1
|
Zaniewska M, Brygider S, Majcher-Maślanka I, Gawliński D, Głowacka U, Glińska S, Balcerzak Ł. The impact of voluntary wheel-running exercise on hippocampal neurogenesis and behaviours in response to nicotine cessation in rats. Psychopharmacology (Berl) 2024:10.1007/s00213-024-06705-7. [PMID: 39463206 DOI: 10.1007/s00213-024-06705-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Accepted: 10/16/2024] [Indexed: 10/29/2024]
Abstract
RATIONALE The literature indicates that nicotine exposure or its discontinuation impair adult hippocampal neurogenesis in rats, though the impact of exercise on this process remains unclear. We have previously shown that disturbances in the number of doublecortin (DCX, a marker of immature neurons)-positive (DCX+) cells in the dentate gyrus (DG) of the hippocampus during nicotine deprivation may contribute to a depression-like state in rats. OBJECTIVES This study aimed to investigate the effect of running on hippocampal neurogenesis, depression-like symptoms, and drug-seeking behaviour during nicotine deprivation. METHODS The rats were subjected to nicotine (0.03 mg/kg/inf) self-administration via an increasing schedule of reinforcement. After 21 sessions, the animals entered a 14-day abstinence phase during which they were housed in either standard home cages without wheels, cages equipped with running wheels, or cages with locked wheels. RESULTS Wheel running increased the number of Ki-67+ and DCX+ cells in the DG of both nicotine-deprived and nicotine-naive rats. Wheel-running exercise evoked an antidepressant effect on abstinence Day 14 but had no effect on nicotine-seeking behaviour on abstinence Day 15 compared to rats with locked-wheel access. CONCLUSIONS In summary, long-term wheel running positively affected the number of immature neurons in the hippocampus, which corresponded with an antidepressant response in nicotine-weaned rats. One possible mechanism underlying the positive effect of running on the affective state during nicotine cessation may be the reduction in deficits in DCX+ cells in the hippocampus.
Collapse
Affiliation(s)
- Magdalena Zaniewska
- Department of Pharmacology and Brain Biostructure, Maj Institute of Pharmacology, Polish Academy of Sciences, 12 Smętna Street, Kraków, 31-343, Poland.
- Department of Drug Addiction Pharmacology, Maj Institute of Pharmacology, Polish Academy of Sciences, Smętna 12 Street, Kraków, 31-343, Poland.
- Affective Cognitive Neuroscience Laboratory, Maj Institute of Pharmacology, Polish Academy of Sciences, 12 Smętna Street, Kraków, 31-343, Poland.
| | - Sabina Brygider
- Department of Pharmacology and Brain Biostructure, Maj Institute of Pharmacology, Polish Academy of Sciences, 12 Smętna Street, Kraków, 31-343, Poland
- Department of Drug Addiction Pharmacology, Maj Institute of Pharmacology, Polish Academy of Sciences, Smętna 12 Street, Kraków, 31-343, Poland
| | - Iwona Majcher-Maślanka
- Department of Pharmacology and Brain Biostructure, Maj Institute of Pharmacology, Polish Academy of Sciences, 12 Smętna Street, Kraków, 31-343, Poland
| | - Dawid Gawliński
- Department of Drug Addiction Pharmacology, Maj Institute of Pharmacology, Polish Academy of Sciences, Smętna 12 Street, Kraków, 31-343, Poland
| | - Urszula Głowacka
- Department of Pharmacology and Brain Biostructure, Maj Institute of Pharmacology, Polish Academy of Sciences, 12 Smętna Street, Kraków, 31-343, Poland
- Department of Physiology, Jagiellonian University Medical College, 16 Grzegorzecka Street, Kraków, 31- 531, Poland
| | - Sława Glińska
- Faculty of Biology and Environmental Protection, Laboratory of Microscopic Imaging and Specialized Biological Techniques, University of Lodz, Banacha 12/16, Lodz, 90-237, Poland
| | - Łucja Balcerzak
- Faculty of Biology and Environmental Protection, Laboratory of Microscopic Imaging and Specialized Biological Techniques, University of Lodz, Banacha 12/16, Lodz, 90-237, Poland
| |
Collapse
|
2
|
Mansk LMZ, Jaimes LF, Dias TL, Pereira GS. Social recognition memory differences between mouse strains: On the effects of social isolation, adult neurogenesis, and environmental enrichment. Brain Res 2023; 1819:148535. [PMID: 37595660 DOI: 10.1016/j.brainres.2023.148535] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 07/25/2023] [Accepted: 08/14/2023] [Indexed: 08/20/2023]
Abstract
Remembering conspecifics is paramount for the establishment and maintenance of groups. Here we asked whether the variability in social behavior caused by different breeding strategies affects social recognition memory (SRM). We tested the hypothesis that the inbred Swiss and the outbred C57BL/6 mice behave differently on SRM. Social memory in C57BL/6 mice endured at least 14 days, while in Swiss mice lasted 24 h but not ten days. We showed previously that an enriched environment enhanced the persistence of SRM in Swiss mice. Here we reproduced this result and added that it also increases the survival of adult-born neurons in the hippocampus. Next, we tested whether prolonged SRM observed in C57BL/6 mice could be changed by diminishing the trial duration or using an interference stimulus after learning. Neither short acquisition time nor interference during consolidation affected it. However, social isolation impaired SRM in C57BL/6 mice, similar to what was previously observed in Swiss mice. Our results demonstrate that SRM expression can vary according to the mouse strain, which shows the importance of considering this variable when choosing the most suitable model to answer specific questions about this memory system. We also demonstrate the suitability of both C57BL/6 and Swiss strains for exploring the impact of environmental conditions and adult neurogenesis on social memory.
Collapse
Affiliation(s)
- Lara M Z Mansk
- Núcleo de Neurociências, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Laura F Jaimes
- Núcleo de Neurociências, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Thomaz L Dias
- Núcleo de Neurociências, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil; Departamento de Análises Clínicas e Toxicológicas, Faculdade de Ciências Farmacêuticas, Universidade de São Paulo, São Paulo, Brazil
| | - Grace S Pereira
- Núcleo de Neurociências, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil.
| |
Collapse
|
3
|
Lee KY, Rhodes JS, Saif MTA. Astrocyte-mediated Transduction of Muscle Fiber Contractions Synchronizes Hippocampal Neuronal Network Development. Neuroscience 2023; 515:25-36. [PMID: 36736611 PMCID: PMC10023357 DOI: 10.1016/j.neuroscience.2023.01.028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Revised: 01/08/2023] [Accepted: 01/24/2023] [Indexed: 02/05/2023]
Abstract
Exercise supports brain health in part by enhancing hippocampal function. The leading hypothesis is that muscles release factors when they contract (e.g., lactate, myokines, growth factors) that enter circulation and reach the brain where they enhance plasticity (e.g., increase neurogenesis and synaptogenesis). However, it remains unknown how the muscle signals are transduced by the hippocampal cells to modulate network activity and synaptic development. Thus, we established an in vitro model in which the media from contracting primary muscle cells (CM) is applied to developing primary hippocampal cell cultures on a microelectrode array. We found that the hippocampal neuronal network matures more rapidly (as indicated by synapse development and synchronous neuronal activity) when exposed to CM than regular media (RM). This was accompanied by a 4.4- and 1.4-fold increase in the proliferation of astrocytes and neurons, respectively. Further, experiments established that factors released by astrocytes inhibit neuronal hyper-excitability induced by muscle media, and facilitate network development. Results provide new insight into how exercise may support hippocampal function by regulating astrocyte proliferation and subsequent taming of neuronal activity into an integrated network.
Collapse
Affiliation(s)
- Ki Yun Lee
- Department of Mechanical Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA; Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA.
| | - Justin S Rhodes
- Department of Psychology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA; Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA.
| | - M Taher A Saif
- Department of Mechanical Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA; Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA; Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA.
| |
Collapse
|
4
|
O’Reilly CL, Miller BF, Lewis TL. Exercise and mitochondrial remodeling to prevent age-related neurodegeneration. J Appl Physiol (1985) 2023; 134:181-189. [PMID: 36519568 PMCID: PMC9829476 DOI: 10.1152/japplphysiol.00611.2022] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Healthy brain activity requires precise ion and energy management creating a strong reliance on mitochondrial function. Age-related neurodegeneration leads to a decline in mitochondrial function and increased oxidative stress, with associated declines in mitochondrial mass, respiration capacity, and respiration efficiency. The interdependent processes of mitochondrial protein turnover and mitochondrial dynamics, known together as mitochondrial remodeling, play essential roles in mitochondrial health and therefore brain function. This mini-review describes the role of mitochondria in neurodegeneration and brain health, current practices for assessing both aspects of mitochondrial remodeling, and how exercise mitigates the adverse effects of aging in the brain. Exercise training elicits functional adaptations to improve brain health, and current literature strongly suggests that mitochondrial remodeling plays a vital role in these positive adaptations. Despite substantial implications that the two aspects of mitochondrial remodeling are interdependent, very few investigations have simultaneously measured mitochondrial dynamics and protein synthesis. An improved understanding of the partnership between mitochondrial protein turnover and mitochondrial dynamics will provide a better understanding of their role in both brain health and disease, as well as how they induce protection following exercise.
Collapse
Affiliation(s)
- Colleen L. O’Reilly
- 1Aging and Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma
| | - Benjamin F. Miller
- 1Aging and Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma,2Oklahoma City Veterans Association, Oklahoma City, Oklahoma
| | - Tommy L. Lewis
- 1Aging and Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma
| |
Collapse
|
5
|
Liu ZT, Ma YT, Pan ST, Xie K, Shen W, Lin SY, Gao JY, Li WY, Li GY, Wang QW, Li LP. Effects of involuntary treadmill running in combination with swimming on adult neurogenesis in an Alzheimer's mouse model. Neurochem Int 2022; 155:105309. [PMID: 35276288 DOI: 10.1016/j.neuint.2022.105309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Revised: 01/24/2022] [Accepted: 02/15/2022] [Indexed: 10/18/2022]
Abstract
Physical exercise plays a role on the prevention and treatment of Alzheimer's disease (AD), but the exercise mode and the mechanism for these positive effects is still ambiguous. Here, we investigated the effect of an aerobic interval exercise, running in combination with swimming, on behavioral dysfunction and associated adult neurogenesis in a mouse model of AD. We demonstrate that 4 weeks of the exercise could ameliorate Aβ42 oligomer-induced cognitive impairment in mice utilizing Morris water maze tests. Additionally, the exercised Aβ42 oligomer-induced mice exhibited a significant reduction of anxiety- and depression-like behaviors compared to the sedentary Aβ42 oligomer-induced mice utilizing an Elevated zero maze and a Tail suspension test. Moreover, by utilizing 5'-bromodeoxyuridine (BrdU) as an exogenous cell tracer, we found that the exercised Aβ42 oligomer-induced mice displayed a significant increase in newborn cells (BrdU+ cells), which differentiated into a majority of neurons (BrdU+ DCX+ cells or BrdU+NeuN+ cells) and a few of astrocytes (BrdU+GFAP+ cells). Likewise, the exercised Aβ42 oligomer-induced mice also displayed the higher levels of NeuN, PSD95, synaptophysin, Bcl-2 and lower level of GFAP protein. Furthermore, alteration of serum metabolites in transgenic AD mice between the exercised and sedentary group were significantly associated with lipid metabolism, amino acid metabolism, and neurotransmitters. These findings suggest that combined aerobic interval exercise-mediated metabolites and proteins contributed to improving adult neurogenesis and behavioral performance after AD pathology, which might provide a promising therapeutic strategy for AD.
Collapse
Affiliation(s)
- Zhi-Tao Liu
- Department of Physiology and Pharmacology, Ningbo University School of Medicine, Ningbo, Zhejiang, 315211, PR China; Rehabilitative Department, The Affiliated Hospital of Medical School, Ningbo University, Ningbo, Zhejiang, 315211, PR China; Faculty of Sports Science, Ningbo University, Ningbo, 315211, China
| | - Yu-Tao Ma
- Department of Physiology and Pharmacology, Ningbo University School of Medicine, Ningbo, Zhejiang, 315211, PR China; Ningbo Key Laboratory of Behavioral Neuroscience, Ningbo University School of Medicine, Ningbo, Zhejiang, 315211, PR China
| | - Shao-Tao Pan
- Department of Physiology and Pharmacology, Ningbo University School of Medicine, Ningbo, Zhejiang, 315211, PR China; Ningbo Key Laboratory of Behavioral Neuroscience, Ningbo University School of Medicine, Ningbo, Zhejiang, 315211, PR China
| | - Kai Xie
- Rehabilitative Department, The Affiliated Hospital of Medical School, Ningbo University, Ningbo, Zhejiang, 315211, PR China
| | - Wei Shen
- Rehabilitative Department, The Affiliated Hospital of Medical School, Ningbo University, Ningbo, Zhejiang, 315211, PR China
| | - Su-Yang Lin
- Department of Physiology and Pharmacology, Ningbo University School of Medicine, Ningbo, Zhejiang, 315211, PR China; Ningbo Key Laboratory of Behavioral Neuroscience, Ningbo University School of Medicine, Ningbo, Zhejiang, 315211, PR China
| | - Jun-Yan Gao
- Department of Physiology and Pharmacology, Ningbo University School of Medicine, Ningbo, Zhejiang, 315211, PR China; Ningbo Key Laboratory of Behavioral Neuroscience, Ningbo University School of Medicine, Ningbo, Zhejiang, 315211, PR China
| | - Wan-Yi Li
- Faculty of Sports Science, Ningbo University, Ningbo, 315211, China
| | - Guang-Yu Li
- Faculty of Sports Science, Ningbo University, Ningbo, 315211, China
| | - Qin-Wen Wang
- Department of Physiology and Pharmacology, Ningbo University School of Medicine, Ningbo, Zhejiang, 315211, PR China; Ningbo Key Laboratory of Behavioral Neuroscience, Ningbo University School of Medicine, Ningbo, Zhejiang, 315211, PR China.
| | - Li-Ping Li
- Department of Physiology and Pharmacology, Ningbo University School of Medicine, Ningbo, Zhejiang, 315211, PR China; Rehabilitative Department, The Affiliated Hospital of Medical School, Ningbo University, Ningbo, Zhejiang, 315211, PR China; Key Laboratory of Addiction Research of Zhejiang Province, Ningbo, Zhejiang, 315010, PR China.
| |
Collapse
|
6
|
Connolly MG, Bruce SR, Kohman RA. Exercise duration differentially effects age-related neuroinflammation and hippocampal neurogenesis. Neuroscience 2022; 490:275-286. [PMID: 35331843 PMCID: PMC9038708 DOI: 10.1016/j.neuroscience.2022.03.022] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 03/10/2022] [Accepted: 03/16/2022] [Indexed: 12/14/2022]
Abstract
The physiological effects of exercise vary as a function of frequency and length. However, research on the duration-dependent effects of exercise has focused primarily on young adults and less is known about the influence of exercise duration in the aged. The current study compared the effects of short-term and long-term running wheel access on hippocampal neurogenesis and neuroimmune markers in aged (19-23 months) male C57BL/6J mice. Aged mice were given 24-hour access to a running wheel for 14 days (short-term) or 51 days (long-term). Groups of non-running aged and young (5 months) mice served as comparison groups to detect age-related differences and effects of exercise. Long-term, but not short-term, exercise increased hippocampal neurogenesis as assessed by number of doublecortin (DCX) positive cells in the granular cell layer. Assessment of cytokines, receptors, and glial-activation markers showed the expected age-related increase compared to young controls. In the aged, exercise as a function of duration regulated select aspects of the neuroimmune profile. For instance, hippocampal expression of interleukin (IL)-10 was increased only following long-term exercise. While in contrast brain levels of IL-6 were reduced by both short- and long-term exercise. Additional findings showed that exercise does not modulate all aspects of age-related neuroinflammation and/or may have differential effects in hippocampal compared to brain samples. Overall, the data indicate that increasing exercise duration produces more robust effects on immune modulation and hippocampal neurogenesis.
Collapse
Affiliation(s)
- Meghan G Connolly
- University of Illinois Urbana-Champaign, Department of Animal Sciences, Champaign, IL, USA.
| | - Spencer R Bruce
- University of North Carolina Wilmington, Department of Psychology, Wilmington, NC, USA.
| | - Rachel A Kohman
- University of North Carolina Wilmington, Department of Psychology, Wilmington, NC, USA.
| |
Collapse
|
7
|
Zhou XA, Blackmore DG, Zhuo J, Nasrallah FA, To X, Kurniawan ND, Carlisle A, Vien KY, Chuang KH, Jiang T, Bartlett PF. Neurogenic-dependent changes in hippocampal circuitry underlie the procognitive effect of exercise in aging mice. iScience 2021; 24:103450. [PMID: 34877505 PMCID: PMC8633984 DOI: 10.1016/j.isci.2021.103450] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 09/22/2021] [Accepted: 11/10/2021] [Indexed: 01/05/2023] Open
Abstract
We have shown that the improvement in hippocampal-based learning in aged mice following physical exercise observed is dependent on neurogenesis in the dentate gyrus (DG) and is regulated by changes in growth hormone levels. The changes in neurocircuitry, however, which may underlie this improvement, remain unclear. Using in vivo multimodal magnetic resonance imaging to track changes in aged mice exposed to exercise, we show the improved spatial learning is due to enhanced DG connectivity, particularly the strengthening of the DG-Cornu Ammonis 3 and the DG-medial entorhinal cortex connections in the dorsal hippocampus. Moreover, we provide evidence that these changes in circuitry are dependent on neurogenesis since they were abrogated by ablation of newborn neurons following exercise. These findings identify the specific changes in hippocampal circuitry that underlie the cognitive improvements resulting from physical activity and show that they are dependent on the activation of neurogenesis in aged animals.
Collapse
Affiliation(s)
- Xiaoqing Alice Zhou
- Queensland Brain Institute, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Daniel G. Blackmore
- Queensland Brain Institute, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Junjie Zhuo
- Queensland Brain Institute, The University of Queensland, Brisbane, QLD 4072, Australia
- Brainnetome Center, Institute of Automation, Chinese Academy of Sciences, Beijing 100190, China
| | - Fatima A. Nasrallah
- Queensland Brain Institute, The University of Queensland, Brisbane, QLD 4072, Australia
- Centre for Advanced Imaging, The University of Queensland, Brisbane, QLD 4072, Australia
| | - XuanVinh To
- Queensland Brain Institute, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Nyoman D. Kurniawan
- Centre for Advanced Imaging, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Alison Carlisle
- Queensland Brain Institute, The University of Queensland, Brisbane, QLD 4072, Australia
| | - King-Year Vien
- Queensland Brain Institute, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Kai-Hsiang Chuang
- Queensland Brain Institute, The University of Queensland, Brisbane, QLD 4072, Australia
- Centre for Advanced Imaging, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Tianzi Jiang
- Queensland Brain Institute, The University of Queensland, Brisbane, QLD 4072, Australia
- Brainnetome Center, Institute of Automation, Chinese Academy of Sciences, Beijing 100190, China
| | - Perry F. Bartlett
- Queensland Brain Institute, The University of Queensland, Brisbane, QLD 4072, Australia
| |
Collapse
|
8
|
Blackmore DG, Steyn FJ, Carlisle A, O'Keeffe I, Vien KY, Zhou X, Leiter O, Jhaveri D, Vukovic J, Waters MJ, Bartlett PF. An exercise "sweet spot" reverses cognitive deficits of aging by growth-hormone-induced neurogenesis. iScience 2021; 24:103275. [PMID: 34761193 PMCID: PMC8567379 DOI: 10.1016/j.isci.2021.103275] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 09/09/2021] [Accepted: 10/12/2021] [Indexed: 11/02/2022] Open
Abstract
Hippocampal function is critical for spatial and contextual learning, and its decline with age contributes to cognitive impairment. Exercise can improve hippocampal function, however, the amount of exercise and mechanisms mediating improvement remain largely unknown. Here, we show exercise reverses learning deficits in aged (24 months) female mice but only when it occurs for a specific duration, with longer or shorter periods proving ineffective. A spike in the levels of growth hormone (GH) and a corresponding increase in neurogenesis during this sweet spot mediate this effect because blocking GH receptor with a competitive antagonist or depleting newborn neurons abrogates the exercise-induced cognitive improvement. Moreover, raising GH levels with GH-releasing hormone agonist improved cognition in nonrunners. We show that GH stimulates neural precursors directly, indicating the link between raised GH and neurogenesis is the basis for the substantially improved learning in aged animals.
Collapse
Affiliation(s)
- Daniel G Blackmore
- Queensland Brain Institute, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Frederik J Steyn
- Centre for Clinical Research, Faculty of Medicine, The University of Queensland, Brisbane, QLD 4029, Australia
| | - Alison Carlisle
- Queensland Brain Institute, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Imogen O'Keeffe
- Queensland Brain Institute, The University of Queensland, Brisbane, QLD 4072, Australia
| | - King-Year Vien
- Queensland Brain Institute, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Xiaoqing Zhou
- Queensland Brain Institute, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Odette Leiter
- Queensland Brain Institute, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Dhanisha Jhaveri
- Queensland Brain Institute, The University of Queensland, Brisbane, QLD 4072, Australia.,Mater Research Institute, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Jana Vukovic
- Queensland Brain Institute, The University of Queensland, Brisbane, QLD 4072, Australia.,School of Biomedical Sciences, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Michael J Waters
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Perry F Bartlett
- Queensland Brain Institute, The University of Queensland, Brisbane, QLD 4072, Australia
| |
Collapse
|
9
|
Buhr TJ, Reed CH, Shoeman A, Bauer EE, Valentine RJ, Clark PJ. The Influence of Moderate Physical Activity on Brain Monoaminergic Responses to Binge-Patterned Alcohol Ingestion in Female Mice. Front Behav Neurosci 2021; 15:639790. [PMID: 33716684 PMCID: PMC7947191 DOI: 10.3389/fnbeh.2021.639790] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Accepted: 01/25/2021] [Indexed: 01/16/2023] Open
Abstract
Monoamine neurotransmitter activity in brain reward, limbic, and motor areas play key roles in the motivation to misuse alcohol and can become modified by exercise in a manner that may affect alcohol craving. This study investigated the influence of daily moderate physical activity on monoamine-related neurochemical concentrations across the mouse brain in response to high volume ethanol ingestion. Adult female C57BL/6J mice were housed with or without 2.5 h of daily access to running wheels for 30 days. On the last 5 days, mice participated in the voluntary binge-like ethanol drinking procedure, “Drinking in the dark” (DID). Mice were sampled immediately following the final episode of DID. Monoamine-related neurochemical concentrations were measured across brain regions comprising reward, limbic, and motor circuits using ultra High-Performance Liquid Chromatography (UHPLC). The results suggest that physical activity status did not influence ethanol ingestion during DID. Moreover, daily running wheel access only mildly influenced alcohol-related norepinephrine concentrations in the hypothalamus and prefrontal cortex, as well as serotonin turnover in the hippocampus. However, access to alcohol during DID eliminated wheel running-related decreases of norepinephrine, serotonin, and 5-HIAA content in the hypothalamus, but also to a lesser extent for norepinephrine in the hippocampus and caudal cortical areas. Finally, alcohol access increased serotonin and dopamine-related neurochemical turnover in the striatum and brainstem areas, regardless of physical activity status. Together, these data provide a relatively thorough assessment of monoamine-related neurochemical levels across the brain in response to voluntary binge-patterned ethanol drinking, but also adds to a growing body of research questioning the utility of moderate physical activity as an intervention to curb alcohol abuse.
Collapse
Affiliation(s)
- Trevor J Buhr
- Department of Food Science and Human Nutrition, Iowa State University, Ames, IA, United States.,Neuroscience Program, Iowa State University, Ames, IA, United States
| | - Carter H Reed
- Interdepartmental Graduate Program in Nutritional Sciences, Iowa State University, Ames, IA, United States.,Department of Kinesiology, Iowa State University, Ames, IA, United States
| | - Allyse Shoeman
- Department of Food Science and Human Nutrition, Iowa State University, Ames, IA, United States.,Neuroscience Program, Iowa State University, Ames, IA, United States
| | - Ella E Bauer
- Department of Food Science and Human Nutrition, Iowa State University, Ames, IA, United States.,Neuroscience Program, Iowa State University, Ames, IA, United States.,Interdepartmental Graduate Program in Nutritional Sciences, Iowa State University, Ames, IA, United States
| | - Rudy J Valentine
- Interdepartmental Graduate Program in Nutritional Sciences, Iowa State University, Ames, IA, United States.,Department of Kinesiology, Iowa State University, Ames, IA, United States
| | - Peter J Clark
- Department of Food Science and Human Nutrition, Iowa State University, Ames, IA, United States.,Neuroscience Program, Iowa State University, Ames, IA, United States.,Interdepartmental Graduate Program in Nutritional Sciences, Iowa State University, Ames, IA, United States
| |
Collapse
|
10
|
Leão LL, Felício LFF, Engedal K, Tangen GG, Kristiansen KM, Santos SHS, de Paula AMB, Monteiro-Junior RS. The Link between Exercise and Homocysteine in the Alzheimer's Disease: A Bioinformatic Network Model. CNS & NEUROLOGICAL DISORDERS DRUG TARGETS 2021; 20:814-821. [PMID: 34852739 DOI: 10.2174/1871527320666210706122618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Revised: 02/15/2021] [Accepted: 03/08/2021] [Indexed: 06/13/2023]
Abstract
Elevated peripheral expression of homocysteine (Hcy) is associated with an increased risk of coronary heart disease and stroke, diabetes, and cancer. It is also associated with cognitive impairment as it has been reported that high levels of Hcy cause cognitive dysfunction and memory deficit. Among several etiological factors that contribute to the pathogenesis of neurodegenerative diseases, including Alzheimer's disease (AD), Hcy seems to directly contribute to the generation of neurotoxicity factors. This study aims to hypothesize the molecular mechanism by which exercise can reduce the risk of neurological complications promoted by hyperhomocysteinemia (HHcy), and discuss how exercise could reduce the risk of developing AD by using bioinformatics network models. According to the genes network, there are connections between proteins and amino acids associated with Hcy, exercise, and AD. Studies have evidenced that exercise may be one of several processes by which acid nitric availability can be maximized in the human body, which is particularly important in reducing cell loss and tau pathology and, thereby, leading to a reduced risk of complications associated with HHcy and AD.
Collapse
Affiliation(s)
- Luana Lemos Leão
- Graduate Program of Health Sciences, State University of Montes Claros, Montes Claros, Minas Gerais, Brazil
| | | | - Knut Engedal
- Norwegian National Advisory Unit on Ageing and Health, Vestfold Hospital Trust, Tønsberg, Norway
| | - Gro Gujord Tangen
- Norwegian National Advisory Unit on Ageing and Health, Vestfold Hospital Trust, Tønsberg, Norway
| | - Kari Midtbø Kristiansen
- Norwegian National Advisory Unit on Ageing and Health, Vestfold Hospital Trust, Tønsberg, Norway
| | | | | | | |
Collapse
|
11
|
Gardner JC, Dvoretskiy SV, Yang Y, Venkataraman S, Lange DA, Li S, Boppart AL, Kim N, Rendeiro C, Boppart MD, Rhodes JS. Electrically stimulated hind limb muscle contractions increase adult hippocampal astrogliogenesis but not neurogenesis or behavioral performance in male C57BL/6J mice. Sci Rep 2020; 10:19319. [PMID: 33168868 PMCID: PMC7652861 DOI: 10.1038/s41598-020-76356-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Accepted: 10/19/2020] [Indexed: 12/11/2022] Open
Abstract
Regular exercise is crucial for maintaining cognitive health throughout life. Recent evidence suggests muscle contractions during exercise release factors into the blood which cross into the brain and stimulate adult hippocampal neurogenesis. However, no study has tested whether muscle contractions alone are sufficient to increase adult hippocampal neurogenesis and improve behavioral performance. Adult male, C57BL/6J mice were anesthetized and exposed to bilateral hind limb muscle contractions (both concentric and eccentric) via electrical stimulation (e-stim) of the sciatic nerve twice a week for 8 weeks. Each session lasted approximately 20 min and consisted of a total of 40 muscle contractions. The control group was treated similarly except without e-stim (sham). Acute neuronal activation of the dentate gyrus (DG) using cFos immunohistochemistry was measured as a negative control to confirm that the muscle contractions did not activate the hippocampus, and in agreement, no DG activation was observed. Relative to sham, e-stim training increased DG volume by approximately 10% and astrogliogenesis by 75%, but no difference in neurogenesis was detected and no improvement in behavioral performance was observed. E-stim also increased astrogliogenesis in CA1/CA2 hippocampal subfields but not in the cortex. Results demonstrate that muscle contractions alone, in absence of DG activation, are sufficient to increase adult hippocampal astrogliogenesis, but not neurogenesis or behavioral performance in mice.
Collapse
Affiliation(s)
- Jennie C Gardner
- Department of Psychology, University of Illinois at Urbana-Champaign, Champaign, USA.,Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, 405 N. Mathews Ave., Urbana, IL, 61801, USA
| | - Svyatoslav V Dvoretskiy
- Department of Kinesiology and Community Health, University of Illinois at Urbana Champaign, Champaign, USA.,Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, 405 N. Mathews Ave., Urbana, IL, 61801, USA
| | - Yanyu Yang
- Department of Psychology, University of Illinois at Urbana-Champaign, Champaign, USA.,Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, 405 N. Mathews Ave., Urbana, IL, 61801, USA
| | - Sanjana Venkataraman
- Department of Psychology, University of Illinois at Urbana-Champaign, Champaign, USA.,Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, 405 N. Mathews Ave., Urbana, IL, 61801, USA
| | - Dominica A Lange
- Department of Psychology, University of Illinois at Urbana-Champaign, Champaign, USA.,Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, 405 N. Mathews Ave., Urbana, IL, 61801, USA
| | - Shiping Li
- Department of Psychology, University of Illinois at Urbana-Champaign, Champaign, USA.,Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, 405 N. Mathews Ave., Urbana, IL, 61801, USA
| | - Alexandria L Boppart
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, 405 N. Mathews Ave., Urbana, IL, 61801, USA
| | - Noah Kim
- Department of Kinesiology and Community Health, University of Illinois at Urbana Champaign, Champaign, USA.,Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, 405 N. Mathews Ave., Urbana, IL, 61801, USA
| | - Catarina Rendeiro
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, 405 N. Mathews Ave., Urbana, IL, 61801, USA.,School of Sport, Exercise and Rehabilitation Sciences, University of Birmingham, Birmingham, UK
| | - Marni D Boppart
- Department of Kinesiology and Community Health, University of Illinois at Urbana Champaign, Champaign, USA.,Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, 405 N. Mathews Ave., Urbana, IL, 61801, USA
| | - Justin S Rhodes
- Department of Psychology, University of Illinois at Urbana-Champaign, Champaign, USA. .,Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, 405 N. Mathews Ave., Urbana, IL, 61801, USA.
| |
Collapse
|
12
|
Zhao X, van Praag H. Steps towards standardized quantification of adult neurogenesis. Nat Commun 2020; 11:4275. [PMID: 32848155 PMCID: PMC7450090 DOI: 10.1038/s41467-020-18046-y] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Accepted: 08/03/2020] [Indexed: 02/07/2023] Open
Abstract
New neurons are generated in adult mammals. Adult hippocampal neurogenesis is considered to play an important role in cognition and mental health. The number and properties of newly born neurons are regulatable by a broad range of physiological and pathological conditions. To begin to understand the underlying cellular mechanisms and functional relevance of adult neurogenesis, many studies rely on quantification of adult-born neurons. However, lack of standardized methods to quantify new neurons is impeding research reproducibility across laboratories. Here, we review the importance of stereology, and propose why and how it should be applied to the study of adult neurogenesis.
Collapse
Affiliation(s)
- Xinyu Zhao
- Waisman Center and University of Wisconsin-Madison, Madison, WI, 53705, USA.
- Department of Neuroscience, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, 53705, USA.
| | - Henriette van Praag
- Brain Institute and Charles E. Schmidt College of Medicine, Florida Atlantic University, Jupiter, FL, 33458, USA.
| |
Collapse
|
13
|
Jaimes LF, Mansk LMZ, Almeida-Santos AF, Pereira GS. Maturation of newborn neurons predicts social memory persistence in mice. Neuropharmacology 2020; 171:108102. [PMID: 32302616 DOI: 10.1016/j.neuropharm.2020.108102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Revised: 04/01/2020] [Accepted: 04/06/2020] [Indexed: 10/24/2022]
Abstract
Memory transience is essential to gain cognitive flexibility. Recently, hippocampal neurogenesis is emerging as one of the mechanisms involved in the balance between persistence and forgetting. Social recognition memory (SRM) has its duration prolonged by neurogenesis. However, it is still to be determined whether boosting neurogenesis in distinct phases of SRM may favor forgetting over persistence. In the present study, we used enriched environment (EE) and memantine (MEM) to increase neurogenesis. SRM was ubiquitously prolonged by both, while EE after the memory acquisition did not favor forgetting. Interestingly, the proportion of newborn neurons with mature morphology in the dorsal hippocampus was higher in animals where persistence prevailed. Finally, one of the main factors for dendritic growth is the formation of cytoskeleton. We found that Latrunculin A, an inhibitor of actin polymerization, blunted the promnesic effect of EE. Altogether, our results indicate that the mechanisms triggered by EE to improve SRM are not limited to increasing the number of newborn neurons.
Collapse
Affiliation(s)
- Laura F Jaimes
- Núcleo de Neurociências, Departamento de Fisiologia e Biofísica, Instituto de Ciências Biológicas, Universidade Federal de Minas, Gerais, Brazil
| | - Lara M Z Mansk
- Núcleo de Neurociências, Departamento de Fisiologia e Biofísica, Instituto de Ciências Biológicas, Universidade Federal de Minas, Gerais, Brazil
| | - Ana F Almeida-Santos
- Núcleo de Neurociências, Departamento de Fisiologia e Biofísica, Instituto de Ciências Biológicas, Universidade Federal de Minas, Gerais, Brazil
| | - Grace S Pereira
- Núcleo de Neurociências, Departamento de Fisiologia e Biofísica, Instituto de Ciências Biológicas, Universidade Federal de Minas, Gerais, Brazil.
| |
Collapse
|
14
|
Ramírez-Rodríguez GB, Palacios-Cabriales DM, Ortiz-López L, Estrada-Camarena EM, Vega-Rivera NM. Melatonin Modulates Dendrite Maturation and Complexity in the Dorsal- and Ventral- Dentate Gyrus Concomitantly with Its Antidepressant-Like Effect in Male Balb/C Mice. Int J Mol Sci 2020; 21:ijms21051724. [PMID: 32138332 PMCID: PMC7084558 DOI: 10.3390/ijms21051724] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Revised: 01/17/2020] [Accepted: 01/20/2020] [Indexed: 12/13/2022] Open
Abstract
Adult neurogenesis occurs in the dentate gyrus (DG) of the hippocampus. New neurons help to counteract the effects of stress and several interventions including antidepressant drugs, environmental modifications and internal factors act pro-neurogenic with consequences in the dorsal and ventral DG. Melatonin, the main product synthesized by the pineal gland, induces antidepressant-like effects and modulates several events of the neurogenic process. However, the information related to the capability of melatonin to modulate dendrite maturation and complexity in the dorsal and ventral regions of the DG and their correlation with its antidepressant-like effect is absent. Thus, in this study, we analyzed the impact of melatonin (0, 0.5, 1, 2.5, 5 or 10 mg/kg) administered daily for fourteen days on the number, dendrite complexity and distribution of doublecortin (DCX)-cells in the dorsal-ventral regions of the DG in male Balb/C mice. Doublecortin is a microtubule-associated protein that is expressed during the course of dendritic maturation of newborn neurons. Also, we analyzed the impact of melatonin on despair-like behavior in the forced swim test. We first found a significant increase in the number and higher dendrite complexity, mainly with the doses of 2.5, 5 and 10 mg/kg of melatonin (81%, 122%, 78%). These cells showed more complex dendritic trees in the ventral- and the dorsal- DG. Concomitantly, the doses of 5 and 10 mg/kg of melatonin decreased depressant-like behavior (76%, 82%). Finally, the data corroborate the antidepressant-like effect of melatonin and the increasing number of doublecortin-associated cells. Besides, the data indicate that melatonin favors the number and dendrite complexity of DCX-cells in the dorsal- and ventral- region of the DG, which may explain part of the antidepressant-like effect of melatonin.
Collapse
Affiliation(s)
- Gerardo Bernabé Ramírez-Rodríguez
- Laboratory of Neurogenesis, Division of Clinical Investigations, National Institute of Psychiatry “Ramón de la Fuente Muñiz”, Calzada Mexico-Xochimilco No. 101, Mexico City C.P. 14370, Mexico; (D.M.P.-C.); (L.O.-L.)
- Correspondence: (G.B.R.-R.); (N.M.V.-R.)
| | - Diana Montserrat Palacios-Cabriales
- Laboratory of Neurogenesis, Division of Clinical Investigations, National Institute of Psychiatry “Ramón de la Fuente Muñiz”, Calzada Mexico-Xochimilco No. 101, Mexico City C.P. 14370, Mexico; (D.M.P.-C.); (L.O.-L.)
| | - Leonardo Ortiz-López
- Laboratory of Neurogenesis, Division of Clinical Investigations, National Institute of Psychiatry “Ramón de la Fuente Muñiz”, Calzada Mexico-Xochimilco No. 101, Mexico City C.P. 14370, Mexico; (D.M.P.-C.); (L.O.-L.)
| | - Erika Montserrat Estrada-Camarena
- Laboratory of Neuropsychopharmacology, Division of Neurosciences, National Institute of Psychiatry “Ramón de la Fuente Muñiz”, Calzada Mexico-Xochimilco No. 101, Mexico City C.P. 14370, Mexico;
| | - Nelly Maritza Vega-Rivera
- Laboratory of Neuropsychopharmacology, Division of Neurosciences, National Institute of Psychiatry “Ramón de la Fuente Muñiz”, Calzada Mexico-Xochimilco No. 101, Mexico City C.P. 14370, Mexico;
- Correspondence: (G.B.R.-R.); (N.M.V.-R.)
| |
Collapse
|
15
|
Maclaine KD, Stebbings KA, Llano DA, Rhodes JS. Voluntary wheel running has no impact on brain and liver mitochondrial DNA copy number or mutation measures in the PolG mouse model of aging. PLoS One 2020; 15:e0226860. [PMID: 32119683 PMCID: PMC7051064 DOI: 10.1371/journal.pone.0226860] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Accepted: 02/13/2020] [Indexed: 12/27/2022] Open
Abstract
The mitochondrial theory of aging attributes much of the aging process to mitochondrial DNA damage. The polymerase gamma (PolG) mutant mouse was designed to evaluate this theory and thus carries a mutated proofreading region of polymerase gamma (D257A) that exclusively transcribes the mitochondrial genome. As a result, PolGD257A mice accumulate mitochondrial DNA (mtDNA) mutations that lead to premature aging, as evidenced by hair loss, weight loss, kyphosis, increased rates of apoptosis, organ damage, and an early death, occurring around 12 months of age. Research has shown that exercise decreases skeletal muscle mtDNA mutations and normalizes protein levels in PolG mice. However, brain mtDNA changes with exercise in PolG mice have not been studied. We found no effects of exercise on mtDNA mutations or copy number in either the brain or liver of PolG mice, despite changes to body mass. Our results suggest that mitochondrial mutations play little role in exercise-brain interactions in the PolG model of accelerated aging. In addition to evaluating the effect of exercise on mtDNA outcomes, we also implemented novel methods for both extracting mtDNA and measuring mtDNA mutations, with aims for improving the efficiency and accuracy of these methods.
Collapse
MESH Headings
- Aging, Premature/genetics
- Aging, Premature/pathology
- Aging, Premature/physiopathology
- Aging, Premature/prevention & control
- Animals
- Brain/cytology
- Brain/metabolism
- Brain/pathology
- DNA Copy Number Variations
- DNA Damage/physiology
- DNA Polymerase gamma/genetics
- DNA Polymerase gamma/metabolism
- DNA, Mitochondrial/genetics
- DNA, Mitochondrial/isolation & purification
- DNA, Mitochondrial/metabolism
- Disease Models, Animal
- Humans
- Liver/cytology
- Liver/metabolism
- Liver/pathology
- Male
- Mice
- Mice, Transgenic
- Muscle, Skeletal/cytology
- Muscle, Skeletal/metabolism
- Muscle, Skeletal/pathology
- Mutation
- Physical Conditioning, Animal/physiology
Collapse
Affiliation(s)
- Kendra D. Maclaine
- Beckman Institute, University of Illinois at Urbana-Champaign, Urbana, Illinois, United States of America
| | - Kevin A. Stebbings
- Beckman Institute, University of Illinois at Urbana-Champaign, Urbana, Illinois, United States of America
- Neuroscience Program, Beckman Institute, University of Illinois at Urbana-Champaign, Urbana, Illinois, United States of America
| | - Daniel A. Llano
- Beckman Institute, University of Illinois at Urbana-Champaign, Urbana, Illinois, United States of America
- Neuroscience Program, Beckman Institute, University of Illinois at Urbana-Champaign, Urbana, Illinois, United States of America
- Department of Molecular and Integrative Physiology, University of Illinois at Urbana-Champaign, Urbana, Illinois, United States of America
| | - Justin S. Rhodes
- Beckman Institute, University of Illinois at Urbana-Champaign, Urbana, Illinois, United States of America
- Neuroscience Program, Beckman Institute, University of Illinois at Urbana-Champaign, Urbana, Illinois, United States of America
- Department of Psychology, University of Illinois at Urbana-Champaign, Champaign, Illinois, United States of America
| |
Collapse
|
16
|
Damschroder D, Richardson K, Cobb T, Wessells R. The effects of genetic background on exercise performance in Drosophila. Fly (Austin) 2020; 14:80-92. [PMID: 33100141 PMCID: PMC7714460 DOI: 10.1080/19336934.2020.1835329] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Revised: 09/29/2020] [Accepted: 10/06/2020] [Indexed: 10/29/2022] Open
Abstract
The use of the Drosophila model for studying the broad beneficial effects of exercise training has grown over the past decade. As work using Drosophila as an exercise model becomes more widespread, the influence of genetic background on performance should be examined in order to better understand its influence on assessments used to quantitatively measure and compare exercise phenotypes. In this article, we review the various methods of exercise training Drosophila, and the performance of different wild-type Drosophila strains on various physiological assessments of exercise response. We conclude by summarizing the performance trends of commonly used strains.
Collapse
Affiliation(s)
- Deena Damschroder
- Department of Physiology, Wayne State University School of Medicine, Detroit, Michigan, USA
| | - Kristin Richardson
- Department of Physiology, Wayne State University School of Medicine, Detroit, Michigan, USA
| | - Tyler Cobb
- Department of Physiology, Wayne State University School of Medicine, Detroit, Michigan, USA
| | - Robert Wessells
- Department of Physiology, Wayne State University School of Medicine, Detroit, Michigan, USA
| |
Collapse
|
17
|
Morrow CS, Porter TJ, Xu N, Arndt ZP, Ako-Asare K, Heo HJ, Thompson EAN, Moore DL. Vimentin Coordinates Protein Turnover at the Aggresome during Neural Stem Cell Quiescence Exit. Cell Stem Cell 2020; 26:558-568.e9. [PMID: 32109376 DOI: 10.1016/j.stem.2020.01.018] [Citation(s) in RCA: 60] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Revised: 10/31/2019] [Accepted: 01/23/2020] [Indexed: 01/08/2023]
Abstract
Maintaining a healthy proteome throughout life is critical for proper somatic stem cell function, but the complexities of the stem cell response to increases in damaged or aggregated proteins remain unclear. Here we demonstrate that adult neural stem cells (NSCs) utilize aggresomes to recover from disrupted proteostasis and describe a novel function for the intermediate filament vimentin in proteostasis as a spatial coordinator of proteasomes to the aggresome. In the absence of vimentin, NSCs have a reduced capacity to exit quiescence, a time when NSCs are required to clear a wave of aggregated proteins, and demonstrate an early age-dependent decline in proliferation and neurogenesis. Taken together, these data reveal a significant role of vimentin and aggresomes in the regulation of proteostasis during quiescent NSC activation.
Collapse
Affiliation(s)
- Christopher S Morrow
- Department of Neuroscience, University of Wisconsin - Madison, Madison, WI 53705, USA
| | - Tiaira J Porter
- Department of Neuroscience, University of Wisconsin - Madison, Madison, WI 53705, USA
| | - Nan Xu
- Department of Neuroscience, University of Wisconsin - Madison, Madison, WI 53705, USA
| | - Zachary P Arndt
- Department of Neuroscience, University of Wisconsin - Madison, Madison, WI 53705, USA
| | - Kayla Ako-Asare
- Department of Neuroscience, University of Wisconsin - Madison, Madison, WI 53705, USA
| | - Helen J Heo
- Department of Neuroscience, University of Wisconsin - Madison, Madison, WI 53705, USA
| | | | - Darcie L Moore
- Department of Neuroscience, University of Wisconsin - Madison, Madison, WI 53705, USA.
| |
Collapse
|
18
|
Potential exerkines for physical exercise-elicited pro-cognitive effects: Insight from clinical and animal research. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2019; 147:361-395. [PMID: 31607361 DOI: 10.1016/bs.irn.2019.06.002] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
A sedentary lifestyle is now known as a critical risk factor for accelerated aging-related neurodegenerative disorders. In contract, having regular physical exercise has opposite effects. Clinical findings have suggested that physical exercise can promote brain plasticity, particularly the hippocampus and the prefrontal cortex, that are important for learning and memory and mood regulations. However, the underlying mechanisms are still unclear. Animal studies reveal that the effects of physical exercise on promoting neuroplasticity could be mediated by different exerkines derived from the peripheral system and the brain itself. This book chapter summarizes the recent evidence from clinical and pre-clinical studies showing the emerging mediators for exercise-promoted brain health, including myokines secreted from skeletal muscles, adipokines from adipose tissues, and other factors secreted from the bone and liver.
Collapse
|
19
|
Tappe-Theodor A, King T, Morgan MM. Pros and Cons of Clinically Relevant Methods to Assess Pain in Rodents. Neurosci Biobehav Rev 2019; 100:335-343. [PMID: 30885811 PMCID: PMC6528820 DOI: 10.1016/j.neubiorev.2019.03.009] [Citation(s) in RCA: 100] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Revised: 02/14/2019] [Accepted: 03/14/2019] [Indexed: 01/03/2023]
Abstract
The primary objective of preclinical pain research is to improve the treatment of pain. Decades of research using pain-evoked tests has revealed much about mechanisms but failed to deliver new treatments. Evoked pain-tests are often limited because they ignore spontaneous pain and motor or disruptive side effects confound interpretation of results. New tests have been developed to focus more closely on clinical goals such as reducing pathological pain and restoring function. The objective of this review is to describe and discuss several of these tests. We focus on: Grimace Scale, Operant Behavior, Wheel Running, Burrowing, Nesting, Home Cage Monitoring, Gait Analysis and Conditioned Place Preference/ Aversion. A brief description of each method is presented along with an analysis of the advantages and limitations. The pros and cons of each test will help researchers identify the assessment tool most appropriate to meet their particular objective to assess pain in rodents. These tests provide another tool to unravel the mechanisms underlying chronic pain and help overcome the translational gap in drug development.
Collapse
Affiliation(s)
- Anke Tappe-Theodor
- Pharmacology Institute, Medical Faculty Heidelberg, Heidelberg University, Heidelberg, Germany.
| | - Tamara King
- Department of Biomedical Sciences, College of Osteopathic Medicine, Center for Excellence in the Neurosciences, University of New England, Biddeford, ME, USA
| | - Michael M Morgan
- Department of Psychology, Washington State University, Vancouver, WA, USA
| |
Collapse
|
20
|
Ramírez-Rodríguez GB, Olvera-Hernández S, Vega-Rivera NM, Ortiz-López L. Melatonin Influences Structural Plasticity in the Axons of Granule Cells in the Dentate Gyrus of Balb/C Mice. Int J Mol Sci 2018; 20:ijms20010073. [PMID: 30585191 PMCID: PMC6337618 DOI: 10.3390/ijms20010073] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Revised: 12/19/2018] [Accepted: 12/20/2018] [Indexed: 02/07/2023] Open
Abstract
Melatonin, the main product synthesized by the pineal gland, acts as a regulator of the generation of new neurons in the dentate gyrus (DG). Newborn neurons buffer the deleterious effects of stress and are involved in learning and memory processes. Furthermore, melatonin, through the regulation of the cytoskeleton, favors dendrite maturation of newborn neurons. Moreover, newborn neurons send their axons via the mossy fiber tract to Cornu Ammonis 3 (CA3) region to form synapses with pyramidal neurons. Thus, axons of newborn cells contribute to the mossy fiber projection and their plasticity correlates with better performance in several behavioral tasks. Thus, in this study, we analyzed the impact of exogenous melatonin (8 mg/kg) administered daily for one- or six-months on the structural plasticity of infrapyramidal- and suprapyramidal mossy fiber projection of granule cells in the DG in male Balb/C mice. We analyzed the mossy fiber projection through the staining of calbindin, that is a calcium-binding protein localized in dendrites and axons. We first found an increase in the number of calbindin-positive cells in the granular cell layer in the DG (11%, 33%) after treatment. Futhermore, we found an increase in the volume of suprapyramidal (>135%, 59%) and infrapyramidal (>128%, 36%) mossy fiber projection of granule neurons in the DG after treatment. We also found an increase in the volume of CA3 region (>146%, 33%) after treatment, suggesting that melatonin modulates the structural plasticity of the mossy fiber projection to establish functional synapses in the hippocampus. Together, the data suggest that, in addition to the previously reported effects of melatonin on the generation of new neurons and its antidepressant like effects, melatonin also modulates the structural plasticity of axons in granule cells in the DG.
Collapse
Affiliation(s)
- Gerardo Bernabé Ramírez-Rodríguez
- Laboratorio de Neurogenesis, Subidrección de Investigaciones Clínicas, Instituto Nacional de Psiquiatría "Ramón de la Fuente Muñiz", Calzada México-Xochimilco 101, Col. San Lorenzo Huipulco, Tlalpan, México City C.P. 14370, México.
| | - Sandra Olvera-Hernández
- Laboratorio de Neurogenesis, Subidrección de Investigaciones Clínicas, Instituto Nacional de Psiquiatría "Ramón de la Fuente Muñiz", Calzada México-Xochimilco 101, Col. San Lorenzo Huipulco, Tlalpan, México City C.P. 14370, México.
| | - Nelly Maritza Vega-Rivera
- Laboratorio de Neuropsicofarmacología, Dirección de Neurociencias, Instituto Nacional de Psiquiatría "Ramón de la Fuente Muñiz", Calzada México-Xochimilco 101, Col. San Lorenzo Huipulco, Tlalpan, México City C.P. 14370, México.
| | - Leonardo Ortiz-López
- Laboratorio de Neurogenesis, Subidrección de Investigaciones Clínicas, Instituto Nacional de Psiquiatría "Ramón de la Fuente Muñiz", Calzada México-Xochimilco 101, Col. San Lorenzo Huipulco, Tlalpan, México City C.P. 14370, México.
| |
Collapse
|
21
|
LaGamma CT, Tang WW, Morgan AA, McGowan JC, Brachman RA, Denny CA. Antidepressant but Not Prophylactic Ketamine Administration Alters Calretinin and Calbindin Expression in the Ventral Hippocampus. Front Mol Neurosci 2018; 11:404. [PMID: 30459554 PMCID: PMC6232342 DOI: 10.3389/fnmol.2018.00404] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2018] [Accepted: 10/15/2018] [Indexed: 01/20/2023] Open
Abstract
Ketamine has been found to have rapid, long-lasting antidepressant effects in treatment-resistant (TR) patients with major depressive disorder (MDD). Recently, we have also shown that ketamine acts as a prophylactic to protect against the development of stress-induced depressive-like behavior in mice, indicating that a preventative treatment against mental illness using ketamine is possible. While there is significant investigation into ketamine’s antidepressant mechanism of action, little is known about ketamine’s underlying prophylactic mechanism. More specifically, whether ketamine’s prophylactic action is molecularly similar to or divergent from its antidepressant action is entirely unknown. Here, we sought to characterize immunohistochemical signatures of cell populations governing ketamine’s antidepressant and prophylactic effects. 129S6/SvEv mice were treated with saline (Sal) or ketamine (K) either before a social defeat (SD) stressor as a prophylactic, or after SD as an antidepressant, then subsequently assessed for depressive-like behavior. Post-fixed brains were processed for doublecortin (DCX), calretinin (CR) and calbindin (CB) expression. The number of DCX+ neurons in the dentate gyrus (DG) of the hippocampus (HPC) was not affected by prophylactic or antidepressant ketamine treatment, while the number of CR+ neurons in the ventral hilus increased with antidepressant ketamine under SD conditions. Moreover, antidepressant, but not prophylactic ketamine administration significantly altered CR and CB expression in the ventral HPC (vHPC). These data show that while antidepressant ketamine treatment mediates some of its effects via adult hippocampal markers, prophylactic ketamine administration does not, at least in 129S6/SvEv mice. These data suggest that long-lasting behavioral effects of prophylactic ketamine are independent of hippocampal DCX, CR and CB expression in stress-susceptible mice.
Collapse
Affiliation(s)
- Christina T LaGamma
- Division of Integrative Neuroscience, Research Foundation for Mental Hygiene, Inc. (RFMH)/New York State Psychiatric Institute (NYSPI), New York, NY, United States
| | - William W Tang
- Department of Psychiatry, Columbia University, New York, NY, United States
| | - Ashlea A Morgan
- Doctoral Program in Neurobiology and Behavior, Columbia University, New York, NY, United States
| | | | - Rebecca A Brachman
- Department of Psychiatry, Columbia University, New York, NY, United States
| | - Christine A Denny
- Division of Integrative Neuroscience, Research Foundation for Mental Hygiene, Inc. (RFMH)/New York State Psychiatric Institute (NYSPI), New York, NY, United States.,Department of Psychiatry, Columbia University, New York, NY, United States
| |
Collapse
|
22
|
Gobinath AR, Wong S, Chow C, Lieblich SE, Barr AM, Galea LAM. Maternal exercise increases but concurrent maternal fluoxetine prevents the increase in hippocampal neurogenesis of adult offspring. Psychoneuroendocrinology 2018; 91:186-197. [PMID: 29579632 DOI: 10.1016/j.psyneuen.2018.02.027] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/08/2017] [Revised: 01/14/2018] [Accepted: 02/23/2018] [Indexed: 12/21/2022]
Abstract
Treating postpartum depression (PPD) with pharmacological antidepressants like fluoxetine (FLX) is complicated because these drugs can remain active in breast milk and potentially affect infant development. Alternatively, non-pharmacological treatments such as exercise are associated with beneficial effects on infant development but its potential ability to counter the effects of PPD are largely unknown. To investigate this, we treated dams with corticosterone (CORT) or vehicle (sesame oil) from postpartum days 2-25 to model PPD. Within oil and CORT treatments, dams were also assigned to one of these treatments: 1) exercise (voluntary running wheel) + FLX (10 mg/kg, i.p.), 2) exercise + saline (vehicle for FLX), 3) no exercise + FLX, 4) no exercise + saline. Both male and female offspring were analyzed, and this generated a total of 16 experimental groups for this study. Adult male and female offspring (125 d old) of these dams were tested for anxiety-like behavior in the novelty suppressed feeding test and stress reactivity in the dexamethasone suppression test. Hippocampal tissue was processed for doublecortin, a protein expressed in immature neurons. Regardless of sex, maternal exercise increased neurogenesis in the dorsal hippocampus of adult offspring, but concurrent exposure to maternal fluoxetine prevented this effect. Exposure to either maternal exercise or maternal FLX facilitated HPA negative feedback in adult males but not females. Maternal postpartum CORT also facilitated HPA feedback in adult offspring of both sexes. Collectively, these data indicate that maternal exercise increased dorsal hippocampal neurogenesis in both sexes but differentially affected offspring HPA axis based on sex. Alternatively, maternal postpartum FLX facilitated HPA axis negative feedback only in males. These findings indicate that different types of maternal interventions bear long-term effects on offspring outcome with implications for treating PPD.
Collapse
Affiliation(s)
- Aarthi R Gobinath
- Graduate Program in Neuroscience, University of British Columbia, Canada
| | - Sarah Wong
- Department of Psychology, University of British Columbia, Canada
| | - Carmen Chow
- Department of Psychology, University of British Columbia, Canada
| | | | - Alasdair M Barr
- Graduate Program in Neuroscience, University of British Columbia, Canada; Department of Anesthesiology, Pharmacology, and Therapeutics, University of British Columbia, Canada; Centre for Brain Health, University of British Columbia, Canada
| | - Liisa A M Galea
- Graduate Program in Neuroscience, University of British Columbia, Canada; Department of Psychology, University of British Columbia, Canada; Centre for Brain Health, University of British Columbia, Canada.
| |
Collapse
|
23
|
Rendeiro C, Rhodes JS. A new perspective of the hippocampus in the origin of exercise-brain interactions. Brain Struct Funct 2018; 223:2527-2545. [PMID: 29671055 DOI: 10.1007/s00429-018-1665-6] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2018] [Accepted: 04/10/2018] [Indexed: 12/17/2022]
Abstract
Exercising regularly is a highly effective strategy for maintaining cognitive health throughout the lifespan. Over the last 20 years, many molecular, physiological and structural changes have been documented in response to aerobic exercise training in humans and animals, particularly in the hippocampus. However, how exercise produces such neurological changes remains elusive. A recent line of investigation has suggested that muscle-derived circulating factors cross into the brain and may be the key agents driving enhancement in synaptic plasticity and hippocampal neurogenesis from aerobic exercise. Alternatively, or concurrently, the signals might originate from within the brain itself. Physical activity also produces instantaneous and robust neuronal activation of the hippocampal formation and the generation of theta oscillations which are closely correlated with the force of movements. The repeated acute activation of the hippocampus during physical movement is likely critical for inducing the long-term neuroadaptations from exercise. Here we review the evidence which establishes the association between physical movement and hippocampal neuronal activation and discuss implications for long-term benefits of physical activity on brain function.
Collapse
Affiliation(s)
- Catarina Rendeiro
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, 405 North Mathews Ave, Urbana, IL, 61801, USA.,School of Sport, Exercise and Rehabilitation Sciences, University of Birmingham, Birmingham, B15 2TT, UK
| | - Justin S Rhodes
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, 405 North Mathews Ave, Urbana, IL, 61801, USA. .,Department of Psychology, University of Illinois at Urbana-Champaign, Urbana, USA.
| |
Collapse
|
24
|
Grégoire CA, Tobin S, Goldenstein BL, Samarut É, Leclerc A, Aumont A, Drapeau P, Fulton S, Fernandes KJL. RNA-Sequencing Reveals Unique Transcriptional Signatures of Running and Running-Independent Environmental Enrichment in the Adult Mouse Dentate Gyrus. Front Mol Neurosci 2018; 11:126. [PMID: 29706867 PMCID: PMC5908890 DOI: 10.3389/fnmol.2018.00126] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2017] [Accepted: 03/29/2018] [Indexed: 11/18/2022] Open
Abstract
Environmental enrichment (EE) is a powerful stimulus of brain plasticity and is among the most accessible treatment options for brain disease. In rodents, EE is modeled using multi-factorial environments that include running, social interactions, and/or complex surroundings. Here, we show that running and running-independent EE differentially affect the hippocampal dentate gyrus (DG), a brain region critical for learning and memory. Outbred male CD1 mice housed individually with a voluntary running disk showed improved spatial memory in the radial arm maze compared to individually- or socially-housed mice with a locked disk. We therefore used RNA sequencing to perform an unbiased interrogation of DG gene expression in mice exposed to either a voluntary running disk (RUN), a locked disk (LD), or a locked disk plus social enrichment and tunnels [i.e., a running-independent complex environment (CE)]. RNA sequencing revealed that RUN and CE mice showed distinct, non-overlapping patterns of transcriptomic changes versus the LD control. Bio-informatics uncovered that the RUN and CE environments modulate separate transcriptional networks, biological processes, cellular compartments and molecular pathways, with RUN preferentially regulating synaptic and growth-related pathways and CE altering extracellular matrix-related functions. Within the RUN group, high-distance runners also showed selective stress pathway alterations that correlated with a drastic decline in overall transcriptional changes, suggesting that excess running causes a stress-induced suppression of running’s genetic effects. Our findings reveal stimulus-dependent transcriptional signatures of EE on the DG, and provide a resource for generating unbiased, data-driven hypotheses for novel mediators of EE-induced cognitive changes.
Collapse
Affiliation(s)
- Catherine-Alexandra Grégoire
- Research Center of the University of Montreal Hospital, University of Montreal, Montreal, QC, Canada.,CNS Research Group, University of Montreal, Montreal, QC, Canada.,Department of Pathology and Cell Biology, Faculty of Medicine, University of Montreal, Montreal, QC, Canada
| | - Stephanie Tobin
- Research Center of the University of Montreal Hospital, University of Montreal, Montreal, QC, Canada.,Department of Nutrition, Faculty of Medicine, University of Montreal, Montreal, QC, Canada
| | - Brianna L Goldenstein
- Research Center of the University of Montreal Hospital, University of Montreal, Montreal, QC, Canada.,CNS Research Group, University of Montreal, Montreal, QC, Canada.,Department of Neurosciences, Faculty of Medicine, University of Montreal, Montreal, QC, Canada
| | - Éric Samarut
- Research Center of the University of Montreal Hospital, University of Montreal, Montreal, QC, Canada.,CNS Research Group, University of Montreal, Montreal, QC, Canada.,Department of Neurosciences, Faculty of Medicine, University of Montreal, Montreal, QC, Canada
| | - Andréanne Leclerc
- Department of Neurosciences, Faculty of Medicine, University of Montreal, Montreal, QC, Canada
| | - Anne Aumont
- Research Center of the University of Montreal Hospital, University of Montreal, Montreal, QC, Canada
| | - Pierre Drapeau
- Research Center of the University of Montreal Hospital, University of Montreal, Montreal, QC, Canada.,CNS Research Group, University of Montreal, Montreal, QC, Canada.,Department of Neurosciences, Faculty of Medicine, University of Montreal, Montreal, QC, Canada
| | - Stephanie Fulton
- Research Center of the University of Montreal Hospital, University of Montreal, Montreal, QC, Canada.,Department of Nutrition, Faculty of Medicine, University of Montreal, Montreal, QC, Canada
| | - Karl J L Fernandes
- Research Center of the University of Montreal Hospital, University of Montreal, Montreal, QC, Canada.,CNS Research Group, University of Montreal, Montreal, QC, Canada.,Department of Neurosciences, Faculty of Medicine, University of Montreal, Montreal, QC, Canada
| |
Collapse
|
25
|
Abstract
Accumulating research in rodents and humans indicates that exercise benefits brain function and may prevent or delay onset of neurodegenerative conditions. In particular, exercise modifies the structure and function of the hippocampus, a brain area important for learning and memory. This review addresses the central and peripheral mechanisms underlying the beneficial effects of exercise on the hippocampus. We focus on running-induced changes in adult hippocampal neurogenesis, neural circuitry, neurotrophins, synaptic plasticity, neurotransmitters, and vasculature. The role of peripheral factors in hippocampal plasticity is also highlighted. We discuss recent evidence that systemic factors released from peripheral organs such as muscle (myokines), liver (hepatokines), and adipose tissue (adipokines) during exercise contribute to hippocampal neurotrophin and neurogenesis levels, and memory function. A comprehensive understanding of the body-brain axis is needed to elucidate how exercise improves hippocampal plasticity and cognition.
Collapse
Affiliation(s)
- C'iana Cooper
- Neuroplasticity and Behavior Unit, Laboratory of Neurosciences, National Institute on Aging, National Institutes of Health, Biomedical Research Center, Baltimore, Maryland 21224
| | - Hyo Youl Moon
- Neuroplasticity and Behavior Unit, Laboratory of Neurosciences, National Institute on Aging, National Institutes of Health, Biomedical Research Center, Baltimore, Maryland 21224
- Institute of Sport Science, Seoul National University, Gwanak-ro, Gwanak-gu, Seoul 08826, Republic of Korea
| | - Henriette van Praag
- Neuroplasticity and Behavior Unit, Laboratory of Neurosciences, National Institute on Aging, National Institutes of Health, Biomedical Research Center, Baltimore, Maryland 21224
| |
Collapse
|
26
|
Comparison of Adult Hippocampal Neurogenesis and Susceptibility to Treadmill Exercise in Nine Mouse Strains. Neural Plast 2017; 2017:5863258. [PMID: 29391953 PMCID: PMC5748094 DOI: 10.1155/2017/5863258] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2017] [Revised: 03/22/2017] [Accepted: 04/11/2017] [Indexed: 12/13/2022] Open
Abstract
The genetic background of mice has various influences on the efficacy of physical exercise, as well as adult neurogenesis in the hippocampus. In this study, we investigated the basal level of hippocampal neurogenesis, as well as the effects of treadmill exercise on adult hippocampal neurogenesis in 9 mouse strains: 8 very commonly used laboratory inbred mouse strains (C57BL/6, BALB/c, A/J, C3H/HeJ, DBA/1, DBA/2, 129/SvJ, and FVB) and 1 outbred mouse strain (ICR). All 9 strains showed diverse basal levels of cell proliferation, neuroblast differentiation, and integration into granule cells in the sedentary group. C57BL/6 mice showed the highest levels of cell proliferation, neuroblast differentiation, and integration into granule cells at basal levels, and the DBA/2 mice showed the lowest levels. The efficacy of integration into granule cells was maximal in ICR mice. Treadmill exercise increased adult hippocampal neurogenesis in all 9 mouse strains. These results suggest that the genetic background of mice affects hippocampal neurogenesis and C57BL/6 mice are the most useful strain to assess basal levels of cell proliferation and neuroblast differentiation, but not maturation into granule cells. In addition, the DBA/2 strain is not suitable for studying hippocampal neurogenesis.
Collapse
|
27
|
Vivar C, van Praag H. Running Changes the Brain: the Long and the Short of It. Physiology (Bethesda) 2017; 32:410-424. [PMID: 29021361 PMCID: PMC6148340 DOI: 10.1152/physiol.00017.2017] [Citation(s) in RCA: 65] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2017] [Revised: 09/05/2017] [Accepted: 09/05/2017] [Indexed: 11/22/2022] Open
Abstract
Exercise is a simple intervention that profoundly benefits cognition. In rodents, running increases neurogenesis in the hippocampus, a brain area important for memory. We describe the dynamic changes in new neuron number and afferent connections throughout their maturation. We highlight the effects of exercise on the neurotransmitter systems involved, with a focus on the role of glutamate and acetylcholine in the initial development of new neurons in the adult brain.
Collapse
Affiliation(s)
- Carmen Vivar
- Department of Physiology, Biophysics and Neuroscience, Centro de Investigacion y de Estudios Avanzados del IPN, Mexico; and
| | - Henriette van Praag
- Neuroplasticity and Behavior Unit, Laboratory of Neurosciences, Intramural Research Program, National Institute on Aging, National Institutes of Health, Baltimore, Maryland
| |
Collapse
|
28
|
Kozareva DA, O'Leary OF, Cryan JF, Nolan YM. Deletion of TLX and social isolation impairs exercise-induced neurogenesis in the adolescent hippocampus. Hippocampus 2017; 28:3-11. [DOI: 10.1002/hipo.22805] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2017] [Revised: 09/07/2017] [Accepted: 09/20/2017] [Indexed: 12/19/2022]
Affiliation(s)
- Danka A. Kozareva
- Department of Anatomy and Neuroscience; University College Cork; Ireland
- APC Microbiome Institute; University College Cork; Ireland
| | - Olivia F. O'Leary
- Department of Anatomy and Neuroscience; University College Cork; Ireland
- APC Microbiome Institute; University College Cork; Ireland
| | - John F. Cryan
- Department of Anatomy and Neuroscience; University College Cork; Ireland
- APC Microbiome Institute; University College Cork; Ireland
| | - Yvonne M. Nolan
- Department of Anatomy and Neuroscience; University College Cork; Ireland
- APC Microbiome Institute; University College Cork; Ireland
| |
Collapse
|
29
|
Mazur FG, Oliveira LFG, Cunha MP, Rodrigues ALS, Pértile RAN, Vendruscolo LF, Izídio GS. Effects of physical exercise and social isolation on anxiety-related behaviors in two inbred rat strains. Behav Processes 2017; 142:70-78. [PMID: 28602748 DOI: 10.1016/j.beproc.2017.06.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2016] [Revised: 05/29/2017] [Accepted: 06/06/2017] [Indexed: 10/19/2022]
Abstract
We investigated the effects of physical exercise (PE) on locomotor activity and anxiety-like behavior in Lewis (LEW) and Spontaneously Hypertensive Rats (SHR) male rats. Rats received either four weeks of forced training, 5days/week, on a treadmill (experiment 1) or were given 21days of free access to running wheels (experiment 2). We also tested the effects of social isolation (SI) (seven days of isolation - experiment 3) on behavior. In experiment 1, 20% of LEW rats and 63% of SHR rats completed the training protocol. PE significantly increased central and peripheral locomotion in the open field (OF) and entries into the open arms in the elevated plus-maze (EPM) in both strains. In experiment 2, the distance traveled by SHR rats on running wheels was significantly higher compared with LEW rats. PE on running wheels also increased the time spent in the center of the OF in SHR rats only. In experiment 3, SI decreased central and peripheral locomotion in the OF in both strains. In summary, forced PE on a treadmill reduced anxiety-like behavior and increased locomotion in male rats of both strains, whereas voluntary PE on running wheels decreased anxiety-like behavior in SHR rats only. SI decreased locomotion in both strains in the OF. This study suggests that spontaneous activity levels are genotype-dependent and the effects of PE depend on the type of exercise performed.
Collapse
Affiliation(s)
- F G Mazur
- Behavior Genetics Laboratory, Department of Cellular Biology, Embryology and Genetics, Federal University of Santa Catarina, 88.040-900, Florianópolis, SC, Brazil
| | - L F G Oliveira
- Behavior Genetics Laboratory, Department of Cellular Biology, Embryology and Genetics, Federal University of Santa Catarina, 88.040-900, Florianópolis, SC, Brazil
| | - M P Cunha
- Department of Biochemistry, Federal University of Santa Catarina, 88.040-900, Florianópolis, SC, Brazil
| | - A L S Rodrigues
- Department of Biochemistry, Federal University of Santa Catarina, 88.040-900, Florianópolis, SC, Brazil
| | - R A N Pértile
- Behavior Genetics Laboratory, Department of Cellular Biology, Embryology and Genetics, Federal University of Santa Catarina, 88.040-900, Florianópolis, SC, Brazil; Queensland Brain Institute, University of Queensland, 4072, Brisbane, Queensland, Australia
| | - L F Vendruscolo
- Neurobiology of Addiction Section, National Institute on Drug Abuse, National Institutes of Health, MD 21224, Baltimore, USA
| | - G S Izídio
- Behavior Genetics Laboratory, Department of Cellular Biology, Embryology and Genetics, Federal University of Santa Catarina, 88.040-900, Florianópolis, SC, Brazil.
| |
Collapse
|
30
|
Ruitenberg MJ, Wells J, Bartlett PF, Harvey AR, Vukovic J. Enrichment increases hippocampal neurogenesis independent of blood monocyte-derived microglia presence following high-dose total body irradiation. Brain Res Bull 2017; 132:150-159. [PMID: 28552674 DOI: 10.1016/j.brainresbull.2017.05.013] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2017] [Revised: 05/12/2017] [Accepted: 05/22/2017] [Indexed: 10/19/2022]
Abstract
Birth of new neurons in the hippocampus persists in the brain of adult mammals and critically underpins optimal learning and memory. The process of adult neurogenesis is significantly reduced following brain irradiation and this correlates with impaired cognitive function. In this study, we aimed to compare the long-term effects of two environmental paradigms (i.e. enriched environment and exercise) on adult neurogenesis following high-dose (10Gy) total body irradiation. When housed in standard (sedentary) conditions, irradiated mice revealed a long-lasting (up to 4 months) deficit in neurogenesis in the granule cell layer of the dentate gyrus, the region that harbors the neurogenic niche. This depressive effect of total body irradiation on adult neurogenesis was partially alleviated by exposure to enriched environment but not voluntary exercise, where mice were single-housed with unlimited access to a running wheel. Exposure to voluntary exercise, but not enriched environment, did lead to significant increases in microglia density in the granule cell layer of the hippocampus; our study shows that these changes result from local microglia proliferation rather than recruitment and infiltration of circulating Cx3cr1+/gfp blood monocytes that subsequently differentiate into microglia-like cells. In summary, latent neural precursor cells remain present in the neurogenic niche of the adult hippocampus up to 8 weeks following high-dose total body irradiation. Environmental enrichment can partially restore the adult neurogenic process in this part of the brain following high-dose irradiation, and this was found to be independent of blood monocyte-derived microglia presence.
Collapse
Affiliation(s)
- Marc J Ruitenberg
- School of Biomedical Sciences, University of Queensland, Brisbane, Queensland, Australia; Queensland Brain Institute, University of Queensland, Brisbane, Queensland, Australia
| | - Julia Wells
- Telethon Kids Institute, Perth, Western Australia, Australia
| | - Perry F Bartlett
- Queensland Brain Institute, University of Queensland, Brisbane, Queensland, Australia
| | - Alan R Harvey
- School of Human Sciences, The University of Western Australia, Perth, Western Australia, Australia; Perron Institute for Neurological and Translational Science, Perth, Western Australia, Australia
| | - Jana Vukovic
- School of Biomedical Sciences, University of Queensland, Brisbane, Queensland, Australia; Queensland Brain Institute, University of Queensland, Brisbane, Queensland, Australia.
| |
Collapse
|
31
|
Schwarb H, Johnson CL, Daugherty AM, Hillman CH, Kramer AF, Cohen NJ, Barbey AK. Aerobic fitness, hippocampal viscoelasticity, and relational memory performance. Neuroimage 2017; 153:179-188. [PMID: 28366763 PMCID: PMC5637732 DOI: 10.1016/j.neuroimage.2017.03.061] [Citation(s) in RCA: 77] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2016] [Revised: 03/09/2017] [Accepted: 03/29/2017] [Indexed: 12/13/2022] Open
Abstract
The positive relationship between hippocampal structure, aerobic fitness, and memory performance is often observed among children and older adults; but evidence of this relationship among young adults, for whom the hippocampus is neither developing nor atrophying, is less consistent. Studies have typically relied on hippocampal volumetry (a gross proxy of tissue composition) to assess individual differences in hippocampal structure. While volume is not specific to microstructural tissue characteristics, microstructural differences in hippocampal integrity may exist even among healthy young adults when volumetric differences are not diagnostic of tissue health or cognitive function. Magnetic resonance elastography (MRE) is an emerging noninvasive imaging technique for measuring viscoelastic tissue properties and provides quantitative measures of tissue integrity. We have previously demonstrated that individual differences in hippocampal viscoelasticity are related to performance on a relational memory task; however, little is known about health correlates to this novel measure. In the current study, we investigated the relationship between hippocampal viscoelasticity and cardiovascular health, and their mutual effect on relational memory in a group of healthy young adults (N=51). We replicated our previous finding that hippocampal viscoelasticity correlates with relational memory performance. We extend this work by demonstrating that better aerobic fitness, as measured by VO2max, was associated with hippocampal viscoelasticity that mediated the benefits of fitness on memory function. Hippocampal volume, however, did not account for individual differences in memory. Therefore, these data suggest that hippocampal viscoelasticity may provide a more sensitive measure to microstructural tissue organization and its consequences to cognition among healthy young adults.
Collapse
Affiliation(s)
- Hillary Schwarb
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, 405 N. Mathews Ave, Urbana, IL 61081, USA.
| | - Curtis L Johnson
- Department of Biomedical Engineering, University of Delaware, 150 Academy Street, 161 Colburn Lab, Newark, DE 19716, USA
| | - Ana M Daugherty
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, 405 N. Mathews Ave, Urbana, IL 61081, USA
| | - Charles H Hillman
- Department of Psychology, Northeastern University, 125 Nightingale Hall, 360 Huntington Ave., Boston, MA 02115, USA
| | - Arthur F Kramer
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, 405 N. Mathews Ave, Urbana, IL 61081, USA; Department of Psychology, Northeastern University, 125 Nightingale Hall, 360 Huntington Ave., Boston, MA 02115, USA
| | - Neal J Cohen
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, 405 N. Mathews Ave, Urbana, IL 61081, USA
| | - Aron K Barbey
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, 405 N. Mathews Ave, Urbana, IL 61081, USA; Department of Psychology, University of Illinois at Urbana-Champaign, 603 E. Daniel St, Champaign, IL 61820, USA; Neuroscience Program, University of Illinois at Urbana-Champaign, 405 N. Mathews Ave, Urbana, IL 61081, USA; Department of Internal Medicine, University of Illinois at Urbana-Champaign, 506 S. Mathews Ave, Urbana, IL 61801, USA; Department of Bioengineering, University of Illinois at Urbana-Champaign, 1304 W. Springfield Ave, Urbana, IL 61801, USA; Carle R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, 1206 W. Gregory Dr, Urbana, IL 61801, USA.
| |
Collapse
|
32
|
Perez SD, Du K, Rendeiro C, Wang L, Wu Q, Rubakhin SS, Vazhappilly R, Baxter JH, Sweedler JV, Rhodes JS. A unique combination of micronutrients rejuvenates cognitive performance in aged mice. Behav Brain Res 2017; 320:97-112. [DOI: 10.1016/j.bbr.2016.11.019] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2016] [Revised: 10/30/2016] [Accepted: 11/03/2016] [Indexed: 12/16/2022]
|
33
|
Majdak P, Ossyra JR, Ossyra JM, Cobert AJ, Hofmann GC, Tse S, Panozzo B, Grogan EL, Sorokina A, Rhodes JS. A new mouse model of ADHD for medication development. Sci Rep 2016; 6:39472. [PMID: 27996970 PMCID: PMC5171883 DOI: 10.1038/srep39472] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2016] [Accepted: 11/21/2016] [Indexed: 11/12/2022] Open
Abstract
ADHD is a major societal problem with increasing incidence and a stagnant track record for treatment advances. A lack of appropriate animal models has partly contributed to the incremental advance of this field. Hence, our goal was to generate a novel mouse model that could be useful for ADHD medication development. We reasoned that hyperactivity is a core feature of ADHD that could easily be bred into a population, but to what extent other hallmark features of ADHD would appear as correlated responses was unknown. Hence, starting from a heterogeneous population, we applied within-family selection over 16 generations to produce a High-Active line, while simultaneously maintaining an unselected line to serve as the Control. We discovered that the High-Active line demonstrated motor impulsivity in two different versions of the Go/No-go test, which was ameliorated with a low dose of amphetamine, and further displayed hypoactivation of the prefrontal cortex and dysregulated cerebellar vermal activation as indexed by c-Fos immunohistochemical staining. We conclude that the High-Active line represents a valid model for the Hyperactive-Impulsive subtype of ADHD and therefore may be used in future studies to advance our understanding of the etiology of ADHD and screen novel compounds for its treatment.
Collapse
Affiliation(s)
- Petra Majdak
- The Neuroscience Program, University of Illinois, IL, USA.,The Beckman Institute for Advanced Science and Technology, University of Illinois, IL, USA
| | - John R Ossyra
- Oak Ridge National Laboratory, University of Tennessee, Knoxville, TN, USA
| | - Jessica M Ossyra
- College of Engineering, University of Tennessee, Knoxville, TN, USA
| | - Adam J Cobert
- Department of Food Science and Technology, University of California, Davis, CA, USA
| | | | - Stephen Tse
- The Beckman Institute for Advanced Science and Technology, University of Illinois, IL, USA
| | - Brent Panozzo
- The Beckman Institute for Advanced Science and Technology, University of Illinois, IL, USA
| | - Elizabeth L Grogan
- The Beckman Institute for Advanced Science and Technology, University of Illinois, IL, USA
| | - Anastassia Sorokina
- The Beckman Institute for Advanced Science and Technology, University of Illinois, IL, USA
| | - Justin S Rhodes
- The Neuroscience Program, University of Illinois, IL, USA.,The Beckman Institute for Advanced Science and Technology, University of Illinois, IL, USA.,Department of Psychology, University of Illinois, IL, USA
| |
Collapse
|
34
|
Bernardo TC, Marques-Aleixo I, Beleza J, Oliveira PJ, Ascensão A, Magalhães J. Physical Exercise and Brain Mitochondrial Fitness: The Possible Role Against Alzheimer's Disease. Brain Pathol 2016; 26:648-63. [PMID: 27328058 PMCID: PMC8029062 DOI: 10.1111/bpa.12403] [Citation(s) in RCA: 64] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2016] [Accepted: 06/15/2016] [Indexed: 12/21/2022] Open
Abstract
Exercise is one of the most effective strategies to maintain a healthy body and mind, with particular beneficial effects of exercise on promoting brain plasticity, increasing cognition and reducing the risk of cognitive decline and dementia in later life. Moreover, the beneficial effects resulting from increased physical activity occur at different levels of cellular organization, mitochondria being preferential target organelles. The relevance of this review article relies on the need to integrate the current knowledge of proposed mechanisms, focus mitochondria, to explain the protective effects of exercise that might underlie neuroplasticity and seeks to synthesize these data in the context of exploring exercise as a feasible intervention to delay cognitive impairment associated with neurodegenerative conditions, particularly Alzheimer disease.
Collapse
Affiliation(s)
- T C Bernardo
- CIAFEL-Research Centre in Physical Activity, , Health and Leisure, Faculty of Sport, University of Porto, Porto, Portugal.
| | - I Marques-Aleixo
- CIAFEL-Research Centre in Physical Activity, , Health and Leisure, Faculty of Sport, University of Porto, Porto, Portugal
| | - J Beleza
- CIAFEL-Research Centre in Physical Activity, , Health and Leisure, Faculty of Sport, University of Porto, Porto, Portugal
| | - P J Oliveira
- CNC-Centre for Neuroscience and Cell Biology, UC-Biotech, Biocant Park, University of Coimbra, Coimbra, Portugal
| | - A Ascensão
- CIAFEL-Research Centre in Physical Activity, , Health and Leisure, Faculty of Sport, University of Porto, Porto, Portugal
| | - J Magalhães
- CIAFEL-Research Centre in Physical Activity, , Health and Leisure, Faculty of Sport, University of Porto, Porto, Portugal
| |
Collapse
|
35
|
Overall RW, Walker TL, Fischer TJ, Brandt MD, Kempermann G. Different Mechanisms Must Be Considered to Explain the Increase in Hippocampal Neural Precursor Cell Proliferation by Physical Activity. Front Neurosci 2016; 10:362. [PMID: 27536215 PMCID: PMC4971098 DOI: 10.3389/fnins.2016.00362] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2016] [Accepted: 07/20/2016] [Indexed: 11/25/2022] Open
Abstract
The number of proliferating neural precursor cells in the adult hippocampus is strongly increased by physical activity. The mechanisms through which this behavioral stimulus induces cell proliferation, however, are not yet understood. In fact, even the mode of proliferation of the stem and progenitor cells is not exactly known. Evidence exists for several mechanisms including cell cycle shortening, reduced cell death and stem cell recruitment, but as yet no model can account for all observations. An appreciation of how the cells proliferate, however, is crucial to our ability to model the neurogenic process and predict its behavior in response to pro-neurogenic stimuli. In a recent study, we addressed modulation of the cell cycle length as one possible mode of regulation of precursor cell proliferation in running mice. Our results indicated that the observed increase in number of proliferating cells could not be explained through a shortening of the cell cycle. We must therefore consider other mechanisms by which physical activity leads to enhanced precursor cell proliferation. Here we review the evidence for and against several different hypotheses and discuss the implications for future research in the field.
Collapse
Affiliation(s)
- Rupert W Overall
- Genomics of Regeneration, Center for Regenerative Therapies Dresden (CRTD), Technische Universität DresdenDresden, Germany; Genomics of Regeneration, German Center for Neurodegenerative Diseases (DZNE) DresdenDresden, Germany
| | - Tara L Walker
- Genomics of Regeneration, Center for Regenerative Therapies Dresden (CRTD), Technische Universität DresdenDresden, Germany; Genomics of Regeneration, German Center for Neurodegenerative Diseases (DZNE) DresdenDresden, Germany
| | - Tim J Fischer
- Genomics of Regeneration, Center for Regenerative Therapies Dresden (CRTD), Technische Universität DresdenDresden, Germany; Genomics of Regeneration, German Center for Neurodegenerative Diseases (DZNE) DresdenDresden, Germany
| | - Moritz D Brandt
- Division of Neurodegenerative Diseases, Department of Neurology, Technische Universität Dresden Dresden, Germany
| | - Gerd Kempermann
- Genomics of Regeneration, Center for Regenerative Therapies Dresden (CRTD), Technische Universität DresdenDresden, Germany; Genomics of Regeneration, German Center for Neurodegenerative Diseases (DZNE) DresdenDresden, Germany
| |
Collapse
|
36
|
Groves NJ, Bradford D, Sullivan RKP, Conn KA, Aljelaify RF, McGrath JJ, Burne THJ. Behavioural Effects of Adult Vitamin D Deficiency in BALB/c Mice Are not Associated with Proliferation or Survival of Neurons in the Adult Hippocampus. PLoS One 2016; 11:e0152328. [PMID: 27043014 PMCID: PMC4820224 DOI: 10.1371/journal.pone.0152328] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2015] [Accepted: 03/11/2016] [Indexed: 12/11/2022] Open
Abstract
Epidemiological studies have shown that up to one third of adults have insufficient levels of vitamin D and there is an association between low vitamin D concentrations and adverse brain outcomes, such as depression. Vitamin D has been shown to be involved in processes associated with neurogenesis during development. Therefore, the aim of this study was to test the hypothesis that adult vitamin D (AVD) deficiency in BALB/c mice was associated with (a) adult hippocampal neurogenesis at baseline, b) following 6 weeks of voluntary wheel running and (c) a depressive-like phenotype on the forced swim test (FST), which may be linked to alterations in hippocampal neurogenesis. We assessed proliferation and survival of adult born hippocampal neurons by counting the number of cells positive for Ki67 and doublecortin (DCX), and incorporation of 5-Bromo-2’-Deoxyuridine (BrdU) within newly born mature neurons using immunohistochemistry. There were no significant effects of diet on number of Ki67+, DCX+ or BrdU+ cells in the dentate gyrus. All mice showed significantly increased number of Ki67+ cells and BrdU incorporation, and decreased immobility time in the FST, after voluntary wheel running. A significant correlation was found in control mice between immobility time in the FST and level of hippocampal neurogenesis, however, no such correlation was found for AVD-deficient mice. We conclude that AVD deficiency was not associated with impaired proliferation or survival of adult born neurons in BALB/c mice and that the impact on rodent behaviour may not be due to altered neurogenesis per se, but to altered function of new hippocampal neurons or processes independent of adult neurogenesis.
Collapse
Affiliation(s)
- Natalie J. Groves
- Queensland Brain Institute, The University of Queensland, St Lucia, Queensland, Australia
| | - DanaKai Bradford
- Queensland Brain Institute, The University of Queensland, St Lucia, Queensland, Australia
- Commonwealth Scientific and Industrial Research Organisation, Queensland Centre for Advanced Technologies, Pullenvale, Queensland, Australia
| | - Robert K. P. Sullivan
- Queensland Brain Institute, The University of Queensland, St Lucia, Queensland, Australia
| | - Kyna-Anne Conn
- Queensland Brain Institute, The University of Queensland, St Lucia, Queensland, Australia
| | - Rasha Fahad Aljelaify
- Queensland Brain Institute, The University of Queensland, St Lucia, Queensland, Australia
| | - John J. McGrath
- Queensland Brain Institute, The University of Queensland, St Lucia, Queensland, Australia
- Queensland Centre for Mental Health Research, The Park Centre for Mental Health, Richlands, Queensland, Australia
- Discipline of Psychiatry, The University of Queensland, St Lucia, Queensland, Australia
| | - Thomas H. J. Burne
- Queensland Brain Institute, The University of Queensland, St Lucia, Queensland, Australia
- Queensland Centre for Mental Health Research, The Park Centre for Mental Health, Richlands, Queensland, Australia
- * E-mail:
| |
Collapse
|
37
|
Kannan S, Nicola Z, Overall RW, Ichwan M, Ramírez-Rodríguez G, N. Grzyb A, Patone G, Saar K, Hübner N, Kempermann G. Systems Genetics Analysis of a Recombinant Inbred Mouse Cell Culture Panel Reveals Wnt Pathway Member Lrp6 as a Regulator of Adult Hippocampal Precursor Cell Proliferation. Stem Cells 2016; 34:674-84. [DOI: 10.1002/stem.2313] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2015] [Revised: 09/28/2015] [Accepted: 10/25/2015] [Indexed: 11/08/2022]
Affiliation(s)
- Suresh Kannan
- CRTD-Center for Regenerative Therapies Dresden; Technische Universität Dresden; Dresden Germany
- Department of Biomedical Sciences; Sri Ramachandra University; Porur Chennai India
| | - Zeina Nicola
- German Center for Neurodegenerative Diseases (DZNE) Dresden; Dresden Germany
| | - Rupert W. Overall
- CRTD-Center for Regenerative Therapies Dresden; Technische Universität Dresden; Dresden Germany
| | - Muhammad Ichwan
- CRTD-Center for Regenerative Therapies Dresden; Technische Universität Dresden; Dresden Germany
| | - Gerardo Ramírez-Rodríguez
- Laboratory of Neurogenesis, Division of Clinical Investigations; National Institute of Psychiatry “Ramón de la Fuente Muñiz; ” México D.F. México
| | - Anna N. Grzyb
- German Center for Neurodegenerative Diseases (DZNE) Dresden; Dresden Germany
| | | | - Kathrin Saar
- Max-Delbrück Center for Molecular Medicine; Berlin Germany
| | - Norbert Hübner
- Max-Delbrück Center for Molecular Medicine; Berlin Germany
| | - Gerd Kempermann
- CRTD-Center for Regenerative Therapies Dresden; Technische Universität Dresden; Dresden Germany
- German Center for Neurodegenerative Diseases (DZNE) Dresden; Dresden Germany
| |
Collapse
|
38
|
Torres-Pérez M, Tellez-Ballesteros RI, Ortiz-López L, Ichwan M, Vega-Rivera NM, Castro-García M, Gómez-Sánchez A, Kempermann G, Ramirez-Rodriguez GB. Resveratrol Enhances Neuroplastic Changes, Including Hippocampal Neurogenesis, and Memory in Balb/C Mice at Six Months of Age. PLoS One 2015; 10:e0145687. [PMID: 26695764 PMCID: PMC4690610 DOI: 10.1371/journal.pone.0145687] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2015] [Accepted: 12/06/2015] [Indexed: 01/29/2023] Open
Abstract
Resveratrol (RVTL) is a flavonoid found in red wine and has been publicized heavily as an anti-aging compound. Indeed, basic research confirms that although there is much hype in the promotion of RVTL, flavonoids such as RVTL have a wide range of biological effects. We here investigated the effects of RVTL treatment on hippocampal plasticity and memory performance in female Balb/C mice, a strain with low baseline levels of adult neurogenesis. Two weeks of treatment with RVTL (40 mg/kg) induced the production of new neurons in vivo by increasing cell survival and possibly precursor cell proliferation. In addition, RVTL decreased the number of apoptotic cells. The number of doublecortin (DCX)-expressing intermediate cells was increased. RVTL stimulated neuronal differentiation in vitro without effects on proliferation. In the dentate gyrus, RVTL promoted the formation and maturation of spines on granule cell dendrites. RVTL also improved performance in the step down passive avoidance test. The RVTL-treated mice showed increase in the levels of two key signaling proteins, phospho-Akt and phospho-PKC, suggesting the involvement of these signaling pathways. Our results support the vision that flavonoids such as resveratrol deserve further examination as plasticity-inducing compounds in the context of successful cognitive aging.
Collapse
Affiliation(s)
- Mario Torres-Pérez
- Laboratory of Neurogenesis, Division of Clinical Investigations, National Institute of Psychiatry “Ramón de la Fuente Muñiz”, Calz. México-Xochimilco 101, 14370, México, D.F., México
| | - Ruth Ivonne Tellez-Ballesteros
- Laboratory of Neurogenesis, Division of Clinical Investigations, National Institute of Psychiatry “Ramón de la Fuente Muñiz”, Calz. México-Xochimilco 101, 14370, México, D.F., México
| | - Leonardo Ortiz-López
- Laboratory of Neurogenesis, Division of Clinical Investigations, National Institute of Psychiatry “Ramón de la Fuente Muñiz”, Calz. México-Xochimilco 101, 14370, México, D.F., México
| | - Muhammad Ichwan
- CRTD - Center for Regenerative Therapies Dresden, Tatzberg 47–79, 01307, Dresden, Germany
- Department of Pharmacology and Therapeutic, Faculty of Medicine, Universitas Sumatera Utara, Jalan Dr. Mansur 5, Medan, Indonesia
| | - Nelly Maritza Vega-Rivera
- Laboratory of Neuropsychopharmacology, Division of Neurosciences, National Institute of Psychiatry “Ramón de la Fuente Muñiz”, Calz. México-Xochimilco 101, 14370, México, D.F., México
| | - Mario Castro-García
- Laboratory of Neuropsychopharmacology, Division of Neurosciences, National Institute of Psychiatry “Ramón de la Fuente Muñiz”, Calz. México-Xochimilco 101, 14370, México, D.F., México
| | - Ariadna Gómez-Sánchez
- Laboratory of Neurogenesis, Division of Clinical Investigations, National Institute of Psychiatry “Ramón de la Fuente Muñiz”, Calz. México-Xochimilco 101, 14370, México, D.F., México
| | - Gerd Kempermann
- CRTD - Center for Regenerative Therapies Dresden, Tatzberg 47–79, 01307, Dresden, Germany
- DZNE, German Center for Neurodegenerative Diseases, Dresden, Tatzberg 47–49, 01307, Dresden, Germany
- * E-mail: (GK); (GBRR)
| | - Gerardo Bernabe Ramirez-Rodriguez
- Laboratory of Neurogenesis, Division of Clinical Investigations, National Institute of Psychiatry “Ramón de la Fuente Muñiz”, Calz. México-Xochimilco 101, 14370, México, D.F., México
- * E-mail: (GK); (GBRR)
| |
Collapse
|
39
|
van Dijk RM, Lazic SE, Slomianka L, Wolfer DP, Amrein I. Large-scale phenotyping links adult hippocampal neurogenesis to the reaction to novelty. Hippocampus 2015; 26:646-57. [DOI: 10.1002/hipo.22548] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2015] [Revised: 10/23/2015] [Accepted: 11/02/2015] [Indexed: 01/25/2023]
Affiliation(s)
- R. Maarten van Dijk
- Institute of Anatomy; University of Zürich; Switzerland
- Neuroscience Center Zurich; University of Zurich and ETH Zurich; Zürich Switzerland
- Institute of Human Movement Sciences and Sport; Department of Health Sciences and Technology; ETH Zurich; Zürich Switzerland
| | - Stanley E. Lazic
- In Silico Lead Discovery, Novartis Institutes for Biomedical Research; Basel Switzerland
| | | | - David P. Wolfer
- Institute of Anatomy; University of Zürich; Switzerland
- Neuroscience Center Zurich; University of Zurich and ETH Zurich; Zürich Switzerland
- Institute of Human Movement Sciences and Sport; Department of Health Sciences and Technology; ETH Zurich; Zürich Switzerland
| | - Irmgard Amrein
- Institute of Anatomy; University of Zürich; Switzerland
- Neuroscience Center Zurich; University of Zurich and ETH Zurich; Zürich Switzerland
| |
Collapse
|
40
|
Patten AR, Yau SY, Fontaine CJ, Meconi A, Wortman RC, Christie BR. The Benefits of Exercise on Structural and Functional Plasticity in the Rodent Hippocampus of Different Disease Models. Brain Plast 2015; 1:97-127. [PMID: 29765836 PMCID: PMC5928528 DOI: 10.3233/bpl-150016] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
In this review, the benefits of physical exercise on structural and functional plasticity in the hippocampus are discussed. The evidence is clear that voluntary exercise in rats and mice can lead to increases in hippocampal neurogenesis and enhanced synaptic plasticity which ultimately result in improved performance in hippocampal-dependent tasks. Furthermore, in models of neurological disorders, including fetal alcohol spectrum disorders, traumatic brain injury, stroke, and neurodegenerative disorders including Alzheimer's, Parkinson's and Huntington's disease exercise can also elicit beneficial effects on hippocampal function. Ultimately this review highlights the multiple benefits of exercise on hippocampal function in both the healthy and the diseased brain.
Collapse
Affiliation(s)
- Anna R. Patten
- Division of Medical Sciences, Island Medical Program, University of Victoria, Victoria, British Columbia, Canada
| | - Suk Yu Yau
- Division of Medical Sciences, Island Medical Program, University of Victoria, Victoria, British Columbia, Canada
| | - Christine J. Fontaine
- Division of Medical Sciences, Island Medical Program, University of Victoria, Victoria, British Columbia, Canada
| | - Alicia Meconi
- Division of Medical Sciences, Island Medical Program, University of Victoria, Victoria, British Columbia, Canada
| | - Ryan C. Wortman
- Division of Medical Sciences, Island Medical Program, University of Victoria, Victoria, British Columbia, Canada
| | - Brian R. Christie
- Division of Medical Sciences, Island Medical Program, University of Victoria, Victoria, British Columbia, Canada
- Department of Biology, University of Victoria, Victoria, British Columbia, Canada
- Brain Research Centre and Program in Neuroscience, University of British Columbia, Vancouver, British Columbia, Canada
- Department of Cellular and Physiological Sciences, University of British Columbia, Vancouver, British Columbia, Canada
| |
Collapse
|
41
|
Hamilton GF, Rhodes JS. Exercise Regulation of Cognitive Function and Neuroplasticity in the Healthy and Diseased Brain. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2015; 135:381-406. [PMID: 26477923 DOI: 10.1016/bs.pmbts.2015.07.004] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Regular exercise broadly enhances physical and mental health throughout the lifespan. Animal models have provided us with the tools to gain a better understanding of the underlying biochemical, physiological, and morphological mechanisms through which exercise exerts its beneficial cognitive effects. One brain region in particular, the hippocampus, is especially responsive to exercise. It is critically involved in learning and memory and is one of two regions in the mammalian brain that continues to generate new neurons throughout life. Exercise prevents the decline of the hippocampus from aging and ameliorates many neurodegenerative diseases, in part by increasing adult hippocampal neurogenesis but also by activating a multitude of molecular mechanisms that promote brain health. In this chapter, we first describe some rodent models used to study effects of exercise on the brain. Then we review the rodent work focusing on the mechanisms behind which exercise improves cognition and brain health in both the normal and the diseased brain, with emphasis on the hippocampus.
Collapse
Affiliation(s)
- Gilian F Hamilton
- Department of Psychology, The Beckman Institute, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA.
| | - Justin S Rhodes
- Department of Psychology, The Beckman Institute, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| |
Collapse
|
42
|
Koehl M. Gene-environment interaction in programming hippocampal plasticity: focus on adult neurogenesis. Front Mol Neurosci 2015; 8:41. [PMID: 26300723 PMCID: PMC4523721 DOI: 10.3389/fnmol.2015.00041] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2015] [Accepted: 07/15/2015] [Indexed: 01/01/2023] Open
Abstract
Interactions between genes and environment are a critical feature of development and both contribute to shape individuality. They are at the core of vulnerability resiliency for mental illnesses. During the early postnatal period, several brain structures involved in cognitive and emotional processing, such as the hippocampus, still develop and it is likely that interferences with this neuronal development, which is genetically determined, might lead to long-lasting structural and functional consequences and increase the risk of developing psychopathology. One particular target is adult neurogenesis, which is involved in the regulation of cognitive and emotional processes. Insights into the dynamic interplay between genes and environmental factors in setting up individual rates of neurogenesis have come from laboratory studies exploring experience-dependent changes in adult neurogenesis as a function of individual’s genetic makeup. These studies have implications for our understanding of the mechanisms regulating adult neurogenesis, which could constitute a link between environmental challenges and psychopathology.
Collapse
Affiliation(s)
- Muriel Koehl
- INSERM U862, Magendie Neurocenter, Neurogenesis and Pathophysiology Group, Institut F. Magendie Bordeaux Cedex, France ; Université de Bordeaux Bordeaux, France
| |
Collapse
|
43
|
Littlefield AM, Setti SE, Priester C, Kohman RA. Voluntary exercise attenuates LPS-induced reductions in neurogenesis and increases microglia expression of a proneurogenic phenotype in aged mice. J Neuroinflammation 2015. [PMID: 26224094 PMCID: PMC4518639 DOI: 10.1186/s12974-015-0362-0] [Citation(s) in RCA: 72] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Background Microglia can acquire various phenotypes of activation that mediate their inflammatory and neuroprotective effects. Aging causes microglia to become partially activated towards an inflammatory phenotype. As a result, aged animals display a prolonged neuroinflammatory response following an immune challenge. Currently unknown is whether this persistent neuroinflammation leads to greater reductions in hippocampal neurogenesis. Exercise has been shown to alter microglia activation in aged animals, but the nature of these changes has yet to be fully elucidated. The present study assessed whether aged mice show enhanced reductions in hippocampal neurogenesis following an acute immune challenge with lipopolysaccharide (LPS). Further, we assessed whether voluntary wheel running protects against the effects of LPS. Methods Adult (4 months) and aged (22 months) male C57BL6/J mice were individually housed with or without a running wheel for a total of 9 weeks. After 5 weeks, mice received a single intraperitoneal LPS or saline injection in combination with four daily injections of bromodeoxyuridine (BrdU) to label dividing cells. Tissue was collected 4 weeks later and immunohistochemistry was conducted to measure new cell survival, new neuron numbers, and microglia activation. Results Data show that LPS reduced the number of new neurons in aged, but not adult, mice. These LPS-induced reductions in neurogenesis in the aged mice were prevented by wheel running. Further, exercise increased the proportion of microglia co-labeled with brain-derived neurotrophic factor (BDNF) in the aged. Conclusions Collectively, findings indicate that voluntary wheel running may promote a neuroprotective microglia phenotype and protect against inflammation-induced reductions in hippocampal neurogenesis in the aged brain.
Collapse
Affiliation(s)
- Alyssa M Littlefield
- Department of Psychology, University of North Carolina Wilmington, 601 S. College Road, Wilmington, NC, 28403-5612, USA.
| | - Sharay E Setti
- Department of Psychology, University of North Carolina Wilmington, 601 S. College Road, Wilmington, NC, 28403-5612, USA.
| | - Carolina Priester
- Department of Biology, University of North Carolina Wilmington, 601 S. College Road, Wilmington, NC, 28403-5612, USA.
| | - Rachel A Kohman
- Department of Psychology, University of North Carolina Wilmington, 601 S. College Road, Wilmington, NC, 28403-5612, USA.
| |
Collapse
|
44
|
Bhattacharya TK, Pence BD, Ossyra JM, Gibbons TE, Perez S, McCusker RH, Kelley KW, Johnson RW, Woods JA, Rhodes JS. Exercise but not (-)-epigallocatechin-3-gallate or β-alanine enhances physical fitness, brain plasticity, and behavioral performance in mice. Physiol Behav 2015; 145:29-37. [PMID: 25797079 DOI: 10.1016/j.physbeh.2015.03.023] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2014] [Revised: 12/13/2014] [Accepted: 03/18/2015] [Indexed: 12/29/2022]
Abstract
Nutrition and physical exercise can enhance cognitive function but the specific combinations of dietary bioactives that maximize pro-cognitive effects are not known nor are the contributing neurobiological mechanisms. Epigallocatechin-3-gallate (EGCG) is a flavonoid constituent of many plants with high levels found in green tea. EGCG has anti-inflammatory and anti-oxidant properties and is known to cross the blood brain barrier where it can affect brain chemistry and physiology. β-Alanine (B-ALA) is a naturally occurring β-amino acid that could increase cognitive functioning by increasing levels of exercise via increased capacity of skeletal muscle, by crossing the blood brain barrier and acting as a neurotransmitter, or by free radical scavenging in muscle and brain after conversion into carnosine. The objective of this study was to determine the effects of EGCG (~250mg/kg/day), B-ALA (~550mg/kg/day), and their combination with voluntary wheel running exercise on the following outcome measures: body composition, time to fatigue, production of new cells in the granule layer of the dentate gyrus of the hippocampus as a marker for neuronal plasticity, and behavioral performance on the contextual and cued fear conditioning tasks, as measures of associative learning and memory. Young adult male BALB/cJ mice approximately 2months old were randomized into 8 groups varying the nutritional supplement in their diet and access to running wheels over a 39day study period. Running increased food intake, decreased fat mass, increased time to exhaustive fatigue, increased numbers of new cells in the granule layer of the hippocampus, and enhanced retrieval of both contextual and cued fear memories. The diets had no effect on their own or in combination with exercise on any of the fitness, plasticity, and behavioral outcome measures other than B-ALA decreased percent body fat whereas EGCG increased lean body mass slightly. Results suggest that, in young adult BALB/cJ mice, a 39day treatment of exercise but not dietary supplementation with B-ALA or EGCG enhances measures of fitness, neuroplasticity and cognition.
Collapse
Affiliation(s)
- Tushar K Bhattacharya
- Beckman Institute, Center for Nutrition, Learning and Memory, University of Illinois at Urbana-Champaign, Urbana, IL 61801, United States
| | - Brandt D Pence
- Integrative Immunology and Behavior Program, Center for Nutrition, Learning and Memory, University of Illinois at Urbana-Champaign, Urbana, IL 61801, United States; Department of Kinesiology and Community Health, Center for Nutrition, Learning and Memory, University of Illinois at Urbana-Champaign, Urbana, IL 61801, United States
| | - Jessica M Ossyra
- Beckman Institute, Center for Nutrition, Learning and Memory, University of Illinois at Urbana-Champaign, Urbana, IL 61801, United States
| | - Trisha E Gibbons
- Division of Nutritional Sciences, Center for Nutrition, Learning and Memory, University of Illinois at Urbana-Champaign, Urbana, IL 61801, United States; Integrative Immunology and Behavior Program, Center for Nutrition, Learning and Memory, University of Illinois at Urbana-Champaign, Urbana, IL 61801, United States
| | - Samuel Perez
- Beckman Institute, Center for Nutrition, Learning and Memory, University of Illinois at Urbana-Champaign, Urbana, IL 61801, United States
| | - Robert H McCusker
- Integrative Immunology and Behavior Program, Center for Nutrition, Learning and Memory, University of Illinois at Urbana-Champaign, Urbana, IL 61801, United States; Department of Animal Sciences, Center for Nutrition, Learning and Memory, University of Illinois at Urbana-Champaign, Urbana, IL 61801, United States
| | - Keith W Kelley
- Division of Nutritional Sciences, Center for Nutrition, Learning and Memory, University of Illinois at Urbana-Champaign, Urbana, IL 61801, United States; Integrative Immunology and Behavior Program, Center for Nutrition, Learning and Memory, University of Illinois at Urbana-Champaign, Urbana, IL 61801, United States; Department of Animal Sciences, Center for Nutrition, Learning and Memory, University of Illinois at Urbana-Champaign, Urbana, IL 61801, United States
| | - Rodney W Johnson
- Division of Nutritional Sciences, Center for Nutrition, Learning and Memory, University of Illinois at Urbana-Champaign, Urbana, IL 61801, United States; Integrative Immunology and Behavior Program, Center for Nutrition, Learning and Memory, University of Illinois at Urbana-Champaign, Urbana, IL 61801, United States; Department of Animal Sciences, Center for Nutrition, Learning and Memory, University of Illinois at Urbana-Champaign, Urbana, IL 61801, United States
| | - Jeffrey A Woods
- Division of Nutritional Sciences, Center for Nutrition, Learning and Memory, University of Illinois at Urbana-Champaign, Urbana, IL 61801, United States; Integrative Immunology and Behavior Program, Center for Nutrition, Learning and Memory, University of Illinois at Urbana-Champaign, Urbana, IL 61801, United States; Department of Kinesiology and Community Health, Center for Nutrition, Learning and Memory, University of Illinois at Urbana-Champaign, Urbana, IL 61801, United States
| | - Justin S Rhodes
- Beckman Institute, Center for Nutrition, Learning and Memory, University of Illinois at Urbana-Champaign, Urbana, IL 61801, United States; Division of Nutritional Sciences, Center for Nutrition, Learning and Memory, University of Illinois at Urbana-Champaign, Urbana, IL 61801, United States; Integrative Immunology and Behavior Program, Center for Nutrition, Learning and Memory, University of Illinois at Urbana-Champaign, Urbana, IL 61801, United States; Department of Psychology, Center for Nutrition, Learning and Memory, University of Illinois at Urbana-Champaign, Urbana, IL 61801, United States.
| |
Collapse
|
45
|
Hamilton GF, Majdak P, Miller DS, Bucko PJ, Merritt JR, Krebs CP, Rhodes JS. Evaluation of a C57BL/6J × 129S1/SvImJ Hybrid Nestin-Thymidine Kinase Transgenic Mouse Model for Studying the Functional Significance of Exercise-Induced Adult Hippocampal Neurogenesis. Brain Plast 2015; 1:83-95. [PMID: 28989863 PMCID: PMC5627510 DOI: 10.3233/bpl-150011] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
New neurons are continuously generated in the adult hippocampus but their function remains a mystery. The nestin thymidine kinase (nestin-TK) transgenic method has been used for selective and conditional reduction of neurogenesis for the purpose of testing the functional significance of new neurons in learning, memory and motor performance. Here we explored the nestin-TK model on a hybrid genetic background (to increase heterozygosity, and “hybrid vigor”). Transgenic C57BL/6J (B6) were crossed with 129S1/SvImJ (129) producing hybrid offspring (F1) with the B6 half of the genome carrying a herpes simplex virus thymidine kinase (TK) transgene regulated by a modified nestin promoter. In the presence of exogenously administered valganciclovir, new neurons expressing TK undergo apoptosis. Female B6 nestin-TK mice (n = 80) were evaluated for neurogenesis reduction as a positive control. Male and female F1 nestin-TK mice (n = 223) were used to determine the impact of neurogenesis reduction on the Morris water maze (MWM) and rotarod. All mice received BrdU injections to label dividing cells and either valganciclovir or control chow, with or without a running wheel for 30 days. Both the F1 and B6 background displayed approximately 50% reduction in neurogenesis, a difference that did not impair learning and memory on the MWM or rotarod performance. Running enhanced neurogenesis and performance on the rotarod but not MWM suggesting the F1 background may not be suitable for studying pro-cognitive effects of exercise on MWM. Greater reduction of neurogenesis may be required to observe behavioral impacts. Alternatively, new neurons may not play a critical role in learning, or compensatory mechanisms in pre-existing neurons could have masked the deficits. Further work using these and other models for selectively reducing neurogenesis are needed to establish the functional significance of adult hippocampal neurogenesis in behavior.
Collapse
Affiliation(s)
- G F Hamilton
- Department of Psychology, The Beckman Institute, 405N Mathews Ave, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - P Majdak
- Department of Psychology, The Beckman Institute, 405N Mathews Ave, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - D S Miller
- Department of Psychology, The Beckman Institute, 405N Mathews Ave, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - P J Bucko
- Department of Psychology, The Beckman Institute, 405N Mathews Ave, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - J R Merritt
- Department of Psychology, The Beckman Institute, 405N Mathews Ave, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - C P Krebs
- Department of Psychology, The Beckman Institute, 405N Mathews Ave, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - J S Rhodes
- Department of Psychology, The Beckman Institute, 405N Mathews Ave, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| |
Collapse
|
46
|
Ashbrook DG, Delprato A, Grellmann C, Klein M, Wetzel R, Overall RW, Badea A. Transcript co-variance with Nestin in two mouse genetic reference populations identifies Lef1 as a novel candidate regulator of neural precursor cell proliferation in the adult hippocampus. Front Neurosci 2014; 8:418. [PMID: 25565948 PMCID: PMC4264481 DOI: 10.3389/fnins.2014.00418] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2014] [Accepted: 11/27/2014] [Indexed: 01/17/2023] Open
Abstract
Adult neurogenesis, the lifelong production of new neurons in the adult brain, is under complex genetic control but many of the genes involved remain to be identified. In this study, we have integrated publicly available gene expression data from the BXD and CXB recombinant inbred mouse lines to discover genes co-expressed in the adult hippocampus with Nestin, a common marker of the neural precursor cell population. In addition, we incorporated spatial expression information to restrict candidates to genes with high differential gene expression in the hippocampal dentate gyrus. Incorporating data from curated protein-protein interaction databases revealed interactions between our candidate genes and those already known to be involved in adult neurogenesis. Enrichment analysis suggested a link to the Wnt/β-catenin pathway, known to be involved in adult neurogenesis. In particular, our candidates were enriched in targets of Lef1, a modulator of the Wnt pathway. In conclusion, our combination of bioinformatics approaches identified six novel candidate genes involved in adult neurogenesis; Amer3, Eya3, Mtdh, Nr4a3, Polr2a, and Tbkbp1. Further, we propose a role for Lef1 transcriptional control in the regulation of adult hippocampal precursor cell proliferation.
Collapse
Affiliation(s)
- David G Ashbrook
- Computational and Evolutionary Biology, Faculty of Life Sciences, The University of Manchester Manchester, UK
| | - Anna Delprato
- BioScience Project Wakefield, MA, USA ; Institute of Cognitive and Integrative Neuroscience, University of Bordeaux and CNRS Talence, France
| | - Claudia Grellmann
- Department of Neurology, Max Planck Institute for Human Cognitive and Brain Sciences Leipzig, Germany ; IFB Adiposity Diseases, Leipzig University Medical Center Leipzig, Germany
| | - Marieke Klein
- Department of Human Genetics, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center Nijmegen Nijmegen, Netherlands
| | - Richard Wetzel
- German Center for Neurodegenerative Diseases (DZNE) Dresden, Germany
| | - Rupert W Overall
- CRTD - Center for Regenerative Therapies Dresden, Genomics of Regeneration, Technische Universität Dresden Dresden, Germany
| | - Alexandra Badea
- Department of Radiology, Center for In Vivo Microscopy, Duke University Medical Center Durham, NC, USA
| |
Collapse
|
47
|
Merritt JR, Rhodes JS. Mouse genetic differences in voluntary wheel running, adult hippocampal neurogenesis and learning on the multi-strain-adapted plus water maze. Behav Brain Res 2014; 280:62-71. [PMID: 25435316 DOI: 10.1016/j.bbr.2014.11.030] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2014] [Revised: 11/09/2014] [Accepted: 11/20/2014] [Indexed: 11/30/2022]
Abstract
Moderate levels of aerobic exercise broadly enhance cognition throughout the lifespan. One hypothesized contributing mechanism is increased adult hippocampal neurogenesis. Recently, we measured the effects of voluntary wheel running on adult hippocampal neurogenesis in 12 different mouse strains, and found increased neurogenesis in all strains, ranging from 2- to 5-fold depending on the strain. The purpose of this study was to determine the extent to which increased neurogenesis from wheel running is associated with enhanced performance on the water maze for 5 of the 12 strains, chosen based on their levels of neurogenesis observed in the previous study (C57BL/6 J, 129S1/SvImJ, B6129SF1/J, DBA/2 J, and B6D2F1/J). Mice were housed with or without a running wheels for 30 days then tested for learning and memory on the plus water maze, adapted for multiple strains, and rotarod test of motor performance. The first 10 days, animals were injected with BrdU to label dividing cells. After behavioral testing animals were euthanized to measure adult hippocampal neurogenesis using standard methods. Levels of neurogenesis depended on strain but all mice had a similar increase in neurogenesis in response to exercise. All mice acquired the water maze but performance depended on strain. Exercise improved water maze performance in all strains to a similar degree. Rotarod performance depended on strain. Exercise improved rotarod performance only in DBA/2 J and B6D2F1/J mice. Taken together, results demonstrate that despite different levels of neurogenesis, memory performance and motor coordination in these mouse strains, all strains have the capacity to increase neurogenesis and improve learning on the water maze through voluntary wheel running.
Collapse
Affiliation(s)
- Jennifer R Merritt
- Department of Psychology, Psychology and Interdisciplinary Sciences Building, Emory University, 36 Eagle Row, Atlanta, GA, USA
| | - Justin S Rhodes
- Department of Psychology, The Beckman Institute, University of Illinois at Urbana-Champaign, 405 North Mathews Avenue, Urbana, IL, USA.
| |
Collapse
|
48
|
Majdak P, Bucko PJ, Holloway AL, Bhattacharya TK, DeYoung EK, Kilby CN, Zombeck JA, Rhodes JS. Behavioral and pharmacological evaluation of a selectively bred mouse model of home cage hyperactivity. Behav Genet 2014; 44:516-34. [PMID: 25108455 DOI: 10.1007/s10519-014-9667-5] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2014] [Accepted: 07/18/2014] [Indexed: 01/23/2023]
Abstract
Daily levels of physical activity vary greatly across individuals and are strongly influenced by genetic background. While moderate levels of physical activity are associated with improved physical and mental health, extremely high levels of physical activity are associated with behavioral disorders such as attention deficit hyperactivity disorder (ADHD). However, the genetic and neurobiological mechanisms relating hyperactivity to ADHD or other behavioral disorders remain unclear. Therefore, we conducted a selective breeding experiment for increased home cage activity starting with a highly genetically variable population of house mice and evaluated the line for correlated responses in other relevant phenotypes. Here we report results through Generation 10. Relative to the Control line, the High-Active line traveled approximately 4 times as far in the home cage (on days 5 and 6 of a 6-day test), displayed reduced body mass at maturity, reduced reproductive success, increased wheel running and open field behavior, decreased performance on the rotarod, decreased performance on the Morris water maze that was not rescued by acute administration of d-amphetamine, reduced hyperactivity from chronically administered low clinical doses of d-amphetamine, and increased numbers of new cells and neuronal activation of the dentate gyrus. Standardized phenotypic differences between the lines were compared to estimates expected from genetic drift to evaluate whether the line differences could have resulted from random effects as opposed to correlated responses to selection. Results indicated line differences in body mass and locomotor responses to low doses of amphetamine were more likely due to selection than drift. The efficacy of low doses of d-amphetamine in ameliorating hyperactivity support the High-Active line as a useful model for exploring the etiology of hyperactivity-associated comorbid behavioral disorders.
Collapse
Affiliation(s)
- Petra Majdak
- Neuroscience Program, The Beckman Institute, University of Illinois at Urbana-Champaign, 405 N Mathews Avenue, Urbana, IL, USA,
| | | | | | | | | | | | | | | |
Collapse
|
49
|
Blockade of arginine vasotocin signaling reduces aggressive behavior and c-Fos expression in the preoptic area and periventricular nucleus of the posterior tuberculum in male Amphiprion ocellaris. Neuroscience 2014; 267:205-18. [DOI: 10.1016/j.neuroscience.2014.02.045] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2013] [Revised: 02/22/2014] [Accepted: 02/28/2014] [Indexed: 12/28/2022]
|
50
|
Hamilton GF, Jablonski SA, Schiffino FL, St Cyr SA, Stanton ME, Klintsova AY. Exercise and environment as an intervention for neonatal alcohol effects on hippocampal adult neurogenesis and learning. Neuroscience 2014; 265:274-90. [PMID: 24513389 PMCID: PMC4005875 DOI: 10.1016/j.neuroscience.2014.01.061] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2013] [Revised: 01/22/2014] [Accepted: 01/30/2014] [Indexed: 12/30/2022]
Abstract
Neonatal alcohol exposure impairs cognition and learning in adulthood and permanently damages the hippocampus. Wheel running (WR) improves hippocampus-associated learning and memory and increases the genesis and survival of newly generated neurons in the hippocampal dentate gyrus. WR significantly increases proliferation of newly generated dentate granule cells in alcohol-exposed (AE) and control rats on Postnatal Day (PD) 42 but only control rats show an increased number of surviving cells thirty days after WR (Helfer et al., 2009b). The present studies examined whether proliferation-promoting WR followed by survival-enhancing environmental complexity (EC) during adolescence could increase survival of new neurons in AE rats. On PD 4-9, pups were intubated with alcohol in a binge-like manner (5.25g/kg/day, AE), were sham-intubated (SI), or were reared normally (suckle control, SC). On PD 30 animals were assigned to WR (PD 30-42) followed by EC (PD 42-72; WR/EC) or were socially housed (SH/SH) for the duration of the experiment. All animals were injected with 200mg/kg bromodeoxyuridine (BrdU) on PD 41. In Experiment 1, survival of newly generated cells was significantly enhanced in the AE-WR/EC group in comparison with AE-SH/SH group. Experiment 2A examined trace eyeblink conditioning. In the SH/SH condition, AE impaired trace eyeblink conditioning relative to SI and SC controls. In the WR/EC condition, AE rats performed as well as controls. In Experiment 2B, the same intervention was examined using the context preexposure facilitation effect (CPFE); a hippocampus-dependent variant of contextual fear conditioning. Again, the WR/EC intervention reversed the deficit in conditioned fear to the context that was evident in the SH/SH condition. Post-weaning environmental manipulations promote cell survival and reverse learning deficits in rats that were exposed to alcohol during development. These manipulations may provide a basis for developing interventions that ameliorate learning impairments associated with human fetal alcohol spectrum disorders.
Collapse
Affiliation(s)
- G F Hamilton
- Psychology Department, University of Delaware, Newark, DE 19716, United States
| | - S A Jablonski
- Psychology Department, University of Delaware, Newark, DE 19716, United States
| | - F L Schiffino
- Psychology Department, University of Delaware, Newark, DE 19716, United States
| | - S A St Cyr
- Psychology Department, University of Delaware, Newark, DE 19716, United States
| | - M E Stanton
- Psychology Department, University of Delaware, Newark, DE 19716, United States
| | - A Y Klintsova
- Psychology Department, University of Delaware, Newark, DE 19716, United States.
| |
Collapse
|