1
|
Li B, Chen H, Hang R. Osseointegration-Related Exosomes for Surface Functionalization of Titanium Implants. Biomater Res 2024; 28:0124. [PMID: 39711824 PMCID: PMC11661649 DOI: 10.34133/bmr.0124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 11/05/2024] [Accepted: 11/27/2024] [Indexed: 12/24/2024] Open
Abstract
Despite that the clinical application of titanium-based implants has achieved great success, patients' own diseases and/or unhealthy lifestyle habits often lead to implant failure. Many studies have been carried out to modify titanium implants to promote osseointegration and implant success. Recent studies showed that exosomes, proactively secreted extracellular vesicles by mammalian cells, could selectively target and modulate the functions of recipient cells such as macrophages, nerve cells, endothelial cells, and bone marrow mesenchymal stem cells that are closely involved in implant osseointegration. Accordingly, using exosomes to functionalize titanium implants has been deemed as a novel and effective way to improve their osseointegration ability. Herein, recent advances pertaining to surface functionalization of titanium implants with exosomes are analyzed and discussed, with focus on the role of exosomes in regulating the functions of osseointegration-related cells, and their immobilization strategies as well as resultant impact on osseointegration ability.
Collapse
Affiliation(s)
- Boqiong Li
- Department of Materials Science and Engineering,
Jinzhong University, Jinzhong 030619, China
| | - Huanming Chen
- Shanxi Key Laboratory of Biomedical Metal Materials, College of Materials Science and Engineering,
Taiyuan University of Technology, Taiyuan 030024, China
| | - Ruiqiang Hang
- Shanxi Key Laboratory of Biomedical Metal Materials, College of Materials Science and Engineering,
Taiyuan University of Technology, Taiyuan 030024, China
| |
Collapse
|
2
|
Xing Y, Kang L, Chen L, Li Y, Lu D. Research progress of exosomes in pathogenesis and treatment of preeclampsia. J Obstet Gynaecol Res 2024; 50:2183-2194. [PMID: 39434205 DOI: 10.1111/jog.16106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Accepted: 09/16/2024] [Indexed: 10/23/2024]
Abstract
AIM Preeclampsia (PE) is a critical and severe disease in obstetrics, which seriously affects maternal and neonatal life safety and long-term prognosis. However, the etiology and pathogenesis of PE are complex, and no unified conclusion has been reached. The types and number of exosomes and their transport substances in PE patients changed. The study of exosomes in PE patients helps clarify the etiology, diagnosis, effective treatment, accurate monitoring, and prognosis. METHOD The published articles were reviewed. RESULTS Exosomes may affect endothelial and vascular production and function, participate in maternal-fetal immune regulation, and transport substances such as miRNAs, lncRNAs, and proteins involved in the development of PE. Detection of the contents of exosomes can help in the early diagnosis of PE, and can help to improve PE by inhibiting the action of exosomes or preventing their binding to target organs. CONCLUSION Exosomes may be involved in the development of PE, and exosomes can be used as markers for predicting the onset of PE and tracking the disease process and determining the prognosis, and exosomes have great potential in the treatment of PE.
Collapse
Affiliation(s)
- Yue Xing
- Northern Jiangsu People's Hospital Affiliated to Yangzhou University, Yangzhou, China
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, China
| | - Luyao Kang
- Northern Jiangsu People's Hospital Affiliated to Yangzhou University, Yangzhou, China
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, China
| | - Lu Chen
- Northern Jiangsu People's Hospital Affiliated to Yangzhou University, Yangzhou, China
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, China
| | - Youyou Li
- Northern Jiangsu People's Hospital Affiliated to Yangzhou University, Yangzhou, China
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, China
| | - Dan Lu
- Northern Jiangsu People's Hospital Affiliated to Yangzhou University, Yangzhou, China
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, China
| |
Collapse
|
3
|
Jackson Cullison SR, Flemming JP, Karagoz K, Wermuth PJ, Mahoney MG. Mechanisms of extracellular vesicle uptake and implications for the design of cancer therapeutics. JOURNAL OF EXTRACELLULAR BIOLOGY 2024; 3:e70017. [PMID: 39483807 PMCID: PMC11522837 DOI: 10.1002/jex2.70017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 09/11/2024] [Accepted: 10/14/2024] [Indexed: 11/03/2024]
Abstract
The translation of pre-clinical anti-cancer therapies to regulatory approval has been promising, but slower than hoped. While innovative and effective treatments continue to achieve or seek approval, setbacks are often attributed to a lack of efficacy, failure to achieve clinical endpoints, and dose-limiting toxicities. Successful efforts have been characterized by the development of therapeutics designed to specifically deliver optimal and effective dosing to tumour cells while minimizing off-target toxicity. Much effort has been devoted to the rational design and application of synthetic nanoparticles to serve as targeted therapeutic delivery vehicles. Several challenges to the successful application of this modality as delivery vehicles include the induction of a protracted immune response that results in their rapid systemic clearance, manufacturing cost, lack of stability, and their biocompatibility. Extracellular vesicles (EVs) are a heterogeneous class of endogenous biologically produced lipid bilayer nanoparticles that mediate intercellular communication by carrying bioactive macromolecules capable of modifying cellular phenotypes to local and distant cells. By genetic, chemical, or metabolic methods, extracellular vesicles (EVs) can be engineered to display targeting moieties on their surface while transporting specific cargo to modulate pathological processes following uptake by target cell populations. This review will survey the types of EVs, their composition and cargoes, strategies employed to increase their targeting, uptake, and cargo release, and their potential as targeted anti-cancer therapeutic delivery vehicles.
Collapse
Affiliation(s)
| | - Joseph P. Flemming
- Rowan‐Virtua School of Osteopathic MedicineRowan UniversityStratfordNew JerseyUSA
| | - Kubra Karagoz
- Departments of PharmacologyPhysiology, and Cancer Biology, Thomas Jefferson UniversityPhiladelphiaPennsylvaniaUSA
| | | | - Mỹ G. Mahoney
- Departments of PharmacologyPhysiology, and Cancer Biology, Thomas Jefferson UniversityPhiladelphiaPennsylvaniaUSA
- Department of Otolaryngology – Head and Neck SurgeryThomas Jefferson UniversityPhiladelphiaPennsylvaniaUSA
| |
Collapse
|
4
|
Bates M, Mohamed BM, Lewis F, O'Toole S, O'Leary JJ. Biomarkers in high grade serous ovarian cancer. Biochim Biophys Acta Rev Cancer 2024; 1879:189224. [PMID: 39581234 DOI: 10.1016/j.bbcan.2024.189224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Revised: 11/15/2024] [Accepted: 11/15/2024] [Indexed: 11/26/2024]
Abstract
High-grade serous ovarian cancer (HGSC) is the most common subtype of ovarian cancer. HGSC patients typically present with advanced disease, which is often resistant to chemotherapy and recurs despite initial responses to therapy, resulting in the poor prognosis associated with this disease. There is a need to utilise biomarkers to manage the various aspects of HGSC patient care. In this review we discuss the current state of biomarkers in HGSC, focusing on the various available immunohistochemical (IHC) and blood-based biomarkers, which have been examined for their diagnostic, prognostic and theranostic potential in HGSC. These include various routine clinical IHC biomarkers such as p53, WT1, keratins, PAX8, Ki67 and p16 and clinical blood-borne markers and algorithms such as CA125, HE4, ROMA, RMI, ROCA, and others. We also discuss various components of the liquid biopsy as well as a number of novel IHC biomarkers and non-routine blood-borne biomarkers, which have been examined in various ovarian cancer studies. We also discuss the future of ovarian cancer biomarker research and highlight some of the challenges currently facing the field.
Collapse
Affiliation(s)
- Mark Bates
- Department of Histopathology, Trinity College Dublin, Dublin, Ireland; Emer Casey Molecular Pathology Research Laboratory, Coombe Women & Infants University Hospital, Dublin, Ireland; Trinity St James's Cancer Institute, Dublin, Ireland.
| | - Bashir M Mohamed
- Department of Histopathology, Trinity College Dublin, Dublin, Ireland; Emer Casey Molecular Pathology Research Laboratory, Coombe Women & Infants University Hospital, Dublin, Ireland; Trinity St James's Cancer Institute, Dublin, Ireland
| | - Faye Lewis
- Department of Histopathology, Trinity College Dublin, Dublin, Ireland; Emer Casey Molecular Pathology Research Laboratory, Coombe Women & Infants University Hospital, Dublin, Ireland; Trinity St James's Cancer Institute, Dublin, Ireland
| | - Sharon O'Toole
- Department of Histopathology, Trinity College Dublin, Dublin, Ireland; Emer Casey Molecular Pathology Research Laboratory, Coombe Women & Infants University Hospital, Dublin, Ireland; Trinity St James's Cancer Institute, Dublin, Ireland; Department of Obstetrics and Gynaecology, Trinity College Dublin, Dublin, Ireland
| | - John J O'Leary
- Department of Histopathology, Trinity College Dublin, Dublin, Ireland; Emer Casey Molecular Pathology Research Laboratory, Coombe Women & Infants University Hospital, Dublin, Ireland; Trinity St James's Cancer Institute, Dublin, Ireland; Department of Pathology, Coombe Women & Infants University Hospital, Dublin, Ireland
| |
Collapse
|
5
|
Babaei K, Aziminezhad M, Mirzajani E, Mozdarani H, Sharami SH, Norollahi SE, Samadani AA. A critical review of the recent concept of regulatory performance of DNA Methylations, and DNA methyltransferase enzymes alongside the induction of immune microenvironment elements in recurrent pregnancy loss. Toxicol Rep 2024; 12:546-563. [PMID: 38798987 PMCID: PMC11127471 DOI: 10.1016/j.toxrep.2024.05.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 04/22/2024] [Accepted: 05/06/2024] [Indexed: 05/29/2024] Open
Abstract
Recurrent pregnancy Loss (RPL)is a frequent and upsetting condition. Besides the prevalent cause of RPL including chromosomal defects in the embryo,the effect of translational elements like alterations of epigenetics are of great importance. The emergence of epigenetics has offered a fresh outlook on the causes and treatment of RPL by focusing on the examination of DNA methylation. RPL may arise as a result of aberrant DNA methylation of imprinted genes, placenta-specific genes, immune-related genes, and sperm DNA, which may have a direct or indirect impact on embryo implantation, growth, and development. Moreover, the distinct immunological tolerogenic milieu established at the interface between the mother and fetus plays a crucial role in sustaining pregnancy. Given this, there has been a great deal of interest in the regulation of DNA methylation and alterations in the cellular components of the maternal-fetal immunological milieu. The research on DNA methylation's role in RPL incidence and the control of the mother-fetal immunological milieu is summed up in this review.
Collapse
Affiliation(s)
- Kosar Babaei
- Noncommunicable Diseases Research Center, Neyshabur University of Medical Sciences, Neyshabur, Iran
| | - Mohsen Aziminezhad
- Noncommunicable Diseases Research Center, Neyshabur University of Medical Sciences, Neyshabur, Iran
- UMR INSERM U 1122, IGE-PCV, Interactions Gène-Environment En Physiopathologie Cardiovascular Université De Lorraine, Nancy, France
| | - Ebrahim Mirzajani
- Department of Biochemistry and Biophysics, School of Medicine, Guilan University of Medical Sciences, Rasht, Iran
| | - Hossein Mozdarani
- Department of Medical Genetics, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Seyedeh Hajar Sharami
- Reproductive Health Research Center, Department of Obstetrics and Gynecology, School of Medicine, Al-Zahra Hospital, Guilan University of Medical Sciences, Rasht, Iran
| | - Seyedeh Elham Norollahi
- Cancer Research Center and Department of Immunology, Semnan University of Medical Sciences, Semnan, Iran
| | - Ali Akbar Samadani
- Guilan Road Trauma Research Center, Trauma Institute, Guilan University of Medical Sciences, Rasht, Iran
| |
Collapse
|
6
|
Zaman R, Ravichandran V, Tan CK. Role of dietary supplements in the continuous battle against COVID-19. Phytother Res 2024; 38:1071-1088. [PMID: 38168043 DOI: 10.1002/ptr.8096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Revised: 11/13/2023] [Accepted: 12/04/2023] [Indexed: 01/05/2024]
Abstract
A sudden outbreak of the COVID-19 pandemic was a big blow to the world community on every level. Created by a novel coronavirus, SARS-CoV-2, which was previously unknown to the human immune system. The expert opinion almost immediately united on the fact that the most effective way of fighting the pandemic would be by building immunity artificially via a mass immunization program. However, it took about a year for the approval of the first vaccine against COVID-19. In the meantime, a big part of the general population started adapting nutritious diet plans and dietary supplements to boost natural immunity as a potential prophylactic strategy against SARS-CoV-2 infection. Whether they originate from mainstream medicine, such as synthetic supplements, or traditional herbal remedies in the form of single or poly-herbs, these supplements may comprise various components that exhibit immunomodulatory, anti-inflammatory, antioxidant, and antimicrobial characteristics. There is a substantial body of predictions and expert opinions suggesting that enhancing one's diet with dietary supplements containing additional nutrients and bioactive compounds like vitamins, minerals, amino acids, fatty acids, phytochemicals, and probiotics can enhance the immune system's ability to develop resistance against COVID-19, although none of them have any conclusive evidence nor officially recommended by World Health Organization (WHO). The current review critically acclaims the gap between public perception-based preference and real evidence-based study to weigh the actual benefit of dietary supplements in relation to COVID-19 prevention and management.
Collapse
Affiliation(s)
- Rahela Zaman
- School of Healthy Aging, Aesthetics and Regenerative Medicine, Faculty of Medicine and Health Sciences, UCSI University, Kuala Lumpur, Malaysia
| | - Vignesh Ravichandran
- School of Healthy Aging, Aesthetics and Regenerative Medicine, Faculty of Medicine and Health Sciences, UCSI University, Kuala Lumpur, Malaysia
| | - Chung Keat Tan
- School of Healthy Aging, Aesthetics and Regenerative Medicine, Faculty of Medicine and Health Sciences, UCSI University, Kuala Lumpur, Malaysia
| |
Collapse
|
7
|
Zhao K, Jia C, Wang J, Shi W, Wang X, Song Y, Peng C. Exosomal hsa-miR-151a-3p and hsa-miR-877-5p are potential novel biomarkers for predicting bone metastasis in lung cancer. Aging (Albany NY) 2023; 15:14864-14888. [PMID: 38180107 PMCID: PMC10781484 DOI: 10.18632/aging.205314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Accepted: 11/08/2023] [Indexed: 01/06/2024]
Abstract
Exosomal miRNAs (exo-miRNAs) have arisen as novel diagnostic biomarkers for various cancers. However, few reports on exo-miRNAs related to bone metastasis (BM) in lung cancer exist. This study aims to screen out key exo-miRNAs and estimate their prognostic values for predicting BM in lung cancer. The differentially expressed exo-miRNAs between the highly-metastatic (95D) and lowly-metastatic (A549) human lung cancer cell lines were comprehensively analyzed using high-throughput sequencing followed by bioinformatic analyses. 29 candidate exo-miRNAs were identified, and 101 BM-related target genes were predicted. Enrichment analysis revealed that these target genes were mainly involved in regulating transcription and pathways in cancer. An exosomal miRNA-mRNA regulatory network consisting of 7 key miRNAs and 10 hub genes was constructed. Further function analysis indicated that these 10 hub genes were mainly enriched in regulating cancer's apoptosis and central carbon metabolism. The survival analysis indicated that 7 of 10 hub genes were closely related to prognosis. Mutation analysis showed that lung cancer patients presented certain genetic alterations in the 7 real hub genes. GSEA for a single hub gene suggested that 6 of 7 real hub genes had close associations with lung cancer development. Finally, ROC analysis revealed that hsa-miR-151a-3p and hsa-miR-877-5p provided high diagnostic accuracy in discriminating patients with bone metastasis (BM+) from patients without bone metastasis (BM-). These findings provided a comprehensive analysis of exo-miRNAs and target genes in the regulatory network of BM in lung cancer. In particular, hsa-miR-151a-3p and hsa-miR-877-5p may be novel biomarkers for predicting BM in lung cancer.
Collapse
Affiliation(s)
- Kun Zhao
- Department of Spinal Surgery, The Second Hospital of Shandong University, Jinan 250033, China
| | - Changji Jia
- Department of Spinal Surgery, The Second Hospital of Shandong University, Jinan 250033, China
| | - Jin Wang
- Department of Spinal Surgery, The Second Hospital of Shandong University, Jinan 250033, China
| | - Weiye Shi
- Department of Spinal Surgery, The Second Hospital of Shandong University, Jinan 250033, China
| | - Xiaoying Wang
- Department of Pathology, The Second Hospital of Shandong University, Jinan 250033, China
| | - Yan Song
- Department of Nephrology, The Second Hospital of Shandong University, Jinan 250033, China
| | - Changliang Peng
- Department of Spinal Surgery, The Second Hospital of Shandong University, Jinan 250033, China
| |
Collapse
|
8
|
Song P, Anna B, E Scott G, Chamley LW. The interaction of placental micro-EVs with immune cells in vivo and in vitro. Am J Reprod Immunol 2023; 90:e13766. [PMID: 37641368 DOI: 10.1111/aji.13766] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 06/08/2023] [Accepted: 07/07/2023] [Indexed: 08/31/2023] Open
Abstract
PROBLEM Considerable evidence suggests that placental extracellular vesicles (EVs) interact with most types of leukocytes in vitro but in vivo biodistribution studies question whether these interactions are reflective of the situation in vivo. METHOD OF STUDY CellTracker Red CMTPX stained human placental micro-EVs were isolated from first trimester placental explant cultures. Equivalent amounts of micro-EVs were cultured with murine leukocytes in vitro or injected into pregnant or non-pregnant mice. After intravenous injection, on day 12.5 of gestation, major organs and blood samples were harvested 30 min or 24 h post injection. RESULTS We screened cryosections of the organs and confirmed that human placental EVs were specifically localised to the spleen, liver and the lungs 30 min or 24 h after injection. Immunohistochemistry showed that most of the EVs interacted with macrophages in those three organs and some of them also associated with T and B lymphocytes in the spleen or endothelial cells in the lungs and liver. Flow cytometry demonstrated that there was very little interaction between circulating leukocytes and EVs in vivo. While minimal, significantly more EVs interacted with leukocytes in pregnant than nonpregnant mice. CONCLUSION The major interaction between human placental micro-EVs and maternal leukocytes appear to be with macrophages predominantly in the splenic marginal zone, liver and lungs with little interaction between EVs and circulating leukocytes. Since marginal zone macrophages induce tolerance after phagocytosing apoptotic bodies it is likely that phagocytosis of placental EVs by marginal zone macrophages may also contribute to maternal immune tolerance.
Collapse
Affiliation(s)
- Paek Song
- Department of Obstetrics and Gynaecology, The University of Auckland, Auckland, New Zealand
- Hub for Extracellular Vesicle Investigations (HEVI), The University of Auckland, Auckland, New Zealand
| | - Brooks Anna
- School of Biological Sciences, University of Auckland, Auckland, New Zealand
| | - Graham E Scott
- Department of Molecular Medicine and Pathology, School of Medical Sciences, and Centre for Brain Research, The University of Auckland, Auckland, New Zealand
| | - Lawrence Willam Chamley
- Department of Obstetrics and Gynaecology, The University of Auckland, Auckland, New Zealand
- Hub for Extracellular Vesicle Investigations (HEVI), The University of Auckland, Auckland, New Zealand
| |
Collapse
|
9
|
Lee KS, Park JY, Jeong YJ, Lee MS. The Fatal Role of Enterohaemorrhagic Escherichia coli Shiga Toxin-associated Extracellular Vesicles in Host Cells. J Microbiol 2023; 61:715-727. [PMID: 37665555 DOI: 10.1007/s12275-023-00066-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 05/26/2023] [Accepted: 07/05/2023] [Indexed: 09/05/2023]
Abstract
Enterohemorrhagic Escherichia coli (EHEC) is a specific subset of Shiga toxin-producing Escherichia coli (STEC) strains that are characterized by their ability to cause bloody diarrhea (hemorrhagic colitis) and potentially life-threatening, extraintestinal complications such as hemolytic uremic syndrome (HUS), which is associated with acute renal failure., contributing to severe clinical outcomes. The Shiga toxins (Stxs), produced by EHEC, are primary virulence factors. These potent cytotoxins are composed of one enzymatically active A subunit (StxA) and five receptor-binding B subunits (StxB). Although the toxins are primarily associated with cytotoxic effects, they also elicit other pathogenic consequences due to their induction of a number of biological processes, including apoptosis through ER-stress, pro-inflammatory responses, autophagy, and post-translational modification (PTM). Moreover, several studies have reported the association between Stxs and extracellular vesicles (EVs), including microvesicles and exosomes, demonstrating that Stx-containing EVs secreted by intoxicated macrophages are taken up by recipient cells, such as toxin-sensitive renal proximal tubular epithelial cells. This mechanism likely contributes to the spreading of Stxs within the host, and may exacerbate gastrointestinal illnesses and kidney dysfunction. In this review, we summarize recent findings relating to the host responses, in different types of cells in vitro and in animal models, mediated by Stxs-containing exosomes. Due to their unique properties, EVs have been explored as therapeutic agents, drug delivery systems, and diagnostic tools. Thus, potential therapeutic applications of EVs in EHEC Stxs-mediated pathogenesis are also briefly reviewed.
Collapse
Affiliation(s)
- Kyung-Soo Lee
- Environmental Diseases Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, 34141, Republic of Korea
| | - Jun-Young Park
- Environmental Diseases Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, 34141, Republic of Korea
| | - Yu-Jin Jeong
- Department of Biomolecular Science, KRIBB School of Bioscience, Korea University of Science and Technology (UST), Daejeon, 34113, Republic of Korea.
| | - Moo-Seung Lee
- Environmental Diseases Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, 34141, Republic of Korea.
- Department of Biomolecular Science, KRIBB School of Bioscience, Korea University of Science and Technology (UST), Daejeon, 34113, Republic of Korea.
| |
Collapse
|
10
|
Adamczyk AM, Leicaj ML, Fabiano MP, Cabrerizo G, Bannoud N, Croci DO, Witwer KW, Remes Lenicov F, Ostrowski M, Pérez PS. Extracellular vesicles from human plasma dampen inflammation and promote tissue repair functions in macrophages. J Extracell Vesicles 2023; 12:e12331. [PMID: 37272889 PMCID: PMC10241174 DOI: 10.1002/jev2.12331] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 04/14/2023] [Accepted: 05/04/2023] [Indexed: 06/06/2023] Open
Abstract
Although inflammation is a vital defence response to infection, if left uncontrolled, it can lead to pathology. Macrophages are critical players both in driving the inflammatory response and in the subsequent events required for restoring tissue homeostasis. Extracellular vesicles (EVs) are membrane-enclosed structures released by cells that mediate intercellular communication and are present in all biological fluids, including blood. Herein, we show that extracellular vesicles from plasma (pEVs) play a relevant role in the control of inflammation by counteracting PAMP-induced macrophage activation. Indeed, pEV-treatment of macrophages simultaneously with or prior to PAMP exposure reduced the secretion of pro-inflammatory IL-6 and TNF-α and increased IL-10 response. This anti-inflammatory activity was associated with the promotion of tissue-repair functions in macrophages, characterized by augmented efferocytosis and pro-angiogenic capacity, and increased expression of VEGFa, CD300e, RGS2 and CD93, genes involved in cell growth and tissue remodelling. We also show that simultaneous stimulation of macrophages with a PAMP and pEVs promoted COX2 expression and CREB phosphorylation as well as the accumulation of higher concentrations of PGE2 in cell culture supernatants. Remarkably, the anti-inflammatory activity of pEVs was abolished if cells were treated with a pharmacological inhibitor of COX2, indicating that pEV-mediated induction of COX2 is critical for the pEV-mediated inhibition of inflammation. Finally, we show that pEVs added to monocytes prior to their M-CSF-induced differentiation to macrophages increased efferocytosis and diminished pro-inflammatory cytokine responses to PAMP stimulation. In conclusion, our results suggest that pEVs are endogenous homeostatic modulators of macrophages, activating the PGE2/CREB pathway, decreasing the production of inflammatory cytokines and promoting tissue repair functions.
Collapse
Affiliation(s)
- Alan M. Adamczyk
- Instituto de Investigaciones Biomédicas en Retrovirus y SIDA (INBIRS)Universidad de Buenos Aires‐CONICETBuenos AiresArgentina
| | - María Luz Leicaj
- Instituto de Investigaciones Biomédicas en Retrovirus y SIDA (INBIRS)Universidad de Buenos Aires‐CONICETBuenos AiresArgentina
| | - Martina Paula Fabiano
- Instituto de Investigaciones Biomédicas en Retrovirus y SIDA (INBIRS)Universidad de Buenos Aires‐CONICETBuenos AiresArgentina
| | - Gonzalo Cabrerizo
- Instituto de Investigaciones Biomédicas en Retrovirus y SIDA (INBIRS)Universidad de Buenos Aires‐CONICETBuenos AiresArgentina
| | - Nadia Bannoud
- Laboratorio de Glicobiología y Biología VascularInstituto de Histología y Embriología de MendozaCONICET‐Universidad Nacional de CuyoMendozaArgentina
| | - Diego O. Croci
- Laboratorio de Glicobiología y Biología VascularInstituto de Histología y Embriología de MendozaCONICET‐Universidad Nacional de CuyoMendozaArgentina
| | - Kenneth W. Witwer
- Department of Molecular and Comparative PathobiologyThe Johns Hopkins University School of MedicineBaltimoreMarylandUSA
- Department of NeurologyThe Johns Hopkins University School of MedicineBaltimoreMarylandUSA
| | - Federico Remes Lenicov
- Instituto de Investigaciones Biomédicas en Retrovirus y SIDA (INBIRS)Universidad de Buenos Aires‐CONICETBuenos AiresArgentina
| | - Matías Ostrowski
- Instituto de Investigaciones Biomédicas en Retrovirus y SIDA (INBIRS)Universidad de Buenos Aires‐CONICETBuenos AiresArgentina
| | - Paula Soledad Pérez
- Instituto de Investigaciones Biomédicas en Retrovirus y SIDA (INBIRS)Universidad de Buenos Aires‐CONICETBuenos AiresArgentina
| |
Collapse
|
11
|
Stinson MW, Laurenson AJ, Rotty JD. Macrophage migration is differentially regulated by distinct ECM components. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.04.27.538597. [PMID: 37162935 PMCID: PMC10168351 DOI: 10.1101/2023.04.27.538597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Macrophages are indispensable for proper immune surveillance and inflammatory regulation. They also exhibit dramatic phenotypic plasticity and are highly responsive to their local microenvironment, which includes the extracellular matrix (ECM). The present work demonstrates that two fibrous ECM glycoproteins, fibronectin (FN) and laminin (LAM), elicit distinct morphological and migratory responses to macrophages in 2D environments. Laminin 111 inhibits macrophage cell spreading, but drives them to migrate rapidly and less persistently compared to cells on fibronectin. Differential integrin engagement and ROCK/myosin II organization helps explain why macrophages alter their morphology and migration character on these two ECM components. The present study also demonstrates that laminin 111 exerts a suppressive effect toward fibronectin, as macrophages plated on a LAM/FN mixture adopt a morphology and migratory character almost identical to LAM alone. This suggests that distinct responses can be initiated downstream of receptor-ECM engagement, and that one component of the microenvironment may affect the cell's ability to sense another. Overall, macrophages appear intrinsically poised to rapidly switch between distinct migratory modes based on their ECM environments. The role of ECM composition in dictating motile and inflammatory responses in 3D and in vivo contexts warrants further study.
Collapse
|
12
|
Chaemsaithong P, Luewan S, Taweevisit M, Chiangjong W, Pongchaikul P, Thorner PS, Tongsong T, Chutipongtanate S. Placenta-Derived Extracellular Vesicles in Pregnancy Complications and Prospects on a Liquid Biopsy for Hemoglobin Bart's Disease. Int J Mol Sci 2023; 24:5658. [PMID: 36982732 PMCID: PMC10055877 DOI: 10.3390/ijms24065658] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Revised: 02/18/2023] [Accepted: 02/22/2023] [Indexed: 03/18/2023] Open
Abstract
Extracellular vesicles (EVs) are nano-scaled vesicles released from all cell types into extracellular fluids and specifically contain signature molecules of the original cells and tissues, including the placenta. Placenta-derived EVs can be detected in maternal circulation at as early as six weeks of gestation, and their release can be triggered by the oxygen level and glucose concentration. Placental-associated complications such as preeclampsia, fetal growth restriction, and gestational diabetes have alterations in placenta-derived EVs in maternal plasma, and this can be used as a liquid biopsy for the diagnosis, prediction, and monitoring of such pregnancy complications. Alpha-thalassemia major ("homozygous alpha-thalassemia-1") or hemoglobin Bart's disease is the most severe form of thalassemia disease, and this condition is lethal for the fetus. Women with Bart's hydrops fetalis demonstrate signs of placental hypoxia and placentomegaly, thereby placenta-derived EVs provide an opportunity for a non-invasive liquid biopsy of this lethal condition. In this article, we introduced clinical features and current diagnostic markers of Bart's hydrops fetalis, extensively summarize the characteristics and biology of placenta-derived EVs, and discuss the challenges and opportunities of placenta-derived EVs as part of diagnostic tests for placental complications focusing on Bart's hydrop fetalis.
Collapse
Affiliation(s)
- Piya Chaemsaithong
- Department of Obstetrics and Gynecology, Faculty of Medicine, Ramathibodi Hospital, Mahidol University, Bangkok 10400, Thailand
| | - Suchaya Luewan
- Department of Obstetrics and Gynecology, Faculty of Medicine, Chiangmai University, Chiangmai 50200, Thailand
| | - Mana Taweevisit
- Department of Pathology, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand
- King Chulalongkorn Memorial Hospital and Thai Red Cross Society, Bangkok 10330, Thailand
| | - Wararat Chiangjong
- Pediatric Translational Research Unit, Department of Pediatrics, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok 10400, Thailand
| | - Pisut Pongchaikul
- Chakri Naruebodindra Medical Institute, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Samut Prakan 10540, Thailand
- Integrative Computational BioScience Center, Mahidol University, Nakhon Pathom 73170, Thailand
- Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool CH64 7TE, UK
| | - Paul Scott Thorner
- Department of Pathology, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON M5S1A8, Canada
| | - Theera Tongsong
- Department of Obstetrics and Gynecology, Faculty of Medicine, Chiangmai University, Chiangmai 50200, Thailand
| | - Somchai Chutipongtanate
- Division of Epidemiology, Department of Environmental and Public Health Sciences, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA
| |
Collapse
|
13
|
Gonzalez Fernandez J, Moncayo Arlandi J, Ochando A, Simon C, Vilella F. The role of extracellular vesicles in intercellular communication in human reproduction. Clin Sci (Lond) 2023; 137:281-301. [PMID: 36762584 DOI: 10.1042/cs20220793] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 01/19/2023] [Accepted: 01/30/2023] [Indexed: 02/11/2023]
Abstract
Embryo-maternal cross-talk has emerged as a vitally important process for embryo development and implantation, which is driven by secreted factors and extracellular vesicles (EVs). The EV cargo of bioactive molecules significantly influences target cells and primes them for critical stages of reproductive biology, including embryo development, adhesion, and implantation. Recent research has suggested that EVs and their cargo represent a powerful non-invasive tool that can be leveraged to assess embryo and maternal tissue quality during assisted reproduction treatments. Here, we review the current scientific literature regarding the intercellular cross-talk between embryos and maternal tissues from fertilization to implantation, focusing on human biology and signaling mechanisms identified in animal models.
Collapse
Affiliation(s)
- Javier Gonzalez Fernandez
- Carlos Simon Foundation, INCLIVA Health Research Institute, C/ Eduardo Primo Yúfera 3, 46012, Valencia, Spain
| | - Javier Moncayo Arlandi
- Carlos Simon Foundation, INCLIVA Health Research Institute, C/ Eduardo Primo Yúfera 3, 46012, Valencia, Spain
| | - Ana Ochando
- Carlos Simon Foundation, INCLIVA Health Research Institute, C/ Eduardo Primo Yúfera 3, 46012, Valencia, Spain
| | - Carlos Simon
- Carlos Simon Foundation, INCLIVA Health Research Institute, C/ Eduardo Primo Yúfera 3, 46012, Valencia, Spain
| | - Felipe Vilella
- Carlos Simon Foundation, INCLIVA Health Research Institute, C/ Eduardo Primo Yúfera 3, 46012, Valencia, Spain
| |
Collapse
|
14
|
Formation of pre-metastatic niches induced by tumor extracellular vesicles in lung metastasis. Pharmacol Res 2023; 188:106669. [PMID: 36681367 DOI: 10.1016/j.phrs.2023.106669] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 01/17/2023] [Accepted: 01/17/2023] [Indexed: 01/20/2023]
Abstract
There are a number of malignant tumors that metastasize into the lung as one of their most common sites of dissemination. The successful infiltration of tumor cells into distant organs is the result of the cooperation between tumor cells and distant host cells. When tumor cells have not yet reached distant organs, in situ tumor cells secrete extracellular vesicles (EVs) carrying important biological information. In recent years, scholars have found that tumor cells-derived EVs act as the bridge between orthotopic tumors and secondary metastases by promoting the formation of a pre-metastatic niche (PMN), which plays a key role in awakening dormant circulating tumor cells and promoting tumor cell colonization. This review provides an overview of multiple routes and mechanisms underlying PMN formation induced by EVs and summaries study findings that underline a potential role of EVs in the intervention of lung PMN, both as a target or a carrier for drug design. In this review, the underlying mechanisms of EVs in lung PMN formation are highlighted as well as potential applications to lung metastasis diagnosis and treatment.
Collapse
|
15
|
Menzies FM. Immunology of Pregnancy and Systemic Consequences. Curr Top Microbiol Immunol 2023; 441:253-280. [PMID: 37695432 DOI: 10.1007/978-3-031-35139-6_10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/12/2023]
Abstract
Pregnancy is an immunological paradox, with renowned Nobel Prize winning transplantation biologist Sir Peter Brian Medawar being the first to introduce this concept back in 1953. This concept considers how the maternal immune system can tolerate the developing fetus, which is 50% antigenically foreign to the uterus. There have been significant advances in our understanding of the immune system in regulating fertility, pregnancy and in complications of these, and what was once considered a paradox can be seen as a highly evolved system. Indeed, the complexity of the maternal-fetal interface along with our ever-advancing knowledge of immune cells and mediators means that we have a better understanding of these interactions, with gaps still present. This chapter will summarise the key aspects of the role of the immune system at each stage of pregnancy and highlight the recent advances in our knowledge.
Collapse
Affiliation(s)
- Fiona M Menzies
- School of Health and Life Sciences, University of the West of Scotland, Lanarkshire, UK.
| |
Collapse
|
16
|
Preeclampsia and syncytiotrophoblast membrane extracellular vesicles (STB-EVs). Clin Sci (Lond) 2022; 136:1793-1807. [PMID: 36511102 DOI: 10.1042/cs20220149] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2022] [Revised: 10/03/2022] [Accepted: 10/21/2022] [Indexed: 12/15/2022]
Abstract
Preeclampsia (PE) is a hypertensive complication of pregnancy that affects 2-8% of women worldwide and is one of the leading causes of maternal deaths and premature birth. PE can occur early in pregnancy (<34 weeks gestation) or late in pregnancy (>34 weeks gestation). Whilst the placenta is clearly implicated in early onset PE (EOPE), late onset PE (LOPE) is less clear with some believing the disease is entirely maternal whilst others believe that there is an interplay between maternal systems and the placenta. In both types of PE, the syncytiotrophoblast (STB), the layer of the placenta in direct contact with maternal blood, is stressed. In EOPE, the STB is oxidatively stressed in early pregnancy (leading to PE later in gestation- the two-stage model) whilst in LOPE the STB is stressed because of villous overcrowding and senescence later in pregnancy. It is this stress that perturbs maternal systems leading to the clinical manifestations of PE. Whilst some of the molecular species driving this stress have been identified, none completely explain the multisystem nature of PE. Syncytiotrophoblast membrane vesicles (STB-EVs) are a potential contributor to this multisystem disorder. STB-EVs are released into the maternal circulation in increasing amounts with advancing gestational age, and this release is further exacerbated with stress. There are good in vitro evidence that STB-EVs are taken up by macrophages and liver cells with additional evidence supporting endothelial cell uptake. STB-EV targeting remains in the early stages of discovery. In this review, we highlight the role of STB-EVs in PE. In relation to current research, we discuss different protocols for ex vivo isolation of STB-EVs, as well as specific issues involving tissue preparation, isolation (some of which may be unique to STB-EVs), and methods for their analysis. We suggest potential solutions for these challenges.
Collapse
|
17
|
Placental extracellular vesicles in maternal-fetal communication during pregnancy. Biochem Soc Trans 2022; 50:1785-1795. [DOI: 10.1042/bst20220734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 11/25/2022] [Accepted: 11/28/2022] [Indexed: 12/13/2022]
Abstract
For several years, a growing number of studies have highlighted the pivotal role of placental extracellular vesicles (EVs) throughout pregnancy. These membrane nanovesicles, heterogeneous in nature, composition and origin, are secreted by several trophoblastic cell types and are found in both the maternal and fetal compartments. They can be uptaken by recipient cells and drive a wide variety of physiological and pathological processes. In this review, we provide an overview of the different described roles of placental EVs in various aspects of normal pregnancy, from placenta establishment to maternal immune tolerance towards the fetus and protection against viral infections. In the second part, we present selected examples of pathological pregnancies in which placental EVs are involved, such as gestational diabetes mellitus, pre-eclampsia, and congenital infections. Since the abundance and/or composition of placental EVs is deregulated in maternal serum during pathological pregnancies, this makes them interesting candidates as non-invasive biomarkers for gestational diseases and opens a wide field of translational perspectives.
Collapse
|
18
|
Gurunathan S, Kim JH. Graphene Oxide Enhances Biogenesis and Release of Exosomes in Human Ovarian Cancer Cells. Int J Nanomedicine 2022; 17:5697-5731. [PMID: 36466784 PMCID: PMC9717435 DOI: 10.2147/ijn.s385113] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Accepted: 11/04/2022] [Indexed: 07/20/2023] Open
Abstract
BACKGROUND Exosomes, which are nanovesicles secreted by almost all the cells, mediate intercellular communication and are involved in various physiological and pathological processes. We aimed to investigate the effects of graphene oxide (GO) on the biogenesis and release of exosomes in human ovarian cancer (SKOV3) cells. METHODS Exosomes were isolated using ultracentrifugation and ExoQuick and characterized by various analytical techniques. The expression levels of exosome markers were analyzed via quantitative reverse transcription-polymerase chain reaction and enzyme-linked immunosorbent assay. RESULTS Graphene oxide (10-50 μg/mL), cisplatin (2-10 μg/mL), and C6-ceramide (5-25 μM) inhibited the cell viability, proliferation, and cytotoxicity in a dose-dependent manner. We observed that graphene oxide (GO), cisplatin (CIS), and C6-Ceramide (C6-Cer) stimulated acetylcholine esterase and neutral sphingomyelinase activity, total exosome protein concentration, and exosome counts associated with increased level of apoptosis, oxidative stress and endoplasmic reticulum stress. In contrast, GW4869 treatment inhibits biogenesis and release of exosomes. We observed that the human ovarian cancer cells secreted exosomes with typical cup-shaped morphology and surface protein biomarkers. The expression levels of TSG101, CD9, CD63, and CD81 were significantly higher in GO-treated cells than in control cells. Further, cytokine and chemokine levels were significantly higher in exosomes isolated from GO-treated SKOV3 cells than in those isolated from control cells. SKOV3 cells pre-treated with N-acetylcysteine or GW4869 displayed a significant reduction in GO-induced exosome biogenesis and release. Furthermore, endocytic inhibitors decrease exosome biogenesis and release by impairing endocytic pathways. CONCLUSION This study identifies GO as a potential tool for targeting the exosome pathway and stimulating exosome biogenesis and release. We believe that the knowledge acquired in this study can be potentially extended to other exosome-dominated pathologies and model systems. Furthermore, these nanoparticles can provide a promising means to enhance exosome production in SKOV3 cells.
Collapse
Affiliation(s)
- Sangiliyandi Gurunathan
- Department of Stem Cell and Regenerative Biotechnology, Konkuk University, Seoul, 05029, Korea
| | - Jin Hoi Kim
- Department of Stem Cell and Regenerative Biotechnology, Konkuk University, Seoul, 05029, Korea
| |
Collapse
|
19
|
Murrieta-Coxca JM, Fuentes-Zacarias P, Ospina-Prieto S, Markert UR, Morales-Prieto DM. Synergies of Extracellular Vesicles and Microchimerism in Promoting Immunotolerance During Pregnancy. Front Immunol 2022; 13:837281. [PMID: 35844513 PMCID: PMC9285877 DOI: 10.3389/fimmu.2022.837281] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Accepted: 05/16/2022] [Indexed: 11/13/2022] Open
Abstract
The concept of biological identity has been traditionally a central issue in immunology. The assumption that entities foreign to a specific organism should be rejected by its immune system, while self-entities do not trigger an immune response is challenged by the expanded immunotolerance observed in pregnancy. To explain this "immunological paradox", as it was first called by Sir Peter Medawar, several mechanisms have been described in the last decades. Among them, the intentional transfer and retention of small amounts of cells between a mother and her child have gained back attention. These microchimeric cells contribute to expanding allotolerance in both organisms and enhancing genetic fitness, but they could also provoke aberrant alloimmune activation. Understanding the mechanisms used by microchimeric cells to exert their function in pregnancy has proven to be challenging as per definition they are extremely rare. Profiting from studies in the field of transplantation and cancer research, a synergistic effect of microchimerism and cellular communication based on the secretion of extracellular vesicles (EVs) has begun to be unveiled. EVs are already known to play a pivotal role in feto-maternal tolerance by transferring cargo from fetal to maternal immune cells to reshape their function. A further aspect of EVs is their function in antigen presentation either directly or on the surface of recipient cells. Here, we review the current understanding of microchimerism in the feto-maternal tolerance during human pregnancy and the potential role of EVs in mediating the allorecognition and tropism of microchimeric cells.
Collapse
Affiliation(s)
| | | | | | - Udo R. Markert
- Placenta Lab, Department of Obstetrics, Jena University Hospital, Jena, Germany
| | | |
Collapse
|
20
|
Gurunathan S, Kang MH, Song H, Kim NH, Kim JH. The role of extracellular vesicles in animal reproduction and diseases. J Anim Sci Biotechnol 2022; 13:62. [PMID: 35681164 PMCID: PMC9185900 DOI: 10.1186/s40104-022-00715-1] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Accepted: 04/05/2022] [Indexed: 02/08/2023] Open
Abstract
Extracellular vesicles (EVs) are nanosized membrane-enclosed compartments that serve as messengers in cell-to-cell communication, both in normal physiology and in pathological conditions. EVs can transfer functional proteins and genetic information to alter the phenotype and function of recipient cells, which undergo different changes that positively affect their structural and functional integrity. Biological fluids are enriched with several subpopulations of EVs, including exosomes, microvesicles (MVs), and apoptotic bodies carrying several cargoes, such as lipids, proteins, and nucleic acids. EVs associated with the reproductive system are actively involved in the regulation of different physiological events, including gamete maturation, fertilization, and embryo and fetal development. EVs can influence follicle development, oocyte maturation, embryo production, and endometrial-conceptus communication. EVs loaded with cargoes are used to diagnose various diseases, including pregnancy disorders; however, these are dependent on the type of cell of origin and pathological characteristics. EV-derived microRNAs (miRNAs) and proteins in the placenta regulate inflammatory responses and trophoblast invasion through intercellular delivery in the placental microenvironment. This review presents evidence regarding the types of extracellular vesicles, and general aspects of isolation, purification, and characterization of EVs, particularly from various types of embryos. Further, we discuss EVs as mediators and messengers in reproductive biology, the effects of EVs on placentation and pregnancy disorders, the role of EVs in animal reproduction, in the male reproductive system, and mother and embryo cross-communication. In addition, we emphasize the role of microRNAs in embryo implantation and the role of EVs in reproductive and therapeutic medicine. Finally, we discuss the future perspectives of EVs in reproductive biology.
Collapse
Affiliation(s)
- Sangiliyandi Gurunathan
- Department of Stem Cell and Regenerative Biotechnology, Konkuk University, Seoul, 05029, Korea
| | - Min-Hee Kang
- Department of Stem Cell and Regenerative Biotechnology, Konkuk University, Seoul, 05029, Korea
| | - Hyuk Song
- Department of Stem Cell and Regenerative Biotechnology, Konkuk University, Seoul, 05029, Korea
| | - Nam Hyung Kim
- Guangdong Provincial Key Laboratory of Large Animal models for Biomedicine, Wuyi University, Jiangmen, 529020, China
| | - Jin-Hoi Kim
- Department of Stem Cell and Regenerative Biotechnology, Konkuk University, Seoul, 05029, Korea.
| |
Collapse
|
21
|
Inagaki M, Tachikawa M. Transport Characteristics of Placenta-Derived Extracellular Vesicles and Their Relevance to Placenta-to-Maternal Tissue Communication. Chem Pharm Bull (Tokyo) 2022; 70:324-329. [DOI: 10.1248/cpb.c22-00072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Mai Inagaki
- Graduate School of Biomedical Sciences, Tokushima University
| | | |
Collapse
|
22
|
Cheng L, Hill AF. Therapeutically harnessing extracellular vesicles. Nat Rev Drug Discov 2022; 21:379-399. [PMID: 35236964 DOI: 10.1038/s41573-022-00410-w] [Citation(s) in RCA: 359] [Impact Index Per Article: 119.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/20/2022] [Indexed: 02/06/2023]
Abstract
The field of extracellular vesicle (EV) research has developed rapidly over the last decade from the study of fundamental biology to a subject of significant clinical relevance. The potential of harnessing EVs in the diagnosis and treatment of diseases - including cancer and neurological and cardiovascular disorders - is now being recognized. Accordingly, the applications of EVs as therapeutic targets, biomarkers, novel drug delivery agents and standalone therapeutics are being actively explored. This Review provides a brief overview of the characteristics and physiological functions of the various classes of EV, focusing on their association with disease and emerging strategies for their therapeutic exploitation.
Collapse
Affiliation(s)
- Lesley Cheng
- La Trobe Institute for Molecular Science, La Trobe University, Bundoora, Victoria, Australia
| | - Andrew F Hill
- La Trobe Institute for Molecular Science, La Trobe University, Bundoora, Victoria, Australia. .,Institute for Health and Sport, Victoria University, Melbourne, Victoria, Australia.
| |
Collapse
|
23
|
Morelli AE, Sadovsky Y. Extracellular vesicles and immune response during pregnancy: A balancing act. Immunol Rev 2022; 308:105-122. [PMID: 35199366 DOI: 10.1111/imr.13074] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Accepted: 02/09/2022] [Indexed: 12/15/2022]
Abstract
The mechanisms underlying maternal tolerance of the semi- or fully-allogeneic fetus are intensely investigated. Across gestation, feto-placental antigens interact with the maternal immune system locally within the trophoblast-decidual interface and distantly through shed cells and soluble molecules that interact with maternal secondary lymphoid tissues. The discovery of extracellular vesicles (EVs) as local or systemic carriers of antigens and immune-regulatory molecules has added a new dimension to our understanding of immune modulation prior to implantation, during trophoblast invasion, and throughout the course of pregnancy. New data on immune-regulatory molecules, located on EVs or within their cargo, suggest a role for EVs in negotiating immune tolerance during gestation. Lessons from the field of transplant immunology also shed light on possible interactions between feto-placentally derived EVs and maternal lymphoid tissues. These insights illuminate a potential role for EVs in major obstetrical disorders. This review provides updated information on intensely studied, pregnancy-related EVs, their cargo molecules, and patterns of fetal-placental-maternal trafficking, highlighting potential immune pathways that might underlie immune suppression or activation in gestational health and disease. Our summary also underscores the likely need to broaden the definition of the maternal-fetal interface to systemic maternal immune tissues that might interact with circulating EVs.
Collapse
Affiliation(s)
- Adrian E Morelli
- Department of Surgery, Thomas E. Starzl Transplantation Institute, University of Pittsburgh, Pittsburgh, Pennsylvania, USA.,Department of Immunology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Yoel Sadovsky
- Department of Obstetrics, Gynecology and Reproductive Sciences, Magee-Womens Research Institute, University of Pittsburgh, Pittsburgh, Pennsylvania, USA.,Department of Microbiology and Molecular Genetics, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| |
Collapse
|
24
|
Li Z, Chen X, Tao J, Shi A, Zhang J, Yu P. Exosomes Regulate NLRP3 Inflammasome in Diseases. Front Cell Dev Biol 2022; 9:802509. [PMID: 35047512 PMCID: PMC8762245 DOI: 10.3389/fcell.2021.802509] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Accepted: 12/03/2021] [Indexed: 12/11/2022] Open
Abstract
Emerging evidence has suggested the unique and critical role of exosomes as signal molecules vector in various diseases. Numerous researchers have been trying to identify how these exosomes function in immune progression, as this could promote their use as biomarkers for the disease process and potential promising diagnostic tools. NOD-like receptor (NLR) family, pyrin domain containing 3 (NLRP3), a tripartite protein, contains three functional domains a central nucleotide-binding and oligomerization domain (NACHT), an N-terminal pyrin domain (PYD), and a leucine-rich repeat domain (LRR). Of note, existing studies have identified exosome as a novel mediator of the NLRP3 inflammasome, which is critical in diseases progression. However, the actual mechanisms and clinical treatment related to exosomes and NLRP3 are still not fully understood. Herein, we presented an up-to-date review of exosomes and NLRP3 in diseases, outlining what is known about the role of exosomes in the activation of NLRP3 inflammasome and also highlighting areas of this topic that warrant further study.
Collapse
Affiliation(s)
- Zhangwang Li
- The Second Affiliated Hospital of Nanchang University, The Second Clinical Medical College of Nanchang University, Nanchang, China
| | - Xinyue Chen
- The Second Affiliated Hospital of Nanchang University, The Second Clinical Medical College of Nanchang University, Nanchang, China
| | - Junjie Tao
- The Second Affiliated Hospital of Nanchang University, The Second Clinical Medical College of Nanchang University, Nanchang, China
| | - Ao Shi
- School of Medicine, University of Nicosia, Nicosia, Cyprus.,School of Medicine, St. George University of London, London, United Kingdom
| | - Jing Zhang
- The Second Affiliated Hospital of Nanchang University, The Second Clinical Medical College of Nanchang University, Nanchang, China.,Department of Anesthesiology, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Peng Yu
- The Second Affiliated Hospital of Nanchang University, The Second Clinical Medical College of Nanchang University, Nanchang, China.,Department of Metabolism and Endocrinology, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| |
Collapse
|
25
|
Chen K, Liang J, Qin T, Zhang Y, Chen X, Wang Z. The Role of Extracellular Vesicles in Embryo Implantation. Front Endocrinol (Lausanne) 2022; 13:809596. [PMID: 35154016 PMCID: PMC8831238 DOI: 10.3389/fendo.2022.809596] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Accepted: 01/06/2022] [Indexed: 12/14/2022] Open
Abstract
Extracellular vesicles (EVs) are membrane-coating nanoparticles derived from cells. The effect of cell-to-cell communication mediated by EVs has been investigated in different fields of physio-logical as well as pathological process in recent years. Reproduction, regarded as a definitive characteristic of organisms, has been a focus in both animal and medical sciences. It is well agreed that implantation is a critical event during early pregnancy in viviparous animals, and a proper implantation is essential for the establishment and maintenance of normal pregnancy. However, successful implantation requires the synchronized development of both the uterus and the embryo, therefore, in which well communication and opportune regulation are necessary. This review focuses on the progression of studies that reveal the role of EVs in early pregnancy, especially during implantation. Based on current evidence, EVs are produced and exist in the environment for implantation. It has been proved that EVs of different origins such as endometrium and embryo, have positive influences on embryo implantation. With their cargos of proteins and nucleic acids (especially microRNAs), EVs exert their effects including information transportation, immune stimulation and regulation of gene expression.
Collapse
|
26
|
Demeke CA, Woldeyohanins AE, Kifle ZD. Herbal medicine use for the management of COVID-19: A review article. Metabol Open 2021; 12:100141. [PMID: 34693242 PMCID: PMC8519661 DOI: 10.1016/j.metop.2021.100141] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2021] [Revised: 10/15/2021] [Accepted: 10/15/2021] [Indexed: 12/23/2022] Open
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the cause pandemic of coronavirus disease 2019 (COVID-19). For many thousands of years, herbal products and dietary plants have been prescribed for various diseases by traditional healers. Thus, the aim of this review is to present main herbal products, their source, characteristics, and potential antiviral actions concerning COVID-19. Publications on herbal products related to antiviral effects were searched from different databases, such as Web of Science, Google Scholar, Medline, Scopus, and PubMed, until August 2021, using English key terms. According to different studies, there are so many important medicinal plants with antiviral activity, which can be used for viral infections or can be prescribed as supportive treatment. lack of information on the safety profile and amount of dose for different diseases is some of the limitations of medicinal plants. herbal medicine can interfere with COVID-19 pathogenesis by inhibiting SARS-CoV-2 replication and entry to host cells. Some of the antiviral medicinal plant species are citrus Spp., orange (C. Sinensis), Allium sativum, Allium cepa, Mentha piperita, and nigella sativa are the most desirable herbal drink or fruit that can introduce effective adjuvant components in COVID-19 management.
Collapse
Affiliation(s)
- Chilot Abiyu Demeke
- Department of Pharmaceutics, School of Pharmacy, College of Medicine and Health Sciences, University of Gondar, Gondar, Ethiopia
| | - Alem Endashaw Woldeyohanins
- Department of Social Pharmacy, School of Pharmacy, College of Medicine and Health Sciences, University of Gondar, Gondar, Ethiopia
| | - Zemene Demelash Kifle
- Department of Pharmacology, School of Pharmacy, College of Medicine and Health Sciences, University of Gondar, Gondar, Ethiopia
| |
Collapse
|
27
|
Tiozzo C, Bustoros M, Lin X, Manzano De Mejia C, Gurzenda E, Chavez M, Hanna I, Aguiari P, Perin L, Hanna N. Placental extracellular vesicles-associated microRNA-519c mediates endotoxin adaptation in pregnancy. Am J Obstet Gynecol 2021; 225:681.e1-681.e20. [PMID: 34181894 PMCID: PMC8633060 DOI: 10.1016/j.ajog.2021.06.075] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Revised: 06/11/2021] [Accepted: 06/14/2021] [Indexed: 12/23/2022]
Abstract
BACKGROUND Pregnancy represents a unique challenge for the maternal-fetal immune interface, requiring a balance between immunosuppression, which is essential for the maintenance of a semiallogeneic fetus, and proinflammatory host defense to protect the maternal-fetal interface from invading organisms. Adaptation to repeated inflammatory stimuli (endotoxin tolerance) may be critical in preventing inflammation-induced preterm birth caused by exaggerated maternal inflammatory responses to mild or moderate infections that are common during pregnancy. However, the exact mechanisms contributing to the maintenance of tolerance to repeated infections are not completely understood. MicroRNAs play important roles in pregnancy with several microRNAs implicated in gestational tissue function and in pathologic pregnancy conditions. MicroRNA-519c, a member of the chromosome 19 microRNA cluster, is a human-specific microRNA mainly expressed in the placenta. However, its role in pregnancy is largely unknown. OBJECTIVE This study aimed to explore the role of "endotoxin tolerance" failure in the pathogenesis of an exaggerated inflammatory response often seen in inflammation-mediated preterm birth. In this study, we investigated the role of microRNA-519c, a placenta-specific microRNA, as a key regulator of endotoxin tolerance at the maternal-fetal interface. STUDY DESIGN Using a placental explant culture system, samples from term and second-trimester placentas were treated with lipopolysaccharide. After 24 hours, the conditioned media were collected for analysis, and the placental explants were re-exposed to repeated doses of lipopolysaccharide for 3 days. The supernatant was analyzed for inflammatory markers, the presence of extracellular vesicles, and microRNAs. To study the possible mechanism of action of the microRNAs, we evaluated the phosphodiesterase 3B pathway involved in tumor necrosis factor alpha production using a microRNA mimic and phosphodiesterase 3B small interfering RNA transfection. Finally, we analyzed human placental samples from different gestational ages and from women affected by inflammation-associated pregnancies. RESULTS Our data showed that repeated exposure of the human placenta to endotoxin challenges induced a tolerant phenotype characterized by decreased tumor necrosis factor alpha and up-regulated interleukin-10 levels. This reaction was mediated by the placenta-specific microRNA-519c packaged within placental extracellular vesicles. Lipopolysaccharide treatment increased the extracellular vesicles that were positive for the exosome tetraspanin markers, namely CD9, CD63, and CD81, and secreted primarily by trophoblasts. Primary human trophoblast cells transfected with a microRNA-519c mimic decreased phosphodiesterase 3B, whereas a lack of phosphodiesterase 3B, achieved by small interfering RNA transfection, led to decreased tumor necrosis factor alpha production. These data support the hypothesis that the anti-inflammatory action of microRNA-519c was mediated by a down-regulation of the phosphodiesterase 3B pathway, leading to inhibition of tumor necrosis factor alpha production. Furthermore, human placentas from normal and inflammation-associated pregnancies demonstrated that a decreased placental microRNA-519c level was linked to infection-induced inflammatory pathologies during pregnancy. CONCLUSION We identified microRNA-519c, a human placenta-specific microRNA, as a novel regulator of immune adaptation associated with infection-induced preterm birth at the maternal-fetal interface. Our study serves as a basis for future experiments to explore the potential use of microRNA-519c as a biomarker for infection-induced preterm birth.
Collapse
Affiliation(s)
- Caterina Tiozzo
- Division of Neonatology, Department of Pediatrics, NYU Langone Hospital-Long Island, New York University Long Island School of Medicine, Mineola, NY
| | - Mark Bustoros
- Women and Children's Research Laboratory, New York University Long Island School of Medicine, Mineola, NY; Division of Hematologic Neoplasia, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA
| | - Xinhua Lin
- Women and Children's Research Laboratory, New York University Long Island School of Medicine, Mineola, NY
| | - Claudia Manzano De Mejia
- Women and Children's Research Laboratory, New York University Long Island School of Medicine, Mineola, NY
| | - Ellen Gurzenda
- Research and Academic Center, New York University Long Island School of Medicine, Mineola, NY
| | - Martin Chavez
- Department of Obstetrics-Gynecology, NYU Langone Hospital-Long Island, New York University Long Island School of Medicine, Mineola, NY
| | - Iman Hanna
- Department of Pathology, NYU Langone Hospital-Long Island, New York University Long Island School of Medicine, Mineola, NY
| | - Paola Aguiari
- GOFARR Laboratory for Organ Regenerative Research and Cell Therapeutics, Division of Urology, Saban Research Institute, Children's Hospital Los Angeles, Los Angeles, CA
| | - Laura Perin
- GOFARR Laboratory for Organ Regenerative Research and Cell Therapeutics, Division of Urology, Saban Research Institute, Children's Hospital Los Angeles, Los Angeles, CA
| | - Nazeeh Hanna
- Division of Neonatology, Department of Pediatrics, NYU Langone Hospital-Long Island, New York University Long Island School of Medicine, Mineola, NY.
| |
Collapse
|
28
|
Ding J, Zhang Y, Cai X, Diao L, Yang C, Yang J. Crosstalk Between Trophoblast and Macrophage at the Maternal-Fetal Interface: Current Status and Future Perspectives. Front Immunol 2021; 12:758281. [PMID: 34745133 PMCID: PMC8566971 DOI: 10.3389/fimmu.2021.758281] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Accepted: 10/06/2021] [Indexed: 12/31/2022] Open
Abstract
The immune tolerance microenvironment is crucial for the establishment and maintenance of pregnancy at the maternal-fetal interface. The maternal-fetal interface is a complex system containing various cells, including lymphocytes, decidual stromal cells, and trophoblasts. Macrophages are the second-largest leukocytes at the maternal-fetal interface, which has been demonstrated to play essential roles in remodeling spiral arteries, maintaining maternal-fetal immune tolerance, and regulating trophoblast's biological behaviors. Many researchers, including us, have conducted a series of studies on the crosstalk between macrophages and trophoblasts at the maternal-fetal interface: on the one hand, macrophages can affect the invasion and migration of trophoblasts; on the other hand, trophoblasts can regulate macrophage polarization and influence the state of the maternal-fetal immune microenvironment. In this review, we systemically introduce the functions of macrophages and trophoblasts and the cell-cell interaction between them for the establishment and maintenance of pregnancy. Advances in this area will further accelerate the basic research and clinical translation of reproductive medicine.
Collapse
Affiliation(s)
- Jinli Ding
- Reproductive Medical Center, Renmin Hospital of Wuhan University, Hubei Clinic Research Center for Assisted Reproductive Technology and Embryonic Development, Wuhan, China
| | - Yan Zhang
- Department of Clinical Laboratory, Renmin Hospital of Wuhan University, Wuhan, China
| | - Xiaopeng Cai
- Department of Gastrointestinal Surgery, The Clinical Medical Research Center of Peritoneal Cancer of Wuhan, Hubei Key Laboratory of Tumor Biological Behaviors, Hubei Cancer Clinical Study Center, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Lianghui Diao
- Shenzhen Key Laboratory of Reproductive Immunology for Periimplantation, Shenzhen Zhongshan Institute for Reproduction and Genetics, Shenzhen Zhongshan Urology Hospital, Shenzhen, China
| | - Chaogang Yang
- Department of Gastrointestinal Surgery, The Clinical Medical Research Center of Peritoneal Cancer of Wuhan, Hubei Key Laboratory of Tumor Biological Behaviors, Hubei Cancer Clinical Study Center, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Jing Yang
- Reproductive Medical Center, Renmin Hospital of Wuhan University, Hubei Clinic Research Center for Assisted Reproductive Technology and Embryonic Development, Wuhan, China
| |
Collapse
|
29
|
Li Z, Bratlie KM. Macrophage Phenotypic Changes on FN-Coated Physical Gradient Hydrogels. ACS APPLIED BIO MATERIALS 2021; 4:6758-6768. [PMID: 35006977 DOI: 10.1021/acsabm.1c00489] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The chemical and physical properties are two crucial cues when designing tissue engineering scaffold to mimic living tissue. Macrophages, the major players in the immune response, react rapidly to microenvironmental signals, including gradients of physical or chemical cues. Spatiotemporal gradients can modulate cell behavior, such as polarization, proliferation, and adhesion. Here, we studied macrophage phenotypic changes on untreated and fibronectin (FN)-coated methacrylated gellan gum with varying stiffnesses. The compressive moduli of hydrogel with different stiffnesses ranged from ∼5 to 30 kPa. Fibronectin was chemically attached to the substrate to facilitate macrophage proliferation, adhesion, and polarization. Classically (M1) and alternatively (M2) activated macrophages were cultured on both untreated and FN-coated gels. FN-coated substrates elevated cell numbers and enhanced macrophage spreading. The urea/nitrite ratio indicated that untreated rigid substrates shifted both polarizations toward a more proinflammatory phenotype. FN-coated substrates had no impact on M1 polarization. In contrast, FN-coated stiffer gels polarized M2 cells toward an anti-proinflammatory state based on arginine activity and CD206 expression. In addition, macrophage polarization on the softer gel was not influenced by the neighboring cells cultured on the stiffer side of the gel. Using mechanical gradients to control macrophage polarization can be a useful tool in ensuring a proper healing response and for tissue engineering.
Collapse
Affiliation(s)
- Zhuqing Li
- Department of Materials Science & Engineering, Iowa State University, Ames, Iowa 50011, United States
| | - Kaitlin M Bratlie
- Department of Materials Science & Engineering, Iowa State University, Ames, Iowa 50011, United States.,Department of Chemical & Biological Engineering, Iowa State University, Ames, Iowa 50011, United States
| |
Collapse
|
30
|
Ramachandran S, Verma AK, Dev K, Goyal Y, Bhatt D, Alsahli MA, Rahmani AH, Almatroudi A, Almatroodi SA, Alrumaihi F, Khan NA. Role of Cytokines and Chemokines in NSCLC Immune Navigation and Proliferation. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:5563746. [PMID: 34336101 PMCID: PMC8313354 DOI: 10.1155/2021/5563746] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 05/23/2021] [Accepted: 06/28/2021] [Indexed: 12/14/2022]
Abstract
With over a million deaths every year around the world, lung cancer is found to be the most recurrent cancer among all types. Nonsmall cell lung carcinoma (NSCLC) amounts to about 85% of the entire cases. The other 15% owes it to small cell lung carcinoma (SCLC). Despite decades of research, the prognosis for NSCLC patients is poorly understood with treatment options limited. First, this article emphasises on the part that tumour microenvironment (TME) and its constituents play in lung cancer progression. This review also highlights the inflammatory (pro- or anti-) roles of different cytokines (ILs, TGF-β, and TNF-α) and chemokine (CC, CXC, C, and CX3C) families in the lung TME, provoking tumour growth and subsequent metastasis. The write-up also pinpoints recent developments in the field of chemokine biology. Additionally, it covers the role of extracellular vesicles (EVs), as alternate carriers of cytokines and chemokines. This allows the cytokines/chemokines to modulate the EVs for their secretion, trafficking, and aid in cancer proliferation. In the end, this review also stresses on the role of these factors as prognostic biomarkers for lung immunotherapy, apart from focusing on inflammatory actions of these chemoattractants.
Collapse
Affiliation(s)
- Sowmya Ramachandran
- School of Pharmaceutical Sciences, Universiti Sains Malaysia, Main Campus, Penang, Malaysia
- Department of Biotechnology, Jamia Millia Islamia, New Delhi, India
| | - Amit K Verma
- Department of Biotechnology, Jamia Millia Islamia, New Delhi, India
| | - Kapil Dev
- Department of Biotechnology, Jamia Millia Islamia, New Delhi, India
| | - Yamini Goyal
- Department of Biotechnology, Jamia Millia Islamia, New Delhi, India
| | - Deepti Bhatt
- Department of Biotechnology, Jamia Millia Islamia, New Delhi, India
| | - Mohammed A Alsahli
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraidah, Saudi Arabia
| | - Arshad Husain Rahmani
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraidah, Saudi Arabia
| | - Ahmad Almatroudi
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraidah, Saudi Arabia
| | - Saleh A Almatroodi
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraidah, Saudi Arabia
| | - Faris Alrumaihi
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraidah, Saudi Arabia
| | - Naushad Ahmad Khan
- Department of Biochemistry, Faculty of Medical Sciences, Alatoo International University, Bishkek, Kyrgyzstan
- Department of Trauma and Surgery, Hamad Medical Corporation, Doha, Qatar
| |
Collapse
|
31
|
Awoyemi T, Motta-Mejia C, Zhang W, Kouser L, White K, Kandzija N, Alhamlan FS, Cribbs AP, Tannetta D, Mazey E, Redman C, Kishore U, Vatish M. Syncytiotrophoblast Extracellular Vesicles From Late-Onset Preeclampsia Placentae Suppress Pro-Inflammatory Immune Response in THP-1 Macrophages. Front Immunol 2021; 12:676056. [PMID: 34163477 PMCID: PMC8215361 DOI: 10.3389/fimmu.2021.676056] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Accepted: 04/28/2021] [Indexed: 01/08/2023] Open
Abstract
Syncytiotrophoblast derived Extracellular Vesicles (STBEV) from normal pregnancy (NP) have previously been shown to interact with circulating monocytes and B cells and induce pro-inflammatory cytokine release. Early-onset preeclampsia (EOPE) is associated with an exacerbated inflammatory response, yet there is little data regarding late-onset PE (LOPE) and immune function. Here, using a macrophage/monocyte cell line THP-1, we investigated the inflammatory potential of STBEV, comprising medium/large-STBEV (>200nm) and small-STBEV (<200nm), isolated from LOPE (n=6) and normal (NP) (n=6) placentae via dual-lobe ex-vivo placental perfusion and differential centrifugation. THP-1 cells bound and internalised STBEV isolated from NP and LOPE placentae, as revealed by flow cytometry, confocal microscopy, and ELISA. STBEV-treated THP-1 cells were examined for cytokine gene expression by RT-qPCR and the cell culture media examined for secreted cytokines/chemokines. As expected, NP medium/large-STBEV significantly upregulated the transcriptional expression of TNF-α, IL-10, IL-6, IL-12, IL-8 and TGF-β compared to PE medium/large-STBEV. However, there was no significant difference in the small STBEV population between the two groups, although in general, NP small STBEVs slightly upregulated the same cytokines. In contrast, LOPE STBEV (medium and large) did not induce pro-inflammatory responses by differentiated THP-1 macrophages. This decreased effect of LOPE STBEV was echoed in cytokine/chemokine release. Our results appear to suggest that STBEV from LOPE placentae do not have a major immune-modulatory effect on macrophages. In contrast, NP STBEV caused THP-1 cells to release pro-inflammatory cytokines. Thus, syncytiotrophoblast extracellular vesicles from LOPE dampen immune functions of THP-1 macrophages, suggesting an alternative mechanism leading to the pro-inflammatory environment observed in LOPE.
Collapse
Affiliation(s)
- Toluwalase Awoyemi
- Nuffield Department of Women's and Reproductive Health, University of Oxford, Oxford, United Kingdom
| | - Carolina Motta-Mejia
- Nuffield Department of Women's and Reproductive Health, University of Oxford, Oxford, United Kingdom.,Biosciences, College of Health, Medicine and Life Sciences, Brunel University London, Uxbridge, United Kingdom
| | - Wei Zhang
- Nuffield Department of Women's and Reproductive Health, University of Oxford, Oxford, United Kingdom
| | - Lubna Kouser
- National Heart and Lung Institute, Imperial College London, London, United Kingdom
| | - Kirsten White
- Nuffield Department of Women's and Reproductive Health, University of Oxford, Oxford, United Kingdom
| | - Neva Kandzija
- Nuffield Department of Women's and Reproductive Health, University of Oxford, Oxford, United Kingdom
| | - Fatimah S Alhamlan
- Department of Infection and Immunity, King Faisal Specialist Hospital and Research Centre, Riyadh, Saudi Arabia
| | - Adam P Cribbs
- Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Oxford, United Kingdom
| | - Dionne Tannetta
- Department of Food and Nutritional Sciences, University of Reading, Reading, United Kingdom
| | - Emily Mazey
- Nuffield Department of Women's and Reproductive Health, University of Oxford, Oxford, United Kingdom
| | - Christopher Redman
- Nuffield Department of Women's and Reproductive Health, University of Oxford, Oxford, United Kingdom
| | - Uday Kishore
- Biosciences, College of Health, Medicine and Life Sciences, Brunel University London, Uxbridge, United Kingdom
| | - Manu Vatish
- Nuffield Department of Women's and Reproductive Health, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
32
|
Machhi J, Shahjin F, Das S, Patel M, Abdelmoaty MM, Cohen JD, Singh PA, Baldi A, Bajwa N, Kumar R, Vora LK, Patel TA, Oleynikov MD, Soni D, Yeapuri P, Mukadam I, Chakraborty R, Saksena CG, Herskovitz J, Hasan M, Oupicky D, Das S, Donnelly RF, Hettie KS, Chang L, Gendelman HE, Kevadiya BD. A Role for Extracellular Vesicles in SARS-CoV-2 Therapeutics and Prevention. J Neuroimmune Pharmacol 2021; 16:270-288. [PMID: 33544324 PMCID: PMC7862527 DOI: 10.1007/s11481-020-09981-0] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Accepted: 12/28/2020] [Indexed: 12/13/2022]
Abstract
Extracellular vesicles (EVs) are the common designation for ectosomes, microparticles and microvesicles serving dominant roles in intercellular communication. Both viable and dying cells release EVs to the extracellular environment for transfer of cell, immune and infectious materials. Defined morphologically as lipid bi-layered structures EVs show molecular, biochemical, distribution, and entry mechanisms similar to viruses within cells and tissues. In recent years their functional capacities have been harnessed to deliver biomolecules and drugs and immunological agents to specific cells and organs of interest or disease. Interest in EVs as putative vaccines or drug delivery vehicles are substantial. The vesicles have properties of receptors nanoassembly on their surface. EVs can interact with specific immunocytes that include antigen presenting cells (dendritic cells and other mononuclear phagocytes) to elicit immune responses or affect tissue and cellular homeostasis or disease. Due to potential advantages like biocompatibility, biodegradation and efficient immune activation, EVs have gained attraction for the development of treatment or a vaccine system against the severe acute respiratory syndrome coronavirus 2 (SARS CoV-2) infection. In this review efforts to use EVs to contain SARS CoV-2 and affect the current viral pandemic are discussed. An emphasis is made on mesenchymal stem cell derived EVs' as a vaccine candidate delivery system.
Collapse
Affiliation(s)
- Jatin Machhi
- Department of Pharmacology and Experimental Neuroscience, College of Medicine, University of Nebraska Medical Center, Omaha, NE, 68198-5880, USA
| | - Farah Shahjin
- Department of Pharmacology and Experimental Neuroscience, College of Medicine, University of Nebraska Medical Center, Omaha, NE, 68198-5880, USA
| | - Srijanee Das
- Department of Pathology and Microbiology, College of Medicine, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Milankumar Patel
- Department of Pharmacology and Experimental Neuroscience, College of Medicine, University of Nebraska Medical Center, Omaha, NE, 68198-5880, USA
| | - Mai Mohamed Abdelmoaty
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Nebraska Medical Center, Omaha, NE, 68198, USA
- Therapeutic Chemistry Department, Pharmaceutical and Drug Industries Research Division, National Research Centre, Giza, Egypt
| | - Jacob D Cohen
- Department of Pharmacology and Experimental Neuroscience, College of Medicine, University of Nebraska Medical Center, Omaha, NE, 68198-5880, USA
| | - Preet Amol Singh
- Department of Pharmaceutical Sciences & Technology, Maharaja Ranjit Singh Punjab Technical University, Bathinda, PB, India
| | - Ashish Baldi
- Department of Pharmaceutical Sciences & Technology, Maharaja Ranjit Singh Punjab Technical University, Bathinda, PB, India
| | - Neha Bajwa
- Department of Pharmaceutical Sciences & Technology, Maharaja Ranjit Singh Punjab Technical University, Bathinda, PB, India
| | - Raj Kumar
- Center for Drug Delivery and Nanomedicine, Department of Pharmaceutical Sciences, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Lalit K Vora
- School of Pharmacy, Queen's University Belfast, 97 Lisburn Road, Belfast, BT9 7BL, UK
| | - Tapan A Patel
- Department of Biological Sciences, P. D. Patel Institute of Applied Sciences (PDPIAS), Charotar University of Science and Technology (CHARUSAT), Changa, Anand, Gujarat, 388421, India
| | - Maxim D Oleynikov
- Department of Pharmacology and Experimental Neuroscience, College of Medicine, University of Nebraska Medical Center, Omaha, NE, 68198-5880, USA
| | - Dhruvkumar Soni
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Pravin Yeapuri
- Department of Pharmacology and Experimental Neuroscience, College of Medicine, University of Nebraska Medical Center, Omaha, NE, 68198-5880, USA
| | - Insiya Mukadam
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Rajashree Chakraborty
- Department of Pharmacology and Experimental Neuroscience, College of Medicine, University of Nebraska Medical Center, Omaha, NE, 68198-5880, USA
| | - Caroline G Saksena
- Department of Pharmacology and Experimental Neuroscience, College of Medicine, University of Nebraska Medical Center, Omaha, NE, 68198-5880, USA
| | - Jonathan Herskovitz
- Department of Pathology and Microbiology, College of Medicine, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Mahmudul Hasan
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - David Oupicky
- Center for Drug Delivery and Nanomedicine, Department of Pharmaceutical Sciences, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Suvarthi Das
- Department of Medicine, Stanford Medical School, Stanford University, 94304, Palo Alto, CA, USA
| | - Ryan F Donnelly
- School of Pharmacy, Queen's University Belfast, 97 Lisburn Road, Belfast, BT9 7BL, UK
| | - Kenneth S Hettie
- Molecular Imaging Program at Stanford (MIPS), Department of Radiology, Department of Otolaryngology - Head & Neck Surgery, Stanford University, 94304, Palo Alto, CA, USA
| | - Linda Chang
- Departments of Diagnostic Radiology & Nuclear Medicine, and Neurology, School of Medicine, University of Maryland, 21201, Baltimore, MD, USA
| | - Howard E Gendelman
- Department of Pharmacology and Experimental Neuroscience, College of Medicine, University of Nebraska Medical Center, Omaha, NE, 68198-5880, USA.
- Department of Pharmaceutical Sciences & Technology, Maharaja Ranjit Singh Punjab Technical University, Bathinda, PB, India.
| | - Bhavesh D Kevadiya
- Department of Pharmacology and Experimental Neuroscience, College of Medicine, University of Nebraska Medical Center, Omaha, NE, 68198-5880, USA
| |
Collapse
|
33
|
Bai K, Li X, Zhong J, Ng EHY, Yeung WSB, Lee CL, Chiu PCN. Placenta-Derived Exosomes as a Modulator in Maternal Immune Tolerance During Pregnancy. Front Immunol 2021; 12:671093. [PMID: 34046039 PMCID: PMC8144714 DOI: 10.3389/fimmu.2021.671093] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Accepted: 04/26/2021] [Indexed: 12/12/2022] Open
Abstract
Exosomes are a subset of extracellular vesicles with an average diameter of ~100nm. Exosomes are released by all cells through an endosome-dependent pathway and carry nucleic acids, proteins, lipids, cytokines and metabolites, mirroring the state of the originating cells. The function of exosomes has been implicated in various reproduction processes, such as embryo development, implantation, decidualization and placentation. Placenta-derived exosomes (pEXO) can be detected in the maternal blood as early as 6 weeks after conception and their levels increase with gestational age. Importantly, alternations in the molecular signatures of pEXO are observed in pregnancy-related complications. Thus, these differentially expressed molecules could be the potential biomarkers for diagnosis of the pregnancy-associated diseases. Recent studies have demonstrated that pEXO play a key role in the establishment of maternal immune tolerance, which is critical for a successful pregnancy. To gain a better understanding of the underlying mechanism, we highlighted the advanced studies of pEXO on immune cells in pregnancy.
Collapse
Affiliation(s)
- Kunfeng Bai
- Department of Obstetrics and Gynaecology, Li Ka Shing (LKS) Faculty of Medicine, The University of Hong Kong, Hong Kong, Hong Kong.,The University of Hong Kong Shenzhen Key Laboratory of Fertility Regulation, The University of Hong Kong-Shenzhen Hospital, Shenzhen, China
| | - Xintong Li
- Department of Obstetrics and Gynaecology, Li Ka Shing (LKS) Faculty of Medicine, The University of Hong Kong, Hong Kong, Hong Kong
| | - Jiangming Zhong
- Department of Obstetrics and Gynaecology, Li Ka Shing (LKS) Faculty of Medicine, The University of Hong Kong, Hong Kong, Hong Kong
| | - Ernest H Y Ng
- Department of Obstetrics and Gynaecology, Li Ka Shing (LKS) Faculty of Medicine, The University of Hong Kong, Hong Kong, Hong Kong.,The University of Hong Kong Shenzhen Key Laboratory of Fertility Regulation, The University of Hong Kong-Shenzhen Hospital, Shenzhen, China
| | - William S B Yeung
- The University of Hong Kong Shenzhen Key Laboratory of Fertility Regulation, The University of Hong Kong-Shenzhen Hospital, Shenzhen, China
| | - Cheuk-Lun Lee
- Department of Obstetrics and Gynaecology, Li Ka Shing (LKS) Faculty of Medicine, The University of Hong Kong, Hong Kong, Hong Kong.,The University of Hong Kong Shenzhen Key Laboratory of Fertility Regulation, The University of Hong Kong-Shenzhen Hospital, Shenzhen, China
| | - Philip C N Chiu
- Department of Obstetrics and Gynaecology, Li Ka Shing (LKS) Faculty of Medicine, The University of Hong Kong, Hong Kong, Hong Kong.,The University of Hong Kong Shenzhen Key Laboratory of Fertility Regulation, The University of Hong Kong-Shenzhen Hospital, Shenzhen, China
| |
Collapse
|
34
|
Poh QH, Rai A, Carmichael II, Salamonsen LA, Greening DW. Proteome reprogramming of endometrial epithelial cells by human trophectodermal small extracellular vesicles reveals key insights into embryo implantation. Proteomics 2021; 21:e2000210. [PMID: 33860638 DOI: 10.1002/pmic.202000210] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 03/29/2021] [Accepted: 04/12/2021] [Indexed: 01/02/2023]
Abstract
Embryo implantation into the receptive endometrium is critical in pregnancy establishment, initially requiring reciprocal signalling between outer layer of the blastocyst (trophectoderm cells) and endometrial epithelium; however, factors regulating this crosstalk remain poorly understood. Although endometrial extracellular vesicles (EVs) are known to signal to the embryo during implantation, the role of embryo-derived EVs remains largely unknown. Here, we provide a comprehensive proteomic characterisation of a major class of EVs, termed small EVs (sEVs), released by human trophectoderm cells (Tsc-sEVs) and their capacity to reprogram protein landscape of endometrial epithelium in vitro. Highly purified Tsc-sEVs (30-200 nm, ALIX+ , TSG101+ , CD9/63/81+ ) were enriched in known players of implantation (LIFR, ICAM1, TAGLN2, WNT5A, FZD7, ROR2, PRICKLE2), antioxidant activity (SOD1, PRDX1/4/6), tissue integrity (EZR, RAC1, RHOA, TNC), and focal adhesions (FAK, ITGA2/V, ITGB1/3). Functionally, Tsc-sEVs were taken up by endometrial cells, altered transepithelial electrical resistance, and upregulated proteins implicated in embryo attachment (ITGA2/V, ITGB1/3), immune regulation (CD59, CD276, LGALS3), and antioxidant activity (GPX1/3/4, PRDX1/2/4/5/6): processes that are critical for successful implantation. Collectively, we provide critical insights into Tsc-sEV-mediated regulation of endometrial function that contributes to our understanding of the molecular basis of implantation.
Collapse
Affiliation(s)
- Qi Hui Poh
- Baker Heart and Diabetes Institute, Molecular Proteomics, Melbourne, Victoria, Australia.,Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Bundoora, Victoria, Australia
| | - Alin Rai
- Baker Heart and Diabetes Institute, Molecular Proteomics, Melbourne, Victoria, Australia.,Central Clinical School, Monash University, Melbourne, Victoria, Australia.,Baker Department of Cardiometabolic Health, University of Melbourne, Melbourne, Victoria, Australia
| | - Irena Iśka Carmichael
- Monash Micro Imaging, Monash, Central Clinical School, Monash University, Melbourne, Victoria, Australia
| | - Lois A Salamonsen
- Hudson Institute of Medical Research, Clayton, Victoria, Australia.,Department of Molecular and Translational Science, Monash University, Clayton, Victoria, Australia
| | - David W Greening
- Baker Heart and Diabetes Institute, Molecular Proteomics, Melbourne, Victoria, Australia.,Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Bundoora, Victoria, Australia.,Central Clinical School, Monash University, Melbourne, Victoria, Australia.,Baker Department of Cardiometabolic Health, University of Melbourne, Melbourne, Victoria, Australia
| |
Collapse
|
35
|
Albacete-Albacete L, Sánchez-Álvarez M, Del Pozo MA. Extracellular Vesicles: An Emerging Mechanism Governing the Secretion and Biological Roles of Tenascin-C. Front Immunol 2021; 12:671485. [PMID: 33981316 PMCID: PMC8107694 DOI: 10.3389/fimmu.2021.671485] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Accepted: 04/08/2021] [Indexed: 12/12/2022] Open
Abstract
ECM composition and architecture are tightly regulated for tissue homeostasis. Different disorders have been associated to alterations in the levels of proteins such as collagens, fibronectin (FN) or tenascin-C (TnC). TnC emerges as a key regulator of multiple inflammatory processes, both during physiological tissue repair as well as pathological conditions ranging from tumor progression to cardiovascular disease. Importantly, our current understanding as to how TnC and other non-collagen ECM components are secreted has remained elusive. Extracellular vesicles (EVs) are small membrane-bound particles released to the extracellular space by most cell types, playing a key role in cell-cell communication. A broad range of cellular components can be transported by EVs (e.g. nucleic acids, lipids, signalling molecules and proteins). These cargoes can be transferred to target cells, potentially modulating their function. Recently, several extracellular matrix (ECM) proteins have been characterized as bona fide EV cargoes, exosomal secretion being particularly critical for TnC. EV-dependent ECM secretion might underpin diseases where ECM integrity is altered, establishing novel concepts in the field such as ECM nucleation over long distances, and highlighting novel opportunities for diagnostics and therapeutic intervention. Here, we review recent findings and standing questions on the molecular mechanisms governing EV–dependent ECM secretion and its potential relevance for disease, with a focus on TnC.
Collapse
Affiliation(s)
- Lucas Albacete-Albacete
- Mechanoadaptation and Caveolae Biology Lab, Area of Cell and Developmental Biology, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
| | - Miguel Sánchez-Álvarez
- Mechanoadaptation and Caveolae Biology Lab, Area of Cell and Developmental Biology, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
| | - Miguel Angel Del Pozo
- Mechanoadaptation and Caveolae Biology Lab, Area of Cell and Developmental Biology, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
| |
Collapse
|
36
|
Plant-Derived Nano and Microvesicles for Human Health and Therapeutic Potential in Nanomedicine. Pharmaceutics 2021; 13:pharmaceutics13040498. [PMID: 33917448 PMCID: PMC8067521 DOI: 10.3390/pharmaceutics13040498] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 03/28/2021] [Accepted: 03/30/2021] [Indexed: 02/06/2023] Open
Abstract
Plants produce different types of nano and micro-sized vesicles. Observed for the first time in the 60s, plant nano and microvesicles (PDVs) and their biological role have been inexplicably under investigated for a long time. Proteomic and metabolomic approaches revealed that PDVs carry numerous proteins with antifungal and antimicrobial activity, as well as bioactive metabolites with high pharmaceutical interest. PDVs have also been shown to be also involved in the intercellular transfer of small non-coding RNAs such as microRNAs, suggesting fascinating mechanisms of long-distance gene regulation and horizontal transfer of regulatory RNAs and inter-kingdom communications. High loading capacity, intrinsic biological activities, biocompatibility, and easy permeabilization in cell compartments make plant-derived vesicles excellent natural or bioengineered nanotools for biomedical applications. Growing evidence indicates that PDVs may exert anti-inflammatory, anti-oxidant, and anticancer activities in different in vitro and in vivo models. In addition, clinical trials are currently in progress to test the effectiveness of plant EVs in reducing insulin resistance and in preventing side effects of chemotherapy treatments. In this review, we concisely introduce PDVs, discuss shortly their most important biological and physiological roles in plants and provide clues on the use and the bioengineering of plant nano and microvesicles to develop innovative therapeutic tools in nanomedicine, able to encompass the current drawbacks in the delivery systems in nutraceutical and pharmaceutical technology. Finally, we predict that the advent of intense research efforts on PDVs may disclose new frontiers in plant biotechnology applied to nanomedicine.
Collapse
|
37
|
Li X, Chen R, Kemper S, Brigstock DR. Structural and Functional Characterization of Fibronectin in Extracellular Vesicles From Hepatocytes. Front Cell Dev Biol 2021; 9:640667. [PMID: 33816490 PMCID: PMC8012540 DOI: 10.3389/fcell.2021.640667] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Accepted: 02/22/2021] [Indexed: 12/21/2022] Open
Abstract
Extracellular vesicles (EVs) are membrane-limited nanoparticles that are liberated by cells and contain a complex molecular payload comprising proteins, microRNA, RNAs, and lipids. EVs may be taken up by other cells resulting in their phenotypic or functional reprogramming. In the liver, EVs produced by non-injured hepatocytes are involved in the maintenance of hepatic homeostasis or therapeutic outcomes following injury while EVs produced by damaged hepatocytes may drive or exacerbate liver injury. In this study, we examined the contribution of EV fibronectin (FN1) to the biogenesis, release, uptake, and action of hepatocyte-derived EVs. While FN1 is classically viewed as a component of the extracellular matrix that regulates processes such as cell adhesion, differentiation, and wound healing and can exist in cell-associated or soluble plasma forms, we report that FN1 is also a constituent of hepatocyte EVs that functions in EV uptake by target cells such as hepatocytes and hepatic stellate cells (HSC). FN1 co-purified with EVs when EVs were enriched from conditioned medium of human or mouse hepatocytes and a direct association between FN1 and hepatocyte EVs was established by immunoprecipitation and proteinase protection. FN1 ablation in mouse hepatocytes using CRISPR-Cas9 did not alter EV biogenesis but EV uptake by HSC was significantly reduced for FN1 knockout EVs (EVΔFN1) as compared to EVs from wild type hepatocytes (EVWT). The uptake by hepatocytes or HSC of either EVWT or EVΔFN1 required clathrin- and caveolin-mediated endocytosis, cholesterol, lysosomal acidic lipase activity, and low pH, while macropinocytosis was also involved in EVΔFN1 uptake in HSC. Despite their differences in rate and mechanisms of uptake, EVΔFN1 functioned comparably to EVWT in ameliorating CCl4-induced hepatic fibrosis in mice. In conclusion, FN1 is a constituent of hepatocyte EVs that facilitates EV uptake by target cells but is dispensable for EV-mediated anti-fibrotic activity in vivo.
Collapse
Affiliation(s)
- Xinlei Li
- Center for Clinical and Translational Research, Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, OH, United States
| | - Ruju Chen
- Center for Clinical and Translational Research, Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, OH, United States
| | - Sherri Kemper
- Center for Clinical and Translational Research, Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, OH, United States
| | - David R Brigstock
- Center for Clinical and Translational Research, Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, OH, United States.,Department of Surgery, The Ohio State University Wexner Medical Center, Columbus, OH, United States
| |
Collapse
|
38
|
Nguyen SL, Ahn SH, Greenberg JW, Collaer BW, Agnew DW, Arora R, Petroff MG. Integrins mediate placental extracellular vesicle trafficking to lung and liver in vivo. Sci Rep 2021; 11:4217. [PMID: 33602965 PMCID: PMC7893009 DOI: 10.1038/s41598-021-82752-w] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Accepted: 01/20/2021] [Indexed: 12/22/2022] Open
Abstract
Membrane-bound extracellular vesicles (EVs) mediate intercellular communication in all organisms, and those produced by placental mammals have become increasingly recognized as significant mediators of fetal-maternal communication. Here, we aimed to identify maternal cells targeted by placental EVs and elucidate the mechanisms by which they traffic to these cells. Exogenously administered pregnancy-associated EVs traffic specifically to the lung; further, placental EVs associate with lung interstitial macrophages and liver Kupffer cells in an integrin-dependent manner. Localization of EV to maternal lungs was confirmed in unmanipulated pregnancy using a transgenic reporter mouse model, which also provided in situ and in vitro evidence that fetally-derived EVs, rarely, may cause genetic alteration of maternal cells. These results provide for the first time direct in vivo evidence that placental EVs target maternal immune cells, and further, that EVs can alter cellular phenotype.
Collapse
Affiliation(s)
- Sean L Nguyen
- Cell and Molecular Biology Program, College of Natural Science, Michigan State University, 3009 Interdisciplinary Science and Technology Building 766 Service Road, East Lansing, MI, 48854, USA.,Institute for Integrative Toxicology, Michigan State University, East Lansing, MI, USA
| | - Soo Hyun Ahn
- Department of Pathobiology and Diagnostic Investigation, College of Veterinary Medicine, Michigan State University, East Lansing, MI, USA
| | - Jacob W Greenberg
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, MI, USA
| | - Benjamin W Collaer
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI, USA
| | - Dalen W Agnew
- Department of Pathobiology and Diagnostic Investigation, College of Veterinary Medicine, Michigan State University, East Lansing, MI, USA
| | - Ripla Arora
- Department of Obstetrics, Gynecology, and Reproductive Biology, Institute for Quantitative Health Science and Engineering, Michigan State University, East Lansing, MI, USA
| | - Margaret G Petroff
- Cell and Molecular Biology Program, College of Natural Science, Michigan State University, 3009 Interdisciplinary Science and Technology Building 766 Service Road, East Lansing, MI, 48854, USA. .,Department of Pathobiology and Diagnostic Investigation, College of Veterinary Medicine, Michigan State University, East Lansing, MI, USA. .,Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, MI, USA.
| |
Collapse
|
39
|
Nair S, Ormazabal V, Lappas M, McIntyre HD, Salomon C. Extracellular vesicles and their potential role inducing changes in maternal insulin sensitivity during gestational diabetes mellitus. Am J Reprod Immunol 2021; 85:e13361. [PMID: 33064367 DOI: 10.1111/aji.13361] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2020] [Revised: 09/11/2020] [Accepted: 09/30/2020] [Indexed: 12/18/2022] Open
Abstract
Gestational diabetes mellitus (GDM) is one of the most common endocrine disorders during gestation and affects around 15% of all pregnancies worldwide, paralleling the global increase in obesity and type 2 diabetes. Normal pregnancies are critically dependent on the development of maternal insulin resistance balanced by an increased capacity to secrete insulin, which allows for the allocation of nutrients for adequate foetal growth and development. Several factors including placental hormones, inflammatory mediators and nutrients have been proposed to alter insulin sensitivity and insulin response and underpin the pathological outcomes of GDM. However, other factors may also be involved in the regulation of maternal metabolism and a complete understanding of GDM pathophysiology requires the identification of these factors, and the mechanisms associated with them. Recent studies highlight the potential utility of tissue-specific extracellular vesicles (EVs) in the diagnosis of disease onset and treatment monitoring for several pregnancy-related complications, including GDM. To date, there is a paucity of data defining changes in the release, content, bioactivity and diagnostic utility of circulating EVs in pregnancies complicated by GDM. Placental EVs may engage in paracellular interactions including local cell-to-cell communication between the cell constituents of the placenta and contiguous maternal tissues, and/or distal interactions involving the release of placental EVs into biological fluids and their transport to a remote site of action. Hence, the aim of this review is to discuss the biogenesis, isolation methods and role of EVs in the physiopathology of GDM, including changes in maternal insulin sensitivity during pregnancy.
Collapse
Affiliation(s)
- Soumyalekshmi Nair
- Exosome Biology Laboratory, Centre for Clinical Diagnostics, University of Queensland Centre for Clinical Research, Royal Brisbane and Women's Hospital, The University of Queensland, Brisbane, QLD, Australia
| | - Valeska Ormazabal
- Department of Pharmacology, Faculty of Biological Sciences, University of Concepción, Concepción, Chile
| | - Martha Lappas
- Obstetrics, Nutrition and Endocrinology Group, Department of Obstetrics and Gynaecology, University of Melbourne, Heidelberg, Vic., Australia.,Mercy Perinatal Research Centre, Mercy Hospital for Women, Heidelberg, Vic., Australia
| | - H David McIntyre
- Mater Research, The University of Queensland, South Brisbane, Qld, Australia
| | - Carlos Salomon
- Exosome Biology Laboratory, Centre for Clinical Diagnostics, University of Queensland Centre for Clinical Research, Royal Brisbane and Women's Hospital, The University of Queensland, Brisbane, QLD, Australia.,Department of Clinical Biochemistry and Immunology, Faculty of Pharmacy, University of Concepción, Concepción, Chile
| |
Collapse
|
40
|
An Y, Lin S, Tan X, Zhu S, Nie F, Zhen Y, Gu L, Zhang C, Wang B, Wei W, Li D, Wu J. Exosomes from adipose-derived stem cells and application to skin wound healing. Cell Prolif 2021; 54:e12993. [PMID: 33458899 PMCID: PMC7941238 DOI: 10.1111/cpr.12993] [Citation(s) in RCA: 248] [Impact Index Per Article: 62.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2020] [Revised: 12/14/2020] [Accepted: 01/02/2021] [Indexed: 02/06/2023] Open
Abstract
Skin wound healing is an intractable problem that represents an urgent clinical need. To solve this problem, a large number of studies have focused on the use of exosomes (EXOs) derived from adipose‐derived stem cells (ADSCs). This review describes the mechanisms whereby ADSCs‐EXOs regulate wound healing and their clinical application. In the wound, ADSCs‐EXOs modulate immune responses and inflammation. They also promote angiogenesis, accelerate proliferation and re‐epithelization of skin cells, and regulate collagen remodelling which inhibits scar hyperplasia. Compared with ADSCs therapeutics, ADSCs‐EXOs have highly stability and are easily stored. Additionally, they are not rejected by the immune system and have a homing effect and their dosage can be easily controlled. ADSCs‐EXOs can improve fat grafting and promote wound healing in patients with diabetes mellitus. They can also act as a carrier and combined scaffold for treatment, leading to scarless cutaneous repair. Overall, ADSCs‐EXOs have the potential to be used in the clinic to promote wound healing.
Collapse
Affiliation(s)
- Yang An
- Department of Plastic Surgery, Peking University Third Hospital, Beijing, China
| | - Shuyan Lin
- Hearing Ctr, Department of Otolaryngology, Head and Neck Surgery, West China Hospital, Sichuan University, Chengdu, China
| | - Xiaojie Tan
- Department of Plastic Surgery, Peking University Third Hospital, Beijing, China
| | - Shiou Zhu
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Fangfei Nie
- Department of Plastic Surgery, Peking University Third Hospital, Beijing, China
| | - Yonghuan Zhen
- Department of Plastic Surgery, Peking University Third Hospital, Beijing, China
| | - Luosha Gu
- Department of Plastic Surgery, Peking University Third Hospital, Beijing, China
| | - Chunlei Zhang
- Institute of Systems Biomedicine, Peking University, Beijing, China
| | - Baicheng Wang
- Department of Plastic Surgery, Peking University Third Hospital, Beijing, China
| | - Wei Wei
- Clinical Stem Cell Research Center, Peking University Third Hospital, Beijing, China
| | - Dong Li
- Department of Plastic Surgery, Peking University Third Hospital, Beijing, China
| | - Junhao Wu
- Hearing Ctr, Department of Otolaryngology, Head and Neck Surgery, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
41
|
Favaro RR, Murrieta-Coxca JM, Gutiérrez-Samudio RN, Morales-Prieto DM, Markert UR. Immunomodulatory properties of extracellular vesicles in the dialogue between placental and immune cells. Am J Reprod Immunol 2020; 85:e13383. [PMID: 33251688 DOI: 10.1111/aji.13383] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Accepted: 11/18/2020] [Indexed: 12/16/2022] Open
Abstract
Extracellular vesicle (EV)-mediated communication has been implicated in the cooperative alliance between trophoblast and immune cells toward maternal tolerance and placentation. Syncytiotrophoblast cells secrete EVs directly into the maternal circulation, which are taken up by immune cells, endothelial cells, and other cell types. Initial evidence also shows that EVs produced by immune cells are, in turn, incorporated by trophoblast cells and modulate placental responses. Non-coding RNAs (ncRNAs), proteins, and lipid mediators transported in EVs are able to influence proliferation, differentiation, cytokine production, and immunological responses of recipient cells. The molecular alphabet and cellular targets involved in this dialogue are being revealed. Nevertheless, several questions regarding the whole content, surface markers, and biological functions of EVs still remain to be investigated in both physiological and pathological conditions. Analysis of circulating EVs in maternal blood has the potential to serve as a minimally invasive approach to monitoring placental functions and immunological features of pregnancy, aiding in the diagnostics of complications. This review addresses the immunomodulatory properties of EVs and their tasks in the communication between placental and immune cells.
Collapse
Affiliation(s)
- Rodolfo R Favaro
- Placenta Lab, Department of Obstetrics, Jena University Hospital, Jena, Germany
| | - Jose Martín Murrieta-Coxca
- Placenta Lab, Department of Obstetrics, Jena University Hospital, Jena, Germany.,RNA Bioinformatics, High Throughput Analysis, Faculty of Mathematics and Computer Science, Friedrich-Schiller-University Jena, Jena, Germany
| | | | | | - Udo R Markert
- Placenta Lab, Department of Obstetrics, Jena University Hospital, Jena, Germany
| |
Collapse
|
42
|
Abstract
Background: Numerous changes in maternal physiology occur during pregnancy that are critical in controlling and maintaining the maternal metabolic adaptations and fetal development. The placenta is the key source through which the fetus receives nutrients, blood, and oxygen for growth. The human placenta releases several molecules into maternal circulation that include hormones, proteins, RNA, and DNA throughout the course of pregnancy. Additionally, extracellular vesicles (EVs) originating from the placenta have been found in the maternal circulation. Methods: In this review, we discuss the role of EVs in maternal-fetal communication during pregnancy. Results: EVs originating from the placenta can be divided into 3 categories based on their size and/or origin: exosomes (50 to 150 nm), microvesicles (nm to several μm), and apoptotic bodies or syncytial nuclear aggregates (>1 μm). The cellular microenvironment—such as oxygen tension and glucose concentration—have been found to control EV release from the placenta and their bioactivity on target cells. Furthermore, maternal EVs can stimulate cytokine release from endothelial cells and are involved in several physiologic and pathologic events in pregnancy. Conclusion: Exosomes provide a way to identify the function and metabolic state of cell origin through their ability to reflect the microenvironment that they are released from. Further understanding of how EVs regulate key events in pregnancy may help elucidate how maternal-fetal communication is established in both normal and pathologic conditions.
Collapse
|
43
|
Tetraspanins, More than Markers of Extracellular Vesicles in Reproduction. Int J Mol Sci 2020; 21:ijms21207568. [PMID: 33066349 PMCID: PMC7589920 DOI: 10.3390/ijms21207568] [Citation(s) in RCA: 119] [Impact Index Per Article: 23.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Revised: 10/08/2020] [Accepted: 10/08/2020] [Indexed: 02/07/2023] Open
Abstract
The participation of extracellular vesicles in many cellular processes, including reproduction, is unquestionable. Although currently, the tetraspanin proteins found in extracellular vesicles are mostly applied as markers, increasing evidence points to their role in extracellular vesicle biogenesis, cargo selection, cell targeting, and cell uptake under both physiological and pathological conditions. In this review, we bring other insight into the involvement of tetraspanin proteins in extracellular vesicle physiology in mammalian reproduction. We provide knowledge regarding the involvement of extracellular vesicle tetraspanins in these processes in somatic cells. Furthermore, we discuss the future direction towards an understanding of their functions in the tissues and fluids of the mammalian reproductive system in gamete maturation, fertilization, and embryo development; their involvement in mutual cell contact and communication in their complexity.
Collapse
|
44
|
Schneider DJ, Smith KA, Latuszek CE, Wilke CA, Lyons DM, Penke LR, Speth JM, Marthi M, Swanson JA, Moore BB, Lauring AS, Peters‐Golden M. Alveolar macrophage-derived extracellular vesicles inhibit endosomal fusion of influenza virus. EMBO J 2020; 39:e105057. [PMID: 32643835 PMCID: PMC7429743 DOI: 10.15252/embj.2020105057] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Revised: 06/05/2020] [Accepted: 06/15/2020] [Indexed: 01/09/2023] Open
Abstract
Alveolar macrophages (AMs) and epithelial cells (ECs) are the lone resident lung cells positioned to respond to pathogens at early stages of infection. Extracellular vesicles (EVs) are important vectors of paracrine signaling implicated in a range of (patho)physiologic contexts. Here we demonstrate that AMs, but not ECs, constitutively secrete paracrine activity localized to EVs which inhibits influenza infection of ECs in vitro and in vivo. AMs exposed to cigarette smoke extract lost the inhibitory activity of their secreted EVs. Influenza strains varied in their susceptibility to inhibition by AM-EVs. Only those exhibiting early endosomal escape and high pH of fusion were inhibited via a reduction in endosomal pH. By contrast, strains exhibiting later endosomal escape and lower fusion pH proved resistant to inhibition. These results extend our understanding of how resident AMs participate in host defense and have broader implications in the defense and treatment of pathogens internalized within endosomes.
Collapse
Affiliation(s)
- Daniel J Schneider
- Division of Pulmonary and Critical Care MedicineDepartment of Internal MedicineUniversity of Michigan Medical SchoolAnn ArborMIUSA
| | - Katherine A Smith
- Division of Pulmonary and Critical Care MedicineDepartment of Internal MedicineUniversity of Michigan Medical SchoolAnn ArborMIUSA
| | - Catrina E Latuszek
- Division of Pulmonary and Critical Care MedicineDepartment of Internal MedicineUniversity of Michigan Medical SchoolAnn ArborMIUSA
| | - Carol A Wilke
- Division of Pulmonary and Critical Care MedicineDepartment of Internal MedicineUniversity of Michigan Medical SchoolAnn ArborMIUSA
- Department of Microbiology and ImmunologyUniversity of Michigan Medical SchoolAnn ArborMIUSA
| | - Danny M Lyons
- Department of Microbiology and ImmunologyUniversity of Michigan Medical SchoolAnn ArborMIUSA
- Division of Infectious DiseaseDepartment of Internal MedicineUniversity of Michigan Medical SchoolAnn ArborMIUSA
| | - Loka R Penke
- Division of Pulmonary and Critical Care MedicineDepartment of Internal MedicineUniversity of Michigan Medical SchoolAnn ArborMIUSA
| | - Jennifer M Speth
- Division of Pulmonary and Critical Care MedicineDepartment of Internal MedicineUniversity of Michigan Medical SchoolAnn ArborMIUSA
| | - Matangi Marthi
- Department of Microbiology and ImmunologyUniversity of Michigan Medical SchoolAnn ArborMIUSA
| | - Joel A Swanson
- Department of Microbiology and ImmunologyUniversity of Michigan Medical SchoolAnn ArborMIUSA
| | - Bethany B Moore
- Division of Pulmonary and Critical Care MedicineDepartment of Internal MedicineUniversity of Michigan Medical SchoolAnn ArborMIUSA
- Department of Microbiology and ImmunologyUniversity of Michigan Medical SchoolAnn ArborMIUSA
- Graduate Program in ImmunologyUniversity of Michigan Medical SchoolAnn ArborMIUSA
| | - Adam S Lauring
- Department of Microbiology and ImmunologyUniversity of Michigan Medical SchoolAnn ArborMIUSA
- Division of Infectious DiseaseDepartment of Internal MedicineUniversity of Michigan Medical SchoolAnn ArborMIUSA
- Graduate Program in ImmunologyUniversity of Michigan Medical SchoolAnn ArborMIUSA
| | - Marc Peters‐Golden
- Division of Pulmonary and Critical Care MedicineDepartment of Internal MedicineUniversity of Michigan Medical SchoolAnn ArborMIUSA
- Graduate Program in ImmunologyUniversity of Michigan Medical SchoolAnn ArborMIUSA
| |
Collapse
|
45
|
Schuster J, Cheng SB, Padbury J, Sharma S. Placental extracellular vesicles and pre-eclampsia. Am J Reprod Immunol 2020; 85:e13297. [PMID: 32619308 DOI: 10.1111/aji.13297] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 06/16/2020] [Accepted: 06/26/2020] [Indexed: 12/16/2022] Open
Abstract
Pre-eclampsia is a hypertensive disease of pregnancy characterized by new-onset hypertension, with either proteinuria and/or organ dysfunction. Pre-eclampsia is a leading cause of maternal morbidity and mortality; however, the underlying cellular and molecular mechanisms are not well understood. There is consensus that the underlying mechanism(s) resulting in pre-eclampsia is centered around abnormal placentation, inadequate spiral-artery remodeling, and deficiency in trophoblast invasion, resulting in impaired maternal blood flow to the placenta and a release of signals and/or inflammatory mediators into maternal circulation triggering the systemic manifestations of pre-eclampsia. ER stress, resulting in impaired autophagy and placental release of aggregated proteins, may also confer systemic stress to maternal organs in pre-eclampsia. Extracellular vesicles (EVs), lipid-bilayer enclosed structures containing macromolecules including proteins, miRNA, and other important nucleotides, have been suggested to play an important role in this maternal-fetal communication. Circulating EVs are present in greater quantity in the plasma of pre-eclampsia subjects compared to normal pregnancy, and the placental derived EVs have been shown to have altered protein and RNA cargo. In this review, we will focus on EVs and their role in pre-eclampsia, specifically their role in immune responses, inflammation, altered angiogenesis, and endothelial dysfunction.
Collapse
Affiliation(s)
- Jessica Schuster
- Department of Pediatrics, Women and Infants Hospital of Rhode Island, Providence, RI, USA
| | - Shi-Bin Cheng
- Department of Pediatrics, Women and Infants Hospital of Rhode Island, Providence, RI, USA
| | - James Padbury
- Department of Pediatrics, Women and Infants Hospital of Rhode Island, Providence, RI, USA
| | - Surendra Sharma
- Department of Pediatrics, Women and Infants Hospital of Rhode Island, Providence, RI, USA
| |
Collapse
|
46
|
O'Neil EV, Burns GW, Spencer TE. Extracellular vesicles: Novel regulators of conceptus-uterine interactions? Theriogenology 2020; 150:106-112. [PMID: 32164992 PMCID: PMC8559595 DOI: 10.1016/j.theriogenology.2020.01.083] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Accepted: 01/31/2020] [Indexed: 12/13/2022]
Abstract
This review focuses on extracellular vesicles (EV) in the uterus and their potential biological roles as mediators of conceptus-uterine interactions essential for implantation and pregnancy establishment. Growing evidence supports the idea that EV are produced by both the endometrium and conceptus during pregnancy. Exosomes and microvesicles, collectively termed EV, mediate cell-cell communication in other tissues and organs. EV have distinct cargo, including lipids, proteins, RNAs, and DNA, that vary depending on the cell of origin and regulate processes including angiogenesis, adhesion, proliferation, cell survival, inflammation, and immune response in recipient cells. Molecular crosstalk between the endometrial epithelium and the blastocyst/conceptus, particularly the trophectoderm, regulates early pregnancy events and is a prerequisite for successful implantation. Trafficking of EV between the conceptus and endometrium may represent a key form of communication important for pregnancy establishment. Increased understanding of EV in the uterine environment and their physiological roles in endometrial-conceptus interactions is expected to provide opportunities to improve pregnancy success.
Collapse
Affiliation(s)
- Eleanore V O'Neil
- Division of Animal Sciences, University of Missouri, Columbia, MO, 65203, USA
| | - Gregory W Burns
- Division of Animal Sciences, University of Missouri, Columbia, MO, 65203, USA
| | - Thomas E Spencer
- Division of Animal Sciences, University of Missouri, Columbia, MO, 65203, USA.
| |
Collapse
|
47
|
Abstract
Exosomes are small, single-membrane, secreted organelles of ∼30 to ∼200 nm in diameter that have the same topology as the cell and are enriched in selected proteins, lipids, nucleic acids, and glycoconjugates. Exosomes contain an array of membrane-associated, high-order oligomeric protein complexes, display pronounced molecular heterogeneity, and are created by budding at both plasma and endosome membranes. Exosome biogenesis is a mechanism of protein quality control, and once released, exosomes have activities as diverse as remodeling the extracellular matrix and transmitting signals and molecules to other cells. This pathway of intercellular vesicle traffic plays important roles in many aspects of human health and disease, including development, immunity, tissue homeostasis, cancer, and neurodegenerative diseases. In addition, viruses co-opt exosome biogenesis pathways both for assembling infectious particles and for establishing host permissiveness. On the basis of these and other properties, exosomes are being developed as therapeutic agents in multiple disease models.
Collapse
Affiliation(s)
- D Michiel Pegtel
- Amsterdam UMC, Vrije Universiteit Amsterdam, Department of Pathology, Cancer Center Amsterdam, 1081 HV Amsterdam, The Netherlands;
| | - Stephen J Gould
- Department of Biological Chemistry, Johns Hopkins University, Baltimore, Maryland 21205, USA;
| |
Collapse
|
48
|
Maduray K, Moodley J, Mackraj I. The impact of circulating exosomes derived from early and late onset pre-eclamptic pregnancies on inflammatory cytokine secretion by BeWo cells. Eur J Obstet Gynecol Reprod Biol 2020; 247:156-162. [PMID: 32114320 DOI: 10.1016/j.ejogrb.2020.02.032] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Revised: 02/19/2020] [Accepted: 02/21/2020] [Indexed: 01/12/2023]
Abstract
OBJECTIVES The pathogenesis of pre-eclampsia (PE) is associated with significant maternal and neonatal complications, an increased inflammatory response, placental hypoxia, and endothelial dysfunction, coupled with differential exosomal release profiles with immune modulation effects. Hence, this study evaluated the impact of circulating exosomes derived from early and late-onset pre-eclamptic pregnancies on inflammatory cytokine secretion by BeWo cells. STUDY DESIGN Exosomes were isolated from plasma obtained from early-onset pre-eclamptic (EOPE; n = 15), late-onset pre-eclamptic (LOPE; n = 15), and gestational age-matched normotensive pregnancies (N ≤ 33 weeks; n = 15 and N ≥ 34 weeks; n = 15). Human BeWo cells were treated with characterized and quantified exosomes (100 μg/mL exosomal protein per pregnant group) for 24 h. The immunoassay method was used to measure the concentration of IL-8, IL-10, leptin, and HIF-α. RESULTS Exosome administration from women with EOPE and LOPE increased IL-8 and decreased IL-10 expression in BeWo cells. CONCLUSION Cumulatively, our data demonstrated that circulating exosomes from the placenta and activated immune cells potentially influence inflammatory cytokine production in pre-eclamptic pregnancies.
Collapse
Affiliation(s)
- K Maduray
- School of Laboratory Medicine and Medical Sciences, College of Health Sciences, University of KwaZulu-Natal, South Africa.
| | - J Moodley
- Womens' Health and HIV Research Group, University of KwaZulu-Natal, South Africa
| | - I Mackraj
- School of Laboratory Medicine and Medical Sciences, College of Health Sciences, University of KwaZulu-Natal, South Africa
| |
Collapse
|
49
|
Macrophages reprogrammed by lung cancer microparticles promote tumor development via release of IL-1β. Cell Mol Immunol 2019; 17:1233-1244. [PMID: 31649305 PMCID: PMC7784894 DOI: 10.1038/s41423-019-0313-2] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Accepted: 09/27/2019] [Indexed: 12/13/2022] Open
Abstract
Despite their mutual antagonism, inflammation and immunosuppression coexist in tumor microenvironments due to tumor and immune cell interactions, but the underlying mechanism remains unclear. Previously, we showed that tumor cell-derived microparticles induce an M2 phenotype characterized by immunosuppression in tumor-infiltrating macrophages. Here, we further showed that lung cancer microparticles (L-MPs) induce macrophages to release a key proinflammatory cytokine, IL-1β, thus promoting lung cancer development. The underlying mechanism involves the activation of TLR3 and the NLRP3 inflammasome by L-MPs. More importantly, tyrosine kinase inhibitor treatment-induced L-MPs also induce human macrophages to release IL-1β, leading to a tumor-promoting effect in a humanized mouse model. These findings demonstrated that in addition to their anti-inflammatory effect, L-MPs induce a proinflammatory phenotype in tumor-infiltrating macrophages, promoting the development of inflammatory and immunosuppressive tumor microenvironments.
Collapse
|
50
|
Chen L, Karisma VW, Liu H, Zhong L. MicroRNA-300: A Transcellular Mediator in Exosome Regulates Melanoma Progression. Front Oncol 2019; 9:1005. [PMID: 31681565 PMCID: PMC6803498 DOI: 10.3389/fonc.2019.01005] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Accepted: 09/18/2019] [Indexed: 01/11/2023] Open
Abstract
Melanoma is a common and high-mortality skin cancer. Oxidative stress and DNA damage caused by ultraviolet light (UV) are major causative factors of melanoma formation. However, the specific molecular mechanism is still unclear. In this study, 218 dysregulated genes and 104 dysregulated miRNAs in response to UV were screened by analyzing sequencing datasets. Among them, 29 up-regulated miRNAs and 28 down-regulated miRNAs were involved in the melanoma pathway. As the only differential gene in the melanoma pathway, GADD45B severely affects the prognosis of melanoma patients. MiR-300 is the only differentially expressed miRNA that regulates GADD45B. In addition, compared to normal melanocytes, miR-300 was significantly down-regulated in melanoma cells (log FC = −1.63) and exosomes (log FC = −1.34). Among the transcription factors predicted to regulate miR-300, MYC, PPARG, and ZIC2 were significantly up-regulated in melanoma cells, and TP53, JUN, JUNB, FOS, and FOSB interacted with GADD45B. We attempted to reveal the pathogenesis of melanoma and screen new biomarkers by constructing a TF-mRNA-miRNA axis in turn to provide a view for further research.
Collapse
Affiliation(s)
- Long Chen
- Bioengineering Institute of Chongqing University, Chongqing, China
| | | | - Huawen Liu
- Three Gorges Central Hospital, Chongqing, China
| | - Li Zhong
- Bioengineering Institute of Chongqing University, Chongqing, China
| |
Collapse
|