1
|
Matera AG. Chaperone dysfunction in motor neuron disease: new insights from studies of the SMN complex. Genetics 2025:iyae223. [PMID: 39907139 DOI: 10.1093/genetics/iyae223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2024] [Accepted: 12/30/2024] [Indexed: 02/06/2025] Open
Abstract
Spinal muscular atrophy and amyotrophic lateral sclerosis are devastating neurodegenerative diseases characterized by motor neuron loss. Although these 2 disorders have distinct genetic origins, recent studies suggest that they share common etiological mechanisms rooted in proteostatic dysfunction. At the heart of this emerging understanding is the survival motor neuron (SMN) complex.
Collapse
Affiliation(s)
- A Gregory Matera
- Integrative Program for Biological and Genome Sciences, University of North Carolina School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC 25799, USA
- Departments of Biology and Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- RNA Discovery Center and Lineberger Comprehensive Cancer Center, University of North Carolina School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| |
Collapse
|
2
|
Camia B, Longo M, Bergonzi A, Dezza I, Biggiogera M, Redi CA, Casasco A, Monti M. The localization and function of the moonlighting protein Clathrin during oocyte maturation. Dev Biol 2025; 517:1-12. [PMID: 39241854 DOI: 10.1016/j.ydbio.2024.09.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 08/28/2024] [Accepted: 09/02/2024] [Indexed: 09/09/2024]
Abstract
Clathrin is one of the leading players in the endocytic process during oocyte maturation. Immunofluorescence and transmission electron analysis on fully-grown germinal vesicle (GV) mouse oocytes shows Clathrin localization on the cortical region with three peculiar patterns: complete, incomplete, and half-moon. The first configuration is characterized by Clathrin lattices along the cortex; the second is represented by Clathrin lattices interrupted by invaginations forming coated vesicles as an indication of active endocytosis. The half-moon profile, the less frequent but the most interesting one, refers to Clathrin lattices distributed to one-half of the cell. The in vivo analysis of organelles' positioning and cytoplasmic rearrangements, performed to understand the possible relation between endocytosis and oocyte maturation, suggests that the half-moon pattern indicates those fully-grown oocytes that may have likely undergone Germinal Vesicle Breakdown, MI, and MII. Our results show that, before oocytes undergo maturation, Clathrin localizes on the side of the cell, opposite to future spindle migration, thus marking spindle orientation in mouse oocytes.
Collapse
Affiliation(s)
- B Camia
- Histology and Embryology Unit, Department of Public Health, Experimental and Forensic Medicine, University of Pavia, Italy
| | - M Longo
- Histology and Embryology Unit, Department of Public Health, Experimental and Forensic Medicine, University of Pavia, Italy
| | - A Bergonzi
- Histology and Embryology Unit, Department of Public Health, Experimental and Forensic Medicine, University of Pavia, Italy
| | - I Dezza
- Histology and Embryology Unit, Department of Public Health, Experimental and Forensic Medicine, University of Pavia, Italy
| | - M Biggiogera
- Laboratory of Cell Biology and Neurobiology, Department of Biology and Biotechnology, University of Pavia, Italy
| | - C A Redi
- National Academy of Sciences (Accademia Dei Lincei), Roma, Italy
| | - A Casasco
- Histology and Embryology Unit, Department of Public Health, Experimental and Forensic Medicine, University of Pavia, Italy; Centro Diagnostico Italiano, Milan, Italy
| | - M Monti
- Histology and Embryology Unit, Department of Public Health, Experimental and Forensic Medicine, University of Pavia, Italy; Research Center for Regenerative Medicine, IRCCS San Matteo Foundation, Pavia, Italy.
| |
Collapse
|
3
|
Adoff H, Novy B, Holland E, Lobingier BT. DNAJC13 localization to endosomes is opposed by its J domain and its disordered C-terminal tail. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.12.19.629517. [PMID: 39763938 PMCID: PMC11702692 DOI: 10.1101/2024.12.19.629517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/15/2025]
Abstract
Endosomes are a central sorting hub for membrane cargos. DNAJC13/RME-8 plays a critical role in endosomal trafficking by regulating the endosomal recycling or degradative pathways. DNAJC13 localizes to endosomes through its N-terminal Plekstrin Homology (PH)-like domain, which directly binds endosomal phosphoinositol-3-phosphate (PI(3)P). However, little is known about how DNAJC13 localization is regulated. Here, we show that two regions within DNAJC13, its J domain and disordered C-terminal tail, act as negative regulators of its PH-like domain. Using a structure-function approach combined with quantitative proteomics, we mapped these control points to a conserved YLT motif in the C-terminal tail as well as the catalytic HPD triad in its J domain. Mutation of either motif enhanced DNAJC13 endosomal localization in cells and increased binding to PI(3)P in vitro. Further, these effects required the N-terminal PH-like domain. We show that, similar to other PI(3)P binding domains, the N-terminal PH-like domain binds PI(3)P weakly in isolation and requires oligomerization for efficient PI(3)P binding and endosomal localization. Together, these results demonstrate that interaction between DNAJC13 and PI(3)P serves as a molecular control point for regulating DNAJC13 localization to endosomes.
Collapse
Affiliation(s)
- Hayden Adoff
- Department of Chemical Physiology and Biochemistry, Oregon Health & Science University, Portland, OR 97239, USA
| | - Brandon Novy
- Department of Chemical Physiology and Biochemistry, Oregon Health & Science University, Portland, OR 97239, USA
| | - Emily Holland
- Department of Chemical Physiology and Biochemistry, Oregon Health & Science University, Portland, OR 97239, USA
| | - Braden T Lobingier
- Department of Chemical Physiology and Biochemistry, Oregon Health & Science University, Portland, OR 97239, USA
| |
Collapse
|
4
|
Zalon AJ, Quiriconi DJ, Pitcairn C, Mazzulli JR. α-Synuclein: Multiple pathogenic roles in trafficking and proteostasis pathways in Parkinson's disease. Neuroscientist 2024; 30:612-635. [PMID: 38420922 PMCID: PMC11358363 DOI: 10.1177/10738584241232963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/02/2024]
Abstract
Parkinson's disease (PD) is a common age-related neurodegenerative disorder characterized by the loss of dopaminergic neurons in the midbrain. A hallmark of both familial and sporadic PD is the presence of Lewy body inclusions composed mainly of aggregated α-synuclein (α-syn), a presynaptic protein encoded by the SNCA gene. The mechanisms driving the relationship between α-syn accumulation and neurodegeneration are not completely understood, although recent evidence indicates that multiple branches of the proteostasis pathway are simultaneously perturbed when α-syn aberrantly accumulates within neurons. Studies from patient-derived midbrain cultures that develop α-syn pathology through the endogenous expression of PD-causing mutations show that proteostasis disruption occurs at the level of synthesis/folding in the endoplasmic reticulum (ER), downstream ER-Golgi trafficking, and autophagic-lysosomal clearance. Here, we review the fundamentals of protein transport, highlighting the specific steps where α-syn accumulation may intervene and the downstream effects on proteostasis. Current therapeutic efforts are focused on targeting single pathways or proteins, but the multifaceted pathogenic role of α-syn throughout the proteostasis pathway suggests that manipulating several targets simultaneously will provide more effective disease-modifying therapies for PD and other synucleinopathies.
Collapse
Affiliation(s)
- Annie J Zalon
- The Ken and Ruth Davee Department of Neurology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Drew J Quiriconi
- The Ken and Ruth Davee Department of Neurology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Caleb Pitcairn
- The Ken and Ruth Davee Department of Neurology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Joseph R Mazzulli
- The Ken and Ruth Davee Department of Neurology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| |
Collapse
|
5
|
Abela L, Gianfrancesco L, Tagliatti E, Rossignoli G, Barwick K, Zourray C, Reid KM, Budinger D, Ng J, Counsell J, Simpson A, Pearson TS, Edvardson S, Elpeleg O, Brodsky FM, Lignani G, Barral S, Kurian MA. Neurodevelopmental and synaptic defects in DNAJC6 parkinsonism, amenable to gene therapy. Brain 2024; 147:2023-2037. [PMID: 38242634 PMCID: PMC11146427 DOI: 10.1093/brain/awae020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 11/10/2023] [Accepted: 12/16/2023] [Indexed: 01/21/2024] Open
Abstract
DNAJC6 encodes auxilin, a co-chaperone protein involved in clathrin-mediated endocytosis (CME) at the presynaptic terminal. Biallelic mutations in DNAJC6 cause a complex, early-onset neurodegenerative disorder characterized by rapidly progressive parkinsonism-dystonia in childhood. The disease is commonly associated with additional neurodevelopmental, neurological and neuropsychiatric features. Currently, there are no disease-modifying treatments for this condition, resulting in significant morbidity and risk of premature mortality. To investigate the underlying disease mechanisms in childhood-onset DNAJC6 parkinsonism, we generated induced pluripotent stem cells (iPSC) from three patients harbouring pathogenic loss-of-function DNAJC6 mutations and subsequently developed a midbrain dopaminergic neuronal model of disease. When compared to age-matched and CRISPR-corrected isogenic controls, the neuronal cell model revealed disease-specific auxilin deficiency as well as disturbance of synaptic vesicle recycling and homeostasis. We also observed neurodevelopmental dysregulation affecting ventral midbrain patterning and neuronal maturation. To explore the feasibility of a viral vector-mediated gene therapy approach, iPSC-derived neuronal cultures were treated with lentiviral DNAJC6 gene transfer, which restored auxilin expression and rescued CME. Our patient-derived neuronal model provides deeper insights into the molecular mechanisms of auxilin deficiency as well as a robust platform for the development of targeted precision therapy approaches.
Collapse
Affiliation(s)
- Lucia Abela
- Developmental Neurosciences, Zayed Centre for Research into Rare Disease in Children, UCL Great Ormond Street Institute of Child Health, London, WC1N 1DZ, UK
| | - Lorita Gianfrancesco
- Developmental Neurosciences, Zayed Centre for Research into Rare Disease in Children, UCL Great Ormond Street Institute of Child Health, London, WC1N 1DZ, UK
| | - Erica Tagliatti
- Department of Clinical and Experimental Epilepsy, UCL Queen Square Institute of Neurology, University College London, London, WC1N 3BG, UK
- Laboratory of Pharmacology and Brain Pathology, Humanitas Clinical and Research Center, 20089 Milano, Italy
| | - Giada Rossignoli
- Developmental Neurosciences, Zayed Centre for Research into Rare Disease in Children, UCL Great Ormond Street Institute of Child Health, London, WC1N 1DZ, UK
| | - Katy Barwick
- Developmental Neurosciences, Zayed Centre for Research into Rare Disease in Children, UCL Great Ormond Street Institute of Child Health, London, WC1N 1DZ, UK
| | - Clara Zourray
- Developmental Neurosciences, Zayed Centre for Research into Rare Disease in Children, UCL Great Ormond Street Institute of Child Health, London, WC1N 1DZ, UK
- Department of Clinical and Experimental Epilepsy, UCL Queen Square Institute of Neurology, University College London, London, WC1N 3BG, UK
| | - Kimberley M Reid
- Developmental Neurosciences, Zayed Centre for Research into Rare Disease in Children, UCL Great Ormond Street Institute of Child Health, London, WC1N 1DZ, UK
| | - Dimitri Budinger
- Developmental Neurosciences, Zayed Centre for Research into Rare Disease in Children, UCL Great Ormond Street Institute of Child Health, London, WC1N 1DZ, UK
| | - Joanne Ng
- Developmental Neurosciences, Zayed Centre for Research into Rare Disease in Children, UCL Great Ormond Street Institute of Child Health, London, WC1N 1DZ, UK
- Genetic Therapy Accelerator Centre, UCL Queen Square Institute of Neurology, London, WC1N 3BG, UK
| | - John Counsell
- Developmental Neurosciences, Zayed Centre for Research into Rare Disease in Children, UCL Great Ormond Street Institute of Child Health, London, WC1N 1DZ, UK
| | - Arlo Simpson
- Developmental Neurosciences, Zayed Centre for Research into Rare Disease in Children, UCL Great Ormond Street Institute of Child Health, London, WC1N 1DZ, UK
| | - Toni S Pearson
- Department of Neurology, Columbia University Irving Medical Center, New York, NY 10032-3784, USA
- Department of Pediatrics, Nationwide Children’s Hospital, Ohio State University, Columbus, OH 43210, USA
- Department of Neurology, Nationwide Children’s Hospital, Ohio State University, Columbus, OH 43210, USA
| | - Simon Edvardson
- Department of Genetics, Hadassah, Hebrew University Medical Center, 9574869 Jerusalem, Israel
| | - Orly Elpeleg
- Department of Genetics, Hadassah, Hebrew University Medical Center, 9574869 Jerusalem, Israel
| | - Frances M Brodsky
- Research Department of Structural and Molecular Biology, Division of Biosciences, University College London, London, WC1E 6BT, UK
| | - Gabriele Lignani
- Developmental Neurosciences, Zayed Centre for Research into Rare Disease in Children, UCL Great Ormond Street Institute of Child Health, London, WC1N 1DZ, UK
- Department of Clinical and Experimental Epilepsy, UCL Queen Square Institute of Neurology, University College London, London, WC1N 3BG, UK
| | - Serena Barral
- Developmental Neurosciences, Zayed Centre for Research into Rare Disease in Children, UCL Great Ormond Street Institute of Child Health, London, WC1N 1DZ, UK
| | - Manju A Kurian
- Developmental Neurosciences, Zayed Centre for Research into Rare Disease in Children, UCL Great Ormond Street Institute of Child Health, London, WC1N 1DZ, UK
- Department of Neurology, Great Ormond Street Hospital, London, WC1N 3JH, UK
| |
Collapse
|
6
|
Hull A, Atilano ML, Gergi L, Kinghorn KJ. Lysosomal storage, impaired autophagy and innate immunity in Gaucher and Parkinson's diseases: insights for drug discovery. Philos Trans R Soc Lond B Biol Sci 2024; 379:20220381. [PMID: 38368939 PMCID: PMC10874704 DOI: 10.1098/rstb.2022.0381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Accepted: 11/08/2023] [Indexed: 02/20/2024] Open
Abstract
Impairment of autophagic-lysosomal pathways is increasingly being implicated in Parkinson's disease (PD). GBA1 mutations cause the lysosomal storage disorder Gaucher disease (GD) and are the commonest known genetic risk factor for PD. GBA1 mutations have been shown to cause autophagic-lysosomal impairment. Defective autophagic degradation of unwanted cellular constituents is associated with several pathologies, including loss of normal protein homeostasis, particularly of α-synuclein, and innate immune dysfunction. The latter is observed both peripherally and centrally in PD and GD. Here, we will discuss the mechanistic links between autophagy and immune dysregulation, and the possible role of these pathologies in communication between the gut and brain in these disorders. Recent work in a fly model of neuronopathic GD (nGD) revealed intestinal autophagic defects leading to gastrointestinal dysfunction and immune activation. Rapamycin treatment partially reversed the autophagic block and reduced immune activity, in association with increased survival and improved locomotor performance. Alterations in the gut microbiome are a critical driver of neuroinflammation, and studies have revealed that eradication of the microbiome in nGD fly and mouse models of PD ameliorate brain inflammation. Following these observations, lysosomal-autophagic pathways, innate immune signalling and microbiome dysbiosis are discussed as potential therapeutic targets in PD and GD. This article is part of a discussion meeting issue 'Understanding the endo-lysosomal network in neurodegeneration'.
Collapse
Affiliation(s)
- Alexander Hull
- Department of Genetics, Evolution & Environment, Institute of Healthy Ageing, Darwin Building, Gower Street, London WC1E 6BT, UK
| | - Magda L Atilano
- Department of Genetics, Evolution & Environment, Institute of Healthy Ageing, Darwin Building, Gower Street, London WC1E 6BT, UK
| | - Laith Gergi
- Department of Genetics, Evolution & Environment, Institute of Healthy Ageing, Darwin Building, Gower Street, London WC1E 6BT, UK
| | - Kerri J Kinghorn
- Department of Genetics, Evolution & Environment, Institute of Healthy Ageing, Darwin Building, Gower Street, London WC1E 6BT, UK
| |
Collapse
|
7
|
Swords SB, Jia N, Norris A, Modi J, Cai Q, Grant BD. A conserved requirement for RME-8/DNAJC13 in neuronal autophagic lysosome reformation. Autophagy 2024; 20:792-808. [PMID: 37942902 PMCID: PMC11062384 DOI: 10.1080/15548627.2023.2269028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 09/16/2023] [Accepted: 10/02/2023] [Indexed: 11/10/2023] Open
Abstract
Autophagosomes fuse with lysosomes, forming autolysosomes that degrade engulfed cargo. To maintain lysosomal capacity, autophagic lysosome reformation (ALR) must regenerate lysosomes from autolysosomes using a membrane tubule-based process. Maintaining lysosomal capacity is required to maintain cellular health, especially in neurons where lysosomal dysfunction has been repeatedly implicated in neurodegenerative disease. The DNA-J domain HSC70 co-chaperone RME-8/DNAJC13 has been linked to endosomal coat protein regulation and to neurological disease. We report new analysis of the requirements for the RME-8/DNAJC13 protein in neurons, focusing on intact C. elegans mechanosensory neurons, and primary mouse cortical neurons in culture. Loss of RME-8/DNAJC13 in both systems results in accumulation of grossly elongated autolysosomal tubules. Further C. elegans analysis revealed a similar autolysosome tubule accumulation defect in mutants known to be required for ALR in mammals, including mutants lacking bec-1/BECN1/Beclin1 and vps-15/PIK3R4/p150 that regulate the class III phosphatidylinositol 3-kinase (PtdIns3K) VPS-34, and dyn-1/dynamin that severs ALR tubules. Clathrin is also an important ALR regulator implicated in autolysosome tubule formation and release. In C. elegans we found that loss of RME-8 causes severe depletion of clathrin from neuronal autolysosomes, a phenotype shared with bec-1 and vps-15 mutants. We conclude that RME-8/DNAJC13 plays a previously unrecognized role in ALR, likely affecting autolysosome tubule severing. Additionally, in both systems, loss of RME-8/DNAJC13 reduced macroautophagic/autophagic flux, suggesting feedback regulation from ALR to autophagy. Our results connecting RME-8/DNAJC13 to ALR and autophagy provide a potential mechanism by which RME-8/DNAJC13 could influence neuronal health and the progression of neurodegenerative disease.Abbreviation: ALR, autophagic lysosome reformation; ATG-13/EPG-1, AuTophaGy (yeast Atg homolog)-13; ATG-18, AuTophaGy (yeast Atg homolog)-18; AV, autophagic vacuole; CLIC-1, Clathrin Light Chain-1; EPG-3, Ectopic P Granules-3; EPG-6, Ectopic P Granules-6; LGG-1, LC3, GABARAP and GATE-16 family-1; MAP1LC3/LC3, microtubule-associated protein 1 light chain 3; PD, Parkinson disease; PtdIns3P, phosphatidylinositol-3-phosphate; PtdIns(4,5)P2, phosphatidylinositol-4,5-bisphosphate; RME-8, Receptor Mediated Endocytosis-8; SNX-1, Sorting NeXin-1; VPS-34, related to yeast Vacuolar Protein Sorting factor-34.
Collapse
Affiliation(s)
- Sierra B. Swords
- Department of Molecular Biology and Biochemistry, Rutgers University, Piscataway, NJ, USA
| | - Nuo Jia
- Department of Cell Biology and Neuroscience, Rutgers University, Piscataway, NJ, USA
| | - Anne Norris
- Department of Molecular Biology and Biochemistry, Rutgers University, Piscataway, NJ, USA
| | - Jil Modi
- Department of Molecular Biology and Biochemistry, Rutgers University, Piscataway, NJ, USA
| | - Qian Cai
- Department of Cell Biology and Neuroscience, Rutgers University, Piscataway, NJ, USA
| | - Barth D. Grant
- Department of Molecular Biology and Biochemistry, Rutgers University, Piscataway, NJ, USA
- Center for Lipid Research, New Brunswick, NJ, USA
| |
Collapse
|
8
|
Zhang P, Li J, Li W, Qiao S, Ou Y, Yuan X. Synaptic endocytosis in adult adipose stromal cell-derived neurons. Brain Res 2024; 1827:148746. [PMID: 38184164 DOI: 10.1016/j.brainres.2023.148746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Revised: 12/24/2023] [Accepted: 12/30/2023] [Indexed: 01/08/2024]
Abstract
Synapses are essential for facilitating the transmission of information between neurons and for executing neurophysiological processes. Following the exocytosis of neurotransmitters, the synaptic vesicle may quickly undergo endocytosis to preserve the structural integrity of the synapse. When converting adipose-derived stromal cells (ADSCs) into neurons, the ADSCs have already demonstrated comparable morphology, structure, and electrophysiological characteristics to neurons. Nevertheless, there is currently no published study on the endocytotic function of neurons that are produced from ADSCs. This study aimed to examine synaptic endocytosis in neurons derived from ADSCs by qualitatively and quantitatively analyzing the presence of Ap-2, Clathrin, Endophilin, Dynamin, and Hsc70, which are the key proteins involved in clathrin-mediated endocytosis (CME), as well as by using FM1-43 and cadmium selenide quantum dots (CdSe QDs). Additionally, single-cell RNA sequencing (scRNA-seq) was used to look at the levels of both neuronal markers and markers related to CME at the same time. The results of this study provide evidence that synapses in neurons produced from ADSCs have a role in endocytosis, mainly through the CME route.
Collapse
Affiliation(s)
- Pingshu Zhang
- Department of Neurology, Kailuan General Hospital, North China University of Science and Technology, Tangshan, China; Neurobiology Key Laboratory of HeBei, Tangshan, China
| | - Jing Li
- Radiology Department of Tangshan Maternal and Child Health Hospital, Tangshan City, Hebei Province, China
| | - Wen Li
- Department of Neurology, Kailuan General Hospital, North China University of Science and Technology, Tangshan, China; Neurobiology Key Laboratory of HeBei, Tangshan, China
| | - Sijia Qiao
- Department of Neurology, Kailuan General Hospital, North China University of Science and Technology, Tangshan, China; Neurobiology Key Laboratory of HeBei, Tangshan, China
| | - Ya Ou
- Department of Neurology, Kailuan General Hospital, North China University of Science and Technology, Tangshan, China; Neurobiology Key Laboratory of HeBei, Tangshan, China
| | - Xiaodong Yuan
- Department of Neurology, Kailuan General Hospital, North China University of Science and Technology, Tangshan, China; Neurobiology Key Laboratory of HeBei, Tangshan, China.
| |
Collapse
|
9
|
Takahashi T, Sato F, Shinkai K. The Effects of Antimicrobial Photodynamic Therapy Used to Sterilize Carious Dentin on Rat Dental Pulp Tissue. Dent J (Basel) 2023; 11:283. [PMID: 38132421 PMCID: PMC10743003 DOI: 10.3390/dj11120283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 11/28/2023] [Accepted: 12/04/2023] [Indexed: 12/23/2023] Open
Abstract
Antimicrobial photodynamic therapy (aPDT) used to sterilize carious dentin may irritate pulp tissues because of tissue-penetrating laser and singlet oxygen generation. This study aimed to assess the effects of aPDT on rat pulp tissues. A cavity formed in a rat maxillary first molar was treated with aPDT. The combined photosensitizer and laser irradiation conditions in the aPDT groups were as follows: methylene blue and 100 mW for 60 s, brilliant blue (BB) and 100 mW for 60 s, BB and 50 mW for 120 s, and BB and 200 mW for 30 s. Each cavity was treated with an all-in-one adhesive and filled with flowable resin. aPDT was not applied for the control. In each group, the rats were sacrificed on postoperative days 1 and 14, and thin sections of the treated teeth were prepared. Pulp tissue disorganization (PTD), inflammatory cell infiltration (ICI), and tertiary dentin formation (TDF) were evaluated. At 1-day evaluation, there were significant differences between the aPDT group and controls with respect to PTD and ICI (p < 0.01); 14 days later, almost all specimens showed tertiary dentin formation. The application of aPDT caused reversible damage to the rat pulp, while in the long term, healing occurred with the formation of tertiary dentin.
Collapse
Affiliation(s)
- Tenyu Takahashi
- Advanced Operative Dentistry-Endodontics, The Nippon Dental University Graduate School of Life Dentistry at Niigata, 1-8 Hamaura-cho, Chuo-ku, Niigata 951-8580, Japan;
| | - Fumiaki Sato
- Department of Operative Dentistry, The Nippon Dental University School of Life Dentistry at Niigata, 1-8 Hamaura-cho, Chuo-ku, Niigata 951-8580, Japan;
| | - Koichi Shinkai
- Advanced Operative Dentistry-Endodontics, The Nippon Dental University Graduate School of Life Dentistry at Niigata, 1-8 Hamaura-cho, Chuo-ku, Niigata 951-8580, Japan;
- Department of Operative Dentistry, The Nippon Dental University School of Life Dentistry at Niigata, 1-8 Hamaura-cho, Chuo-ku, Niigata 951-8580, Japan;
| |
Collapse
|
10
|
Cheng X, Tang Y, Vidyadhara D, Li BZ, Zimmerman M, Pak A, Nareddula S, Edens PA, Chandra SS, Chubykin AA. Impaired pre-synaptic plasticity and visual responses in auxilin-knockout mice. iScience 2023; 26:107842. [PMID: 37766983 PMCID: PMC10520332 DOI: 10.1016/j.isci.2023.107842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 08/06/2023] [Accepted: 09/04/2023] [Indexed: 09/29/2023] Open
Abstract
Auxilin (DNAJC6/PARK19), an endocytic co-chaperone, is essential for maintaining homeostasis in the readily releasable pool (RRP) by aiding clathrin-mediated uncoating of synaptic vesicles. Its loss-of-function mutations, observed in familial Parkinson's disease (PD), lead to basal ganglia motor deficits and cortical dysfunction. We discovered that auxilin-knockout (Aux-KO) mice exhibited impaired pre-synaptic plasticity in layer 4 to layer 2/3 pyramidal cell synapses in the primary visual cortex (V1), including reduced short-term facilitation and depression. Computational modeling revealed increased RRP refilling during short repetitive stimulation, which diminished during prolonged stimulation. Silicon probe recordings in V1 of Aux-KO mice demonstrated disrupted visual cortical circuit responses, including reduced orientation selectivity, compromised visual mismatch negativity, and shorter visual familiarity-evoked theta oscillations. Pupillometry analysis revealed an impaired optokinetic response. Auxilin-dependent pre-synaptic endocytosis dysfunction was associated with deficits in pre-synaptic plasticity, visual cortical functions, and eye movement prodromally or at the early stage of motor symptoms.
Collapse
Affiliation(s)
- Xi Cheng
- Department of Biological Sciences, Purdue Institute for Integrative Neuroscience, Purdue Autism Research Center, Purdue University, West Lafayette, IN 47907, USA
| | - Yu Tang
- Department of Biological Sciences, Purdue Institute for Integrative Neuroscience, Purdue Autism Research Center, Purdue University, West Lafayette, IN 47907, USA
| | - D.J. Vidyadhara
- Department of Neurology, Yale University, CT, USA
- Department of Neuroscience, Yale University, CT, USA
| | - Ben-Zheng Li
- Department of Physiology and Biophysics, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
- Department of Electrical Engineering, University of Colorado, Denver, Denver, CO, USA
| | - Michael Zimmerman
- Department of Biological Sciences, Purdue Institute for Integrative Neuroscience, Purdue Autism Research Center, Purdue University, West Lafayette, IN 47907, USA
- Department of Biomedical Engineering, Purdue University, West Lafayette, IN 47907, USA
| | - Alexandr Pak
- Department of Biological Sciences, Purdue Institute for Integrative Neuroscience, Purdue Autism Research Center, Purdue University, West Lafayette, IN 47907, USA
| | - Sanghamitra Nareddula
- Department of Biological Sciences, Purdue Institute for Integrative Neuroscience, Purdue Autism Research Center, Purdue University, West Lafayette, IN 47907, USA
| | - Paige Alyssa Edens
- Department of Biological Sciences, Purdue Institute for Integrative Neuroscience, Purdue Autism Research Center, Purdue University, West Lafayette, IN 47907, USA
| | - Sreeganga S. Chandra
- Department of Neurology, Yale University, CT, USA
- Department of Neuroscience, Yale University, CT, USA
- Program in Cellular Neuroscience, Neurodegeneration and Repair, Yale University, CT, USA
| | - Alexander A. Chubykin
- Department of Biological Sciences, Purdue Institute for Integrative Neuroscience, Purdue Autism Research Center, Purdue University, West Lafayette, IN 47907, USA
| |
Collapse
|
11
|
Cherian A, K P D, Vijayaraghavan A. Parkinson's disease - genetic cause. Curr Opin Neurol 2023; Publish Ahead of Print:00019052-990000000-00070. [PMID: 37366140 DOI: 10.1097/wco.0000000000001167] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/28/2023]
Abstract
PURPOSE OF REVIEW Our knowledge of the genetic architecture underlying Parkinson's disease has vastly improved in the past quarter century. About 5-10% of all patients suffer from a monogenic form of Parkinson's disease. RECENT FINDINGS Mutations in autosomal dominant genes (e.g. SNCA, LRRK2, VPS35) or autosomal recessive genes (e.g. PRKN, PINK1, DJ-1) can cause genetic Parkinson's disease. Recessive DNAJC6 mutations can present predominantly as atypical parkinsonism, but also rarely as typical Parkinson's disease. Majority of Parkinson's disease is genetically complex. Mutation in RIC3, a chaperone of neuronal nicotinic acetylcholine receptor subunit α-7 (CHRNA7), provides strong evidence for the role of cholinergic pathway, for the first time, in cause of Parkinson's disease. X-linked parkinsonism manifests at a young age accompanied by many (atypical) features such as intellectual disability, spasticity, seizures, myoclonus, dystonia, and have poor response to levodopa. SUMMARY This review article aims to provide a comprehensive overview on Parkinson's disease genetics. MAPT, which encodes the microtubule associated protein tau, TMEM230, LRP10, NUS1 and ARSA are the five new putative disease-causing genes in Parkinson's disease. The validation of novel genes and its association with Parkinson's disease remains extremely challenging, as genetically affected families are sparse and globally widespread. In the near future, genetic discoveries in Parkinson's disease will influence our ability to predict and prognosticate the disease, help in defining etiological subtypes that are critical in implementation of precision medicine.
Collapse
Affiliation(s)
- Ajith Cherian
- Department of Neurology, Sree Chitra Tirunal Institute for Medical Sciences and Technology, Trivandrum, Kerala, India
| | | | | |
Collapse
|
12
|
Krishnan S, Klingauf J. The readily retrievable pool of synaptic vesicles. Biol Chem 2023; 404:385-397. [PMID: 36867726 DOI: 10.1515/hsz-2022-0298] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Accepted: 02/16/2023] [Indexed: 03/05/2023]
Abstract
In the CNS communication between neurons occurs at synapses by secretion of neurotransmitter via exocytosis of synaptic vesicles (SVs) at the active zone. Given the limited number of SVs in presynaptic boutons a fast and efficient recycling of exocytosed membrane and proteins by triggered compensatory endocytosis is required to maintain neurotransmission. Thus, pre-synapses feature a unique tight coupling of exo- and endocytosis in time and space resulting in the reformation of SVs with uniform morphology and well-defined molecular composition. This rapid response requires early stages of endocytosis at the peri-active zone to be well choreographed to ensure reformation of SVs with high fidelity. The pre-synapse can address this challenge by a specialized membrane microcompartment, where a pre-sorted and pre-assembled readily retrievable pool (RRetP) of endocytic membrane patches is formed, consisting of the vesicle cargo, presumably bound within a nucleated Clathrin and adaptor complex. This review considers evidence for the RRetP microcompartment to be the primary organizer of presynaptic triggered compensatory endocytosis.
Collapse
Affiliation(s)
- Sai Krishnan
- Institute of Medical Physics and Biophysics, University of Münster, Robert-Koch Strasse 31, D-48149, Münster, Germany
| | - Jürgen Klingauf
- Institute of Medical Physics and Biophysics, University of Münster, Robert-Koch Strasse 31, D-48149, Münster, Germany.,Center for Soft Nanoscience, Busso-Peus Strasse 10, D-48149, Münster, Germany
| |
Collapse
|
13
|
Sagarika P, Yadav K, Sahi C. Volleying plasma membrane proteins from birth to death: Role of J-domain proteins. Front Mol Biosci 2022; 9:1072242. [PMID: 36589230 PMCID: PMC9798423 DOI: 10.3389/fmolb.2022.1072242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Accepted: 12/02/2022] [Indexed: 12/23/2022] Open
Abstract
The function, stability, and turnover of plasma membrane (PM) proteins are crucial for cellular homeostasis. Compared to soluble proteins, quality control of plasma membrane proteins is extremely challenging. Failure to meet the high quality control standards is detrimental to cellular and organismal health. J-domain proteins (JDPs) are among the most diverse group of chaperones that collaborate with other chaperones and protein degradation machinery to oversee cellular protein quality control (PQC). Although fragmented, the available literature from different models, including yeast, mammals, and plants, suggests that JDPs assist PM proteins with their synthesis, folding, and trafficking to their destination as well as their degradation, either through endocytic or proteasomal degradation pathways. Moreover, some JDPs interact directly with the membrane to regulate the stability and/or functionality of proteins at the PM. The deconvoluted picture emerging is that PM proteins are relayed from one JDP to another throughout their life cycle, further underscoring the versatility of the Hsp70:JDP machinery in the cell.
Collapse
|
14
|
Renman E, Ekici R, Sundström M, Lejon K. HSC70 is a novel binding partner involved in the capture of immunoglobulins on B cells in the NOD mouse. Autoimmunity 2022; 55:520-528. [PMID: 36120986 DOI: 10.1080/08916934.2022.2117307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
B cells have been shown to be essential for Type 1 diabetes development in the non-obese diabetic mouse, where their contribution as antigen presenting cells has been emphasised. Other important functions for B cells include surface capture of immunoglobulins and transportation of immune complexes, with subsequent endocytosis, antigen processing and antigen presentation. We have previously demonstrated that NOD B cells capture IgM and IgG immune complexes through an unknown surface molecule. In this study, we revealed the presumptive immunoglobulin-binding molecule to be HSC70. Moreover, we detected increased levels of HSC70 on NOD B cells. HSC70 has been shown to play a role in antigen processing and presentation as well as being important in several autoimmune diseases, including rheumatoid arthritis and systemic lupus erythematosus. Due to its protein stabilising properties, increased HSC70 could contribute to enhanced self-antigen collection and presentation and thereby contribute to the development of Type 1 diabetes.
Collapse
Affiliation(s)
- Emma Renman
- Department of Clinical Microbiology Umeå, Umeå University, Umeå, Sweden
| | - Rifat Ekici
- Department of Clinical Microbiology Umeå, Umeå University, Umeå, Sweden
| | - Mia Sundström
- Department of Clinical Microbiology Umeå, Umeå University, Umeå, Sweden
| | - Kristina Lejon
- Department of Clinical Microbiology Umeå, Umeå University, Umeå, Sweden
| |
Collapse
|
15
|
Li S, Ma Y, Ye S, Guo R, Su Y, Du Q, Yin S, Xiao F. Ambient NO 2 exposure induced cardiotoxicity associated with gut microbiome dysregulation and glycerophospholipid metabolism disruption. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 238:113583. [PMID: 35561545 DOI: 10.1016/j.ecoenv.2022.113583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 04/19/2022] [Accepted: 04/27/2022] [Indexed: 06/15/2023]
Abstract
An average daily increase of 10 μg/m3 in NO2 concentrations could lead to an increased mortality in cardiovascular, cerebrovascular of 1.89%, 2.07%, but the mechanism by which NO2 contributes to cardiotoxicity is rarely reported. In order to assess the cardiotoxicity of NO2 inhalation (5 ppm), we firstly investigate the change of gut microbiota, serum metabonomics and cardiac proteome. Non-targeted LC-MS/MS metabonomics showed that NO2 stress could perturb the glycerophospholipid metabolism in the serum, which might destabilize the bilayer configuration of cardiac lipid membranes. Furthermore, we observed that NO2 inhalation caused augmented intercellular gap and inflammatory infiltration in the heart. Although 16 S rRNA gene amplification sequencing demonstrated that NO2 exposure did not influence the intestinal microbial abundance and diversity, but glycerophospholipid metabolism disruption might be finally reflected in gut microbiom dysregulation, such as Sphingomonas, Koribacter, Actinomarina and Bradyrhizobium Turicibacter, Rothia, Globicatella and Aerococcus. Proteome mining revealed that differentially expressed genes (DEGs) in the heart after NO2 stress were involved in necroptosis, mitophagy and ferroptosis. We further revealed that NO2 increased the number of cardiac mitochondria with depletion of cristae by regulating the expression of Mfn2 and Hsp70. This study indicating Mfn2-meidcated imbalanced mitochondrial dynamics as a potential mechanism after NO2-induced heart injury and suggesting microbiome dysregulation/glycerophospholipid metabolism exerts critical roles in cardiotoxicity caused by NO2.
Collapse
Affiliation(s)
- Siwen Li
- Xiangya School of Public Health, Central South University, Changsha 410078, PR China.
| | - Yu Ma
- Xiangya School of Public Health, Central South University, Changsha 410078, PR China
| | - Shuzi Ye
- Xiangya School of Public Health, Central South University, Changsha 410078, PR China
| | - Rong Guo
- Xiangya School of Public Health, Central South University, Changsha 410078, PR China
| | - Ying Su
- Xiangya School of Public Health, Central South University, Changsha 410078, PR China
| | - Qiaoyun Du
- Xiangya School of Public Health, Central South University, Changsha 410078, PR China
| | - Siyu Yin
- Xiangya School of Public Health, Central South University, Changsha 410078, PR China
| | - Fang Xiao
- Xiangya School of Public Health, Central South University, Changsha 410078, PR China.
| |
Collapse
|
16
|
Dahhan DA, Bednarek SY. Advances in structural, spatial, and temporal mechanics of plant endocytosis. FEBS Lett 2022; 596:2269-2287. [PMID: 35674447 DOI: 10.1002/1873-3468.14420] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 05/27/2022] [Accepted: 05/31/2022] [Indexed: 11/06/2022]
Abstract
Endocytic trafficking underlies processes essential for plant growth and development, including the perception of and response to abiotic and extracellular stimuli, post-Golgi and exocytic trafficking, and cytokinesis. Protein adaptors and regulatory factors of clathrin-mediated endocytosis that contribute to the formation of endocytic clathrin-coated vesicles are evolutionarily conserved. Yet, work of the last ten years has identified differences between the endocytic mechanisms of plants and Opisthokonts involving the endocytic adaptor TPLATE complex, the requirement of actin during CME, and the function of clathrin-independent endocytosis in the uptake of plant-specific plasma membrane proteins. Here, we review clathrin-mediated and -independent pathways in plants and describe recent advances enabled by new proteomic and imaging methods, and conditional perturbation of endocytosis. In addition, we summarize the formation and trafficking of clathrin-coated vesicles based on temporal and structural data garnered from high-resolution quantitative imaging studies. Finally, new information about the cross-talk between endocytosis and other endomembrane trafficking pathways and organelles will also be discussed.
Collapse
Affiliation(s)
- Dana A Dahhan
- Department of Biochemistry, University of Wisconsin-Madison, WI, USA
| | | |
Collapse
|
17
|
Barber CN, Goldschmidt HL, Ma Q, Devine LR, Cole RN, Huganir RL, Raben DM. Identification of Synaptic DGKθ Interactors That Stimulate DGKθ Activity. Front Synaptic Neurosci 2022; 14:855673. [PMID: 35573662 PMCID: PMC9095502 DOI: 10.3389/fnsyn.2022.855673] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2022] [Accepted: 03/16/2022] [Indexed: 01/16/2023] Open
Abstract
Lipids and their metabolic enzymes are a critical point of regulation for the membrane curvature required to induce membrane fusion during synaptic vesicle recycling. One such enzyme is diacylglycerol kinase θ (DGKθ), which produces phosphatidic acid (PtdOH) that generates negative membrane curvature. Synapses lacking DGKθ have significantly slower rates of endocytosis, implicating DGKθ as an endocytic regulator. Importantly, DGKθ kinase activity is required for this function. However, protein regulators of DGKθ's kinase activity in neurons have never been identified. In this study, we employed APEX2 proximity labeling and mass spectrometry to identify endogenous interactors of DGKθ in neurons and assayed their ability to modulate its kinase activity. Seven endogenous DGKθ interactors were identified and notably, synaptotagmin-1 (Syt1) increased DGKθ kinase activity 10-fold. This study is the first to validate endogenous DGKθ interactors at the mammalian synapse and suggests a coordinated role between DGKθ-produced PtdOH and Syt1 in synaptic vesicle recycling.
Collapse
Affiliation(s)
- Casey N. Barber
- Department of Biological Chemistry, Johns Hopkins University School of Medicine, Baltimore, MD, United States,Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Hana L. Goldschmidt
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Qianqian Ma
- Department of Biological Chemistry, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Lauren R. Devine
- Department of Biological Chemistry, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Robert N. Cole
- Department of Biological Chemistry, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Richard L. Huganir
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Daniel M. Raben
- Department of Biological Chemistry, Johns Hopkins University School of Medicine, Baltimore, MD, United States,*Correspondence: Daniel M. Raben,
| |
Collapse
|
18
|
Zhao H, Ren X, Kong R, Shi L, Li Z, Wang R, Ma R, Zhao H, Liu F, Chang HC, Chen CH, Li Z. Auxilin regulates intestinal stem cell proliferation through EGFR. Stem Cell Reports 2022; 17:1120-1137. [PMID: 35427486 PMCID: PMC9133653 DOI: 10.1016/j.stemcr.2022.03.010] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Revised: 03/14/2022] [Accepted: 03/15/2022] [Indexed: 12/11/2022] Open
Abstract
Adult tissue homeostasis is maintained by residential stem cells. The proliferation and differentiation of adult stem cells must be tightly balanced to avoid excessive proliferation or premature differentiation. However, how stem cell proliferation is properly controlled remains elusive. Here, we find that auxilin (Aux) restricts intestinal stem cell (ISC) proliferation mainly through EGFR signaling. aux depletion leads to excessive ISC proliferation and midgut homeostasis disruption, which is unlikely caused by defective Notch signaling. Aux is expressed in multiple types of intestinal cells. Interestingly, aux depletion causes a dramatic increase in EGFR signaling, with a strong accumulation of EGFR at the plasma membrane and an increased expression of EGFR ligands in response to tissue stress. Furthermore, Aux co-localizes and associates with EGFR. Finally, blocking EGFR signaling completely suppresses the defects caused by aux depletion. Together, these data demonstrate that Aux mainly safeguards EGFR activation to keep a proper ISC proliferation rate to maintain midgut homeostasis.
Collapse
Affiliation(s)
- Hang Zhao
- College of Life Sciences, Capital Normal University, Beijing 100048, China
| | - Xuejing Ren
- College of Life Sciences, Capital Normal University, Beijing 100048, China
| | - Ruiyan Kong
- College of Life Sciences, Capital Normal University, Beijing 100048, China
| | - Lin Shi
- College of Life Sciences, Capital Normal University, Beijing 100048, China
| | - Zhengran Li
- College of Life Sciences, Capital Normal University, Beijing 100048, China
| | - Runqi Wang
- College of Life Sciences, Capital Normal University, Beijing 100048, China
| | - Rui Ma
- Department of Neurology, Capital Medical University, Beijing 100053, China
| | - Huiqing Zhao
- College of Life Sciences, Capital Normal University, Beijing 100048, China
| | - Fuli Liu
- College of Life Sciences, Capital Normal University, Beijing 100048, China
| | - Henry C Chang
- Department of Biological Sciences, Purdue University, West Lafayette, IN 47907, USA
| | - Chun-Hong Chen
- Division of Molecular and Genomic Medicine, National Health Research Institute, 35, Keyan Road, Zhunan Town, Miaoli County 350, Taiwan
| | - Zhouhua Li
- College of Life Sciences, Capital Normal University, Beijing 100048, China.
| |
Collapse
|
19
|
Guo SK, Sodt AJ, Johnson ME. Large self-assembled clathrin lattices spontaneously disassemble without sufficient adaptor proteins. PLoS Comput Biol 2022; 18:e1009969. [PMID: 35312692 PMCID: PMC8979592 DOI: 10.1371/journal.pcbi.1009969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2021] [Revised: 03/31/2022] [Accepted: 02/24/2022] [Indexed: 11/18/2022] Open
Abstract
Clathrin-coated structures must assemble on cell membranes to internalize receptors, with the clathrin protein only linked to the membrane via adaptor proteins. These structures can grow surprisingly large, containing over 20 clathrin, yet they often fail to form productive vesicles, instead aborting and disassembling. We show that clathrin structures of this size can both form and disassemble spontaneously when adaptor protein availability is low, despite high abundance of clathrin. Here, we combine recent in vitro kinetic measurements with microscopic reaction-diffusion simulations and theory to differentiate mechanisms of stable vs unstable clathrin assembly on membranes. While in vitro conditions drive assembly of robust, stable lattices, we show that concentrations, geometry, and dimensional reduction in physiologic-like conditions do not support nucleation if only the key adaptor AP-2 is included, due to its insufficient abundance. Nucleation requires a stoichiometry of adaptor to clathrin that exceeds 1:1, meaning additional adaptor types are necessary to form lattices successfully and efficiently. We show that the critical nucleus contains ~25 clathrin, remarkably similar to sizes of the transient and abortive structures observed in vivo. Lastly, we quantify the cost of bending the membrane under our curved clathrin lattices using a continuum membrane model. We find that the cost of bending the membrane could be largely offset by the energetic benefit of forming curved rather than flat structures, with numbers comparable to experiments. Our model predicts how adaptor density can tune clathrin-coated structures from the transient to the stable, showing that active energy consumption is therefore not required for lattice disassembly or remodeling during growth, which is a critical advance towards predicting productive vesicle formation.
Collapse
Affiliation(s)
- Si-Kao Guo
- TC Jenkins Department of Biophysics, Johns Hopkins University, Baltimore, Maryland, United States of America
| | - Alexander J. Sodt
- Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Margaret E. Johnson
- TC Jenkins Department of Biophysics, Johns Hopkins University, Baltimore, Maryland, United States of America
- * E-mail:
| |
Collapse
|
20
|
Bagheri S, Rahban M, Bostanian F, Esmaeilzadeh F, Bagherabadi A, Zolghadri S, Stanek A. Targeting Protein Kinases and Epigenetic Control as Combinatorial Therapy Options for Advanced Prostate Cancer Treatment. Pharmaceutics 2022; 14:515. [PMID: 35335890 PMCID: PMC8949110 DOI: 10.3390/pharmaceutics14030515] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2022] [Revised: 02/15/2022] [Accepted: 02/21/2022] [Indexed: 02/02/2023] Open
Abstract
Prostate cancer (PC), the fifth leading cause of cancer-related mortality worldwide, is known as metastatic bone cancer when it spreads to the bone. Although there is still no effective treatment for advanced/metastatic PC, awareness of the molecular events that contribute to PC progression has opened up opportunities and raised hopes for the development of new treatment strategies. Androgen deprivation and androgen-receptor-targeting therapies are two gold standard treatments for metastatic PC. However, acquired resistance to these treatments is a crucial challenge. Due to the role of protein kinases (PKs) in the growth, proliferation, and metastases of prostatic tumors, combinatorial therapy by PK inhibitors may help pave the way for metastatic PC treatment. Additionally, PC is known to have epigenetic involvement. Thus, understanding epigenetic pathways can help adopt another combinatorial treatment strategy. In this study, we reviewed the PKs that promote PC to advanced stages. We also summarized some PK inhibitors that may be used to treat advanced PC and we discussed the importance of epigenetic control in this cancer. We hope the information presented in this article will contribute to finding an effective treatment for the management of advanced PC.
Collapse
Affiliation(s)
- Soghra Bagheri
- Medical Biology Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah 6714415185, Iran;
| | - Mahdie Rahban
- Institute of Biochemistry and Biophysics, University of Tehran, Tehran 1417614335, Iran; (M.R.); (F.B.)
| | - Fatemeh Bostanian
- Institute of Biochemistry and Biophysics, University of Tehran, Tehran 1417614335, Iran; (M.R.); (F.B.)
| | - Fatemeh Esmaeilzadeh
- Department of Biology, Jahrom Branch, Islamic Azad University, Jahrom 7414785318, Iran;
| | - Arash Bagherabadi
- Department of Biology, Faculty of Sciences, University of Mohaghegh Ardabili, Ardabil 5619911367, Iran;
| | - Samaneh Zolghadri
- Department of Biology, Jahrom Branch, Islamic Azad University, Jahrom 7414785318, Iran;
| | - Agata Stanek
- Department of Internal Medicine, Angiology and Physical Medicine, Faculty of Medical Sciences in Zabrze, Medical University of Silesia, Batorego 15 St, 41-902 Bytom, Poland
| |
Collapse
|
21
|
Bahr T, Katuri J, Liang T, Bai Y. Mitochondrial chaperones in human health and disease. Free Radic Biol Med 2022; 179:363-374. [PMID: 34780988 PMCID: PMC8893670 DOI: 10.1016/j.freeradbiomed.2021.11.015] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Revised: 10/29/2021] [Accepted: 11/10/2021] [Indexed: 02/03/2023]
Abstract
Molecular chaperones are a family of proteins that maintain cellular protein homeostasis through non-covalent peptide folding and quality control mechanisms. The chaperone proteins found within mitochondria play significant protective roles in mitochondrial biogenesis, quality control, and stress response mechanisms. Defective mitochondrial chaperones have been implicated in aging, neurodegeneration, and cancer. In this review, we focus on the two most prominent mitochondrial chaperones: mtHsp60 and mtHsp70. These proteins demonstrate different cellular localization patterns, interact with different targets, and have different functional activities. We discuss the structure and function of these prominent mitochondrial chaperone proteins and give an update on newly discovered regulatory mechanisms and disease implications.
Collapse
Affiliation(s)
- Tyler Bahr
- Department of Cell Systems & Anatomy University of Texas Health San Antonio, 7703 Floyd Curl Dr, San Antonio, TX, 78229, USA
| | - Joshua Katuri
- Department of Cell Systems & Anatomy University of Texas Health San Antonio, 7703 Floyd Curl Dr, San Antonio, TX, 78229, USA
| | - Ting Liang
- Department of Cell Systems & Anatomy University of Texas Health San Antonio, 7703 Floyd Curl Dr, San Antonio, TX, 78229, USA
| | - Yidong Bai
- Department of Cell Systems & Anatomy University of Texas Health San Antonio, 7703 Floyd Curl Dr, San Antonio, TX, 78229, USA.
| |
Collapse
|
22
|
Investigating the Endo-Lysosomal System in Major Neurocognitive Disorders Due to Alzheimer's Disease, Frontotemporal Lobar Degeneration and Lewy Body Disease: Evidence for SORL1 as a Cross-Disease Gene. Int J Mol Sci 2021; 22:ijms222413633. [PMID: 34948429 PMCID: PMC8704369 DOI: 10.3390/ijms222413633] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Revised: 12/15/2021] [Accepted: 12/16/2021] [Indexed: 12/26/2022] Open
Abstract
Dysfunctions in the endo-lysosomal system have been hypothesized to underlie neurodegeneration in major neurocognitive disorders due to Alzheimer's disease (AD), Frontotemporal Lobar Degeneration (FTLD), and Lewy body disease (DLB). The aim of this study is to investigate whether these diseases share genetic variability in the endo-lysosomal pathway. In AD, DLB, and FTLD patients and in controls (948 subjects), we performed a targeted sequencing of the top 50 genes belonging to the endo-lysosomal pathway. Genetic analyses revealed (i) four previously reported disease-associated variants in the SORL1 (p.N1246K, p.N371T, p.D2065V) and DNAJC6 genes (p.M133L) in AD, FTLD, and DLB, extending the previous knowledge attesting SORL1 and DNAJC6 as AD- and PD-related genes, respectively; (ii) three predicted null variants in AD patients in the SORL1 (p.R985X in early onset familial AD, p.R1207X) and PPT1 (p.R48X in early onset familial AD) genes, where loss of function is a known disease mechanism. A single variant and gene burden analysis revealed some nominally significant results of potential interest for SORL1 and DNAJC6 genes. Our data highlight that genes controlling key endo-lysosomal processes (i.e., protein sorting/transport, clathrin-coated vesicle uncoating, lysosomal enzymatic activity regulation) might be involved in AD, FTLD and DLB pathogenesis, thus suggesting an etiological link behind these diseases.
Collapse
|
23
|
Agaoua A, Bendahmane A, Moquet F, Dogimont C. Membrane Trafficking Proteins: A New Target to Identify Resistance to Viruses in Plants. PLANTS 2021; 10:plants10102139. [PMID: 34685948 PMCID: PMC8541145 DOI: 10.3390/plants10102139] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 09/27/2021] [Accepted: 10/05/2021] [Indexed: 11/16/2022]
Abstract
Replication cycles from most simple-stranded positive RNA viruses infecting plants involve endomembrane deformations. Recent published data revealed several interactions between viral proteins and plant proteins associated with vesicle formation and movement. These plant proteins belong to the COPI/II, SNARE, clathrin and ESCRT endomembrane trafficking mechanisms. In a few cases, variations of these plant proteins leading to virus resistance have been identified. In this review, we summarize all known interactions between these plant cell mechanisms and viruses and highlight strategies allowing fast identification of variant alleles for membrane-associated proteins.
Collapse
Affiliation(s)
- Aimeric Agaoua
- INRAE Génétique et Amélioration des Fruits et Légumes (GAFL), 84140 Montfavet, France;
| | - Abdelhafid Bendahmane
- Institute of Plant Sciences-Paris-Saclay (IPS2), Université Paris-Saclay, INRAE, CNRS, Univ Evry, 91405 Orsay, France;
| | | | - Catherine Dogimont
- INRAE Génétique et Amélioration des Fruits et Légumes (GAFL), 84140 Montfavet, France;
- Correspondence:
| |
Collapse
|
24
|
Ray S, Padmanabha H, Mahale R, Mailankody P, Arunachal G. DNAJC6 mutation causing cranial-onset dystonia with tremor dominant levodopa non-responsive parkinsonism: A novel phenotype. Parkinsonism Relat Disord 2021; 89:1-3. [PMID: 34175496 DOI: 10.1016/j.parkreldis.2021.06.013] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/25/2021] [Revised: 06/04/2021] [Accepted: 06/17/2021] [Indexed: 11/25/2022]
Abstract
DNAJC6 mutation causes two types of phenotypes: slowly progressive parkinsonism with levodopa response and rapidly progressive parkinsonism with additional manifestations like intellectual disability, epilepsy etc. We report a new phenotype wherein an adolescent girl developed blepharospasm followed by jaw opening, lingual and cervical dystonia followed by tremors of limbs (rest and action) with rigidity, bradykinesia. The dystonia-parkinsonism phenotype has not been described. She had novel homozygous missense mutation in DNAJC6 gene.
Collapse
Affiliation(s)
| | | | - Rohan Mahale
- Department of Neurology, NIMHANS, Bengaluru, India.
| | | | | |
Collapse
|
25
|
Zou L, Tian Y, Zhang Z. Dysfunction of Synaptic Vesicle Endocytosis in Parkinson's Disease. Front Integr Neurosci 2021; 15:619160. [PMID: 34093144 PMCID: PMC8172812 DOI: 10.3389/fnint.2021.619160] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Accepted: 04/28/2021] [Indexed: 11/25/2022] Open
Abstract
Parkinson’s disease (PD) is the second most common neurodegenerative disorder after Alzheimer’s disease. It is a chronic and progressive disorder estimated to affect at least 4 million people worldwide. Although the etiology of PD remains unclear, it has been found that the dysfunction of synaptic vesicle endocytosis (SVE) in neural terminal happens before the loss of dopaminergic neurons. Recently, accumulating evidence reveals that the PD-linked synaptic genes, including DNAJC6, SYNJ1, and SH3GL2, significantly contribute to the disruptions of SVE, which is vital for the pathogenesis of PD. In addition, the proteins encoded by other PD-associated genes such as SNCA, LRRK2, PRKN, and DJ-1 also play key roles in the regulation of SVE. Here we present the facts about SVE-related genes and discussed their potential relevance to the pathogenesis of PD.
Collapse
Affiliation(s)
- Li Zou
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Ye Tian
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Zhentao Zhang
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan, China
| |
Collapse
|
26
|
Plagens RN, Mossiah I, Kim Guisbert KS, Guisbert E. Chronic temperature stress inhibits reproduction and disrupts endocytosis via chaperone titration in Caenorhabditis elegans. BMC Biol 2021; 19:75. [PMID: 33858388 PMCID: PMC8051109 DOI: 10.1186/s12915-021-01008-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Accepted: 03/19/2021] [Indexed: 11/24/2022] Open
Abstract
Background Temperature influences biology at all levels, from altering rates of biochemical reactions to determining sustainability of entire ecosystems. Although extended exposure to elevated temperatures influences organismal phenotypes important for human health, agriculture, and ecology, the molecular mechanisms that drive these responses remain largely unexplored. Prolonged, mild temperature stress (48 h at 28 °C) has been shown to inhibit reproduction in Caenorhabditis elegans without significantly impacting motility or viability. Results Analysis of molecular responses to chronic stress using RNA-seq uncovers dramatic effects on the transcriptome that are fundamentally distinct from the well-characterized, acute heat shock response (HSR). While a large portion of the genome is differentially expressed ≥ 4-fold after 48 h at 28 °C, the only major class of oogenesis-associated genes affected is the vitellogenin gene family that encodes for yolk proteins (YPs). Whereas YP mRNAs decrease, the proteins accumulate and mislocalize in the pseudocoelomic space as early as 6 h, well before reproduction declines. A trafficking defect in a second, unrelated fluorescent reporter and a decrease in pre-synaptic neuronal signaling indicate that the YP mislocalization is caused by a generalized defect in endocytosis. Molecular chaperones are involved in both endocytosis and refolding damaged proteins. Decreasing levels of the major HSP70 chaperone, HSP-1, causes similar YP trafficking defects in the absence of stress. Conversely, increasing chaperone levels through overexpression of the transcription factor HSF-1 rescues YP trafficking and restores neuronal signaling. Conclusions These data implicate chaperone titration during chronic stress as a molecular mechanism contributing to endocytic defects that influence multiple aspects of organismal physiology. Notably, HSF-1 overexpression improves recovery of viable offspring after exposure to stress. These findings provide important molecular insights into understanding organismal responses to temperature stress as well as phenotypes associated with chronic protein misfolding. Supplementary Information The online version contains supplementary material available at 10.1186/s12915-021-01008-1.
Collapse
Affiliation(s)
- Rosemary N Plagens
- Department of Biomedical and Chemical Engineering and Sciences, Florida Institute of Technology, Melbourne, FL, USA
| | - Isiah Mossiah
- Department of Biomedical and Chemical Engineering and Sciences, Florida Institute of Technology, Melbourne, FL, USA
| | - Karen S Kim Guisbert
- Department of Biomedical and Chemical Engineering and Sciences, Florida Institute of Technology, Melbourne, FL, USA
| | - Eric Guisbert
- Department of Biomedical and Chemical Engineering and Sciences, Florida Institute of Technology, Melbourne, FL, USA.
| |
Collapse
|
27
|
Liu M, Hu J, Zhang A, Dai Y, Chen W, He Y, Zhang H, Zheng X, Zhang Z. Auxilin-like protein MoSwa2 promotes effector secretion and virulence as a clathrin uncoating factor in the rice blast fungus Magnaporthe oryzae. THE NEW PHYTOLOGIST 2021; 230:720-736. [PMID: 33423301 PMCID: PMC8048681 DOI: 10.1111/nph.17181] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Accepted: 01/04/2021] [Indexed: 05/03/2023]
Abstract
Plant pathogens exploit the extracellular matrix (ECM) to inhibit host immunity during their interactions with the host. The formation of ECM involves a series of continuous steps of vesicular transport events. To understand how such vesicle trafficking impacts ECM and virulence in the rice blast fungus Magnaporthe oryzae, we characterised MoSwa2, a previously identified actin-regulating kinase MoArk1 interacting protein, as an orthologue of the auxilin-like clathrin uncoating factor Swa2 of the budding yeast Saccharomyces cerevisiae. We found that MoSwa2 functions as an uncoating factor of the coat protein complex II (COPII) via an interaction with the COPII subunit MoSec24-2. Loss of MoSwa2 led to a deficiency in the secretion of extracellular proteins, resulting in both restricted growth of invasive hyphae and reduced inhibition of host immunity. Additionally, extracellular fluid (ECF) proteome analysis revealed that MoSwa2-regulated extracellular proteins include many redox proteins such as the berberine bridge enzyme-like (BBE-like) protein MoSef1. We further found that MoSef1 functions as an apoplastic virulent factor that inhibits the host immune response. Our studies revealed a novel function of a COPII uncoating factor in vesicular transport that is critical in the suppression of host immunity and pathogenicity of M. oryzae.
Collapse
Affiliation(s)
- Muxing Liu
- Department of Plant PathologyCollege of Plant ProtectionNanjing Agricultural UniversityKey Laboratory of Integrated Management of Crop Diseases and PestsMinistry of EducationNanjing210095China
- The Key Laboratory of Plant ImmunityNanjing Agricultural UniversityNanjing210095China
| | - Jiexiong Hu
- Department of Plant PathologyCollege of Plant ProtectionNanjing Agricultural UniversityKey Laboratory of Integrated Management of Crop Diseases and PestsMinistry of EducationNanjing210095China
| | - Ao Zhang
- Department of Plant PathologyCollege of Plant ProtectionNanjing Agricultural UniversityKey Laboratory of Integrated Management of Crop Diseases and PestsMinistry of EducationNanjing210095China
| | - Ying Dai
- Department of Plant PathologyCollege of Plant ProtectionNanjing Agricultural UniversityKey Laboratory of Integrated Management of Crop Diseases and PestsMinistry of EducationNanjing210095China
| | - Weizhong Chen
- Department of Plant PathologyCollege of Plant ProtectionNanjing Agricultural UniversityKey Laboratory of Integrated Management of Crop Diseases and PestsMinistry of EducationNanjing210095China
| | - Yanglan He
- Department of Plant PathologyCollege of Plant ProtectionNanjing Agricultural UniversityKey Laboratory of Integrated Management of Crop Diseases and PestsMinistry of EducationNanjing210095China
| | - Haifeng Zhang
- Department of Plant PathologyCollege of Plant ProtectionNanjing Agricultural UniversityKey Laboratory of Integrated Management of Crop Diseases and PestsMinistry of EducationNanjing210095China
| | - Xiaobo Zheng
- Department of Plant PathologyCollege of Plant ProtectionNanjing Agricultural UniversityKey Laboratory of Integrated Management of Crop Diseases and PestsMinistry of EducationNanjing210095China
| | - Zhengguang Zhang
- Department of Plant PathologyCollege of Plant ProtectionNanjing Agricultural UniversityKey Laboratory of Integrated Management of Crop Diseases and PestsMinistry of EducationNanjing210095China
- The Key Laboratory of Plant ImmunityNanjing Agricultural UniversityNanjing210095China
| |
Collapse
|
28
|
Bhave M, Mino RE, Wang X, Lee J, Grossman HM, Lakoduk AM, Danuser G, Schmid SL, Mettlen M. Functional characterization of 67 endocytic accessory proteins using multiparametric quantitative analysis of CCP dynamics. Proc Natl Acad Sci U S A 2020; 117:31591-31602. [PMID: 33257546 PMCID: PMC7749282 DOI: 10.1073/pnas.2020346117] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Clathrin-mediated endocytosis (CME) begins with the nucleation of clathrin assembly on the plasma membrane, followed by stabilization and growth/maturation of clathrin-coated pits (CCPs) that eventually pinch off and internalize as clathrin-coated vesicles. This highly regulated process involves a myriad of endocytic accessory proteins (EAPs), many of which are multidomain proteins that encode a wide range of biochemical activities. Although domain-specific activities of EAPs have been extensively studied, their precise stage-specific functions have been identified in only a few cases. Using single-guide RNA (sgRNA)/dCas9 and small interfering RNA (siRNA)-mediated protein knockdown, combined with an image-based analysis pipeline, we have determined the phenotypic signature of 67 EAPs throughout the maturation process of CCPs. Based on these data, we show that EAPs can be partitioned into phenotypic clusters, which differentially affect CCP maturation and dynamics. Importantly, these clusters do not correlate with functional modules based on biochemical activities. Furthermore, we discover a critical role for SNARE proteins and their adaptors during early stages of CCP nucleation and stabilization and highlight the importance of GAK throughout CCP maturation that is consistent with GAK's multifunctional domain architecture. Together, these findings provide systematic, mechanistic insights into the plasticity and robustness of CME.
Collapse
Affiliation(s)
- Madhura Bhave
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390
| | - Rosa E Mino
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390
| | - Xinxin Wang
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390
- Lyda Hill Department of Bioinformatics, University of Texas Southwestern Medical Center, Dallas, TX 75390
| | - Jeon Lee
- Lyda Hill Department of Bioinformatics, University of Texas Southwestern Medical Center, Dallas, TX 75390
| | - Heather M Grossman
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390
- Lyda Hill Department of Bioinformatics, University of Texas Southwestern Medical Center, Dallas, TX 75390
| | - Ashley M Lakoduk
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390
| | - Gaudenz Danuser
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390
- Lyda Hill Department of Bioinformatics, University of Texas Southwestern Medical Center, Dallas, TX 75390
| | - Sandra L Schmid
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390;
| | - Marcel Mettlen
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390;
| |
Collapse
|
29
|
Cherian A, Divya KP. Genetics of Parkinson's disease. Acta Neurol Belg 2020; 120:1297-1305. [PMID: 32813147 DOI: 10.1007/s13760-020-01473-5] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Accepted: 08/11/2020] [Indexed: 12/21/2022]
Abstract
Less than a quarter century after the discovery of SNCA as the first attributable gene in Parkinson's disease (PD), our knowledge of the genetic architecture underlying this disease has improved by leaps and bounds. About 5-10% of all patients suffer from a monogenic form of PD where mutations in autosomal-dominant (AD) genes-SNCA, LRRK2, and VPS35 and autosomal recessive (AR) genes-PINK1, DJ-1, and Parkin cause the disease. Whole-exome sequencing has described AR DNAJC6 mutations not only in predominantly atypical, but also in patients with typical PD. Majority of PD is genetically complex, caused by the combination of common genetic variants in concert with environmental factors. Genome-wide association studies have identified twenty six PD risk loci till date; however, these show only moderate effects on the risk for PD. The validation of novel genes and its association with PD remains extremely challenging as families harboring rare genetic variants are sparse and globally widespread. This review article aims to provide a comprehensive overview on PD genetics.
Collapse
Affiliation(s)
- Ajith Cherian
- Department of Neurology, Sree Chitra Tirunal Institute for Medical Sciences and Technology, Trivandrum, Kerala, India, 695011
| | - K P Divya
- Department of Neurology, Sree Chitra Tirunal Institute for Medical Sciences and Technology, Trivandrum, Kerala, India, 695011.
| |
Collapse
|
30
|
Rajapandi T. Chaperoning of asparagine repeat-containing proteins in Plasmodium falciparum. J Parasit Dis 2020; 44:687-693. [PMID: 33184535 DOI: 10.1007/s12639-020-01251-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Accepted: 07/18/2020] [Indexed: 01/03/2023] Open
Abstract
Plasmodium falciparum has the most adenine (A)- and thymine (T)-rich genome known to date, and 24-30% of the P. falciparum proteome contains asparagine (N) and glutamine (Q) residues. In general, asparagine repeats in proteins increase the propensity for aggregation, especially at elevated temperatures, which occur routinely in P. falciparum parasites during exoerythrocytic and erythrocytic developmental stages in a vertebrate host. The P. falciparum exported chaperone machinery is comprised of an exported PfHsp70-x protein and its co-chaperone PfHsp40-x1 in the host erythrocyte compartment, and PfHsp70-z and its co-chaperones in the parasite cytoplasm have been identified. In vitro assays reveal that these chaperone partners function in refolding of asparagine-rich polypeptides. The identification and chaperoning of exported poly-asparagine-containing proteins, and the biological roles and the protection mechanisms of P. falciparum during febrile conditions by the exported chaperone machinery are discussed.
Collapse
Affiliation(s)
- Thavamani Rajapandi
- Department of Natural Sciences, Science and Technology Center, Coppin State University, 2500 West North Avenue, Baltimore, MD 21216-3698 USA
| |
Collapse
|
31
|
He K, Song E, Upadhyayula S, Dang S, Gaudin R, Skillern W, Bu K, Capraro BR, Rapoport I, Kusters I, Ma M, Kirchhausen T. Dynamics of Auxilin 1 and GAK in clathrin-mediated traffic. J Cell Biol 2020; 219:133624. [PMID: 31962345 PMCID: PMC7054993 DOI: 10.1083/jcb.201908142] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2019] [Revised: 10/28/2019] [Accepted: 12/15/2019] [Indexed: 01/08/2023] Open
Abstract
Clathrin-coated vesicles lose their clathrin lattice within seconds of pinching off, through the action of the Hsc70 “uncoating ATPase.” The J- and PTEN-like domain–containing proteins, auxilin 1 (Aux1) and auxilin 2 (GAK), recruit Hsc70. The PTEN-like domain has no phosphatase activity, but it can recognize phosphatidylinositol phosphate head groups. Aux1 and GAK appear on coated vesicles in successive transient bursts, immediately after dynamin-mediated membrane scission has released the vesicle from the plasma membrane. These bursts contain a very small number of auxilins, and even four to six molecules are sufficient to mediate uncoating. In contrast, we could not detect auxilins in abortive pits or at any time during coated pit assembly. We previously showed that clathrin-coated vesicles have a dynamic phosphoinositide landscape, and we have proposed that lipid head group recognition might determine the timing of Aux1 and GAK appearance. The differential recruitment of Aux1 and GAK correlates with temporal variations in phosphoinositide composition, consistent with a lipid-switch timing mechanism.
Collapse
Affiliation(s)
- Kangmin He
- Department of Cell Biology, Harvard Medical School, Boston, MA.,Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, MA.,Department of Pediatrics, Harvard Medical School, Boston, MA
| | - Eli Song
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, MA
| | - Srigokul Upadhyayula
- Department of Cell Biology, Harvard Medical School, Boston, MA.,Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, MA.,Department of Pediatrics, Harvard Medical School, Boston, MA
| | - Song Dang
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, MA
| | - Raphael Gaudin
- Department of Cell Biology, Harvard Medical School, Boston, MA.,Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, MA
| | - Wesley Skillern
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, MA
| | - Kevin Bu
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA
| | | | - Iris Rapoport
- Department of Cell Biology, Harvard Medical School, Boston, MA
| | - Ilja Kusters
- Department of Cell Biology, Harvard Medical School, Boston, MA.,Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, MA
| | - Minghe Ma
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, MA
| | - Tom Kirchhausen
- Department of Cell Biology, Harvard Medical School, Boston, MA.,Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, MA.,Department of Pediatrics, Harvard Medical School, Boston, MA
| |
Collapse
|
32
|
Zhang W, Jia K, Jia P, Xiang Y, Lu X, Liu W, Yi M. Marine medaka heat shock protein 90ab1 is a receptor for red-spotted grouper nervous necrosis virus and promotes virus internalization through clathrin-mediated endocytosis. PLoS Pathog 2020; 16:e1008668. [PMID: 32639977 PMCID: PMC7371229 DOI: 10.1371/journal.ppat.1008668] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Revised: 07/20/2020] [Accepted: 05/29/2020] [Indexed: 12/19/2022] Open
Abstract
Nervous necrosis virus (NNV) can infect many species of fish and causes serious acute or persistent infection. However, its pathogenic mechanism is still far from clear. Specific cellular surface receptors are crucial determinants of the species tropism of a virus and its pathogenesis. Here, the heat shock protein 90ab1 of marine model fish species marine medaka (MmHSP90ab1) was identified as a novel receptor of red-spotted grouper NNV (RGNNV). MmHSP90ab1 interacted directly with RGNNV capsid protein (CP). Specifically, MmHSP90ab1 bound to the linker region (LR) of CP through its NM domain. Inhibition of MmHSP90ab1 by HSP90-specific inhibitors or MmHSP90ab1 siRNA caused significant inhibition of viral binding and entry, whereas its overexpression led to the opposite effect. The binding of RGNNV to cultured marine medaka hMMES1 cells was inhibited by blocking cell surface-localized MmHSP90ab1 with anti-HSP90β antibodies or pretreating virus with recombinant MmHSP90ab1 or MmHSP90ab1-NM protein, indicating MmHSP90ab1 was an attachment receptor for RGNNV. Furthermore, we found that MmHSP90ab1 formed a complex with CP and marine medaka heat shock cognate 70, a known NNV receptor. Exogenous expression of MmHSP90ab1 independently facilitated the internalization of RGNNV into RGNNV impenetrable cells (HEK293T), which was blocked by chlorpromazine, an inhibitor of clathrin-dependent endocytosis. Further study revealed that MmHSP90ab1 interacted with the marine medaka clathrin heavy chain. Collectively, these data suggest that MmHSP90ab1 is a functional part of the RGNNV receptor complex and involved in the internalization of RGNNV via the clathrin endocytosis pathway.
Collapse
Affiliation(s)
- Wanwan Zhang
- School of Marine Sciences, Sun Yat-sen University, Guangzhou, Guangdong, China
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, Guangdong, China
- Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, Guangdong, China
| | - Kuntong Jia
- School of Marine Sciences, Sun Yat-sen University, Guangzhou, Guangdong, China
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, Guangdong, China
- Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, Guangdong, China
- * E-mail: (KJ); (MY)
| | - Peng Jia
- School of Marine Sciences, Sun Yat-sen University, Guangzhou, Guangdong, China
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, Guangdong, China
- Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, Guangdong, China
| | - Yangxi Xiang
- School of Marine Sciences, Sun Yat-sen University, Guangzhou, Guangdong, China
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, Guangdong, China
- Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, Guangdong, China
| | - Xiaobing Lu
- School of Marine Sciences, Sun Yat-sen University, Guangzhou, Guangdong, China
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, Guangdong, China
- Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, Guangdong, China
| | - Wei Liu
- School of Marine Sciences, Sun Yat-sen University, Guangzhou, Guangdong, China
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, Guangdong, China
- Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, Guangdong, China
| | - Meisheng Yi
- School of Marine Sciences, Sun Yat-sen University, Guangzhou, Guangdong, China
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, Guangdong, China
- Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, Guangdong, China
- * E-mail: (KJ); (MY)
| |
Collapse
|
33
|
Paraan M, Mendez J, Sharum S, Kurtin D, He H, Stagg SM. The structures of natively assembled clathrin-coated vesicles. SCIENCE ADVANCES 2020; 6:eaba8397. [PMID: 32743076 PMCID: PMC7375819 DOI: 10.1126/sciadv.aba8397] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Accepted: 06/05/2020] [Indexed: 05/19/2023]
Abstract
Clathrin-coated vesicles mediate trafficking of proteins and nutrients in the cell and between organelles. Proteins included in the clathrin-coated vesicles (CCVs) category include clathrin heavy chain (CHC), clathrin light chain (CLC), and a variety of adaptor protein complexes. Much is known about the structures of the individual CCV components, but data are lacking about the structures of the fully assembled complexes together with membrane and in complex with cargo. Here, we determined the structures of natively assembled CCVs in a variety of geometries. We show that the adaptor β2 appendages crosslink adjacent CHC β-propellers and that the appendage densities are enriched in CCV hexagonal faces. We resolve how adaptor protein 2 and other associated factors in hexagonal faces form an assembly hub with an extensive web of interactions between neighboring β-propellers and propose a structural model that explains how adaptor binding can direct the formation of pentagonal and hexagonal faces.
Collapse
Affiliation(s)
- Mohammadreza Paraan
- Institute of Molecular Biophysics, Florida State University, 91 Chieftan Way, Tallahassee, FL 32306, USA
| | - Joshua Mendez
- Department of Physics, Florida State University, 77 Chieftan Way, Tallahassee, FL 32306, USA
| | - Savanna Sharum
- Institute of Molecular Biophysics, Florida State University, 91 Chieftan Way, Tallahassee, FL 32306, USA
| | - Danielle Kurtin
- Institute of Molecular Biophysics, Florida State University, 91 Chieftan Way, Tallahassee, FL 32306, USA
| | - Huan He
- Institute of Molecular Biophysics, Florida State University, 91 Chieftan Way, Tallahassee, FL 32306, USA
| | - Scott M. Stagg
- Institute of Molecular Biophysics, Florida State University, 91 Chieftan Way, Tallahassee, FL 32306, USA
- Department of Chemistry and Biochemistry, Florida State University, 95 Chieftain Way, Tallahassee, FL 32306, USA
| |
Collapse
|
34
|
Ng J, Cortès‐Saladelafont E, Abela L, Termsarasab P, Mankad K, Sudhakar S, Gorman KM, Heales SJ, Pope S, Biassoni L, Csányi B, Cain J, Rakshi K, Coutts H, Jayawant S, Jefferson R, Hughes D, García‐Cazorla À, Grozeva D, Raymond FL, Pérez‐Dueñas B, De Goede C, Pearson TS, Meyer E, Kurian MA. DNAJC6 Mutations Disrupt Dopamine Homeostasis in Juvenile Parkinsonism-Dystonia. Mov Disord 2020; 35:1357-1368. [PMID: 32472658 PMCID: PMC8425408 DOI: 10.1002/mds.28063] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Revised: 02/15/2020] [Accepted: 03/03/2020] [Indexed: 12/24/2022] Open
Abstract
Background Juvenile forms of parkinsonism are rare conditions with onset of bradykinesia, tremor and rigidity before the age of 21 years. These atypical presentations commonly have a genetic aetiology, highlighting important insights into underlying pathophysiology. Genetic defects may affect key proteins of the endocytic pathway and clathrin‐mediated endocytosis (CME), as in DNAJC6‐related juvenile parkinsonism. Objective To report on a new patient cohort with juvenile‐onset DNAJC6 parkinsonism‐dystonia and determine the functional consequences on auxilin and dopamine homeostasis. Methods Twenty‐five children with juvenile parkinsonism were identified from a research cohort of patients with undiagnosed pediatric movement disorders. Molecular genetic investigations included autozygosity mapping studies and whole‐exome sequencing. Patient fibroblasts and CSF were analyzed for auxilin, cyclin G–associated kinase and synaptic proteins. Results We identified 6 patients harboring previously unreported, homozygous nonsense DNAJC6 mutations. All presented with neurodevelopmental delay in infancy, progressive parkinsonism, and neurological regression in childhood. 123I‐FP‐CIT SPECT (DaTScan) was performed in 3 patients and demonstrated reduced or absent tracer uptake in the basal ganglia. CSF neurotransmitter analysis revealed an isolated reduction of homovanillic acid. Auxilin levels were significantly reduced in both patient fibroblasts and CSF. Cyclin G–associated kinase levels in CSF were significantly increased, whereas a number of presynaptic dopaminergic proteins were reduced. Conclusions DNAJC6 is an emerging cause of recessive juvenile parkinsonism‐dystonia. DNAJC6 encodes the cochaperone protein auxilin, involved in CME of synaptic vesicles. The observed dopamine dyshomeostasis in patients is likely to be multifactorial, secondary to auxilin deficiency and/or neurodegeneration. Increased patient CSF cyclin G–associated kinase, in tandem with reduced auxilin levels, suggests a possible compensatory role of cyclin G–associated kinase, as observed in the auxilin knockout mouse. DNAJC6 parkinsonism‐dystonia should be considered as a differential diagnosis for pediatric neurotransmitter disorders associated with low homovanillic acid levels. Future research in elucidating disease pathogenesis will aid the development of better treatments for this pharmacoresistant disorder. © 2020 The Authors. Movement Disorders published by Wiley Periodicals, Inc. on behalf of International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
- Joanne Ng
- Molecular Neurosciences, Developmental Neurosciences ProgrammeUCL Great Ormond Street Institute of Child HealthLondonUnited Kingdom
- Gene Transfer Technology GroupUCL Institute for Women's HealthLondonUnited Kingdom
| | - Elisenda Cortès‐Saladelafont
- Molecular Neurosciences, Developmental Neurosciences ProgrammeUCL Great Ormond Street Institute of Child HealthLondonUnited Kingdom
| | - Lucia Abela
- Molecular Neurosciences, Developmental Neurosciences ProgrammeUCL Great Ormond Street Institute of Child HealthLondonUnited Kingdom
| | - Pichet Termsarasab
- Department of NeurologyIcahn School of Medicine at Mount SinaiNew YorkUSA
- Division of Neurology, Department of Medicine, Faculty of Medicine Ramathibodi HospitalMahidol UniversityBangkokThailand
| | - Kshitij Mankad
- Department of RadiologyGreat Ormond Street Hospital for Children NHS Foundation TrustLondonUnited Kingdom
| | - Sniya Sudhakar
- Department of RadiologyGreat Ormond Street Hospital for Children NHS Foundation TrustLondonUnited Kingdom
| | - Kathleen M. Gorman
- Molecular Neurosciences, Developmental Neurosciences ProgrammeUCL Great Ormond Street Institute of Child HealthLondonUnited Kingdom
- Department of NeurologyGreat Ormond Street Hospital for Children NHS Foundation TrustLondonUnited Kingdom
| | - Simon J.R. Heales
- Neurometabolic UnitNational Hospital for Neurology and NeurosurgeryLondonUnited Kingdom
| | - Simon Pope
- Neurometabolic UnitNational Hospital for Neurology and NeurosurgeryLondonUnited Kingdom
| | - Lorenzo Biassoni
- Department of RadiologyGreat Ormond Street Hospital for Children NHS Foundation TrustLondonUnited Kingdom
| | - Barbara Csányi
- Molecular Neurosciences, Developmental Neurosciences ProgrammeUCL Great Ormond Street Institute of Child HealthLondonUnited Kingdom
| | - John Cain
- Department of Nuclear Medicine and ImagingLancashire Teaching Hospitals, NHS Foundation TrustPrestonUnited Kingdom
| | - Karl Rakshi
- Department of PaediatricsEast Lancashire Hospital NHS TrustLancashireUnited Kingdom
| | - Helen Coutts
- Department of PaediatricsEast Lancashire Hospital NHS TrustLancashireUnited Kingdom
| | - Sandeep Jayawant
- Department of Paediatric NeurologyJohn Radcliffe Hospital, Oxford University, NHS Foundation TrustLondonUnited Kingdom
| | - Rosalind Jefferson
- Department of PaediatricsRoyal Berkshire Hospital, NHS Foundation TrustReadingUnited Kingdom
| | - Deborah Hughes
- Molecular Neuroscience and Reta Lila Weston LaboratoriesInstitute of NeurologyQueen SquareLondonUnited Kingdom
| | - Àngels García‐Cazorla
- Department of NeurologyNeurometabolic Unit and CIBERER Hospital Sant Joan de Déu, Esplugues de LlobregatBarcelonaSpain
| | - Detelina Grozeva
- Medical GeneticsCambridge Institute for Medical Research, University of CambridgeCambridgeUnited Kingdom
- UK10K Project, Wellcome Trust Sanger InstituteHinxtonCambridgeUnited Kingdom
| | - F. Lucy Raymond
- Medical GeneticsCambridge Institute for Medical Research, University of CambridgeCambridgeUnited Kingdom
- UK10K Project, Wellcome Trust Sanger InstituteHinxtonCambridgeUnited Kingdom
| | - Belén Pérez‐Dueñas
- Molecular Neurosciences, Developmental Neurosciences ProgrammeUCL Great Ormond Street Institute of Child HealthLondonUnited Kingdom
- Hospital Vall d'Hebron, Institut de Recerca (VHIR)BarcelonaSpain
| | - Christian De Goede
- Department of Paediatric NeurologyRoyal Preston Hospital, Lancashire Teaching Hospitals, NHS Foundation TrustLondonUnited Kingdom
| | - Toni S. Pearson
- Department of NeurologyIcahn School of Medicine at Mount SinaiNew YorkUSA
- Department of NeurologyWashington University School of MedicineSt. LouisMissouriUSA
| | - Esther Meyer
- Molecular Neurosciences, Developmental Neurosciences ProgrammeUCL Great Ormond Street Institute of Child HealthLondonUnited Kingdom
| | - Manju A. Kurian
- Molecular Neurosciences, Developmental Neurosciences ProgrammeUCL Great Ormond Street Institute of Child HealthLondonUnited Kingdom
- Department of NeurologyGreat Ormond Street Hospital for Children NHS Foundation TrustLondonUnited Kingdom
| |
Collapse
|
35
|
Absence of Sac2/INPP5F enhances the phenotype of a Parkinson's disease mutation of synaptojanin 1. Proc Natl Acad Sci U S A 2020; 117:12428-12434. [PMID: 32424101 PMCID: PMC7275725 DOI: 10.1073/pnas.2004335117] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Extensive genetic studies have identified numerous genes whose mutations results on Parkinson’s disease (PD), including synaptojanin 1 (SJ1/Park20), a nerve terminal enriched protein that includes an inositol 4-phosphatase domain (Sac domain). In addition, many PD candidate genes have been identified by genome-wide association studies, but for most of these genes, the link to PD remains hypothetical. One such gene is Sac2/INPP5F, which, interestingly, also includes an inositol 4-phosphatase domain. While Sac2KO mice do not show obvious defects, we show a striking synthetic effect in mice of the KO of Sac2 and the Sac domain mutation of SJ1 found in PD patients. These findings support a synergistic role of SJ1 and Sac2 on a PI4P pool whose dysfunction results in PD. Numerous genes whose mutations cause, or increase the risk of, Parkinson’s disease (PD) have been identified. An inactivating mutation (R258Q) in the Sac inositol phosphatase domain of synaptojanin 1 (SJ1/PARK20), a phosphoinositide phosphatase implicated in synaptic vesicle recycling, results in PD. The gene encoding Sac2/INPP5F, another Sac domain-containing protein, is located within a PD risk locus identified by genome-wide association studies. Knock-In mice carrying the SJ1 patient mutation (SJ1RQKI) exhibit PD features, while Sac2 knockout mice (Sac2KO) do not have obvious neurologic defects. We report a “synthetic” effect of the SJ1 mutation and the KO of Sac2 in mice. Most mice with both mutations died perinatally. The occasional survivors had stunted growth, died within 3 wk, and showed abnormalities of striatal dopaminergic nerve terminals at an earlier stage than SJ1RQKI mice. The abnormal accumulation of endocytic factors observed at synapses of cultured SJ1RQKI neurons was more severe in double-mutant neurons. Our results suggest that SJ1 and Sac2 have partially overlapping functions and are consistent with a potential role of Sac2 as a PD risk gene.
Collapse
|
36
|
Hou X, Watzlawik JO, Fiesel FC, Springer W. Autophagy in Parkinson's Disease. J Mol Biol 2020; 432:2651-2672. [PMID: 32061929 PMCID: PMC7211126 DOI: 10.1016/j.jmb.2020.01.037] [Citation(s) in RCA: 214] [Impact Index Per Article: 42.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Revised: 01/24/2020] [Accepted: 01/30/2020] [Indexed: 02/07/2023]
Abstract
Impaired protein homeostasis and accumulation of damaged or abnormally modified protein are common disease mechanisms in many neurodegenerative disorders, including Parkinson's disease (PD). As one of the major degradation pathways, autophagy plays a pivotal role in maintaining effective turnover of proteins and damaged organelles in cells. Several decades of research efforts led to insights into the potential contribution of impaired autophagy machinery to α-synuclein accumulation and the degeneration of dopaminergic neurons, two major features of PD pathology. In this review, we summarize recent pathological, genetic, and mechanistic findings that link defective autophagy with PD pathogenesis in human patients, animals, and cellular models and discuss current challenges in the field.
Collapse
Affiliation(s)
- Xu Hou
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, USA
| | | | | | - Wolfdieter Springer
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, USA; Neuroscience PhD Program, Mayo Clinic Graduate School of Biomedical Sciences, Jacksonville, FL, USA.
| |
Collapse
|
37
|
Rosenzweig R, Nillegoda NB, Mayer MP, Bukau B. The Hsp70 chaperone network. Nat Rev Mol Cell Biol 2020; 20:665-680. [PMID: 31253954 DOI: 10.1038/s41580-019-0133-3] [Citation(s) in RCA: 699] [Impact Index Per Article: 139.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
The 70-kDa heat shock proteins (Hsp70s) are ubiquitous molecular chaperones that act in a large variety of cellular protein folding and remodelling processes. They function virtually at all stages of the life of proteins from synthesis to degradation and are thus crucial for maintaining protein homeostasis, with direct implications for human health. A large set of co-chaperones comprising J-domain proteins and nucleotide exchange factors regulate the ATPase cycle of Hsp70s, which is allosterically coupled to substrate binding and release. Moreover, Hsp70s cooperate with other cellular chaperone systems including Hsp90, Hsp60 chaperonins, small heat shock proteins and Hsp100 AAA+ disaggregases, together constituting a dynamic and functionally versatile network for protein folding, unfolding, regulation, targeting, aggregation and disaggregation, as well as degradation. In this Review we describe recent advances that have increased our understanding of the molecular mechanisms and working principles of the Hsp70 network. This knowledge showcases how the Hsp70 chaperone system controls diverse cellular functions, and offers new opportunities for the development of chemical compounds that modulate disease-related Hsp70 activities.
Collapse
Affiliation(s)
- Rina Rosenzweig
- Department of Structural Biology, Weizmann Institute of Science, Rehovot, Israel.
| | - Nadinath B Nillegoda
- Center for Molecular Biology of Heidelberg University (ZMBH), Heidelberg, Germany.,German Cancer Research Center (DKFZ), Heidelberg, Germany.,DKFZ-ZMBH Alliance, Heidelberg, Germany.,Australian Regenerative Medicine Institute (ARMI), Monash University, Clayton, VIC, Australia
| | - Matthias P Mayer
- Center for Molecular Biology of Heidelberg University (ZMBH), Heidelberg, Germany.,DKFZ-ZMBH Alliance, Heidelberg, Germany
| | - Bernd Bukau
- Center for Molecular Biology of Heidelberg University (ZMBH), Heidelberg, Germany. .,German Cancer Research Center (DKFZ), Heidelberg, Germany. .,DKFZ-ZMBH Alliance, Heidelberg, Germany.
| |
Collapse
|
38
|
The Herpes Simplex Virus 1 Immediate Early Protein ICP22 Is a Functional Mimic of a Cellular J Protein. J Virol 2020; 94:JVI.01564-19. [PMID: 31748398 DOI: 10.1128/jvi.01564-19] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Accepted: 11/14/2019] [Indexed: 12/15/2022] Open
Abstract
Molecular chaperones and cochaperones are the most abundant cellular effectors of protein homeostasis, assisting protein folding and preventing aggregation of misfolded proteins. We have previously shown that herpes simplex virus 1 (HSV-1) infection results in the drastic spatial reorganization of the cellular chaperone Hsc70 into nuclear domains called VICE (Virus Induced Chaperone Enriched) domains and that this recruitment is dependent on the viral immediate early protein ICP22. Here, we present several lines of evidence supporting the notion that ICP22 functions as a virally encoded cochaperone (J-protein/Hsp40) functioning together with its Hsc70 partner to recognize and manage aggregated and misfolded proteins. We show that ICP22 results in (i) nuclear sequestration of nonnative proteins, (ii) reduction of cytoplasmic aggresomes in cells expressing aggregation-prone proteins, and (iii) thermoprotection against heat inactivation of firefly luciferase, and (iv) sequence homology analysis indicated that ICP22 contains an N-terminal J domain and a C-terminal substrate binding domain, similar to type II cellular J proteins. ICP22 may thus be functionally similar to J-protein/Hsp40 cochaperones that function together with their HSP70 partners to prevent aggregation of nonnative proteins. This is not the first example of a virus hijacking a function of a cellular chaperone, since simian immunodeficiency virus T antigen was previously shown to contain a J domain; however, this the first known example of the acquisition of a functional J-like protein by a virus and suggests that HSV has taken advantage of the adaptable nature of J proteins to evolve a multifunctional cochaperone that functions with Hsc70 to promote lytic infection.IMPORTANCE Viruses have evolved a variety of strategies to succeed in a hostile environment. The herpes simplex virus 1 (HSV-1) immediate early protein ICP22 plays several roles in the virus life cycle, including downregulation of cellular gene expression, upregulation of late viral gene expression, inhibition of apoptosis, prevention of aggregation of nonnative proteins, and the recruitment of a cellular heat shock protein, Hsc70, to nuclear domains. We present evidence that ICP22 functionally resembles a cellular J-protein/HSP40 family cochaperone, interacting specifically with Hsc70. We suggest that HSV has taken advantage of the adaptable nature of J proteins to evolve a multifunctional cochaperone that functions with Hsc70 to promote lytic infection.
Collapse
|
39
|
Lill CM. WITHDRAWN: Genetics of Parkinson's disease. Mol Cell Probes 2020:101471. [PMID: 31978549 DOI: 10.1016/j.mcp.2019.101471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Accepted: 10/17/2019] [Indexed: 11/25/2022]
Abstract
The Publisher regrets that this article is an accidental duplication of an article that has already been published, DOI of original article: https://doi.org/10.1016/j.mcp.2016.11.001. The duplicate article has therefore been withdrawn. The full Elsevier Policy on Article Withdrawal can be found at https://www.elsevier.com/about/our-business/policies/article-withdrawal.
Collapse
Affiliation(s)
- Christina M Lill
- Genetic and Molecular Epidemiology Group, Institute of Neurogenetics, University of Lübeck, Maria-Goeppert-Str. 1, 23562, Lübeck, Germany
| |
Collapse
|
40
|
Czarnocka W, Rusaczonek A, Willems P, Sujkowska-Rybkowska M, Van Breusegem F, Karpiński S. Novel Role of JAC1 in Influencing Photosynthesis, Stomatal Conductance, and Photooxidative Stress Signalling Pathway in Arabidopsis thaliana. FRONTIERS IN PLANT SCIENCE 2020; 11:1124. [PMID: 32849690 PMCID: PMC7403226 DOI: 10.3389/fpls.2020.01124] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2020] [Accepted: 07/08/2020] [Indexed: 05/03/2023]
Abstract
Regulation of light absorption under variable light conditions is essential to optimize photosynthetic and acclimatory processes in plants. Light energy absorbed in excess has a damaging effect on chloroplasts and can lead to cell death. Therefore, plants have evolved protective mechanisms against excess excitation energy that include chloroplast accumulation and avoidance responses. One of the proteins involved in facilitating chloroplast movements in Arabidopsis thaliana is the J domain-containing protein required for chloroplast accumulation response 1 (JAC1). The function of JAC1 relates to the chloroplast actin filaments appearance and disappearance. So far, the role of JAC1 was studied mainly in terms of chloroplasts photorelocation. Here, we demonstrate that the function of JAC1 is more complex, since it influences the composition of photosynthetic pigments, the efficiency of photosynthesis, and the CO2 uptake rate. JAC1 has positive effect on water use efficiency (WUE) by reducing stomatal aperture and water vapor conductance. Importantly, we show that the stomatal aperture regulation is genetically coupled with JAC1 activity. In addition, our data demonstrate that JAC1 is involved in the fine-tuning of H2O2 foliar levels, antioxidant enzymes activities and cell death after UV-C photooxidative stress. This work uncovers a novel function for JAC1 in affecting photosynthesis, CO2 uptake, and photooxidative stress responses.
Collapse
Affiliation(s)
- Weronika Czarnocka
- Department of Botany, Institute of Biology, Warsaw University of Life Sciences, Warsaw, Poland
- Department of Plant Genetics, Breeding and Biotechnology, Institute of Biology, Warsaw University of Life Sciences, Warsaw, Poland
- *Correspondence: Weronika Czarnocka,
| | - Anna Rusaczonek
- Department of Botany, Institute of Biology, Warsaw University of Life Sciences, Warsaw, Poland
- Department of Plant Genetics, Breeding and Biotechnology, Institute of Biology, Warsaw University of Life Sciences, Warsaw, Poland
| | - Patrick Willems
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- Center of Plant Systems Biology, VIB, Ghent, Belgium
| | | | - Frank Van Breusegem
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- Center of Plant Systems Biology, VIB, Ghent, Belgium
| | - Stanisław Karpiński
- Department of Plant Genetics, Breeding and Biotechnology, Institute of Biology, Warsaw University of Life Sciences, Warsaw, Poland
| |
Collapse
|
41
|
Schwihla M, Korbei B. The Beginning of the End: Initial Steps in the Degradation of Plasma Membrane Proteins. FRONTIERS IN PLANT SCIENCE 2020; 11:680. [PMID: 32528512 PMCID: PMC7253699 DOI: 10.3389/fpls.2020.00680] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Accepted: 04/30/2020] [Indexed: 05/05/2023]
Abstract
The plasma membrane (PM), as border between the inside and the outside of a cell, is densely packed with proteins involved in the sensing and transmission of internal and external stimuli, as well as transport processes and is therefore vital for plant development as well as quick and accurate responses to the environment. It is consequently not surprising that several regulatory pathways participate in the tight regulation of the spatiotemporal control of PM proteins. Ubiquitination of PM proteins plays a key role in directing their entry into the endo-lysosomal system, serving as a signal for triggering endocytosis and further sorting for degradation. Nevertheless, a uniting picture of the different roles of the respective types of ubiquitination in the consecutive steps of down-regulation of membrane proteins is still missing. The trans-Golgi network (TGN), which acts as an early endosome (EE) in plants receives the endocytosed cargo, and here the decision is made to either recycled back to the PM or further delivered to the vacuole for degradation. A multi-complex machinery, the endosomal sorting complex required for transport (ESCRT), concentrates ubiquitinated proteins and ushers them into the intraluminal vesicles of multi-vesicular bodies (MVBs). Several ESCRTs have ubiquitin binding subunits, which anchor and guide the cargos through the endocytic degradation route. Basic enzymes and the mode of action in the early degradation steps of PM proteins are conserved in eukaryotes, yet many plant unique components exist, which are often essential in this pathway. Thus, deciphering the initial steps in the degradation of ubiquitinated PM proteins, which is the major focus of this review, will greatly contribute to the larger question of how plants mange to fine-tune their responses to their environment.
Collapse
|
42
|
Asquith CRM, Laitinen T, Bennett JM, Wells CI, Elkins JM, Zuercher WJ, Tizzard GJ, Poso A. Design and Analysis of the 4-Anilinoquin(az)oline Kinase Inhibition Profiles of GAK/SLK/STK10 Using Quantitative Structure-Activity Relationships. ChemMedChem 2019; 15:26-49. [PMID: 31675459 DOI: 10.1002/cmdc.201900521] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2019] [Indexed: 01/01/2023]
Abstract
The 4-anilinoquinoline and 4-anilinoquinazoline ring systems have been the focus of significant efforts in prior kinase drug discovery programs, which have led to approved medicines. Broad kinome profiles of these compounds have now been assessed with the advent of advanced screening technologies. These ring systems, while originally designed for specific targets including epidermal growth factor receptor (EGFR), but actually display a number of potent collateral kinase targets, some of which have been associated with negative clinical outcomes. We have designed and synthesized a series of 4-anilinoquin(az)olines in order to better understand the structure-activity relationships of three main collateral kinase targets of quin(az)oline-based kinase inhibitors: cyclin G associated kinase (GAK), STE20-like serine/threonine-protein kinase (SLK) and serine/threonine-protein kinase 10 (STK10). This was achieved through a series of quantitative structure-activity relationship (QSAR) analysis, water mapping of the kinase ATP binding sites and extensive small-molecule X-ray structural analysis.
Collapse
Affiliation(s)
- Christopher R M Asquith
- Department of Pharmacology, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA.,Structural Genomics Consortium, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Tuomo Laitinen
- School of Pharmacy, Faculty of Health Sciences, University of Eastern Finland, 70211, Kuopio, Finland
| | - James M Bennett
- Structural Genomics Consortium and Target Discovery Institute, Nuffield Department of Clinical Medicine, University of Oxford, Old Road Campus Research Building, Oxford, OX3 7DQ, UK
| | - Carrow I Wells
- Structural Genomics Consortium, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Jonathan M Elkins
- Structural Genomics Consortium and Target Discovery Institute, Nuffield Department of Clinical Medicine, University of Oxford, Old Road Campus Research Building, Oxford, OX3 7DQ, UK.,Structural Genomics Consortium, Universidade Estadual de Campinas-UNICAMP, Campinas, São Paulo, 13083-886 (Brazil)
| | - William J Zuercher
- Structural Genomics Consortium, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA.,Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Graham J Tizzard
- UK National Crystallography Service, School of Chemistry, University of Southampton, Highfield Campus, Southampton, SO17 1BJ, UK
| | - Antti Poso
- School of Pharmacy, Faculty of Health Sciences, University of Eastern Finland, 70211, Kuopio, Finland.,University Hospital Tübingen, Deparment of Internal Medicine VIII, University of Tübingen, 72076, Tübingen, Germany
| |
Collapse
|
43
|
Liu Q, Liang C, Zhou L. Structural and functional analysis of the Hsp70/Hsp40 chaperone system. Protein Sci 2019; 29:378-390. [PMID: 31509306 DOI: 10.1002/pro.3725] [Citation(s) in RCA: 81] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Revised: 08/29/2019] [Accepted: 09/03/2019] [Indexed: 12/22/2022]
Abstract
As one of the most abundant and highly conserved molecular chaperones, the 70-kDa heat shock proteins (Hsp70s) play a key role in maintaining cellular protein homeostasis (proteostasis), one of the most fundamental tasks for every living organism. In this role, Hsp70s are inextricably linked to many human diseases, most notably cancers and neurodegenerative diseases, and are increasingly recognized as important drug targets for developing novel therapeutics for these diseases. Hsp40s are a class of essential and universal partners for Hsp70s in almost all aspects of proteostasis. Thus, Hsp70s and Hsp40s together constitute one of the most important chaperone systems across all kingdoms of life. In recent years, we have witnessed significant progress in understanding the molecular mechanism of this chaperone system through structural and functional analysis. This review will focus on this recent progress, mainly from a structural perspective.
Collapse
Affiliation(s)
- Qinglian Liu
- Department of Physiology and Biophysics, Virginia Commonwealth University, Richmond, Virginia
| | - Ce Liang
- Department of Physiology and Biophysics, Virginia Commonwealth University, Richmond, Virginia
| | - Lei Zhou
- Department of Physiology and Biophysics, Virginia Commonwealth University, Richmond, Virginia
| |
Collapse
|
44
|
Asquith CR, Treiber DK, Zuercher WJ. Utilizing comprehensive and mini-kinome panels to optimize the selectivity of quinoline inhibitors for cyclin G associated kinase (GAK). Bioorg Med Chem Lett 2019; 29:1727-1731. [DOI: 10.1016/j.bmcl.2019.05.025] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Revised: 05/14/2019] [Accepted: 05/15/2019] [Indexed: 11/25/2022]
|
45
|
Asquith CRM, Berger BT, Wan J, Bennett JM, Capuzzi SJ, Crona DJ, Drewry DH, East MP, Elkins JM, Fedorov O, Godoi PH, Hunter DM, Knapp S, Müller S, Torrice CD, Wells CI, Earp HS, Willson TM, Zuercher WJ. SGC-GAK-1: A Chemical Probe for Cyclin G Associated Kinase (GAK). J Med Chem 2019; 62:2830-2836. [PMID: 30768268 DOI: 10.1021/acs.jmedchem.8b01213] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
We describe SGC-GAK-1 (11), a potent, selective, and cell-active inhibitor of cyclin G-associated kinase (GAK), together with a structurally related negative control SGC-GAK-1N (14). 11 was highly selective in an in vitro kinome-wide screen, but cellular engagement assays defined RIPK2 as a collateral target. We identified 18 as a potent RIPK2 inhibitor lacking GAK activity. Together, this chemical probe set can be used to interrogate GAK cellular biology.
Collapse
Affiliation(s)
| | - Benedict-Tilman Berger
- Structural Genomics Consortium, Johann Wolfgang Goethe University, Buchmann Institute for Molecular Life Sciences, Max-von-Laue-Straße 15 , D-60438 Frankfurt am Main , Germany.,Institute for Pharmaceutical Chemistry , Johann Wolfgang Goethe University , Max-von-Laue-Straße 9 , D-60438 Frankfurt am Main , Germany
| | | | - James M Bennett
- Structural Genomics Consortium and Target Discovery Institute, Nuffield Department of Clinical Medicine, University of Oxford, Old Road Campus Research Building , Oxford OX3 7DQ , U.K
| | | | | | | | | | - Jonathan M Elkins
- Structural Genomics Consortium and Target Discovery Institute, Nuffield Department of Clinical Medicine, University of Oxford, Old Road Campus Research Building , Oxford OX3 7DQ , U.K.,Structural Genomics Consortium , Universidade Estadual de Campinas , Campinas , São Paulo 13083-886 , Brazil
| | - Oleg Fedorov
- Structural Genomics Consortium and Target Discovery Institute, Nuffield Department of Clinical Medicine, University of Oxford, Old Road Campus Research Building , Oxford OX3 7DQ , U.K
| | - Paulo H Godoi
- Structural Genomics Consortium , Universidade Estadual de Campinas , Campinas , São Paulo 13083-886 , Brazil
| | | | - Stefan Knapp
- Structural Genomics Consortium, Johann Wolfgang Goethe University, Buchmann Institute for Molecular Life Sciences, Max-von-Laue-Straße 15 , D-60438 Frankfurt am Main , Germany.,Institute for Pharmaceutical Chemistry , Johann Wolfgang Goethe University , Max-von-Laue-Straße 9 , D-60438 Frankfurt am Main , Germany
| | - Susanne Müller
- Structural Genomics Consortium, Johann Wolfgang Goethe University, Buchmann Institute for Molecular Life Sciences, Max-von-Laue-Straße 15 , D-60438 Frankfurt am Main , Germany
| | | | | | | | | | | |
Collapse
|
46
|
Maib H, Ferreira F, Vassilopoulos S, Smythe E. Cargo regulates clathrin-coated pit invagination via clathrin light chain phosphorylation. J Cell Biol 2018; 217:4253-4266. [PMID: 30228161 PMCID: PMC6279376 DOI: 10.1083/jcb.201805005] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2018] [Revised: 07/20/2018] [Accepted: 09/07/2018] [Indexed: 12/18/2022] Open
Abstract
Phosphorylation of clathrin light chains (CLCs) regulates GPCR uptake but is dispensable for transferrin internalization. Maib et al. show that CLCb phosphorylation is required for efficient auxilin-mediated clathrin exchange to promote coated pit invagination in a cargo-specific manner. Clathrin light chains (CLCs) control selective uptake of a range of G protein–coupled receptors (GPCRs), although the mechanism by which this occurs has remained elusive thus far. In particular, site-specific phosphorylation of CLCb controls the uptake of the purinergic GPCR P2Y12, but it is dispensable for the constitutive uptake of the transferrin receptor (TfR). We demonstrate that phosphorylation of CLCb is required for the maturation of clathrin-coated pits (CCPs) through the transition of flat lattices into invaginated buds. This transition is dependent on efficient clathrin exchange regulated by CLCb phosphorylation and mediated through auxilin. Strikingly, this rearrangement is required for the uptake of P2Y12 but not TfR. These findings link auxilin-mediated clathrin exchange to early stages of CCP invagination in a cargo-specific manner. This supports a model in which CCPs invaginate with variable modes of curvature depending on the cargo they incorporate.
Collapse
Affiliation(s)
- Hannes Maib
- Centre for Membrane Interactions and Dynamics, Department of Biomedical Science, University of Sheffield, Sheffield, UK
| | - Filipe Ferreira
- Centre for Membrane Interactions and Dynamics, Department of Biomedical Science, University of Sheffield, Sheffield, UK
| | - Stéphane Vassilopoulos
- Sorbonne Université, INSERM, Institute of Myology, Centre for Research in Myology, UMRS 974, Paris, France
| | - Elizabeth Smythe
- Centre for Membrane Interactions and Dynamics, Department of Biomedical Science, University of Sheffield, Sheffield, UK
| |
Collapse
|
47
|
Ohbayashi N, Murayama K, Kato‐Murayama M, Kukimoto‐Niino M, Uejima T, Matsuda T, Ohsawa N, Yokoyoma S, Nojima H, Shirouzu M. Structural Basis for the Inhibition of Cyclin G-Associated Kinase by Gefitinib. ChemistryOpen 2018; 7:721-727. [PMID: 30214852 PMCID: PMC6129943 DOI: 10.1002/open.201800177] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2018] [Indexed: 02/03/2023] Open
Abstract
Gefitinib is the molecular target drug for advanced non-small-cell lung cancer. The primary target of gefitinib is the positive mutation of epidermal growth factor receptor, but it also inhibits cyclin G-associated kinase (GAK). To reveal the molecular bases of GAK and gefitinib binding, structure analyses were conducted and determined two forms of the gefitinib-bound nanobody⋅GAK kinase domain complex structures. The first form, GAK_1, has one gefitinib at the ATP binding pocket, whereas the second form, GAK_2, binds one each in the ATP binding site and a novel binding site adjacent to the activation segment C-terminal helix, a unique element of the Numb-associated kinase family. In the novel binding site, gefitinib binds in the hydrophobic groove around the activation segment, disrupting the conserved hydrogen bonds for the catalytic activity. These structures suggest possibilities for the development of selective GAK inhibitors for viral infections, such as the hepatitis C virus.
Collapse
Affiliation(s)
- Naomi Ohbayashi
- Division of Structural and Synthetic BiologyRIKEN Center for Life Science Technologies1-7-22 Suehiro-cho, TsurumiYokohama230-0045Japan
| | - Kazutaka Murayama
- RIKEN Center for Biosystems Dynamics Research1-7-22 Suehiro-cho, TsurumiYokohama230-0045Japan
- Graduate School of Biomedical EngineeringTohoku University2-1 Seiryomachi, AobaSendai980-8575Japan
| | - Miyuki Kato‐Murayama
- RIKEN Center for Biosystems Dynamics Research1-7-22 Suehiro-cho, TsurumiYokohama230-0045Japan
| | - Mutsuko Kukimoto‐Niino
- RIKEN Center for Biosystems Dynamics Research1-7-22 Suehiro-cho, TsurumiYokohama230-0045Japan
| | - Tamami Uejima
- RIKEN Center for Biosystems Dynamics Research1-7-22 Suehiro-cho, TsurumiYokohama230-0045Japan
| | - Takayoshi Matsuda
- Division of Structural and Synthetic BiologyRIKEN Center for Life Science Technologies1-7-22 Suehiro-cho, TsurumiYokohama230-0045Japan
| | - Noboru Ohsawa
- Division of Structural and Synthetic BiologyRIKEN Center for Life Science Technologies1-7-22 Suehiro-cho, TsurumiYokohama230-0045Japan
| | - Shigeyuki Yokoyoma
- RIKEN Structural Biology Laboratory1-7-22 Suehiro-cho, TsurumiYokohama230-0045Japan
| | - Hiroshi Nojima
- Department of Molecular GeneticsOsaka University3-1 Yamadaoka, SuitaOsaka565-0871Japan
| | - Mikako Shirouzu
- RIKEN Center for Biosystems Dynamics Research1-7-22 Suehiro-cho, TsurumiYokohama230-0045Japan
| |
Collapse
|
48
|
Soukup SF, Vanhauwaert R, Verstreken P. Parkinson's disease: convergence on synaptic homeostasis. EMBO J 2018; 37:embj.201898960. [PMID: 30065071 DOI: 10.15252/embj.201898960] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2018] [Revised: 05/07/2018] [Accepted: 07/06/2018] [Indexed: 01/01/2023] Open
Abstract
Parkinson's disease, the second most common neurodegenerative disorder, affects millions of people globally. There is no cure, and its prevalence will double by 2030. In recent years, numerous causative genes and risk factors for Parkinson's disease have been identified and more than half appear to function at the synapse. Subtle synaptic defects are thought to precede blunt neuronal death, but the mechanisms that are dysfunctional at synapses are only now being unraveled. Here, we review recent work and propose a model where different Parkinson proteins interact in a cell compartment-specific manner at the synapse where these proteins regulate endocytosis and autophagy. While this field is only recently emerging, the work suggests that the loss of synaptic homeostasis may contribute to neurodegeneration and is a key player in Parkinson's disease.
Collapse
Affiliation(s)
- Sandra-Fausia Soukup
- VIB-KU Leuven Center for Brain& Disease Research, Leuven, Belgium .,Department of Neurosciences, KU Leuven, Leuven, Belgium
| | - Roeland Vanhauwaert
- VIB-KU Leuven Center for Brain& Disease Research, Leuven, Belgium.,Department of Neurosciences, KU Leuven, Leuven, Belgium
| | - Patrik Verstreken
- VIB-KU Leuven Center for Brain& Disease Research, Leuven, Belgium .,Department of Neurosciences, KU Leuven, Leuven, Belgium
| |
Collapse
|
49
|
Baltussen LL, Rosianu F, Ultanir SK. Kinases in synaptic development and neurological diseases. Prog Neuropsychopharmacol Biol Psychiatry 2018; 84:343-352. [PMID: 29241837 DOI: 10.1016/j.pnpbp.2017.12.006] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/18/2017] [Revised: 12/08/2017] [Accepted: 12/09/2017] [Indexed: 10/18/2022]
Abstract
Neuronal morphogenesis and synapse development is essential for building a functioning nervous system, and defects in these processes are associated with neurological disorders. Our understanding of molecular components and signalling events that contribute to neuronal development and pathogenesis is limited. Genes associated with neurodevelopmental and neurodegenerative diseases provide entry points for elucidating molecular events that contribute to these conditions. Several protein kinases, enzymes that regulate protein function by phosphorylating their substrates, are genetically linked to neurological disorders. Identifying substrates of these kinases is key to discovering their function and providing insight for possible therapies. In this review, we describe how various methods for kinase-substrate identification helped elucidate kinase signalling pathways important for neuronal development and function. We describe recent advances on roles of kinases TAOK2, TNIK and CDKL5 in neuronal development and the converging pathways of LRRK2, PINK1 and GAK in Parkinson's Disease.
Collapse
Affiliation(s)
- Lucas L Baltussen
- Kinases and Brain Development Laboratory, The Francis Crick Institute, London NW1 1AT, United Kingdom
| | - Flavia Rosianu
- Kinases and Brain Development Laboratory, The Francis Crick Institute, London NW1 1AT, United Kingdom
| | - Sila K Ultanir
- Kinases and Brain Development Laboratory, The Francis Crick Institute, London NW1 1AT, United Kingdom.
| |
Collapse
|
50
|
Coyne AN, Lorenzini I, Chou CC, Torvund M, Rogers RS, Starr A, Zaepfel BL, Levy J, Johannesmeyer J, Schwartz JC, Nishimune H, Zinsmaier K, Rossoll W, Sattler R, Zarnescu DC. Post-transcriptional Inhibition of Hsc70-4/HSPA8 Expression Leads to Synaptic Vesicle Cycling Defects in Multiple Models of ALS. Cell Rep 2018; 21:110-125. [PMID: 28978466 DOI: 10.1016/j.celrep.2017.09.028] [Citation(s) in RCA: 76] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2016] [Revised: 05/09/2017] [Accepted: 09/07/2017] [Indexed: 12/12/2022] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a synaptopathy accompanied by the presence of cytoplasmic aggregates containing TDP-43, an RNA-binding protein linked to ∼97% of ALS cases. Using a Drosophila model of ALS, we show that TDP-43 overexpression (OE) in motor neurons results in decreased expression of the Hsc70-4 chaperone at the neuromuscular junction (NMJ). Mechanistically, mutant TDP-43 sequesters hsc70-4 mRNA and impairs its translation. Expression of the Hsc70-4 ortholog, HSPA8, is also reduced in primary motor neurons and NMJs of mice expressing mutant TDP-43. Electrophysiology, imaging, and genetic interaction experiments reveal TDP-43-dependent defects in synaptic vesicle endocytosis. These deficits can be partially restored by OE of Hsc70-4, cysteine-string protein (Csp), or dynamin. This suggests that TDP-43 toxicity results in part from impaired activity of the synaptic CSP/Hsc70 chaperone complex impacting dynamin function. Finally, Hsc70-4/HSPA8 expression is also post-transcriptionally reduced in fly and human induced pluripotent stem cell (iPSC) C9orf72 models, suggesting a common disease pathomechanism.
Collapse
Affiliation(s)
- Alyssa N Coyne
- Department of Molecular and Cellular Biology, University of Arizona, Tucson, AZ 85721, USA; Department of Neuroscience, University of Arizona, Tucson, AZ 85721, USA
| | - Ileana Lorenzini
- Department of Neurobiology, Barrow Neurological Institute, St. Joseph's Hospital and Medical Center, Phoenix, AZ 85013, USA
| | - Ching-Chieh Chou
- Department of Cell Biology, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Meaghan Torvund
- Department of Neuroscience, University of Arizona, Tucson, AZ 85721, USA
| | - Robert S Rogers
- Department of Anatomy and Cell Biology, University of Kansas School of Medicine, Kansas City, KS 66160, USA
| | - Alexander Starr
- Department of Neurobiology, Barrow Neurological Institute, St. Joseph's Hospital and Medical Center, Phoenix, AZ 85013, USA
| | - Benjamin L Zaepfel
- Department of Molecular and Cellular Biology, University of Arizona, Tucson, AZ 85721, USA
| | - Jennifer Levy
- Department of Neurobiology, Barrow Neurological Institute, St. Joseph's Hospital and Medical Center, Phoenix, AZ 85013, USA
| | - Jeffrey Johannesmeyer
- Department of Molecular and Cellular Biology, University of Arizona, Tucson, AZ 85721, USA
| | - Jacob C Schwartz
- Department of Chemistry and Biochemistry, University of Arizona, Tucson, AZ 85721, USA
| | - Hiroshi Nishimune
- Department of Anatomy and Cell Biology, University of Kansas School of Medicine, Kansas City, KS 66160, USA
| | - Konrad Zinsmaier
- Department of Molecular and Cellular Biology, University of Arizona, Tucson, AZ 85721, USA; Department of Neuroscience, University of Arizona, Tucson, AZ 85721, USA
| | - Wilfried Rossoll
- Department of Cell Biology, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Rita Sattler
- Department of Neurobiology, Barrow Neurological Institute, St. Joseph's Hospital and Medical Center, Phoenix, AZ 85013, USA
| | - Daniela C Zarnescu
- Department of Molecular and Cellular Biology, University of Arizona, Tucson, AZ 85721, USA; Department of Neuroscience, University of Arizona, Tucson, AZ 85721, USA; Department of Neurology, University of Arizona, Tucson, AZ 85721, USA.
| |
Collapse
|