context. Hence, it can be a valuable tool to develop therapeutics for periodontitis, periodontal regeneration, and orthodontics.
Collapse
Affiliation(s)
- P. Mulimani
- Department of Oral Health Sciences, School of Dentistry, University of Washington, Seattle, WA, USA
- Center for Cardiovascular Biology, University of Washington, Seattle, WA, USA
- Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA, USA
| | - N.A. Mazzawi
- Department of Oral Health Sciences, School of Dentistry, University of Washington, Seattle, WA, USA
- Center for Cardiovascular Biology, University of Washington, Seattle, WA, USA
- Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA, USA
- Department of Microbiology, University of Washington, Seattle, WA, USA
| | - A.J. Goldstein
- Center for Cardiovascular Biology, University of Washington, Seattle, WA, USA
- Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA, USA
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, USA
| | - A.M. Obenaus
- Center for Cardiovascular Biology, University of Washington, Seattle, WA, USA
- Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA, USA
- Department of Mechanical Engineering, University of Washington, Seattle, WA, USA
| | - S.M. Baggett
- Department of Biology, Carleton College, Northfield, MN, USA
| | - D. Truong
- Center for Cardiovascular Biology, University of Washington, Seattle, WA, USA
- Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA, USA
- Department of Biology, University of Washington, Bothell, WA, USA
| | - T.E. Popowics
- Department of Oral Health Sciences, School of Dentistry, University of Washington, Seattle, WA, USA
- Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA, USA
| | - N.J. Sniadecki
- Center for Cardiovascular Biology, University of Washington, Seattle, WA, USA
- Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA, USA
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, USA
- Department of Mechanical Engineering, University of Washington, Seattle, WA, USA
- Department of Bioengineering, University of Washington, Seattle, WA, USA
| |
Collapse
|
7
|
Ortis M, Chevalier M, Olivieri CV, Vitale S, Paul A, Tonoyan L, Doglio A, Marsault R. Herpes Simplex Virus Type 1 Infection of Human Periodontal Ligament. Int J Mol Sci 2024; 25:8466. [PMID: 39126036 PMCID: PMC11312683 DOI: 10.3390/ijms25158466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2024] [Revised: 07/26/2024] [Accepted: 07/31/2024] [Indexed: 08/12/2024] Open
Abstract
The periodontal ligament (PDL) is a complex connective tissue that connects the tooth root to the dental alveolar bone and plays crucial mechanical roles. PDL also exhibits regenerative roles and regulatory functions to maintain periodontium integrity and homeostasis. While PDL exposure to oral microbial pathogens is common, virtually nothing is known regarding viral infections of PDL. In particular, human herpes simplex virus type 1 (HSV-1) persistently infects the oral cavity through infections of the oral epithelium, connective tissue and neurons. While the oral spread of HSV-1 is generally asymptomatic, this virus has also been implicated in various oral pathologies. In this study, using a primary cell model derived from PDL (PDL cells), and whole surgical fragments of PDL, we provide evidence supporting the efficient infection of PDL by HSV-1 and the promotion of cytopathic effects. Infection of PDL by HSV-1 was also associated with an acute innate inflammatory response, as illustrated by the production of antiviral interferons and pro-inflammatory cytokines. Furthermore, this inflammatory response to HSV-1 was exacerbated in the presence of bacterial-derived products, such as peptidoglycans. This work therefore highlights the ability of HSV-1 to infect mesenchymal cells from PDL, suggesting that PDL may serve as a viral reservoir for the periodontal spread of HSV-1. Moreover, this raises questions about HSV-1 oral pathogenesis, as HSV-1-associated cytopathic and inflammatory effects may contribute to profound alterations of PDL integrity and functioning.
Collapse
Affiliation(s)
- Morgane Ortis
- Laboratoire MICORALIS, Faculté de Chirurgie Dentaire, Université Côte d’Azur, 5, Rue du 22ème BCA, 06300 Nice, France; (M.O.); (M.C.); (C.-V.O.); (A.P.); (L.T.); (R.M.)
| | - Marlène Chevalier
- Laboratoire MICORALIS, Faculté de Chirurgie Dentaire, Université Côte d’Azur, 5, Rue du 22ème BCA, 06300 Nice, France; (M.O.); (M.C.); (C.-V.O.); (A.P.); (L.T.); (R.M.)
| | - Charles-Vivien Olivieri
- Laboratoire MICORALIS, Faculté de Chirurgie Dentaire, Université Côte d’Azur, 5, Rue du 22ème BCA, 06300 Nice, France; (M.O.); (M.C.); (C.-V.O.); (A.P.); (L.T.); (R.M.)
| | - Sébastien Vitale
- Laboratoire de Virologie, Centre Hospitalier Universitaire de Nice, 06003 Nice, France;
| | - Adrien Paul
- Laboratoire MICORALIS, Faculté de Chirurgie Dentaire, Université Côte d’Azur, 5, Rue du 22ème BCA, 06300 Nice, France; (M.O.); (M.C.); (C.-V.O.); (A.P.); (L.T.); (R.M.)
| | - Lilit Tonoyan
- Laboratoire MICORALIS, Faculté de Chirurgie Dentaire, Université Côte d’Azur, 5, Rue du 22ème BCA, 06300 Nice, France; (M.O.); (M.C.); (C.-V.O.); (A.P.); (L.T.); (R.M.)
| | - Alain Doglio
- Laboratoire MICORALIS, Faculté de Chirurgie Dentaire, Université Côte d’Azur, 5, Rue du 22ème BCA, 06300 Nice, France; (M.O.); (M.C.); (C.-V.O.); (A.P.); (L.T.); (R.M.)
- Unité de Thérapie Cellulaire et Génique (UTCG), Centre Hospitalier Universitaire de Nice, 06003 Nice, France
| | - Robert Marsault
- Laboratoire MICORALIS, Faculté de Chirurgie Dentaire, Université Côte d’Azur, 5, Rue du 22ème BCA, 06300 Nice, France; (M.O.); (M.C.); (C.-V.O.); (A.P.); (L.T.); (R.M.)
| |
Collapse
|
8
|
Kendlbacher FL, Bloch S, Hager-Mair FF, Schäffer C, Andrukhov O. Red-complex bacteria exhibit distinctly different interactions with human periodontal ligament stromal cells compared to Fusobacterium nucleatum. Arch Oral Biol 2024; 164:106004. [PMID: 38776586 DOI: 10.1016/j.archoralbio.2024.106004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 04/17/2024] [Accepted: 05/13/2024] [Indexed: 05/25/2024]
Abstract
OBJECTIVE The red-complex bacteria Porphyromonas gingivalis and Tannerella forsythia together with Fusobacterium nucleatum are essential players in periodontitis. This study investigated the bacterial interplay with human periodontal ligament mesenchymal stromal cells (hPDL-MSCs) which act in the acute phase of periodontal infection. DESIGN The capability of the bacteria to induce an inflammatory response as well as their viability, cellular adhesion and invasion were analyzed upon mono- and co-infections of hPDL-MSCs to delineate potential synergistic or antagonistic effects. The expression level and concentration of interleukin (IL)-6, IL-8 and monocyte chemoattractant protein (MCP)-1 were measured using qRT-PCR and ELISA. Viability, invasion, and adhesion were determined quantitatively using agar plate culture and qualitatively by confocal microscopy. RESULTS Viability of P. gingivalis and T. forsythia but not F. nucleatum was preserved in the presence of hPDL-MSCs, even in an oxygenated environment. F. nucleatum significantly increased the expression and concentration of IL-6, IL-8 and MCP-1 in hPDL-MSCs, while T. forsythia and P. gingivalis caused only a minimal inflammatory response. Co-infections in different combinations had no effect on the inflammatory response. Moreover, P. gingivalis mitigated the increase in cytokine levels elicited by F. nucleatum. Both red-complex bacteria adhered to and invaded hPDL-MSCs in greater numbers than F. nucleatum, with only a minor effect of co-infections. CONCLUSIONS Oral bacteria of different pathogenicity status interact differently with hPDL-MSCs. The data support P. gingivalis' capability to manipulate the inflammatory host response. Further research is necessary to obtain a comprehensive picture of the role of hPDL-MSCs in more complex oral biofilms.
Collapse
Affiliation(s)
- Fabian L Kendlbacher
- NanoGlycobiology Research Group, Institute of Biochemistry, Department of Chemistry, Universität für Bodenkultur Wien, Vienna, Austria
| | - Susanne Bloch
- NanoGlycobiology Research Group, Institute of Biochemistry, Department of Chemistry, Universität für Bodenkultur Wien, Vienna, Austria
| | - Fiona F Hager-Mair
- NanoGlycobiology Research Group, Institute of Biochemistry, Department of Chemistry, Universität für Bodenkultur Wien, Vienna, Austria
| | - Christina Schäffer
- NanoGlycobiology Research Group, Institute of Biochemistry, Department of Chemistry, Universität für Bodenkultur Wien, Vienna, Austria.
| | - Oleh Andrukhov
- Competence Center for Periodontal Research, University Clinic of Dentistry, Medical University of Vienna, A-1090 Vienna, Austria.
| |
Collapse
|
9
|
Zhang W, Liu M, Wu D, Hao Y, Cong B, Wang L, Wang Y, Gao M, Xu Y, Wu Y. PSO/SDF-1 composite hydrogel promotes osteogenic differentiation of PDLSCs and bone regeneration in periodontitis rats. Heliyon 2024; 10:e32686. [PMID: 38961957 PMCID: PMC11220005 DOI: 10.1016/j.heliyon.2024.e32686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 06/05/2024] [Accepted: 06/06/2024] [Indexed: 07/05/2024] Open
Abstract
Periodontitis is an inflammatory disease characterized by the destruction of periodontal tissues, and the promotion of bone tissue regeneration is the key to curing periodontitis. Psoralen is the main component of Psoralea corylifolia Linn, and has multiple biological effects, including anti-osteoporosis and osteogenesis. We constructed a novel hydrogel loaded with psoralen (PSO) and stromal cell-derived factor-1 (SDF-1) for direct endogenous cell homing. This study aimed to evaluate the synergistic effects of PSO/SDF-1 on periodontal bone regeneration in patients with periodontitis. The results of CCK8, alkaline phosphatase (ALP) activity assay, and Alizarin Red staining showed that PSO/SDF-1 combination treatment promoted cell proliferation, chemotaxis ability, and ALP activity of PDLSCs. qRT-PCR and western blotting showed that the expression levels of alkaline phosphatase (ALP), dwarf-associated transcription factor 2 (RUNX2), and osteocalcin (OCN) gene were upregulated. Rat periodontal models were established to observe the effect of local application of the composite hydrogel on bone regeneration. These results proved that the PSO/SDF-1 combination treatment significantly promoted new bone formation. The immunohistochemical (IHC) results confirmed the elevated expression of ALP, RUNX2, and OCN osteogenic genes. PSO/SDF-1 composite hydrogel can synergistically regulate the biological function and promote periodontal bone formation. Thus, this study provides a novel strategy for periodontal bone regeneration.
Collapse
Affiliation(s)
- Wei Zhang
- School of Stomatology, Shandong Second Medical University, Weifang, 261053, China
| | - Minghong Liu
- Qingdao Stomatological Hospital Affiliated to Qingdao University, Qingdao, 266001, China
| | - Di Wu
- Qingdao Stomatological Hospital Affiliated to Qingdao University, Qingdao, 266001, China
| | - Yuanping Hao
- Qingdao Stomatological Hospital Affiliated to Qingdao University, Qingdao, 266001, China
| | - Beibei Cong
- Qingdao Stomatological Hospital Affiliated to Qingdao University, Qingdao, 266001, China
| | - Lihui Wang
- School of Stomatology, Shandong Second Medical University, Weifang, 261053, China
| | - Yujia Wang
- School of Stomatology, Shandong Second Medical University, Weifang, 261053, China
| | - Meihua Gao
- Qingdao Stomatological Hospital Affiliated to Qingdao University, Qingdao, 266001, China
| | - Yingjie Xu
- Qingdao Stomatological Hospital Affiliated to Qingdao University, Qingdao, 266001, China
| | - Yingtao Wu
- Qingdao Stomatological Hospital Affiliated to Qingdao University, Qingdao, 266001, China
| |
Collapse
|
10
|
Zhu X, Sculean A, Eick S. In-vitro effects of different hyaluronic acids on periodontal biofilm-immune cell interaction. Front Cell Infect Microbiol 2024; 14:1414861. [PMID: 38938883 PMCID: PMC11208323 DOI: 10.3389/fcimb.2024.1414861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Accepted: 05/20/2024] [Indexed: 06/29/2024] Open
Abstract
Introduction Recent studies have demonstrated a positive role of hyaluronic acid (HA) on periodontal clinical outcomes. This in-vitro study aimed to investigate the impact of four different HAs on interactions between periodontal biofilm and immune cells. Methods The four HAs included: high-molecular-weight HA (HHA, non-cross-linked), low-molecular-weight HA (LHA), oligomers HA (OHA), and cross-linked high-molecular-weight HA (CHA). Serial experiments were conducted to verify the influence of HAs on: (i) 12-species periodontal biofilm (formation and pre-existing); (ii) expression of inflammatory cytokines and HA receptors in monocytic (MONO-MAC-6) cells and periodontal ligament fibroblasts (PDLF) with or without exposure to periodontal biofilms; (iii) generation of reactive oxygen species (ROS) in MONO-MAC-6 cells and PDLF with presence of biofilm and HA. Results The results indicated that HHA and CHA reduced the bacterial counts in a newly formed (4-h) biofilm and in a pre-existing five-day-old biofilm. Without biofilm challenge, OHA triggered inflammatory reaction by increasing IL-1β and IL-10 levels in MONO-MAC cells and IL-8 in PDLF in a time-dependent manner, whereas CHA suppressed this response by inhibiting the expression of IL-10 in MONO-MAC cells and IL-8 in PDLF. Under biofilm challenge, HA decreased the expression of IL-1β (most decreasing HHA) and increased IL-10 levels in MONO-MAC-6 cells in a molecular weight dependent manner (most increasing CHA). The interaction between HA and both cells may occur via ICAM-1 receptor. Biofilm stimulus increased ROS levels in MONO-MAC-6 cells and PDLF, but only HHA slightly suppressed the high generation of ROS induced by biofilm stimulation in both cells. Conclusion Overall, these results indicate that OHA induces inflammation, while HHA and CHA exhibit anti-biofilm, primarily anti-inflammatory, and antioxidant properties in the periodontal environment.
Collapse
Affiliation(s)
- Xilei Zhu
- Department of Periodontology, School of Dental Medicine, University of Bern, Bern, Switzerland
- Graduate School for Cellular and Biomedical Sciences, University of Bern, Bern, Switzerland
| | - Anton Sculean
- Department of Periodontology, School of Dental Medicine, University of Bern, Bern, Switzerland
| | - Sigrun Eick
- Department of Periodontology, School of Dental Medicine, University of Bern, Bern, Switzerland
| |
Collapse
|
11
|
Liu G, Zhang L, Zhou X, Xue J, Xia R, Gan X, Lv C, Zhang Y, Mao X, Kou X, Shi S, Chen Z. Inducing the "re-development state" of periodontal ligament cells via tuning macrophage mediated immune microenvironment. J Adv Res 2024; 60:233-248. [PMID: 37597747 PMCID: PMC11156709 DOI: 10.1016/j.jare.2023.08.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 08/14/2023] [Accepted: 08/16/2023] [Indexed: 08/21/2023] Open
Abstract
INTRODUCTION Periodontal regeneration, specifically the restoration of the cementum-periodontal ligament (PDL)-alveolar bone complex, remains a formidable challenge in the field of regenerative dentistry. In light of periodontal development, harnessing the multi-tissue developmental capabilities of periodontal ligament cells (PDLCs) and reinitiating the periodontal developmental process hold great promise as an effective strategy to foster the regeneration of the periodontal complex. OBJECTIVES This study aims to delve into the potential effects of the macrophage-mediated immune microenvironment on the "developmental engineering" regeneration strategy and its underlying molecular mechanisms. METHODS In this study, we conducted a comprehensive examination of the periodontium developmental process in the rat mandibular first molar using histological staining. Through the induction of diverse immune microenvironments in macrophages, we evaluated their potential effects on periodontal re-development events using a cytokine array. Additionally, we investigated PDLC-mediated periodontal re-development events under these distinct immune microenvironments through transcriptome sequencing and relevant functional assays. Furthermore, the underlying molecular mechanism was also performed. RESULTS The activation of development-related functions in PDLCs proved challenging due to their declined activity. However, our findings suggest that modulating the macrophage immune response can effectively regulate PDLCs-mediated periodontium development-related events. The M1 type macrophage immune microenvironment was found to promote PDLC activities associated with epithelial-mesenchymal transition, fiber degradation, osteoclastogenesis, and inflammation through the Wnt, IL-17, and TNF signaling pathways. Conversely, the M2 type macrophage immune microenvironment demonstrated superiority in inducing epithelium induction, fibers formation, and mineralization performance of PDLCs by upregulating the TGFβ and PI3K-Akt signaling pathway. CONCLUSION The results of this study could provide some favorable theoretical bases for applying periodontal development engineering strategy in resolving the difficulties in periodontal multi-tissue regeneration.
Collapse
Affiliation(s)
- Guanqi Liu
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, and Guangdong Provincial Key Laboratory of Stomatology, Guangzhou 510055, China; Guangdong Research Center for Dental and Cranial Rehabilitation and Material Engineering, Guangzhou 510055, China
| | - Linjun Zhang
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, and Guangdong Provincial Key Laboratory of Stomatology, Guangzhou 510055, China; Guangdong Research Center for Dental and Cranial Rehabilitation and Material Engineering, Guangzhou 510055, China
| | - Xuan Zhou
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, and Guangdong Provincial Key Laboratory of Stomatology, Guangzhou 510055, China; Guangdong Research Center for Dental and Cranial Rehabilitation and Material Engineering, Guangzhou 510055, China
| | - Junlong Xue
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, and Guangdong Provincial Key Laboratory of Stomatology, Guangzhou 510055, China; Guangdong Research Center for Dental and Cranial Rehabilitation and Material Engineering, Guangzhou 510055, China
| | - Ruidi Xia
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, and Guangdong Provincial Key Laboratory of Stomatology, Guangzhou 510055, China; Guangdong Research Center for Dental and Cranial Rehabilitation and Material Engineering, Guangzhou 510055, China
| | - Xuejing Gan
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, and Guangdong Provincial Key Laboratory of Stomatology, Guangzhou 510055, China; Guangdong Research Center for Dental and Cranial Rehabilitation and Material Engineering, Guangzhou 510055, China
| | - Chunxiao Lv
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, and Guangdong Provincial Key Laboratory of Stomatology, Guangzhou 510055, China; Guangdong Research Center for Dental and Cranial Rehabilitation and Material Engineering, Guangzhou 510055, China
| | - Yanshu Zhang
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, and Guangdong Provincial Key Laboratory of Stomatology, Guangzhou 510055, China; Guangdong Research Center for Dental and Cranial Rehabilitation and Material Engineering, Guangzhou 510055, China
| | - Xueli Mao
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, and Guangdong Provincial Key Laboratory of Stomatology, Guangzhou 510055, China; South China Center of Craniofacial Stem Cell Research,510055, Guangzhou, China
| | - Xiaoxing Kou
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, and Guangdong Provincial Key Laboratory of Stomatology, Guangzhou 510055, China; South China Center of Craniofacial Stem Cell Research,510055, Guangzhou, China
| | - Songtao Shi
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, and Guangdong Provincial Key Laboratory of Stomatology, Guangzhou 510055, China; South China Center of Craniofacial Stem Cell Research,510055, Guangzhou, China
| | - Zetao Chen
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, and Guangdong Provincial Key Laboratory of Stomatology, Guangzhou 510055, China; Guangdong Research Center for Dental and Cranial Rehabilitation and Material Engineering, Guangzhou 510055, China.
| |
Collapse
|
12
|
Atarbashi-Moghadam F, Azadi A, Nokhbatolfoghahaei H, Taghipour N. Effect of simultaneous and sequential use of TGF-β1 and TGF-β3 with FGF-2 on teno/ligamentogenic differentiation of periodontal ligament stem cells. Arch Oral Biol 2024; 162:105956. [PMID: 38522213 DOI: 10.1016/j.archoralbio.2024.105956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Revised: 03/06/2024] [Accepted: 03/08/2024] [Indexed: 03/26/2024]
Abstract
OBJECTIVE The periodontal ligament is a crucial part of the periodontium, and its regeneration is challenging. This study compares the effect of simultaneous and sequential use of FGF-2 and TGF-β1 with FGF-2 and TGF-β3 on the periodontal ligament stem cells (PDLSCs) teno/ligamentogenic differentiation. DESIGN This study comprises ten different groups. A control group with only PDLSCs; FGF-2 group containing PDLSCs with a medium culture supplemented with FGF-2 (50 ng/mL). In other experimental groups, different concentrations (5 ng/mL or 10 ng/mL) of TGF-β1&-β3 simultaneously or sequentially were combined with FGF-2 on the cultured PDLSCs. TGF-β was added to the medium after day 3 in the sequential groups. Methyl Thiazolyl Tetrazolium (MTT) assay on days 3, 5, and 7 and Quantitative Real-time Polymerase Chain Reaction (RT-qPCR) analysis after day 7 were conducted to investigate PLAP1, SCX, and COL3A1, RUNX2 genes. All experiments were conducted in a triplicate. The One-way and Two-way ANOVA with Tukey post hoc were utilized to analyze the results of the MTT and RT-qPCR tests, respectively. A p-value less than 0.05 is considered significant. RESULTS The proliferation of cells on days 3, 5, and 7 was not significantly different among different experimental groups (P > 0.05). A higher expression of the PLAP1, SCX, and COL3A1 have been seen in groups with sequential use of growth factors; among these groups, the group using 5 ng/mL of TGF-β3 led other groups with the most amount of significant upregulation in PLAP1(17.69 ± 1.11 fold; P < 0.0001), SCX (5.71 ± 0.38 fold; P < 0.0001), and COL1A3 (6.35 ± 0.39 fold; P < 0.0001) expression, compared to the control group. The expression of the RUNX2 decreased in all groups compared to the control group; this reduction was more in groups with sequential use of growth factors. CONCLUSION The sequential use of growth factors can be more effective than simultaneous use in teno/ligamentogenic differentiation of PDLSCs. Moreover, treatment with 5 ng/mL TGF-β3 after FGF-2 was more effective than TGF-β1.
Collapse
Affiliation(s)
- Fazele Atarbashi-Moghadam
- Department of Periodontics, School of Dentistry, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Dental Research Center, Research Institute for Dental Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Ali Azadi
- DDS, Research Fellow, Dentofacial Deformities Research Center, Research Institute for Dental Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Hanieh Nokhbatolfoghahaei
- Dental Research Center, Research Institute for Dental Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Niloofar Taghipour
- Dental Research Center, Research Institute for Dental Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
13
|
Abdallah AT, Konermann A. Unraveling Divergent Transcriptomic Profiles: A Comparative Single-Cell RNA Sequencing Study of Epithelium, Gingiva, and Periodontal Ligament Tissues. Int J Mol Sci 2024; 25:5617. [PMID: 38891804 PMCID: PMC11172200 DOI: 10.3390/ijms25115617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 05/16/2024] [Accepted: 05/18/2024] [Indexed: 06/21/2024] Open
Abstract
The periodontium comprising periodontal ligament (PDL), gingiva, and epithelium play crucial roles in maintaining tooth integrity and function. Understanding tissue cellular composition and gene expression is crucial for illuminating periodontal pathophysiology. This study aimed to identify tissue-specific markers via scRNA-Seq. Primary human PDL, gingiva, and epithelium tissues (n = 7) were subjected to cell hashing and sorting. scRNA-Seq library preparation using 10× Genomics protocol and Illumina sequencing was conducted. The analysis was performed using Cellranger (v3.1.0), with downstream analysis via R packages Seurat (v5.0.1) and SCORPIUS (v1.0.9). Investigations identified eight distinct cellular clusters, revealing the ubiquitous presence of epithelial and gingival cells. PDL cells evolved in two clusters with numerical superiority. The other clusters showed varied predominance regarding gingival and epithelial cells or an equitable distribution of both. The cluster harboring most cells mainly consisted of PDL cells and was present in all donors. Some of the other clusters were also tissue-inherent, while the presence of others was environmentally influenced, revealing variability across donors. Two clusters exhibited genetic profiles associated with tissue development and cellular integrity, respectively, while all other clusters were distinguished by genes characteristic of immune responses. Developmental trajectory analysis uncovered that PDL cells may develop after epithelial and gingival cells, suggesting the inherent PDL cell-dominated cluster as a final developmental stage. This single-cell RNA sequencing study delineates the hierarchical organization of periodontal tissue development, identifies tissue-specific markers, and reveals the influence of environmental factors on cellular composition, advancing our understanding of periodontal biology and offering potential insights for therapeutic interventions.
Collapse
Affiliation(s)
- Ali T. Abdallah
- Cluster of Excellence Cellular Stress Responses in Aging-Associated Diseases (CECAD), Medical Faculty and University Hospital Cologne, University of Cologne, 50931 Cologne, Germany
- Institute of Medical Statistics and Computational Biology, Faculty of Medicine, University of Cologne, 50924 Cologne, Germany
- Cluster of Excellence Cellular Stress Responses in Aging-Associated Diseases (CECAD), Faculty of Mathematics and Natural Sciences, University of Cologne, 50931 Cologne, Germany
- Interdisciplinary Center for Clinical Research, University Hospital RWTH, 52074 Aachen, Germany
| | - Anna Konermann
- Department of Orthodontics, University Hospital Bonn, 53111 Bonn, Germany
| |
Collapse
|
14
|
Zhang J, Li X, Tian Y, Zou J, Gan D, Deng D, Jiao C, Yin Y, Tian B, Wu R, Chen F, He X. Harnessing Mechanical Stress with Viscoelastic Biomaterials for Periodontal Ligament Regeneration. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2309562. [PMID: 38460171 PMCID: PMC11095218 DOI: 10.1002/advs.202309562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 02/15/2024] [Indexed: 03/11/2024]
Abstract
The viscoelasticity of mechanically sensitive tissues such as periodontal ligaments (PDLs) is key in maintaining mechanical homeostasis. Unfortunately, PDLs easily lose viscoelasticity (e.g., stress relaxation) during periodontitis or dental trauma, which disrupt cell-extracellular matrix (ECM) interactions and accelerates tissue damage. Here, Pluronic F127 diacrylate (F127DA) hydrogels with PDL-matched stress relaxation rates and high elastic moduli are developed. The hydrogel viscoelasticity is modulated without chemical cross-linking by controlling precursor concentrations. Under cytomechanical loading, F127DA hydrogels with fast relaxation rates significantly improved the fibrogenic differentiation potential of PDL stem cells (PDLSCs), while cells cultured on F127DA hydrogels with various stress relaxation rates exhibited similar fibrogenic differentiation potentials with limited cell spreading and traction forces under static conditions. Mechanically, faster-relaxing F127DA hydrogels leveraged cytomechanical loading to activate PDLSC mechanotransduction by upregulating integrin-focal adhesion kinase pathway and thus cytoskeletal rearrangement, reinforcing cell-ECM interactions. In vivo experiments confirm that faster-relaxing F127DA hydrogels significantly promoted PDL repair and reduced abnormal healing (e.g., root resorption and ankyloses) in delayed replantation of avulsed teeth. This study firstly investigated how matrix nonlinear viscoelasticity influences the fibrogenesis of PDLSCs under mechanical stimuli, and it reveals the underlying mechanobiology, which suggests novel strategies for PDL regeneration.
Collapse
Affiliation(s)
- Jiu‐Jiu Zhang
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, National Clinical Research Center for Oral Diseases, Shaanxi International Joint Research Center for Oral Diseases, Department of Periodontology, School of Stomatology, The Fourth Military Medical UniversityXi'an710032China
| | - Xuan Li
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, National Clinical Research Center for Oral Diseases, Shaanxi International Joint Research Center for Oral Diseases, Department of Periodontology, School of Stomatology, The Fourth Military Medical UniversityXi'an710032China
| | - Yi Tian
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, National Clinical Research Center for Oral Diseases, Shaanxi International Joint Research Center for Oral Diseases, Department of Periodontology, School of Stomatology, The Fourth Military Medical UniversityXi'an710032China
| | - Jie‐Kang Zou
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, National Clinical Research Center for Oral Diseases, Shaanxi International Joint Research Center for Oral Diseases, Department of Periodontology, School of Stomatology, The Fourth Military Medical UniversityXi'an710032China
| | - Dian Gan
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, National Clinical Research Center for Oral Diseases, Shaanxi International Joint Research Center for Oral Diseases, Department of Periodontology, School of Stomatology, The Fourth Military Medical UniversityXi'an710032China
| | - Dao‐Kun Deng
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, National Clinical Research Center for Oral Diseases, Shaanxi International Joint Research Center for Oral Diseases, Department of Periodontology, School of Stomatology, The Fourth Military Medical UniversityXi'an710032China
| | - Chen Jiao
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, National Clinical Research Center for Oral Diseases, Shaanxi International Joint Research Center for Oral Diseases, Department of Periodontology, School of Stomatology, The Fourth Military Medical UniversityXi'an710032China
| | - Yuan Yin
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, National Clinical Research Center for Oral Diseases, Shaanxi International Joint Research Center for Oral Diseases, Department of Periodontology, School of Stomatology, The Fourth Military Medical UniversityXi'an710032China
| | - Bei‐Min Tian
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, National Clinical Research Center for Oral Diseases, Shaanxi International Joint Research Center for Oral Diseases, Department of Periodontology, School of Stomatology, The Fourth Military Medical UniversityXi'an710032China
| | - Rui‐Xin Wu
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, National Clinical Research Center for Oral Diseases, Shaanxi International Joint Research Center for Oral Diseases, Department of Periodontology, School of Stomatology, The Fourth Military Medical UniversityXi'an710032China
| | - Fa‐Ming Chen
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, National Clinical Research Center for Oral Diseases, Shaanxi International Joint Research Center for Oral Diseases, Department of Periodontology, School of Stomatology, The Fourth Military Medical UniversityXi'an710032China
| | - Xiao‐Tao He
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, National Clinical Research Center for Oral Diseases, Shaanxi International Joint Research Center for Oral Diseases, Department of Periodontology, School of Stomatology, The Fourth Military Medical UniversityXi'an710032China
| |
Collapse
|
15
|
Abdallah AT, Peitz M, Konermann A. Revealing Genetic Dynamics: scRNA-seq Unravels Modifications in Human PDL Cells across In Vivo and In Vitro Environments. Int J Mol Sci 2024; 25:4731. [PMID: 38731950 PMCID: PMC11083143 DOI: 10.3390/ijms25094731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2024] [Revised: 04/15/2024] [Accepted: 04/22/2024] [Indexed: 05/13/2024] Open
Abstract
The periodontal ligament (PDL) is a highly specialized fibrous tissue comprising heterogeneous cell populations of an intricate nature. These complexities, along with challenges due to cell culture, impede a comprehensive understanding of periodontal pathophysiology. This study aims to address this gap, employing single-cell RNA sequencing (scRNA-seq) technology to analyze the genetic intricacies of PDL both in vivo and in vitro. Primary human PDL samples (n = 7) were split for direct in vivo analysis and cell culture under serum-containing and serum-free conditions. Cell hashing and sorting, scRNA-seq library preparation using the 10x Genomics protocol, and Illumina sequencing were conducted. Primary analysis was performed using Cellranger, with downstream analysis via the R packages Seurat and SCORPIUS. Seven distinct PDL cell clusters were identified comprising different cellular subsets, each characterized by unique genetic profiles, with some showing donor-specific patterns in representation and distribution. Formation of these cellular clusters was influenced by culture conditions, particularly serum presence. Furthermore, certain cell populations were found to be inherent to the PDL tissue, while others exhibited variability across donors. This study elucidates specific genes and cell clusters within the PDL, revealing both inherent and context-driven subpopulations. The impact of culture conditions-notably the presence of serum-on cell cluster formation highlights the critical need for refining culture protocols, as comprehending these influences can drive the creation of superior culture systems vital for advancing research in PDL biology and regenerative therapies. These discoveries not only deepen our comprehension of PDL biology but also open avenues for future investigations into uncovering underlying mechanisms.
Collapse
Affiliation(s)
- Ali T. Abdallah
- Cluster of Excellence Cellular Stress Responses in Aging-Associated Diseases (CECAD), 50931 Cologne, Germany;
- Institute of Medical Statistics and Computational Biology, Faculty of Medicine, University of Cologne, 50923 Cologne, Germany
- Interdisciplinary Center for Clinical Research, University Hospital RWTH, 52074 Aachen, Germany
| | - Michael Peitz
- Institute of Reconstructive Neurobiology, Life and Brain Center, University Hospital Bonn, 53105 Bonn, Germany
| | - Anna Konermann
- Department of Orthodontics, University Hospital Bonn, 53111 Bonn, Germany
| |
Collapse
|
16
|
Yamashita E, Negishi S, Kikuta J, Shimizu M, Senpuku H. Effects of Improper Mechanical Force on the Production of Sonic Hedgehog, RANKL, and IL-6 in Human Periodontal Ligament Cells In Vitro. Dent J (Basel) 2024; 12:108. [PMID: 38668020 PMCID: PMC11049549 DOI: 10.3390/dj12040108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 02/28/2024] [Accepted: 04/08/2024] [Indexed: 04/28/2024] Open
Abstract
Improper mechanical stress may induce side effects during orthodontic treatment. If the roots and alveolar bones are extensively resorbed following excess mechanical stress, unplanned tooth mobility and inflammation can occur. Although multiple factors are believed to contribute to the development of side effects, the cause is still unknown. Sonic hedgehog (Shh), one of the hedgehog signals significantly associated with cell growth and cancer development, promotes osteoclast formation in the jawbone. Shh may be associated with root and bone resorptions during orthodontic treatment. In this study, we investigated the relationships between Shh, RANKL, and IL-6 in human periodontal ligament (hPDL) cells exposed to improper mechanical force. Weights were placed on hPDL cells and human gingival fibroblasts (HGFs) for an optimal orthodontic force group (1.0 g/cm2) and a heavy orthodontic force group (4.0 g/cm2). A group with no orthodontic force was used as a control group. Real-time PCR, SDS-PAGE, and Western blotting were performed to examine the effects of orthodontic forces on the expression of Shh, RANKL, and IL-6 at 2, 4, 6, 8, 12, and 24 h after the addition of pressure. The protein expression of Shh was not clearly induced by orthodontic forces of 1.0 and 4.0 g/cm2 compared with the control in HGFs and hPDL cells. In contrast, RANKL and IL-6 gene and protein expression was significantly induced by 1.0 and 4.0 g/cm2 in hPDL cells for forces lasting 6~24 h. However, neither protein was expressed in HGFs. RANKL and IL-6 expressions in response to orthodontic forces and in the control were clearly inhibited by Shh inhibitor RU-SKI 43. Shh did not directly link to RANKL and IL-6 for root and bone resorptions by orthodontic force but was associated with cell activities to be finally guided by the production of cytokines in hPDL cells.
Collapse
Affiliation(s)
- Erika Yamashita
- Department of Orthodontics, Nihon University of School at Matsudo, Matsudo 271-8587, Japan; (E.Y.); (S.N.); (J.K.)
| | - Shinichi Negishi
- Department of Orthodontics, Nihon University of School at Matsudo, Matsudo 271-8587, Japan; (E.Y.); (S.N.); (J.K.)
| | - Jun Kikuta
- Department of Orthodontics, Nihon University of School at Matsudo, Matsudo 271-8587, Japan; (E.Y.); (S.N.); (J.K.)
| | - Mami Shimizu
- Department of Orthodontics, Nihon University of School at Matsudo, Matsudo 271-8587, Japan; (E.Y.); (S.N.); (J.K.)
| | - Hidenobu Senpuku
- Department of Microbiology and Immunology, Nihon University of School at Matsudo, Matsudo 271-8587, Japan
| |
Collapse
|
17
|
Sawada K, Shimomura J, Takedachi M, Murata M, Morimoto C, Kawasaki K, Kawakami K, Iwayama T, Murakami S. Activation of periodontal ligament cell cytodifferentiation by juxtacrine signaling from cementoblasts. J Periodontol 2024; 95:256-267. [PMID: 37492992 DOI: 10.1002/jper.23-0211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2023] [Revised: 06/12/2023] [Accepted: 07/22/2023] [Indexed: 07/27/2023]
Abstract
BACKGROUND New cementum forms from existing cementum during periodontal tissue regeneration, indicating that cementoblasts may interact with progenitor cells in the periodontal ligament to enhance cementogenesis. However, the molecular mechanisms of this process are currently unknown. This study aims to clarify the role of cell-cell interactions between cementoblasts and periodontal ligament cells in differentiation into cementoblasts. METHODS To analyze the role of human cementoblast-like cells (HCEMs) on human periodontal ligament cells (HPDLs), we mixed cell suspensions of enhanced green fluorescent protein-tagged HPDLs and HCEMs, and then seeded and cultured them in single wells (direct co-cultures). We sorted co-cultured HPDLs and analyzed their characteristics, including the expression of cementum-related genes. In addition, we cultured HPDLs and HCEMs in a non-contact environment using a culture system composed of an upper insert and a lower well separated by a semi-permeable membrane (indirect co-cultures), and similar analysis was performed. Gene expression of integrin-binding sialoprotein (IBSP) in cementoblasts was confirmed in mouse periodontal tissues. We also investigated the effect of Wingless-type (Wnt) signaling on the differentiation of HPDLs into cementoblasts. RESULTS Direct co-culture of HPDLs with HCEMs significantly upregulated the expression of cementoblast-related genes in HPDLs, whereas indirect co-culture exerted no effect. Wnt3A stimulation significantly upregulated IBSP expression in HPDLs, whereas inhibition of canonical Wnt signaling suppressed the effects of co-culture. CONCLUSION Our results suggest that direct cell interactions with cementoblasts promote periodontal ligament cell differentiation into cementoblasts. Juxtacrine signaling via the canonical Wnt pathway plays a role in this interaction.
Collapse
Affiliation(s)
- Keigo Sawada
- Department of Periodontology, Osaka University Graduate School of Dentistry, Suita, Osaka, Japan
| | - Junpei Shimomura
- Department of Periodontology, Osaka University Graduate School of Dentistry, Suita, Osaka, Japan
| | - Masahide Takedachi
- Department of Periodontology, Osaka University Graduate School of Dentistry, Suita, Osaka, Japan
| | - Mari Murata
- Department of Periodontology, Osaka University Graduate School of Dentistry, Suita, Osaka, Japan
| | - Chiaki Morimoto
- Department of Periodontology, Osaka University Graduate School of Dentistry, Suita, Osaka, Japan
| | - Kohsuke Kawasaki
- Department of Periodontology, Osaka University Graduate School of Dentistry, Suita, Osaka, Japan
| | - Kazuma Kawakami
- Department of Periodontology, Osaka University Graduate School of Dentistry, Suita, Osaka, Japan
| | - Tomoaki Iwayama
- Department of Periodontology, Osaka University Graduate School of Dentistry, Suita, Osaka, Japan
| | - Shinya Murakami
- Department of Periodontology, Osaka University Graduate School of Dentistry, Suita, Osaka, Japan
| |
Collapse
|
18
|
Yagasaki L, Chiba T, Kurimoto R, Nakajima M, Iwata T, Asahara H. The essential role of Mkx in periodontal ligament on the metabolism of alveolar bone and cementum. Regen Ther 2024; 25:186-193. [PMID: 38230307 PMCID: PMC10789938 DOI: 10.1016/j.reth.2023.12.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 11/24/2023] [Accepted: 12/17/2023] [Indexed: 01/18/2024] Open
Abstract
Introduction The periodontium is a connective tissue which consists of periodontal ligament, alveolar bone, cementum and gingiva. Periodontal ligament (PDL) is a specialized connective tissue that connects the cementum - coating the surface of the tooth - to the alveolar bone. Mohawk homeobox (Mkx) is a transcription factor that is expressed in PDL, that is known to play a vital role in the development and homeostasis of PDL. A detailed functional analysis of Mkx in the periodontal ligament for alveolar bone and cementum metabolism has not yet been conducted. Materials and methods Alveolar bone height, bone mineral density (BMD) and bone volume fractions (Bone volume/Total volume: BV/TV) were measured and analyzed using micro-computed tomography (Micro-CT) and 3DBon on 7-week-old male wild-type (WT) (Mkx+/+) (n = 10) and Mkx-knockout (Mkx-/-) (n = 6) rats. Hematoxylin and Eosin (H&E), tartrate-resistant acid phosphatase (TRAP), alkaline phosphatase (ALP) and Masson Trichrome staining were performed on 5, 6, and 7-week-old Mkx+/+ and Mkx-/- rats. Cementum surface area and the number of TRAP-positive osteoclasts/mm were quantified, measured, and compared for 5,6 and 7-week-old Mkx+/+ and Mkx-/- rats (n = 3 each). Results The level of alveolar bone height was significantly higher in Mkx-/- rats than in Mkx+/+ rats. On the other hand, there was significantly less BMD in Mkx-/- alveolar bone. A significant increase in cellular cementum could be observed as early as 5 weeks in Mkx-/- rats when compared with Mkx+/+ rats of the same age. More TRAP-positive osteoclasts were observed in Mkx-/- rats. Conclusion Our findings further reveal the essential roles of Mkx in the homeostasis of the periodontal tissue. Mkx was found to contribute to bone and cementum metabolism and may be essential to the prevention of diseases such as periodontitis, and could show potential in regenerative treatments.
Collapse
Affiliation(s)
- Lisa Yagasaki
- Department of Periodontology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo 113-8510, Japan
- Department of Systems BioMedicine, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo 113-8519, Japan
| | - Tomoki Chiba
- Department of Systems BioMedicine, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo 113-8519, Japan
| | - Ryota Kurimoto
- Department of Systems BioMedicine, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo 113-8519, Japan
| | - Mitsuyo Nakajima
- Department of Systems BioMedicine, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo 113-8519, Japan
| | - Takanori Iwata
- Department of Periodontology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo 113-8510, Japan
| | - Hiroshi Asahara
- Department of Systems BioMedicine, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo 113-8519, Japan
- Department of Molecular and Experimental Medicine, The Scripps Research Institute, La Jolla, CA 92037, USA
| |
Collapse
|
19
|
Ng MY, Yu CC, Chen SH, Liao YW, Lin T. Er:YAG Laser Alleviates Inflammaging in Diabetes-Associated Periodontitis via Activation CTBP1-AS2/miR-155/SIRT1 Axis. Int J Mol Sci 2024; 25:2116. [PMID: 38396793 PMCID: PMC10888604 DOI: 10.3390/ijms25042116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 02/01/2024] [Accepted: 02/05/2024] [Indexed: 02/25/2024] Open
Abstract
Periodontitis is a significant health concern for individuals with diabetes mellitus (DM), characterized by inflammation and periodontium loss. Hyperglycaemia in DM exacerbates susceptibility to periodontitis by inducing inflammaging in the host immune system. The use of erbium-doped yttrium-aluminum-garnet laser (ErL) in periodontitis treatment has gained attention, but its impact on diabetic-associated periodontitis (DP) and underlying mechanisms remain unclear. In this study, we simulated DP by exposing human periodontal ligament fibroblasts (PDLFs) to advanced glycation end products (AGEs) and lipopolysaccharides from P. gingivalis (Pg-LPS). Subsequently, we evaluated the impact of ErL on the cells' wound healing and assessed their inflammaging markers. ErL treatment promoted wound healing and suppressed inflammaging activities, including cell senescence, IL-6 secretion, and p65 phosphorylation. Moreover, the laser-targeted cells were observed to have upregulated expression of CTBP1-AS2, which, when overexpressed, enhanced wound healing ability and repressed inflammaging. Moreover, bioinformatic analysis revealed that CTBP1-AS2 acted as a sponge for miR155 and upregulated SIRT1. In conclusion, ErL demonstrated the ability to improve wound healing and mitigate inflammaging in diabetic periodontal tissue through the CTBP1-AS2/miR-155/SIRT1 axis. Targeting this axis could represent a promising therapeutic approach for preventing periodontitis in individuals with DM.
Collapse
Affiliation(s)
- Min Yee Ng
- School of Dentistry, Chung Shan Medical University, Taichung 40201, Taiwan; (M.Y.N.); (C.-C.Y.); (S.-H.C.)
| | - Cheng-Chia Yu
- School of Dentistry, Chung Shan Medical University, Taichung 40201, Taiwan; (M.Y.N.); (C.-C.Y.); (S.-H.C.)
- Department of Dentistry, Chung Shan Medical University Hospital, Taichung 40201, Taiwan
- Institute of Oral Sciences, Chung Shan Medical University, Taichung 40201, Taiwan;
| | - Szu-Han Chen
- School of Dentistry, Chung Shan Medical University, Taichung 40201, Taiwan; (M.Y.N.); (C.-C.Y.); (S.-H.C.)
| | - Yi-Wen Liao
- Institute of Oral Sciences, Chung Shan Medical University, Taichung 40201, Taiwan;
- Department of Medical Research, Chung Shan Medical University Hospital, Taichung 40201, Taiwan
| | - Taichen Lin
- School of Dentistry, Chung Shan Medical University, Taichung 40201, Taiwan; (M.Y.N.); (C.-C.Y.); (S.-H.C.)
- Department of Dentistry, Chung Shan Medical University Hospital, Taichung 40201, Taiwan
| |
Collapse
|
20
|
Miki K, Takeshita N, Yamashita M, Kitamura M, Murakami S. Calcitonin gene-related peptide regulates periodontal tissue regeneration. Sci Rep 2024; 14:1344. [PMID: 38228723 PMCID: PMC10791604 DOI: 10.1038/s41598-024-52029-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Accepted: 01/12/2024] [Indexed: 01/18/2024] Open
Abstract
Calcitonin gene-related peptide (CGRP), a neuropeptide composed of 37 amino acids secreted from the sensory nerve endings, reportedly possesses various physiological effects, such as vasodilation and neurotransmission. Recently, there have been increasing reports of the involvement of CGRP in bone metabolism; however, its specific role in the pathogenesis of periodontitis, particularly in the repair and healing processes, remains to be elucidated. Therefore, this study aimed to investigate dynamic expression patterns of CGRP during the destruction and regeneration processes of periodontal tissues in a mouse model of experimental periodontitis. We also explored the effects of CGRP on periodontal ligament cells, which can differentiate to hard tissue-forming cells (cementoblasts or osteoblasts). Our findings demonstrated that CGRP stimulation promotes the differentiation of periodontal ligament cells into hard tissue-forming cells. Experimental results using a ligature-induced periodontitis mouse model also suggested fluctuations in CGRP expression during periodontal tissue healing, underscoring the vital role of CGRP signaling in alveolar bone recovery. The study results highlight the important role of nerves in the periodontal ligament not only in sensory reception in the periphery, as previously known, but also in periodontal tissue homeostasis and tissue repair processes.
Collapse
Affiliation(s)
- Koji Miki
- Department of Periodontology and Regenerative Dentistry, Osaka University Graduate School of Dentistry, 1-8 Yamadaoka, Suita, Osaka, 565-0871, Japan.
| | - Noboru Takeshita
- Department of Periodontology and Regenerative Dentistry, Osaka University Graduate School of Dentistry, 1-8 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Motozo Yamashita
- Department of Periodontology and Regenerative Dentistry, Osaka University Graduate School of Dentistry, 1-8 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Masahiro Kitamura
- Department of Periodontology and Regenerative Dentistry, Osaka University Graduate School of Dentistry, 1-8 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Shinya Murakami
- Department of Periodontology and Regenerative Dentistry, Osaka University Graduate School of Dentistry, 1-8 Yamadaoka, Suita, Osaka, 565-0871, Japan
| |
Collapse
|
21
|
Arai M, Kaku M, Thant L, Kitami M, Ono Y, Dobashi A, Iwama H, Mizukoshi M, Kitami K, Matsumoto M, Saito I, Uoshima K. Effect of Sparc knockout on the extracellular matrix of mouse periodontal ligament cells. Biochem Biophys Res Commun 2024; 692:149364. [PMID: 38070276 DOI: 10.1016/j.bbrc.2023.149364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Accepted: 12/04/2023] [Indexed: 01/06/2024]
Abstract
The periodontal ligament (PDL) is a critical component in maintaining tooth stability. It is composed of cells and an extracellular matrix (ECM), each with unique roles in tissue function and homeostasis. Secreted protein acidic and rich in cysteine (SPARC), a calcium-binding matricellular glycoprotein, plays a crucial role in regulating ECM assembly and turnover, alongside facilitating cellular-ECM interactions. In the present study, mass spectrometry-based proteomics was used to assess the impacts of Sparc-knockout (KO) on PDL-derived cells. Results demonstrated that Sparc-KO significantly reduces ECM production and alters its composition with increased levels of type I collagen. Despite this increase in Sparc-KO, type I collagen was not likely to be effectively integrated into the fibrils due to collagen cross-linking impairment. Furthermore, the pathway and process enrichment analyses suggested that SPARC plays a protective role against ECM degradation by antagonistically interacting with cell-surface collagen receptors. These findings provide detailed insights into the multifaceted role of SPARC in ECM organization, including its impact on ECM production, collagen regulation, and interactions with various cellular compartments. A better understanding of these complex mechanisms is crucial for comprehending the causes of periodontal disease and tissue regeneration, where precise control of ECM organization is necessary.
Collapse
Affiliation(s)
- Moe Arai
- Division of Orthodontics, Faculty of Dentistry & Graduate School of Medical and Dental Sciences, Niigata University, Niigata, Japan
| | - Masaru Kaku
- Division of Bio-prosthodontics, Faculty of Dentistry & Graduate School of Medical and Dental Sciences, Niigata University, Niigata, Japan.
| | - Lay Thant
- Division of Orthodontics, Faculty of Dentistry & Graduate School of Medical and Dental Sciences, Niigata University, Niigata, Japan; Division of Dental Pharmacology, Faculty of Dentistry & Graduate School of Medical and Dental Sciences, Niigata University, Niigata, Japan; Center for Advanced Oral Science, Faculty of Dentistry & Graduate School of Medical and Dental Sciences, Niigata University, Niigata, Japan
| | - Megumi Kitami
- Division of Dental Pharmacology, Faculty of Dentistry & Graduate School of Medical and Dental Sciences, Niigata University, Niigata, Japan; Center for Advanced Oral Science, Faculty of Dentistry & Graduate School of Medical and Dental Sciences, Niigata University, Niigata, Japan
| | - Yoshiki Ono
- Division of Bio-prosthodontics, Faculty of Dentistry & Graduate School of Medical and Dental Sciences, Niigata University, Niigata, Japan
| | - Azusa Dobashi
- Division of Bio-prosthodontics, Faculty of Dentistry & Graduate School of Medical and Dental Sciences, Niigata University, Niigata, Japan
| | - Hajime Iwama
- Division of Orthodontics, Faculty of Dentistry & Graduate School of Medical and Dental Sciences, Niigata University, Niigata, Japan
| | - Masaru Mizukoshi
- Division of Orthodontics, Faculty of Dentistry & Graduate School of Medical and Dental Sciences, Niigata University, Niigata, Japan
| | - Kohei Kitami
- Division of Orthodontics, Faculty of Dentistry & Graduate School of Medical and Dental Sciences, Niigata University, Niigata, Japan
| | - Masaki Matsumoto
- Department of Omics and Systems Biology, Graduate School of Medical and Dental Sciences, Niigata University, Niigata, Japan
| | - Isao Saito
- Division of Orthodontics, Faculty of Dentistry & Graduate School of Medical and Dental Sciences, Niigata University, Niigata, Japan
| | - Katsumi Uoshima
- Division of Bio-prosthodontics, Faculty of Dentistry & Graduate School of Medical and Dental Sciences, Niigata University, Niigata, Japan
| |
Collapse
|
22
|
Kaku M, Thant L, Dobashi A, Ono Y, Kitami M, Mizukoshi M, Arai M, Iwama H, Kitami K, Kakihara Y, Matsumoto M, Saito I, Uoshima K. Multiomics analysis of cultured mouse periodontal ligament cell-derived extracellular matrix. Sci Rep 2024; 14:354. [PMID: 38172274 PMCID: PMC10764881 DOI: 10.1038/s41598-023-51054-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Accepted: 12/29/2023] [Indexed: 01/05/2024] Open
Abstract
A comprehensive understanding of the extracellular matrix (ECM) is essential for developing biomimetic ECM scaffolds for tissue regeneration. As the periodontal ligament cell (PDLC)-derived ECM has shown potential for periodontal tissue regeneration, it is vital to gain a deeper understanding of its comprehensive profile. Although the PDLC-derived ECM exhibits extracellular environment similar to that of periodontal ligament (PDL) tissue, details of its molecular composition are lacking. Thus, using a multiomics approach, we systematically analyzed cultured mouse PDLC-derived ECM and compared it to mouse PDL tissue as a reference. Proteomic analysis revealed that, compared to PDL tissue, the cultured PDLC-derived ECM had a lower proportion of fibrillar collagens with increased levels of glycoprotein, corresponding to an immature ECM status. The gene expression signature was maintained in cultured PDLCs and was similar to that in cells from PDL tissues, with additional characteristics representative of naturally occurring progenitor cells. A combination of proteomic and transcriptomic analyses revealed that the cultured mouse PDLC-derived ECM has multiple advantages in tissue regeneration, providing an extracellular environment that closely mimics the environment in the native PDL tissue. These findings provide valuable insights for understanding PDLC-derived ECM and should contribute to the development of biomimetic ECM scaffolds for reliable periodontal tissue regeneration.
Collapse
Affiliation(s)
- Masaru Kaku
- Division of Bio-Prosthodontics, Faculty of Dentistry and Graduate School of Medical and Dental Sciences, Niigata University, Niigata, Japan.
- Division of Bio-Prosthodontics, Faculty of Dentistry and Graduate School of Medical and Dental Sciences, Niigata University, 2-5274, Gakkocho-dori, Chuo-ku, Niigata, Niigata, 951-8514, Japan.
| | - Lay Thant
- Division of Orthodontics, Faculty of Dentistry and Graduate School of Medical and Dental Sciences, Niigata University, Niigata, Japan
- Division of Dental Pharmacology, Faculty of Dentistry and Graduate School of Medical and Dental Sciences, Niigata University, Niigata, Japan
| | - Azusa Dobashi
- Division of Bio-Prosthodontics, Faculty of Dentistry and Graduate School of Medical and Dental Sciences, Niigata University, Niigata, Japan
| | - Yoshiki Ono
- Division of Bio-Prosthodontics, Faculty of Dentistry and Graduate School of Medical and Dental Sciences, Niigata University, Niigata, Japan
| | - Megumi Kitami
- Division of Dental Pharmacology, Faculty of Dentistry and Graduate School of Medical and Dental Sciences, Niigata University, Niigata, Japan
| | - Masaru Mizukoshi
- Division of Orthodontics, Faculty of Dentistry and Graduate School of Medical and Dental Sciences, Niigata University, Niigata, Japan
| | - Moe Arai
- Division of Orthodontics, Faculty of Dentistry and Graduate School of Medical and Dental Sciences, Niigata University, Niigata, Japan
| | - Hajime Iwama
- Division of Orthodontics, Faculty of Dentistry and Graduate School of Medical and Dental Sciences, Niigata University, Niigata, Japan
| | - Kohei Kitami
- Division of Orthodontics, Faculty of Dentistry and Graduate School of Medical and Dental Sciences, Niigata University, Niigata, Japan
| | - Yoshito Kakihara
- Division of Dental Pharmacology, Faculty of Dentistry and Graduate School of Medical and Dental Sciences, Niigata University, Niigata, Japan
| | - Masaki Matsumoto
- Department of Omics and Systems Biology, Graduate School of Medical and Dental Sciences, Niigata University, Niigata, Japan
| | - Isao Saito
- Division of Orthodontics, Faculty of Dentistry and Graduate School of Medical and Dental Sciences, Niigata University, Niigata, Japan
| | - Katsumi Uoshima
- Division of Bio-Prosthodontics, Faculty of Dentistry and Graduate School of Medical and Dental Sciences, Niigata University, Niigata, Japan
| |
Collapse
|
23
|
Yi X, Song Y, Xu J, Wang L, Liu L, Huang D, Zhang L. NLRP10 promotes AGEs-induced NLRP1 and NLRP3 inflammasome activation via ROS/MAPK/NF-κB signaling in human periodontal ligament cells. Odontology 2024; 112:100-111. [PMID: 37043073 DOI: 10.1007/s10266-023-00813-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Accepted: 04/03/2023] [Indexed: 04/13/2023]
Abstract
Diabetes mellitus (DM), characterized by production and accumulation of advanced glycation end products (AGEs), induces and promotes chronic inflammation in tissues, including periodontal tissue. Increasing amount of epidemiological and experimental evidence demonstrated that more extensive inflammatory reaction and bone resorption occurred in periodontal tissues in diabetic patients with periodontitis, which is speculated to be related to NLRP3 inflammasome. NLRP10 is the only NOD-like receptor protein lacking leucine-rich repeats, suggesting that NLRP10 may be a regulatory protein. The aim of this study was to investigate the regulatory role of NLRP10 on NLRP1 and NLRP3 inflammasome in human periodontal ligament cells (HPDLCs) under AGEs treatment. Expression of NLRP10 in HPDLCs stimulated with 100 ug/mL AGEs for 24 h was observed. Detection of TRIM31 is conducted, and in TRIM31-overexpressed HPDLCs, the interaction between NLRP10 with TRIM31 as well as NLRP10 with ubiquitination were explored by immunoprecipitation. Under AGEs stimulation, the activation of reactive oxidative stress (ROS) and inflammatory signaling pathway (NF-κB, MAPK pathway) was detected by biomedical microscope and western blot (WB), respectively. After stimulation with AGEs for 24 h with or without silencing NLRP10, inflammatory cytokines (IL-6 and IL-1β), NF-κB, MAPK pathway, ROS, and components of inflammasome were assessed. In HPDLCs, we found AGEs induced NLRP10 and inhibited TRIM31. TRIM31 overexpression significantly enhanced interaction between TRIM31 and NLRP10, then induced proteasomal degradation of NLRP10. Moreover, under AGEs stimulation, NLRP10 positively regulates NLRP1, NLRP3 inflammasomes by activating NF-κB, MAPK pathway, and increasing ROS, finally promoting the expression of inflammatory cytokines. Together, we, for the first time, confirmed that NLRP10 could promote inflammatory response induced by AGEs in HPDLCs via activation of NF-κB, and MAPK pathway and increasing ROS.
Collapse
Affiliation(s)
- Xiaowei Yi
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, 14# Third Section, Renmin Nan Road, Chengdu, 610041, China
| | - Yao Song
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, 14# Third Section, Renmin Nan Road, Chengdu, 610041, China
| | - Jialei Xu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, 14# Third Section, Renmin Nan Road, Chengdu, 610041, China
| | - Liu Wang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, 14# Third Section, Renmin Nan Road, Chengdu, 610041, China
| | - Liu Liu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, 14# Third Section, Renmin Nan Road, Chengdu, 610041, China
| | - Dingming Huang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, 14# Third Section, Renmin Nan Road, Chengdu, 610041, China
| | - Lan Zhang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, 14# Third Section, Renmin Nan Road, Chengdu, 610041, China.
| |
Collapse
|
24
|
Alqarni H, Alfaifi MA, Altoman MS, AlHelal AA, Magdy Ahmed W, Ahmed Azhari A, Kattadiyil MT. A novel digital workflow for fabricating artificial periodontal ligament using three-dimensional printing flexible resin: A dental technique. Saudi Dent J 2024; 36:123-128. [PMID: 38375398 PMCID: PMC10874785 DOI: 10.1016/j.sdentj.2023.10.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 10/17/2023] [Accepted: 10/24/2023] [Indexed: 02/21/2024] Open
Abstract
The fabrication of periodontal ligament (PDL) models for in vitro dental studies has seen a wide range of techniques and materials being utilized. This paper introduces a novel dental technique that employs a digital workflow for the fabrication of artificial PDL using three-dimensional printing of flexible resin. This innovative approach offers several advantages, including enhanced accuracy and realism in simulating PDL. The digital workflow facilitates a streamlined fabrication process, ensuring efficiency and precision. By presenting this novel technique, this digital approach contributes to the advancement of in vitro dental research, providing researchers with a reliable and realistic model for studying various dental phenomena.
Collapse
Affiliation(s)
- Hatem Alqarni
- Restorative and Prosthetic Dental Science Department, College of Dentistry, King Saud Bin Abdulaziz University for Health Sciences, Riyadh, Saudi Arabia
- King Abdullah International Medical Research Center, Ministry of National Guard Health Affairs, Riyadh, Saudi Arabia
| | - Mohammed A Alfaifi
- Department of Prosthetic Dental Sciences, King Khalid University College of Dentistry, Abha, Saudi Arabia
| | - Majed S Altoman
- Department of Prosthetic Dental Sciences, King Khalid University College of Dentistry, Abha, Saudi Arabia
| | - Abdulaziz A AlHelal
- Department of Prosthetic Dental Sciences, College of Dentistry, King Saud University, Riyadh, Saudi Arabia
| | - Walaa Magdy Ahmed
- Assistant Professor, Department of Restorative Dentistry, Faculty of Dentistry, King Abdulaziz, Jeddah, Saudi Arabia
| | - Amr Ahmed Azhari
- Assistant Professor, Department of Restorative Dentistry, Faculty of Dentistry, King Abdulaziz, Jeddah, Saudi Arabia
| | - Mathew T Kattadiyil
- Advanced Specialty Education Program in Prosthodontics, Loma Linda University School of Dentistry, Loma Linda, CA, United States
| |
Collapse
|
25
|
Epicoco L, Pellegrino R, Madaghiele M, Friuli M, Giannotti L, Di Chiara Stanca B, Palermo A, Siculella L, Savkovic V, Demitri C, Nitti P. Recent Advances in Functionalized Electrospun Membranes for Periodontal Regeneration. Pharmaceutics 2023; 15:2725. [PMID: 38140066 PMCID: PMC10747510 DOI: 10.3390/pharmaceutics15122725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 11/26/2023] [Accepted: 12/01/2023] [Indexed: 12/24/2023] Open
Abstract
Periodontitis is a global, multifaceted, chronic inflammatory disease caused by bacterial microorganisms and an exaggerated host immune response that not only leads to the destruction of the periodontal apparatus but may also aggravate or promote the development of other systemic diseases. The periodontium is composed of four different tissues (alveolar bone, cementum, gingiva, and periodontal ligament) and various non-surgical and surgical therapies have been used to restore its normal function. However, due to the etiology of the disease and the heterogeneous nature of the periodontium components, complete regeneration is still a challenge. In this context, guided tissue/bone regeneration strategies in the field of tissue engineering and regenerative medicine have gained more and more interest, having as a goal the complete restoration of the periodontium and its functions. In particular, the use of electrospun nanofibrous scaffolds has emerged as an effective strategy to achieve this goal due to their ability to mimic the extracellular matrix and simultaneously exert antimicrobial, anti-inflammatory and regenerative activities. This review provides an overview of periodontal regeneration using electrospun membranes, highlighting the use of these nanofibrous scaffolds as delivery systems for bioactive molecules and drugs and their functionalization to promote periodontal regeneration.
Collapse
Affiliation(s)
- Luana Epicoco
- Department of Engineering for Innovation, University of Salento, 73100 Lecce, Italy; (R.P.); (M.M.); (M.F.); (C.D.)
- Institute of Medical Physics and Biophysics, University of Leipzig, 04103 Leipzig, Germany
| | - Rebecca Pellegrino
- Department of Engineering for Innovation, University of Salento, 73100 Lecce, Italy; (R.P.); (M.M.); (M.F.); (C.D.)
| | - Marta Madaghiele
- Department of Engineering for Innovation, University of Salento, 73100 Lecce, Italy; (R.P.); (M.M.); (M.F.); (C.D.)
| | - Marco Friuli
- Department of Engineering for Innovation, University of Salento, 73100 Lecce, Italy; (R.P.); (M.M.); (M.F.); (C.D.)
| | - Laura Giannotti
- Department of Biological and Environmental Sciences and Technologies, University of Salento, 73100 Lecce, Italy; (L.G.); (B.D.C.S.); (L.S.)
| | - Benedetta Di Chiara Stanca
- Department of Biological and Environmental Sciences and Technologies, University of Salento, 73100 Lecce, Italy; (L.G.); (B.D.C.S.); (L.S.)
| | - Andrea Palermo
- Implant Dentistry College of Medicine and Dentistry, Birmingham B4 6BN, UK;
| | - Luisa Siculella
- Department of Biological and Environmental Sciences and Technologies, University of Salento, 73100 Lecce, Italy; (L.G.); (B.D.C.S.); (L.S.)
| | - Vuk Savkovic
- Clinic and Polyclinic for Oral and Maxillofacial Plastic Surgery, University Hospital Leipzig, 04103 Leipzig, Germany;
| | - Christian Demitri
- Department of Engineering for Innovation, University of Salento, 73100 Lecce, Italy; (R.P.); (M.M.); (M.F.); (C.D.)
| | - Paola Nitti
- Department of Engineering for Innovation, University of Salento, 73100 Lecce, Italy; (R.P.); (M.M.); (M.F.); (C.D.)
| |
Collapse
|
26
|
Kinoshita M, Yamada S, Sasaki J, Suzuki S, Kajikawa T, Iwayama T, Fujihara C, Imazato S, Murakami S. Mice Lacking PLAP-1/Asporin Show Alteration of Periodontal Ligament Structures and Acceleration of Bone Loss in Periodontitis. Int J Mol Sci 2023; 24:15989. [PMID: 37958972 PMCID: PMC10649079 DOI: 10.3390/ijms242115989] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 10/24/2023] [Accepted: 11/03/2023] [Indexed: 11/15/2023] Open
Abstract
Periodontal ligament-associated protein 1 (PLAP-1), also known as Asporin, is an extracellular matrix protein expressed in the periodontal ligament and plays a crucial role in periodontal tissue homeostasis. Our previous research demonstrated that PLAP-1 may inhibit TLR2/4-mediated inflammatory responses, thereby exerting a protective function against periodontitis. However, the precise roles of PLAP-1 in the periodontal ligament (PDL) and its relationship to periodontitis have not been fully explored. In this study, we employed PLAP-1 knockout mice to investigate its roles and contributions to PDL tissue and function in a ligature-induced periodontitis model. Mandibular bone samples were collected from 10-week-old male C57BL/6 (WT) and PLAP-1 knockout (KO) mice. These samples were analyzed through micro-computed tomography (μCT) scanning, hematoxylin and eosin (HE) staining, picrosirius red staining, and fluorescence immunostaining using antibodies targeting extracellular matrix proteins. Additionally, the structure of the PDL collagen fibrils was examined using transmission electron microscopy (TEM). We also conducted tooth extraction and ligature-induced periodontitis models using both wild-type and PLAP-1 KO mice. PLAP-1 KO mice did not exhibit any changes in alveolar bone resorption up to the age of 10 weeks, but they did display an enlarged PDL space, as confirmed by μCT and histological analyses. Fluorescence immunostaining revealed increased expression of extracellular matrix proteins, including Col3, BGN, and DCN, in the PDL tissues of PLAP-1 KO mice. TEM analysis demonstrated an increase in collagen diameter within the PDL of PLAP-1 KO mice. In line with these findings, the maximum stress required for tooth extraction was significantly lower in PLAP-1 KO mice in the tooth extraction model compared to WT mice (13.89 N ± 1.34 and 16.51 N ± 1.31, respectively). In the ligature-induced periodontitis model, PLAP-1 knockout resulted in highly severe alveolar bone resorption, with a higher number of collagen fiber bundle tears and significantly more osteoclasts in the periodontium. Our results demonstrate that mice lacking PLAP-1/Asporin show alteration of periodontal ligament structures and acceleration of bone loss in periodontitis. This underscores the significant role of PLAP-1 in maintaining collagen fibrils in the PDL and suggests the potential of PLAP-1 as a therapeutic target for periodontal diseases.
Collapse
Affiliation(s)
- Masaki Kinoshita
- Department of Periodontology and Regenerative Dentistry, Osaka University Graduate School of Dentistry, Suita 565-0871, Osaka, Japan; (M.K.); (T.I.); (C.F.); (S.M.)
| | - Satoru Yamada
- Department of Periodontology and Endodontolgy, Tohoku University Graduate School of Dentistry, Sendai 980-8575, Miyagi, Japan; (S.S.); (T.K.)
| | - Junichi Sasaki
- Department of Dental Biomaterials, Osaka University Graduate School of Dentistry, Suita 565-0871, Osaka, Japan; (J.S.); (S.I.)
| | - Shigeki Suzuki
- Department of Periodontology and Endodontolgy, Tohoku University Graduate School of Dentistry, Sendai 980-8575, Miyagi, Japan; (S.S.); (T.K.)
| | - Tetsuhiro Kajikawa
- Department of Periodontology and Endodontolgy, Tohoku University Graduate School of Dentistry, Sendai 980-8575, Miyagi, Japan; (S.S.); (T.K.)
| | - Tomoaki Iwayama
- Department of Periodontology and Regenerative Dentistry, Osaka University Graduate School of Dentistry, Suita 565-0871, Osaka, Japan; (M.K.); (T.I.); (C.F.); (S.M.)
| | - Chiharu Fujihara
- Department of Periodontology and Regenerative Dentistry, Osaka University Graduate School of Dentistry, Suita 565-0871, Osaka, Japan; (M.K.); (T.I.); (C.F.); (S.M.)
| | - Satoshi Imazato
- Department of Dental Biomaterials, Osaka University Graduate School of Dentistry, Suita 565-0871, Osaka, Japan; (J.S.); (S.I.)
| | - Shinya Murakami
- Department of Periodontology and Regenerative Dentistry, Osaka University Graduate School of Dentistry, Suita 565-0871, Osaka, Japan; (M.K.); (T.I.); (C.F.); (S.M.)
| |
Collapse
|
27
|
Wu Y, Lan Y, Mao J, Shen J, Kang T, Xie Z. The interaction between the nervous system and the stomatognathic system: from development to diseases. Int J Oral Sci 2023; 15:34. [PMID: 37580325 PMCID: PMC10425412 DOI: 10.1038/s41368-023-00241-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 07/30/2023] [Accepted: 07/31/2023] [Indexed: 08/16/2023] Open
Abstract
The crosstalk between the nerve and stomatognathic systems plays a more important role in organismal health than previously appreciated with the presence of emerging concept of the "brain-oral axis". A deeper understanding of the intricate interaction between the nervous system and the stomatognathic system is warranted, considering their significant developmental homology and anatomical proximity, and the more complex innervation of the jawbone compared to other skeletons. In this review, we provide an in-depth look at studies concerning neurodevelopment, craniofacial development, and congenital anomalies that occur when the two systems develop abnormally. It summarizes the cross-regulation between nerves and jawbones and the effects of various states of the jawbone on intrabony nerve distribution. Diseases closely related to both the nervous system and the stomatognathic system are divided into craniofacial diseases caused by neurological illnesses, and neurological diseases caused by an aberrant stomatognathic system. The two-way relationships between common diseases, such as periodontitis and neurodegenerative disorders, and depression and oral diseases were also discussed. This review provides valuable insights into novel strategies for neuro-skeletal tissue engineering and early prevention and treatment of orofacial and neurological diseases.
Collapse
Affiliation(s)
- Yuzhu Wu
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province, Hangzhou, China
| | - Yanhua Lan
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province, Hangzhou, China
| | - Jiajie Mao
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province, Hangzhou, China
| | - Jiahui Shen
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province, Hangzhou, China
| | - Ting Kang
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province, Hangzhou, China.
| | - Zhijian Xie
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province, Hangzhou, China.
| |
Collapse
|
28
|
Armijo L, Mancl L, Dennison CR, Houg K, Romanyk D, Popowics T. In-fiber Bragg sensor measurements assess fluid effects on strain in the periodontal space of an ex-vivo swine incisor complex under mechanical loading. J Biomech 2023; 157:111729. [PMID: 37473706 DOI: 10.1016/j.jbiomech.2023.111729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 06/14/2023] [Accepted: 07/14/2023] [Indexed: 07/22/2023]
Abstract
The purpose of this study is to determine whether in-fiber Bragg grating (FBG) sensors detect changes within the periodontal ligament (PDL) of ex-vivo swine tooth-PDL-bone complex (TPBC) when manipulating fluid content. Recording strain will allow for a better understanding of the biomechanics of viscoelastic load transfer from the tooth to the PDL during chewing and/or orthodontic tooth movement, as well as replication of these dynamics in regenerated PDL tissues. FBG sensors placed within the PDL of swine incisor teeth were used to measure strain resulting from an intrusive load. Specimens were mounted in a custom platform within an MTS machine and a compressive load was applied at 0.3 mm/s to a depth of 0.5 mm and held for 10 s. Median peak strain and load and median absolute deviation (MAD) were compared: dry vs. saline (n = 19) with bias-corrected bootstrap 95% CI. Dry vs. saline conditions did not statistically differ (median peaks of 5με, 103-105 N) and recorded strains showed high repeatability (MAD of 0.82με, 0.72με, respectively). FBG sensors did not detect the fluid changes in this study, suggesting that the deformation of tissues in the PDL space collectively determine FBG strain in response to tooth loading. The repeatability of measurements demonstrates the potential for FBG sensors to assess the strain in the PDL space of an in vivo swine model.
Collapse
Affiliation(s)
- Leigh Armijo
- Dept. of Orthodontics, University of Washington School of Dentistry, Seattle, WA 98195, USA.
| | - Lloyd Mancl
- Dept. of Oral Health Sciences, University of Washington School of Dentistry, Seattle, WA 98195, USA.
| | | | - Kathryn Houg
- Dept. of Mechanical Engineering and School of Dentistry, University of Alberta, Edmonton, Alberta, Canada.
| | - Dan Romanyk
- Dept. of Mechanical Engineering and School of Dentistry, University of Alberta, Edmonton, Alberta, Canada.
| | - Tracy Popowics
- Box 357475, Dept. of Oral Health Sciences, 1959 Pacific Ave. NE, University of Washington School of Dentistry, Seattle, WA 98195, USA.
| |
Collapse
|
29
|
Huang X, Xiao J, Wang H, Peng Y, Liu H, Ma L, Wang X, Cao Z. CKIP-1 mediates P. gingivalis-suppressed osteogenic/cementogenic differentiation of periodontal ligament cells partially via p38 signaling pathway. J Oral Microbiol 2023; 15:2236427. [PMID: 37483640 PMCID: PMC10360982 DOI: 10.1080/20002297.2023.2236427] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 07/03/2023] [Accepted: 07/08/2023] [Indexed: 07/25/2023] Open
Abstract
Objectives Casein kinase 2 interacting protein-1 (CKIP-1) is a versatile player involved in various biological processes. However, whether CKIP-1 mediates the osteogenic/cementogenic differentiation of periodontal ligament cells (PDLCs) under Porphyromonas gingivalis (Pg) stimulation remains unknown. Material and Methods The effect of Pg on PDLC differentiation was first verified. CKIP-1 expression in Pg-infected PDLCs or in PDL of apical periodontitis (AP) mice was detected. The changes of CKIP-1 during PDLC differentiation was also determined. PDLC differentiation capacity in CKIP-1 knockout (KO) mice and CKIP-1-silenced PDLCs with or without Pg stimulation were further studied. Inhibitor was finally applied to verify the involvement of p38 signaling pathway in PDLC differentiation. Results The suppression effect of Pg on PDLC differentiation was demonstrated. CKIP-1 increased in the PDL of AP mice and Pg-induced PDLCs, and decreased gradually during PDLC differentiation. Increased OSX and RUNX2 expression in PDL were observed in CKIP-1 KO mice. Also, CKIP-1 silencing facilitated and rescued Pg-inhibited PDLC differentiation. Inhibitor for p38 signaling pathway blocked CKIP-1 silencing-facilitated PDLC differentiation. Conclusions CKIP-1 mediated the osteogenic/cementogenic differentiation of PDLCs partially through p38 signaling pathway, which may provide evidence for the regeneration of periodontal hard tissues damaged by Pg.
Collapse
Affiliation(s)
- Xin Huang
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, China
- Department of Periodontology, School & Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Junhong Xiao
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Huiyi Wang
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Yan Peng
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Heyu Liu
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Li Ma
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, China
- Department of Periodontology, School & Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Xiaoxuan Wang
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, China
- Department of Periodontology, School & Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Zhengguo Cao
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, China
- Department of Periodontology, School & Hospital of Stomatology, Wuhan University, Wuhan, China
| |
Collapse
|
30
|
Sui BD, Zheng CX, Zhao WM, Xuan K, Li B, Jin Y. Mesenchymal condensation in tooth development and regeneration: a focus on translational aspects of organogenesis. Physiol Rev 2023; 103:1899-1964. [PMID: 36656056 DOI: 10.1152/physrev.00019.2022] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 12/26/2022] [Accepted: 01/16/2023] [Indexed: 01/20/2023] Open
Abstract
The teeth are vertebrate-specific, highly specialized organs performing fundamental functions of mastication and speech, the maintenance of which is crucial for orofacial homeostasis and is further linked to systemic health and human psychosocial well-being. However, with limited ability for self-repair, the teeth can often be impaired by traumatic, inflammatory, and progressive insults, leading to high prevalence of tooth loss and defects worldwide. Regenerative medicine holds the promise to achieve physiological restoration of lost or damaged organs, and in particular an evolving framework of developmental engineering has pioneered functional tooth regeneration by harnessing the odontogenic program. As a key event of tooth morphogenesis, mesenchymal condensation dictates dental tissue formation and patterning through cellular self-organization and signaling interaction with the epithelium, which provides a representative to decipher organogenetic mechanisms and can be leveraged for regenerative purposes. In this review, we summarize how mesenchymal condensation spatiotemporally assembles from dental stem cells (DSCs) and sequentially mediates tooth development. We highlight condensation-mimetic engineering efforts and mechanisms based on ex vivo aggregation of DSCs, which have achieved functionally robust and physiologically relevant tooth regeneration after implantation in animals and in humans. The discussion of this aspect will add to the knowledge of development-inspired tissue engineering strategies and will offer benefits to propel clinical organ regeneration.
Collapse
Affiliation(s)
- Bing-Dong Sui
- State Key Laboratory of Military Stomatology and National Clinical Research Center for Oral Diseases and Shaanxi International Joint Research Center for Oral Diseases, Center for Tissue Engineering, School of Stomatology, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Chen-Xi Zheng
- State Key Laboratory of Military Stomatology and National Clinical Research Center for Oral Diseases and Shaanxi International Joint Research Center for Oral Diseases, Center for Tissue Engineering, School of Stomatology, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Wan-Min Zhao
- State Key Laboratory of Military Stomatology and National Clinical Research Center for Oral Diseases and Shaanxi International Joint Research Center for Oral Diseases, Center for Tissue Engineering, School of Stomatology, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Kun Xuan
- State Key Laboratory of Military Stomatology and National Clinical Research Center for Oral Diseases and Shaanxi International Joint Research Center for Oral Diseases, Center for Tissue Engineering, School of Stomatology, Fourth Military Medical University, Xi'an, Shaanxi, China
- Department of Preventive Dentistry, School of Stomatology, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Bei Li
- State Key Laboratory of Military Stomatology and National Clinical Research Center for Oral Diseases and Shaanxi International Joint Research Center for Oral Diseases, Center for Tissue Engineering, School of Stomatology, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Yan Jin
- State Key Laboratory of Military Stomatology and National Clinical Research Center for Oral Diseases and Shaanxi International Joint Research Center for Oral Diseases, Center for Tissue Engineering, School of Stomatology, Fourth Military Medical University, Xi'an, Shaanxi, China
- Xi'an Institute of Tissue Engineering and Regenerative Medicine, Xi'an, Shaanxi, China
| |
Collapse
|
31
|
Choi MJ, You TM, Jang YJ. Galectin-3 Plays an Important Role in BMP7-Induced Cementoblastic Differentiation of Human Periodontal Ligament Cells by Interacting with Extracellular Components. Stem Cells Int 2023; 2023:5924286. [PMID: 37396953 PMCID: PMC10313471 DOI: 10.1155/2023/5924286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 05/01/2023] [Accepted: 06/10/2023] [Indexed: 07/04/2023] Open
Abstract
Human periodontal ligament stem cells (hPDLSCs) contain multipotent postnatal stem cells that differentiate into PDL progenitors, osteoblasts, and cementoblasts. Previously, we obtained cementoblast-like cells from hPDLSCs using bone morphogenetic protein 7 (BMP7) treatment. Differentiation into appropriate progenitor cells requires interactions and changes between stem or progenitor cells and their so-called environment niches, and cell surface markers play an important role. However, cementoblast-specific cell surface markers have not yet been fully studied. Through decoy immunization with intact cementoblasts, we developed a series of monoclonal antibodies against cementoblast-specific membrane/extracellular matrix (ECM) molecules. One of these antibodies, the anti-CM3 antibody, recognized an approximate 30 kDa protein in a mouse cementoblast cell line, and the CM3 antigenic molecule accumulated in the cementum region of human tooth roots. Using mass spectrometric analysis, we found that the antigenic molecules recognized by the anti-CM3 antibody were galectin-3. As cementoblastic differentiation progressed, the expression of galectin-3 increased, and it localized at the cell surface. Inhibition of galectin-3 via siRNA and a specific inhibitor showed the complete blockage of cementoblastic differentiation and mineralization. In contrast, ectopic expression of galectin-3 induced cementoblastic differentiation. Galectin-3 interacted with laminin α2 and BMP7, and these interactions were diminished by galectin-3 inhibitors. These results suggested that galectin-3 participates in binding to the ECM component and trapping BMP7 to induce, in a sustained fashion, the upregulation of cementoblastic differentiation. Finally, galectin-3 could be a potential cementoblast-specific cell surface marker, with functional importance in cell-to-ECM interactions.
Collapse
Affiliation(s)
- Min-Jeong Choi
- Department of Nanobiomedical Science and BK21 FOUR NBM Global Research Center for Regenerative Medicine, Dankook University, Cheonan 31116, Republic of Korea
| | - Tae Min You
- Department of Advanced General Dentistry, School of Dentistry, Dankook University, Cheonan 31116, Republic of Korea
| | - Young-Joo Jang
- Department of Nanobiomedical Science and BK21 FOUR NBM Global Research Center for Regenerative Medicine, Dankook University, Cheonan 31116, Republic of Korea
- Department of Oral Biochemistry, School of Dentistry, Dankook University, Cheonan 31116, Republic of Korea
| |
Collapse
|
32
|
Yoshida K, Ishizuka S, Nakamura-Takahashi A, Hasegawa A, Umezawa A, Koshika K, Ichinohe T, Kasahara M. Prenatal asfotase alfa-mediated enzyme replacement therapy restores delayed calcification in a severe infantile form of hypophosphatasia model mice. Eur J Med Genet 2023; 66:104787. [PMID: 37209904 DOI: 10.1016/j.ejmg.2023.104787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 05/17/2023] [Accepted: 05/18/2023] [Indexed: 05/22/2023]
Abstract
Hypophosphatasia (HPP) is a congenital disorder caused by mutations in the tissue-nonspecific alkaline phosphatase (TNALP) gene. The pathogenesis of HPP varies, ranging from severe cases in which there is total absence of fetal bone calcification, which leads to stillbirth, to relatively mild cases in which the effects are confined to the teeth, such as early loss of the primary teeth. In recent years, the establishment of enzyme supplementation as a treatment method has prolonged survival in patients; however, this approach does not provide sufficient improvement for failed calcification. Furthermore, the effects of enzyme replacement therapy on the jawbone and periodontal tissues have not yet been studied in detail. Therefore, in this study, we investigated the therapeutic effects of enzyme replacement therapy on jawbone hypocalcification in mice. Recombinant TNALP was administered to mothers before birth and newborns immediately after birth, and the effect of treatment was evaluated at 20 days of age. The treated HPP mice had improved mandible (mandibular length and bone quality) and tooth quality (root length of mandibular first molar, formation of cementum), as well as improved periodontal tissue structure (structure of periodontal ligament). Furthermore, prenatal treatment had an additional therapeutic effect on the degree of mandible and enamel calcification. These results suggest that enzyme replacement therapy is effective for the treatment of HPP, specifically in the maxillofacial region (including the teeth and mandible), and that early initiation of treatment may have additional beneficial therapeutic effects.
Collapse
Affiliation(s)
- Kaori Yoshida
- Department of Dental Anesthesiology, Tokyo Dental College, Tokyo, Japan
| | | | | | - Akihiro Hasegawa
- Department of Obstetrics and Gynecology, The Jikei University School of Medicine, Tokyo, Japan; Center for Regenerative Medicine, National Center for Child Health and Development Research Institute, Tokyo, Japan
| | - Akihiro Umezawa
- Center for Regenerative Medicine, National Center for Child Health and Development Research Institute, Tokyo, Japan
| | - Kyotaro Koshika
- Department of Dental Anesthesiology, Tokyo Dental College, Tokyo, Japan
| | - Tatsuya Ichinohe
- Department of Dental Anesthesiology, Tokyo Dental College, Tokyo, Japan
| | | |
Collapse
|
33
|
Aldoss A, Lambarte R, Alsalleeh F. High-Glucose Media Reduced the Viability and Induced Differential Pro-Inflammatory Cytokines in Human Periodontal Ligament Fibroblasts. Biomolecules 2023; 13:690. [PMID: 37189437 PMCID: PMC10135982 DOI: 10.3390/biom13040690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2022] [Revised: 04/11/2023] [Accepted: 04/17/2023] [Indexed: 05/17/2023] Open
Abstract
Hyperglycemic condition in diabetic patients tends to exacerbate periodontitis severity. Thus, the influence of hyperglycemia on the biological and inflammatory response of periodontal ligament fibroblasts (PDLFs) needs to be elucidated. In this study, PDLFs were seeded in media containing glucose concentrations (5.5, 25, or 50 mM) and stimulated with 1 µg/mL of lipopolysaccharide (LPS). PDLFs' viability, cytotoxicity, and the migration ability were determined. The mRNA expression of Interleukin (IL)-6, IL-10, and IL-23 (p19/p40), and Toll-like receptor (TLR)-4 were analyzed; at 6 and 24 h, protein expression of IL-6 and IL-10 was also determined. PDLFs grown in 50 mM glucose medium showed lower viability. The 5.5 mM glucose led to the highest percentage of wound closure compared to 25 mM and 50 mM glucose with/without LPS. Additionally, 50 mM glucose with LPS exhibited the least migration ability among all groups. The expression of IL-6 was amplified significantly in LPS-stimulated cells in 50 mM glucose medium. IL-10 was constitutively expressed in different glucose concentrations, and LPS stimulation decreased it. IL-23 p40 was up-regulated after LPS stimulation in 50 mM glucose concentration. TLR-4 was highly expressed after LPS stimulation in all glucose concentrations. Hyperglycemic conditions limit PDLF proliferation and migration, and enhance the expression of certain pro-inflammatory cytokines to induce periodontitis.
Collapse
Affiliation(s)
- Alaa Aldoss
- Restorative Dental Sciences, College of Dentistry, King Saud University, P.O. Box 60169, Riyadh 11545, Saudi Arabia
- Dental University Hospital, King Saud University, P.O. Box 60169, Riyadh 11545, Saudi Arabia
| | - Rhodanne Lambarte
- Molecular and Cell Biology Laboratory, Prince Naif Bin AbdulAziz Health Research Center, College of Dentistry, King Saud University Medical City, P.O. Box 60169, Riyadh 11545, Saudi Arabia
| | - Fahd Alsalleeh
- Restorative Dental Sciences, College of Dentistry, King Saud University, P.O. Box 60169, Riyadh 11545, Saudi Arabia
| |
Collapse
|
34
|
Nantakeeratipat T, Fujihara C, Nogimori T, Matsumoto M, Yamamoto T, Murakami S. Lysosomal acid lipase regulates bioenergetic process during the cytodifferentiation of human periodontal ligament cells. Biochem Biophys Res Commun 2023; 662:84-92. [PMID: 37099814 DOI: 10.1016/j.bbrc.2023.04.041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2023] [Accepted: 04/15/2023] [Indexed: 04/28/2023]
Abstract
Lipid metabolism is one of energy metabolic pathways that produce adenosine triphosphate (ATP). In this pathway, lysosomal acid lipase (LAL) encoded by Lipase A (LIPA), plays an important role in catalyzing lipids to fatty acids (FAs), which drive oxidative phosphorylation (OXPHOS) and generate ATP. Previously, we found that a LIPA single nucleotide polymorphism rs143793106, which decreases the LAL activity, suppressed the cytodifferentiation of human periodontal ligament (HPDL) cells. However, the mechanisms underlying that suppression are still not fully clarified. Thus, we aimed to investigate the mechanisms regulating the cytodifferentiation of HPDL cells by LAL in terms of energy metabolism. We performed the osteogenic induction of HPDL cells with or without Lalistat-2, a LAL inhibitor. To visualize lipid droplet (LD) utilization, we performed confocal microscopy on HPDL cells. We also performed real-time PCR to analyze the gene expression of calcification-related and metabolism-related genes. Furthermore, we measured the ATP production rate from two major energy production pathways, OXPHOS and glycolysis, and OXPHOS-related parameters of HPDL cells during their cytodifferentiation. We found that LDs were utilized during the cytodifferentiation of HPDL cells. Alkaline phosphatase (ALPL), collagen type 1 alpha 1 chain (COL1A1), ATP synthase F1 subunit alpha (ATP5F1A), and carnitine palmitoyltransferase 1A (CPT1A) mRNA expressions were upregulated, whereas lactate dehydrogenase A (LDHA) mRNA expression was downregulated. Additionally, total ATP production rate was significantly increased. In contrast, in the presence of Lalistat-2, LD utilization was inhibited and ALPL, COL1A1, and ATP5F1A mRNA expression was downregulated. Additionally, ATP production rate and spare respiratory capacity of the OXPHOS pathway were decreased in HPDL cells during their cytodifferentiation. Collectively, the defect of LAL in HPDL cells decreased LD utilization and OXPHOS capacity, resulting in reduced energy to sustain the adequate ATP production required for the cytodifferentiation of HPDL cells. Thus, LAL is important for periodontal tissue homeostasis as a regulator of bioenergetic process of HPDL cells.
Collapse
Affiliation(s)
- Teerachate Nantakeeratipat
- Department of Periodontology, Osaka University Graduate School of Dentistry, 1-8, Yamadaoka, Suita, Osaka, 565-0871, Japan; Department of Conservative Dentistry and Prosthodontics, Faculty of Dentistry, Srinakharinwirot University, 114 Soi Sukhumvit 23, Khlong Toei Nuea, Watthana, Bangkok, 10110, Thailand.
| | - Chiharu Fujihara
- Department of Periodontology, Osaka University Graduate School of Dentistry, 1-8, Yamadaoka, Suita, Osaka, 565-0871, Japan.
| | - Takuto Nogimori
- Laboratory of Immunosenescence, Center for Vaccine & Adjuvant Research, National Institutes of Biomedical Innovation, Health and Nutrition, 7-6-8, Saito-Asagi, Ibaraki, Osaka, 567-0085, Japan.
| | - Masahiro Matsumoto
- Department of Periodontology, Osaka University Graduate School of Dentistry, 1-8, Yamadaoka, Suita, Osaka, 565-0871, Japan.
| | - Takuya Yamamoto
- Laboratory of Immunosenescence, Center for Vaccine & Adjuvant Research, National Institutes of Biomedical Innovation, Health and Nutrition, 7-6-8, Saito-Asagi, Ibaraki, Osaka, 567-0085, Japan.
| | - Shinya Murakami
- Department of Periodontology, Osaka University Graduate School of Dentistry, 1-8, Yamadaoka, Suita, Osaka, 565-0871, Japan.
| |
Collapse
|
35
|
Yang Y, Geng T, Samara A, Olstad OK, He J, Agger AE, Skallerud BH, Landin MA, Heyward CA, Pullisaar H, Reseland JE. Recombinant irisin enhances the extracellular matrix formation, remodeling potential, and differentiation of human periodontal ligament cells cultured in 3D. J Periodontal Res 2023; 58:336-349. [PMID: 36625247 DOI: 10.1111/jre.13094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 11/24/2022] [Accepted: 12/27/2022] [Indexed: 01/11/2023]
Abstract
BACKGROUND Irisin is expressed in human periodontal ligament (hPDL), and its administration enhances growth, migration and matrix deposition in hPDL cells cultured in monolayers in vitro. OBJECTIVES To identify whether irisin affects the gene expression patterns directing the morphology, mechanical properties, extracellular matrix (ECM) formation, osteogenic activity and angiogenic potential in hPDL cell spheroids cultured in 3D. MATERIALS AND METHODS Spheroids of primary human hPDL cells were generated in a rotational 3D culture system and treated with or without irisin. The gene expression patterns were evaluated by Affymetrix microarrays. The morphology of the spheroids was characterized using histological staining. Mechanical properties were quantified by nanoindentation. The osteogenic and angiogenic potential of spheroids were assessed through immunofluorescence staining for collagen type I, periostin fibronectin and von Willebrand factor (vWF), and mRNA expression of osteogenic markers. The secretion of multiple myokines was evaluated using Luminex immunoassays. RESULTS Approximately 1000 genes were differentially expressed between control and irisin-treated groups by Affymetrix. Several genes related to ECM organization were differentially expressed, and multiple deubiquitinating enzymes were upregulated in the irisin-exposed samples analyzed. These represent cellular and molecular mechanisms indicative of a role for irisin in tissue remodeling. Irisin induced a rim-like structure on the outer region of the hPDL spheroids, ECM-related protein expression and the stiffness of the spheroids were enhanced by irisin. The expression of osteogenic and angiogenetic markers was increased by irisin. CONCLUSIONS Irisin altered the morphology in primary hPDL cell-derived spheroids, enhanced its ECM deposition, mechanical properties, differentiation and remodeling potential.
Collapse
Affiliation(s)
- Yang Yang
- Department of Biomaterials, Faculty of Dentistry, University of Oslo, Oslo, Norway
| | - Tianxiang Geng
- Department of Biomaterials, Faculty of Dentistry, University of Oslo, Oslo, Norway
| | - Athina Samara
- Department of Biomaterials, Faculty of Dentistry, University of Oslo, Oslo, Norway
| | | | - Jianying He
- Department of Structural Engineering, Faculty of Engineering, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
| | - Anne Eriksson Agger
- Department of Biomaterials, Faculty of Dentistry, University of Oslo, Oslo, Norway
| | - Bjørn Helge Skallerud
- Department of Structural Engineering, Faculty of Engineering, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
| | - Maria A Landin
- Oral Research Laboratory, Faculty of Dentistry, University of Oslo, Oslo, Norway
| | | | - Helen Pullisaar
- Department of Orthodontics, Faculty of Dentistry, University of Oslo, Oslo, Norway
| | - Janne Elin Reseland
- Department of Biomaterials, Faculty of Dentistry, University of Oslo, Oslo, Norway
| |
Collapse
|
36
|
Sone ED, McCulloch CA. Periodontal regeneration: Lessons from the periodontal ligament-cementum junction in diverse animal models. FRONTIERS IN DENTAL MEDICINE 2023. [DOI: 10.3389/fdmed.2023.1124968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/09/2023] Open
Abstract
The attachment of the roots of mammalian teeth of limited eruption to the jawbone is reliant in part on the mineralization of collagen fibrils of the periodontal ligament (PDL) at their entry into bone and cementum as Sharpey's fibers. In periodontitis, a high prevalence infection of periodontal tissues, the attachment apparatus of PDL to the tooth root is progressively destroyed. Despite the pervasiveness of periodontitis and its attendant health care costs, and regardless of decades of research into various possible treatments, reliable restoration of periodontal attachment after surgery is not achievable. Notably, treatment outcomes in animal studies have often demonstrated more positive regenerative outcomes than human clinical studies. Conceivably, defining how species diversity affects cementogenesis and cementum/PDL regeneration could be instructive for informing novel and more efficacious treatment strategies. Here we briefly review differences in cementum and PDL attachment in commonly used animal models to consider how species differences may lead to enhanced regenerative outcomes.
Collapse
|
37
|
Wang W, Song Y, Tian Y, Chen B, Liang Y, Liang Y, Li C, Li Y. TCPP/MgO-loaded PLGA microspheres combining photodynamic antibacterial therapy with PBM-assisted fibroblast activation to treat periodontitis. Biomater Sci 2023; 11:2828-2844. [PMID: 36857622 DOI: 10.1039/d2bm01959k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/17/2023]
Abstract
Bacteria eradication and subsequent periodontal tissue reconstruction is the primary task for periodontitis treatment. Commonly used antibiotic therapy suffers from antibiotic resistance. Meanwhile, promoting fibroblast activity is crucial for re-establishing a damaged periodontal structure. In addition to the fibroblast activation property of Mg2+, photobiomodulation (PBM) has recently attracted increasing attention in wound healing. Using the same 635 nm laser resource, PBM could simultaneously work with antibacterial photodynamic therapy (aPDT) to achieve antibacterial function and fibroblast activation effect. Herein, multifunctional microspheres were designed by employing poly (lactic-co-glycolic acid) (PLGA) microspheres to load tetrakis (4-carboxyphenyl) porphyrin (TCPP) and magnesium oxide (MgO) nanoparticles, named as PMT, with sustained Mg2+ release for 20 days. PMT achieved excellent antibacterial photodynamic effect for periodontal pathogens F. nucleatum and P. gingivalis by generating reactive oxygen species, which increases cell membrane permeability and destroys bacteria integrity to cause bacteria death. Meanwhile, PMT itself exhibited improved fibroblast viability and adhesion, with the PMT + light group revealing further activation of fibroblast cells, suggesting the coordinated action of Mg2+ and PBM effects. The underlying molecular mechanism might be the elevated gene expressions of Fibronectin 1, Col1a1, and Vinculin. In addition, the in vivo rat periodontitis model proved the superior therapeutic effects of PMT with laser illumination using micro-computed tomography analysis and histological staining, which presented decreased inflammatory cells, increased collagen production, and higher alveolar bone level in the PMT group. Our study sheds light on a promising strategy to fight periodontitis using versatile microspheres, which combine aPDT and PBM-assisted fibroblast activation functions.
Collapse
Affiliation(s)
- Wanmeng Wang
- School of Dentistry, Tianjin Medical University, Tianjin 300070, China.
| | - Yunjia Song
- School of Dentistry, Tianjin Medical University, Tianjin 300070, China.
| | - Yuan Tian
- School of Dentistry, Tianjin Medical University, Tianjin 300070, China.
| | - Bo Chen
- School of Dentistry, Tianjin Medical University, Tianjin 300070, China.
| | - Yunkai Liang
- School of Dentistry, Tianjin Medical University, Tianjin 300070, China.
| | - Yu Liang
- School of Dentistry, Tianjin Medical University, Tianjin 300070, China.
| | - Changyi Li
- School of Dentistry, Tianjin Medical University, Tianjin 300070, China.
| | - Ying Li
- School of Dentistry, Tianjin Medical University, Tianjin 300070, China.
| |
Collapse
|
38
|
Ikegami K, Yamashita M, Suzuki M, Nakamura T, Hashimoto K, Kitagaki J, Yanagita M, Kitamura M, Murakami S. Cellular senescence with SASP in periodontal ligament cells triggers inflammation in aging periodontal tissue. Aging (Albany NY) 2023; 15:1279-1305. [PMID: 36863315 PMCID: PMC10042704 DOI: 10.18632/aging.204569] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Accepted: 02/22/2023] [Indexed: 03/04/2023]
Abstract
The direct cause of periodontitis is periodontopathic bacteria, while various environmental factors affect the severity of periodontitis. Previous epidemiological studies have shown positive correlations between aging and periodontitis. However, whether and how aging is linked to periodontal health and disease in biological processes is poorly understood. Aging induces pathological alterations in organs, which promotes systemic senescence associated with age-related disease. Recently, it has become evident that senescence at the cellular level, cellular senescence, is a cause of chronic diseases through production of various secretory factors including proinflammatory cytokines, chemokines, and matrix metalloproteinases (MMPs), which is referred to the senescence-associated secretory phenotype (SASP). In this study, we examined the pathological roles of cellular senescence in periodontitis. We found localization of senescent cells in periodontal tissue, particularly the periodontal ligament (PDL), in aged mice. Senescent human PDL (HPDL) cells showed irreversible cell cycle arrest and SASP-like phenotypes in vitro. Additionally, we observed age-dependent upregulation of microRNA (miR)-34a in HPDL cells. These results suggest that chronic periodontitis is mediated by senescent PDL cells that exacerbate inflammation and destruction of periodontal tissues through production of SASP proteins. Thus, miR-34a and senescent PDL cells might be promising therapeutic targets for periodontitis in elderly people.
Collapse
Affiliation(s)
- Kuniko Ikegami
- Department of Periodontology, Graduate School of Dentistry, Osaka University, Suita, Osaka 565-0871, Japan
| | - Motozo Yamashita
- Department of Periodontology, Graduate School of Dentistry, Osaka University, Suita, Osaka 565-0871, Japan
| | - Mio Suzuki
- Department of Periodontology, Graduate School of Dentistry, Osaka University, Suita, Osaka 565-0871, Japan
| | - Tomomi Nakamura
- Department of Periodontology, Graduate School of Dentistry, Osaka University, Suita, Osaka 565-0871, Japan
| | - Koki Hashimoto
- Department of Periodontology, Graduate School of Dentistry, Osaka University, Suita, Osaka 565-0871, Japan
| | - Jirouta Kitagaki
- Department of Periodontology, Graduate School of Dentistry, Osaka University, Suita, Osaka 565-0871, Japan
| | - Manabu Yanagita
- Department of Periodontology, Graduate School of Dentistry, Osaka University, Suita, Osaka 565-0871, Japan
| | - Masahiro Kitamura
- Department of Periodontology, Graduate School of Dentistry, Osaka University, Suita, Osaka 565-0871, Japan
| | - Shinya Murakami
- Department of Periodontology, Graduate School of Dentistry, Osaka University, Suita, Osaka 565-0871, Japan
| |
Collapse
|
39
|
Hirashima S, Ohta K, Togo A, Tsuneyoshi R, Kusukawa J, Nakamura KI. Mesoscopic structural analysis via deep learning processing, with a special reference to in vitro alteration in collagen fibre induced by a gap junction inhibitor. Microscopy (Oxf) 2023; 72:18-26. [PMID: 36087097 DOI: 10.1093/jmicro/dfac044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 09/04/2022] [Accepted: 09/08/2022] [Indexed: 11/12/2022] Open
Abstract
Dense connective tissue, including the ligament, tendon, fascia and cornea, is formed by regularly arranged collagen fibres synthesized by fibroblasts (Fbs). The mechanism by which fibre orientation is determined remains unclear. Periodontal ligament Fbs consistently communicate with their surroundings via gap junctions (GJs), leading to the formation of a wide cellular network. A method to culture Fb-synthesized collagen fibres was previously reported by Schafer et al. ('Ascorbic acid deficiency in cultured human fibroblasts'. J. Cell Biol. 34: 83-95, 1967). This method has been applied to investigate the ability and activity of Fb collagen synthesis/phagocytosis using conventional electron microscopy (EM). However, the three-dimensional mesoscopic architecture of collagen fibres and the influence of GJ inhibitors on collagen fibre formation in vitro are poorly understood. In this study, three-dimensional mesoscopic analysis was used to elucidate the mechanism of directional fibre formation. We investigated the influence of GJ inhibitors on collagen formation driven by periodontal ligament Fbs in vitro, histomorphometrically, and the structural properties of in vitro collagen fibre on a mesoscale quantitatively, using correlative light and EM optimized for picrosirius red staining and focused ion beam-scanning EM tomography. Our results indicate that under culture conditions, in the presence of a GJ inhibitor, the orientation of collagen fibres becomes more disordered than that in the control group. This suggests that the GJ might be involved in determining fibre orientation during collagen fibre formation. Elucidation of this mechanism may help develop novel treatment strategies for connective tissue orientation disorders. Graphical Abstract.
Collapse
Affiliation(s)
- Shingo Hirashima
- Division of Microscopic and Developmental Anatomy, Department of Anatomy, Kurume University School of Medicine, 67 Asahi-machi, Kurume, Fukuoka 830-0011, Japan.,Dental and Oral Medical Center, Kurume University School of Medicine, 67 Asahi-machi, Kurume, Fukuoka 830-0011, Japan
| | - Keisuke Ohta
- Division of Microscopic and Developmental Anatomy, Department of Anatomy, Kurume University School of Medicine, 67 Asahi-machi, Kurume, Fukuoka 830-0011, Japan.,Advanced Imaging Research Center, Kurume University School of Medicine, 67 Asahi-machi, Kurume, Fukuoka 830-0011, Japan
| | - Akinobu Togo
- Advanced Imaging Research Center, Kurume University School of Medicine, 67 Asahi-machi, Kurume, Fukuoka 830-0011, Japan
| | - Risa Tsuneyoshi
- Institute of Animal Experimentation, Kurume University School of Medicine, 67 Asahi-machi, Kurume, Fukuoka 830-0011, Japan
| | - Jingo Kusukawa
- Dental and Oral Medical Center, Kurume University School of Medicine, 67 Asahi-machi, Kurume, Fukuoka 830-0011, Japan
| | - Kei-Ichiro Nakamura
- Division of Microscopic and Developmental Anatomy, Department of Anatomy, Kurume University School of Medicine, 67 Asahi-machi, Kurume, Fukuoka 830-0011, Japan.,Cognitive and Molecular Research Institute of Brain Diseases, Kurume University School of Medicine, 67 Asahi-machi, Kurume, Fukuoka 830-0011, Japan
| |
Collapse
|
40
|
Behm C, Blufstein A, Gahn J, Moritz A, Rausch-Fan X, Andrukhov O. 25-hydroxyvitamin D 3 generates immunomodulatory plasticity in human periodontal ligament-derived mesenchymal stromal cells that is inflammatory context-dependent. Front Immunol 2023; 14:1100041. [PMID: 36761739 PMCID: PMC9902380 DOI: 10.3389/fimmu.2023.1100041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Accepted: 01/09/2023] [Indexed: 01/26/2023] Open
Abstract
Introduction Human periodontal ligament-derived mesenchymal stromal cells (hPDL-MSCs) exhibit a tight bi-directional interaction with CD4+ T lymphocytes. The hPDL-MSCs' immunomodulatory abilities are drastically enhanced by pro-inflammatory cytokines via boosting the expression of various immunomediators. 25-hydroxyvitamin D3 (25(OH)D3), the major metabolite of vitamin D3 in the blood, affects both hPDL-MSCs and CD4+ T lymphocytes, but its influence on their interaction is unknown. Methods Therefore, primary hPDL-MSCs were stimulated in vitro with tumor necrosis factor (TNF)-α a or interleukin (IL)-1β in the absence and presence of 25(OH)D3 followed by an indirect co-culture with phytohemagglutinin-activated CD4+ T lymphocytes. The CD4+ T lymphocyte proliferation, viability, and cytokine secretion were analyzed. Additionally, the expression of various immunomediators in hPDL-MSCs was investigated, and their implication was verified by using pharmacological inhibitors. Results 25(OH)D3 significantly counteracted the suppressive effects of IL-1β-treated hPDL-MSCs on CD4+ T lymphocyte proliferation, whereas no effects were observed in the presence of TNF-α. Additionally, 25(OH)D3 significantly increased the percentage of viable CD4+ T lymphocytes via TNF-α- or IL-1β-treated hPDL-MSCs. It also caused a significant decrease in interferon-γ, IL-17A, and transforming growth factor-β productions, which were triggered by TNF-α-treated hPDL-MSCs. 25(OH)D3 significantly decreased the production of various immunomediators in hPDL-MSCs. Inhibition of two of them, prostaglandin E2 and indoleamine-2,3-dioxygenase-1, partially abolished some of the hPDL-MSCs-mediated effects of 25(OH)D3 on CD4+ T lymphocytes. Conclusion These data indicate that 25(OH)D3 influences the immunomodulatory activities of hPDL-MSCs. This modulatory potential seems to have high plasticity depending on the local cytokine conditions and may be involved in regulating periodontal tissue inflammatory processes.
Collapse
Affiliation(s)
- Christian Behm
- Competence Center Periodontal Research, University Clinic of Dentistry, Medical University of Vienna, Vienna, Austria
| | - Alice Blufstein
- Competence Center Periodontal Research, University Clinic of Dentistry, Medical University of Vienna, Vienna, Austria
- Clinical Division of Conservative Dentistry and Periodontology, University Clinic of Dentistry, Medical University of Vienna, Vienna, Austria
| | - Johannes Gahn
- Competence Center Periodontal Research, University Clinic of Dentistry, Medical University of Vienna, Vienna, Austria
| | - Andreas Moritz
- Clinical Division of Conservative Dentistry and Periodontology, University Clinic of Dentistry, Medical University of Vienna, Vienna, Austria
| | - Xiaohui Rausch-Fan
- Clinical Division of Conservative Dentistry and Periodontology, University Clinic of Dentistry, Medical University of Vienna, Vienna, Austria
- Center for Clinical Research, University Clinic of Dentistry, Medical University of Vienna, Vienna, Austria
| | - Oleh Andrukhov
- Competence Center Periodontal Research, University Clinic of Dentistry, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
41
|
Kondo T, Kanayama K, Egusa H, Nishimura I. Current perspectives of residual ridge resorption: Pathological activation of oral barrier osteoclasts. J Prosthodont Res 2023; 67:12-22. [PMID: 35185111 DOI: 10.2186/jpr.jpr_d_21_00333] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
PURPOSE Tooth extraction is a last resort treatment for resolving pathological complications of dentition induced by infection and injury. Although the extraction wound generally heals uneventfully, resulting in the formation of an edentulous residual ridge, some patients experience long-term and severe residual ridge reduction. The objective of this review was to provide a contemporary understanding of the molecular and cellular mechanisms that may potentially cause edentulous jawbone resorption. STUDY SELECTION Clinical, in vivo, and in vitro studies related to the characterization of and cellular and molecular mechanisms leading to residual ridge resorption. RESULTS The alveolar processes of the maxillary and mandibular bones uniquely juxtapose the gingival tissue. The gingival oral mucosa is an active barrier tissue that maintains homeostasis of the internal organs through its unique barrier immunity. Tooth extraction not only generates a bony socket but also injures oral barrier tissue. In response to wounding, the alveolar bone socket initiates regeneration and remodeling through coupled bone formation and osteoclastic resorption. Osteoclasts are also found on the external surface of the alveolar bone, interfacing the oral barrier tissue. Osteoclasts in the oral barrier region are not coupled with osteoblastic bone formation and often remain active long after the completion of wound healing, leading to a net decrease in the alveolar bone structure. CONCLUSIONS The novel concept of oral barrier osteoclasts may provide important clues for future clinical strategies to maintain residual ridges for successful prosthodontic and restorative therapies.
Collapse
Affiliation(s)
- Takeru Kondo
- Weintraub Center for Reconstructive Biotechnology, UCLA School of Dentistry, Los Angeles, CA, USA.,Division of Molecular and Regenerative Prosthodontics, Tohoku University Graduate School of Dentistry, Sendai, Japan
| | - Keiichi Kanayama
- Weintraub Center for Reconstructive Biotechnology, UCLA School of Dentistry, Los Angeles, CA, USA.,Department of Periodontology, Division of Oral Infections and Health Science, Asahi University School of Dentistry, Gifu, Japan
| | - Hiroshi Egusa
- Division of Molecular and Regenerative Prosthodontics, Tohoku University Graduate School of Dentistry, Sendai, Japan
| | - Ichiro Nishimura
- Weintraub Center for Reconstructive Biotechnology, UCLA School of Dentistry, Los Angeles, CA, USA
| |
Collapse
|
42
|
MicroRNA Modulation during Orthodontic Tooth Movement: A Promising Strategy for Novel Diagnostic and Personalized Therapeutic Interventions. Int J Mol Sci 2022; 23:ijms232415501. [PMID: 36555142 PMCID: PMC9779831 DOI: 10.3390/ijms232415501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 12/03/2022] [Accepted: 12/06/2022] [Indexed: 12/13/2022] Open
Abstract
The Orthodontic Tooth Movement (OTM) is allowed through a mediated cell/tissue mechanism performed by applying a force or a pair of forces on the dental elements, and the tooth movement is a fundamental requirement during any orthodontic treatment. In this regard, it has been widely shown that each orthodontic treatment has a minimum duration required concerning numerous factors (age, patient compliance, type of technique used, etc.). In this regard, the aim of the following revision of the literature is to give readers a global vision of principal microRNAs (miRNAs) that are most frequently associated with OTM and their possible roles. Previously published studies of the last 15 years have been considered in the PubMed search using "OTM" and "miRNA" keywords for the present review article. In vitro and in vivo studies and clinical trials were mainly explored. Correlation between OTM and modulation of several miRNAs acting through post-transcriptional regulation on target genes was observed in the majority of previous studied. The expression analysis of miRNAs in biological samples, such as gingival crevicular fluid (GCF), can be considered a useful tool for novel diagnostic and/or prognostic approaches and for new personalized orthodontic treatments able to achieve a better clinical response rate. Although only a few studies have been published, the data obtained until now encourage further investigation of the role of miRNA modulation during orthodontic treatment. The aim of this study is to update the insights into the role and impact of principal micro-RNAs (miRNAs) that are most frequently associated during OTM.
Collapse
|
43
|
Liu G, Zhou X, Zhang L, Zou Y, Xue J, Xia R, Abuduxiku N, Xuejing Gan, Liu R, Chen Z, Cao Y, Chen Z. Cell-free immunomodulatory biomaterials mediated in situ periodontal multi-tissue regeneration and their immunopathophysiological processes. Mater Today Bio 2022; 16:100432. [PMID: 36204216 PMCID: PMC9530615 DOI: 10.1016/j.mtbio.2022.100432] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2022] [Revised: 09/12/2022] [Accepted: 09/14/2022] [Indexed: 12/04/2022]
Abstract
Cell-free biomaterials-inducing endogenous in situ multi-tissue regeneration is very challenging and applying advanced immunomodulatory biomaterials can be an effective strategy to overcome it. In-depth knowledge of the immunopathophysiological mechanisms should be acquired before applying such an immunomodulation strategy. In this study, we implanted different immunoregulatory cell-free biomaterials into periodontal multi-tissue defects and showed that the outcome of multi-tissue regeneration is closely regulated by the immune reaction. The underlying immunopathophysiological processes, including the blood clotting response and fibrinoid necrosis, innate and adaptive immune response, local and systemic immune reaction, growth factors release, and stem cells recruitment, were revealed. The implantation of biomaterials with anti-inflammatory properties could direct the immunopathophysiological process and make it more favorable for in situ multi-tissue regeneration, ultimately enabling the regeneration of the periodontal ligament, the acellular cementum matrix, and the alveolar bone in the periodontium. These findings further confirm the effectiveness of immunomodulatory based strategy and the unveiling of their immunopathophysiological processes could provide some favorable theoretical bases for the development of advanced cell-free immunomodulatory multi-tissue regenerative biomaterials.
Collapse
|
44
|
Decorin Promotes Osteoblastic Differentiation of Human Periodontal Ligament Stem Cells. Molecules 2022; 27:molecules27238224. [PMID: 36500314 PMCID: PMC9739490 DOI: 10.3390/molecules27238224] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 11/14/2022] [Accepted: 11/22/2022] [Indexed: 11/29/2022] Open
Abstract
The aim of this study is to clarify the biological functions of decorin (DCN) in the healing and regeneration of wounded periodontal tissue. We investigated the expression pattern of DCN during the healing of wounded periodontal tissue in rats by immunohistochemistry and the effects of DCN on the osteoblastic differentiation of human periodontal ligament (PDL) stem cells (HPDLSCs) and preosteoblasts by Alizarin red S staining, quantitative reverse transcription-polymerase chain reactions, and western blotting. The expression of DCN was increased around the wounded PDL tissue on day 5 after surgery compared with the nonwounded PDL tissue, whereas its expression was not changed in the osteoblastic layer around the wounded alveolar bone. Furthermore, DCN promoted the osteoblastic differentiation of HPDLSCs, but it did not affect the osteoblastic differentiation of preosteoblasts. ERK1/2 phosphorylation was upregulated during the DCN-induced osteoblastic differentiation of HPDLSCs. DCN did not affect proliferation, migration, or the PDL-related gene expression of HPDLSCs. In conclusion, this study demonstrates that DCN has a role in the healing of wounded periodontal tissue. Furthermore, DCN secreted from PDL cells may contribute to bone healing by upregulating osteoblastic differentiation through ERK1/2 signaling in HPDLSCs, indicating a therapeutic effect of DCN in periodontal tissue regeneration.
Collapse
|
45
|
Roato I, Masante B, Putame G, Massai D, Mussano F. Challenges of Periodontal Tissue Engineering: Increasing Biomimicry through 3D Printing and Controlled Dynamic Environment. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:nano12213878. [PMID: 36364654 PMCID: PMC9655809 DOI: 10.3390/nano12213878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 10/28/2022] [Accepted: 10/31/2022] [Indexed: 05/14/2023]
Abstract
In recent years, tissue engineering studies have proposed several approaches to regenerate periodontium based on the use of three-dimensional (3D) tissue scaffolds alone or in association with periodontal ligament stem cells (PDLSCs). The rapid evolution of bioprinting has sped up classic regenerative medicine, making the fabrication of multilayered scaffolds-which are essential in targeting the periodontal ligament (PDL)-conceivable. Physiological mechanical loading is fundamental to generate this complex anatomical structure ex vivo. Indeed, loading induces the correct orientation of the fibers forming the PDL and maintains tissue homeostasis, whereas overloading or a failure to adapt to mechanical load can be at least in part responsible for a wrong tissue regeneration using PDLSCs. This review provides a brief overview of the most recent achievements in periodontal tissue engineering, with a particular focus on the use of PDLSCs, which are the best choice for regenerating PDL as well as alveolar bone and cementum. Different scaffolds associated with various manufacturing methods and data derived from the application of different mechanical loading protocols have been analyzed, demonstrating that periodontal tissue engineering represents a proof of concept with high potential for innovative therapies in the near future.
Collapse
Affiliation(s)
- Ilaria Roato
- Bone and Dental Bioengineering Laboratory, CIR-Dental School, Department of Surgical Sciences, University of Turin, 10126 Turin, Italy
- Correspondence: ; Tel.: +39-011-670-3528
| | - Beatrice Masante
- Bone and Dental Bioengineering Laboratory, CIR-Dental School, Department of Surgical Sciences, University of Turin, 10126 Turin, Italy
- PolitoBIOMed Lab and Department of Mechanical and Aerospace Engineering, Politecnico di Torino, 10129 Turin, Italy
- Interuniversity Center for the Promotion of the 3Rs Principles in Teaching and Research, 10129 Turin, Italy
| | - Giovanni Putame
- PolitoBIOMed Lab and Department of Mechanical and Aerospace Engineering, Politecnico di Torino, 10129 Turin, Italy
- Interuniversity Center for the Promotion of the 3Rs Principles in Teaching and Research, 10129 Turin, Italy
| | - Diana Massai
- PolitoBIOMed Lab and Department of Mechanical and Aerospace Engineering, Politecnico di Torino, 10129 Turin, Italy
- Interuniversity Center for the Promotion of the 3Rs Principles in Teaching and Research, 10129 Turin, Italy
| | - Federico Mussano
- Bone and Dental Bioengineering Laboratory, CIR-Dental School, Department of Surgical Sciences, University of Turin, 10126 Turin, Italy
| |
Collapse
|
46
|
Okawa R, Nakano K. Dental manifestation and management of hypophosphatasia. JAPANESE DENTAL SCIENCE REVIEW 2022; 58:208-216. [PMID: 35814738 PMCID: PMC9260292 DOI: 10.1016/j.jdsr.2022.06.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 06/22/2022] [Accepted: 06/26/2022] [Indexed: 11/24/2022] Open
Abstract
Hypophosphatasia is an inherited metabolic disorder characterized by defective mineralization of bones and teeth with a wide variety of manifestations, ranging from stillbirth to dental symptoms alone. Recently, the prognosis of severe hypophosphatasia patients has been greatly improved by the introduction of enzyme replacement therapy. The typical dental manifestation is early exfoliation of primary teeth due to disturbed cementum formation, so dentures are recommended to ensure that important oral functions are acquired. Some studies have shown that enzyme replacement therapy improves dental mineralization, resulting in the stabilization of periodontal tissues and better growth of tooth roots. A nationwide Japanese survey revealed the common genetic and dental manifestations of patients with mild hypophosphatasia, which markedly differ from those of the severe forms. There may be many undiagnosed mild patients, so dentists should contribute to the early diagnosis by screening possible cases based on the typical finding of early exfoliation of primary teeth. Early diagnosis is important for patients to receive early intervention in both medical and dental fields. The establishment of fundamental dental therapy to solve the dental problems is still underway and is eagerly anticipated.
Collapse
|
47
|
Iwayama T, Iwashita M, Miyashita K, Sakashita H, Matsumoto S, Tomita K, Bhongsatiern P, Kitayama T, Ikegami K, Shimbo T, Tamai K, Murayama MA, Ogawa S, Iwakura Y, Yamada S, Olson LE, Takedachi M, Murakami S. Plap-1 lineage tracing and single-cell transcriptomics reveal cellular dynamics in the periodontal ligament. Development 2022; 149:277273. [DOI: 10.1242/dev.201203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Accepted: 09/05/2022] [Indexed: 01/25/2023]
Abstract
ABSTRACT
Periodontal tissue supports teeth in the alveolar bone socket via fibrous attachment of the periodontal ligament (PDL). The PDL contains periodontal fibroblasts and stem/progenitor cells, collectively known as PDL cells (PDLCs), on top of osteoblasts and cementoblasts on the surface of alveolar bone and cementum, respectively. However, the characteristics and lineage hierarchy of each cell type remain poorly defined. This study identified periodontal ligament associated protein-1 (Plap-1) as a PDL-specific extracellular matrix protein. We generated knock-in mice expressing CreERT2 and GFP specifically in Plap-1-positive PDLCs. Genetic lineage tracing confirmed the long-standing hypothesis that PDLCs differentiate into osteoblasts and cementoblasts. A PDL single-cell atlas defined cementoblasts and osteoblasts as Plap-1−Ibsp+Sparcl1+ and Plap-1−Ibsp+Col11a2+, respectively. Other populations, such as Nes+ mural cells, S100B+ Schwann cells, and other non-stromal cells, were also identified. RNA velocity analysis suggested that a Plap-1highLy6a+ cell population was the source of PDLCs. Lineage tracing of Plap-1+ PDLCs during periodontal injury showed periodontal tissue regeneration by PDLCs. Our study defines diverse cell populations in PDL and clarifies the role of PDLCs in periodontal tissue homeostasis and repair.
Collapse
Affiliation(s)
- Tomoaki Iwayama
- Osaka University Graduate School of Dentistry 1 Department of Periodontology , , Suita, Osaka 565-0871 , Japan
| | - Mizuho Iwashita
- Osaka University Graduate School of Dentistry 1 Department of Periodontology , , Suita, Osaka 565-0871 , Japan
| | | | - Hiromi Sakashita
- Osaka University Graduate School of Dentistry 1 Department of Periodontology , , Suita, Osaka 565-0871 , Japan
- StemRIM Institute of Regeneration-Inducing Medicine, Osaka University 3 , Suita 565-0871 , Japan
| | - Shuji Matsumoto
- Osaka University Graduate School of Dentistry 1 Department of Periodontology , , Suita, Osaka 565-0871 , Japan
| | - Kiwako Tomita
- Osaka University Graduate School of Dentistry 1 Department of Periodontology , , Suita, Osaka 565-0871 , Japan
| | - Phan Bhongsatiern
- Osaka University Graduate School of Dentistry 1 Department of Periodontology , , Suita, Osaka 565-0871 , Japan
| | - Tomomi Kitayama
- StemRIM Inc. 2 , Ibaraki, Osaka 567-0085 , Japan
- Osaka University Graduate School of Medicine 4 Department of Stem Cell Therapy Science , , Osaka 565-0871 , Japan
| | | | - Takashi Shimbo
- StemRIM Institute of Regeneration-Inducing Medicine, Osaka University 3 , Suita 565-0871 , Japan
- Osaka University Graduate School of Medicine 4 Department of Stem Cell Therapy Science , , Osaka 565-0871 , Japan
| | - Katsuto Tamai
- Osaka University Graduate School of Medicine 4 Department of Stem Cell Therapy Science , , Osaka 565-0871 , Japan
| | - Masanori A. Murayama
- Research Institute for Biomedical Sciences, Tokyo University of Science 5 , Noda, Chiba 278-8510 , Japan
| | - Shuhei Ogawa
- Research Institute for Biomedical Sciences, Tokyo University of Science 5 , Noda, Chiba 278-8510 , Japan
| | - Yoichiro Iwakura
- Research Institute for Biomedical Sciences, Tokyo University of Science 5 , Noda, Chiba 278-8510 , Japan
| | - Satoru Yamada
- Tohoku University Graduate School of Dentistry 6 Department of Periodontology and Endodontology , , Sendai, Miyagi 980-8575 , Japan
| | - Lorin E. Olson
- Cardiovascular Biology Research Program, Oklahoma Medical Research Foundation 7 , Oklahoma City, OK 73104 , USA
| | - Masahide Takedachi
- Osaka University Graduate School of Dentistry 1 Department of Periodontology , , Suita, Osaka 565-0871 , Japan
| | - Shinya Murakami
- Osaka University Graduate School of Dentistry 1 Department of Periodontology , , Suita, Osaka 565-0871 , Japan
| |
Collapse
|
48
|
Dual peptide-functionalized hydrogels differentially control periodontal cell function and promote tissue regeneration. BIOMATERIALS ADVANCES 2022; 141:213093. [PMID: 36067642 DOI: 10.1016/j.bioadv.2022.213093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Accepted: 08/20/2022] [Indexed: 11/19/2022]
Abstract
Restoring the tooth-supporting tissues lost during periodontitis is a significant clinical challenge, despite advances in both biomaterial and cell-based approaches. This study investigated poly(ethylene glycol) (PEG) hydrogels functionalized with integrin-binding peptides RGD and GFOGER for controlling periodontal ligament cell (PDLC) activity and promoting periodontal tissue regeneration. Dual presentation of RGD and GFOGER within PEG hydrogels potentiated two key PDLC functions, alkaline phosphatase (ALP) activity and matrix mineralization, over either peptide alone and could be tuned to differentially promote each function. Hydrogel matrix mineralization, fostered by high concentrations of GFOGER together with RGD, identified a PDLC phenotype with accelerated matrix adhesion formation and expression of cementoblast and osteoblast genes. In contrast, maximizing ALP activity through high RGD and low GFOGER levels resulted in minimal hydrogel mineralization, in part, through altered PDLC pyrophosphate regulation. Transplantation of PDLCs in hydrogels optimized for either outcome promoted cementum formation in rat periodontal defects; however, only hydrogels optimized for in vitro mineralization improved new bone formation. Overall, these results highlight the utility of engineered hydrogel systems for controlling PDLC functions and their promise for promoting periodontal tissue regeneration.
Collapse
|
49
|
Li S, Yang D, Gao X, Yao S, Wang S, Zhu J, Shu J. Argpyrimidine bonded to RAGE regulates autophagy and cell cycle to cause periodontal destruction. J Cell Physiol 2022; 237:4460-4476. [PMID: 36166691 DOI: 10.1002/jcp.30886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 09/06/2022] [Accepted: 09/13/2022] [Indexed: 11/06/2022]
Abstract
Argpyrimidine (APMD), a methylglyoxal-arginine-derived product, is one of the main products of diabetes mellitus. We aimed to systematically investigate the role of APMD in regulating autophagy activity, with a specific focus on the finding of APDM binding molecule, matching amino acid residues, autophagy flux and proteins, cell cycle arrest, cell skeleton and migration, PI3K/AKT/mTOR pathways, inflammatory signals, alveolar bone destruction, and inhibition verification. In this study, binding to 59/94/121 amino acid residues of advanced glycosylation end product receptor (RAGE), APMD suppressed PI3K/AKT/mTOR pathway to attenuate cell survival of periodontal ligament cells (PDLCs). Simultaneously, autophagy proteins ATG5, Beclin1, and LC3-II/I expression ratio were upregulated while P62/SQSTM was downregulated. Cell cycle arrested at G0/G1 with enhancing Cyclin D1/CDK4 and decreasing Cyclin A/CDK2 expression. Inhibition of autophagy abrogated APMD-induced cell cycle arrest. Furthermore, the inflammation regulation network of matrix metalloproteinase (MMP)-2, MMP-9, MAPKs and NF-κB pathways were activated by APMD. Rat periodontal models confirmed that APMD induced alveolar bone resorption, increased inflammatory infiltrates, and degraded collagen fibers through RAGE and PI3K. APMD-induced autophagy, G0/G1 arrest, pro-inflammatory signals activating and periodontal destruction were reversed by RAGE knockdown while aggravated by PI3K inhibitor. This study provides the first evidence that APMD bind to RAGE to regulate autophagy and cell cycle of PDLCs through the PI3K/AKT/mTOR pathway, thereby promoting periodontal destruction.
Collapse
Affiliation(s)
- Sihong Li
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST KLOS), Key Laboratory of Oral Biomedicine Ministry of Education (KLOBME), School & Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Dong Yang
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST KLOS), Key Laboratory of Oral Biomedicine Ministry of Education (KLOBME), School & Hospital of Stomatology, Wuhan University, Wuhan, China.,Department of Periodontology, School & Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Xudong Gao
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST KLOS), Key Laboratory of Oral Biomedicine Ministry of Education (KLOBME), School & Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Siqi Yao
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST KLOS), Key Laboratory of Oral Biomedicine Ministry of Education (KLOBME), School & Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Shuining Wang
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST KLOS), Key Laboratory of Oral Biomedicine Ministry of Education (KLOBME), School & Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Junli Zhu
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST KLOS), Key Laboratory of Oral Biomedicine Ministry of Education (KLOBME), School & Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Jingjing Shu
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST KLOS), Key Laboratory of Oral Biomedicine Ministry of Education (KLOBME), School & Hospital of Stomatology, Wuhan University, Wuhan, China
| |
Collapse
|
50
|
CTGF Promotes the Osteoblast Differentiation of Human Periodontal Ligament Stem Cells by Positively Regulating BMP2/Smad Signal Transduction. BIOMED RESEARCH INTERNATIONAL 2022; 2022:2938015. [PMID: 36158888 PMCID: PMC9499771 DOI: 10.1155/2022/2938015] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Accepted: 08/03/2022] [Indexed: 12/03/2022]
Abstract
Objective This work is aimed at revealing the role and the molecular mechanism of connective tissue growth factor 2 (CTGF) in the osteoblast differentiation of periodontal ligament stem cells (PDLSCs). Methods The osteogenic differentiation of PDLSCs was induced by osteogenic induction medium (OM), and the expression level of osteogenic related proteins ALP, RUNX2, OCN, and CTGF was estimated using quantitative real-time polymerase chain reaction (qRT-PCR) and Western blotting analysis. We constructed cell lines with CTGF overexpression or knockdown to verify the role of CTGF in the osteoblast differentiation of PDLSCs. Alkaline phosphatase (ALP) staining was introduced to measure the osteoblasts activity, and alizarin red S (ARS) staining was employed to test matrix mineralization. The interaction between CTGF and bone morphogenetic protein-2 (BMP-2) was determined by endogenous coimmunoprecipitation (Co-IP). Results The expression level of CTGF was increased during the osteogenic induction of PDLSCs. Additionally, CTGF overexpression effectively maintained the stemness and facilitated the osteoblast differentiation in PDLSCs, and CTGF knockdown exerted opposite effects. Moreover, at molecular mechanism, CTGF increased the activity of BMP-2/Smad signaling pathway. Conclusion This investigation verified that CTGF promotes the osteoblast differentiation in PDLSCs at least partly by activating BMP-2/Smad cascade signal.
Collapse
|