1
|
Palomar-Cros A, Deprato A, Papantoniou K, Straif K, Lacy P, Maidstone R, Adan A, Haldar P, Moitra S, Navarro JF, Durrington H, Moitra S, Kogevinas M, Harding BN. Indoor and outdoor artificial light-at-night (ALAN) and cancer risk: A systematic review and meta-analysis of multiple cancer sites and with a critical appraisal of exposure assessment. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 955:177059. [PMID: 39437923 DOI: 10.1016/j.scitotenv.2024.177059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 09/26/2024] [Accepted: 10/17/2024] [Indexed: 10/25/2024]
Abstract
Exposure to artificial light-at-night (ALAN) has been linked to cancer risk. Few meta-analyses on this topic have reviewed only breast cancer. This study aimed to systematically review and meta-analyze existing studies on ALAN exposure and cancer incidence, thoroughly evaluating exposure assessment quality. We considered observational studies (cohort, case-control, cross-sectional) on ALAN exposure (indoor and outdoor) and cancer incidence, measured by relative risk, hazard ratio, and odds ratio. We searched six databases, two registries, and Google Scholar from inception until April 17, 2024. Quality of studies was assessed using the Joanna Briggs Institute (JBI) critical appraisal tools. Random-effects meta-analysis was used to estimate relative risks (RR) and 95 % confidence intervals (CI) for ALAN exposures. We identified 9835 studies and included 28 for qualitative synthesis with 2,508,807 individuals (15 cohort, 13 case-control). Out of the included studies, 20 studies on breast cancer (731,493 individuals) and 2 studies on prostate cancer (53,254 individuals) were used for quantitative synthesis. Higher levels of outdoor ALAN were associated with breast cancer risk (meta-estimate = 1.12, 95 % CI 1.03-1.23 (I2 = 69 %)). We observed a non-significant positive association between indoor ALAN levels and breast cancer risk (meta-estimate = 1.07, 0.95-1.21, I2 = 60 %), and no differences by menopausal status. The meta-analysis for prostate cancer suggested a non-statistically significant increased risk for higher levels of outdoor ALAN (meta-estimate = 1.43, 0.75-2.72, I2 = 90 %). In the qualitative synthesis, we observed positive associations with non-Hodgkin lymphoma and colorectal, pancreatic and thyroid cancer. We found an association between outdoor ALAN and breast cancer risk. However, most studies relied on satellite-images with a very low resolution (1 to 5 km, from the Defense Meteorological Program [DMSP]) and without information on color of light. Future studies with better exposure assessment should focus on investigating other cancer sites.
Collapse
Affiliation(s)
- Anna Palomar-Cros
- Barcelona Institute for Global Health (ISGlobal), Barcelona, Spain; Universitat Pompeu Fabra, Barcelona, Spain; CIBERESP, Madrid, Spain; Fundació Institut Universitari per a la recerca a l'Atenció Primària de Salut Jordi Gol i Gurina (IDIAPJGol), Barcelona, Spain
| | - Andy Deprato
- Division of Pulmonary Medicine, Department of Medicine, University of Alberta, Edmonton, Alberta, Canada; Michael G. DeGroote School of Medicine, McMaster University, Hamilton, Ontario, Canada
| | - Kyriaki Papantoniou
- Barcelona Institute for Global Health (ISGlobal), Barcelona, Spain; Department of Epidemiology, Center for Public Health, Medical University of Vienna, Vienna, Austria
| | - Kurt Straif
- Barcelona Institute for Global Health (ISGlobal), Barcelona, Spain; Boston College, Chestnut Hill, MA, United States
| | - Paige Lacy
- Division of Pulmonary Medicine, Department of Medicine, University of Alberta, Edmonton, Alberta, Canada
| | - Robert Maidstone
- Division of Immunology, Immunity to Infection, and Respiratory Medicine, University of Manchester, Manchester, United Kingdom
| | - Ana Adan
- Department of Clinical Psychology and Psychobiology, University of Barcelona, Barcelona, Spain; Institute of Neurosciences, University of Barcelona, Barcelona, Spain
| | - Prasun Haldar
- Department of Medical Laboratory Technology, Supreme Institute of Management and Technology, Mankundu, India
| | - Saibal Moitra
- Department of Allergy and Immunology, Apollo Gleneagles Hospital, Kolkata, India
| | - José Francisco Navarro
- Department of Psychobiology and Methodology of Behavioural Sciences, University of Málaga, Málaga, Spain
| | - Hannah Durrington
- Division of Immunology, Immunity to Infection, and Respiratory Medicine, University of Manchester, Manchester, United Kingdom
| | - Subhabrata Moitra
- Division of Pulmonary Medicine, Department of Medicine, University of Alberta, Edmonton, Alberta, Canada; Canadian VIGOUR Centre, Department of Medicine, University of Alberta, Edmonton, Alberta, Canada; Bagchi School of Public Health, Ahmedabad University, Ahmedabad, Gujarat, India
| | - Manolis Kogevinas
- Barcelona Institute for Global Health (ISGlobal), Barcelona, Spain; Universitat Pompeu Fabra, Barcelona, Spain; CIBERESP, Madrid, Spain; Hospital del Mar Research Institute, Barcelona, Spain
| | - Barbara N Harding
- Barcelona Institute for Global Health (ISGlobal), Barcelona, Spain; Universitat Pompeu Fabra, Barcelona, Spain; CIBERESP, Madrid, Spain.
| |
Collapse
|
2
|
Clara MI, Van Straten A, Canavarro MC, Allen Gomes A. Digital Cognitive-Behavioral Therapy for Insomnia in Cancer Survivors: Protocol for a Pragmatic Clinical Trial. ACTA MEDICA PORT 2024; 37:713-719. [PMID: 39140169 DOI: 10.20344/amp.21094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2024] [Accepted: 06/27/2024] [Indexed: 08/15/2024]
Abstract
INTRODUCTION Insomnia is one of the most prevalent, persistent, and distressing conditions associated with cancer, affecting almost half of all cancer survivors. Although cognitive-behavioral therapy for insomnia is well established as the gold-standard treatment for insomnia, its accessibility is very limited in routine care. We aim to examine the real-world effectiveness and acceptability of a digital cognitive-behavioral therapy for insomnia for cancer survivors with insomnia symptoms through a randomized controlled trial in Portugal. METHODS AND ANALYSIS Our cancer trial will test the effects and acceptability of an accessible internet-delivered self-administered cognitive-behavioral therapy for insomnia digital intervention with clinician support, OncoSleep. This online program includes six interactive, personalized weekly sessions featuring evidence-based techniques targeting psychophysiological hyperarousal and maladaptive conditioning, tailored for cancer survivors. Research study procedures include screening for eligibility in the general population and randomization into one of two arms: the digital CBT-I program or a waitlist control group. Insomnia severity (primary outcome), fatigue, sleep diary outcomes, psychological distress, and quality of life (secondary outcomes) will be assessed at baseline and post-intervention.
Collapse
Affiliation(s)
- Maria Inês Clara
- Center for Research in Neuropsychology and Cognitive and Behavioral Intervention (CINEICC). Universidade de Coimbra. Coimbra; Faculty of Psychology and Educational Sciences. Universidade de Coimbra. Coimbra; Chronopsychology and Cognitive Systems Lab (ChronCog). Universidade de Coimbra. Coimbra. Portugal
| | - Annemieke Van Straten
- Department of Clinical, Neuro and Developmental Psychology & Amsterdam Public Health Research Institute. Vrije Universiteit Amsterdam. Amsterdam. Portugal
| | - Maria Cristina Canavarro
- Center for Research in Neuropsychology and Cognitive and Behavioral Intervention (CINEICC). Universidade de Coimbra. Coimbra; Faculty of Psychology and Educational Sciences. Universidade de Coimbra. Coimbra. Portugal
| | - Ana Allen Gomes
- Center for Research in Neuropsychology and Cognitive and Behavioral Intervention (CINEICC). Universidade de Coimbra. Coimbra; Faculty of Psychology and Educational Sciences. Universidade de Coimbra. Coimbra; Chronopsychology and Cognitive Systems Lab (ChronCog). Universidade de Coimbra. Coimbra. Portugal
| |
Collapse
|
3
|
Zakic T, Pekovic-Vaughan V, Cvoro A, Korac A, Jankovic A, Korac B. Redox and metabolic reprogramming in breast cancer and cancer-associated adipose tissue. FEBS Lett 2024; 598:2106-2134. [PMID: 38140817 DOI: 10.1002/1873-3468.14794] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 12/06/2023] [Accepted: 12/11/2023] [Indexed: 12/24/2023]
Abstract
Redox and metabolic processes are tightly coupled in both physiological and pathological conditions. In cancer, their integration occurs at multiple levels and is characterized by synchronized reprogramming both in the tumor tissue and its specific but heterogeneous microenvironment. In breast cancer, the principal microenvironment is the cancer-associated adipose tissue (CAAT). Understanding how the redox-metabolic reprogramming becomes coordinated in human breast cancer is imperative both for cancer prevention and for the establishment of new therapeutic approaches. This review aims to provide an overview of the current knowledge of the redox profiles and regulation of intermediary metabolism in breast cancer while considering the tumor and CAAT of breast cancer as a unique Warburg's pseudo-organ. As cancer is now recognized as a systemic metabolic disease, we have paid particular attention to the cell-specific redox-metabolic reprogramming and the roles of estrogen receptors and circadian rhythms, as well as their crosstalk in the development, growth, progression, and prognosis of breast cancer.
Collapse
Affiliation(s)
- Tamara Zakic
- Institute for Biological Research "Sinisa Stankovic"-National Institute of Republic of Serbia, University of Belgrade, Serbia
| | - Vanja Pekovic-Vaughan
- Institute of Life Course and Medical Sciences, Faculty of Health and Life Sciences, William Henry Duncan Building, University of Liverpool, UK
| | | | | | - Aleksandra Jankovic
- Institute for Biological Research "Sinisa Stankovic"-National Institute of Republic of Serbia, University of Belgrade, Serbia
| | - Bato Korac
- Institute for Biological Research "Sinisa Stankovic"-National Institute of Republic of Serbia, University of Belgrade, Serbia
- Faculty of Biology, University of Belgrade, Serbia
| |
Collapse
|
4
|
Li Q, Zheng T, Chen J, Li B, Zhang Q, Yang S, Shao J, Guan W, Zhang S. Exploring melatonin's multifaceted role in female reproductive health: From follicular development to lactation and its therapeutic potential in obstetric syndromes. J Adv Res 2024:S2090-1232(24)00168-1. [PMID: 38692429 DOI: 10.1016/j.jare.2024.04.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Accepted: 04/25/2024] [Indexed: 05/03/2024] Open
Abstract
BACKGROUND Melatonin is mainly secreted by the pineal gland during darkness and regulates biological rhythms through its receptors in the suprachiasmatic nucleus of the hypothalamus. In addition, it also plays a role in the reproductive system by affecting the function of the hypothalamic-pituitary-gonadal axis, and by acting as a free radical scavenger thus contributing to the maintenance of the optimal physiological state of the gonads. Besides, melatonin can freely cross the placenta to influence fetal development. However, there is still a lack of overall understanding of the role of melatonin in the reproductive cycle of female mammals. AIM OF REVIEW Here we focus the role of melatonin in female reproduction from follicular development to delivery as well as the relationship between melatonin and lactation. We further summarize the potential role of melatonin in the treatment of preeclampsia, polycystic ovary syndrome, endometriosis, and ovarian aging. KEY SCIENTIFIC CONCEPTS OF REVIEW Understanding the physiological role of melatonin in female reproductive processes will contribute to the advancement of human fertility and reproductive medicine research.
Collapse
Affiliation(s)
- Qihui Li
- Guangdong Province Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
| | - Tenghui Zheng
- Guangdong Province Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
| | - Jiaming Chen
- Guangdong Province Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
| | - Baofeng Li
- Guangdong Province Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
| | - Qianzi Zhang
- Guangdong Province Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
| | - Siwang Yang
- Guangdong Province Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
| | - Jiayuan Shao
- Guangdong Province Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou 510642, China; College of Animal Science and National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou 510642, China; Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou, China
| | - Wutai Guan
- Guangdong Province Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou 510642, China; College of Animal Science and National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou 510642, China; Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou, China
| | - Shihai Zhang
- Guangdong Province Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou 510642, China; College of Animal Science and National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou 510642, China; Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou, China.
| |
Collapse
|
5
|
Sun C, Zhang H, Li Y, Yu Y, Liu J, Liu R, Sun C. Elucidation of clinical implications Arising from circadian rhythm and insights into the tumor immune landscape in breast cancer. Heliyon 2024; 10:e27356. [PMID: 38500978 PMCID: PMC10945177 DOI: 10.1016/j.heliyon.2024.e27356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Revised: 02/03/2024] [Accepted: 02/28/2024] [Indexed: 03/20/2024] Open
Abstract
Background Circadian rhythm is an internal timing system generated by circadian-related genes (CRGs). Disruption in this rhythm has been associated with a heightened risk of breast cancer (BC) and regulation of the immune microenvironment of tumors. This study aimed to investigate the clinical significance of CRGs in BC and the immune microenvironment. Methods CRGs were identified using the GeneCards and MSigDB databases. Through unsupervised clustering, we identified two circadian-related subtypes in patients with BC. We constructed a prognostic model and nomogram for circadian-related risk scores using LASSO and Cox regression analyses. Using multi-omics analysis, the mutation profile and immunological microenvironment of tumors were investigated, and the immunotherapy response in different groups of patients was predicted based on their risk strata. Results The two circadian-related subtypes of BC that were identified differed significantly in their prognoses, clinical characteristics, and tumor immune microenvironments. Subsequently, we constructed a circadian-related risk score (CRRS) model containing eight signatures (SIAH2, EZR, GSN, TAGLN2, PRDX1, MCM4, EIF4EBP1, and CD248) and a nomogram. High-risk individuals had a greater burden of tumor mutations, richer immune cell infiltration, and higher expression of immune checkpoint genes, than low-risk individuals, indicating a "hot tumor" immune phenotype and a more favorable treatment outcome. Conclusions Two circadian-related subtypes of BC were identified and used to establish a CRRS prognostic model and nomogram. These will be valuable in providing guidance for forecasting prognosis and developing personalized treatment plans for BC.
Collapse
Affiliation(s)
- Chunjie Sun
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, 250355 Shandong, China
| | - Hanyun Zhang
- College of First Clinical Medicine, Shandong University of Traditional Chinese Medicine, Jinan, 250355 Shandong, China
| | - Ye Li
- Faculty of Chinese Medicine and State Key Laboratory of Quality Research in Chinese Medicines, Macau University of Science and Technology, Macau, Taipa, 999078, China
| | - Yang Yu
- Faculty of Chinese Medicine and State Key Laboratory of Quality Research in Chinese Medicines, Macau University of Science and Technology, Macau, Taipa, 999078, China
| | - Jingyang Liu
- Faculty of Chinese Medicine and State Key Laboratory of Quality Research in Chinese Medicines, Macau University of Science and Technology, Macau, Taipa, 999078, China
| | - Ruijuan Liu
- Department of Oncology, Weifang Traditional Chinese Hospital, Weifang, 261041 Shandong, China
| | - Changgang Sun
- Department of Oncology, Weifang Traditional Chinese Hospital, Weifang, 261041 Shandong, China
- College of Traditional Chinese Medicine, Shandong Second Medical University, Weifang, 261053 Shandong, China
| |
Collapse
|
6
|
Dauchy RT, Hanifin JP, Brainard GC, Blask DE. Light: An Extrinsic Factor Influencing Animal-based Research. JOURNAL OF THE AMERICAN ASSOCIATION FOR LABORATORY ANIMAL SCIENCE : JAALAS 2024; 63:116-147. [PMID: 38211974 PMCID: PMC11022951 DOI: 10.30802/aalas-jaalas-23-000089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 10/26/2023] [Accepted: 10/28/2023] [Indexed: 01/13/2024]
Abstract
Light is an environmental factor that is extrinsic to animals themselves and that exerts a profound influence on the regulation of circadian, neurohormonal, metabolic, and neurobehavioral systems of all animals, including research animals. These widespread biologic effects of light are mediated by distinct photoreceptors-rods and cones that comprise the conventional visual system and melanopsin-containing intrinsically photosensitive retinal ganglion cells (ipRGCs) of the nonvisual system that interact with the rods and cones. The rods and cones of the visual system, along with the ipRGCs of the nonvisual system, are species distinct in terms of opsins and opsin concentrations and interact with one another to provide vision and regulate circadian rhythms of neurohormonal and neurobehavioral responses to light. Here, we review a brief history of lighting technologies, the nature of light and circadian rhythms, our present understanding of mammalian photoreception, and current industry practices and standards. We also consider the implications of light for vivarium measurement, production, and technological application and provide simple recommendations on artificial lighting for use by regulatory authorities, lighting manufacturers, designers, engineers, researchers, and research animal care staff that ensure best practices for optimizing animal health and well-being and, ultimately, improving scientific outcomes.
Collapse
Key Words
- blad, blue-enriched led light at daytime
- clock, circadian locomotor output kaput
- cct, correlated color temperature
- cwf, cool white fluorescent
- ign, intergeniculate nucleus
- iprgc, intrinsically photosensitive retinal ganglion cell
- hiomt, hydroxyindole-o-methyltransferase
- k, kelvin temperature
- lan, light at night
- led, light-emitting diode
- lgn, lateral geniculate nucleus
- plr, pupillary light reflex
- pot, primary optic tract
- rht, retinohypothalamic tract
- scn, suprachiasmatic nuclei
- spd, spectral power distribution.
Collapse
Affiliation(s)
- Robert T Dauchy
- Department of Structural and Cellular Biology, Laboratory of Chrono-Neuroendocrine Oncology, Tulane University School of Medicine, New Orleans, Louisiana;,
| | - John P Hanifin
- Department of Neurology, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - George C Brainard
- Department of Neurology, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - David E Blask
- Department of Structural and Cellular Biology, Laboratory of Chrono-Neuroendocrine Oncology, Tulane University School of Medicine, New Orleans, Louisiana
| |
Collapse
|
7
|
Elahy V, Thomson C, Neuhouser ML, Jiang L, Lee S, Pan K, Vitolins M, Chlebowski R, Lane D, Odegaard AO. Frequency of Consuming Breakfast Meals and After-Dinner Snacks Is not Associated with Postmenopausal Breast Cancer Risk: Women's Health Initiative Observational Study. J Nutr 2023; 153:1089-1100. [PMID: 36828152 PMCID: PMC10367221 DOI: 10.1016/j.tjnut.2023.02.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 01/31/2023] [Accepted: 02/03/2023] [Indexed: 02/10/2023] Open
Abstract
BACKGROUND There has been little investigation into how the timing of meals and eating occasions associates with postmenopausal breast cancer risk. OBJECTIVE We examined the association between the frequency of consuming breakfast meals and after-dinner snacks with the risk for postmenopausal breast cancer. METHODS A prospective analysis of 74,825 postmenopausal women aged 49 to 81 y from the Women's Health Initiative Observational Study cohort. Breakfast and after-dinner snack intake were assessed at year 1 examination. Risk for invasive and in situ breast cancer diagnosed before 28 February 2020 was modeled with multivariable Cox proportional hazards regression models according to breakfast and after-dinner snack consumption frequencies. The models were adjusted for age, self-identified race/ethnicity, education, income, physical activity, smoking, alcohol intake, diet quality score (Healthy Eating Index 2015), energy intake, diabetic status, hormone therapy, and BMI. RESULTS During the follow-up period, 5313 participants were diagnosed with invasive breast cancer and 1197 participants with in situ breast cancer. Compared with participants who did not eat breakfast, those with daily breakfast consumption was not associated with invasive breast cancer (HR: 1.04; 95% CI: 0.9, 1.19) nor in situ (HR: 1.25; 95% CI: 0.91, 1.74) breast cancer. There were monotonic higher point estimates of in situ breast cancer for each higher category of breakfast intake from 0 to 7 times per week (P-trend = 0.04, Wald test). Compared with consumption of daily after-dinner snacks, avoidance of after-dinner snacks was not associated with invasive breast cancer (HR: 0.97; 95% CI: 0.87, 1.08) nor in situ (HR: 1.12; 95% CI: 0.89, 1.42) breast cancer. CONCLUSIONS There was no association between intake frequency of breakfast meals or after-dinner snack habits and with risk of breast cancer in postmenopausal women.
Collapse
Affiliation(s)
- Valeria Elahy
- Department of Epidemiology and Biostatistics, University of California, Irvine, CA, USA
| | - Cynthia Thomson
- Department of Health Promotion Sciences, University of Arizona, Tucson, AZ, USA
| | - Marian L Neuhouser
- Cancer Prevention Program, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - Luohua Jiang
- Department of Epidemiology and Biostatistics, University of California, Irvine, CA, USA
| | - Sunmin Lee
- Department of Medicine, School of Medicine, University of California, Irvine, CA, USA
| | - Kathy Pan
- Department of Hematology/Oncology, Kaiser Permanente Southern California, Downey, CA, USA
| | - Mara Vitolins
- Department of Epidemiology and Prevention, Wake Forest University School of Medicine, Winston-Salem, NC, USA
| | - Rowan Chlebowski
- Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA, USA
| | - Dorothy Lane
- Department of Family, Population and Preventive Medicine, Renaissance School of Medicine at Stony Brook University, Stony Brook, NY, USA
| | - Andrew O Odegaard
- Department of Epidemiology and Biostatistics, University of California, Irvine, CA, USA.
| |
Collapse
|
8
|
Chi H, Yang J, Peng G, Zhang J, Song G, Xie X, Xia Z, Liu J, Tian G. Circadian rhythm-related genes index: A predictor for HNSCC prognosis, immunotherapy efficacy, and chemosensitivity. Front Immunol 2023; 14:1091218. [PMID: 36969232 PMCID: PMC10036372 DOI: 10.3389/fimmu.2023.1091218] [Citation(s) in RCA: 53] [Impact Index Per Article: 26.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Accepted: 02/27/2023] [Indexed: 03/12/2023] Open
Abstract
BackgroundHead and neck squamous cell carcinoma (HNSCC) is the most common head and neck cancer and is highly aggressive and heterogeneous, leading to variable prognosis and immunotherapy outcomes. Circadian rhythm alterations in tumourigenesis are of equal importance to genetic factors and several biologic clock genes are considered to be prognostic biomarkers for various cancers. The aim of this study was to establish reliable markers based on biologic clock genes, thus providing a new perspective for assessing immunotherapy response and prognosis in patients with HNSCC.MethodsWe used 502 HNSCC samples and 44 normal samples from the TCGA-HNSCC dataset as the training set. 97 samples from GSE41613 were used as an external validation set. Prognostic characteristics of circadian rhythm-related genes (CRRGs) were established by Lasso, random forest and stepwise multifactorial Cox. Multivariate analysis revealed that CRRGs characteristics were independent predictors of HNSCC, with patients in the high-risk group having a worse prognosis than those in the low-risk group. The relevance of CRRGs to the immune microenvironment and immunotherapy was assessed by an integrated algorithm.Results6-CRRGs were considered to be strongly associated with HNSCC prognosis and a good predictor of HNSCC. The riskscore established by the 6-CRRG was found to be an independent prognostic factor for HNSCC in multifactorial analysis, with patients in the low-risk group having a higher overall survival (OS) than the high-risk group. Nomogram prediction maps constructed from clinical characteristics and riskscore had good prognostic power. Patients in the low-risk group had higher levels of immune infiltration and immune checkpoint expression and were more likely to benefit from immunotherapy.Conclusion6-CRRGs play a key predictive role for the prognosis of HNSCC patients and can guide physicians in selecting potential responders to prioritise immunotherapy, which could facilitate further research in precision immuno-oncology.
Collapse
Affiliation(s)
- Hao Chi
- Clinical Medical College, Southwest Medical University, Luzhou, China
| | - Jinyan Yang
- School of Stomatology, Southwest Medical University, Luzhou, China
| | - Gaoge Peng
- Clinical Medical College, Southwest Medical University, Luzhou, China
| | - Jinhao Zhang
- School of Stomatology, Southwest Medical University, Luzhou, China
| | - Guobin Song
- School of Stomatology, Southwest Medical University, Luzhou, China
| | - Xixi Xie
- School of Stomatology, Southwest Medical University, Luzhou, China
| | - Zhijia Xia
- Department of General, Visceral, and Transplant Surgery, Ludwig-Maximilians-University Munich, Munich, Germany
- *Correspondence: Zhijia Xia, ; Jinhui Liu, ; Gang Tian,
| | - Jinhui Liu
- Department of Gynecology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
- *Correspondence: Zhijia Xia, ; Jinhui Liu, ; Gang Tian,
| | - Gang Tian
- Department of Laboratory Medicine, The Affiliated Hospital of Southwest Medical University, Luzhou, China
- *Correspondence: Zhijia Xia, ; Jinhui Liu, ; Gang Tian,
| |
Collapse
|
9
|
Rohilla S, Singh M, Priya S, Almalki WH, Haniffa SM, Subramaniyan V, Fuloria S, Fuloria NK, Sekar M, Singh SK, Jha NK, Chellappan DK, Negi P, Dua K, Gupta G. Exploring the Mechanical Perspective of a New Anti-Tumor Agent: Melatonin. J Environ Pathol Toxicol Oncol 2023; 42:1-16. [PMID: 36734949 DOI: 10.1615/jenvironpatholtoxicoloncol.2022042088] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Melatonin is a serotonin-derived pineal gland hormone with many biological functions like regulating the sleep-wake cycle, circadian rhythm, menstrual cycle, aging, immunity, and antioxidants. Melatonin synthesis and release are more pronounced during the night, whereas exposure to light decreases it. Evidence is mounting in favor of the therapeutic effects of melatonin in cancer prevention, treatment and delayed onset in various cancer subtypes. Melatonin exerts its anticancer effect through modification of its receptors such as melatonin 1 (MT1), melatonin 2 (MT2), and inhibition of cancer cell proliferation, epigenetic alterations (DNA methylation/demethylation, histone acetylation/deacetylation), metastasis, angiogenesis, altered cellular energetics, and immune evasion. Melatonin performs a significant function in immune modulation and enhances innate and cellular immunity. In addition, melatonin has a remarkable impact on epigenetic modulation of gene expression and alters the transcription of genes. As an adjuvant to cancer therapies, it acts by decreasing the side effects and boosting the therapeutic effects of chemotherapy. Since current treatments produce drug-induced unwanted toxicities and side effects, they require alternate therapies. A recent review article attempts to summarize the mechanistic perspective of melatonin in different cancer subtypes like skin cancer, breast cancer, hepatic cancer, renal cell cancer, non-small cell lung cancer (NSCLC), colon oral, neck, and head cancer. The various studies described in this review will give a firm basis for the future evolution of anticancer drugs.
Collapse
Affiliation(s)
- Suman Rohilla
- SGT College of Pharmacy, Shree Guru Gobind Singh Tricentenary University, Gurugram, 122505, India
| | - Mahaveer Singh
- Swami Keshvanand Institute of Pharmacy (SKIP), Raiser, Bikaner, 334803, India
| | - Sakshi Priya
- Birla Institute of Technology and Science, Pilani, Rajasthan 333031, India
| | - Waleed Hassan Almalki
- Department of Pharmacology and Toxicology, College of Pharmacy, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Shahril Mohamed Haniffa
- Faculty of Medicine, Bioscience and Nursing, MAHSA University, Saujana Putra 42610, Selangor, Malaysia
| | - Vetriselvan Subramaniyan
- Faculty of Medicine, Bioscience and Nursing, MAHSA University, Bandar Saujana Putra, 42610 Jenjarom Selangor, Malaysia
| | - Shivkanya Fuloria
- Faculty of Pharmacy /Centre of Excellence for Biomaterials Engineering, AIMST University, Kedah 08100, Malaysia
| | - Neeraj Kumar Fuloria
- Faculty of Pharmacy/Centre of Excellence for Biomaterials Engineering, AIMST University, Kedah 08100, Malaysia
| | - Mahendran Sekar
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy and Health Sciences, Royal College of Medicine Perak, Universiti Kuala Lumpur, Ipoh 30450, Perak, Malaysia
| | - Sachin Kumar Singh
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab, 144411, India; Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology Sydney, Ultimo NSW 2007, Australia
| | - Niraj Kumar Jha
- Department of Biotechnology, School of Engineering and Technology (SET), Sharda University, Uttar Pradesh, Greater Noida, India
| | - Dinesh Kumar Chellappan
- Department of Life Sciences, School of Pharmacy, International Medical University (IMU), Bukit Jalil, Kuala Lumpur, 57000, Malaysia
| | - Poonam Negi
- School of Pharmaceutical Sciences, Shoolini University of Biotechnology and Management Sciences, Solan, 173229, India
| | - Kamal Dua
- Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology Sydney, Ultimo NSW 2007, Australia; Woolcock Institute of Medical Research, University of Sydney, Sydney, NSW, Australia; Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, NSW 2007, Australia
| | - Gaurav Gupta
- Department of Pharmacology, Suresh GyanVihar University, Jagatpura, Jaipur, India; Department of Pharmacology, Saveetha Dental College and Hospitals, Saveetha Institute of Medical Sciences, Saveetha University, Chennai, India; Uttaranchal Institute of Pharmaceutical Sciences, Uttaranchal University, Dehradun, India
| |
Collapse
|
10
|
Dauchy RT, Blask DE. Vivarium Lighting as an Important Extrinsic Factor Influencing Animal-based Research. JOURNAL OF THE AMERICAN ASSOCIATION FOR LABORATORY ANIMAL SCIENCE : JAALAS 2023; 62:3-25. [PMID: 36755210 PMCID: PMC9936857 DOI: 10.30802/aalas-jaalas-23-000003] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 08/26/2022] [Accepted: 09/02/2022] [Indexed: 01/22/2023]
Abstract
Light is an extrinsic factor that exerts widespread influence on the regulation of circadian, physiologic, hormonal, metabolic, and behavioral systems of all animals, including those used in research. These wide-ranging biologic effects of light are mediated by distinct photoreceptors, the melanopsin-containing intrinsically photosensitive retinal ganglion cells of the nonvisual system, which interact with the rods and cones of the conventional visual system. Here, we review the nature of light and circadian rhythms, current industry practices and standards, and our present understanding of the neurophysiology of the visual and nonvisual systems. We also consider the implications of this extrinsic factor for vivarium measurement, production, and technological application of light, and provide simple recommendations on artificial lighting for use by regulatory authorities, lighting manufacturers, designers, engineers, researchers, and research animal care staff that ensure best practices for optimizing animal health and wellbeing and, ultimately, improving scientific outcomes.
Collapse
Key Words
- blad, blue-enriched led light at daytime
- clock, circadian locomotor output kaput
- cct, correlated color temperature
- cwf, cool white fluorescent
- iprgc, intrinsically photosensitive retinal ganglion cell
- hiomt, hydroxyindole-o-methyltransferase
- lan, light at night
- led, light-emitting diode
- plr, pupillary light reflex
- scn, suprachiasmatic nuclei
- spd, spectral power distribution
Collapse
Affiliation(s)
- Robert T Dauchy
- Department of Structural and Cellular Biology, Laboratory of Chrono-Neuroendocrine Oncology, Tulane University School of Medicine, New Orleans, Louisiana
| | - David E Blask
- Department of Structural and Cellular Biology, Laboratory of Chrono-Neuroendocrine Oncology, Tulane University School of Medicine, New Orleans, Louisiana
| |
Collapse
|
11
|
Gao Y, Liu M, Yao L, Yang Z, Chen Y, Niu M, Sun Y, Chen J, Hou L, Sun F, Wu S, Zhang Z, Zhang J, Li L, Li J, Zhao Y, Fan J, Ge L, Tian J. Cognitive behavior therapy for insomnia in cancer patients: a systematic review and network meta-analysis. J Evid Based Med 2022; 15:216-229. [PMID: 35996803 DOI: 10.1111/jebm.12485] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/02/2022] [Accepted: 06/27/2022] [Indexed: 01/11/2023]
Abstract
OBJECTIVE The aim of this study was to examine the most effective delivery format of cognitive behavioral therapy for insomnia (CBT-I) on insomnia in cancer patients. METHODS We searched five databases up to February 2021 for randomized clinical trials that compared CBT-I with inactive or active controls for insomnia in cancer patients. Outcomes were insomnia severity, sleep efficiency, sleep onset latency (SOL), wake after sleep onset (WASO), and total sleep time (TST). Pairwise meta-analyses and frequentist network meta-analyses with the random-effects model were applied for data analyses. RESULTS Sixteen unique trials including 1523 participants met inclusion criteria. Compared with inactive control, CBT-I could significantly reduce insomnia severity (mean differences [MD] = -4.98 points, 95% confidence interval [CI]: -5.82 to -4.14), SOL (MD = -12.29 min, 95%CI: -16.48 to -8.09), and WASO (MD = -16.58 min, 95%CI: -22.00 to -11.15), while increasing sleep efficiency (MD = 7.62%, 95%CI: 5.82% to 9.41%) at postintervention. Compared with active control, CBT-I could significantly reduce insomnia severity (MD = -2.75 points, 95%CI: -4.28 to -1.21), SOL (MD = -13.56 min, 95%CI: -18.93 to -8.18), and WASO (MD = -6.99 min, 95%CI: -11.65 to -2.32) at postintervention. These effects diminished in short-term follow-up and almost disappeared in long-term follow-up. Most of the results were rated as "moderate" to "low" certainty of evidence. Network meta-analysis showed that group CBT-I had an increase in sleep efficiency of 10.61%, an increase in TST of 21.98 min, a reduction in SOL of 14.65 min, and a reduction in WASO of 24.30 min, compared with inactive control at postintervention, with effects sustained at short-term follow-up. CONCLUSIONS CBT-I is effective for the management of insomnia in cancer patients postintervention, with diminished effects in short-term follow-up. Group CBT-I is the preferred choice based on postintervention and short-term effects. The low quality of evidence and limited sample size demonstrate the need for robust evidence from high-quality, large-scale trials providing long-term follow-up data.
Collapse
Affiliation(s)
- Ya Gao
- Evidence-Based Medicine Center, School of Basic Medical Sciences, Lanzhou University, Lanzhou, China
| | - Ming Liu
- Evidence-Based Medicine Center, School of Basic Medical Sciences, Lanzhou University, Lanzhou, China
| | - Liang Yao
- Department of Health Research Methods, Evidence, and Impact, McMaster University, Hamilton, Canada
| | - Zhirong Yang
- Primary Care Unit, Department of Public Health and Primary Care, School of Clinical Medicine, University of Cambridge, Cambridge, UK
| | - Yamin Chen
- Evidence-Based Nursing Center, School of Nursing, Lanzhou University, Lanzhou, China
| | - Mingming Niu
- Evidence-Based Nursing Center, School of Nursing, Lanzhou University, Lanzhou, China
| | - Yue Sun
- School of Nursing, Peking University, Beijing, China
| | - Ji Chen
- Mianyang Hospital of Traditional Chinese Medicine, Mianyang, China
| | - Liangying Hou
- Evidence-Based Medicine Center, School of Basic Medical Sciences, Lanzhou University, Lanzhou, China
| | - Feng Sun
- Department of Epidemiology and Biostatistics, School of Public Health, Peking University, Beijing, China
| | - Shanshan Wu
- National Clinical Research Center of Digestive Diseases, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Zeqian Zhang
- The University of Hong Kong Shenzhen Hospital, Shenzhen, China
| | - Junhua Zhang
- Evidence-Based Medicine Center, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Lun Li
- Department of Breast Cancer, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Jiang Li
- National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Ye Zhao
- First Clinical Medical College, Lanzhou University, Lanzhou, China
- Departments of Biochemistry and Molecular Biology, Melvin and Bren Simon Comprehensive Cancer Center, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Jingchun Fan
- Epidemiology and Evidence Based-Medicine, School of Public Health, Gansu University of Chinese Medicine, Lanzhou, China
| | - Long Ge
- Evidence-Based Social Science Research Center, School of Public Health, Lanzhou University, Lanzhou, China
| | - Jinhui Tian
- Evidence-Based Medicine Center, School of Basic Medical Sciences, Lanzhou University, Lanzhou, China
- Key Laboratory of Evidence-based Medicine and Knowledge Translation of Gansu Province, Lanzhou, China
| |
Collapse
|
12
|
Ritonja JA, Aronson KJ, Leung M, Flaten L, Topouza DG, Duan QL, Durocher F, Tranmer JE, Bhatti P. Investigating the relationship between melatonin patterns and methylation in circadian genes among day shift and night shift workers. Occup Environ Med 2022; 79:oemed-2021-108111. [PMID: 35501127 DOI: 10.1136/oemed-2021-108111] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Accepted: 04/16/2022] [Indexed: 11/04/2022]
Abstract
OBJECTIVES Mechanisms underlying the carcinogenicity of night shift work remain uncertain. One compelling yet understudied cancer mechanism may involve altered DNA methylation in circadian genes due to melatonin secretion patterns. The objective of this study was to explore the relationship between melatonin secretion patterns and circadian gene methylation among day and night shift workers. METHODS Female healthcare employees (n=38 day workers, n=36 night shift workers) for whom we had urinary 6-sulfatoxymelatonin secretion data from a previous study were recontacted. New blood samples were collected and used to measure methylation levels at 1150 CpG loci across 22 circadian genes using the Illumina Infinium MethylationEPIC beadchip. Linear regression was used to examine the association between melatonin (acrophase and mesor) and M values for each CpG site (false discovery rate, q=0.2), while testing for effect modification by shift work status. RESULTS Among night shift workers, a higher mesor (24 hours of mean production of melatonin) was associated with increased methylation in the body of RORA (q=0.02) and decreased methylation in the putative promoter region of MTNR1A (q=0.03). Later acrophase (ie, time of peak concentration) was associated with increased methylation in the putative promoter region of MTNR1A (q=0.20) and decreased methylation in the body of PER3 (q=0.20). No associations were identified among day workers. CONCLUSIONS In conclusion, patterns in melatonin secretion were associated with differential circadian gene methylation among night shift workers. Melatonin and alteration of DNA methylation in circadian genes may be one pathway towards increased cancer risk, although larger-scale studies examining multiple time points are needed.
Collapse
Affiliation(s)
- Jennifer A Ritonja
- Department of Public Health Sciences, Queen's University, Kingston, Ontario, Canada
| | - Kristan J Aronson
- Department of Public Health Sciences, Queen's University, Kingston, Ontario, Canada
- Division of Cancer Care and Epidemiology, Queen's University Cancer Research Institute, Kingston, Ontario, Canada
| | - Michael Leung
- Department of Epidemiology, Harvard University T.H. Chan School of Public Health, Boston, Massachusetts, USA
| | - Lisa Flaten
- Department of Public Health Sciences, Queen's University, Kingston, Ontario, Canada
| | - Danai G Topouza
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario, Canada
| | - Qing Ling Duan
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario, Canada
- School of Computing, Queen's University, Kingston, Ontario, Canada
| | - Francine Durocher
- Département de Médecine Moléculaire, Faculté de Médecine, Université Laval, Quebec, Quebec, Canada
- Centre de Recherche sur le Cancer, Centre de recherche du CHU de Québec-Université Laval, Quebec, Quebec, Canada
| | - Joan E Tranmer
- Department of Public Health Sciences, Queen's University, Kingston, Ontario, Canada
- School of Nursing, Queen's University, Kingston, Ontario, Canada
| | - Parveen Bhatti
- Cancer Control Research, BC Cancer Agency, Vancouver, British Columbia, Canada
- School of Population and Public Health, The University of British Columbia, Vancouver, British Columbia, Canada
| |
Collapse
|
13
|
Malik S, Stokes Iii J, Manne U, Singh R, Mishra MK. Understanding the significance of biological clock and its impact on cancer incidence. Cancer Lett 2022; 527:80-94. [PMID: 34906624 PMCID: PMC8816870 DOI: 10.1016/j.canlet.2021.12.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 12/01/2021] [Accepted: 12/02/2021] [Indexed: 12/12/2022]
Abstract
The circadian clock is an essential timekeeper that controls, for humans, the daily rhythm of biochemical, physiological, and behavioral functions. Irregular performance or disruption in circadian rhythms results in various diseases, including cancer. As a factor in cancer development, perturbations in circadian rhythms can affect circadian homeostasis in energy balance, lead to alterations in the cell cycle, and cause dysregulation of chromatin remodeling. However, knowledge gaps remain in our understanding of the relationship between the circadian clock and cancer. Therefore, a mechanistic understanding by which circadian disruption enhances cancer risk is needed. This review article outlines the importance of the circadian clock in tumorigenesis and summarizes underlying mechanisms in the clock and its carcinogenic mechanisms, highlighting advances in chronotherapy for cancer treatment.
Collapse
Affiliation(s)
- Shalie Malik
- Cancer Biology Research and Training, Department of Biological Sciences, Alabama State University, Montgomery, AL, USA; Department of Zoology and Dr. Giri Lal Gupta Institute of Public Health and Public Affairs, University of Lucknow, Lucknow, UP, India
| | - James Stokes Iii
- Department of Biological and Environmental Sciences, Auburn University, Montgomery, AL, USA
| | - Upender Manne
- Departments of Pathology, Surgery and Epidemiology, O'Neal Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Rajesh Singh
- Department of Microbiology, Biochemistry, and Immunology, Cancer Health Equity Institute, Morehouse School of Medicine, Atlanta, GA, USA
| | - Manoj K Mishra
- Cancer Biology Research and Training, Department of Biological Sciences, Alabama State University, Montgomery, AL, USA.
| |
Collapse
|
14
|
Li L, Gang X, Wang J, Gong X. Role of melatonin in respiratory diseases (Review). Exp Ther Med 2022; 23:271. [PMID: 35251337 PMCID: PMC8892605 DOI: 10.3892/etm.2022.11197] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Accepted: 01/27/2022] [Indexed: 11/06/2022] Open
Affiliation(s)
- Lijie Li
- Department of Chinese Medicine, Changchun University of Chinese Medicine, Changchun, Jilin 130021, P.R. China
| | - Xiaochao Gang
- Department of Acupuncture and Tuina, Changchun University of Chinese Medicine, Changchun, Jilin 130021, P.R. China
| | - Jiajia Wang
- Department of Pediatrics, Affiliated Hospital of Changchun University of Chinese Medicine, Changchun, Jilin 130021, P.R. China
| | - Xiaoyan Gong
- Department of Respiratory Medicine, Affiliated Hospital of Changchun University of Chinese Medicine, Changchun, Jilin 130021, P.R. China
| |
Collapse
|
15
|
Nikolaev G, Robeva R, Konakchieva R. Membrane Melatonin Receptors Activated Cell Signaling in Physiology and Disease. Int J Mol Sci 2021; 23:ijms23010471. [PMID: 35008896 PMCID: PMC8745360 DOI: 10.3390/ijms23010471] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 12/28/2021] [Accepted: 12/29/2021] [Indexed: 02/07/2023] Open
Abstract
The pineal hormone melatonin has attracted great scientific interest since its discovery in 1958. Despite the enormous number of basic and clinical studies the exact role of melatonin in respect to human physiology remains elusive. In humans, two high-affinity receptors for melatonin, MT1 and MT2, belonging to the family of G protein-coupled receptors (GPCRs) have been cloned and identified. The two receptor types activate Gi proteins and MT2 couples additionally to Gq proteins to modulate intracellular events. The individual effects of MT1 and MT2 receptor activation in a variety of cells are complemented by their ability to form homo- and heterodimers, the functional relevance of which is yet to be confirmed. Recently, several melatonin receptor genetic polymorphisms were discovered and implicated in pathology-for instance in type 2 diabetes, autoimmune disease, and cancer. The circadian patterns of melatonin secretion, its pleiotropic effects depending on cell type and condition, and the already demonstrated cross-talks of melatonin receptors with other signal transduction pathways further contribute to the perplexity of research on the role of the pineal hormone in humans. In this review we try to summarize the current knowledge on the membrane melatonin receptor activated cell signaling in physiology and pathology and their relevance to certain disease conditions including cancer.
Collapse
Affiliation(s)
- Georgi Nikolaev
- Faculty of Biology, Sofia University “St. Kliment Ohridski”, 1504 Sofia, Bulgaria;
- Correspondence:
| | - Ralitsa Robeva
- Department of Endocrinology, Faculty of Medicine, Medical University, 1431 Sofia, Bulgaria;
| | - Rossitza Konakchieva
- Faculty of Biology, Sofia University “St. Kliment Ohridski”, 1504 Sofia, Bulgaria;
| |
Collapse
|
16
|
Fores-Martos J, Cervera-Vidal R, Sierra-Roca J, Lozano-Asencio C, Fedele V, Cornelissen S, Edvarsen H, Tadeo-Cervera I, Eroles P, Lluch A, Tabares-Seisdedos R, Falcó A, Van't Veer LJ, Schmidt M, Quigley DA, Børresen-Dale AL, Kristensen VN, Balmain A, Climent J. Circadian PERformance in breast cancer: a germline and somatic genetic study of PER3 VNTR polymorphisms and gene co-expression. NPJ Breast Cancer 2021; 7:118. [PMID: 34508103 PMCID: PMC8433453 DOI: 10.1038/s41523-021-00329-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Accepted: 08/16/2021] [Indexed: 11/30/2022] Open
Abstract
Polymorphisms in the PER3 gene have been associated with several human disease phenotypes, including sleep disorders and cancer. In particular, the long allele of a variable number of tandem repeat (VNTR) polymorphism has been previously linked to an increased risk of breast cancer. Here we carried out a combined germline and somatic genetic analysis of the role of the PER3VNRT polymorphism in breast cancer. The combined data from 8284 individuals showed a non-significant trend towards increased breast cancer risk in the 5-repeat allele homozygous carriers (OR = 1.17, 95% CI: 0.97–1.42). We observed allelic imbalance at the PER3 locus in matched blood and tumor DNA samples, showing a significant retention of the long variant (risk) allele in tumor samples, and a preferential loss of the short repetition allele (p = 0.0005). Gene co-expression analysis in healthy and tumoral breast tissue samples uncovered significant associations between PER3 expression levels with those from genes which belong to several cancer-associated pathways. Finally, relapse-free survival (RFS) analysis showed that low expression levels of PER3 were linked to a significant lower RSF in luminal A (p = 3 × 10−12) but not in the rest of breast cancer subtypes.
Collapse
Affiliation(s)
- Jaume Fores-Martos
- ESI International Chair at CEU-UCH, CEU Universities, Valencia, Spain.,Biomedical Research Networking Center of Mental Health (CIBERSAM), Madrid, Spain
| | | | | | - Carlos Lozano-Asencio
- INCLIVA Research Institute. Hospital Clínico Universitario de Valencia, Valencia, Spain
| | - Vita Fedele
- Digestive Molecular Clinical Oncology Research Unit, Section of Medical Oncology, Department of Medicine, University of Verona, Verona, Italy
| | - Sten Cornelissen
- Division of Molecular Pathology, The Netherlands Cancer Institute - Antoni van Leeuwenhoek Hospital, Amsterdam, The Netherlands
| | - Hege Edvarsen
- Department of Genetics, Institute for Cancer Research, Oslo University Hospital Radiumhospitalet, Oslo, Norway
| | - Irene Tadeo-Cervera
- Departamento de Producción y Sanidad Animal, Salud Pública Veterinaria y Ciencia y Tecnología de los Alimentos. Facultad de Veterinaria, Universidad CEU Cardenal Herrera. CEU Universities, Valencia, Spain
| | - Pilar Eroles
- INCLIVA Research Institute. Hospital Clínico Universitario de Valencia, Valencia, Spain
| | - Ana Lluch
- INCLIVA Research Institute. Hospital Clínico Universitario de Valencia, Valencia, Spain
| | - Rafa Tabares-Seisdedos
- Biomedical Research Networking Center of Mental Health (CIBERSAM), Madrid, Spain.,Department of Medicine, Faculty of Medicine, University of Valencia, Valencia, Spain
| | - Antonio Falcó
- ESI International Chair at CEU-UCH, CEU Universities, Valencia, Spain.,Departamento de Matemáticas, Física y Ciencias Tecnológicas, Escuela Superior de Enseñanzas Técnicas, Universidad CEU Cardenal Herrera, CEU Universities, Valencia, Spain
| | - Laura J Van't Veer
- UCSF Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, CA, USA
| | - Marjanka Schmidt
- Departamento de Producción y Sanidad Animal, Salud Pública Veterinaria y Ciencia y Tecnología de los Alimentos. Facultad de Veterinaria, Universidad CEU Cardenal Herrera. CEU Universities, Valencia, Spain
| | - David A Quigley
- UCSF Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, CA, USA.,Departments of Urology and Epidemiology & Biostatistics, University of California San Francisco, Helen Diller Family Comprehensive Cancer Center, San Francisco, CA, USA
| | - Anne-Lise Børresen-Dale
- Department of Genetics, Institute for Cancer Research, Oslo University Hospital Radiumhospitalet, Oslo, Norway
| | - Vessela N Kristensen
- Department of Genetics, Institute for Cancer Research, Oslo University Hospital Radiumhospitalet, Oslo, Norway
| | - Allan Balmain
- UCSF Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, CA, USA
| | - Joan Climent
- ESI International Chair at CEU-UCH, CEU Universities, Valencia, Spain. .,INCLIVA Research Institute. Hospital Clínico Universitario de Valencia, Valencia, Spain. .,Departamento de Producción y Sanidad Animal, Salud Pública Veterinaria y Ciencia y Tecnología de los Alimentos. Facultad de Veterinaria, Universidad CEU Cardenal Herrera. CEU Universities, Valencia, Spain.
| |
Collapse
|
17
|
Maleki M, Khelghati N, Alemi F, Younesi S, Asemi Z, Abolhasan R, Bazdar M, Samadi-Kafil H, Yousefi B. Multiple interactions between melatonin and non-coding RNAs in cancer biology. Chem Biol Drug Des 2021; 98:323-340. [PMID: 33905613 DOI: 10.1111/cbdd.13849] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Accepted: 01/10/2021] [Indexed: 12/14/2022]
Abstract
The melatonin hormone secreted by the pineal gland is involved in physiological functions such as growth and maturation, circadian cycles, and biological activities including antioxidants, anti-tumor, and anti-ischemia. Melatonin not only interacts with proteins but also has functional effects on regulatory RNAs such as long non-coding RNAs (lncRNAs) and microRNAs (miRNAs). In this study, we overview various physiological and pathological conditions affecting melatonin through lncRNA and miRNA. The information compiled herein will serve as a solid foundation to formulate ideas for future mechanistic studies on melatonin. It will also provide a chance to more clarify the emerging functions of the non-coding transcriptome.
Collapse
Affiliation(s)
- Masomeh Maleki
- Department of Biochemistry and Clinical Laboratories, Faculty of Medicine, Tabriz University of Medical Science, Tabriz, Iran
| | - Nafiseh Khelghati
- Department of Clinical Biochemistry, Urmia University of Medical Sciences, Urmia, Iran
| | - Forough Alemi
- Department of Biochemistry and Clinical Laboratories, Faculty of Medicine, Tabriz University of Medical Science, Tabriz, Iran
| | - Simin Younesi
- School of Health and Biomedical Sciences, RMIT University, Melbourne, Vic., Australia
| | - Zatollah Asemi
- School of Health and Biomedical Sciences, RMIT University, Melbourne, Vic., Australia.,Research Center for Biochemistry and Nutrition in Metabolic Diseases, Kashan University of Medical Sciences, Kashan, Iran
| | - Rozita Abolhasan
- Stem Cell and Regenerative Medicine Institute (SCARM), Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mahtab Bazdar
- Department of Clinical Biochemistry, Urmia University of Medical Sciences, Urmia, Iran
| | | | - Bahman Yousefi
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
18
|
Learning from and Leveraging Multi-Level Changes in Responses to the COVID 19 Pandemic to Facilitate Breast Cancer Prevention Efforts. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:ijerph18136999. [PMID: 34208878 PMCID: PMC8297333 DOI: 10.3390/ijerph18136999] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 06/18/2021] [Accepted: 06/19/2021] [Indexed: 01/21/2023]
Abstract
The coronavirus pandemic (COVID-19) has had multilevel effects on non-COVID-19 health and health care, including deferral of routine cancer prevention and screening and delays in surgical and other procedures. Health and health care use has also been affected by pandemic-related loss of employer-based health insurance, food and housing disruptions, and heightened stress, sleep disruptions and social isolation. These disruptions are projected to contribute to excess non-COVID-19 deaths over the coming decades. At the same time municipalities, health systems and individuals are making changes in response to the pandemic, including modifications in the environmental to promote health, implementation of telehealth platforms, and shifts towards greater self-care and using remote platforms to maintain social connections. We used a multi-level biopsychosocial model to examine the available literature on the relationship between COVID-19-related changes and breast cancer prevention to identify current gaps in knowledge and identify potential opportunities for future research. We found that COVID-19 has impacted several aspects of social and economic life, through a variety of mechanisms, including unemployment, changes in health care delivery, changes in eating and activity, and changes in mental health. Some of these changes should be reduced, while others should be explored and enhanced.
Collapse
|
19
|
Reiter RJ, Sharma R, Rodriguez C, Martin V, Rosales-Corral S, Zuccari DAPDC, Chuffa LGDA. Part-time cancers and role of melatonin in determining their metabolic phenotype. Life Sci 2021; 278:119597. [PMID: 33974932 DOI: 10.1016/j.lfs.2021.119597] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Revised: 04/26/2021] [Accepted: 05/03/2021] [Indexed: 12/14/2022]
Abstract
This brief review describes the association of the endogenous pineal melatonin rhythm with the metabolic flux of solid tumors, particularly breast cancer. It also summarizes new information on the potential mechanisms by which endogenously-produced or exogenously-administered melatonin impacts the metabolic phenotype of cancer cells. The evidence indicates that solid tumors may redirect their metabolic phenotype from the pathological Warburg-type metabolism during the day to the healthier mitochondrial oxidative phosphorylation on a nightly basis. Thus, they function as cancer cells only during the day and as healthier cells at night, that is, they are only part-time cancerous. This switch to oxidative phosphorylation at night causes cancer cells to exhibit a reduced tumor phenotype and less likely to rapidly proliferate or to become invasive or metastatic. Also discussed is the likelihood that some solid tumors are especially aggressive during the day and much less so at night due to the nocturnal rise in melatonin which determines their metabolic state. We further propose that when melatonin is used/tested in clinical trials, a specific treatment paradigm be used that is consistent with the temporal metabolic changes in tumor metabolism. Finally, it seems likely that the concurrent use of melatonin in combination with conventional chemotherapies also would improve cancer treatment outcomes.
Collapse
Affiliation(s)
- Russel J Reiter
- Department of Cell Systems and Anatomy, UT Health San Antonio, San Antonio, TX 78229, USA.
| | - Ramaswamy Sharma
- Department of Cell Systems and Anatomy, UT Health San Antonio, San Antonio, TX 78229, USA
| | - Carmen Rodriguez
- Departamento de Morfologia y Biologia Celular, Facultad de Medicina, Oviedo, 33006, Spain
| | - Vanesa Martin
- Departamento de Morfologia y Biologia Celular, Facultad de Medicina, Oviedo, 33006, Spain
| | - Sergio Rosales-Corral
- Centro de Investigacion Biomedica de Occidente, Instituto Mexicano del Seguro Social, Guadalajara CP 45150, Mexico
| | | | | |
Collapse
|
20
|
Manouchehri E, Taghipour A, Ghavami V, Ebadi A, Homaei F, Latifnejad Roudsari R. Night-shift work duration and breast cancer risk: an updated systematic review and meta-analysis. BMC Womens Health 2021; 21:89. [PMID: 33653334 PMCID: PMC7927396 DOI: 10.1186/s12905-021-01233-4] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Accepted: 02/22/2021] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND The International Agency for Research on Cancer (IARC) has classified shift work as a possible human carcinogen. The results of systematic on this topic is contradictory. This systematic review and meta-analysis, therefore, aimed to update the current evidence regarding the relationship between night-shift work duration and breast cancer risk. METHODS PubMed, Web of Science, and Scopus as well as reference list of included studies were searched until December 19, 2020. Observational case-control or cohort studies investigating the relationship between the duration of night-shift work and breast cancer in women were included, which all quantified night-shift work exposure. All statistical analyses were done by Stata version 11.2. RESULTS Our literature search was resulted in retrieval of 4854 publications from which 26 eligible studies with 1,313,348 participants were included in the meta-analyses. The pooled relative risk (RR) and 95% confidence intervals (CIs) of breast cancer for short-term night-shift workers (< 10 years) was 1.13 (95% CI 1.03-1.24, p = 0.008, I2 = 71.3%), and for long-term night-shift workers (≥ 10 years) was 1.08 (95% CI 0.99-1.17, p = 0.09, I2 = 42.2%), with moderate to substantial statistical heterogeneity observed in both analyses. The results of subgroup analysis showed that flight attendants with long overnight flights were at an elevated risk of breast cancer, but unmeasured confounders limited these results. The risk of breast cancer in case control studies, adjusted for reproductive factors and family history of breast cancer as well as studies with high quality was increased in both short term and long term night-shift workers. CONCLUSIONS This systematic review found a positive statistical relationship between night work and breast cancer risk in short-term night-shift workers but no increase was observed in the long-term night-shift workers.
Collapse
Affiliation(s)
- E. Manouchehri
- Department of Midwifery, School of Nursing and Midwifery, Mashhad University of Medical Sciences, Mashhad, Islamic Republic of Iran
| | - A. Taghipour
- Department of Epidemiology, School of Health, Mashhad University of Medical Sciences, Mashhad, Islamic Republic of Iran
| | - V. Ghavami
- Department of Biostatistics, School of Health, Mashhad University of Medical Sciences, Mashhad, Islamic Republic of Iran
| | - A. Ebadi
- Behavioral Sciences Research Center, Lifestyle Institute, Baqiyatallah University of Medical Sciences, Tehran, Islamic Republic of Iran
- Nursing Faculty, Baqiyatallah University of Medical Sciences, Tehran, Islamic Republic of Iran
| | - F. Homaei
- Cancer Research Center, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Islamic Republic of Iran
| | - R. Latifnejad Roudsari
- Department of Midwifery, School of Nursing and Midwifery, Mashhad University of Medical Sciences, Mashhad, Islamic Republic of Iran
- Nursing and Midwifery Care Research Center, Mashhad University of Medical Sciences, Mashhad, Islamic Republic of Iran
| |
Collapse
|
21
|
Valdivia G, Alonso-Diez Á, Pérez-Alenza D, Peña L. From Conventional to Precision Therapy in Canine Mammary Cancer: A Comprehensive Review. Front Vet Sci 2021; 8:623800. [PMID: 33681329 PMCID: PMC7925635 DOI: 10.3389/fvets.2021.623800] [Citation(s) in RCA: 59] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Accepted: 01/11/2021] [Indexed: 12/16/2022] Open
Abstract
Canine mammary tumors (CMTs) are the most common neoplasm in intact female dogs. Canine mammary cancer (CMC) represents 50% of CMTs, and besides surgery, which is the elective treatment, additional targeted and non-targeted therapies could offer benefits in terms of survival to these patients. Also, CMC is considered a good spontaneous intermediate animal model for the research of human breast cancer (HBC), and therefore, the study of new treatments for CMC is a promising field in comparative oncology. Dogs with CMC have a comparable disease, an intact immune system, and a much shorter life span, which allows the achievement of results in a relatively short time. Besides conventional chemotherapy, innovative therapies have a large niche of opportunities. In this article, a comprehensive review of the current research in adjuvant therapies for CMC is conducted to gather available information and evaluate the perspectives. Firstly, updates are provided on the clinical-pathological approach and the use of conventional therapies, to delve later into precision therapies against therapeutic targets such as hormone receptors, tyrosine kinase receptors, p53 tumor suppressor gene, cyclooxygenases, the signaling pathways involved in epithelial-mesenchymal transition, and immunotherapy in different approaches. A comparison of the different investigations on targeted therapies in HBC is also carried out. In the last years, the increasing number of basic research studies of new promising therapeutic agents on CMC cell lines and CMC mouse xenografts is outstanding. As the main conclusion of this review, the lack of effort to bring the in vitro studies into the field of applied clinical research emerges. There is a great need for well-planned large prospective randomized clinical trials in dogs with CMC to obtain valid results for both species, humans and dogs, on the use of new therapies. Following the One Health concept, human and veterinary oncology will have to join forces to take advantage of both the economic and technological resources that are invested in HBC research, together with the innumerable advantages of dogs with CMC as a spontaneous animal model.
Collapse
Affiliation(s)
- Guillermo Valdivia
- Department Animal Medicine, Surgery and Pathology, Veterinary School, Complutense University of Madrid, Madrid, Spain
- Mammary Oncology Unit, Complutense Veterinary Teaching Hospital, Complutense University of Madrid, Madrid, Spain
| | - Ángela Alonso-Diez
- Department Animal Medicine, Surgery and Pathology, Veterinary School, Complutense University of Madrid, Madrid, Spain
- Mammary Oncology Unit, Complutense Veterinary Teaching Hospital, Complutense University of Madrid, Madrid, Spain
| | - Dolores Pérez-Alenza
- Department Animal Medicine, Surgery and Pathology, Veterinary School, Complutense University of Madrid, Madrid, Spain
- Mammary Oncology Unit, Complutense Veterinary Teaching Hospital, Complutense University of Madrid, Madrid, Spain
| | - Laura Peña
- Department Animal Medicine, Surgery and Pathology, Veterinary School, Complutense University of Madrid, Madrid, Spain
- Mammary Oncology Unit, Complutense Veterinary Teaching Hospital, Complutense University of Madrid, Madrid, Spain
| |
Collapse
|
22
|
Walker WH, Bumgarner JR, Walton JC, Liu JA, Meléndez-Fernández OH, Nelson RJ, DeVries AC. Light Pollution and Cancer. Int J Mol Sci 2020; 21:E9360. [PMID: 33302582 PMCID: PMC7764771 DOI: 10.3390/ijms21249360] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Revised: 12/04/2020] [Accepted: 12/06/2020] [Indexed: 01/03/2023] Open
Abstract
For many individuals in industrialized nations, the widespread adoption of electric lighting has dramatically affected the circadian organization of physiology and behavior. Although initially assumed to be innocuous, exposure to artificial light at night (ALAN) is associated with several disorders, including increased incidence of cancer, metabolic disorders, and mood disorders. Within this review, we present a brief overview of the molecular circadian clock system and the importance of maintaining fidelity to bright days and dark nights. We describe the interrelation between core clock genes and the cell cycle, as well as the contribution of clock genes to oncogenesis. Next, we review the clinical implications of disrupted circadian rhythms on cancer, followed by a section on the foundational science literature on the effects of light at night and cancer. Finally, we provide some strategies for mitigation of disrupted circadian rhythms to improve health.
Collapse
Affiliation(s)
- William H. Walker
- Department of Neuroscience, Rockefeller Neuroscience Institute, West Virginia University, Morgantown, WV 26506, USA; (J.R.B.); (J.C.W.); (J.A.L.); (O.H.M.-F.); (R.J.N.); (A.C.D.)
| | - Jacob R. Bumgarner
- Department of Neuroscience, Rockefeller Neuroscience Institute, West Virginia University, Morgantown, WV 26506, USA; (J.R.B.); (J.C.W.); (J.A.L.); (O.H.M.-F.); (R.J.N.); (A.C.D.)
| | - James C. Walton
- Department of Neuroscience, Rockefeller Neuroscience Institute, West Virginia University, Morgantown, WV 26506, USA; (J.R.B.); (J.C.W.); (J.A.L.); (O.H.M.-F.); (R.J.N.); (A.C.D.)
| | - Jennifer A. Liu
- Department of Neuroscience, Rockefeller Neuroscience Institute, West Virginia University, Morgantown, WV 26506, USA; (J.R.B.); (J.C.W.); (J.A.L.); (O.H.M.-F.); (R.J.N.); (A.C.D.)
| | - O. Hecmarie Meléndez-Fernández
- Department of Neuroscience, Rockefeller Neuroscience Institute, West Virginia University, Morgantown, WV 26506, USA; (J.R.B.); (J.C.W.); (J.A.L.); (O.H.M.-F.); (R.J.N.); (A.C.D.)
| | - Randy J. Nelson
- Department of Neuroscience, Rockefeller Neuroscience Institute, West Virginia University, Morgantown, WV 26506, USA; (J.R.B.); (J.C.W.); (J.A.L.); (O.H.M.-F.); (R.J.N.); (A.C.D.)
| | - A. Courtney DeVries
- Department of Neuroscience, Rockefeller Neuroscience Institute, West Virginia University, Morgantown, WV 26506, USA; (J.R.B.); (J.C.W.); (J.A.L.); (O.H.M.-F.); (R.J.N.); (A.C.D.)
- Department of Medicine, Division of Oncology/Hematology, West Virginia University, Morgantown, WV 26506, USA
- West Virginia University Cancer Institute, West Virginia University, Morgantown, WV 26506, USA
| |
Collapse
|
23
|
Chae CH. Validity of Breast Cancer Symptom Questionnaire and Its Relationship With Breast Ultrasonography in Young Female Night Workers. Saf Health Work 2020; 11:361-366. [PMID: 32995062 PMCID: PMC7502608 DOI: 10.1016/j.shaw.2020.04.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Revised: 04/01/2020] [Accepted: 04/23/2020] [Indexed: 11/29/2022] Open
Abstract
Background This study aimed to identify the validity of breast cancer symptom questionnaire of worker's special health examination and its relationship with breast ultrasonography findings in young female night workers. Methods The breast cancer symptom questionnaire data of worker's special health examination and breast ultrasonography results in young female shift workers who worked in one electronic manufacture company were collected from 2014 to 2018. Results Of the 857 workers, 18 had a Breast Imaging Reporting and Database System category 4 or higher. Among other variables, shift work tenure alone was associated with the risk of having a Breast Imaging Reporting and Database System category higher than 4. The sensitivity, specificity, positive predictive value, and negative predictive value of the symptom questionnaire were 16.7%, 87.7%, 2.8%, and 98.0%, respectively. Conclusion The current breast cancer symptom questionnaire of the worker's special health examination is inappropriate due to its low sensitivity and positive predictive value. In the future, female night workers will need alternative measures for more accurate screening for breast cancer.
Collapse
Affiliation(s)
- Chang-Ho Chae
- Corresponding author. Department of Occupational and Environmental Medicine, Samsung Changwon Hospital, Sungkyunkwan University School of Medicine, 158, Paryong-ro, Masanhoewon-gu, Changwon-si, Gyeongsangnam-do, 51353, Republic of Korea.
| |
Collapse
|
24
|
Samanta S. Melatonin: an endogenous miraculous indolamine, fights against cancer progression. J Cancer Res Clin Oncol 2020; 146:1893-1922. [PMID: 32583237 DOI: 10.1007/s00432-020-03292-w] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Accepted: 06/12/2020] [Indexed: 02/07/2023]
Abstract
PURPOSE Melatonin is an amphipathic indolamine molecule ubiquitously present in all organisms ranging from cyanobacteria to humans. The pineal gland is the site of melatonin synthesis and secretion under the influence of the retinohypothalamic tract. Some extrapineal tissues (skin, lens, gastrointestinal tract, testis, ovary, lymphocytes, and astrocytes) also enable to produce melatonin. Physiologically, melatonin regulates various functions like circadian rhythm, sleep-wake cycle, gonadal activity, redox homeostasis, neuroprotection, immune-modulation, and anticancer effects in the body. Inappropriate melatonin secretion advances the aging process, tumorigenesis, visceral adiposity, etc. METHODS: For the preparation of this review, I had reviewed the literature on the multidimensional activities of melatonin from the NCBI website database PubMed, Springer Nature, Science Direct (Elsevier), Wiley Online ResearchGate, and Google Scholar databases to search relevant articles. Specifically, I focused on the roles and mechanisms of action of melatonin in cancer prevention. RESULTS The actions of melatonin are primarily mediated by G-protein coupled MT1 and MT2 receptors; however, several intracellular protein and nuclear receptors can modulate the activity. Normal levels of the melatonin protect the cells from adverse effects including carcinogenesis. Therapeutically, melatonin has chronomedicinal value; it also shows a remarkable anticancer property. The oncostatic action of melatonin is multidimensional, associated with the advancement of apoptosis, the arrest of the cell cycle, inhibition of metastasis, and antioxidant activity. CONCLUSION The present review has emphasized the mechanism of the anti-neoplastic activity of melatonin that increases the possibilities of the new approaches in cancer therapy.
Collapse
Affiliation(s)
- Saptadip Samanta
- Department Physiology, Midnapore College, Paschim Medinipur, Midnapore, West Bengal, 721101, India.
| |
Collapse
|
25
|
Abstract
Circadian rhythm misalignment due to social jet lag, shift work, early morning starts, and delayed bedtimes is becoming common in our modern society. Disturbances of sleep and the underlying circadian rhythms are related to multiple human diseases, such as obesity, diabetes, cardiovascular disorders, and cognitive impairments. Given the crucial role of microbiota in the same pathologies as are caused by sleep disturbance, how the gut microbiota is affected by sleep is of increasing interest. The results of this study indicate that the acute circadian rhythm disturbance caused by sleep-wake shifts affect the human gut microbiota, especially the functional profiles of gut microbes and interactions among them. Further experiments with a longer-time-scale intervention and larger sample size are needed to assess the effects of chronic circadian rhythm disruption on the gut microbiome and to guide possible microbial therapies for clinical intervention in the related diseases. Disturbances of sleep and the underlying circadian rhythm are related to many human diseases, such as obesity, diabetes, cardiovascular disorders, and cognitive impairments. Dysbiosis of the gut microbiome has also been reported to be associated with the pathologies of these diseases. Therefore, we proposed that disturbed sleep may regulate gut microbiota homeostasis. In this study, we mimicked the sleep-wake cycle shift, one typical type of circadian rhythm disturbances in young people, in recruited subjects. We used 16S rRNA gene amplicon sequencing to define microbial taxa from their fecal samples. Although the relative abundances of the microbes were not significantly altered, the functional-profile analysis of gut microbiota revealed functions enriched during the sleep-wake cycle shift. In addition, the microbial networks were quite distinct among baseline, shift, and recovery stages. These results suggest that an acute sleep-wake cycle shift may exert a limited influence on the gut microbiome, mainly including the functional profiles of the microbes and the microbial relationships within the microbial community. IMPORTANCE Circadian rhythm misalignment due to social jet lag, shift work, early morning starts, and delayed bedtimes is becoming common in our modern society. Disturbances of sleep and the underlying circadian rhythms are related to multiple human diseases, such as obesity, diabetes, cardiovascular disorders, and cognitive impairments. Given the crucial role of microbiota in the same pathologies as are caused by sleep disturbance, how the gut microbiota is affected by sleep is of increasing interest. The results of this study indicate that the acute circadian rhythm disturbance caused by sleep-wake shifts affect the human gut microbiota, especially the functional profiles of gut microbes and interactions among them. Further experiments with a longer-time-scale intervention and larger sample size are needed to assess the effects of chronic circadian rhythm disruption on the gut microbiome and to guide possible microbial therapies for clinical intervention in the related diseases.
Collapse
|
26
|
Emotional distress, brain functioning, and biobehavioral processes in cancer patients: a neuroimaging review and future directions. CNS Spectr 2020; 25:79-100. [PMID: 31010446 DOI: 10.1017/s1092852918001621] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Despite emerging evidence that distress and adversity can contribute to negative health outcomes in cancer, little is known about the brain networks, regions, or circuits that can contribute to individual differences in affect/distress states and health outcomes in treated cancer patients. To understand the state-of-the-science in this regard, we reviewed neuroimaging studies with cancer patients that examined the associations between negative affect (distress) and changes in the metabolism or structure of brain regions. Cancer patients showed changes in function and/or structure of key brain regions such as the prefrontal cortex, thalamus, amygdala, hippocampus, cingulate cortex (mainly subgenual area), hypothalamus, basal ganglia (striatum and caudate), and insula, which are associated with greater anxiety, depression, posttraumatic stress disorder (PTSD) symptoms, and distress. These results provide insights for understanding the effects of these psychological and emotional factors on peripheral stress-related biobehavioral pathways known to contribute to cancer progression and long-term health outcomes. This line of work provides leads for understanding the brain-mediated mechanisms that may explain the health effects of psychosocial interventions in cancer patients and survivors. A multilevel and integrated model for distress management intervention effects on psychological adaptation, biobehavioral processes, cancer pathogenesis, and clinical outcomes is proposed for future research.
Collapse
|
27
|
Yeh JK, Lin MH, Wang CY. Telomeres as Therapeutic Targets in Heart Disease. ACTA ACUST UNITED AC 2019; 4:855-865. [PMID: 31998853 PMCID: PMC6978555 DOI: 10.1016/j.jacbts.2019.05.009] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Revised: 05/27/2019] [Accepted: 05/28/2019] [Indexed: 12/14/2022]
Abstract
Age-associated CVDs impose a great burden on current health systems. Despite the fact that current strong evidence supports the links among aging, telomere attrition, and CVDs, there is no clear direction for the development of telomere therapeutics against CVDs. This review focuses on immune modulation, CHIP, pharmaceutical interventions, and gene therapy for their therapeutic roles in age-associated CVDs. The future goal of telomere cardiovascular therapy in young subjects is to prevent senescence and diseases, whereas in older adult subjects, the goal is restoration of cardiovascular functions. Further studies on the telomere-CHIP-atherosclerosis axis may shed insights on how to achieve these 2 different therapeutic targets.
Telomeres are double-stranded repeats of G-rich tandem DNA sequences that gradually shorten with each cell division. Aging, inflammation, and oxidative stress accelerate the process of telomere shortening. Telomerase counteracts this process by maintaining and elongating the telomere length. Patients with atherosclerotic diseases and cardiovascular risk factors (e.g., smoking, obesity, sedentary lifestyle, and hypertension) have shorter leukocyte telomere length. Following myocardial infarction, telomerase expression and activity in cardiomyocytes and endothelial cells increase significantly, implying that telomerase plays a role in regulating tissue repairs in heart diseases. Although previous studies have focused on the changes of telomeres in heart diseases and the telomere length as a marker for aging cardiovascular systems, recent studies have explored the potential of telomeres and telomerase in the treatment of cardiovascular diseases. This review discusses the significant advancements of telomere therapeutics in gene therapy, atherosclerosis, anti-inflammation, and immune modulation in patients with cardiovascular diseases.
Collapse
Affiliation(s)
- Jih-Kai Yeh
- Department of Cardiology, Chang Gung Memorial Hospital, and Chang Gung University College of Medicine, Taoyuan City, Taiwan
| | - Mei-Hsiu Lin
- Department of Cardiology, Chang Gung Memorial Hospital, and Chang Gung University College of Medicine, Taoyuan City, Taiwan
| | - Chao-Yung Wang
- Department of Cardiology, Chang Gung Memorial Hospital, and Chang Gung University College of Medicine, Taoyuan City, Taiwan.,Institute of Cellular and System Medicine, National Health Research Institutes, Zhunan, Taiwan
| |
Collapse
|
28
|
Copertaro A, Bracci M. Working against the biological clock: a review for the Occupational Physician. INDUSTRIAL HEALTH 2019; 57:557-569. [PMID: 30799323 PMCID: PMC6783289 DOI: 10.2486/indhealth.2018-0173] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2018] [Accepted: 12/27/2018] [Indexed: 05/28/2023]
Abstract
The master clock of the biological rhythm, located in the suprachiasmatic nucleus of the anterior hypothalamus, synchronizes the molecular biological clock found in every cell of most peripheral tissues. The human circadian rhythm is largely based on the light-dark cycle. In night shift workers, alteration of the cycle and inversion of the sleep-wake rhythm can result in disruption of the biological clock and induce adverse health effects. This paper offers an overview of the main physiological mechanisms that regulate the circadian rhythm and of the health risks that are associated with its perturbation in shift and night workers. The Occupational Physician should screen shift and night workers for clinical symptoms related to the perturbation of the biological clock and consider preventive strategies to reduce the associated health risks.
Collapse
Affiliation(s)
| | - Massimo Bracci
- Occupational Medicine, Department of Clinical and Molecular Sciences, Polytechnic University of Marche, Italy
| |
Collapse
|
29
|
Disruption of the Molecular Circadian Clock and Cancer: An Epigenetic Link. Biochem Genet 2019; 58:189-209. [DOI: 10.1007/s10528-019-09938-w] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2019] [Accepted: 09/03/2019] [Indexed: 01/08/2023]
|
30
|
Zubidat AE, Fares B, Fares F, Haim A. Artificial Light at Night of Different Spectral Compositions Differentially Affects Tumor Growth in Mice: Interaction With Melatonin and Epigenetic Pathways. Cancer Control 2019; 25:1073274818812908. [PMID: 30477310 PMCID: PMC6259078 DOI: 10.1177/1073274818812908] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Lighting technology is rapidly advancing toward shorter wavelength illuminations
that offer energy-efficient properties. Along with this advantage, the increased
use of such illuminations also poses some health challenges, particularly breast
cancer progression. Here, we evaluated the effects of artificial light at night
(ALAN) of 4 different spectral compositions (500-595 nm) at 350 Lux on melatonin
suppression by measuring its urine metabolite 6-sulfatoxymelatonin, global DNA
methylation, tumor growth, metastases formation, and urinary corticosterone
levels in 4T1 breast cancer cell-inoculated female BALB/c mice. The results
revealed an inverse dose-dependent relationship between wavelength and melatonin
suppression. Short wavelength increased tumor growth, promoted lung metastases
formation, and advanced DNA hypomethylation, while long wavelength lessened
these effects. Melatonin treatment counteracted these effects and resulted in
reduced cancer burden. The wavelength suppression threshold for
melatonin-induced tumor growth was 500 nm. These results suggest that short
wavelength increases cancer burden by inducing aberrant DNA methylation mediated
by the suppression of melatonin. Additionally, melatonin suppression and global
DNA methylation are suggested as promising biomarkers for early diagnosis and
therapy of breast cancer. Finally, ALAN may manifest other physiological
responses such as stress responses that may challenge the survival fitness of
the animal under natural environments.
Collapse
Affiliation(s)
- A E Zubidat
- 1 The Israeli Center for Interdisciplinary Research in Chronobiology, University of Haifa, Haifa, Israel
| | - B Fares
- 2 Department of Human Biology, University of Haifa, Haifa, Israel.,3 Department of Molecular Genetics, Carmel Medical Center, Haifa, Israel
| | - F Fares
- 2 Department of Human Biology, University of Haifa, Haifa, Israel.,3 Department of Molecular Genetics, Carmel Medical Center, Haifa, Israel
| | - A Haim
- 1 The Israeli Center for Interdisciplinary Research in Chronobiology, University of Haifa, Haifa, Israel
| |
Collapse
|
31
|
Agbaria S, Haim A, Fares F, Zubidat AE. Epigenetic modification in 4T1 mouse breast cancer model by artificial light at night and melatonin - the role of DNA-methyltransferase. Chronobiol Int 2019; 36:629-643. [PMID: 30746962 DOI: 10.1080/07420528.2019.1574265] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Currently, one of the most disputed hypotheses regarding breast cancer (BC) development is exposure to short wavelength artificial light at night (ALAN) as multiple studies suggest a possible link between them. This link is suggested to be mediated by nocturnal melatonin suppression that plays an integral role in circadian regulations including cell division. The objective of the research was to evaluate effects of 1 × 30 min/midnight ALAN (134 µ Wcm-2, 460 nm) with or without nocturnal melatonin supplement on tumor development and epigenetic responses in 4T1 tumor-bearing BALB/c mice. Mice were monitored for body mass (Wb) and tumor volume for 3 weeks and thereafter urine samples were collected at regular intervals for determining daily rhythms of 6-sulfatoxymelatonin (6-SMT). Finally, mice were sacrificed and the tumor, lungs, liver, and spleen were excised for analyzing the total activity of DNA methyltransferases (DNMT) and global DNA methylation (GDM) levels. Mice exposed to ALAN significantly reduced 6-SMT levels and increased Wb, tumor volume, and lung metastasis compared with controls. These effects were diminished by melatonin. The DNMT activity and GDM levels showed tissue-specific response. The enzymatic activity and GDM levels were lower in tumor and liver and higher in spleen and lungs under ALAN compared with controls. Our results suggest that ALAN disrupts the melatonin rhythm and potentially leading to increased BC burden by affecting DNMT activity and GDM levels. These data may also be applicable to early detection and management of BC by monitoring melatonin and GDM levels as early biomarker of ALAN circadian disruption.
Collapse
Affiliation(s)
- Sahar Agbaria
- a Department of Human Biology , University of Haifa , Haifa , Israel
| | - Abraham Haim
- b The Israeli Center for Interdisciplinary Research in Chronobiology , University of Haifa , Haifa , Israel
| | - Fuad Fares
- a Department of Human Biology , University of Haifa , Haifa , Israel.,c Department of Molecular Genetics , Carmel Medical Center , Haifa , Israel
| | - Abed E Zubidat
- b The Israeli Center for Interdisciplinary Research in Chronobiology , University of Haifa , Haifa , Israel
| |
Collapse
|
32
|
Coughlin SS. Epidemiology of Breast Cancer in Women. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1152:9-29. [PMID: 31456177 DOI: 10.1007/978-3-030-20301-6_2] [Citation(s) in RCA: 192] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Epidemiologic studies have contributed importantly to current knowledge of environmental and genetic risk factors for breast cancer. Worldwide, breast cancer is an important cause of human suffering and premature mortality among women. In the United States, breast cancer accounts for more cancer deaths in women than any site other than lung cancer. A variety of risk factors for breast cancer have been well-established by epidemiologic studies including race, ethnicity, family history of cancer, and genetic traits, as well as modifiable exposures such as increased alcohol consumption, physical inactivity, exogenous hormones, and certain female reproductive factors. Younger age at menarche, parity, and older age at first full-term pregnancy may influence breast cancer risk through long-term effects on sex hormone levels or by other biological mechanisms. Recent studies have suggested that triple negative breast cancers may have a distinct etiology. Genetic variants and mutations in genes that code for proteins having a role in DNA repair pathways and the homologous recombination of DNA double stranded breaks (APEX1, BRCA1, BRCA2, XRCC2, XRCC3, ATM, CHEK2, PALB2, RAD51, XPD), have been implicated in some cases of breast cancer.
Collapse
Affiliation(s)
- Steven S Coughlin
- Division of Epidemiology, Department of Population Health Sciences, Medical College of Georgia, Augusta University, Augusta, GA, USA.
| |
Collapse
|
33
|
Favero G, Moretti E, Bonomini F, Reiter RJ, Rodella LF, Rezzani R. Promising Antineoplastic Actions of Melatonin. Front Pharmacol 2018; 9:1086. [PMID: 30386235 PMCID: PMC6198052 DOI: 10.3389/fphar.2018.01086] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2018] [Accepted: 09/06/2018] [Indexed: 12/19/2022] Open
Abstract
Melatonin is an endogenous indoleamine with an incredible variety of properties and activities. In recent years, an increasing number of studies have investigated this indoleamine’s interaction with cancerous cells. In particular, it seems that melatonin not only has the ability to improve the efficacy of many drugs used in chemotherapy but also has a direct inhibitory action on neoplastic cells. Many publications underlined the ability of melatonin to suppress the proliferation of various cancer cells or to modulate the expression of membrane receptors on these cells, thereby reducing tumor aggressiveness to metastasize. In addition, while melatonin has antiapoptotic actions in normal cells, in many cancer cells it has proapoptotic effects; these dichotomous actions have gained the interest of researchers. The increasing focus on melatonin in the field of oncology and the growing number of studies on this topic require a deep understanding of what we already know about the antineoplastic actions of melatonin. This information would be of value for potential use of melatonin against neoplastic diseases.
Collapse
Affiliation(s)
- Gaia Favero
- Anatomy and Physiopathology Division, Department of Clinical and Experimental Sciences, University of Brescia, Brescia, Italy
| | - Enrico Moretti
- Anatomy and Physiopathology Division, Department of Clinical and Experimental Sciences, University of Brescia, Brescia, Italy
| | - Francesca Bonomini
- Anatomy and Physiopathology Division, Department of Clinical and Experimental Sciences, University of Brescia, Brescia, Italy.,Interdipartimental University Center of Research "Adaption and Regeneration of Tissues and Organs," University of Brescia, Brescia, Italy
| | - Russel J Reiter
- Department of Cell Systems and Anatomy, UT Health Science Center, San Antonio, TX, United States
| | - Luigi Fabrizio Rodella
- Anatomy and Physiopathology Division, Department of Clinical and Experimental Sciences, University of Brescia, Brescia, Italy.,Interdipartimental University Center of Research "Adaption and Regeneration of Tissues and Organs," University of Brescia, Brescia, Italy
| | - Rita Rezzani
- Anatomy and Physiopathology Division, Department of Clinical and Experimental Sciences, University of Brescia, Brescia, Italy.,Interdipartimental University Center of Research "Adaption and Regeneration of Tissues and Organs," University of Brescia, Brescia, Italy
| |
Collapse
|
34
|
Boinon D, Journiac J, Charles C, Fasse L, Savard J, Dauchy S. La prise en charge non médicamenteuse de l’insomnie chez les patients atteints de cancer : état des connaissances selon l’approche cognitivo-comportementale et émotionnelle. PSYCHO-ONCOLOGIE 2018. [DOI: 10.3166/pson-2018-0037] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
35
|
Combined Fluid Shear Stress and Melatonin Enhances the ERK/Akt/mTOR Signal in Cilia-Less MC3T3-E1 Preosteoblast Cells. Int J Mol Sci 2018; 19:ijms19102929. [PMID: 30261648 PMCID: PMC6213863 DOI: 10.3390/ijms19102929] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2018] [Revised: 09/22/2018] [Accepted: 09/23/2018] [Indexed: 01/05/2023] Open
Abstract
We investigated whether combined fluid shear stress (FSS) and melatonin stimulated signal transduction in cilia-less MC3T3-E1 preosteoblast cells. MC3T3-E1 cells were treated with chloral hydrate or nocodazole, and mechanotransduction sensor primary cilia were removed. p-extracellular signal–regulated kinase (ERK) and p-Akt with/without melatonin increased with nocodazole treatment and decreased with chloral hydrate treatment, whereas p-ERK and p-Akt in FSS with/without melatonin increased in cilia-less groups compared to cilia groups. Furthermore, p-mammalian target of rapamycin (mTOR) with FSS-plus melatonin increased in cilia-less groups compared to only melatonin treatments in cilia groups. Expressions of Bcl-2, Cu/Zn-superoxide dismutase (SOD), and catalase proteins were higher in FSS with/without melatonin with cilia-less groups than only melatonin treatments in cilia groups. Bax protein expression was high in FSS-plus melatonin with chloral hydrate treatment. In chloral hydrate treatment with/without FSS, expressions of Cu/Zn-SOD, Mn-SOD, and catalase proteins were high compared to only-melatonin treatments. In nocodazole treatment, Mn-SOD protein expression without FSS was high, and catalase protein level with FSS was low, compared to only melatonin treatments. These data show that the combination with FSS and melatonin enhances ERK/Akt/mTOR signal in cilia-less MC3T3-E1, and the enhanced signaling in cilia-less MC3T3-E1 osteoblast cells may activate the anabolic effect for the preservation of cell structure and function.
Collapse
|
36
|
Emmer KM, Russart KL, Walker WH, Nelson RJ, DeVries AC. Effects of light at night on laboratory animals and research outcomes. Behav Neurosci 2018; 132:302-314. [PMID: 29952608 PMCID: PMC6062441 DOI: 10.1037/bne0000252] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Light has substantial influences on the physiology and behavior of most laboratory animals. As such, lighting conditions within animal rooms are potentially significant and often underappreciated variables within experiments. Disruption of the light/dark cycle, primarily by exposing animals to light at night (LAN), disturbs biological rhythms and has widespread physiological consequences because of mechanisms such as melatonin suppression, sympathetic stimulation, and altered circadian clock gene expression. Thus, attention to the lighting environment of laboratory animals and maintaining consistency of a light/dark cycle is imperative for study reproducibility. Light intensity, as well as wavelength, photoperiod, and timing, are all important variables. Although modern rodent facilities are designed to facilitate appropriate light cycling, there are simple ways to modify rooms to prevent extraneous light exposure during the dark period. Attention to lighting conditions of laboratory animals by both researchers and research care staff ensures best practices for maintaining animal welfare, as well as reproducibility of research results. (PsycINFO Database Record
Collapse
Affiliation(s)
- Kathryn M. Emmer
- Department of Neuroscience, The Ohio State University Wexner Medical Center, Columbus, Ohio, 43210 USA
- Department of Veterinary Preventative Medicine, The Ohio State University, Columbus, Ohio, 43210 USA
| | - Kathryn L.G. Russart
- Department of Neuroscience, The Ohio State University Wexner Medical Center, Columbus, Ohio, 43210 USA
| | - William H. Walker
- Department of Neuroscience, The Ohio State University Wexner Medical Center, Columbus, Ohio, 43210 USA
| | - Randy J. Nelson
- Department of Behavioral Medicine and Psychiatry, West Virginia University, Morgantown, West Virginia, 26505 USA
- Rockefeller Neuroscience Institute, West Virginia University, Morgantown, West Virginia, 26505 USA
| | - A. Courtney DeVries
- Rockefeller Neuroscience Institute, West Virginia University, Morgantown, West Virginia, 26505 USA
- Department of Medicine, West Virginia University, Morgantown, West Virginia, 26505 USA
| |
Collapse
|
37
|
Srour B, Plancoulaine S, Andreeva VA, Fassier P, Julia C, Galan P, Hercberg S, Deschasaux M, Latino-Martel P, Touvier M. Circadian nutritional behaviours and cancer risk: New insights from the NutriNet-santé prospective cohort study: Disclaimers. Int J Cancer 2018; 143:2369-2379. [PMID: 29744870 DOI: 10.1002/ijc.31584] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2017] [Revised: 03/26/2018] [Accepted: 04/27/2018] [Indexed: 12/19/2022]
Abstract
Circadian disruption has been classified as probably carcinogenic to humans by the World Health Organization's International Agency for Research on Cancer. The circadian clock is subject to environmental factors, particularly light exposure and food intake rhythms. However, the association between nutritional circadian behaviours and cancer is not well understood. We investigated the longitudinal associations between number of eating episodes, night-time fasting duration, time of first and last eating episodes, as well as nutritional quality of last eating episode, respectively, with breast and prostate cancer risks, the two main cancer locations in women and men respectively. This prospective study included 41,389 day-working adults in the French NutriNet-Santé cohort (2009-2016) who completed at least three 24 h dietary records during the first 2 years of follow-up. Multivariable Cox models were computed. 1,732 first primary incident cancer cases were diagnosed during the follow-up, among which 428 breast and 179 prostate cancers. After adjustment for covariates including sleep duration, late eaters (last eating episode after 9:30 pm) had an increased risk of breast (Hazard ratio [HR] = 1.48 [1.02-2.17], p = 0.03) and prostate (HR = 2.20 [1.28-3.78], p = 0.004) cancers. However, no association was observed between cancer risk and number of eating episodes, night-time fasting duration, time of first eating episode or macronutrient composition of the last eating episode. This large cohort study suggests that circadian perturbations resulting from late time of last food intake may be involved in carcinogenesis at different locations. Beyond nutritional quality of food intake, nutritional circadian regulation should be further investigated in the context of cancer prevention.
Collapse
Affiliation(s)
- Bernard Srour
- Nutritional Epidemiology Research Team (EREN): Inserm U1153, Inra U1125, CNAM, University of Paris 13, Sorbonne Paris Cité Epidemiology and Statistics Research Center, F-93017, Bobigny, France
| | - Sabine Plancoulaine
- Early ORigins of Child Health and Development Team (ORCHAD): Inserm U1153, Paris-Descartes University, Sorbonne Paris Cité Epidemiology and Statistics Research Center, Villejuif, F-94800, France
| | - Valentina A Andreeva
- Nutritional Epidemiology Research Team (EREN): Inserm U1153, Inra U1125, CNAM, University of Paris 13, Sorbonne Paris Cité Epidemiology and Statistics Research Center, F-93017, Bobigny, France
| | - Philippine Fassier
- Nutritional Epidemiology Research Team (EREN): Inserm U1153, Inra U1125, CNAM, University of Paris 13, Sorbonne Paris Cité Epidemiology and Statistics Research Center, F-93017, Bobigny, France
| | - Chantal Julia
- Nutritional Epidemiology Research Team (EREN): Inserm U1153, Inra U1125, CNAM, University of Paris 13, Sorbonne Paris Cité Epidemiology and Statistics Research Center, F-93017, Bobigny, France
- Early ORigins of Child Health and Development Team (ORCHAD): Inserm U1153, Paris-Descartes University, Sorbonne Paris Cité Epidemiology and Statistics Research Center, Villejuif, F-94800, France
| | - Pilar Galan
- Nutritional Epidemiology Research Team (EREN): Inserm U1153, Inra U1125, CNAM, University of Paris 13, Sorbonne Paris Cité Epidemiology and Statistics Research Center, F-93017, Bobigny, France
| | - Serge Hercberg
- Nutritional Epidemiology Research Team (EREN): Inserm U1153, Inra U1125, CNAM, University of Paris 13, Sorbonne Paris Cité Epidemiology and Statistics Research Center, F-93017, Bobigny, France
- Public Health Department, Avicenne Hospital, Bobigny, F-93017, France
| | - Mélanie Deschasaux
- Nutritional Epidemiology Research Team (EREN): Inserm U1153, Inra U1125, CNAM, University of Paris 13, Sorbonne Paris Cité Epidemiology and Statistics Research Center, F-93017, Bobigny, France
| | - Paule Latino-Martel
- Nutritional Epidemiology Research Team (EREN): Inserm U1153, Inra U1125, CNAM, University of Paris 13, Sorbonne Paris Cité Epidemiology and Statistics Research Center, F-93017, Bobigny, France
| | - Mathilde Touvier
- Nutritional Epidemiology Research Team (EREN): Inserm U1153, Inra U1125, CNAM, University of Paris 13, Sorbonne Paris Cité Epidemiology and Statistics Research Center, F-93017, Bobigny, France
| |
Collapse
|
38
|
Circadian clock pathway genes associated with colorectal cancer risk and prognosis. Arch Toxicol 2018; 92:2681-2689. [PMID: 29968159 DOI: 10.1007/s00204-018-2251-7] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2018] [Accepted: 06/20/2018] [Indexed: 12/13/2022]
Abstract
Circadian clock genes influence biological processes and may be involved in tumorigenesis. We systematically evaluated genetic variants in the circadian clock pathway genes associated with colorectal cancer risk and survival. We evaluated the association of 119 single nucleotide polymorphisms (SNPs) in 27 circadian clock pathway genes with the risk of colorectal cancer in a case-control study (1150 cases and 1342 controls). The false discovery rate (FDR) method was applied to correct for multiple comparisons. Gene-based analysis was performed by the sequence kernel association test (SKAT). Cox proportional hazards regression was used to calculate the effects of SNPs on the overall survival of patients. We identified that compared to those with the G allele, individuals with the rs76436997 A allele in RORA had a significant 1.33-fold increased risk of colorectal cancer (P = 3.83 × 10- 4). Specifically, the GA/AA genotypes were related to an enhanced risk of colorectal cancer compared with that associated with the GG genotype, which was more common in patients with well and moderately differentiated tumors and Dukes A/B stages. The SNP rs76436997 significantly increased the overall survival time of colorectal cancer patients (P = 0.044). Furthermore, RNA-seq data showed that the mRNA levels of RORA were significantly lower in colorectal tumors than the paired normal tissues. Gene-based analysis revealed a significant association between RORA and colorectal cancer risk. These findings highlight the important roles of genetic variations in circadian clock pathway genes play in colorectal cancer risk and suggest that RORA is potentially related to colorectal carcinogenesis.
Collapse
|
39
|
Rybnikova N, Stevens RG, Gregorio DI, Samociuk H, Portnov BA. Kernel density analysis reveals a halo pattern of breast cancer incidence in Connecticut. Spat Spatiotemporal Epidemiol 2018; 26:143-151. [PMID: 30390929 DOI: 10.1016/j.sste.2018.06.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/07/2017] [Revised: 04/30/2018] [Accepted: 06/08/2018] [Indexed: 10/28/2022]
Abstract
Breast cancer (BC) incidence rates in Connecticut are among the highest in the United States, and are unevenly distributed within the state. Our goal was to determine whether artificial light at night (ALAN) played a role. Using BC records obtained from the Connecticut Tumor Registry, we applied the double kernel density (DKD) estimator to produce a continuous relative risk surface of a disease throughout the State. A multi-variate analysis compared DKD and census track estimates with population density, fertility rate, percent of non-white population, population below poverty level, and ALAN levels. The analysis identified a "halo" geographic pattern of BC incidence, with the highest rates of the disease observed at distances 5-15 km from the state's major cities. The "halo" was of high-income communities, with high ALAN, located in suburban fringes of the state's main cities.
Collapse
Affiliation(s)
- Natalya Rybnikova
- Department of Natural Resources and Environment Management, Faculty of Management, University of Haifa, Haifa, Israel
| | - Richard G Stevens
- Department of Community Medicine, School of Medicine, University of Connecticut, Farmington, CT 06030, United States.
| | - David I Gregorio
- Department of Community Medicine, School of Medicine, University of Connecticut, Farmington, CT 06030, United States
| | - Holly Samociuk
- Department of Community Medicine, School of Medicine, University of Connecticut, Farmington, CT 06030, United States
| | - Boris A Portnov
- Department of Natural Resources and Environment Management, Faculty of Management, University of Haifa, Haifa, Israel
| |
Collapse
|
40
|
Lee HE, Lee J, Jang TW, Kim IA, Park J, Song J. The relationship between night work and breast cancer. Ann Occup Environ Med 2018; 30:11. [PMID: 29445504 PMCID: PMC5801774 DOI: 10.1186/s40557-018-0221-4] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2016] [Accepted: 01/29/2018] [Indexed: 01/10/2023] Open
Abstract
Background Since the International Agency for Research on Cancer classified shift work that involves circadian disruption as “probably carcinogenic to humans,” there has been growing concern on the relationship between night work and breast cancer. In Korea, about 10–15% of workers are engaged in night-shift work, and breast cancer is one of the most common cancers in women. The purpose of this study was to review epidemiologic evidence on the relationship between night work and breast cancer. Methods We reviewed 21 original articles and 5 meta analyses on relationship between nightwork and breast cancer, and investigated the compensation criteria of Denmark. Results The association between breast cancer and night work has been reported by numerous epidemiologic studies, including cohort studies, case-control studies, and meta-analysis. However, a dose-response relationship has not clearly emerged among workers exposed to less than 20 years of night work. Conclusion Although there are some limitations to the epidemiological studies so far, further consideration of breast cancer cases in patients with high exposure to night work is needed to assess breast cancer as a work-related disease.
Collapse
Affiliation(s)
- Hye-Eun Lee
- 1Department of Occupational and Environmental Medicine, Kyung Hee University Hospital, Dongdaemun-gu Kyunghee-daero 23, Seoul, Republic of Korea
| | - Jongin Lee
- 2Department of Occupational and Environmental Medicine, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Tae-Won Jang
- 3Department of Occupational and Environmental Medicine, Hanyang University College of Medicine, Seoul, Republic of Korea
| | - In-Ah Kim
- 3Department of Occupational and Environmental Medicine, Hanyang University College of Medicine, Seoul, Republic of Korea
| | - Jungsun Park
- 4Department of Occupational Health, Catholic University of Daegu, Gyonsan-si, Republic of Korea
| | - Jaechul Song
- 3Department of Occupational and Environmental Medicine, Hanyang University College of Medicine, Seoul, Republic of Korea
| |
Collapse
|
41
|
González-González A, Mediavilla MD, Sánchez-Barceló EJ. Melatonin: A Molecule for Reducing Breast Cancer Risk. Molecules 2018; 23:E336. [PMID: 29415446 PMCID: PMC6017232 DOI: 10.3390/molecules23020336] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2018] [Revised: 01/31/2018] [Accepted: 01/31/2018] [Indexed: 01/10/2023] Open
Abstract
The objective of this article is to review the basis supporting the usefulness of melatonin as an adjuvant therapy for breast cancer (BC) prevention in several groups of individuals at high risk for this disease. Melatonin, as a result of its antiestrogenic and antioxidant properties, as well as its ability to improve the efficacy and reduce the side effects of conventional antiestrogens, could safely be associated with the antiestrogenic drugs presently in use. In individuals at risk of BC due to night shift work, the light-induced inhibition of melatonin secretion, with the consequent loss of its antiestrogenic effects, would be countered by administering this neurohormone. BC risk from exposure to metalloestrogens, such as cadmium, could be treated with melatonin supplements to individuals at risk of BC due to exposure to this xenoestrogen. The BC risk related to obesity may be reduced by melatonin which decrease body fat mass, inhibits the enhanced aromatase expression in obese women, increases adiponectin secretion, counteracts the oncogenic effects of elevated concentrations of leptin; and decreases blood glucose levels and insulin resistance. Despite compelling experimental evidence of melatonin's oncostatic actions being susceptible to lowering BC risk, there is still a paucity of clinical trials focused on this subject.
Collapse
Affiliation(s)
- Alicia González-González
- Department of Physiology and Pharmacology, School of Medicina, University of Cantabria, 39011 Santander, Spain.
| | - María Dolores Mediavilla
- Department of Physiology and Pharmacology, School of Medicina, University of Cantabria, 39011 Santander, Spain.
| | - Emilio J Sánchez-Barceló
- Department of Physiology and Pharmacology, School of Medicina, University of Cantabria, 39011 Santander, Spain.
| |
Collapse
|
42
|
Posadzki PP, Bajpai R, Kyaw BM, Roberts NJ, Brzezinski A, Christopoulos GI, Divakar U, Bajpai S, Soljak M, Dunleavy G, Jarbrink K, Nang EEK, Soh CK, Car J. Melatonin and health: an umbrella review of health outcomes and biological mechanisms of action. BMC Med 2018; 16:18. [PMID: 29397794 PMCID: PMC5798185 DOI: 10.1186/s12916-017-1000-8] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/16/2017] [Accepted: 12/20/2017] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Our aims were to evaluate critically the evidence from systematic reviews as well as narrative reviews of the effects of melatonin (MLT) on health and to identify the potential mechanisms of action involved. METHODS An umbrella review of the evidence across systematic reviews and narrative reviews of endogenous and exogenous (supplementation) MLT was undertaken. The Oxman checklist for assessing the methodological quality of the included systematic reviews was utilised. The following databases were searched: MEDLINE, EMBASE, Web of Science, CENTRAL, PsycINFO and CINAHL. In addition, reference lists were screened. We included reviews of the effects of MLT on any type of health-related outcome measure. RESULTS Altogether, 195 reviews met the inclusion criteria. Most were of low methodological quality (mean -4.5, standard deviation 6.7). Of those, 164 did not pool the data and were synthesised narratively (qualitatively) whereas the remaining 31 used meta-analytic techniques and were synthesised quantitatively. Seven meta-analyses were significant with P values less than 0.001 under the random-effects model. These pertained to sleep latency, pre-operative anxiety, prevention of agitation and risk of breast cancer. CONCLUSIONS There is an abundance of reviews evaluating the effects of exogenous and endogenous MLT on health. In general, MLT has been shown to be associated with a wide variety of health outcomes in clinically and methodologically heterogeneous populations. Many reviews stressed the need for more high-quality randomised clinical trials to reduce the existing uncertainties.
Collapse
Affiliation(s)
- Pawel P Posadzki
- Centre for Population Health Sciences, 11 Mandalay Road, Level 18 Clinical Sciences Building, Lee Kong Chian School of Medicine, Novena Campus, Nanyang Technological University , Singapore, 308232, Singapore.
| | - Ram Bajpai
- Centre for Population Health Sciences, 11 Mandalay Road, Level 18 Clinical Sciences Building, Lee Kong Chian School of Medicine, Novena Campus, Nanyang Technological University , Singapore, 308232, Singapore
| | - Bhone Myint Kyaw
- Centre for Population Health Sciences, 11 Mandalay Road, Level 18 Clinical Sciences Building, Lee Kong Chian School of Medicine, Novena Campus, Nanyang Technological University , Singapore, 308232, Singapore
| | - Nicola J Roberts
- School of Health and Life Sciences, Glasgow Caledonian University, Glasgow, G4 0BA, UK
| | - Amnon Brzezinski
- The Hebrew University Medical School, Hadassah Hebrew University Medical Center, 91120, Jerusalem, Israel
| | - George I Christopoulos
- Nanyang Business School, Division of Strategy Management and Organisation, Nanyang Technological University, Singapore, 639798, Singapore
| | - Ushashree Divakar
- Centre for Population Health Sciences, 11 Mandalay Road, Level 18 Clinical Sciences Building, Lee Kong Chian School of Medicine, Novena Campus, Nanyang Technological University , Singapore, 308232, Singapore
| | - Shweta Bajpai
- Centre for Population Health Sciences, 11 Mandalay Road, Level 18 Clinical Sciences Building, Lee Kong Chian School of Medicine, Novena Campus, Nanyang Technological University , Singapore, 308232, Singapore
| | - Michael Soljak
- Centre for Population Health Sciences, 11 Mandalay Road, Level 18 Clinical Sciences Building, Lee Kong Chian School of Medicine, Novena Campus, Nanyang Technological University , Singapore, 308232, Singapore
| | - Gerard Dunleavy
- Centre for Population Health Sciences, 11 Mandalay Road, Level 18 Clinical Sciences Building, Lee Kong Chian School of Medicine, Novena Campus, Nanyang Technological University , Singapore, 308232, Singapore
| | - Krister Jarbrink
- Centre for Population Health Sciences, 11 Mandalay Road, Level 18 Clinical Sciences Building, Lee Kong Chian School of Medicine, Novena Campus, Nanyang Technological University , Singapore, 308232, Singapore
| | - Ei Ei Khaing Nang
- Centre for Population Health Sciences, 11 Mandalay Road, Level 18 Clinical Sciences Building, Lee Kong Chian School of Medicine, Novena Campus, Nanyang Technological University , Singapore, 308232, Singapore
| | - Chee Kiong Soh
- School of Civil and Environmental Engineering, College of Engineering, Nanyang Technological University, Singapore, 639798, Singapore
| | - Josip Car
- Centre for Population Health Sciences, 11 Mandalay Road, Level 18 Clinical Sciences Building, Lee Kong Chian School of Medicine, Novena Campus, Nanyang Technological University , Singapore, 308232, Singapore
- Global eHealth Unit, School of Public Health, Imperial College London, London, W6 8RP, UK
| |
Collapse
|
43
|
Lunn RM, Blask DE, Coogan AN, Figueiro MG, Gorman MR, Hall JE, Hansen J, Nelson RJ, Panda S, Smolensky MH, Stevens RG, Turek FW, Vermeulen R, Carreón T, Caruso CC, Lawson CC, Thayer KA, Twery MJ, Ewens AD, Garner SC, Schwingl PJ, Boyd WA. Health consequences of electric lighting practices in the modern world: A report on the National Toxicology Program's workshop on shift work at night, artificial light at night, and circadian disruption. THE SCIENCE OF THE TOTAL ENVIRONMENT 2017; 607-608:1073-1084. [PMID: 28724246 PMCID: PMC5587396 DOI: 10.1016/j.scitotenv.2017.07.056] [Citation(s) in RCA: 230] [Impact Index Per Article: 28.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2017] [Revised: 07/07/2017] [Accepted: 07/07/2017] [Indexed: 05/24/2023]
Abstract
The invention of electric light has facilitated a society in which people work, sleep, eat, and play at all hours of the 24-hour day. Although electric light clearly has benefited humankind, exposures to electric light, especially light at night (LAN), may disrupt sleep and biological processes controlled by endogenous circadian clocks, potentially resulting in adverse health outcomes. Many of the studies evaluating adverse health effects have been conducted among night- and rotating-shift workers, because this scenario gives rise to significant exposure to LAN. Because of the complexity of this topic, the National Toxicology Program convened an expert panel at a public workshop entitled "Shift Work at Night, Artificial Light at Night, and Circadian Disruption" to obtain input on conducting literature-based health hazard assessments and to identify data gaps and research needs. The Panel suggested describing light both as a direct effector of endogenous circadian clocks and rhythms and as an enabler of additional activities or behaviors that may lead to circadian disruption, such as night-shift work and atypical and inconsistent sleep-wake patterns that can lead to social jet lag. Future studies should more comprehensively characterize and measure the relevant light-related exposures and link these exposures to both time-independent biomarkers of circadian disruption and biomarkers of adverse health outcomes. This information should lead to improvements in human epidemiological and animal or in vitro models, more rigorous health hazard assessments, and intervention strategies to minimize the occurrence of adverse health outcomes due to these exposures.
Collapse
Affiliation(s)
- Ruth M Lunn
- Office of the Report on Carcinogens, Division of the National Toxicology Program, National Institute of Environmental Health Sciences (NIEHS), Research Triangle Park, NC, United States
| | - David E Blask
- Department of Structural and Cellular Biology, Laboratory of Chrono-Neuroendocrine Oncology, Tulane University School of Medicine, New Orleans, LA, United States
| | - Andrew N Coogan
- Maynooth University Department of Psychology, National University of Ireland, Maynooth, County Kildare, Ireland
| | - Mariana G Figueiro
- Light and Health Program, Lighting Research Center, Rensselaer Polytechnic Institute, Troy, NY, United States
| | - Michael R Gorman
- Department of Psychology and Center for Circadian Biology, University of California, San Diego, CA, United States
| | - Janet E Hall
- Division of Intramural Research, National Institute of Environmental Health Sciences, Research Triangle Park, NC, United States
| | - Johnni Hansen
- Danish Cancer Society Research Centre, Copenhagen, Denmark
| | - Randy J Nelson
- Department of Neuroscience, Neuroscience Research Institute, The Ohio State University Wexner Medical Center, Columbus, OH, United States
| | | | - Michael H Smolensky
- Department of Biomedical Engineering, The University of Texas at Austin, Austin, TX, United States; Sleep Medicine, The University of Texas-Houston McGovern School of Medicine, Houston, TX, United States
| | - Richard G Stevens
- School of Medicine, University of Connecticut, Farmington, CT, United States
| | - Fred W Turek
- Center for Sleep & Circadian Biology, Northwestern University, Evanston, IL, United States
| | - Roel Vermeulen
- Division of Environmental Epidemiology, Institute for Risk Assessment Sciences (IRAS), Utrecht University, Utrecht, The Netherlands
| | - Tania Carreón
- National Institute for Occupational Safety and Health (NIOSH), Centers for Disease Control and Prevention, Cincinnati, OH, United States
| | - Claire C Caruso
- National Institute for Occupational Safety and Health (NIOSH), Centers for Disease Control and Prevention, Cincinnati, OH, United States
| | - Christina C Lawson
- National Institute for Occupational Safety and Health (NIOSH), Centers for Disease Control and Prevention, Cincinnati, OH, United States
| | - Kristina A Thayer
- Office of Health Assessment and Translation, Division of the National Toxicology Program, National Institute of Environmental Health Sciences (NIEHS), Research Triangle Park, NC, United States
| | - Michael J Twery
- National Center on Sleep Disorders Research, Division of Lung Diseases, National Heart, Lung, and Blood Institute (NHLBI), Bethesda, MD, United States
| | - Andrew D Ewens
- Contractor in support of the NIEHS Report on Carcinogens, Integrated Laboratory Systems (ILS), Durham, NC, United States
| | - Sanford C Garner
- Contractor in support of the NIEHS Report on Carcinogens, Integrated Laboratory Systems (ILS), Durham, NC, United States
| | - Pamela J Schwingl
- Contractor in support of the NIEHS Report on Carcinogens, Integrated Laboratory Systems (ILS), Durham, NC, United States
| | - Windy A Boyd
- Office of Health Assessment and Translation, Division of the National Toxicology Program, National Institute of Environmental Health Sciences (NIEHS), Research Triangle Park, NC, United States.
| |
Collapse
|
44
|
Kim TJ, Lee BU, Sunwoo JS, Byun JI, Moon J, Lee ST, Jung KH, Chu K, Kim M, Lim JM, Lee E, Lee SK, Jung KY. The effect of dim light at night on cerebral hemodynamic oscillations during sleep: A near-infrared spectroscopy study. Chronobiol Int 2017; 34:1325-1338. [PMID: 29064336 DOI: 10.1080/07420528.2017.1363225] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Recent studies have reported that dim light at night (dLAN) is associated with risks of cardiovascular complications, such as hypertension and carotid atherosclerosis; however, little is known about the underlying mechanism. Here, we evaluated the effect of dLAN on the cerebrovascular system by analyzing cerebral hemodynamic oscillations using near-infrared spectroscopy (NIRS). Fourteen healthy male subjects underwent polysomnography coupled with cerebral NIRS. The data collected during sleep with dim light (10 lux) were compared with those collected during sleep under the control dark conditions for the sleep structure, cerebral hemodynamic oscillations, heart rate variability (HRV), and their electroencephalographic (EEG) power spectrum. Power spectral analysis was applied to oxy-hemoglobin concentrations calculated from the NIRS signal. Spectral densities over endothelial very-low-frequency oscillations (VLFOs) (0.003-0.02 Hz), neurogenic VLFOs (0.02-0.04 Hz), myogenic low-frequency oscillations (LFOs) (0.04-0.15 Hz), and total LFOs (0.003-0.15 Hz) were obtained for each sleep stage. The polysomnographic data revealed an increase in the N2 stage under the dLAN conditions. The spectral analysis of cerebral hemodynamics showed that the total LFOs increased significantly during slow-wave sleep (SWS) and decreased during rapid eye movement (REM) sleep. Specifically, endothelial (median of normalized value, 0.46 vs. 0.72, p = 0.019) and neurogenic (median, 0.58 vs. 0.84, p = 0.019) VLFOs were enhanced during SWS, whereas endothelial VLFOs (median, 1.93 vs. 1.47, p = 0.030) were attenuated during REM sleep. HRV analysis exhibited altered spectral densities during SWS induced by dLAN, including an increase in very-low-frequency and decreases in low-frequency and high-frequency ranges. In the EEG power spectral analysis, no significant difference was detected between the control and dLAN conditions. In conclusion, dLAN can disturb cerebral hemodynamics via the endothelial and autonomic systems without cortical involvement, predominantly during SWS, which might represent an underlying mechanism of the increased cerebrovascular risk associated with light exposure during sleep.
Collapse
Affiliation(s)
- Tae-Joon Kim
- a Department of Neurology , Seoul National University Hospital , Seoul , South Korea
| | - Byeong Uk Lee
- a Department of Neurology , Seoul National University Hospital , Seoul , South Korea
| | - Jun-Sang Sunwoo
- b Department of Neurology , Soonchunhyang University Seoul Hospital , Seoul , South Korea
| | - Jung-Ick Byun
- c Department of Neurology , Kyung Hee University Hospital at Gangdong , Seoul , South Korea
| | - Jangsup Moon
- a Department of Neurology , Seoul National University Hospital , Seoul , South Korea
| | - Soon-Tae Lee
- a Department of Neurology , Seoul National University Hospital , Seoul , South Korea
| | - Keun-Hwa Jung
- a Department of Neurology , Seoul National University Hospital , Seoul , South Korea
| | - Kon Chu
- a Department of Neurology , Seoul National University Hospital , Seoul , South Korea
| | - Manho Kim
- a Department of Neurology , Seoul National University Hospital , Seoul , South Korea.,d Neuroscience and Protein Metabolism Medical Research Center , Seoul National University College of Medicine , Seoul , South Korea
| | - Jong-Min Lim
- e Department of Lighting Environment Research , Korea Institute of Lighting Technology , Seoul , South Korea
| | - Eunil Lee
- f Department of Preventive Medicine , Korea University College of Medicine , Seoul , South Korea
| | - Sang Kun Lee
- a Department of Neurology , Seoul National University Hospital , Seoul , South Korea
| | - Ki-Young Jung
- a Department of Neurology , Seoul National University Hospital , Seoul , South Korea
| |
Collapse
|
45
|
Xie B, Zhang J, Chen W, Hao J, Cheng Y, Hu R, Wu D, Wang K, Luo X. Realization of wide circadian variability by quantum dots-luminescent mesoporous silica-based white light-emitting diodes. NANOTECHNOLOGY 2017; 28:425204. [PMID: 28752826 DOI: 10.1088/1361-6528/aa82d7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Human comfort has become one of the most important criteria in modern lighting architecture. Here, we proposed a tuning strategy to enhance the non-image forming photobiological effect on the human circadian rhythm based on quantum-dots-converted white light-emitting diodes (QDs-WLEDs). We introduced the limiting variability of the circadian action factor (CAF), defined as the ratio of circadian efficiency and luminous efficiency of radiation. The CAF was deeply discussed and was found to be a function of constraining the color rendering index (CRI) and correlated color temperatures. The maximum CAF variability of QDs-WLEDs was found to be dependent on the QDs' peak wavelength and full width at half maximum. With the optimized parameters, the packaging materials were synthesized and WLEDs were packaged. Experimental results show that at CRI > 90, the maximum CAF variability can be tuned by 3.83 times (from 0.251 at 2700 K to 0.961 at 6500 K), which implies that our approach could reduce the number of tunable channels, and could achieve wider CAF variability.
Collapse
Affiliation(s)
- Bin Xie
- School of Energy and Power Engineering, Huazhong University of Science and Technology, Wuhan, 430074, People's Republic of China. Department of Electrical & Electronic Engineering, Southern University of Science and Technology, Shenzhen, 518055, People's Republic of China
| | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Warille AA, Altun G, Elamin AA, Kaplan AA, Mohamed H, Yurt KK, El Elhaj A. Skeptical approaches concerning the effect of exposure to electromagnetic fields on brain hormones and enzyme activities. J Microsc Ultrastruct 2017; 5:177-184. [PMID: 30023252 PMCID: PMC6025782 DOI: 10.1016/j.jmau.2017.09.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2017] [Revised: 08/31/2017] [Accepted: 09/07/2017] [Indexed: 11/24/2022] Open
Abstract
This review discusses the effects of various frequencies of electromagnetic fields (EMF) on brain hormones and enzyme activity. In this context, the mechanism underlying the effects of EMF exposure on tissues generally and cellular pathway specifically has been discussed. The cell membrane plays important roles in mediating enzymatic activities as to response and reacts with extracellular environment. Alterations in the calcium signaling pathways in the cell membrane are activated in response to the effects of EMF exposure. Experimental and epidemiological studies have demonstrated that no changes occur in serum prolactin levels in humans following short-term exposure to 900 Mega Hertz (MHz) EMF emitted by mobile phones. The effects of EMF on melatonin and its metabolite, 6-sulfatoxymelatonin, in humans have also been investigated in the clinical studies to show a disturbance in metabolic activity of melatonin. In addition, although 900 MHz EMF effects on NF-κB inflammation, its effects on NF-κB are not clear. Abbreviations: ELF-EMF, extremely low frequency electromagnetic fields; EMF, electromagnetic fields; RF, Radiofrequency; ROS, reactive oxygen species; VGCCs, voltage-gated calcium channels; MAPK, mitogen-activated phosphokinase; NF-κB, nuclear factor kappa B; ERK-1/2, extracellular signal-regulated kinase; GSH-Px, glutathione peroxidase; JNK, Jun N-terminal kinases; SOD, superoxide dismutase; MnSOD, manganese-dependent superoxide dismutase; GLUT1, glucose transporter 1; GSSG-Rd, glutathione reductase MDA malondialdehyde; NO, nitric oxide; LH, luteinizing hormone; FSH, follicle-stimulating hormone.
Collapse
Affiliation(s)
- Aymen A Warille
- Department of Anatomy and Histology, College of Medicine, University of Hail, Hail, Saudi Arabia.,Department of Anatomy, Medical School, Ondokuz Mayıs University, Samsun, Turkey
| | - Gamze Altun
- Department of Histology and Embryology, Medical School, Ondokuz Mayıs University, Samsun, Turkey
| | - Abdalla A Elamin
- Department of Anatomy and Histology, College of Medicine, University of Hail, Hail, Saudi Arabia.,Department of Histology and Embryology, Medical School, Ondokuz Mayıs University, Samsun, Turkey
| | - Arife Ahsen Kaplan
- Department of Histology and Embryology, Medical School, Ondokuz Mayıs University, Samsun, Turkey
| | - Hamza Mohamed
- Department of Anatomy and Histology, College of Medicine, University of Hail, Hail, Saudi Arabia.,Department of Histology and Embryology, Medical School, Ondokuz Mayıs University, Samsun, Turkey
| | - Kıymet Kübra Yurt
- Department of Histology and Embryology, Medical School, Ondokuz Mayıs University, Samsun, Turkey
| | - Abubaker El Elhaj
- Department of Anatomy and Histology, College of Medicine, University of Hail, Hail, Saudi Arabia.,Department of Histology and Embryology, Medical School, Ondokuz Mayıs University, Samsun, Turkey
| |
Collapse
|
47
|
Gray JM, Rasanayagam S, Engel C, Rizzo J. State of the evidence 2017: an update on the connection between breast cancer and the environment. Environ Health 2017; 16:94. [PMID: 28865460 PMCID: PMC5581466 DOI: 10.1186/s12940-017-0287-4] [Citation(s) in RCA: 109] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2016] [Accepted: 07/17/2017] [Indexed: 05/23/2023]
Abstract
BACKGROUND In this review, we examine the continually expanding and increasingly compelling data linking radiation and various chemicals in our environment to the current high incidence of breast cancer. Singly and in combination, these toxicants may have contributed significantly to the increasing rates of breast cancer observed over the past several decades. Exposures early in development from gestation through adolescence and early adulthood are particularly of concern as they re-shape the program of genetic, epigenetic and physiological processes in the developing mammary system, leading to an increased risk for developing breast cancer. In the 8 years since we last published a comprehensive review of the relevant literature, hundreds of new papers have appeared supporting this link, and in this update, the evidence on this topic is more extensive and of better quality than that previously available. CONCLUSION Increasing evidence from epidemiological studies, as well as a better understanding of mechanisms linking toxicants with development of breast cancer, all reinforce the conclusion that exposures to these substances - many of which are found in common, everyday products and byproducts - may lead to increased risk of developing breast cancer. Moving forward, attention to methodological limitations, especially in relevant epidemiological and animal models, will need to be addressed to allow clearer and more direct connections to be evaluated.
Collapse
Affiliation(s)
- Janet M. Gray
- Department of Psychology and Program in Science, Technology, and Society, Vassar College, 124 Raymond Avenue, Poughkeepsie, NY 12604-0246 USA
| | - Sharima Rasanayagam
- Breast Cancer Prevention Partners, 1388 Sutter St., Suite 400, San Francisco, CA 94109-5400 USA
| | - Connie Engel
- Breast Cancer Prevention Partners, 1388 Sutter St., Suite 400, San Francisco, CA 94109-5400 USA
| | - Jeanne Rizzo
- Breast Cancer Prevention Partners, 1388 Sutter St., Suite 400, San Francisco, CA 94109-5400 USA
| |
Collapse
|
48
|
James P, Bertrand KA, Hart JE, Schernhammer ES, Tamimi RM, Laden F. Outdoor Light at Night and Breast Cancer Incidence in the Nurses' Health Study II. ENVIRONMENTAL HEALTH PERSPECTIVES 2017; 125:087010. [PMID: 28886600 PMCID: PMC5783660 DOI: 10.1289/ehp935] [Citation(s) in RCA: 88] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2016] [Revised: 03/17/2017] [Accepted: 03/20/2017] [Indexed: 05/03/2023]
Abstract
BACKGROUND Animal and epidemiologic studies suggest that exposure to light at night (LAN) may disrupt circadian patterns and decrease nocturnal secretion of melatonin, which may disturb estrogen regulation, leading to increased breast cancer risk. OBJECTIVES We examined the association between residential outdoor LAN and breast cancer incidence using data from the nationwide U.S.-based Nurses' Health Study II cohort. METHODS We followed 109,672 women from 1989 through 2013. Cumulative LAN exposure was estimated using time-varying satellite data for a composite of persistent nighttime illumination at ∼1 km2 scale for each residence during follow-up. Incident invasive breast cancer cases were confirmed by medical record review. We used Cox proportional hazard models to calculate hazard ratios (HRs) and 95% confidence intervals (CIs), adjusting for anthropometric, reproductive, lifestyle, and socioeconomic risk factors. RESULTS Over 2,187,425 person-years, we identified 3,549 incident breast cancer cases. Based on a fully adjusted model, the estimated HR for incident breast cancer with an interquartile range (IQR) (31.6 nW/cm2/sr) increase in cumulative average outdoor LAN was 1.05 (95% CI: 1.00, 1.11). An association between LAN and breast cancer appeared to be limited to women who were premenopausal at the time of a case [HR=1.07 (95% CI: 1.01, 1.14) based on 1,973 cases vs. HR=1.00 (95% CI: 0.91, 1.09) based on 1,172 cases in postmenopausal women; p-interaction=0.08]. The LAN-breast cancer association was observed only in past and current smokers at the end of follow-up [HR=1.00 (95% CI: 0.94, 1.07) based on 2,215 cases in never smokers; HR=1.10 (95% CI: 1.01, 1.19) based on 1,034 cases in past smokers vs. HR=1.21 (95% CI: 1.07, 1.37) for 300 cases in current smokers; p-interaction=0.08]. CONCLUSIONS Although further work is required to confirm our results and to clarify potential mechanisms, our findings suggest that exposure to residential outdoor light at night may contribute to invasive breast cancer risk. https://doi.org/10.1289/EHP935.
Collapse
Affiliation(s)
- Peter James
- Department of Epidemiology, Harvard T.H. Chan School of Public Health , Boston, Massachusetts, USA
- Department of Environmental Health, Harvard T.H. Chan School of Public Health , Boston, Massachusetts, USA
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School , Boston, Massachusetts, USA
| | | | - Jaime E Hart
- Department of Environmental Health, Harvard T.H. Chan School of Public Health , Boston, Massachusetts, USA
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School , Boston, Massachusetts, USA
| | - Eva S Schernhammer
- Department of Epidemiology, Harvard T.H. Chan School of Public Health , Boston, Massachusetts, USA
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School , Boston, Massachusetts, USA
- Department of Epidemiology, Medical University of Vienna , Vienna, Austria
- Department of Epidemiology, Fielding School of Public Health, University of California Los Angeles , Los Angeles, California, USA
| | - Rulla M Tamimi
- Department of Epidemiology, Harvard T.H. Chan School of Public Health , Boston, Massachusetts, USA
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School , Boston, Massachusetts, USA
| | - Francine Laden
- Department of Epidemiology, Harvard T.H. Chan School of Public Health , Boston, Massachusetts, USA
- Department of Environmental Health, Harvard T.H. Chan School of Public Health , Boston, Massachusetts, USA
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School , Boston, Massachusetts, USA
| |
Collapse
|
49
|
Zubidat AE, Haim A. Artificial light-at-night - a novel lifestyle risk factor for metabolic disorder and cancer morbidity. J Basic Clin Physiol Pharmacol 2017; 28:295-313. [PMID: 28682785 DOI: 10.1515/jbcpp-2016-0116] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2016] [Accepted: 03/02/2017] [Indexed: 06/07/2023]
Abstract
Both obesity and breast cancer are already recognized worldwide as the most common syndromes in our modern society. Currently, there is accumulating evidence from epidemiological and experimental studies suggesting that these syndromes are closely associated with circadian disruption. It has been suggested that melatonin (MLT) and the circadian clock genes both play an important role in the development of these syndromes. However, we still poorly understand the molecular mechanism underlying the association between circadian disruption and the modern health syndromes. One promising candidate is epigenetic modifications of various genes, including clock genes, circadian-related genes, oncogenes, and metabolic genes. DNA methylation is the most prominent epigenetic signaling tool for gene expression regulation induced by environmental exposures, such as artificial light-at-night (ALAN). In this review, we first provide an overview on the molecular feedback loops that generate the circadian regulation and how circadian disruption by ALAN can impose adverse impacts on public health, particularly metabolic disorders and breast cancer development. We then focus on the relation between ALAN-induced circadian disruption and both global DNA methylation and specific loci methylation in relation to obesity and breast cancer morbidities. DNA hypo-methylation and DNA hyper-methylation, are suggested as the most studied epigenetic tools for the activation and silencing of genes that regulate metabolic and monostatic responses. Finally, we discuss the potential clinical and therapeutic roles of MLT suppression and DNA methylation patterns as novel biomarkers for the early detection of metabolic disorders and breast cancer development.
Collapse
|
50
|
Wang TH, Wu CH, Yeh CT, Su SC, Hsia SM, Liang KH, Chen CC, Hsueh C, Chen CY. Melatonin suppresses hepatocellular carcinoma progression via lncRNA-CPS1-IT-mediated HIF-1α inactivation. Oncotarget 2017; 8:82280-82293. [PMID: 29137263 PMCID: PMC5669889 DOI: 10.18632/oncotarget.19316] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2017] [Accepted: 06/10/2017] [Indexed: 12/27/2022] Open
Abstract
Melatonin is the primary pineal hormone that relays light/dark cycle information to the circadian system. It was recently reported to exert intrinsic antitumor activity in various cancers. However, the regulatory mechanisms underlying the antitumor activity of melatonin are poorly understood. Moreover, a limited number of studies have addressed the role of melatonin in hepatocellular carcinoma (HCC), a major life-threatening malignancy in both sexes in Taiwan. In this study, we investigated the antitumor effects of melatonin in HCC and explored the regulatory mechanisms underlying these effects. We observed that melatonin significantly inhibited the proliferation, migration, and invasion of HCC cells and significantly induced the expression of the transcription factor FOXA2 in HCC cells. This increase in FOXA2 expression resulted in upregulation of lncRNA-CPS1 intronic transcript 1 (CPS1-IT1), which reduced HIF-1α activity and consequently resulted in the suppression of epithelial-mesenchymal transition (EMT) progression and HCC metastasis. Furthermore, the results of the in vivo experiments confirmed that melatonin exerts tumor suppressive effects by reducing tumor growth. In conclusion, our findings suggested that melatonin inhibited HCC progression by reducing lncRNA-CPS1-IT1-mediated EMT suppression and indicated that melatonin could be a promising treatment for HCC.
Collapse
Affiliation(s)
- Tong-Hong Wang
- Tissue Bank, Chang Gung Memorial Hospital, Tao-Yuan, Taiwan.,Graduate Institute of Health Industry Technology and Research Center for Industry of Human Ecology, College of Human Ecology, Chang Gung University of Science and Technology, Tao-Yuan, Taiwan.,Liver Research Center, Department of Hepato-Gastroenterology, Chang Gung Memorial Hospital, Tao-Yuan, Taiwan
| | - Chi-Hao Wu
- Department of Human Development and Family Studies, National Taiwan Normal University, Taipei, Taiwan
| | - Chau-Ting Yeh
- Liver Research Center, Department of Hepato-Gastroenterology, Chang Gung Memorial Hospital, Tao-Yuan, Taiwan
| | - Shih-Chi Su
- Whole-Genome Research Core Laboratory of Human Diseases, Chang Gung Memorial Hospital, Keelung, Taiwan
| | - Shih-Min Hsia
- School of Nutrition and Health Sciences, College of Nutrition, Taipei Medical University, Taipei, Taiwan
| | - Kung-Hao Liang
- Liver Research Center, Department of Hepato-Gastroenterology, Chang Gung Memorial Hospital, Tao-Yuan, Taiwan
| | - Chin-Chuan Chen
- Tissue Bank, Chang Gung Memorial Hospital, Tao-Yuan, Taiwan.,Graduate Institute of Natural Products, Chang Gung University, Tao-Yuan, Taiwan
| | - Chuen Hsueh
- Tissue Bank, Chang Gung Memorial Hospital, Tao-Yuan, Taiwan.,Department of Anatomic Pathology, Chang Gung Memorial Hospital, Chang Gung University School of Medicine, Tao-Yuan, Taiwan
| | - Chi-Yuan Chen
- Tissue Bank, Chang Gung Memorial Hospital, Tao-Yuan, Taiwan.,Graduate Institute of Health Industry Technology and Research Center for Industry of Human Ecology, College of Human Ecology, Chang Gung University of Science and Technology, Tao-Yuan, Taiwan
| |
Collapse
|