1
|
Germanos M, Yau B, Taper M, Yeoman C, Wilson A, An Y, Cattin-Ortolá J, Masler D, Tong J, Naghiloo S, Needham EJ, van der Kraan AG, Sun K, Loudovaris T, Diaz-Vegas A, Larance M, Thomas H, von Blume H, Thorn P, Ailion M, Asensio C, Kebede MA. Cab45G trafficking through the insulin secretory pathway is altered in human type 2 diabetes. iScience 2025; 28:111719. [PMID: 39898024 PMCID: PMC11787600 DOI: 10.1016/j.isci.2024.111719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2024] [Revised: 10/29/2024] [Accepted: 12/28/2024] [Indexed: 02/04/2025] Open
Abstract
In type 2 diabetes (T2D), the rate of insulin secretory granule biogenesis can limit insulin secretion from pancreatic β-cells. Using rat insulinoma INS1 β-cells, we show that the soluble Ca2+-binding/trafficking protein, Cab45G, serves as a non-essential chaperone for insulin granule biogenesis. In β-cells, Cab45G is stored within a cis-Golgi reservoir. Cab45G deletion dysregulates Ca2+ homeostasis and leads to secretory abnormality, but insulin granule biogenesis remains intact. Increasing Cab45G biosynthesis leads to anterograde trafficking into insulin granules, stimulating their production. Using human donor islets, we identify increased anterograde Cab45G trafficking in obese humans with and without T2D, consistent with the heightened demand for granule biogenesis. However, humans with T2D demonstrate decreased Golgi Cab45G localization and increased granule Cab45G localization compared to those without T2D. Our study provides the first insight into Cab45G function in specialized secretory cells and opens avenues of investigation into mechanisms associated with β-cell compensation and failure.
Collapse
Affiliation(s)
- Mark Germanos
- School of Medical Sciences, Charles Perkins Centre, The University of Sydney, Camperdown, NSW, Australia
| | - Belinda Yau
- School of Medical Sciences, Charles Perkins Centre, The University of Sydney, Camperdown, NSW, Australia
| | - Matthew Taper
- School of Medical Sciences, Charles Perkins Centre, The University of Sydney, Camperdown, NSW, Australia
| | - Cara Yeoman
- School of Medical Sciences, Charles Perkins Centre, The University of Sydney, Camperdown, NSW, Australia
| | - Amy Wilson
- School of Medical Sciences, Charles Perkins Centre, The University of Sydney, Camperdown, NSW, Australia
| | - Yousun An
- School of Medical Sciences, Charles Perkins Centre, The University of Sydney, Camperdown, NSW, Australia
| | | | - Drew Masler
- Department of Biological Sciences, University of Denver, Denver, CO 80210, USA
| | - Jason Tong
- School of Medical Sciences, Charles Perkins Centre, The University of Sydney, Camperdown, NSW, Australia
| | - Sheyda Naghiloo
- School of Medical Sciences, Charles Perkins Centre, The University of Sydney, Camperdown, NSW, Australia
| | - Elise J Needham
- School of Life and Environmental Sciences, Charles Perkins Centre, The University of Sydney, Camperdown, NSW, Australia
| | - A Gabrielle van der Kraan
- School of Medical Sciences, Charles Perkins Centre, The University of Sydney, Camperdown, NSW, Australia
| | - Kitty Sun
- School of Medical Sciences, Charles Perkins Centre, The University of Sydney, Camperdown, NSW, Australia
| | - Thomas Loudovaris
- Immunology and Diabetes Unit, St Vincent’s Institute, Department of Medicine, St Vincent’s Hospital, University of Melbourne, Fitzroy, VIC 3065, Australia
| | - Alexis Diaz-Vegas
- School of Life and Environmental Sciences, Charles Perkins Centre, The University of Sydney, Camperdown, NSW, Australia
| | - Mark Larance
- School of Medical Sciences, Charles Perkins Centre, The University of Sydney, Camperdown, NSW, Australia
| | - Helen Thomas
- Immunology and Diabetes Unit, St Vincent’s Institute, Department of Medicine, St Vincent’s Hospital, University of Melbourne, Fitzroy, VIC 3065, Australia
| | - Helen von Blume
- Department of Cell Biology, Yale University School of Medicine, New Haven, CT 06510, USA
| | - Peter Thorn
- School of Medical Sciences, Charles Perkins Centre, The University of Sydney, Camperdown, NSW, Australia
| | - Michael Ailion
- Department of Biochemistry, University of Washington, Seattle, WA, USA
| | - Cedric Asensio
- Department of Biological Sciences, University of Denver, Denver, CO 80210, USA
| | - Melkam Alamerew Kebede
- School of Medical Sciences, Charles Perkins Centre, The University of Sydney, Camperdown, NSW, Australia
| |
Collapse
|
2
|
Evans-Molina C. The Ailing β-Cell in Diabetes: Insights From a Trip to the ER: The 2023 Outstanding Scientific Achievement Award Lecture. Diabetes 2024; 73:545-553. [PMID: 38507587 PMCID: PMC10958579 DOI: 10.2337/dbi23-0030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Accepted: 12/28/2023] [Indexed: 03/22/2024]
Abstract
The synthesis, processing, and secretion of insulin by the pancreatic β-cell is key for the maintenance of systemic metabolic homeostasis, and loss or dysfunction of β-cells underlies the development of both type 1 diabetes (T1D) and type 2 diabetes (T2D). Work in the Evans-Molina laboratory over the past 15 years has pioneered the idea that regulation of calcium dynamics is critical to β-cell biology and diabetes pathophysiology. In this article, I will share three vignettes from the laboratory that demonstrate our bench-to-bedside approach to determining mechanisms of β-cell stress that could improve therapeutic options and outcomes for individuals living with diabetes. The first of these vignettes will illustrate a role for the sarcoendoplasmic reticulum calcium ATPase (SERCA) pump in the regulation of endoplasmic reticulum (ER) calcium, protein trafficking, and proinsulin processing within the β-cell. The second vignette will highlight how alterations in β-cell calcium signaling intersect with T1D pathogenesis. The final vignette will demonstrate how activation of β-cell stress pathways may serve as an anchor to inform biomarker strategies in T1D. Lastly, I will share my vision for the future of diabetes care, where multiple biomarkers of β-cell stress may be combined with additional immune and metabolic biomarkers to better predict disease risk and improve therapies to prevent or delay T1D development.
Collapse
Affiliation(s)
- Carmella Evans-Molina
- Department of Anatomy, Cell Biology, and Physiology, Indiana University School of Medicine, Indianapolis, IN
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN
- Department of Medicine, Indiana University School of Medicine, Indianapolis, IN
- Department of Pediatrics, Indiana University School of Medicine, Indianapolis, IN
- Center for Diabetes and Metabolic Diseases, Indiana University School of Medicine, Indianapolis, IN
- Herman B. Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN
- Roudebush VA Medical Center, Indianapolis, IN
| |
Collapse
|
3
|
Boyer CK, Blom SE, Machado AE, Rohli KE, Maxson ME, Stephens SB. Loss of the Golgi-localized v-ATPase subunit does not alter insulin granule formation or pancreatic islet β-cell function. Am J Physiol Endocrinol Metab 2024; 326:E245-E257. [PMID: 38265287 PMCID: PMC11193524 DOI: 10.1152/ajpendo.00342.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 01/11/2024] [Accepted: 01/11/2024] [Indexed: 01/25/2024]
Abstract
Delayed Golgi export of proinsulin has recently been identified as an underlying mechanism leading to insulin granule loss and β-cell secretory defects in type 2 diabetes (T2D). Because acidification of the Golgi lumen is critical for proinsulin sorting and delivery into the budding secretory granule, we reasoned that dysregulation of Golgi pH may contribute to proinsulin trafficking defects. In this report, we examined pH regulation of the Golgi and identified a partial alkalinization of the Golgi lumen in a diabetes model. To further explore this, we generated a β-cell specific knockout (KO) of the v0a2 subunit of the v-ATPase pump, which anchors the v-ATPase to the Golgi membrane. Although loss of v0a2 partially neutralized Golgi pH and was accompanied by distension of the Golgi cisternae, proinsulin export from the Golgi and insulin granule formation were not affected. Furthermore, β-cell function was well preserved. β-cell v0a2 KO mice exhibited normal glucose tolerance in both sexes, no genotypic difference to diet-induced obesity, and normal insulin secretory responses. Collectively, our data demonstrate the v0a2 subunit contributes to β-cell Golgi pH regulation but suggest that additional disturbances to Golgi structure and function contribute to proinsulin trafficking defects in diabetes.NEW & NOTEWORTHY Delayed proinsulin export from the Golgi in diabetic β-cells contributes to decreased insulin granule formation, but the underlying mechanisms are not clear. Here, we explored if dysregulation of Golgi pH can alter Golgi function using β-cell specific knockout (KO) of the Golgi-localized subunit of the v-ATPase, v0a2. We show that partial alkalinization of the Golgi dilates the cisternae, but does not affect proinsulin export, insulin granule formation, insulin secretion, or glucose homeostasis.
Collapse
Affiliation(s)
- Cierra K Boyer
- Department of Neuroscience and Pharmacology, University of Iowa, Iowa City, Iowa, United States
- Fraternal Order of Eagles Diabetes Research Center, University of Iowa, Iowa City, Iowa, United States
| | - Sandra E Blom
- Fraternal Order of Eagles Diabetes Research Center, University of Iowa, Iowa City, Iowa, United States
- Division of Endocrinology and Metabolism, Department of Internal Medicine, University of Iowa, Iowa City, Iowa, United States
| | - Ashleigh E Machado
- Fraternal Order of Eagles Diabetes Research Center, University of Iowa, Iowa City, Iowa, United States
- Division of Endocrinology and Metabolism, Department of Internal Medicine, University of Iowa, Iowa City, Iowa, United States
| | - Kristen E Rohli
- Fraternal Order of Eagles Diabetes Research Center, University of Iowa, Iowa City, Iowa, United States
- Division of Endocrinology and Metabolism, Department of Internal Medicine, University of Iowa, Iowa City, Iowa, United States
- Interdisciplinary Graduate Program in Genetics, University of Iowa, Iowa City, Iowa, United States
| | - Michelle E Maxson
- Program in Cell Biology, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Samuel B Stephens
- Fraternal Order of Eagles Diabetes Research Center, University of Iowa, Iowa City, Iowa, United States
- Division of Endocrinology and Metabolism, Department of Internal Medicine, University of Iowa, Iowa City, Iowa, United States
- Interdisciplinary Graduate Program in Genetics, University of Iowa, Iowa City, Iowa, United States
| |
Collapse
|
4
|
Iida H, Kono T, Lee CC, Krishnan P, Arvin MC, Weaver SA, Jarvela TS, Branco RCS, McLaughlin MR, Bone RN, Tong X, Arvan P, Lindberg I, Evans-Molina C. SERCA2 regulates proinsulin processing and processing enzyme maturation in pancreatic beta cells. Diabetologia 2023; 66:2042-2061. [PMID: 37537395 PMCID: PMC10542743 DOI: 10.1007/s00125-023-05979-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Accepted: 06/13/2023] [Indexed: 08/05/2023]
Abstract
AIMS/HYPOTHESIS Increased circulating levels of incompletely processed insulin (i.e. proinsulin) are observed clinically in type 1 and type 2 diabetes. Previous studies have suggested that Ca2+ signalling within beta cells regulates insulin processing and secretion; however, the mechanisms that link impaired Ca2+ signalling with defective insulin maturation remain incompletely understood. METHODS We generated mice with beta cell-specific sarcoendoplasmic reticulum Ca2+ ATPase-2 (SERCA2) deletion (βS2KO mice) and used an INS-1 cell line model of SERCA2 deficiency. Whole-body metabolic phenotyping, Ca2+ imaging, RNA-seq and protein processing assays were used to determine how loss of SERCA2 impacts beta cell function. To test key findings in human model systems, cadaveric islets were treated with diabetogenic stressors and prohormone convertase expression patterns were characterised. RESULTS βS2KO mice exhibited age-dependent glucose intolerance and increased plasma and pancreatic levels of proinsulin, while endoplasmic reticulum (ER) Ca2+ levels and glucose-stimulated Ca2+ synchronicity were reduced in βS2KO islets. Islets isolated from βS2KO mice and SERCA2-deficient INS-1 cells showed decreased expression of the active forms of the proinsulin processing enzymes PC1/3 and PC2. Additionally, immunofluorescence staining revealed mis-location and abnormal accumulation of proinsulin and proPC2 in the intermediate region between the ER and the Golgi (i.e. the ERGIC) and in the cis-Golgi in beta cells of βS2KO mice. Treatment of islets from human donors without diabetes with high glucose and palmitate concentrations led to reduced expression of the active forms of the proinsulin processing enzymes, thus phenocopying the findings observed in βS2KO islets and SERCA2-deficient INS-1 cells. Similar findings were observed in wild-type mouse islets treated with brefeldin A, a compound that perturbs ER-to-Golgi trafficking. CONCLUSIONS/INTERPRETATION Taken together, these data highlight an important link between ER Ca2+ homeostasis and proinsulin processing in beta cells. Our findings suggest a model whereby chronic ER Ca2+ depletion due to SERCA2 deficiency impairs the spatial regulation of prohormone trafficking, processing and maturation within the secretory pathway. DATA AVAILABILITY RNA-seq data have been deposited in the Gene Expression Omnibus (GEO; accession no.: GSE207498).
Collapse
Affiliation(s)
- Hitoshi Iida
- Department of Medicine, Indiana University School of Medicine, Indianapolis, IN, USA
- Department of Metabolism & Endocrinology, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Tatsuyoshi Kono
- Department of Pediatrics, Indiana University School of Medicine, Indianapolis, IN, USA
- Center for Diabetes and Metabolic Diseases, Indiana University School of Medicine, Indianapolis, IN, USA
- Herman B. Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN, USA
- Richard L. Roudebush VA Medical Center, Indianapolis, IN, USA
| | - Chih-Chun Lee
- Department of Pediatrics, Indiana University School of Medicine, Indianapolis, IN, USA
- Center for Diabetes and Metabolic Diseases, Indiana University School of Medicine, Indianapolis, IN, USA
- Herman B. Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN, USA
- Richard L. Roudebush VA Medical Center, Indianapolis, IN, USA
| | - Preethi Krishnan
- Department of Pediatrics, Indiana University School of Medicine, Indianapolis, IN, USA
- Center for Diabetes and Metabolic Diseases, Indiana University School of Medicine, Indianapolis, IN, USA
- Herman B. Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Matthew C Arvin
- Department of Pediatrics, Indiana University School of Medicine, Indianapolis, IN, USA
- Center for Diabetes and Metabolic Diseases, Indiana University School of Medicine, Indianapolis, IN, USA
- Herman B. Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Staci A Weaver
- Center for Diabetes and Metabolic Diseases, Indiana University School of Medicine, Indianapolis, IN, USA
- Herman B. Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN, USA
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Timothy S Jarvela
- Department of Anatomy and Neurobiology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Renato C S Branco
- Department of Pediatrics, Indiana University School of Medicine, Indianapolis, IN, USA
- Center for Diabetes and Metabolic Diseases, Indiana University School of Medicine, Indianapolis, IN, USA
- Herman B. Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Madeline R McLaughlin
- Department of Pediatrics, Indiana University School of Medicine, Indianapolis, IN, USA
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN, USA
| | - Robert N Bone
- Department of Pediatrics, Indiana University School of Medicine, Indianapolis, IN, USA
- Center for Diabetes and Metabolic Diseases, Indiana University School of Medicine, Indianapolis, IN, USA
- Herman B. Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Xin Tong
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, USA
| | - Peter Arvan
- Division of Metabolism, Endocrinology & Diabetes, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Iris Lindberg
- Department of Anatomy and Neurobiology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Carmella Evans-Molina
- Department of Medicine, Indiana University School of Medicine, Indianapolis, IN, USA.
- Department of Pediatrics, Indiana University School of Medicine, Indianapolis, IN, USA.
- Center for Diabetes and Metabolic Diseases, Indiana University School of Medicine, Indianapolis, IN, USA.
- Herman B. Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN, USA.
- Richard L. Roudebush VA Medical Center, Indianapolis, IN, USA.
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN, USA.
- Department of Anatomy, Cell Biology, and Physiology, Indiana University School of Medicine, Indianapolis, IN, USA.
| |
Collapse
|
5
|
Toledo PL, Vazquez DS, Gianotti AR, Abate MB, Wegbrod C, Torkko JM, Solimena M, Ermácora MR. Condensation of the β-cell secretory granule luminal cargoes pro/insulin and ICA512 RESP18 homology domain. Protein Sci 2023; 32:e4649. [PMID: 37159024 PMCID: PMC10201709 DOI: 10.1002/pro.4649] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 04/28/2023] [Accepted: 04/29/2023] [Indexed: 05/10/2023]
Abstract
ICA512/PTPRN is a receptor tyrosine-like phosphatase implicated in the biogenesis and turnover of the insulin secretory granules (SGs) in pancreatic islet beta cells. Previously we found biophysical evidence that its luminal RESP18 homology domain (RESP18HD) forms a biomolecular condensate and interacts with insulin in vitro at close-to-neutral pH, that is, in conditions resembling those present in the early secretory pathway. Here we provide further evidence for the relevance of these findings by showing that at pH 6.8 RESP18HD interacts also with proinsulin-the physiological insulin precursor found in the early secretory pathway and the major luminal cargo of β-cell nascent SGs. Our light scattering analyses indicate that RESP18HD and proinsulin, but also insulin, populate nanocondensates ranging in size from 15 to 300 nm and 10e2 to 10e6 molecules. Co-condensation of RESP18HD with proinsulin/insulin transforms the initial nanocondensates into microcondensates (size >1 μm). The intrinsic tendency of proinsulin to self-condensate implies that, in the ER, a chaperoning mechanism must arrest its spontaneous intermolecular condensation to allow for proper intramolecular folding. These data further suggest that proinsulin is an early driver of insulin SG biogenesis, in a process in which its co-condensation with RESP18HD participates in their phase separation from other secretory proteins in transit through the same compartments but destined to other routes. Through the cytosolic tail of ICA512, proinsulin co-condensation with RESP18HD may further orchestrate the recruitment of cytosolic factors involved in membrane budding and fission of transport vesicles and nascent SGs.
Collapse
Affiliation(s)
- Pamela L. Toledo
- Departamento de Ciencia y TecnologíaUniversidad Nacional de QuilmesProvincia de Buenos AiresArgentina
- Grupo de Biología Estructural y Biotecnología, IMBICE, CONICETUniversidad Nacional de QuilmesProvincia de Buenos AiresArgentina
| | - Diego S. Vazquez
- Departamento de Ciencia y TecnologíaUniversidad Nacional de QuilmesProvincia de Buenos AiresArgentina
- Grupo de Biología Estructural y Biotecnología, IMBICE, CONICETUniversidad Nacional de QuilmesProvincia de Buenos AiresArgentina
| | - Alejo R. Gianotti
- Departamento de Ciencia y TecnologíaUniversidad Nacional de QuilmesProvincia de Buenos AiresArgentina
- Grupo de Biología Estructural y Biotecnología, IMBICE, CONICETUniversidad Nacional de QuilmesProvincia de Buenos AiresArgentina
| | - Milagros B. Abate
- Departamento de Ciencia y TecnologíaUniversidad Nacional de QuilmesProvincia de Buenos AiresArgentina
- Grupo de Biología Estructural y Biotecnología, IMBICE, CONICETUniversidad Nacional de QuilmesProvincia de Buenos AiresArgentina
| | - Carolin Wegbrod
- Department of Molecular DiabetologyUniversity Hospital and Faculty of Medicine, TU DresdenDresdenGermany
- Paul Langerhans Institute Dresden of Helmholtz Munich at the University Hospital and Faculty of Medicine, TU DresdenDresdenGermany
- German Center for Diabetes Research (DZD e.V.)NeuherbergGermany
| | - Juha M. Torkko
- Department of Molecular DiabetologyUniversity Hospital and Faculty of Medicine, TU DresdenDresdenGermany
- Paul Langerhans Institute Dresden of Helmholtz Munich at the University Hospital and Faculty of Medicine, TU DresdenDresdenGermany
- German Center for Diabetes Research (DZD e.V.)NeuherbergGermany
| | - Michele Solimena
- Department of Molecular DiabetologyUniversity Hospital and Faculty of Medicine, TU DresdenDresdenGermany
- Paul Langerhans Institute Dresden of Helmholtz Munich at the University Hospital and Faculty of Medicine, TU DresdenDresdenGermany
- German Center for Diabetes Research (DZD e.V.)NeuherbergGermany
| | - Mario R. Ermácora
- Departamento de Ciencia y TecnologíaUniversidad Nacional de QuilmesProvincia de Buenos AiresArgentina
- Grupo de Biología Estructural y Biotecnología, IMBICE, CONICETUniversidad Nacional de QuilmesProvincia de Buenos AiresArgentina
| |
Collapse
|
6
|
Parchure A, Tian M, Stalder D, Boyer CK, Bearrows SC, Rohli KE, Zhang J, Rivera-Molina F, Ramazanov BR, Mahata SK, Wang Y, Stephens SB, Gershlick DC, von Blume J. Liquid-liquid phase separation facilitates the biogenesis of secretory storage granules. J Cell Biol 2022; 221:e202206132. [PMID: 36173346 PMCID: PMC9526250 DOI: 10.1083/jcb.202206132] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 08/30/2022] [Accepted: 09/01/2022] [Indexed: 02/03/2023] Open
Abstract
Insulin is synthesized by pancreatic β-cells and stored into secretory granules (SGs). SGs fuse with the plasma membrane in response to a stimulus and deliver insulin to the bloodstream. The mechanism of how proinsulin and its processing enzymes are sorted and targeted from the trans-Golgi network (TGN) to SGs remains mysterious. No cargo receptor for proinsulin has been identified. Here, we show that chromogranin (CG) proteins undergo liquid-liquid phase separation (LLPS) at a mildly acidic pH in the lumen of the TGN, and recruit clients like proinsulin to the condensates. Client selectivity is sequence-independent but based on the concentration of the client molecules in the TGN. We propose that the TGN provides the milieu for converting CGs into a "cargo sponge" leading to partitioning of client molecules, thus facilitating receptor-independent client sorting. These findings provide a new receptor-independent sorting model in β-cells and many other cell types and therefore represent an innovation in the field of membrane trafficking.
Collapse
Affiliation(s)
- Anup Parchure
- Department of Cell Biology, Yale University School of Medicine, New Haven, CT
| | - Meng Tian
- Department of Cell Biology, Yale University School of Medicine, New Haven, CT
| | - Danièle Stalder
- Cambridge Institute for Medical Research, University of Cambridge, Cambridge, UK
| | - Cierra K. Boyer
- Departments of Pharmacology and Neuroscience, Fraternal Order of Eagles Diabetes Research Center, University of Iowa, Iowa City, IA
- Internal Medicine, Division of Endocrinology and Metabolism, University of Iowa, Iowa City, IA
| | - Shelby C. Bearrows
- Departments of Pharmacology and Neuroscience, Fraternal Order of Eagles Diabetes Research Center, University of Iowa, Iowa City, IA
- Internal Medicine, Division of Endocrinology and Metabolism, University of Iowa, Iowa City, IA
| | - Kristen E. Rohli
- Departments of Pharmacology and Neuroscience, Fraternal Order of Eagles Diabetes Research Center, University of Iowa, Iowa City, IA
- Internal Medicine, Division of Endocrinology and Metabolism, University of Iowa, Iowa City, IA
| | - Jianchao Zhang
- Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, MI
- Department of Neurology, University of Michigan School of Medicine, Ann Arbor, MI
| | - Felix Rivera-Molina
- Department of Cell Biology, Yale University School of Medicine, New Haven, CT
| | - Bulat R. Ramazanov
- Department of Cell Biology, Yale University School of Medicine, New Haven, CT
| | - Sushil K. Mahata
- Department of Medicine, University of California San Diego, La Jolla, CA
- VA San Diego Healthcare System, San Diego, CA
| | - Yanzhuang Wang
- Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, MI
- Department of Neurology, University of Michigan School of Medicine, Ann Arbor, MI
| | - Samuel B. Stephens
- Departments of Pharmacology and Neuroscience, Fraternal Order of Eagles Diabetes Research Center, University of Iowa, Iowa City, IA
| | - David C. Gershlick
- Cambridge Institute for Medical Research, University of Cambridge, Cambridge, UK
| | - Julia von Blume
- Department of Cell Biology, Yale University School of Medicine, New Haven, CT
| |
Collapse
|
7
|
Asadi F, Dhanvantari S. Pathways of Glucagon Secretion and Trafficking in the Pancreatic Alpha Cell: Novel Pathways, Proteins, and Targets for Hyperglucagonemia. Front Endocrinol (Lausanne) 2021; 12:726368. [PMID: 34659118 PMCID: PMC8511682 DOI: 10.3389/fendo.2021.726368] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Accepted: 09/13/2021] [Indexed: 12/15/2022] Open
Abstract
Patients with diabetes mellitus exhibit hyperglucagonemia, or excess glucagon secretion, which may be the underlying cause of the hyperglycemia of diabetes. Defective alpha cell secretory responses to glucose and paracrine effectors in both Type 1 and Type 2 diabetes may drive the development of hyperglucagonemia. Therefore, uncovering the mechanisms that regulate glucagon secretion from the pancreatic alpha cell is critical for developing improved treatments for diabetes. In this review, we focus on aspects of alpha cell biology for possible mechanisms for alpha cell dysfunction in diabetes: proglucagon processing, intrinsic and paracrine control of glucagon secretion, secretory granule dynamics, and alterations in intracellular trafficking. We explore possible clues gleaned from these studies in how inhibition of glucagon secretion can be targeted as a treatment for diabetes mellitus.
Collapse
Affiliation(s)
- Farzad Asadi
- Department of Pathology and Laboratory Medicine, Western University, London, ON, Canada
- Program in Metabolism and Diabetes, Lawson Health Research Institute, London, ON, Canada
| | - Savita Dhanvantari
- Department of Pathology and Laboratory Medicine, Western University, London, ON, Canada
- Program in Metabolism and Diabetes, Lawson Health Research Institute, London, ON, Canada
- Imaging Research Program, Lawson Health Research Institute, London, ON, Canada
- Department of Medical Biophysics, Western University, London, ON, Canada
| |
Collapse
|
8
|
Germanos M, Gao A, Taper M, Yau B, Kebede MA. Inside the Insulin Secretory Granule. Metabolites 2021; 11:metabo11080515. [PMID: 34436456 PMCID: PMC8401130 DOI: 10.3390/metabo11080515] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 08/03/2021] [Accepted: 08/03/2021] [Indexed: 12/19/2022] Open
Abstract
The pancreatic β-cell is purpose-built for the production and secretion of insulin, the only hormone that can remove glucose from the bloodstream. Insulin is kept inside miniature membrane-bound storage compartments known as secretory granules (SGs), and these specialized organelles can readily fuse with the plasma membrane upon cellular stimulation to release insulin. Insulin is synthesized in the endoplasmic reticulum (ER) as a biologically inactive precursor, proinsulin, along with several other proteins that will also become members of the insulin SG. Their coordinated synthesis enables synchronized transit through the ER and Golgi apparatus for congregation at the trans-Golgi network, the initiating site of SG biogenesis. Here, proinsulin and its constituents enter the SG where conditions are optimized for proinsulin processing into insulin and subsequent insulin storage. A healthy β-cell is continually generating SGs to supply insulin in vast excess to what is secreted. Conversely, in type 2 diabetes (T2D), the inability of failing β-cells to secrete may be due to the limited biosynthesis of new insulin. Factors that drive the formation and maturation of SGs and thus the production of insulin are therefore critical for systemic glucose control. Here, we detail the formative hours of the insulin SG from the luminal perspective. We do this by mapping the journey of individual members of the SG as they contribute to its genesis.
Collapse
|
9
|
Laurenti MC, Matveyenko A, Vella A. Measurement of Pulsatile Insulin Secretion: Rationale and Methodology. Metabolites 2021; 11:409. [PMID: 34206296 PMCID: PMC8305896 DOI: 10.3390/metabo11070409] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 06/17/2021] [Accepted: 06/18/2021] [Indexed: 12/29/2022] Open
Abstract
Pancreatic β-cells are responsible for the synthesis and exocytosis of insulin in response to an increase in circulating glucose. Insulin secretion occurs in a pulsatile manner, with oscillatory pulses superimposed on a basal secretion rate. Insulin pulses are a marker of β-cell health, and secretory parameters, such as pulse amplitude, time interval and frequency distribution, are impaired in obesity, aging and type 2 diabetes. In this review, we detail the mechanisms of insulin production and β-cell synchronization that regulate pulsatile insulin secretion, and we discuss the challenges to consider when measuring fast oscillatory secretion in vivo. These include the anatomical difficulties of measuring portal vein insulin noninvasively in humans before the hormone is extracted by the liver and quickly removed from the circulation. Peripheral concentrations of insulin or C-peptide, a peptide cosecreted with insulin, can be used to estimate their secretion profile, but mathematical deconvolution is required. Parametric and nonparametric approaches to the deconvolution problem are evaluated, alongside the assumptions and trade-offs required for their application in the quantification of unknown insulin secretory rates from known peripheral concentrations. Finally, we discuss the therapeutical implication of targeting impaired pulsatile secretion and its diagnostic value as an early indicator of β-cell stress.
Collapse
Affiliation(s)
- Marcello C. Laurenti
- Division of Endocrinology, Diabetes & Metabolism, Mayo Clinic, Rochester, MN 55905, USA; (M.C.L.); (A.M.)
- Biomedical Engineering and Physiology Graduate Program, Mayo Clinic Graduate School of Biomedical Sciences, Rochester, MN 55905, USA
| | - Aleksey Matveyenko
- Division of Endocrinology, Diabetes & Metabolism, Mayo Clinic, Rochester, MN 55905, USA; (M.C.L.); (A.M.)
| | - Adrian Vella
- Division of Endocrinology, Diabetes & Metabolism, Mayo Clinic, Rochester, MN 55905, USA; (M.C.L.); (A.M.)
| |
Collapse
|
10
|
Bäck N, Mains RE, Eipper BA. PAM: diverse roles in neuroendocrine cells, cardiomyocytes, and green algae. FEBS J 2021; 289:4470-4496. [PMID: 34089560 DOI: 10.1111/febs.16049] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 04/28/2021] [Accepted: 06/02/2021] [Indexed: 12/13/2022]
Abstract
Our understanding of the ways in which peptides are used for communication in the nervous and endocrine systems began with the identification of oxytocin, vasopressin, and insulin, each of which is stored in electron-dense granules, ready for release in response to an appropriate stimulus. For each of these peptides, entry of its newly synthesized precursor into the ER lumen is followed by transport through the secretory pathway, exposing the precursor to a sequence of environments and enzymes that produce the bioactive products stored in mature granules. A final step in the biosynthesis of many peptides is C-terminal amidation by peptidylglycine α-amidating monooxygenase (PAM), an ascorbate- and copper-dependent membrane enzyme that enters secretory granules along with its soluble substrates. Biochemical and cell biological studies elucidated the highly conserved mechanism for amidated peptide production and raised many questions about PAM trafficking and the effects of PAM on cytoskeletal organization and gene expression. Phylogenetic studies and the discovery of active PAM in the ciliary membranes of Chlamydomonas reinhardtii, a green alga lacking secretory granules, suggested that a PAM-like enzyme was present in the last eukaryotic common ancestor. While the catalytic features of human and C. reinhardtii PAM are strikingly similar, the trafficking of PAM in C. reinhardtii and neuroendocrine cells and secretion of its amidated products differ. A comparison of PAM function in neuroendocrine cells, atrial myocytes, and C. reinhardtii reveals multiple ways in which altered trafficking allows PAM to accomplish different tasks in different species and cell types.
Collapse
Affiliation(s)
- Nils Bäck
- Department of Anatomy, University of Helsinki, Finland
| | - Richard E Mains
- Department of Neuroscience, UConn Health, Farmington, CT, USA
| | - Betty A Eipper
- Department of Molecular Biology and Biophysics, UConn Health, Farmington, CT, USA
| |
Collapse
|
11
|
Isolation and Proteomics of the Insulin Secretory Granule. Metabolites 2021; 11:metabo11050288. [PMID: 33946444 PMCID: PMC8147143 DOI: 10.3390/metabo11050288] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 04/28/2021] [Accepted: 04/28/2021] [Indexed: 12/21/2022] Open
Abstract
Insulin, a vital hormone for glucose homeostasis is produced by pancreatic beta-cells and when secreted, stimulates the uptake and storage of glucose from the blood. In the pancreas, insulin is stored in vesicles termed insulin secretory granules (ISGs). In Type 2 diabetes (T2D), defects in insulin action results in peripheral insulin resistance and beta-cell compensation, ultimately leading to dysfunctional ISG production and secretion. ISGs are functionally dynamic and many proteins present either on the membrane or in the lumen of the ISG may modulate and affect different stages of ISG trafficking and secretion. Previously, studies have identified few ISG proteins and more recently, proteomics analyses of purified ISGs have uncovered potential novel ISG proteins. This review summarizes the proteins identified in the current ISG proteomes from rat insulinoma INS-1 and INS-1E cell lines. Here, we also discuss techniques of ISG isolation and purification, its challenges and potential future directions.
Collapse
|
12
|
Insulin granule biogenesis and exocytosis. Cell Mol Life Sci 2020; 78:1957-1970. [PMID: 33146746 PMCID: PMC7966131 DOI: 10.1007/s00018-020-03688-4] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Revised: 09/11/2020] [Accepted: 10/19/2020] [Indexed: 02/06/2023]
Abstract
Insulin is produced by pancreatic β-cells, and once released to the blood, the hormone stimulates glucose uptake and suppresses glucose production. Defects in both the availability and action of insulin lead to elevated plasma glucose levels and are major hallmarks of type-2 diabetes. Insulin is stored in secretory granules that form at the trans-Golgi network. The granules undergo extensive modifications en route to their release sites at the plasma membrane, including changes in both protein and lipid composition of the granule membrane and lumen. In parallel, the insulin molecules also undergo extensive modifications that render the hormone biologically active. In this review, we summarize current understanding of insulin secretory granule biogenesis, maturation, transport, docking, priming and eventual fusion with the plasma membrane. We discuss how different pools of granules form and how these pools contribute to insulin secretion under different conditions. We also highlight the role of the β-cell in the development of type-2 diabetes and discuss how dysregulation of one or several steps in the insulin granule life cycle may contribute to disease development or progression.
Collapse
|
13
|
Vasiljević J, Torkko JM, Knoch KP, Solimena M. The making of insulin in health and disease. Diabetologia 2020; 63:1981-1989. [PMID: 32894308 PMCID: PMC7476993 DOI: 10.1007/s00125-020-05192-7] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Accepted: 04/28/2020] [Indexed: 12/16/2022]
Abstract
The discovery of insulin in 1921 has been one of greatest scientific achievements of the 20th century. Since then, the availability of insulin has shifted the focus of diabetes treatment from trying to keep patients alive to saving and improving the life of millions. Throughout this time, basic and clinical research has advanced our understanding of insulin synthesis and action, both in healthy and pathological conditions. Yet, multiple aspects of insulin production remain unknown. In this review, we focus on the most recent findings on insulin synthesis, highlighting their relevance in diabetes. Graphical abstract.
Collapse
Affiliation(s)
- Jovana Vasiljević
- Molecular Diabetology, University Hospital and Faculty of Medicine Carl Gustav Carus, TU Dresden, Dresden, Germany
- German Center for Diabetes Research (DZD e.V.), Neuherberg, Germany
- Paul Langerhans Institute Dresden (PLID), Helmholtz Center Munich, University Hospital and Faculty of Medicine Carl Gustav Carus, TU Dresden, Tatzberg 47/49, 01307, Dresden, Germany
| | - Juha M Torkko
- Molecular Diabetology, University Hospital and Faculty of Medicine Carl Gustav Carus, TU Dresden, Dresden, Germany
- German Center for Diabetes Research (DZD e.V.), Neuherberg, Germany
- Paul Langerhans Institute Dresden (PLID), Helmholtz Center Munich, University Hospital and Faculty of Medicine Carl Gustav Carus, TU Dresden, Tatzberg 47/49, 01307, Dresden, Germany
| | - Klaus-Peter Knoch
- Molecular Diabetology, University Hospital and Faculty of Medicine Carl Gustav Carus, TU Dresden, Dresden, Germany
- German Center for Diabetes Research (DZD e.V.), Neuherberg, Germany
- Paul Langerhans Institute Dresden (PLID), Helmholtz Center Munich, University Hospital and Faculty of Medicine Carl Gustav Carus, TU Dresden, Tatzberg 47/49, 01307, Dresden, Germany
| | - Michele Solimena
- Molecular Diabetology, University Hospital and Faculty of Medicine Carl Gustav Carus, TU Dresden, Dresden, Germany.
- German Center for Diabetes Research (DZD e.V.), Neuherberg, Germany.
- Paul Langerhans Institute Dresden (PLID), Helmholtz Center Munich, University Hospital and Faculty of Medicine Carl Gustav Carus, TU Dresden, Tatzberg 47/49, 01307, Dresden, Germany.
- Max Planck Institute of Molecular Cell Biology and Genetics (MPI-CBG), Dresden, Germany.
| |
Collapse
|
14
|
Abstract
Investigations into the mixed muscle-secretory phenotype of cardiomyocytes from the atrial appendages of the heart led to the discovery that these cells produce, in a regulated manner, two polypeptide hormones - the natriuretic peptides - referred to as atrial natriuretic factor or atrial natriuretic peptide (ANP) and brain or B-type natriuretic peptide (BNP), thereby demonstrating an endocrine function for the heart. Studies on the gene encoding ANP (NPPA) initiated the field of modern research into gene regulation in the cardiovascular system. Additionally, ANP and BNP were found to be the natural ligands for cell membrane-bound guanylyl cyclase receptors that mediate the effects of natriuretic peptides through the generation of intracellular cGMP, which interacts with specific enzymes and ion channels. Natriuretic peptides have many physiological actions and participate in numerous pathophysiological processes. Important clinical entities associated with natriuretic peptide research include heart failure, obesity and systemic hypertension. Plasma levels of natriuretic peptides have proven to be powerful diagnostic and prognostic biomarkers of heart disease. Development of pharmacological agents that are based on natriuretic peptides is an area of active research, with vast potential benefits for the treatment of cardiovascular disease.
Collapse
|
15
|
Carrat GR, Haythorne E, Tomas A, Haataja L, Müller A, Arvan P, Piunti A, Cheng K, Huang M, Pullen TJ, Georgiadou E, Stylianides T, Amirruddin NS, Salem V, Distaso W, Cakebread A, Heesom KJ, Lewis PA, Hodson DJ, Briant LJ, Fung AC, Sessions RB, Alpy F, Kong AP, Benke PI, Torta F, Teo AKK, Leclerc I, Solimena M, Wigley DB, Rutter GA. The type 2 diabetes gene product STARD10 is a phosphoinositide-binding protein that controls insulin secretory granule biogenesis. Mol Metab 2020; 40:101015. [PMID: 32416313 PMCID: PMC7322359 DOI: 10.1016/j.molmet.2020.101015] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Revised: 04/24/2020] [Accepted: 05/05/2020] [Indexed: 02/09/2023] Open
Abstract
OBJECTIVE Risk alleles for type 2 diabetes at the STARD10 locus are associated with lowered STARD10 expression in the β-cell, impaired glucose-induced insulin secretion, and decreased circulating proinsulin:insulin ratios. Although likely to serve as a mediator of intracellular lipid transfer, the identity of the transported lipids and thus the pathways through which STARD10 regulates β-cell function are not understood. The aim of this study was to identify the lipids transported and affected by STARD10 in the β-cell and the role of the protein in controlling proinsulin processing and insulin granule biogenesis and maturation. METHODS We used isolated islets from mice deleted selectively in the β-cell for Stard10 (βStard10KO) and performed electron microscopy, pulse-chase, RNA sequencing, and lipidomic analyses. Proteomic analysis of STARD10 binding partners was executed in the INS1 (832/13) cell line. X-ray crystallography followed by molecular docking and lipid overlay assay was performed on purified STARD10 protein. RESULTS βStard10KO islets had a sharply altered dense core granule appearance, with a dramatic increase in the number of "rod-like" dense cores. Correspondingly, basal secretion of proinsulin was increased versus wild-type islets. The solution of the crystal structure of STARD10 to 2.3 Å resolution revealed a binding pocket capable of accommodating polyphosphoinositides, and STARD10 was shown to bind to inositides phosphorylated at the 3' position. Lipidomic analysis of βStard10KO islets demonstrated changes in phosphatidylinositol levels, and the inositol lipid kinase PIP4K2C was identified as a STARD10 binding partner. Also consistent with roles for STARD10 in phosphoinositide signalling, the phosphoinositide-binding proteins Pirt and Synaptotagmin 1 were amongst the differentially expressed genes in βStard10KO islets. CONCLUSION Our data indicate that STARD10 binds to, and may transport, phosphatidylinositides, influencing membrane lipid composition, insulin granule biosynthesis, and insulin processing.
Collapse
Affiliation(s)
- Gaelle R. Carrat
- Section of Cell Biology and Functional Genomics, Imperial College London, du Cane Road, London, W12 0NN, UK
| | - Elizabeth Haythorne
- Section of Cell Biology and Functional Genomics, Imperial College London, du Cane Road, London, W12 0NN, UK
| | - Alejandra Tomas
- Section of Cell Biology and Functional Genomics, Imperial College London, du Cane Road, London, W12 0NN, UK
| | - Leena Haataja
- Division of Metabolism, Endocrinology & Diabetes, Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Andreas Müller
- Molecular Diabetology, University Hospital and Faculty of Medicine Carl Gustav Carus, TU Dresden, Dresden, Germany,Paul Langerhans Institute Dresden (PLID) of the Helmholtz Center Munich, University Hospital Carl Gustav Carus and Faculty of Medicine of the TU Dresden, Dresden, Germany,German Center for Diabetes Research (DZD e.V.), Neuherberg, Germany,Max Planck Institute of Molecular Cell Biology and Genetics (MPI-CBG), Dresden, Germany
| | - Peter Arvan
- Division of Metabolism, Endocrinology & Diabetes, Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Alexandra Piunti
- Section of Cell Biology and Functional Genomics, Imperial College London, du Cane Road, London, W12 0NN, UK,Lille 1 University-Science and Technology, Cité Scientifique, 59655, Villeneuve d'Ascq Cedex, France
| | - Kaiying Cheng
- Section of Structural Biology, Department of Medicine, Imperial College London, London, UK
| | - Mutian Huang
- Section of Cell Biology and Functional Genomics, Imperial College London, du Cane Road, London, W12 0NN, UK
| | - Timothy J. Pullen
- Section of Cell Biology and Functional Genomics, Imperial College London, du Cane Road, London, W12 0NN, UK,Department of Diabetes, Faculty of Life Science and Medicine, King's College London, London, UK
| | - Eleni Georgiadou
- Section of Cell Biology and Functional Genomics, Imperial College London, du Cane Road, London, W12 0NN, UK
| | - Theodoros Stylianides
- Loughborough University, Centre of Innovative and Collaborative Construction Engineering, Leicestershire, LE11 3TU, UK
| | - Nur Shabrina Amirruddin
- Stem Cells and Diabetes Laboratory, Institute of Molecular and Cell Biology (IMCB), A∗STAR, Proteos, Singapore, 138673, Singapore,Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 119228, Singapore
| | - Victoria Salem
- Section of Cell Biology and Functional Genomics, Imperial College London, du Cane Road, London, W12 0NN, UK,Section of Investigative Medicine, Department of Medicine, Imperial College London, du Cane Road, London, W12 0NN, UK
| | - Walter Distaso
- Imperial College Business School, Imperial College London, Exhibition Road, London, SW7 2AZ, UK
| | - Andrew Cakebread
- London Metallomics Facility, King's College London, Strand, London, WC2R 2LS, UK
| | | | | | - David J. Hodson
- Centre for Endocrinology, Diabetes and Metabolism, Birmingham Health Partners, Birmingham, UK,Institute of Metabolism and Systems Research, University of Birmingham, Edgbaston, UK,Centre of Membrane Proteins and Receptors, University of Birmingham and University of Nottingham, Midlands, UK
| | - Linford J. Briant
- Oxford Centre for Diabetes, Endocrinology, and Metabolism, Radcliffe Department of Medicine, University of Oxford, Churchill Hospital, Oxford, OX3 7LE, UK
| | - Annie C.H. Fung
- Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Shatin, Hong Kong
| | - Richard B. Sessions
- School of Biochemistry, Faculty of Life Sciences, University of Bristol, Bristol, BS8 1TD, UK
| | - Fabien Alpy
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Institut National de la Santé et de la Recherche Médicale (INSERM) U1258, Centre National de la Recherche Scientifique (CNRS), UMR 7104, Université de Strasbourg, 1 rue Laurent Fries, 67404 Illkirch, France
| | - Alice P.S. Kong
- Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Shatin, Hong Kong
| | - Peter I. Benke
- Singapore Lipidomics Incubator, Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, 8 Mdical Drive, Singapore, 117596, Singapore
| | - Federico Torta
- Singapore Lipidomics Incubator, Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, 8 Mdical Drive, Singapore, 117596, Singapore
| | - Adrian Kee Keong Teo
- Stem Cells and Diabetes Laboratory, Institute of Molecular and Cell Biology (IMCB), A∗STAR, Proteos, Singapore, 138673, Singapore,Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 119228, Singapore,Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117596, Singapore
| | - Isabelle Leclerc
- Section of Cell Biology and Functional Genomics, Imperial College London, du Cane Road, London, W12 0NN, UK
| | - Michele Solimena
- Molecular Diabetology, University Hospital and Faculty of Medicine Carl Gustav Carus, TU Dresden, Dresden, Germany,Paul Langerhans Institute Dresden (PLID) of the Helmholtz Center Munich, University Hospital Carl Gustav Carus and Faculty of Medicine of the TU Dresden, Dresden, Germany,German Center for Diabetes Research (DZD e.V.), Neuherberg, Germany,Max Planck Institute of Molecular Cell Biology and Genetics (MPI-CBG), Dresden, Germany
| | - Dale B. Wigley
- Section of Structural Biology, Department of Medicine, Imperial College London, London, UK
| | - Guy A. Rutter
- Section of Cell Biology and Functional Genomics, Imperial College London, du Cane Road, London, W12 0NN, UK,Corresponding author. +44 (0)20 7594 3340.
| |
Collapse
|
16
|
Zhou Y, Liu Z, Zhang S, Zhuang R, Liu H, Liu X, Qiu X, Zhang M, Zheng Y, Li L, Hong W, Wang T. RILP Restricts Insulin Secretion Through Mediating Lysosomal Degradation of Proinsulin. Diabetes 2020; 69:67-82. [PMID: 31624142 DOI: 10.2337/db19-0086] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Accepted: 10/06/2019] [Indexed: 11/13/2022]
Abstract
Insulin secretion is tightly regulated by membrane trafficking. RILP (Rab7 interacting lysosomal protein) regulates the endocytic trafficking, but its role in insulin secretion has not been investigated. In this study, we found that overexpression of RILP inhibited insulin secretion in both the β-cell lines and freshly isolated islets. Consequently, the expression of RILP in islets suppressed the ability to recover the glucose homeostasis in type 1 diabetes mice upon transplantation. Of physiological relevance is that RILP expression was upregulated in the diabetic mouse islets. Mechanistically, overexpression of RILP induced insulin granule clustering, decreased the number of proinsulin-containing granules in β-cells, and significantly promoted proinsulin degradation. Conversely, RILP depletion sustained proinsulin and increased insulin secretion. The proinsulin degradation induced by RILP expression was inhibited by lysosomal inhibitors and was Rab7-dependent. Finally, we showed that RILP interacts with insulin granule-associated Rab26 to restrict insulin secretion. This study presents a new pathway regulating insulin secretion and mechanically demonstrates a novel function of RILP in modulating insulin secretion through mediating the lysosomal degradation of proinsulin.
Collapse
Affiliation(s)
- Yuxia Zhou
- School of Pharmaceutical Sciences, State Key Laboratory of Cellular Stress Biology, Fujian Provincial Key Laboratory of Innovative Drug Target Research, Xiamen University, Fujian, China
| | - Zhiyu Liu
- School of Pharmaceutical Sciences, State Key Laboratory of Cellular Stress Biology, Fujian Provincial Key Laboratory of Innovative Drug Target Research, Xiamen University, Fujian, China
| | - Shengmei Zhang
- School of Pharmaceutical Sciences, State Key Laboratory of Cellular Stress Biology, Fujian Provincial Key Laboratory of Innovative Drug Target Research, Xiamen University, Fujian, China
| | - Ruijuan Zhuang
- School of Pharmaceutical Sciences, State Key Laboratory of Cellular Stress Biology, Fujian Provincial Key Laboratory of Innovative Drug Target Research, Xiamen University, Fujian, China
| | - Huiying Liu
- School of Pharmaceutical Sciences, State Key Laboratory of Cellular Stress Biology, Fujian Provincial Key Laboratory of Innovative Drug Target Research, Xiamen University, Fujian, China
| | - Xiaoqing Liu
- School of Pharmaceutical Sciences, State Key Laboratory of Cellular Stress Biology, Fujian Provincial Key Laboratory of Innovative Drug Target Research, Xiamen University, Fujian, China
| | - Xi Qiu
- School of Pharmaceutical Sciences, State Key Laboratory of Cellular Stress Biology, Fujian Provincial Key Laboratory of Innovative Drug Target Research, Xiamen University, Fujian, China
| | - Ming Zhang
- School of Pharmaceutical Sciences, State Key Laboratory of Cellular Stress Biology, Fujian Provincial Key Laboratory of Innovative Drug Target Research, Xiamen University, Fujian, China
| | - Yanpan Zheng
- School of Pharmaceutical Sciences, State Key Laboratory of Cellular Stress Biology, Fujian Provincial Key Laboratory of Innovative Drug Target Research, Xiamen University, Fujian, China
| | - Liangcheng Li
- School of Pharmaceutical Sciences, State Key Laboratory of Cellular Stress Biology, Fujian Provincial Key Laboratory of Innovative Drug Target Research, Xiamen University, Fujian, China
| | - Wanjin Hong
- School of Pharmaceutical Sciences, State Key Laboratory of Cellular Stress Biology, Fujian Provincial Key Laboratory of Innovative Drug Target Research, Xiamen University, Fujian, China
- Institute of Molecular and Cell Biology, A STAR (Agency of Science, Technology and Research), Singapore, Singapore
| | - Tuanlao Wang
- School of Pharmaceutical Sciences, State Key Laboratory of Cellular Stress Biology, Fujian Provincial Key Laboratory of Innovative Drug Target Research, Xiamen University, Fujian, China
| |
Collapse
|
17
|
Hummer BH, Maslar D, Soltero-Gutierrez M, de Leeuw NF, Asensio CS. Differential sorting behavior for soluble and transmembrane cargoes at the trans-Golgi network in endocrine cells. Mol Biol Cell 2019; 31:157-166. [PMID: 31825717 PMCID: PMC7001476 DOI: 10.1091/mbc.e19-10-0561] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Regulated secretion of neuropeptides and peptide hormones by secretory granules (SGs) is central to physiology. Formation of SGs occurs at the trans-Golgi network (TGN) where their soluble cargo aggregates to form a dense core, but the mechanisms controlling the sorting of regulated secretory cargoes (soluble and transmembrane) away from constitutively secreted proteins remain unclear. Optimizing the use of the retention using selective hooks method in (neuro-)endocrine cells, we now quantify TGN budding kinetics of constitutive and regulated secretory cargoes. We further show that, by monitoring two cargoes simultaneously, it becomes possible to visualize sorting to the constitutive and regulated secretory pathways in real time. Further analysis of the localization of SG cargoes immediately after budding from the TGN revealed that, surprisingly, the bulk of two studied transmembrane SG cargoes (phogrin and VMAT2) does not sort directly onto SGs during budding, but rather exit the TGN into nonregulated vesicles to get incorporated to SGs at a later step. This differential behavior of soluble and transmembrane cargoes suggests a more complex model of SG biogenesis than anticipated.
Collapse
Affiliation(s)
| | | | | | - Noah F de Leeuw
- Department of Physics and Astronomy, University of Denver, Denver, CO 80210
| | | |
Collapse
|
18
|
Topalidou I, Cattin-Ortolá J, Hummer B, Asensio CS, Ailion M. EIPR1 controls dense-core vesicle cargo retention and EARP complex localization in insulin-secreting cells. Mol Biol Cell 2019; 31:59-79. [PMID: 31721635 PMCID: PMC6938272 DOI: 10.1091/mbc.e18-07-0469] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Dense-core vesicles (DCVs) are secretory vesicles found in neurons and endocrine cells. DCVs package and release cargoes including neuropeptides, biogenic amines, and peptide hormones. We recently identified the endosome-associated recycling protein (EARP) complex and the EARP-interacting-protein EIPR-1 as proteins important for controlling levels of DCV cargoes in Caenorhabditis elegans neurons. Here we determine the role of mammalian EIPR1 in insulinoma cells. We find that in Eipr1 KO cells, there is reduced insulin secretion, and mature DCV cargoes such as insulin and carboxypeptidase E (CPE) accumulate near the trans-Golgi network and are not retained in mature DCVs in the cell periphery. In addition, we find that EIPR1 is required for the stability of the EARP complex subunits and for the localization of EARP and its association with membranes, but EIPR1 does not affect localization or function of the related Golgi-associated retrograde protein (GARP) complex. EARP is localized to two distinct compartments related to its function: an endosomal compartment and a DCV biogenesis-related compartment. We propose that EIPR1 functions with EARP to control both endocytic recycling and DCV maturation.
Collapse
Affiliation(s)
- Irini Topalidou
- Department of Biochemistry, University of Washington, Seattle, WA 98195
| | | | - Blake Hummer
- Department of Biological Sciences, University of Denver, Denver, CO 80210
| | - Cedric S Asensio
- Department of Biological Sciences, University of Denver, Denver, CO 80210
| | - Michael Ailion
- Department of Biochemistry, University of Washington, Seattle, WA 98195
| |
Collapse
|
19
|
Toledo PL, Torkko JM, Müller A, Wegbrod C, Sönmez A, Solimena M, Ermácora MR. ICA512 RESP18 homology domain is a protein-condensing factor and insulin fibrillation inhibitor. J Biol Chem 2019; 294:8564-8576. [PMID: 30979722 DOI: 10.1074/jbc.ra119.007607] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2019] [Revised: 04/09/2019] [Indexed: 12/19/2022] Open
Abstract
Type 1 diabetes islet cell autoantigen 512 (ICA512/IA-2) is a tyrosine phosphatase-like intrinsic membrane protein involved in the biogenesis and turnover of insulin secretory granules (SGs) in pancreatic islet β-cells. Whereas its membrane-proximal and cytoplasmic domains have been functionally and structurally characterized, the role of the ICA512 N-terminal segment named "regulated endocrine-specific protein 18 homology domain" (RESP18HD), which encompasses residues 35-131, remains largely unknown. Here, we show that ICA512 RESP18HD residues 91-131 encode for an intrinsically disordered region (IDR), which in vitro acts as a condensing factor for the reversible aggregation of insulin and other β-cell proteins in a pH and Zn2+-regulated fashion. At variance with what has been shown for other granule cargoes with aggregating properties, the condensing activity of ICA512 RESP18HD is displayed at a pH close to neutral, i.e. in the pH range found in the early secretory pathway, whereas it is resolved at acidic pH and Zn2+ concentrations resembling those present in mature SGs. Moreover, we show that ICA512 RESP18HD residues 35-90, preceding the IDR, inhibit insulin fibrillation in vitro Finally, we found that glucose-stimulated secretion of RESP18HD upon exocytosis of SGs from insulinoma INS-1 cells is associated with cleavage of its IDR, conceivably to prevent its aggregation upon exposure to neutral pH in the extracellular milieu. Taken together, these findings point to ICA512 RESP18HD being a condensing factor for protein sorting and granulogenesis early in the secretory pathway and for prevention of amyloidogenesis.
Collapse
Affiliation(s)
- Pamela L Toledo
- Grupo de Biología Estructural y Biotecnología, Universidad Nacional de Quilmes, 1876 Bernal, Buenos Aires, Argentina; IMBICE, CONICET-CIC-Universidad Nacional de La Plata, B1906APO La Plata, Buenos Aires, Argentina
| | - Juha M Torkko
- Grupo de Biología Estructural y Biotecnología, Universidad Nacional de Quilmes, 1876 Bernal, Buenos Aires, Argentina; IMBICE, CONICET-CIC-Universidad Nacional de La Plata, B1906APO La Plata, Buenos Aires, Argentina; Department of Molecular Diabetology, University Hospital and Faculty of Medicine, TU Dresden, 01307 Dresden, Germany; Paul Langerhans Institute Dresden of the Helmholtz Center Munich at the University Hospital and Faculty of Medicine, TU Dresden, 01307 Dresden, Germany; German Center for Diabetes Research (DZD e.V.), 85764 Neuherberg, Germany
| | - Andreas Müller
- Department of Molecular Diabetology, University Hospital and Faculty of Medicine, TU Dresden, 01307 Dresden, Germany; Paul Langerhans Institute Dresden of the Helmholtz Center Munich at the University Hospital and Faculty of Medicine, TU Dresden, 01307 Dresden, Germany; German Center for Diabetes Research (DZD e.V.), 85764 Neuherberg, Germany
| | - Carolin Wegbrod
- Department of Molecular Diabetology, University Hospital and Faculty of Medicine, TU Dresden, 01307 Dresden, Germany; Paul Langerhans Institute Dresden of the Helmholtz Center Munich at the University Hospital and Faculty of Medicine, TU Dresden, 01307 Dresden, Germany; German Center for Diabetes Research (DZD e.V.), 85764 Neuherberg, Germany
| | - Anke Sönmez
- Department of Molecular Diabetology, University Hospital and Faculty of Medicine, TU Dresden, 01307 Dresden, Germany; Paul Langerhans Institute Dresden of the Helmholtz Center Munich at the University Hospital and Faculty of Medicine, TU Dresden, 01307 Dresden, Germany; German Center for Diabetes Research (DZD e.V.), 85764 Neuherberg, Germany
| | - Michele Solimena
- Department of Molecular Diabetology, University Hospital and Faculty of Medicine, TU Dresden, 01307 Dresden, Germany; Paul Langerhans Institute Dresden of the Helmholtz Center Munich at the University Hospital and Faculty of Medicine, TU Dresden, 01307 Dresden, Germany; German Center for Diabetes Research (DZD e.V.), 85764 Neuherberg, Germany; Max Planck Institute of Molecular Cell Biology and Genetics, 01307 Dresden, Germany.
| | - Mario R Ermácora
- Grupo de Biología Estructural y Biotecnología, Universidad Nacional de Quilmes, 1876 Bernal, Buenos Aires, Argentina; IMBICE, CONICET-CIC-Universidad Nacional de La Plata, B1906APO La Plata, Buenos Aires, Argentina.
| |
Collapse
|
20
|
Wan X, Unanue ER. Antigen recognition in autoimmune diabetes: a novel pathway underlying disease initiation. PRECISION CLINICAL MEDICINE 2018; 1:102-110. [PMID: 30687564 PMCID: PMC6333048 DOI: 10.1093/pcmedi/pby015] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2018] [Revised: 10/13/2018] [Accepted: 10/26/2018] [Indexed: 12/21/2022] Open
Abstract
Development of human autoimmune disorders results from complex interplay among genetic, environmental, and immunological risk factors. Despite much heterogeneity in environmental triggers, the leading genes that give the propensity for tissue-specific autoimmune diseases, such as type 1 diabetes, are those associated with particular class II major histocompatibility complex alleles. Such genetic predisposition precipitates presentation of tissue antigens to MHC-II-restricted CD4 T cells. When properly activated, these self-reactive CD4 T cells migrate to the target tissue and trigger the initial immune attack. Using the non-obese diabetic mouse model of spontaneous autoimmune diabetes, much insight has been gained in understanding how presentation of physiological levels of self-antigens translates into pathological outcomes. In this review, we summarize recent advances illustrating the features of the antigen presenting cells, the sites of the antigen recognition, and the nature of the consequent T cell responses. We emphasize emerging evidence that highlights the importance of systemic presentation of catabolized tissue antigens in mobilization of pathogenic T cells. The implication of these studies in therapeutic perspectives is also discussed.
Collapse
Affiliation(s)
- Xiaoxiao Wan
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, USA
| | - Emil R Unanue
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, USA
| |
Collapse
|
21
|
Li M, Du W, Zhou M, Zheng L, Song E, Hou J. Proteomic analysis of insulin secretory granules in INS-1 cells by protein correlation profiling. BIOPHYSICS REPORTS 2018; 4:329-338. [PMID: 30596141 PMCID: PMC6276070 DOI: 10.1007/s41048-018-0061-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2018] [Accepted: 07/08/2018] [Indexed: 11/30/2022] Open
Abstract
Abstract Insulin secretory granules (ISGs), a group of distinguishing organelles in pancreatic β cells, are responsible for the storage and secretion of insulin to maintain blood glucose homeostasis. The molecular mechanisms of ISG biogenesis, maturation, transportation, and exocytosis are still largely unknown because the proteins involved in these distinct steps have not been fully identified. Subcellular fractionation by density gradient centrifugation has been successfully employed to analyze the proteomes of numerous organelles. However, use of this method to elucidate the ISG proteome is limited by co-fractionated contaminants because ISGs are very dynamic and have abundant exchanges or contacts with other organelles, such as the Golgi apparatus, lysosomes, and endosomes. In this study, we developed a new strategy for identifying ISG proteins by protein correlation profiling (PCP)-based proteomics, which included ISG purification by OptiPrep density gradient centrifugation, label-free quantitative proteome, and identification of ISG proteins by correlating fractionation profiles between candidates and known ISG markers. Using this approach, we were able to identify 81 ISG proteins. Among them, TM9SF3, a nine-transmembrane protein, was considered a high confidence ISG candidate protein highlighted in the PCP network. Further biochemical and immunofluorescence assays indicated that TM9SF3 localized in ISGs, suggesting that it is a potential new ISG marker. Graphical abstract ![]()
Electronic supplementary material The online version of this article (10.1007/s41048-018-0061-3) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Min Li
- 1National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101 China.,2College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100049 China
| | - Wen Du
- 1National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101 China
| | - Maoge Zhou
- 1National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101 China
| | - Li Zheng
- 1National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101 China
| | - Eli Song
- 1National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101 China
| | - Junjie Hou
- 1National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101 China
| |
Collapse
|
22
|
Neelankal John A, Jiang FX. An overview of type 2 diabetes and importance of vitamin D3-vitamin D receptor interaction in pancreatic β-cells. J Diabetes Complications 2018; 32:429-443. [PMID: 29422234 DOI: 10.1016/j.jdiacomp.2017.12.002] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/10/2017] [Revised: 12/03/2017] [Accepted: 12/07/2017] [Indexed: 02/07/2023]
Abstract
One significant health issue that plagues contemporary society is that of Type 2 diabetes (T2D). This disease is characterised by higher-than-average blood glucose levels as a result of a combination of insulin resistance and insufficient insulin secretions from the β-cells of pancreatic islets of Langerhans. Previous developmental research into the pancreas has identified how early precursor genes of pancreatic β-cells, such as Cpal, Ngn3, NeuroD, Ptf1a, and cMyc, play an essential role in the differentiation of these cells. Furthermore, β-cell molecular characterization has also revealed the specific role of β-cell-markers, such as Glut2, MafA, Ins1, Ins2, and Pdx1 in insulin expression. The expression of these genes appears to be suppressed in the T2D β-cells, along with the reappearance of the early endocrine marker genes. Glucose transporters transport glucose into β-cells, thereby controlling insulin release during hyperglycaemia. This stimulates glycolysis through rises in intracellular calcium (a process enhanced by vitamin D) (Norman et al., 1980), activating 2 of 4 proteinases. The rise in calcium activates half of pancreatic β-cell proinsulinases, thus releasing free insulin from granules. The synthesis of ATP from glucose by glycolysis, Krebs cycle and oxidative phosphorylation plays a role in insulin release. Some studies have found that the β-cells contain high levels of the vitamin D receptor; however, the role that this plays in maintaining the maturity of the β-cells remains unknown. Further research is required to develop a more in-depth understanding of the role VDR plays in β-cell function and the processes by which the beta cell function is preserved.
Collapse
Affiliation(s)
- Abraham Neelankal John
- Harry Perkins Institute of Medical Research, Centre for Medical Research, University of Western Australia, Nedlands, Western Australia, Australia; School of Medicine and Pharmacology, University of Western Australia, Carwley, Western Australia, Australia
| | - Fang-Xu Jiang
- Harry Perkins Institute of Medical Research, Centre for Medical Research, University of Western Australia, Nedlands, Western Australia, Australia; School of Medicine and Pharmacology, University of Western Australia, Carwley, Western Australia, Australia.
| |
Collapse
|
23
|
Hummer BH, de Leeuw NF, Burns C, Chen L, Joens MS, Hosford B, Fitzpatrick JAJ, Asensio CS. HID-1 controls formation of large dense core vesicles by influencing cargo sorting and trans-Golgi network acidification. Mol Biol Cell 2017; 28:3870-3880. [PMID: 29074564 PMCID: PMC5739301 DOI: 10.1091/mbc.e17-08-0491] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2017] [Revised: 10/05/2017] [Accepted: 10/16/2017] [Indexed: 12/19/2022] Open
Abstract
The peripheral membrane protein HID-1 localizes to the trans-Golgi network, where it contributes to the formation of large dense core vesicles of neuroendocrine cells by influencing cargo sorting and trans-Golgi network acidification. Large dense core vesicles (LDCVs) mediate the regulated release of neuropeptides and peptide hormones. They form at the trans-Golgi network (TGN), where their soluble content aggregates to form a dense core, but the mechanisms controlling biogenesis are still not completely understood. Recent studies have implicated the peripheral membrane protein HID-1 in neuropeptide sorting and insulin secretion. Using CRISPR/Cas9, we generated HID-1 KO rat neuroendocrine cells, and we show that the absence of HID-1 results in specific defects in peptide hormone and monoamine storage and regulated secretion. Loss of HID-1 causes a reduction in the number of LDCVs and affects their morphology and biochemical properties, due to impaired cargo sorting and dense core formation. HID-1 KO cells also exhibit defects in TGN acidification together with mislocalization of the Golgi-enriched vacuolar H+-ATPase subunit isoform a2. We propose that HID-1 influences early steps in LDCV formation by controlling dense core formation at the TGN.
Collapse
Affiliation(s)
- Blake H Hummer
- Department of Biological Sciences, University of Denver, Denver, CO 80210
| | - Noah F de Leeuw
- Department of Biological Sciences, University of Denver, Denver, CO 80210
| | - Christian Burns
- Department of Biological Sciences, University of Denver, Denver, CO 80210
| | - Lan Chen
- Department of Biological Sciences, University of Denver, Denver, CO 80210
| | - Matthew S Joens
- Washington University Center for Cellular Imaging, Washington University School of Medicine, St. Louis, MO 63110
| | - Bethany Hosford
- Department of Biological Sciences, University of Denver, Denver, CO 80210
| | - James A J Fitzpatrick
- Washington University Center for Cellular Imaging, Washington University School of Medicine, St. Louis, MO 63110
| | - Cedric S Asensio
- Department of Biological Sciences, University of Denver, Denver, CO 80210
| |
Collapse
|
24
|
Cattin-Ortolá J, Topalidou I, Dosey A, Merz AJ, Ailion M. The dense-core vesicle maturation protein CCCP-1 binds RAB-2 and membranes through its C-terminal domain. Traffic 2017; 18:720-732. [PMID: 28755404 DOI: 10.1111/tra.12507] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2017] [Revised: 07/26/2017] [Accepted: 07/26/2017] [Indexed: 12/18/2022]
Abstract
Dense-core vesicles (DCVs) are secretory organelles that store and release modulatory neurotransmitters from neurons and endocrine cells. Recently, the conserved coiled-coil protein CCCP-1 was identified as a component of the DCV biogenesis pathway in the nematode Caenorhabditis elegans. CCCP-1 binds the small GTPase RAB-2 and colocalizes with it at the trans-Golgi. Here, we report a structure-function analysis of CCCP-1 to identify domains of the protein important for its localization, binding to RAB-2, and function in DCV biogenesis. We find that the CCCP-1 C-terminal domain (CC3) has multiple activities. CC3 is necessary and sufficient for CCCP-1 localization and for binding to RAB-2, and is required for the function of CCCP-1 in DCV biogenesis. In addition, CCCP-1 binds membranes directly through its CC3 domain, indicating that CC3 may comprise a previously uncharacterized lipid-binding motif. We conclude that CCCP-1 is a coiled-coil protein that binds an activated Rab and localizes to the Golgi via its C-terminus, properties similar to members of the golgin family of proteins. CCCP-1 also shares biophysical features with golgins; it has an elongated shape and forms oligomers.
Collapse
Affiliation(s)
| | - Irini Topalidou
- Department of Biochemistry, University of Washington, Seattle, Washington
| | - Annie Dosey
- Department of Biochemistry, University of Washington, Seattle, Washington
| | - Alexey J Merz
- Department of Biochemistry, University of Washington, Seattle, Washington.,Department of Physiology and Biophysics, University of Washington, Seattle, Washington
| | - Michael Ailion
- Department of Biochemistry, University of Washington, Seattle, Washington
| |
Collapse
|
25
|
Molecular regulation of insulin granule biogenesis and exocytosis. Biochem J 2017; 473:2737-56. [PMID: 27621482 DOI: 10.1042/bcj20160291] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2016] [Accepted: 04/19/2016] [Indexed: 12/15/2022]
Abstract
Type 2 diabetes mellitus (T2DM) is a metabolic disorder characterized by hyperglycemia, insulin resistance and hyperinsulinemia in early disease stages but a relative insulin insufficiency in later stages. Insulin, a peptide hormone, is produced in and secreted from pancreatic β-cells following elevated blood glucose levels. Upon its release, insulin induces the removal of excessive exogenous glucose from the bloodstream primarily by stimulating glucose uptake into insulin-dependent tissues as well as promoting hepatic glycogenesis. Given the increasing prevalence of T2DM worldwide, elucidating the underlying mechanisms and identifying the various players involved in the synthesis and exocytosis of insulin from β-cells is of utmost importance. This review summarizes our current understanding of the route insulin takes through the cell after its synthesis in the endoplasmic reticulum as well as our knowledge of the highly elaborate network that controls insulin release from the β-cell. This network harbors potential targets for anti-diabetic drugs and is regulated by signaling cascades from several endocrine systems.
Collapse
|
26
|
Carrero JA, Ferris ST, Unanue ER. Macrophages and dendritic cells in islets of Langerhans in diabetic autoimmunity: a lesson on cell interactions in a mini-organ. Curr Opin Immunol 2016; 43:54-59. [PMID: 27710840 PMCID: PMC5125905 DOI: 10.1016/j.coi.2016.09.004] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2016] [Revised: 07/26/2016] [Accepted: 09/21/2016] [Indexed: 12/15/2022]
Abstract
Islets of Langerhans of all species harbor a small number of resident macrophages. These macrophages are found since birth, do not exchange with blood monocytes, and are maintained by a low level of replication. Under steady state conditions, the islet macrophages are in an activated state. Islet macrophages have an important homeostatic role in islet physiology. At the start of the autoimmune process in the NOD mouse, a small number of CD103+ dendritic cells (DC) are found at about the same time that CD4+ T cells also appear in islets. In the absence of the CD103+ DC in the Batf3 deficient mice, autoimmunity never develops. We discuss the interactions among the two phagocytes and beta cells that result in autoimmune diabetes in NOD mice.
Collapse
Affiliation(s)
- Javier A Carrero
- Department of Pathology and Immunology, Washington University School of Medicine, 660 South Euclid Avenue, Campus Box 8118, St. Louis, MO 63110, United States
| | - Stephen T Ferris
- Department of Pathology and Immunology, Washington University School of Medicine, 660 South Euclid Avenue, Campus Box 8118, St. Louis, MO 63110, United States
| | - Emil R Unanue
- Department of Pathology and Immunology, Washington University School of Medicine, 660 South Euclid Avenue, Campus Box 8118, St. Louis, MO 63110, United States.
| |
Collapse
|
27
|
Du W, Zhou M, Zhao W, Cheng D, Wang L, Lu J, Song E, Feng W, Xue Y, Xu P, Xu T. HID-1 is required for homotypic fusion of immature secretory granules during maturation. eLife 2016; 5. [PMID: 27751232 PMCID: PMC5094852 DOI: 10.7554/elife.18134] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2016] [Accepted: 10/17/2016] [Indexed: 02/06/2023] Open
Abstract
Secretory granules, also known as dense core vesicles, are generated at the trans-Golgi network and undergo several maturation steps, including homotypic fusion of immature secretory granules (ISGs) and processing of prehormones to yield active peptides. The molecular mechanisms governing secretory granule maturation are largely unknown. Here, we investigate a highly conserved protein named HID-1 in a mouse model. A conditional knockout of HID-1 in pancreatic β cells leads to glucose intolerance and a remarkable increase in the serum proinsulin/insulin ratio caused by defective proinsulin processing. Large volume three-dimensional electron microscopy and immunofluorescence imaging reveal that ISGs are much more abundant in the absence of HID-1. We further demonstrate that HID-1 deficiency prevented secretory granule maturation by blocking homotypic fusion of immature secretory granules. Our data identify a novel player during the early maturation of immature secretory granules.
Collapse
Affiliation(s)
- Wen Du
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Maoge Zhou
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China.,College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Wei Zhao
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China.,College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Dongwan Cheng
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Lifen Wang
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Jingze Lu
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Eli Song
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Wei Feng
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Yanhong Xue
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Pingyong Xu
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China.,Key Laboratory of RNA Biology, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Tao Xu
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China.,College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
28
|
Unanue ER, Ferris ST, Carrero JA. The role of islet antigen presenting cells and the presentation of insulin in the initiation of autoimmune diabetes in the NOD mouse. Immunol Rev 2016; 272:183-201. [PMID: 27319351 PMCID: PMC4938008 DOI: 10.1111/imr.12430] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
We have been examining antigen presentation and the antigen presenting cells (APCs) in the islets of Langerhans of the non-obese diabetic (NOD) mouse. The purpose is to identify the earliest events that initiate autoimmunity in this confined tissue. Islets normally have a population of macrophages that is distinct from those that inhabit the exocrine pancreas. Also found in NOD islets is a minor population of dendritic cells (DCs) that bear the CD103 integrin. We find close interactions between beta cells and the two APCs that result in the initiation of the autoimmunity. Even under non-inflammatory conditions, beta cells transfer insulin-containing vesicles to the APCs of the islet. This reaction requires live cells and intimate contact. The autoimmune process starts in islets with the entrance of CD4(+) T cells and an increase in the CD103(+) DCs. Mice deficient in the Batf3 transcription factor never develop diabetes due to the absence of the CD103/CD8α lineage of DCs. We hypothesize that the 12-20 peptide of the beta chain of insulin is responsible for activation of the initial CD4(+) T-cell response during diabetogenesis.
Collapse
Affiliation(s)
- Emil R. Unanue
- Department of Pathology and Immunology, Division of Immunobiology, 660 South Euclid Avenue, Campus Box 8118, Washington University School of Medicine, St. Louis, Missouri USA 63110
| | - Stephen T. Ferris
- Department of Pathology and Immunology, Division of Immunobiology, 660 South Euclid Avenue, Campus Box 8118, Washington University School of Medicine, St. Louis, Missouri USA 63110
| | - Javier A. Carrero
- Department of Pathology and Immunology, Division of Immunobiology, 660 South Euclid Avenue, Campus Box 8118, Washington University School of Medicine, St. Louis, Missouri USA 63110
| |
Collapse
|
29
|
Ferris ST, Carrero JA, Unanue ER. Antigen presentation events during the initiation of autoimmune diabetes in the NOD mouse. J Autoimmun 2016; 71:19-25. [PMID: 27021276 DOI: 10.1016/j.jaut.2016.03.007] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2016] [Accepted: 03/12/2016] [Indexed: 10/22/2022]
Abstract
This is a brief summary of our studies of NOD autoimmune diabetes examining the events during the initial stage of the process. Our focus has been on antigen presentation events and the antigen presenting cells (APC) inside islets. Islets of non-diabetic mice contain resident macrophages that are developmentally distinct from those in the inter-acinar stroma. The autoimmune process starts with the entrance of CD4+ T cells together with a burst of a subset of dendritic cells (DC) bearing CD103. The CD103+ DC develop under the influence of the Batf3 transcription factor. Batf3 deficient mice do not develop diabetes and their islets are uninfiltrated throughout life. Thus, the CD103+ DC are necessary for the progression of autoimmune diabetes. The major CD4+ T cell response in NOD are the T cells directed to insulin. In particular, the non-conventional 12-20 segment of the insulin B chain is presented by the class II MHC molecule I-A(g7) and elicits pathogenic CD4+ T cells. We discuss that the diabetic process requires the CD103+ DC, the CD4+ T cells to insulin peptides, and NOD specific I-Ag(7) MHC-II allele. Finally, our initial studies indicate that beta cells transfer insulin containing vesicles to the local APC in a contact-dependent reaction. Live images of beta cells interactions with the APC and electron micrographs of islet APCs also show the transfer of granules.
Collapse
Affiliation(s)
- Stephen T Ferris
- Department of Pathology and Immunology, Division of Immunobiology, 660 South Euclid Avenue, Campus Box 8118, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Javier A Carrero
- Department of Pathology and Immunology, Division of Immunobiology, 660 South Euclid Avenue, Campus Box 8118, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Emil R Unanue
- Department of Pathology and Immunology, Division of Immunobiology, 660 South Euclid Avenue, Campus Box 8118, Washington University School of Medicine, St. Louis, MO 63110, USA.
| |
Collapse
|
30
|
Norlin S, Parekh VS, Naredi P, Edlund H. Asna1/TRC40 Controls β-Cell Function and Endoplasmic Reticulum Homeostasis by Ensuring Retrograde Transport. Diabetes 2016; 65:110-9. [PMID: 26438609 DOI: 10.2337/db15-0699] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/25/2015] [Accepted: 09/28/2015] [Indexed: 11/13/2022]
Abstract
Type 2 diabetes (T2D) is characterized by insulin resistance and β-cell failure. Insulin resistance per se, however, does not provoke overt diabetes as long as compensatory β-cell function is maintained. The increased demand for insulin stresses the β-cell endoplasmic reticulum (ER) and secretory pathway, and ER stress is associated with β-cell failure in T2D. The tail recognition complex (TRC) pathway, including Asna1/TRC40, is implicated in the maintenance of endomembrane trafficking and ER homeostasis. To gain insight into the role of Asna1/TRC40 in maintaining endomembrane homeostasis and β-cell function, we inactivated Asna1 in β-cells of mice. We show that Asna1(β-/-) mice develop hypoinsulinemia, impaired insulin secretion, and glucose intolerance that rapidly progresses to overt diabetes. Loss of Asna1 function leads to perturbed plasma membrane-to-trans Golgi network and Golgi-to-ER retrograde transport as well as to ER stress in β-cells. Of note, pharmacological inhibition of retrograde transport in isolated islets and insulinoma cells mimicked the phenotype of Asna1(β-/-) β-cells and resulted in reduced insulin content and ER stress. These data support a model where Asna1 ensures retrograde transport and, hence, ER and insulin homeostasis in β-cells.
Collapse
Affiliation(s)
- Stefan Norlin
- Umeå Centre for Molecular Medicine, Umeå University, Umeå, Sweden
| | - Vishal S Parekh
- Umeå Centre for Molecular Medicine, Umeå University, Umeå, Sweden
| | - Peter Naredi
- Department of Surgery, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg
| | - Helena Edlund
- Umeå Centre for Molecular Medicine, Umeå University, Umeå, Sweden
| |
Collapse
|
31
|
Abstract
Zinc is an important micronutrient, essential in the diet to avoid a variety of conditions associated with malnutrition such as diarrhoea and alopecia. Lowered circulating levels of zinc are also found in diabetes mellitus, a condition which affects one in twelve of the adult population and whose treatments consume approximately 10 % of healthcare budgets. Zn2+ ions are essential for a huge range of cellular functions and, in the specialised pancreatic β-cell, for the storage of insulin within the secretory granule. Correspondingly, genetic variants in the SLC30A8 gene, which encodes the diabetes-associated granule-resident Zn2+ transporter ZnT8, are associated with an altered risk of type 2 diabetes. Here, we focus on (i) recent advances in measuring free zinc concentrations dynamically in subcellular compartments, and (ii) studies dissecting the role of intracellular zinc in the control of glucose homeostasis in vitro and in vivo. We discuss the effects on insulin secretion and action of deleting or over-expressing Slc30a8 highly selectively in the pancreatic β-cell, and the role of zinc in insulin signalling. While modulated by genetic variability, healthy levels of dietary zinc, and hence normal cellular zinc homeostasis, are likely to play an important role in the proper release and action of insulin to maintain glucose homeostasis and lower diabetes risk.
Collapse
|
32
|
Beta cells transfer vesicles containing insulin to phagocytes for presentation to T cells. Proc Natl Acad Sci U S A 2015; 112:E5496-502. [PMID: 26324934 DOI: 10.1073/pnas.1515954112] [Citation(s) in RCA: 79] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Beta cells from nondiabetic mice transfer secretory vesicles to phagocytic cells. The passage was shown in culture studies where the transfer was probed with CD4 T cells reactive to insulin peptides. Two sets of vesicles were transferred, one containing insulin and another containing catabolites of insulin. The passage required live beta cells in a close cell contact interaction with the phagocytes. It was increased by high glucose concentration and required mobilization of intracellular Ca2+. Live images of beta cell-phagocyte interactions documented the intimacy of the membrane contact and the passage of the granules. The passage was found in beta cells isolated from islets of young nonobese diabetic (NOD) mice and nondiabetic mice as well as from nondiabetic humans. Ultrastructural analysis showed intraislet phagocytes containing vesicles having the distinct morphology of dense-core granules. These findings document a process whereby the contents of secretory granules become available to the immune system.
Collapse
|
33
|
Roeske C, Martinuk A, Choudhry A, Hendy GN, Gollob M, Li Q, Georgalis T, de Bold AJ. Go protein subunit Goα and the secretory process of the natriuretic peptide hormones ANF and BNP. J Mol Endocrinol 2015; 54:277-88. [PMID: 25917834 DOI: 10.1530/jme-15-0081] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 04/24/2015] [Indexed: 12/31/2022]
Abstract
Expression of the G protein subunit Goα has been shown to be prominent in the atria of the rat heart and to be significantly associated with atrial natriuretic factor (ANF)-containing atrial-specific secretory granules by immunocytochemistry. In addition, differential expression profile analysis using oligonucleotide arrays has shown that the Goα isoform 1 (Goα1) is 2.3-fold more abundant in the atria than it is in the ventricles. In the present report, we show protein-protein interaction between Goα and ANF by yeast two-hybrid and by immunoprecipitation. A cardiac conditional Goα knockout model developed for the present study showed a 90% decrease in Goα expression and decreased atrial expression and ANF and brain natriuretic peptides (BNP) content. Expression of chromogranin A, a specific atrial granule core constituent, was not affected. Morphometric assessment of atrial tissue showed a very significant decrease in atrial-specific granule density as well as granule core electron density. Atrial electrical activity was not affected. The results obtained are compatible with the suggestion that Goα plays a role in ANF sorting during intracellular vectorial transport and with the presence of a mechanism that preserves the molar relationship between cellular ANF and BNP stores in the face of the decreased production of these hormones.
Collapse
Affiliation(s)
- Cassandra Roeske
- Cardiovascular Endocrinology LaboratoryUniversity of Ottawa Heart Institute, 40 Ruskin Street, Ottawa, Ontario, Canada K1Y 4W7Department of Pathology and Laboratory MedicineFaculty of Medicine, University of Ottawa, Ottawa, Ontario, Canada K1H 8M5Experimental Therapeutics and MetabolismMcGill University Health Centre-Research Institute, and Departments of Medicine, Physiology and Human Genetics, McGill University, Montreal, Quebec, CanadaToronto General Hospital200 Elizabeth Street, Toronto, Ontario, Canada M5G 2C4
| | - Amy Martinuk
- Cardiovascular Endocrinology LaboratoryUniversity of Ottawa Heart Institute, 40 Ruskin Street, Ottawa, Ontario, Canada K1Y 4W7Department of Pathology and Laboratory MedicineFaculty of Medicine, University of Ottawa, Ottawa, Ontario, Canada K1H 8M5Experimental Therapeutics and MetabolismMcGill University Health Centre-Research Institute, and Departments of Medicine, Physiology and Human Genetics, McGill University, Montreal, Quebec, CanadaToronto General Hospital200 Elizabeth Street, Toronto, Ontario, Canada M5G 2C4
| | - Asna Choudhry
- Cardiovascular Endocrinology LaboratoryUniversity of Ottawa Heart Institute, 40 Ruskin Street, Ottawa, Ontario, Canada K1Y 4W7Department of Pathology and Laboratory MedicineFaculty of Medicine, University of Ottawa, Ottawa, Ontario, Canada K1H 8M5Experimental Therapeutics and MetabolismMcGill University Health Centre-Research Institute, and Departments of Medicine, Physiology and Human Genetics, McGill University, Montreal, Quebec, CanadaToronto General Hospital200 Elizabeth Street, Toronto, Ontario, Canada M5G 2C4
| | - Geoffrey N Hendy
- Cardiovascular Endocrinology LaboratoryUniversity of Ottawa Heart Institute, 40 Ruskin Street, Ottawa, Ontario, Canada K1Y 4W7Department of Pathology and Laboratory MedicineFaculty of Medicine, University of Ottawa, Ottawa, Ontario, Canada K1H 8M5Experimental Therapeutics and MetabolismMcGill University Health Centre-Research Institute, and Departments of Medicine, Physiology and Human Genetics, McGill University, Montreal, Quebec, CanadaToronto General Hospital200 Elizabeth Street, Toronto, Ontario, Canada M5G 2C4
| | - Michael Gollob
- Cardiovascular Endocrinology LaboratoryUniversity of Ottawa Heart Institute, 40 Ruskin Street, Ottawa, Ontario, Canada K1Y 4W7Department of Pathology and Laboratory MedicineFaculty of Medicine, University of Ottawa, Ottawa, Ontario, Canada K1H 8M5Experimental Therapeutics and MetabolismMcGill University Health Centre-Research Institute, and Departments of Medicine, Physiology and Human Genetics, McGill University, Montreal, Quebec, CanadaToronto General Hospital200 Elizabeth Street, Toronto, Ontario, Canada M5G 2C4
| | - Qiuji Li
- Cardiovascular Endocrinology LaboratoryUniversity of Ottawa Heart Institute, 40 Ruskin Street, Ottawa, Ontario, Canada K1Y 4W7Department of Pathology and Laboratory MedicineFaculty of Medicine, University of Ottawa, Ottawa, Ontario, Canada K1H 8M5Experimental Therapeutics and MetabolismMcGill University Health Centre-Research Institute, and Departments of Medicine, Physiology and Human Genetics, McGill University, Montreal, Quebec, CanadaToronto General Hospital200 Elizabeth Street, Toronto, Ontario, Canada M5G 2C4
| | - Tina Georgalis
- Cardiovascular Endocrinology LaboratoryUniversity of Ottawa Heart Institute, 40 Ruskin Street, Ottawa, Ontario, Canada K1Y 4W7Department of Pathology and Laboratory MedicineFaculty of Medicine, University of Ottawa, Ottawa, Ontario, Canada K1H 8M5Experimental Therapeutics and MetabolismMcGill University Health Centre-Research Institute, and Departments of Medicine, Physiology and Human Genetics, McGill University, Montreal, Quebec, CanadaToronto General Hospital200 Elizabeth Street, Toronto, Ontario, Canada M5G 2C4
| | - Adolfo J de Bold
- Cardiovascular Endocrinology LaboratoryUniversity of Ottawa Heart Institute, 40 Ruskin Street, Ottawa, Ontario, Canada K1Y 4W7Department of Pathology and Laboratory MedicineFaculty of Medicine, University of Ottawa, Ottawa, Ontario, Canada K1H 8M5Experimental Therapeutics and MetabolismMcGill University Health Centre-Research Institute, and Departments of Medicine, Physiology and Human Genetics, McGill University, Montreal, Quebec, CanadaToronto General Hospital200 Elizabeth Street, Toronto, Ontario, Canada M5G 2C4 Cardiovascular Endocrinology LaboratoryUniversity of Ottawa Heart Institute, 40 Ruskin Street, Ottawa, Ontario, Canada K1Y 4W7Department of Pathology and Laboratory MedicineFaculty of Medicine, University of Ottawa, Ottawa, Ontario, Canada K1H 8M5Experimental Therapeutics and MetabolismMcGill University Health Centre-Research Institute, and Departments of Medicine, Physiology and Human Genetics, McGill University, Montreal, Quebec, CanadaToronto General Hospital200 Elizabeth Street, Toronto, Ontario, Canada M5G 2C4
| |
Collapse
|
34
|
Kebede MA, Oler AT, Gregg T, Balloon AJ, Johnson A, Mitok K, Rabaglia M, Schueler K, Stapleton D, Thorstenson C, Wrighton L, Floyd BJ, Richards O, Raines S, Eliceiri K, Seidah NG, Rhodes C, Keller MP, Coon JL, Audhya A, Attie AD. SORCS1 is necessary for normal insulin secretory granule biogenesis in metabolically stressed β cells. J Clin Invest 2014; 124:4240-56. [PMID: 25157818 DOI: 10.1172/jci74072] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2013] [Accepted: 07/14/2014] [Indexed: 01/21/2023] Open
Abstract
We previously positionally cloned Sorcs1 as a diabetes quantitative trait locus. Sorcs1 belongs to the Vacuolar protein sorting-10 (Vps10) gene family. In yeast, Vps10 transports enzymes from the trans-Golgi network (TGN) to the vacuole. Whole-body Sorcs1 KO mice, when made obese with the leptin(ob) mutation (ob/ob), developed diabetes. β Cells from these mice had a severe deficiency of secretory granules (SGs) and insulin. Interestingly, a single secretagogue challenge failed to consistently elicit an insulin secretory dysfunction. However, multiple challenges of the Sorcs1 KO ob/ob islets consistently revealed an insulin secretion defect. The luminal domain of SORCS1 (Lum-Sorcs1), when expressed in a β cell line, acted as a dominant-negative, leading to SG and insulin deficiency. Using syncollin-dsRed5TIMER adenovirus, we found that the loss of Sorcs1 function greatly impairs the rapid replenishment of SGs following secretagogue challenge. Chronic exposure of islets from lean Sorcs1 KO mice to high glucose and palmitate depleted insulin content and evoked an insulin secretion defect. Thus, in metabolically stressed mice, Sorcs1 is important for SG replenishment, and under chronic challenge by insulin secretagogues, loss of Sorcs1 leads to diabetes. Overexpression of full-length SORCS1 led to a 2-fold increase in SG content, suggesting that SORCS1 is sufficient to promote SG biogenesis.
Collapse
|
35
|
Jonatan D, Spence JR, Method AM, Kofron M, Sinagoga K, Haataja L, Arvan P, Deutsch GH, Wells JM. Sox17 regulates insulin secretion in the normal and pathologic mouse β cell. PLoS One 2014; 9:e104675. [PMID: 25144761 PMCID: PMC4140688 DOI: 10.1371/journal.pone.0104675] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2014] [Accepted: 07/16/2014] [Indexed: 02/06/2023] Open
Abstract
SOX17 is a key transcriptional regulator that can act by regulating other transcription factors including HNF1β and FOXA2, which are known to regulate postnatal β cell function. Given this, we investigated the role of SOX17 in the developing and postnatal pancreas and found a novel role for SOX17 in regulating insulin secretion. Deletion of the Sox17 gene in the pancreas (Sox17-paLOF) had no observable impact on pancreas development. However, Sox17-paLOF mice had higher islet proinsulin protein content, abnormal trafficking of proinsulin, and dilated secretory organelles suggesting that Sox17-paLOF adult mice are prediabetic. Consistant with this, Sox17-paLOF mice were more susceptible to aged-related and high fat diet-induced hyperglycemia and diabetes. Overexpression of Sox17 in mature β cells using Ins2-rtTA driver mice resulted in precocious secretion of proinsulin. Transcriptionally, SOX17 appears to broadly regulate secretory networks since a 24-hour pulse of SOX17 expression resulted in global transcriptional changes in factors that regulate hormone transport and secretion. Lastly, transient SOX17 overexpression was able to reverse the insulin secretory defects observed in MODY4 animals and restored euglycemia. Together, these data demonstrate a critical new role for SOX17 in regulating insulin trafficking and secretion and that modulation of Sox17-regulated pathways might be used therapeutically to improve cell function in the context of diabetes.
Collapse
Affiliation(s)
- Diva Jonatan
- Division of Developmental Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, United States of America
| | - Jason R. Spence
- Department of Internal Medicine, Division of Gastroenterology, University of Michigan Medical School, Ann Arbor, MI, United States of America
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI, United States of America
- Center for Organogenesis, University of Michigan Medical School, Ann Arbor, MI, United States of America
| | - Anna M. Method
- Division of Developmental Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, United States of America
| | - Matthew Kofron
- Division of Developmental Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, United States of America
| | - Katie Sinagoga
- Division of Developmental Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, United States of America
| | - Leena Haataja
- Division of Metabolism, Endocrinology, and Diabetes, University of Michigan Medical School, Ann Arbor, MI, United States of America
| | - Peter Arvan
- Division of Metabolism, Endocrinology, and Diabetes, University of Michigan Medical School, Ann Arbor, MI, United States of America
| | - Gail H. Deutsch
- Seattle Children’s Hospital, Seattle, WA, United States of America
| | - James M. Wells
- Division of Developmental Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, United States of America
- Division of Endocrinology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, United States of America
- * E-mail:
| |
Collapse
|
36
|
Zhang W, Blackman LM, Hardham AR. Transient fusion and selective secretion of vesicle proteins in Phytophthora nicotianae zoospores. PeerJ 2013; 1:e221. [PMID: 24392285 PMCID: PMC3869178 DOI: 10.7717/peerj.221] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2013] [Accepted: 11/13/2013] [Indexed: 12/25/2022] Open
Abstract
Secretion of pathogen proteins is crucial for the establishment of disease in animals and plants. Typically, early interactions between host and pathogen trigger regulated secretion of pathogenicity factors that function in pathogen adhesion and host penetration. During the onset of plant infection by spores of the Oomycete, Phytophthora nicotianae, proteins are secreted from three types of cortical vesicles. Following induction of spore encystment, two vesicle types undergo full fusion, releasing their entire contents onto the cell surface. However, the third vesicle type, so-called large peripheral vesicles, selectively secretes a small Sushi domain-containing protein, PnCcp, while retaining a large glycoprotein, PnLpv, before moving away from the plasma membrane. Selective secretion of PnCcp is associated with its compartmentalization within the vesicle periphery. Pharmacological inhibition of dynamin function, purportedly in vesicle fission, by dynasore treatment provides evidence that selective secretion of PnCcp requires transient fusion of the large peripheral vesicles. This is the first report of selective protein secretion via transient fusion outside mammalian cells. Selective secretion is likely to be an important aspect of plant infection by this destructive pathogen.
Collapse
Affiliation(s)
- Weiwei Zhang
- Plant Science Division, Research School of Biology, College of Medicine, Biology and Environment, The Australian National University , Canberra, ACT , Australia
| | - Leila M Blackman
- Plant Science Division, Research School of Biology, College of Medicine, Biology and Environment, The Australian National University , Canberra, ACT , Australia
| | - Adrienne R Hardham
- Plant Science Division, Research School of Biology, College of Medicine, Biology and Environment, The Australian National University , Canberra, ACT , Australia
| |
Collapse
|
37
|
Sirkis DW, Edwards RH, Asensio CS. Widespread dysregulation of peptide hormone release in mice lacking adaptor protein AP-3. PLoS Genet 2013; 9:e1003812. [PMID: 24086151 PMCID: PMC3784564 DOI: 10.1371/journal.pgen.1003812] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2013] [Accepted: 08/06/2013] [Indexed: 12/13/2022] Open
Abstract
The regulated secretion of peptide hormones, neural peptides and many growth factors depends on their sorting into large dense core vesicles (LDCVs) capable of regulated exocytosis. LDCVs form at the trans-Golgi network, but the mechanisms that sort proteins to this regulated secretory pathway and the cytosolic machinery that produces LDCVs remain poorly understood. Recently, we used an RNAi screen to identify a role for heterotetrameric adaptor protein AP-3 in regulated secretion and in particular, LDCV formation. Indeed, mocha mice lacking AP-3 have a severe neurological and behavioral phenotype, but this has been attributed to a role for AP-3 in the endolysosomal rather than biosynthetic pathway. We therefore used mocha mice to determine whether loss of AP-3 also dysregulates peptide release in vivo. We find that adrenal chromaffin cells from mocha animals show increased constitutive exocytosis of both soluble cargo and LDCV membrane proteins, reducing the response to stimulation. We also observe increased basal release of both insulin and glucagon from pancreatic islet cells of mocha mice, suggesting a global disturbance in the release of peptide hormones. AP-3 exists as both ubiquitous and neuronal isoforms, but the analysis of mice lacking each of these isoforms individually and together shows that loss of both is required to reproduce the effect of the mocha mutation on the regulated pathway. In addition, we show that loss of the related adaptor protein AP-1 has a similar effect on regulated secretion but exacerbates the effect of AP-3 RNAi, suggesting distinct roles for the two adaptors in the regulated secretory pathway.
Collapse
Affiliation(s)
- Daniel W. Sirkis
- Graduate Program in Pharmaceutical Sciences and Pharmacogenomics, University of California San Francisco, San Francisco, California, United States of America
- Departments of Physiology and Neurology, University of California San Francisco, San Francisco, California, United States of America
| | - Robert H. Edwards
- Graduate Program in Pharmaceutical Sciences and Pharmacogenomics, University of California San Francisco, San Francisco, California, United States of America
- Departments of Physiology and Neurology, University of California San Francisco, San Francisco, California, United States of America
- * E-mail:
| | - Cédric S. Asensio
- Departments of Physiology and Neurology, University of California San Francisco, San Francisco, California, United States of America
| |
Collapse
|
38
|
Messenger SW, Thomas DDH, Falkowski MA, Byrne JA, Gorelick FS, Groblewski GE. Tumor protein D52 controls trafficking of an apical endolysosomal secretory pathway in pancreatic acinar cells. Am J Physiol Gastrointest Liver Physiol 2013; 305:G439-52. [PMID: 23868405 PMCID: PMC3761242 DOI: 10.1152/ajpgi.00143.2013] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/06/2013] [Accepted: 07/12/2013] [Indexed: 01/31/2023]
Abstract
Zymogen granule (ZG) formation in acinar cells involves zymogen cargo sorting from trans-Golgi into immature secretory granules (ISGs). ISG maturation progresses by removal of lysosomal membrane and select content proteins, which enter endosomal intermediates prior to their apical exocytosis. Constitutive and stimulated secretion through this mechanism is termed the constitutive-like and minor-regulated pathways, respectively. However, the molecular components that control membrane trafficking within these endosomal compartments are largely unknown. We show that tumor protein D52 is highly expressed in endosomal compartments following pancreatic acinar cell stimulation and regulates apical exocytosis of an apically directed endolysosomal compartment. Secretion from the endolysosomal compartment was detected by cell-surface antigen labeling of lysosome-associated membrane protein LAMP1, which is absent from ZGs, and had incomplete overlap with surface labeling of synaptotagmin 1, a marker of ZG exocytosis. Although culturing (16-18 h) of isolated acinar cells is accompanied by a loss of secretory responsiveness, the levels of SNARE proteins necessary for ZG exocytosis were preserved. However, levels of endolysosomal proteins D52, EEA1, Rab5, and LAMP1 markedly decreased with culture. When D52 levels were restored by adenoviral delivery, the levels of these regulatory proteins and secretion of both LAMP1 (endolysosomal) and amylase was strongly enhanced. These secretory effects were absent in alanine and aspartate substitutions of serine 136, the major D52 phosphorylation site, and were inhibited by brefeldin A, which does not directly affect the ZG compartment. Our results indicate that D52 directly regulates apical endolysosomal secretion and are consistent with previous studies, suggesting that this pathway indirectly regulates ZG secretion of digestive enzymes.
Collapse
Affiliation(s)
- Scott W Messenger
- Univ. of Wisconsin, Dept. of Nutritional Sciences, 1415 Linden Dr., Madison, WI 53706.
| | | | | | | | | | | |
Collapse
|
39
|
Cao M, Mao Z, Kam C, Xiao N, Cao X, Shen C, Cheng KKY, Xu A, Lee KM, Jiang L, Xia J. PICK1 and ICA69 control insulin granule trafficking and their deficiencies lead to impaired glucose tolerance. PLoS Biol 2013; 11:e1001541. [PMID: 23630453 PMCID: PMC3635858 DOI: 10.1371/journal.pbio.1001541] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2012] [Accepted: 03/12/2013] [Indexed: 11/19/2022] Open
Abstract
PICK1 and ICA69, proteins containing a BAR domain, regulate the biogenesis and maturation of insulin granules in mice. Diabetes is a metabolic disorder characterized by hyperglycemia. Insulin, which is secreted by pancreatic beta cells, is recognized as the critical regulator of blood glucose, but the molecular machinery responsible for insulin trafficking remains poorly defined. In particular, the roles of cytosolic factors that govern the formation and maturation of insulin granules are unclear. Here we report that PICK1 and ICA69, two cytosolic lipid-binding proteins, formed heteromeric BAR-domain complexes that associated with insulin granules at different stages of their maturation. PICK1-ICA69 heteromeric complexes associated with immature secretory granules near the trans-Golgi network (TGN). A brief treatment of Brefeldin A, which blocks vesicle budding from the Golgi, increased the amount of PICK1 and ICA69 at TGN. On the other hand, mature secretory granules were associated with PICK1 only, not ICA69. PICK1 deficiency in mice caused the complete loss of ICA69 and led to increased food and water intake but lower body weight. Glucose tolerance tests demonstrated that these mutant mice had high blood glucose, a consequence of insufficient insulin. Importantly, while the total insulin level was reduced in PICK1-deficient beta cells, proinsulin was increased. Lastly, ICA69 knockout mice also displayed similar phenotype as the mice deficient in PICK1. Together, our results indicate that PICK1 and ICA69 are key regulators of the formation and maturation of insulin granules.
Collapse
Affiliation(s)
- Mian Cao
- Division of Life Science, Division of Biomedical Engineering and State Key Laboratory of Molecular Neuroscience, The Hong Kong University of Science and Technology, Hong Kong, China
| | - Zhuo Mao
- Division of Life Science, Division of Biomedical Engineering and State Key Laboratory of Molecular Neuroscience, The Hong Kong University of Science and Technology, Hong Kong, China
| | - Chuen Kam
- Division of Life Science, Division of Biomedical Engineering and State Key Laboratory of Molecular Neuroscience, The Hong Kong University of Science and Technology, Hong Kong, China
| | - Nan Xiao
- Division of Life Science, Division of Biomedical Engineering and State Key Laboratory of Molecular Neuroscience, The Hong Kong University of Science and Technology, Hong Kong, China
| | - Xiaoxing Cao
- Division of Life Science, Division of Biomedical Engineering and State Key Laboratory of Molecular Neuroscience, The Hong Kong University of Science and Technology, Hong Kong, China
| | - Chong Shen
- Division of Life Science, Division of Biomedical Engineering and State Key Laboratory of Molecular Neuroscience, The Hong Kong University of Science and Technology, Hong Kong, China
| | - Kenneth K. Y. Cheng
- Department of Medicine and Department of Pharmacology & Pharmacy, University of Hong Kong, Hong Kong, China
| | - Aimin Xu
- Department of Medicine and Department of Pharmacology & Pharmacy, University of Hong Kong, Hong Kong, China
| | - Kwong-Man Lee
- Li Ka Shing Institute of Health Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong, China
| | - Liwen Jiang
- School of Life Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong, China
| | - Jun Xia
- Division of Life Science, Division of Biomedical Engineering and State Key Laboratory of Molecular Neuroscience, The Hong Kong University of Science and Technology, Hong Kong, China
- * E-mail:
| |
Collapse
|
40
|
Rosen O, Manor R, Weil S, Aflalo ED, Bakhrat A, Abdu U, Sagi A. An androgenic gland membrane-anchored gene associated with the crustacean insulin-like androgenic gland hormone. ACTA ACUST UNITED AC 2013; 216:2122-8. [PMID: 23470660 DOI: 10.1242/jeb.080523] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Crustacean male sexual differentiation is governed by the androgenic gland (AG) and specifically by the secreted insulin-like AG hormone (IAG), thus far identified in several decapod species including the Australian red claw crayfish Cherax quadricarinatus (termed Cq-IAG). While a few insulin-like AG genes have been identified in crustaceans, other AG-specific genes have not been documented until now. In the present study, we describe the recent identification of a non-IAG AG-specific transcript obtained from the C. quadricarinatus AG cDNA library. This transcript, termed C. quadricarinatus membrane-anchored AG-specific factor (Cq-MAG), was fully sequenced and found to encode a putative product of 189 amino acids including a signal anchoring peptide. Expression of a recombinant GFP fusion protein lacking the signal anchor encoding sequence dramatically affected recombinant protein localization pattern. While the expression of the deleterious fusion protein was observed throughout most of the cell, the native GFP::Cq-MAG fusion protein was observed mainly surrounding the periphery of the nucleus, demonstrating an endoplasmic reticulum (ER)-like localization pattern. Moreover, co-expression of the wild-type Cq-MAG (fused to GFP) and the Cq-IAG hormone revealed that these peptides indeed co-localize. This study is the first to report a protein specifically associated with the insulin-like AG hormone in addition to the finding of another AG-specific transcript in crustaceans. Previous knowledge suggests that insulin/insulin-like factor secretion involves tissue-specific transcripts and membrane-anchored proteins. In this regard, Cq-MAG's tissue specificity, anchoring properties and intracellular co-localization with Cq-IAG suggest that it may play a role in the processing and secretion of this insulin-like AG hormone.
Collapse
Affiliation(s)
- Ohad Rosen
- The Department of Life Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | | | | | | | | | | | | |
Collapse
|
41
|
Bogan JS, Xu Y, Hao M. Cholesterol accumulation increases insulin granule size and impairs membrane trafficking. Traffic 2012; 13:1466-80. [PMID: 22889194 DOI: 10.1111/j.1600-0854.2012.01407.x] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2012] [Revised: 08/09/2012] [Accepted: 08/13/2012] [Indexed: 11/28/2022]
Abstract
The formation of mature secretory granules is essential for proper storage and regulated release of hormones and neuropeptides. In pancreatic β cells, cholesterol accumulation causes defects in insulin secretion and may participate in the pathogenesis of type 2 diabetes. Using a novel cholesterol analog, we show for the first time that insulin granules are the major sites of intracellular cholesterol accumulation in live β cells. This is distinct from other, non-secretory cell types, in which cholesterol is concentrated in the recycling endosomes and the trans-Golgi network. Excess cholesterol was delivered specifically to insulin granules, which caused granule enlargement and retention of syntaxin 6 and VAMP4 in granule membranes, with concurrent depletion of these proteins from the trans-Golgi network. Clathrin also accumulated in the granules of cholesterol-overloaded cells, consistent with a possible defect in the last stage of granule maturation, during which clathrin-coated vesicles bud from the immature granules. Excess cholesterol also reduced the docking and fusion of insulin granules at the plasma membrane. Together, the data support a model in which cholesterol accumulation in insulin secretory granules impairs the ability of these vesicles to respond to stimuli, and thus reduces insulin secretion.
Collapse
Affiliation(s)
- Jonathan S Bogan
- Department of Internal Medicine, Yale University School of Medicine, New Haven, CT 06520, USA
| | | | | |
Collapse
|
42
|
Schvartz D, Brunner Y, Couté Y, Foti M, Wollheim CB, Sanchez JC. Improved characterization of the insulin secretory granule proteomes. J Proteomics 2012; 75:4620-31. [PMID: 22569486 DOI: 10.1016/j.jprot.2012.04.023] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2011] [Revised: 02/22/2012] [Accepted: 04/20/2012] [Indexed: 11/15/2022]
Abstract
Insulin secretory granules (ISGs) are pivotal organelles of pancreatic ß-cells and represent a key participant to glucose homeostasis. Indeed, insulin is packed and processed within these vesicles before its release by exocytosis. It is therefore crucial to acquire qualitative and quantitative data on the ISG proteome, in order to increase our knowledge on ISG biogenesis, maturation and exocytosis. Despites efforts made in the past years, the coverage of the ISG proteome is still incomplete and comprises many potential protein contaminants most likely coming from suboptimal sample preparations. We developed here a 3-step gradient purification procedure combined to Stable Isotope Labeling with Amino acids in Cell culture (SILAC) to further characterize the ISG protein content. Our results allowed to build three complementary proteomes containing 1/ proteins which are enriched in mature ISGs, 2/ proteins sharing multiple localizations including ISGs, and finally 3/ proteins sorted out from immature ISGs and/or co-purifying contaminants. As a proof of concept, the ProSAAS, a neuronal protein found in ISGs was further characterized and its granular localization proved. ProSAAS might represent a novel potential target allowing to better understand the defaults in insulin processing and secretion observed during type 2 diabetes progression. This article is part of a special issue entitled: Translational Proteomics.
Collapse
Affiliation(s)
- Domitille Schvartz
- Biomedical Proteomics Research Group, Department of Human Protein Sciences, University Medical Center, Geneva, Switzerland
| | | | | | | | | | | |
Collapse
|
43
|
Dannies PS. Prolactin and growth hormone aggregates in secretory granules: the need to understand the structure of the aggregate. Endocr Rev 2012; 33:254-70. [PMID: 22357343 DOI: 10.1210/er.2011-1002] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Prolactin and GH form reversible aggregates in the trans-Golgi lumen that become the dense cores of secretory granules. Aggregation is an economical means of sorting, because self-association removes the hormones from other possible pathways. Secretory granules containing different aggregates show different behavior, such as the reduction in stimulated release of granules containing R183H-GH compared with release of those containing wild-type hormone. Aggregates may facilitate localization of membrane proteins necessary for transport and exocytosis of secretory granules, and therefore understanding their properties is important. Three types of self-association have been characterized: dimers of human GH that form with Zn(2+), low-affinity self-association of human prolactin caused by acidic pH and Zn(2+) with macromolecular crowding, and amyloid fibers of prolactin. The best candidate for the form in most granules may be low-affinity self-association because it occurs rapidly at Zn(2+) concentrations that are likely to be in granules and reverses rapidly in neutral pH. Amyloid may form in older granules. Determining differences between aggregates of wild type and those of R183H-GH should help to understand why granules containing the mutant behave differently from those containing wild-type hormone. If reversible aggregation of other hormones, including those that are proteolytically processed, is the crucial act in forming granules, rather than use of a sorting signal, then prohormones should form reversible aggregates in solution in conditions that resemble those of the trans-Golgi lumen, including macromolecular crowding.
Collapse
Affiliation(s)
- Priscilla S Dannies
- Department of Pharmacology, Yale University School of Medicine, New Haven, Connecticut 06520-8066, USA.
| |
Collapse
|
44
|
Gaji RY, Flammer HP, Carruthers VB. Forward targeting of Toxoplasma gondii proproteins to the micronemes involves conserved aliphatic amino acids. Traffic 2011; 12:840-53. [PMID: 21438967 DOI: 10.1111/j.1600-0854.2011.01192.x] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Like other apicomplexan parasites, Toxoplasma gondii actively invades host cells using a combination of secretory proteins and an acto-myosin motor system. Micronemes are the first set of proteins secreted during invasion that play an essential role in host cell entry. Many microneme proteins (MICs) function in protein complexes, and each complex contains at least one protein that displays a cleavable propeptide. Although MIC propeptides have been implicated in forward targeting to micronemes, the specific amino acids involved have not been identified. It was also not known if the propeptide has a general function in MICs trafficking in T. gondii and other apicomplexans. Here we show that propeptide domains are extensively interchangeable between T. gondii MICs and also with that of Eimeria tenella MIC5 (EtMIC5), suggesting a common mechanism of function. We also performed N-terminal deletion and mutational analysis of M2AP and MIC5 propeptides to show that a valine at position +3 (relative to signal peptidase cleavage) of proM2AP and a leucine at position +1 of proMIC5 are crucial for targeting to micronemes. Valine and leucine are closely related amino acids with similar side chains, implying a similar mode of function, a notion that was confirmed by correct trafficking of TgM2AP-V/L and TgMIC5-L/V substitution mutants. Propeptides of AMA1, MIC3 and EtMIC5 have valine or leucine at or near the N-termini and mutagenesis of these conserved residues validated their role in microneme trafficking. Collectively, our findings suggest that discrete, aliphatic residues at the extreme N-termini of proMICs facilitate trafficking to the micronemes.
Collapse
Affiliation(s)
- Rajshekhar Y Gaji
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, MI 48109, USA.
| | | | | |
Collapse
|
45
|
Abstract
Endothelial cells are reported to contain several distinct populations of regulated secretory organelles, including Weibel-Palade bodies (WPBs), the tissue plasminogen activator (tPA) organelle, and the type-2 chemokine-containing organelle. We show that the tPA and type-2 organelles in human endothelial cells represent a single compartment primarily responsible for unstimulated secretion of tPA or, in cells exposed to interleukin-1β (IL-1β), the cytokines IL-8, IL-6, monocyte chemoattractant protein-1 (MCP-1), and growth-regulated oncogene-α (GRO-α). This compartment was distinct from WPBs in that it lacked detectable von Willebrand factor, P-selectin, Rab27a, or CD63 immunoreactivity, displayed no time-dependent decrease in intragranule pH, underwent detectable unstimulated exocytosis, and was very poorly responsive to Ca(2+)-elevating secretagogues. WPBs could also contain tPA, and in IL-1β-treated cells, IL-8, IL-6, MCP-1, and GRO-α, and were the primary source for histamine or ionomycin-stimulated secretion of these molecules. However, analysis of the storage efficiency of cytokines and tPA revealed that all were very poorly stored compared with von Willebrand factor. The nonmammalian, nonsecretory protein EGFP, when expressed in the secretory pathway, also entered WPBs and had a storage efficiency similar to tPA and the cytokines tested. Based on these data, we proposed a revised model for storage and secretion of cytokines and tPA.
Collapse
|
46
|
Brunner Y, Schvartz D, Couté Y, Sanchez JC. Proteomics of regulated secretory organelles. MASS SPECTROMETRY REVIEWS 2009; 28:844-867. [PMID: 19301366 DOI: 10.1002/mas.20211] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Regulated secretory organelles are important subcellular structures of living cells that allow the release in the extracellular space of crucial compounds, such as hormones and neurotransmitters. Therefore, the regulation of biogenesis, trafficking, and exocytosis of regulated secretory organelles has been intensively studied during the last 30 years. However, due to the large number of different regulated secretory organelles, only a few of them have been specifically characterized. New insights into regulated secretory organelles open crucial perspectives for a better comprehension of the mechanisms that govern cell secretion. The combination of subcellular fractionation, protein separation, and mass spectrometry is also possible to study regulated secretory organelles at the proteome level. In this review, we present different strategies used to isolate regulated secretory organelles, separate their protein content, and identify the proteins by mass spectrometry. The biological significance of regulated secretory organelles-proteomic analysis is discussed as well.
Collapse
Affiliation(s)
- Yannick Brunner
- Biomedical Proteomics Research Group, University Medical Center, Geneva, Switzerland
| | | | | | | |
Collapse
|
47
|
Insulin granule biogenesis, trafficking and exocytosis. VITAMINS AND HORMONES 2009; 80:473-506. [PMID: 19251047 DOI: 10.1016/s0083-6729(08)00616-x] [Citation(s) in RCA: 151] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
It is becoming increasingly apparent that beta cell dysfunction resulting in abnormal insulin secretion is the essential element in the progression of patients from a state of impaired glucose tolerance to frank type 2 diabetes (Del Prato, 2003; Del Prato and Tiengo, 2001). Although extensive studies have examined the molecular, cellular and physiologic mechanisms of insulin granule biogenesis, sorting, and exocytosis the precise mechanisms controlling these processes and their dysregulation in the developed of diabetes remains an area of important investigation. We now know that insulin biogenesis initiates with the synthesis of preproinsulin in rough endoplastic reticulum and conversion of preproinsulin to proinsulin. Proinsulin begins to be packaged in the Trans-Golgi Network and is sorting into immature secretory granules. These immature granules become acidic via ATP-dependent proton pump and proinsulin undergoes proteolytic cleavage resulting the formation of insulin and C-peptide. During the granule maturation process, insulin is crystallized with zinc and calcium in the form of dense-core granules and unwanted cargo and membrane proteins undergo selective retrograde trafficking to either the constitutive trafficking pathway for secretion or to degradative pathways. The newly formed mature dense-core insulin granules populate two different intracellular pools, the readily releasable pools (RRP) and the reserved pool. These two distinct populations are thought to be responsible for the biphasic nature of insulin release in which the RRP granules are associated with the plasma membrane and undergo an acute calcium-dependent release accounting for first phase insulin secretion. In contrast, second phase insulin secretion requires the trafficking of the reserved granule pool to the plasma membrane. The initial trigger for insulin granule fusion with the plasma membrane is a rise in intracellular calcium and in the case of glucose stimulation results from increased production of ATP, closure of the ATP-sensitive potassium channel and cellular depolarization. In turn, this opens voltage-dependent calcium channels allowing increased influx of extracellular calcium. Calcium is thought to bind to members of the fusion regulatory proteins synaptogamin that functionally repressors the fusion inhibitory protein complexin. Both complexin and synaptogamin interact as well as several other regulatory proteins interact with the core fusion machinery composed of the Q- or t-SNARE proteins syntaxin 1 and SNAP25 in the plasma membrane that assembles with the R- or v-SNARE protein VAMP2 in insulin granules. In this chapter we will review the current progress of insulin granule biogenesis, sorting, trafficking, exocytosis and signaling pathways that comprise the molecular basis of glucose-dependent insulin secretion.
Collapse
|
48
|
Adriaansen J, Perez P, Goldsmith CM, Zheng C, Baum BJ. Differential sorting of human parathyroid hormone after transduction of mouse and rat salivary glands. Hum Gene Ther 2009; 19:1021-8. [PMID: 18694295 DOI: 10.1089/hum.2008.079] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Gene transfer to salivary glands leads to abundant secretion of transgenic protein into either saliva or the bloodstream. This indicates significant clinical potential, depending on the route of sorting. The aim of this study was to probe the sorting characteristics of human parathyroid hormone (hPTH) in two animal models for salivary gland gene transfer. PTH is a key hormone regulating calcium levels in the blood. A recombinant serotype 5 adenoviral vector carrying the hPTH cDNA was administered to the submandibular glands of mice and rats. Two days after delivery, high levels of hPTH were found in the serum of mice, leading to elevated serum calcium levels. Only low amounts of hPTH were found in the saliva. Two days after vector infusion into rats, a massive secretion of hPTH was measured in saliva, with little secretion into serum. Confocal microscopy showed hPTH in the glands, localized basolaterally in mice and apically in rats. Submandibular gland transduction was effective and the produced hPTH was biologically active in vivo. Whereas hPTH sorted toward the basolateral side in mice, in rats hPTH was secreted mainly at the apical side. These results indicate that the interaction between hPTH and the cell sorting machinery is different between mouse and rat salivary glands. Detailed studies in these two species should result in a better understanding of cellular control of transgenic secretory protein sorting in this tissue.
Collapse
Affiliation(s)
- J Adriaansen
- Molecular Physiology and Therapeutics Branch, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD 20892-1190, USA.
| | | | | | | | | |
Collapse
|
49
|
Michael DJ, Tapechum S, Rohan JG, Johnson JM, Chow RH. Fluorescent cargo proteins in peptidergic endocrine cells: cell type determines secretion kinetics at exocytosis. Ann N Y Acad Sci 2009; 1152:7-17. [PMID: 19161372 DOI: 10.1111/j.1749-6632.2008.04006.x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Fluorescent fusion proteins are an important tool for the study of vesicle trafficking and exocytosis, especially when combined with newer types of microscopy. We previously reported that the design of a vesicle-targeted fluorescent fusion construct strongly influences the kinetics of fluorescence change at exocytosis. In the present study we demonstrate that the cell in which a construct is expressed also affects the kinetics of fluorescence change at exocytosis. We fused enhanced green fluorescent protein to the carboxy terminus of the vesicular cargo protein rodent islet amyloid polypeptide. The two proteins were separated by a "linker" sequence of 18 amino acids. We then compared kinetics of fluorescence change at exocytosis for this fluorescent cargo protein expressed in three different types of peptidergic endocrine cell: pancreatic alpha cell, pancreatic beta cell, and adrenal chromaffin cell. In resting cells of all three types, fluorescent spots of similar size and membrane-proximal density appeared near the plasma membrane as expected if the probe is stored in large dense-core secretory vesicles. Upon stimulation, the fluorescent spots displayed sudden changes in fluorescence intensity that were consistent with exocytosis. In beta and alpha cells the fluorescent spots consistently brightened and persisted, whereas in chromaffin cells the fluorescent spots always dispersed rapidly. Thus, for fluorescent cargo proteins in peptidergic endocrine cells, cell type influences the kinetics of fluorescence change at exocytosis. Together with our previous findings, this observation strongly highlights the fact that the behavior of vesicle-targeted fluorescent cargo may be unrelated to that of native cargo, and it emphasizes the need for caution in interpreting fluorescence kinetics in terms of an exocytosis mechanism.
Collapse
Affiliation(s)
- Darren J Michael
- Department of Physiology and Biophysics, Keck School of Medicine, Zilkha Neurogenetic Institute, University of Southern California, Los Angeles, California, USA
| | | | | | | | | |
Collapse
|
50
|
Samuni Y, Cawley NX, Zheng C, Cotrim AP, Loh YP, Baum BJ. Sorting behavior of a transgenic erythropoietin-growth hormone fusion protein in murine salivary glands. Hum Gene Ther 2008; 19:279-86. [PMID: 18303958 DOI: 10.1089/hum.2007.0136] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Salivary glands are useful gene transfer target sites for the production of therapeutic proteins, and can secrete proteins into both saliva and the bloodstream. The mechanisms involved in this differential protein sorting are not well understood, although it is believed, at least in part, to be based on the amino acid sequence of the encoded protein. We hypothesized that a transgenic protein, human erythropoietin (hEpo), normally sorted from murine salivary glands into the bloodstream, could be redirected into saliva by fusing it with human growth hormone (hGH). After transfection, the hEpo-hGH fusion protein was expressed and glycosylated in both HEK 293 and A5 cells. When packaged in an adenovirus serotype 5 vector and delivered to murine submandibular cells in vivo via retroductal cannulation, the hEpo-hGH fusion protein was also expressed, albeit at approximately 26% of the levels of hEpo expression. Importantly, in multiple experiments with different cohorts of mice, the hEpo-hGH fusion protein was sorted more frequently into saliva, versus the bloodstream, than was the hEpo protein (p < 0.001). These studies show it is possible to redirect the secretion of a transgenic constitutive pathway protein from salivary gland cells after gene transfer in vivo, a finding that may facilitate developing novel treatments for certain upper gastrointestinal tract disorders.
Collapse
Affiliation(s)
- Yuval Samuni
- Gene Therapy and Therapeutics Branch, National Institute of Dental and Craniofacial Research, National Institutes of Health, Department of Health and Human Services, Bethesda, MD 20892, USA
| | | | | | | | | | | |
Collapse
|