1
|
Miele R, Fullone MR, Casella I, Maftei D, Prosperi G, Manduca A, Lattanzi R. Physical TRPV1-PKR2 interaction modulates PKR2 localization, activation and β-arrestin-2 recruitment. Cell Signal 2025; 131:111761. [PMID: 40139621 DOI: 10.1016/j.cellsig.2025.111761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2025] [Revised: 03/08/2025] [Accepted: 03/22/2025] [Indexed: 03/29/2025]
Abstract
Transient Receptor Potential Vanilloid 1 (TRPV1) plays a central role in nociception and inflammation-induced hyperalgesia. Prokineticin receptors (PKR1 and PKR2) are G protein-coupled receptors (GPCRs) that are expressed both centrally and peripherally and induce various signalling pathways through the binding of their endogenous ligands, the prokineticins. The activation of PKRs is modulated by interaction with accessory proteins such as snapin and β-arrestin-2. The prokineticin system is involved in the mechanisms of pain perception by triggering a strong hyperalgesia that lowers the thresholds for thermal and mechanical stimuli. PKR1 and PKR2 are both expressed in dorsal root ganglia (DRG) neurons where they colocalise with TRPV1. In this work, we have identified the regions that mediate the physical interaction between TRPV1 and PKR2. We demonstrated that in the presence of the accessory protein snapin, the strength of binding between TRPV1 and PKR2 is increased. TRPV1 proves to be a physiological regulator of PKR2, modulating its activation, localisation and β-arrestin binding as well as PK2-induced mechanical allodynia. The results obtained show for the first time that TRPV1 regulates PKR2 signalling, suggesting a bidirectional interaction between the two systems.
Collapse
Affiliation(s)
- Rossella Miele
- Department of Biochemical Sciences "A. Rossi Fanelli" Sapienza University of Rome, Piazzale Aldo Moro 5, I-00185 Rome, Italy.
| | - Maria Rosaria Fullone
- Department of Biochemical Sciences "A. Rossi Fanelli" Sapienza University of Rome, Piazzale Aldo Moro 5, I-00185 Rome, Italy
| | - Ida Casella
- Dipartimento del Farmaco, Istituto Superiore di Sanità, I-00161 Rome, Italy
| | - Daniela Maftei
- Department of Physiology and Pharmacology "Vittorio Erspamer", Sapienza University of Rome, Piazzale Aldo Moro 5, I-00185 Rome, Italy
| | - Giorgio Prosperi
- Department of Physiology and Pharmacology "Vittorio Erspamer", Sapienza University of Rome, Piazzale Aldo Moro 5, I-00185 Rome, Italy
| | - Antonia Manduca
- Department of Physiology and Pharmacology "Vittorio Erspamer", Sapienza University of Rome, Piazzale Aldo Moro 5, I-00185 Rome, Italy
| | - Roberta Lattanzi
- Department of Physiology and Pharmacology "Vittorio Erspamer", Sapienza University of Rome, Piazzale Aldo Moro 5, I-00185 Rome, Italy.
| |
Collapse
|
2
|
Pértille F, Badam T, Mitheiss N, Løtvedt P, Tsakoumis E, Gustafsson M, Coutinho LL, Jensen P, Guerrero‐Bosagna C. Sex-Specific Methylomic and Transcriptomic Responses of the Avian Pineal Gland to Unpredictable Illumination Patterns. J Pineal Res 2025; 77:e70040. [PMID: 40091567 PMCID: PMC11911909 DOI: 10.1111/jpi.70040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Revised: 02/03/2025] [Accepted: 03/01/2025] [Indexed: 03/19/2025]
Abstract
In the production environment of chickens, exposure to unpredictable light patterns is a common painless stressor, widely used to influence growth rate and egg production efficiency. The pineal gland, a key regulator of circadian rhythms through melatonin secretion, responds to environmental light cues, and its function is modulated by epigenetic mechanisms. In this study, we investigated how the pineal gland methylome and transcriptome (including micro-RNAs) interact to respond to a rearing exposure to unpredictable illumination patterns, with a particular focus on sex differences. We conducted an integrative multi-omic analysis-including methylomic (MeDIP-seq), transcriptomic (RNA-seq), and miRNA expression profiling-on the pineal gland of Hy-Line White chickens (n = 34, 18 females, 16 males) exposed to either a standard 12:12 light-dark cycle (control) or a randomized, unpredictable light schedule from Days 3 to 24 post-hatch. Our findings reveal that unpredictable light exposure alters the pineal gland methylome and transcriptome in a sex-specific manner. However, while transcriptomic differences between sexes increased due to the stress, methylomic differences decreased, particularly on the Z chromosome. These changes were driven by females (the heterogametic sex in birds), which became more male-like in their pineal methylome after exposure to the illumination stress, leading to reduced epigenetic sexual dimorphism while maintaining differences at the gene expression level. Further, we implemented a fixed sex effect model as a biological proof of concept, identifying a network of 12 key core genes interacting with 102 other genes, all linked to circadian regulation and stress adaptation. This network of genes comprises a core regulatory framework for circadian response. Additionally, tissue-specific expression analysis and cell-type specific expression analysis revealed enrichment in brain regions critical for circadian function, including neuronal populations involved in circadian regulation and the hypothalamic-pituitary-thyroid axis. Together, these findings provide strong evidence of sex-specific epigenetic transcriptomic responses of the pineal gland upon illumination stress and offer valuable insights into the interplay of different omic levels in relation to circadian response.
Collapse
Affiliation(s)
- Fábio Pértille
- Department of Organismal BiologyPhysiology and Environmental ToxicologyUppsala UniversityUppsalaSweden
| | - Tejaswi Badam
- Department of Computational BiologyLuxembourg Centre for Systems BiomedicineUniversity of LuxembourgEsch‐sur‐AlzetteLuxembourg
- IFM BioinformaticsLinköping UniversityLinköpingSweden
| | - Nina Mitheiss
- Avian Behavioural Genomics and Physiology GroupIFM BiologyLinköping UniversityLinköpingSweden
| | - Pia Løtvedt
- Avian Behavioural Genomics and Physiology GroupIFM BiologyLinköping UniversityLinköpingSweden
| | - Emmanouil Tsakoumis
- Department of Organismal BiologyPhysiology and Environmental ToxicologyUppsala UniversityUppsalaSweden
| | - Mika Gustafsson
- Department of Computational BiologyLuxembourg Centre for Systems BiomedicineUniversity of LuxembourgEsch‐sur‐AlzetteLuxembourg
| | - Luiz Lehmann Coutinho
- Animal Biotechnology Laboratory, Animal Science and Pastures Department“Luiz de Queiroz” College of Agriculture (ESALQ)University of São Paulo (USP)PiracicabaSão PauloBrazil
| | - Per Jensen
- Avian Behavioural Genomics and Physiology GroupIFM BiologyLinköping UniversityLinköpingSweden
| | - Carlos Guerrero‐Bosagna
- Department of Organismal BiologyPhysiology and Environmental ToxicologyUppsala UniversityUppsalaSweden
| |
Collapse
|
3
|
Stangerup I, Georg B, Hannibal J. Prokineticin 2 protein is diurnally expressed in PER2-containing clock neurons in the mouse suprachiasmatic nucleus. Peptides 2025; 183:171339. [PMID: 39755259 DOI: 10.1016/j.peptides.2024.171339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Revised: 12/12/2024] [Accepted: 12/30/2024] [Indexed: 01/06/2025]
Abstract
Expression of prokineticin 2 (PK2) mRNA in the suprachiasmatic nucleus (SCN), also known as the brain's clock, exhibits circadian oscillations with peak levels midday, zeitgeber time (ZT) 4, and almost undetectable levels during night. This circadian expression profile has substantially contributed to the suggested role of PK2 as an SCN output molecule involved in transmitting circadian rhythm of behavior and physiology. Due to unreliable specificity of PK2 antibodies, the 81 amino acid protein has primarily been studied at the mRNA level and correlation between circadian oscillating mRNAs and protein products are infrequent. Hence, data on PK2 protein expression in the SCN is lacking. In this study a thorough validation of a commercial PK2 antibody for immunohistochemistry (IHC) was performed followed by fluorescence IHC on SCN mouse brain sections at six consecutive ZTs over a 24-h cycle (12:12 light-dark, ZT0 =light ON whereas ZT12 =light OFF). Data were visualized and processed using confocal microscopy. Results showed that PK2 protein expression diurnally oscillates with calculated peak expression ZT5:40 ± 1:40 h. Opposite than described for PK2 mRNA, PK2 immunoreactivity was detectable at all times during the 24-h cycle. PK2 was primarily located in neurons of the shell compartment and > 80 % of these neurons co-expressed the core clock protein PER2. In conclusion, PK2 protein expression oscillates as the mRNA, supporting the suggested role of PK2 as a SCN molecule involved in circadian rhythm regulation.
Collapse
Affiliation(s)
- Ida Stangerup
- Department of Clinical Biochemistry, Copenhagen University Hospital - Bispebjerg and Frederiksberg, Copenhagen, Denmark; Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.
| | - Birgitte Georg
- Department of Clinical Biochemistry, Copenhagen University Hospital - Bispebjerg and Frederiksberg, Copenhagen, Denmark
| | - Jens Hannibal
- Department of Clinical Biochemistry, Copenhagen University Hospital - Bispebjerg and Frederiksberg, Copenhagen, Denmark; Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
4
|
Lattanzi R, Miele R. Genetic Polymorphisms of Prokineticins and Prokineticin Receptors Associated with Human Disease. Life (Basel) 2024; 14:1254. [PMID: 39459554 PMCID: PMC11509077 DOI: 10.3390/life14101254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 09/26/2024] [Accepted: 09/27/2024] [Indexed: 10/28/2024] Open
Abstract
Prokineticins (PKs) are low molecular weight proteins that exert their effects by binding to two seven-transmembrane G-protein-coupled receptors (prokineticin receptors, PKRs). The prokineticin system is an important player in the development of various diseases. Several polymorphisms that are associated with infertility, neuroendocrine disorders, Hirschsprung's syndrome (HSCR), idiopathic central precocious puberty (CPP) and congenital disorders such as Kallmann syndrome (KS) have been described for both the PKs and PKR genes. The aim of this study is to summarize and describe the impact of PK/PKR polymorphisms on the pathogenesis and outcome of the above diseases, highlighting the PK system as a therapeutic target and diagnostic biomarker in pathological conditions.
Collapse
Affiliation(s)
- Roberta Lattanzi
- Department of Physiology and Pharmacology “Vittorio Erspamer”, Sapienza University of Rome, Piazzale Aldo Moro 5, I-00185 Rome, Italy
| | - Rossella Miele
- Department of Biochemical Sciences “A. Rossi Fanelli”, CNR-Institute of Molecular Biology and Pathology, Sapienza University of Rome, Piazzale Aldo Moro 5, I-00185 Rome, Italy
| |
Collapse
|
5
|
Peranzoni F, De Castro R, Merlini E, Nguyen YL. 46 XX Ovotesticular Disorder of Sex Development with Gonadotropin-Releasing Hormone Receptor, Autosomal Recessive Heterozygous Missense Mutation and Autosomal Dominant Heterozygous Missense Mutation of the PROKR2 Gene: A Case Report. Glob Med Genet 2024; 11:220-224. [PMID: 38988852 PMCID: PMC11233268 DOI: 10.1055/s-0044-1788060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/12/2024] Open
Abstract
True hermaphroditism is a disorder of sex development (DSD), accounting for less than 5% of all DSD cases, defined by the simultaneous presence of testicular tissue and ovarian tissue in the same individual. In the reported case, the patient presented two genetic mutations involved in the pathogenic pathway of the DSD condition associated with the clinical features of Kallmann syndrome (KS), a developmental disease that associates hypogonadotropic hypogonadism (HH), due to gonadotropin-releasing hormone deficiency, and anosmia, related to the absence or hypoplasia of the olfactory bulbs. Given the variable degree of hyposmia in KS, the distinction between KS and normosmic idiopathic HH is currently unclear, especially as HH patients do not always undergo detailed olfactory testing. This syndrome is very rare, with an estimated prevalence of 1:80,000 in males and 1:40,000 in females. This is the only case report concerning a patient with 46 XX true hermaphroditism affected by HH and digenic inheritance of Kallmann syndrome.
Collapse
Affiliation(s)
- Francesca Peranzoni
- Department of Pediatric Surgery, Lausanne University Hospital, Lausanne, Switzerland
| | | | - Emilio Merlini
- Department of Pediatric Surgery, Hospital of Alexandria, Italy
| | - Yen Le Nguyen
- Department of Pediatric Urology, Vietnam National Hospital of Pediatric 2, Ho Chi Minh City, Vietnam
| |
Collapse
|
6
|
Fullone MR, Maftei D, Vincenzi M, Lattanzi R, Miele R. MRAP2a Binds and Modulates Activity and Localisation of Prokineticin Receptor 1 in Zebrafish. Int J Mol Sci 2024; 25:7816. [PMID: 39063058 PMCID: PMC11277097 DOI: 10.3390/ijms25147816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 06/18/2024] [Accepted: 07/12/2024] [Indexed: 07/28/2024] Open
Abstract
The prokineticin system plays a role in hypothalamic neurons in the control of energy homeostasis. Prokineticin receptors (PKR1 and PKR2), like other G-protein-coupled receptors (GPCRs) are involved in the regulation of energy intake and expenditure and are modulated by the accessory membrane protein 2 of the melanocortin receptor (MRAP2). The aim of this work is to characterise the interaction and regulation of the non-melanocortin receptor PKR1 by MRAP2a in zebrafish (zMRAP2a) in order to use zebrafish as a model for the development of drugs targeting accessory proteins that can alter the localisation and activity of GPCRs. To this end, we first showed that zebrafish PKR1 (zPKR1) is able to interact with both zMRAP2a and human MRAP2 (hMRAP2). This interaction occurs between the N-terminal region of zPKR1 and the C-terminal domain of zMRAP2a, which shows high sequence identity with hMRAP2 and a similar propensity for dimer formation. Moreover, we demonstrated that in Chinese hamster ovary (CHO) cells, zMRAP2a or hMRAP2 are able to modulate zPKR1 activation induced by zebrafish PK2 (zPK2) resulting in an impaired ERK and STAT3 activation.
Collapse
Affiliation(s)
- Maria Rosaria Fullone
- Department of Biochemical Sciences “A. Rossi Fanelli”, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy;
| | - Daniela Maftei
- Department of Physiology and Pharmacology “Vittorio Erspamer”, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy; (D.M.); (M.V.)
| | - Martina Vincenzi
- Department of Physiology and Pharmacology “Vittorio Erspamer”, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy; (D.M.); (M.V.)
| | - Roberta Lattanzi
- Department of Physiology and Pharmacology “Vittorio Erspamer”, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy; (D.M.); (M.V.)
| | - Rossella Miele
- Department of Biochemical Sciences “A. Rossi Fanelli”, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy;
| |
Collapse
|
7
|
Vincenzi M, Kremić A, Jouve A, Lattanzi R, Miele R, Benharouga M, Alfaidy N, Migrenne-Li S, Kanthasamy AG, Porcionatto M, Ferrara N, Tetko IV, Désaubry L, Nebigil CG. Therapeutic Potential of Targeting Prokineticin Receptors in Diseases. Pharmacol Rev 2023; 75:1167-1199. [PMID: 37684054 PMCID: PMC10595023 DOI: 10.1124/pharmrev.122.000801] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 06/11/2023] [Accepted: 06/13/2023] [Indexed: 09/10/2023] Open
Abstract
The prokineticins (PKs) were discovered approximately 20 years ago as small peptides inducing gut contractility. Today, they are established as angiogenic, anorectic, and proinflammatory cytokines, chemokines, hormones, and neuropeptides involved in variety of physiologic and pathophysiological pathways. Their altered expression or mutations implicated in several diseases make them a potential biomarker. Their G-protein coupled receptors, PKR1 and PKR2, have divergent roles that can be therapeutic target for treatment of cardiovascular, metabolic, and neural diseases as well as pain and cancer. This article reviews and summarizes our current knowledge of PK family functions from development of heart and brain to regulation of homeostasis in health and diseases. Finally, the review summarizes the established roles of the endogenous peptides, synthetic peptides and the selective ligands of PKR1 and PKR2, and nonpeptide orthostatic and allosteric modulator of the receptors in preclinical disease models. The present review emphasizes the ambiguous aspects and gaps in our knowledge of functions of PKR ligands and elucidates future perspectives for PK research. SIGNIFICANCE STATEMENT: This review provides an in-depth view of the prokineticin family and PK receptors that can be active without their endogenous ligand and exhibits "constitutive" activity in diseases. Their non- peptide ligands display promising effects in several preclinical disease models. PKs can be the diagnostic biomarker of several diseases. A thorough understanding of the role of prokineticin family and their receptor types in health and diseases is critical to develop novel therapeutic strategies with safety concerns.
Collapse
Affiliation(s)
- Martina Vincenzi
- Regenerative Nanomedicine (UMR 1260), INSERM, University of Strasbourg, Center of Research in Biomedicine of Strasbourg, Strasbourg, France (M.V., A.K., A.J., L.D., C.G.N.); Department of Physiology and Pharmacology (M.V., R.L.), and Department of Biochemical Sciences "Alessandro Rossi Fanelli" (R.M.), Sapienza University of Rome, Rome, Italy; University Grenoble Alpes, INSERM, CEA, Grenoble, France (M.B., N.A.); Unité de Biologie Fonctionnelle et Adaptative, Université Paris Cité, CNRS, Paris, France (S.M.); Department of Physiology and Pharamacology, Center for Neurologic Disease Research, University of Georgia, Athens, Georgia (A.G.K.); Department of Biochemistry, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, Brazil (M.A.P.); Moores Cancer Center, University of California, San Diego, La Jolla, California (N.F.); and Institute of Structural Biology, Helmholtz Munich - German Research Center for Environmental Health (GmbH), Neuherberg, Germany (I.V.T.); and BIGCHEM GmbH, Valerystr. 49, Unterschleissheim, Germany (I.V.T.)
| | - Amin Kremić
- Regenerative Nanomedicine (UMR 1260), INSERM, University of Strasbourg, Center of Research in Biomedicine of Strasbourg, Strasbourg, France (M.V., A.K., A.J., L.D., C.G.N.); Department of Physiology and Pharmacology (M.V., R.L.), and Department of Biochemical Sciences "Alessandro Rossi Fanelli" (R.M.), Sapienza University of Rome, Rome, Italy; University Grenoble Alpes, INSERM, CEA, Grenoble, France (M.B., N.A.); Unité de Biologie Fonctionnelle et Adaptative, Université Paris Cité, CNRS, Paris, France (S.M.); Department of Physiology and Pharamacology, Center for Neurologic Disease Research, University of Georgia, Athens, Georgia (A.G.K.); Department of Biochemistry, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, Brazil (M.A.P.); Moores Cancer Center, University of California, San Diego, La Jolla, California (N.F.); and Institute of Structural Biology, Helmholtz Munich - German Research Center for Environmental Health (GmbH), Neuherberg, Germany (I.V.T.); and BIGCHEM GmbH, Valerystr. 49, Unterschleissheim, Germany (I.V.T.)
| | - Appoline Jouve
- Regenerative Nanomedicine (UMR 1260), INSERM, University of Strasbourg, Center of Research in Biomedicine of Strasbourg, Strasbourg, France (M.V., A.K., A.J., L.D., C.G.N.); Department of Physiology and Pharmacology (M.V., R.L.), and Department of Biochemical Sciences "Alessandro Rossi Fanelli" (R.M.), Sapienza University of Rome, Rome, Italy; University Grenoble Alpes, INSERM, CEA, Grenoble, France (M.B., N.A.); Unité de Biologie Fonctionnelle et Adaptative, Université Paris Cité, CNRS, Paris, France (S.M.); Department of Physiology and Pharamacology, Center for Neurologic Disease Research, University of Georgia, Athens, Georgia (A.G.K.); Department of Biochemistry, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, Brazil (M.A.P.); Moores Cancer Center, University of California, San Diego, La Jolla, California (N.F.); and Institute of Structural Biology, Helmholtz Munich - German Research Center for Environmental Health (GmbH), Neuherberg, Germany (I.V.T.); and BIGCHEM GmbH, Valerystr. 49, Unterschleissheim, Germany (I.V.T.)
| | - Roberta Lattanzi
- Regenerative Nanomedicine (UMR 1260), INSERM, University of Strasbourg, Center of Research in Biomedicine of Strasbourg, Strasbourg, France (M.V., A.K., A.J., L.D., C.G.N.); Department of Physiology and Pharmacology (M.V., R.L.), and Department of Biochemical Sciences "Alessandro Rossi Fanelli" (R.M.), Sapienza University of Rome, Rome, Italy; University Grenoble Alpes, INSERM, CEA, Grenoble, France (M.B., N.A.); Unité de Biologie Fonctionnelle et Adaptative, Université Paris Cité, CNRS, Paris, France (S.M.); Department of Physiology and Pharamacology, Center for Neurologic Disease Research, University of Georgia, Athens, Georgia (A.G.K.); Department of Biochemistry, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, Brazil (M.A.P.); Moores Cancer Center, University of California, San Diego, La Jolla, California (N.F.); and Institute of Structural Biology, Helmholtz Munich - German Research Center for Environmental Health (GmbH), Neuherberg, Germany (I.V.T.); and BIGCHEM GmbH, Valerystr. 49, Unterschleissheim, Germany (I.V.T.)
| | - Rossella Miele
- Regenerative Nanomedicine (UMR 1260), INSERM, University of Strasbourg, Center of Research in Biomedicine of Strasbourg, Strasbourg, France (M.V., A.K., A.J., L.D., C.G.N.); Department of Physiology and Pharmacology (M.V., R.L.), and Department of Biochemical Sciences "Alessandro Rossi Fanelli" (R.M.), Sapienza University of Rome, Rome, Italy; University Grenoble Alpes, INSERM, CEA, Grenoble, France (M.B., N.A.); Unité de Biologie Fonctionnelle et Adaptative, Université Paris Cité, CNRS, Paris, France (S.M.); Department of Physiology and Pharamacology, Center for Neurologic Disease Research, University of Georgia, Athens, Georgia (A.G.K.); Department of Biochemistry, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, Brazil (M.A.P.); Moores Cancer Center, University of California, San Diego, La Jolla, California (N.F.); and Institute of Structural Biology, Helmholtz Munich - German Research Center for Environmental Health (GmbH), Neuherberg, Germany (I.V.T.); and BIGCHEM GmbH, Valerystr. 49, Unterschleissheim, Germany (I.V.T.)
| | - Mohamed Benharouga
- Regenerative Nanomedicine (UMR 1260), INSERM, University of Strasbourg, Center of Research in Biomedicine of Strasbourg, Strasbourg, France (M.V., A.K., A.J., L.D., C.G.N.); Department of Physiology and Pharmacology (M.V., R.L.), and Department of Biochemical Sciences "Alessandro Rossi Fanelli" (R.M.), Sapienza University of Rome, Rome, Italy; University Grenoble Alpes, INSERM, CEA, Grenoble, France (M.B., N.A.); Unité de Biologie Fonctionnelle et Adaptative, Université Paris Cité, CNRS, Paris, France (S.M.); Department of Physiology and Pharamacology, Center for Neurologic Disease Research, University of Georgia, Athens, Georgia (A.G.K.); Department of Biochemistry, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, Brazil (M.A.P.); Moores Cancer Center, University of California, San Diego, La Jolla, California (N.F.); and Institute of Structural Biology, Helmholtz Munich - German Research Center for Environmental Health (GmbH), Neuherberg, Germany (I.V.T.); and BIGCHEM GmbH, Valerystr. 49, Unterschleissheim, Germany (I.V.T.)
| | - Nadia Alfaidy
- Regenerative Nanomedicine (UMR 1260), INSERM, University of Strasbourg, Center of Research in Biomedicine of Strasbourg, Strasbourg, France (M.V., A.K., A.J., L.D., C.G.N.); Department of Physiology and Pharmacology (M.V., R.L.), and Department of Biochemical Sciences "Alessandro Rossi Fanelli" (R.M.), Sapienza University of Rome, Rome, Italy; University Grenoble Alpes, INSERM, CEA, Grenoble, France (M.B., N.A.); Unité de Biologie Fonctionnelle et Adaptative, Université Paris Cité, CNRS, Paris, France (S.M.); Department of Physiology and Pharamacology, Center for Neurologic Disease Research, University of Georgia, Athens, Georgia (A.G.K.); Department of Biochemistry, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, Brazil (M.A.P.); Moores Cancer Center, University of California, San Diego, La Jolla, California (N.F.); and Institute of Structural Biology, Helmholtz Munich - German Research Center for Environmental Health (GmbH), Neuherberg, Germany (I.V.T.); and BIGCHEM GmbH, Valerystr. 49, Unterschleissheim, Germany (I.V.T.)
| | - Stephanie Migrenne-Li
- Regenerative Nanomedicine (UMR 1260), INSERM, University of Strasbourg, Center of Research in Biomedicine of Strasbourg, Strasbourg, France (M.V., A.K., A.J., L.D., C.G.N.); Department of Physiology and Pharmacology (M.V., R.L.), and Department of Biochemical Sciences "Alessandro Rossi Fanelli" (R.M.), Sapienza University of Rome, Rome, Italy; University Grenoble Alpes, INSERM, CEA, Grenoble, France (M.B., N.A.); Unité de Biologie Fonctionnelle et Adaptative, Université Paris Cité, CNRS, Paris, France (S.M.); Department of Physiology and Pharamacology, Center for Neurologic Disease Research, University of Georgia, Athens, Georgia (A.G.K.); Department of Biochemistry, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, Brazil (M.A.P.); Moores Cancer Center, University of California, San Diego, La Jolla, California (N.F.); and Institute of Structural Biology, Helmholtz Munich - German Research Center for Environmental Health (GmbH), Neuherberg, Germany (I.V.T.); and BIGCHEM GmbH, Valerystr. 49, Unterschleissheim, Germany (I.V.T.)
| | - Anumantha G Kanthasamy
- Regenerative Nanomedicine (UMR 1260), INSERM, University of Strasbourg, Center of Research in Biomedicine of Strasbourg, Strasbourg, France (M.V., A.K., A.J., L.D., C.G.N.); Department of Physiology and Pharmacology (M.V., R.L.), and Department of Biochemical Sciences "Alessandro Rossi Fanelli" (R.M.), Sapienza University of Rome, Rome, Italy; University Grenoble Alpes, INSERM, CEA, Grenoble, France (M.B., N.A.); Unité de Biologie Fonctionnelle et Adaptative, Université Paris Cité, CNRS, Paris, France (S.M.); Department of Physiology and Pharamacology, Center for Neurologic Disease Research, University of Georgia, Athens, Georgia (A.G.K.); Department of Biochemistry, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, Brazil (M.A.P.); Moores Cancer Center, University of California, San Diego, La Jolla, California (N.F.); and Institute of Structural Biology, Helmholtz Munich - German Research Center for Environmental Health (GmbH), Neuherberg, Germany (I.V.T.); and BIGCHEM GmbH, Valerystr. 49, Unterschleissheim, Germany (I.V.T.)
| | - Marimelia Porcionatto
- Regenerative Nanomedicine (UMR 1260), INSERM, University of Strasbourg, Center of Research in Biomedicine of Strasbourg, Strasbourg, France (M.V., A.K., A.J., L.D., C.G.N.); Department of Physiology and Pharmacology (M.V., R.L.), and Department of Biochemical Sciences "Alessandro Rossi Fanelli" (R.M.), Sapienza University of Rome, Rome, Italy; University Grenoble Alpes, INSERM, CEA, Grenoble, France (M.B., N.A.); Unité de Biologie Fonctionnelle et Adaptative, Université Paris Cité, CNRS, Paris, France (S.M.); Department of Physiology and Pharamacology, Center for Neurologic Disease Research, University of Georgia, Athens, Georgia (A.G.K.); Department of Biochemistry, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, Brazil (M.A.P.); Moores Cancer Center, University of California, San Diego, La Jolla, California (N.F.); and Institute of Structural Biology, Helmholtz Munich - German Research Center for Environmental Health (GmbH), Neuherberg, Germany (I.V.T.); and BIGCHEM GmbH, Valerystr. 49, Unterschleissheim, Germany (I.V.T.)
| | - Napoleone Ferrara
- Regenerative Nanomedicine (UMR 1260), INSERM, University of Strasbourg, Center of Research in Biomedicine of Strasbourg, Strasbourg, France (M.V., A.K., A.J., L.D., C.G.N.); Department of Physiology and Pharmacology (M.V., R.L.), and Department of Biochemical Sciences "Alessandro Rossi Fanelli" (R.M.), Sapienza University of Rome, Rome, Italy; University Grenoble Alpes, INSERM, CEA, Grenoble, France (M.B., N.A.); Unité de Biologie Fonctionnelle et Adaptative, Université Paris Cité, CNRS, Paris, France (S.M.); Department of Physiology and Pharamacology, Center for Neurologic Disease Research, University of Georgia, Athens, Georgia (A.G.K.); Department of Biochemistry, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, Brazil (M.A.P.); Moores Cancer Center, University of California, San Diego, La Jolla, California (N.F.); and Institute of Structural Biology, Helmholtz Munich - German Research Center for Environmental Health (GmbH), Neuherberg, Germany (I.V.T.); and BIGCHEM GmbH, Valerystr. 49, Unterschleissheim, Germany (I.V.T.)
| | - Igor V Tetko
- Regenerative Nanomedicine (UMR 1260), INSERM, University of Strasbourg, Center of Research in Biomedicine of Strasbourg, Strasbourg, France (M.V., A.K., A.J., L.D., C.G.N.); Department of Physiology and Pharmacology (M.V., R.L.), and Department of Biochemical Sciences "Alessandro Rossi Fanelli" (R.M.), Sapienza University of Rome, Rome, Italy; University Grenoble Alpes, INSERM, CEA, Grenoble, France (M.B., N.A.); Unité de Biologie Fonctionnelle et Adaptative, Université Paris Cité, CNRS, Paris, France (S.M.); Department of Physiology and Pharamacology, Center for Neurologic Disease Research, University of Georgia, Athens, Georgia (A.G.K.); Department of Biochemistry, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, Brazil (M.A.P.); Moores Cancer Center, University of California, San Diego, La Jolla, California (N.F.); and Institute of Structural Biology, Helmholtz Munich - German Research Center for Environmental Health (GmbH), Neuherberg, Germany (I.V.T.); and BIGCHEM GmbH, Valerystr. 49, Unterschleissheim, Germany (I.V.T.)
| | - Laurent Désaubry
- Regenerative Nanomedicine (UMR 1260), INSERM, University of Strasbourg, Center of Research in Biomedicine of Strasbourg, Strasbourg, France (M.V., A.K., A.J., L.D., C.G.N.); Department of Physiology and Pharmacology (M.V., R.L.), and Department of Biochemical Sciences "Alessandro Rossi Fanelli" (R.M.), Sapienza University of Rome, Rome, Italy; University Grenoble Alpes, INSERM, CEA, Grenoble, France (M.B., N.A.); Unité de Biologie Fonctionnelle et Adaptative, Université Paris Cité, CNRS, Paris, France (S.M.); Department of Physiology and Pharamacology, Center for Neurologic Disease Research, University of Georgia, Athens, Georgia (A.G.K.); Department of Biochemistry, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, Brazil (M.A.P.); Moores Cancer Center, University of California, San Diego, La Jolla, California (N.F.); and Institute of Structural Biology, Helmholtz Munich - German Research Center for Environmental Health (GmbH), Neuherberg, Germany (I.V.T.); and BIGCHEM GmbH, Valerystr. 49, Unterschleissheim, Germany (I.V.T.)
| | - Canan G Nebigil
- Regenerative Nanomedicine (UMR 1260), INSERM, University of Strasbourg, Center of Research in Biomedicine of Strasbourg, Strasbourg, France (M.V., A.K., A.J., L.D., C.G.N.); Department of Physiology and Pharmacology (M.V., R.L.), and Department of Biochemical Sciences "Alessandro Rossi Fanelli" (R.M.), Sapienza University of Rome, Rome, Italy; University Grenoble Alpes, INSERM, CEA, Grenoble, France (M.B., N.A.); Unité de Biologie Fonctionnelle et Adaptative, Université Paris Cité, CNRS, Paris, France (S.M.); Department of Physiology and Pharamacology, Center for Neurologic Disease Research, University of Georgia, Athens, Georgia (A.G.K.); Department of Biochemistry, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, Brazil (M.A.P.); Moores Cancer Center, University of California, San Diego, La Jolla, California (N.F.); and Institute of Structural Biology, Helmholtz Munich - German Research Center for Environmental Health (GmbH), Neuherberg, Germany (I.V.T.); and BIGCHEM GmbH, Valerystr. 49, Unterschleissheim, Germany (I.V.T.)
| |
Collapse
|
8
|
Chen L, Lv F, Min S, Yang Y, Liu D. Roles of prokineticin 2 in electroconvulsive shock-induced memory impairment via regulation of phenotype polarization in astrocytes. Behav Brain Res 2023; 446:114350. [PMID: 36804440 DOI: 10.1016/j.bbr.2023.114350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 02/05/2023] [Accepted: 02/14/2023] [Indexed: 02/17/2023]
Abstract
Electroconvulsive shock (ECT) is the most effective treatment for depression but can impair learning and memory. ECT is increasingly being shown to activate astrocytes and induce neuroinflammation, resulting in cognitive decline. Activated astrocytes can differentiate into two subtypes, A1-type astrocytes and A2-type astrocytes. Regarding cognitive function, neurotoxic A1 astrocytes and neuroprotective A2 astrocytes may exhibit opposite effects. Specifically, prokineticin 2 (PK2) functions as an essential mediator of inflammation and induces a selective A2-protective phenotype in astrocytes. This study aimed to clarify how PK2 promotes improved learning memory following electroconvulsive shock (ECS). As part of the study, rats were modeled using chronic unpredictable mild stress. Behavioral experiments were conducted to assess their cognitive abilities and depression-like behaviors. Western blot was used to determine the expression of PK2. Immunohistochemical and electron microscopy analyses of the hippocampal CA1 region were conducted to study the activation of astrocyte subtypes and synaptic ultrastructure, respectively. In this study, rats' spatial learning and memory impairment began to improve as activated A1-subtype astrocytes gradually decreased, and PK2 and A2 phenotype activation peaked on the third day after ECS. PKRA7 (PK2 antagonist) inhibits A2-type astrocyte activation partially and suppresses spatial learning and memory improvement. Collectively, our findings support that PK2 may induce a selective modulation of astrocytic polarization to a protective phenotype to promote learning and memory improvement after ECS.
Collapse
Affiliation(s)
- Lihao Chen
- Department of Anesthesiology, the First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Feng Lv
- Department of Anesthesiology, the First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Su Min
- Department of Anesthesiology, the First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China.
| | - You Yang
- Department of Anesthesiology, the First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Di Liu
- Department of Anesthesiology, the First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| |
Collapse
|
9
|
Lattanzi R, Miele R. Non-Peptide Agonists and Antagonists of the Prokineticin Receptors. Curr Issues Mol Biol 2022; 44:6323-6332. [PMID: 36547092 PMCID: PMC9776816 DOI: 10.3390/cimb44120431] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 12/07/2022] [Accepted: 12/09/2022] [Indexed: 12/14/2022] Open
Abstract
The prokineticin family comprises a group of secreted peptides that can be classified as chemokines based on their structural features and chemotactic and immunomodulatory functions. Prokineticins (PKs) bind with high affinity to two G protein-coupled receptors (GPCRs). Prokineticin receptor 1 (PKR1) and prokineticin receptor 2 (PKR2) are involved in a variety of physiological functions such as angiogenesis and neurogenesis, hematopoiesis, the control of hypothalamic hormone secretion, the regulation of circadian rhythm and the modulation of complex behaviors such as feeding and drinking. Dysregulation of the system leads to an inflammatory process that is the substrate for many pathological conditions such as cancer, pain, neuroinflammation and neurodegenerative diseases such as Alzheimer's and Parkinson's disease. The use of PKR's antagonists reduces PK2/PKRs upregulation triggered by various inflammatory processes, suggesting that a pharmacological blockade of PKRs may be a successful strategy to treat inflammatory/neuroinflammatory diseases, at least in rodents. Under certain circumstances, the PK system exhibits protective/neuroprotective effects, so PKR agonists have also been developed to modulate the prokineticin system.
Collapse
Affiliation(s)
- Roberta Lattanzi
- Department of Physiology and Pharmacology “Vittorio Erspamer”, Sapienza University of Rome, Piazzale Aldo Moro 5, I-00185 Rome, Italy
| | - Rossella Miele
- Department of Biochemical Sciences “A. Rossi Fanelli”, CNR-Institute of Molecular Biology and Pathology, Sapienza University of Rome, Piazzale Aldo Moro 5, I-00185 Rome, Italy
| |
Collapse
|
10
|
Lu Q, Kim JY. Mammalian circadian networks mediated by the suprachiasmatic nucleus. FEBS J 2022; 289:6589-6604. [PMID: 34657394 DOI: 10.1111/febs.16233] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Revised: 10/09/2021] [Accepted: 10/15/2021] [Indexed: 12/28/2022]
Abstract
The brain has a complex structure composed of hundreds of regions, forming networks to cooperate body functions. Therefore, understanding how various brain regions communicate with each other and with peripheral organs is important to understand human physiology. The suprachiasmatic nucleus (SCN) in the brain is the circadian pacemaker. The SCN receives photic information from the environment and conveys this to other parts of the brain and body to synchronize all circadian clocks. The circadian clock is an endogenous oscillator that generates daily rhythms in metabolism and physiology in almost all cells via a conserved transcriptional-translational negative feedback loop. So, the information flow from the environment to the SCN to other tissues synchronizes locally distributed circadian clocks to maintain homeostasis. Thus, understanding the circadian networks and how they adjust to environmental changes will better understand human physiology. This review will focus on circadian networks mediated by the SCN to understand how the environment, brain, and peripheral tissues form networks for cooperation.
Collapse
Affiliation(s)
- Qingqing Lu
- Department of Biomedical Sciences, City University of Hong Kong, Hong Kong, China
| | - Jin Young Kim
- Department of Biomedical Sciences, City University of Hong Kong, Hong Kong, China
- Tung Foundation Biomedical Sciences Centre, Hong Kong, China
- Shenzhen Research Institute, City University of Hong Kong, Shenzhen, China
| |
Collapse
|
11
|
Petrella C, Spaziani M, D’Orazi V, Tarani L, Terracina S, Tarani F, Micangeli G, Barbato C, Minni A, Greco A, Isidori AM, Ferraguti G, Fiore M. Prokineticin 2/PROK2 and Male Infertility. Biomedicines 2022; 10:2389. [PMID: 36289651 PMCID: PMC9598863 DOI: 10.3390/biomedicines10102389] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 09/15/2022] [Accepted: 09/23/2022] [Indexed: 11/16/2022] Open
Abstract
Male infertility represents about 50% of the causes of infertility in couples. The diagnosis process represents an important procedure for defining, when possible, the causes and approaching treatments (pharmacological, surgical) aimed at overcoming the problem. Several scientific studies have set out to discover early and indicative markers capable of providing information on the biological origin of infertility and increase current knowledge in the context of new potential therapeutic approaches. The prokineticin system (PROK) consists of the prokineticin 1 (PROK1) and prokineticin 2 (PROK2) proteins. Through the activation of two G-protein receptors (PROKR1 and PROKR2) regulate a wide range of biological functions, including gastrointestinal motility, circadian rhythm regulation, neurogenesis, angiogenesis, pain perception, and mood regulation. Several studies have highlighted the crucial role of the PROK system in the development and maturation of both male and female human reproductive organs. Particularly in men, the PROK system represents a new system useful to clarify some aspects of testicular pathophysiology and provide new potential hypotheses for therapeutic intervention. This narrative review aims to illustrate the state of the art regarding, in particular, the role of PROK2 in male infertility.
Collapse
Affiliation(s)
- Carla Petrella
- Institute of Biochemistry and Cell Biology, Section of Neurobiology, National Research Council (IBBC-CNR), 00161 Rome, Italy
| | - Matteo Spaziani
- Department of Experimental Medicine, Section of Medical Pathophysiology, Food Science and Endocrinology, Sapienza University of Rome, 00161 Rome, Italy
| | - Valerio D’Orazi
- Department of Surgical Sciences, Sapienza University of Rome, 00161 Rome, Italy
| | - Luigi Tarani
- Department of Pediatrics, Sapienza University of Rome, 00161 Rome, Italy
| | - Sergio Terracina
- Department of Experimental Medicine, Sapienza University Hospital of Rome, 00161 Rome, Italy
| | - Francesca Tarani
- Department of Pediatrics, Sapienza University of Rome, 00161 Rome, Italy
| | - Ginevra Micangeli
- Department of Pediatrics, Sapienza University of Rome, 00161 Rome, Italy
| | - Christian Barbato
- Institute of Biochemistry and Cell Biology, Section of Neurobiology, National Research Council (IBBC-CNR), 00161 Rome, Italy
| | - Antonio Minni
- Department of Sense Organs, Sapienza University Hospital of Rome, 00161 Rome, Italy
| | - Antonio Greco
- Department of Sense Organs, Sapienza University Hospital of Rome, 00161 Rome, Italy
| | - Andrea M. Isidori
- Department of Experimental Medicine, Section of Medical Pathophysiology, Food Science and Endocrinology, Sapienza University of Rome, 00161 Rome, Italy
| | - Giampiero Ferraguti
- Department of Experimental Medicine, Sapienza University Hospital of Rome, 00161 Rome, Italy
| | - Marco Fiore
- Institute of Biochemistry and Cell Biology, Section of Neurobiology, National Research Council (IBBC-CNR), 00161 Rome, Italy
| |
Collapse
|
12
|
Chrobok L, Ahern J, Piggins HD. Ticking and talking in the brainstem satiety centre: Circadian timekeeping and interactions in the diet-sensitive clock of the dorsal vagal complex. Front Physiol 2022; 13:931167. [PMID: 36117684 PMCID: PMC9481231 DOI: 10.3389/fphys.2022.931167] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Accepted: 08/08/2022] [Indexed: 11/13/2022] Open
Abstract
The dorsal vagal complex (DVC) is a key hub for integrating blood-borne, central, and vagal ascending signals that convey important information on metabolic and homeostatic state. Research implicates the DVC in the termination of food intake and the transition to satiety, and consequently it is considered a brainstem satiety centre. In natural and laboratory settings, animals have distinct times of the day or circadian phases at which they prefer to eat, but if and how circadian signals affect DVC activity is not well understood. Here, we evaluate how intrinsic circadian signals regulate molecular and cellular activity in the area postrema (AP), nucleus of the solitary tract (NTS), and dorsal motor nucleus of the vagus (DMV) of the DVC. The hierarchy and potential interactions among these oscillators and their response to changes in diet are considered a simple framework in which to model these oscillators and their interactions is suggested. We propose possible functions of the DVC in the circadian control of feeding behaviour and speculate on future research directions including the translational value of knowledge of intrinsic circadian timekeeping the brainstem.
Collapse
|
13
|
Yu X, Chen J, Tang H, Tu Q, Li Y, Yuan X, Zhang X, Cao J, Molloy DP, Yin Y, Chen D, Song Z, Xu P. Identifying Prokineticin2 as a Novel Immunomodulatory Factor in Diagnosis and Treatment of Sepsis. Crit Care Med 2022; 50:674-684. [PMID: 34582411 PMCID: PMC8923365 DOI: 10.1097/ccm.0000000000005335] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
OBJECTIVES Sepsis remains a highly lethal disease, whereas the precise reasons for death remain poorly understood. Prokineticin2 is a secreted protein that regulates diverse biological processes. Whether prokineticin2 is beneficial or deleterious to sepsis and the underlying mechanisms remain unknown. DESIGN Prospective randomized animal investigation and in vitro studies. SETTING Research laboratory at a medical university hospital. SUBJECTS Prokineticin2 deficiency and wild-type C57BL/6 mice were used for in vivo studies; sepsis patients by Sepsis-3 definitions, patient controls, and healthy controls were used to obtain blood for in vitro studies. INTERVENTIONS Prokineticin2 concentrations were measured and analyzed in human septic patients, patient controls, and healthy individuals. The effects of prokineticin2 on sepsis-related survival, bacterial burden, organ injury, and inflammation were assessed in an animal model of cecal ligation and puncture-induced polymicrobial sepsis. In vitro cell models were also used to study the role of prokineticin2 on antibacterial response of macrophages. MEASUREMENTS AND MAIN RESULTS Prokineticin2 concentration is dramatically decreased in the patients with sepsis and septic shock compared with those of patient controls and healthy controls. Furthermore, the prokineticin2 concentration in these patients died of sepsis or septic shock is significantly lower than those survival patients with sepsis or septic shock, indicating the potential value of prokineticin2 in the diagnosis of sepsis and septic shock, as well as the potential value in predicting mortality in adult patients with sepsis and septic shock. In animal model, recombinant prokineticin2 administration protected against sepsis-related deaths in both heterozygous prokineticin2 deficient mice and wild-type mice and alleviated sepsis-induced multiple organ damage. In in vitro cell models, prokineticin2 enhanced the phagocytic and bactericidal functions of macrophage through signal transducers and activators of transcription 3 pathway which could be abolished by signal transducers and activators of transcription 3 inhibitors S3I-201. Depletion of macrophages reversed prokineticin2-mediated protection against polymicrobial sepsis. CONCLUSIONS This study elucidated a previously unrecognized role of prokineticin2 in clinical diagnosis and treatment of sepsis. The proof-of-concept study determined a central role of prokineticin2 in alleviating sepsis-induced death by regulation of macrophage function, which presents a new strategy for sepsis immunotherapy.
Collapse
Affiliation(s)
- Xiaoyan Yu
- Department of Clinical Laboratory, Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Child Infection and Immunity, Chongqing, China
| | - Jingyi Chen
- Department of Clinical Laboratory, Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Child Infection and Immunity, Chongqing, China
| | - Hong Tang
- Department of Critical Care Medicine, Department of Surgical Intensive Care Unit, the First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Qianqian Tu
- Department of Clinical Laboratory, Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Child Infection and Immunity, Chongqing, China
| | - Yue Li
- Department of Biochemistry and Molecular Biology, Molecular Medicine and Cancer Research Center, Chongqing Medical University, Chongqing, China
| | - Xi Yuan
- Department of Clinical Laboratory, Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Child Infection and Immunity, Chongqing, China
| | - Xuemei Zhang
- Department of Laboratory Medicine, Key Laboratory of Diagnostic Medicine, Chongqing Medical University, Chongqing, China
| | - Ju Cao
- Department of Laboratory Medicine, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - David Paul Molloy
- Department of Biochemistry and Molecular Biology, College of Basic Medical Sciences, ChongQing Medical University, Chongqing, China
| | - Yibing Yin
- Department of Laboratory Medicine, Key Laboratory of Diagnostic Medicine, Chongqing Medical University, Chongqing, China
| | - Dapeng Chen
- Department of Clinical Laboratory, Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Child Infection and Immunity, Chongqing, China
| | - Zhixin Song
- Department of Clinical Laboratory, Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Child Infection and Immunity, Chongqing, China
| | - Pingyong Xu
- Department of Clinical Laboratory, Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Child Infection and Immunity, Chongqing, China
- Key Laboratory of RNA Biology, National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
14
|
Young CJ, Lyons D, Piggins HD. Circadian Influences on the Habenula and Their Potential Contribution to Neuropsychiatric Disorders. Front Behav Neurosci 2022; 15:815700. [PMID: 35153695 PMCID: PMC8831701 DOI: 10.3389/fnbeh.2021.815700] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Accepted: 12/27/2021] [Indexed: 12/13/2022] Open
Abstract
The neural circadian system consists of the master circadian clock in the hypothalamic suprachiasmatic nuclei (SCN) communicating time of day cues to the rest of the body including other brain areas that also rhythmically express circadian clock genes. Over the past 16 years, evidence has emerged to indicate that the habenula of the epithalamus is a candidate extra-SCN circadian oscillator. When isolated from the SCN, the habenula sustains rhythms in clock gene expression and neuronal activity, with the lateral habenula expressing more robust rhythms than the adjacent medial habenula. The lateral habenula is responsive to putative SCN output factors as well as light information conveyed to the perihabenula area. Neuronal activity in the lateral habenula is altered in depression and intriguingly disruptions in circadian rhythms can elevate risk of developing mental health disorders including depression. In this review, we will principally focus on how circadian and light signals affect the lateral habenula and evaluate the possibility that alteration in these influences contribute to mental health disorders.
Collapse
|
15
|
Chen IJ, Yang CP, Lin SH, Lai CM, Wong CS. The Circadian Hormone Melatonin Inhibits Morphine-Induced Tolerance and Inflammation via the Activation of Antioxidative Enzymes. Antioxidants (Basel) 2020; 9:antiox9090780. [PMID: 32842597 PMCID: PMC7555201 DOI: 10.3390/antiox9090780] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Revised: 08/06/2020] [Accepted: 08/20/2020] [Indexed: 12/16/2022] Open
Abstract
Opioids are commonly prescribed for clinical pain management; however, dose-escalation, tolerance, dependence, and addiction limit their usability for long-term chronic pain. The associated poor sleep pattern alters the circadian neurobiology, and further compromises the pain management. Here, we aim to determine the correlation between constant light exposure and morphine tolerance and explore the potential of melatonin as an adjuvant of morphine for neuropathic pain treatment. Methods: Wistar rats were preconditioned under constant light (LL) or a regular light/dark (LD) cycle before neuropathic pain induction by chronic constriction injury. An intrathecal (i.t.) osmotic pump was used for continued drug delivery to induce morphine tolerance. Pain assessments, including the plantar test, static weight-bearing symmetry, and tail-flick latency, were used to determine the impact of the light disruption or exogenous melatonin on the morphine tolerance progression. Results: constant light exposure significantly aggravates morphine tolerance in neuropathic rats. Continued infusion of low-dose melatonin (3 μg/h) attenuated morphine tolerance in both neuropathic and naïve rats. This protective effect was independent of melatonin receptors, as shown by the neutral effect of melatonin receptors inhibitors. The transcriptional profiling demonstrated a significant enhancement of proinflammatory and pain-related receptor genes in morphine-tolerant rats. In contrast, this transcriptional pattern was abolished by melatonin coinfusion along with the upregulation of the Kcnip3 gene. Moreover, melatonin increased the antioxidative enzymes SOD2, HO-1, and GPx1 in the spinal cord of morphine-tolerant rats. Conclusion: Dysregulated circadian light exposure significantly compromises the efficacy of morphine’s antinociceptive effect, while the cotreatment with melatonin attenuates morphine tolerance/hyperalgesia development. Our results suggest the potential of melatonin as an adjuvant of morphine in clinical pain management, particularly in patients who need long-term opioid treatment.
Collapse
Affiliation(s)
- Ing-Jung Chen
- Department of Anesthesiology, Cathay General Hospital, Taipei 10630, Taiwan;
- Department of Medical Research, Cathay General Hospital, Taipei 10630, Taiwan
| | - Chih-Ping Yang
- Department of Anesthesiology, Chi-Mei Medical Center, Tainan 71004, Taiwan;
- Department of Anesthesiology, School of Medicine, National Defense Medical Center, Taipei 11490, Taiwan
| | - Sheng-Hsiung Lin
- Planning & Management Office, Tri-Service General Hospital, Taipei 11490, Taiwan;
| | - Chang-Mei Lai
- Graduate Institute of Medical Sciences, National Defense Medical Center, Taipei 11490, Taiwan;
| | - Chih-Shung Wong
- Department of Anesthesiology, Cathay General Hospital, Taipei 10630, Taiwan;
- Graduate Institute of Medical Sciences, National Defense Medical Center, Taipei 11490, Taiwan;
- Correspondence: ; Tel.: +886-2-27082121
| |
Collapse
|
16
|
Zhang T, Xie P, Dong Y, Liu Z, Zhou F, Pan D, Huang Z, Zhai Q, Gu Y, Wu Q, Tanaka N, Obata Y, Bradley A, Lelliott CJ, Sanger Institute Mouse Genetics Project, Nutter LMJ, McKerlie C, Flenniken AM, Champy MF, Sorg T, Herault Y, Angelis MHD, Durner VG, Mallon AM, Brown SDM, Meehan T, Parkinson HE, Smedley D, Lloyd KCK, Yan J, Gao X, Seong JK, Wang CKL, Sedlacek R, Liu Y, Rozman J, Yang L, Xu Y. High-throughput discovery of genetic determinants of circadian misalignment. PLoS Genet 2020; 16:e1008577. [PMID: 31929527 PMCID: PMC6980734 DOI: 10.1371/journal.pgen.1008577] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Revised: 01/24/2020] [Accepted: 12/19/2019] [Indexed: 12/31/2022] Open
Abstract
Circadian systems provide a fitness advantage to organisms by allowing them to adapt to daily changes of environmental cues, such as light/dark cycles. The molecular mechanism underlying the circadian clock has been well characterized. However, how internal circadian clocks are entrained with regular daily light/dark cycles remains unclear. By collecting and analyzing indirect calorimetry (IC) data from more than 2000 wild-type mice available from the International Mouse Phenotyping Consortium (IMPC), we show that the onset time and peak phase of activity and food intake rhythms are reliable parameters for screening defects of circadian misalignment. We developed a machine learning algorithm to quantify these two parameters in our misalignment screen (SyncScreener) with existing datasets and used it to screen 750 mutant mouse lines from five IMPC phenotyping centres. Mutants of five genes (Slc7a11, Rhbdl1, Spop, Ctc1 and Oxtr) were found to be associated with altered patterns of activity or food intake. By further studying the Slc7a11tm1a/tm1a mice, we confirmed its advanced activity phase phenotype in response to a simulated jetlag and skeleton photoperiod stimuli. Disruption of Slc7a11 affected the intercellular communication in the suprachiasmatic nucleus, suggesting a defect in synchronization of clock neurons. Our study has established a systematic phenotype analysis approach that can be used to uncover the mechanism of circadian entrainment in mice. Synchronization to environmental changes such as day and night cycles and seasonal cycles is critical for survival. Organisms have therefore evolved a specialized circadian system to anticipate and adapt to daily changes in the environment. Loss of synchrony between the internal circadian clock and environment day and night changes is responsible for jet lag, but may also promote sleep disorders, metabolic disorders and many diseases. The availability of large amounts of mouse data from the International Mouse Phenotype Consortium provides new opportunities to identify novel genetic components of mouse behaviour and metabolism. In this study, we performed a high-throughput identification of genetic components of circadian misalignment by developing a machine learning-based algorithm. By analyzing the indirect calorimetry parameters from more than 2000 C57BL/6N mice and mice from 750 mutant lines, we identified 5 genes involved in circadian misalignment of activity and feeding behaviour. Further analyzing genetic knock-out mice for one of these genes, we were able to validate our screening method by functional studies. Our systemic analysis thus paves the way for searching the genetic determinants for circadian misalignment.
Collapse
Affiliation(s)
- Tao Zhang
- Cambridge-Suda Genomic Resource Center, Jiangsu Key Laboratory of Neuropsychiatric Diseases, Medical college of Soochow University, Suzhou, Jiangsu, China
| | - Pancheng Xie
- Cambridge-Suda Genomic Resource Center, Jiangsu Key Laboratory of Neuropsychiatric Diseases, Medical college of Soochow University, Suzhou, Jiangsu, China
| | - Yingying Dong
- Cambridge-Suda Genomic Resource Center, Jiangsu Key Laboratory of Neuropsychiatric Diseases, Medical college of Soochow University, Suzhou, Jiangsu, China
| | - Zhiwei Liu
- Cambridge-Suda Genomic Resource Center, Jiangsu Key Laboratory of Neuropsychiatric Diseases, Medical college of Soochow University, Suzhou, Jiangsu, China
| | - Fei Zhou
- Cambridge-Suda Genomic Resource Center, Jiangsu Key Laboratory of Neuropsychiatric Diseases, Medical college of Soochow University, Suzhou, Jiangsu, China
| | - Dejing Pan
- Cambridge-Suda Genomic Resource Center, Jiangsu Key Laboratory of Neuropsychiatric Diseases, Medical college of Soochow University, Suzhou, Jiangsu, China
| | - Zhengyun Huang
- Cambridge-Suda Genomic Resource Center, Jiangsu Key Laboratory of Neuropsychiatric Diseases, Medical college of Soochow University, Suzhou, Jiangsu, China
| | - Qiaocheng Zhai
- Cambridge-Suda Genomic Resource Center, Jiangsu Key Laboratory of Neuropsychiatric Diseases, Medical college of Soochow University, Suzhou, Jiangsu, China
| | - Yue Gu
- Cambridge-Suda Genomic Resource Center, Jiangsu Key Laboratory of Neuropsychiatric Diseases, Medical college of Soochow University, Suzhou, Jiangsu, China
| | - Qingyu Wu
- Cyrus Tang Hematology Center, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, China
- State Key Laboratory of Radiation Medicine and Prevention, Medical college of Soochow University, Suzhou, China
| | | | | | - Allan Bradley
- The Wellcome Trust Sanger Institute, Wellcome Genome Campus, Hinxton, United Kingdom
| | | | | | | | | | | | | | - Tania Sorg
- CELPHEDIA, PHENOMIN, Institut Clinique de la Souris (ICS), Illkirch, France
| | - Yann Herault
- CELPHEDIA, PHENOMIN, Institut Clinique de la Souris (ICS), Illkirch, France
| | - Martin Hrabe De Angelis
- German Mouse Clinic, Institute of Experimental Genetics, Helmholtz Zentrum München, German Research Center for Environmental Health, Munich, Germany
- Czech Centre for Phenogenomics, Institute of Molecular Genetics of the Czech Academy of Sciences, Vestec, Czech Republic
| | - Valerie Gailus Durner
- German Mouse Clinic, Institute of Experimental Genetics, Helmholtz Zentrum München, German Research Center for Environmental Health, Munich, Germany
| | - Ann-Marie Mallon
- Medical Research Council Harwell Institute (Mammalian Genetics Unit and Mary Lyon Centre), Harwell, United Kingdom
| | - Steve D. M. Brown
- Medical Research Council Harwell Institute (Mammalian Genetics Unit and Mary Lyon Centre), Harwell, United Kingdom
| | - Terry Meehan
- European Molecular Biology Laboratory, European Bioinformatics Institute, Hinxton, United Kingdom
| | - Helen E. Parkinson
- European Molecular Biology Laboratory, European Bioinformatics Institute, Hinxton, United Kingdom
| | - Damian Smedley
- School of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom
| | - K. C. Kent Lloyd
- School of Medicine and Mouse Biology Program, University of California, Davis, California, United States of America
| | - Jun Yan
- SKL of Pharmaceutical Biotechnology and Model Animal Research Center, Collaborative Innovation Center for Genetics and Development, Nanjing Biomedical Research Institute, Nanjing University, Nanjing, China
| | - Xiang Gao
- SKL of Pharmaceutical Biotechnology and Model Animal Research Center, Collaborative Innovation Center for Genetics and Development, Nanjing Biomedical Research Institute, Nanjing University, Nanjing, China
| | - Je Kyung Seong
- College of Veterinary Medicine, Seoul National University, and Korea Mouse Phenotyping Center, Seoul, Republic of Korea
| | - Chi-Kuang Leo Wang
- National Laboratory Animal Center, National Applied Research Laboratories (NARLabs), Taipei, Taiwan
| | - Radislav Sedlacek
- Czech Centre for Phenogenomics, Institute of Molecular Genetics of the Czech Academy of Sciences, Vestec, Czech Republic
| | - Yi Liu
- Department of Physiology, University of Texas Southwestern Medical Center, Dallas, Texas, United States of America
| | - Jan Rozman
- German Mouse Clinic, Institute of Experimental Genetics, Helmholtz Zentrum München, German Research Center for Environmental Health, Munich, Germany
- Czech Centre for Phenogenomics, Institute of Molecular Genetics of the Czech Academy of Sciences, Vestec, Czech Republic
- German Center for Diabetes Research (DZD), Neuherberg, Germany
- * E-mail: (JR); (LY); (YX)
| | - Ling Yang
- Cambridge-Suda Genomic Resource Center, Jiangsu Key Laboratory of Neuropsychiatric Diseases, Medical college of Soochow University, Suzhou, Jiangsu, China
- * E-mail: (JR); (LY); (YX)
| | - Ying Xu
- Cambridge-Suda Genomic Resource Center, Jiangsu Key Laboratory of Neuropsychiatric Diseases, Medical college of Soochow University, Suzhou, Jiangsu, China
- State Key Laboratory of Radiation Medicine and Prevention, Medical college of Soochow University, Suzhou, China
- * E-mail: (JR); (LY); (YX)
| |
Collapse
|
17
|
Abstract
The suprachiasmatic nucleus (SCN) of the hypothalamus is remarkable. Despite numbering only about 10,000 neurons on each side of the third ventricle, the SCN is our principal circadian clock, directing the daily cycles of behaviour and physiology that set the tempo of our lives. When this nucleus is isolated in organotypic culture, its autonomous timing mechanism can persist indefinitely, with precision and robustness. The discovery of the cell-autonomous transcriptional and post-translational feedback loops that drive circadian activity in the SCN provided a powerful exemplar of the genetic specification of complex mammalian behaviours. However, the analysis of circadian time-keeping is moving beyond single cells. Technical and conceptual advances, including intersectional genetics, multidimensional imaging and network theory, are beginning to uncover the circuit-level mechanisms and emergent properties that make the SCN a uniquely precise and robust clock. However, much remains unknown about the SCN, not least the intrinsic properties of SCN neurons, its circuit topology and the neuronal computations that these circuits support. Moreover, the convention that the SCN is a neuronal clock has been overturned by the discovery that astrocytes are an integral part of the timepiece. As a test bed for examining the relationships between genes, cells and circuits in sculpting complex behaviours, the SCN continues to offer powerful lessons and opportunities for contemporary neuroscience.
Collapse
|
18
|
Abstract
Endogenous central and peripheral circadian oscillators are key to organizing multiple aspects of mammalian physiology; this clock tracks the day-night cycle and governs behavioral and physiologic rhythmicity. Flexibility in the timing and duration of sleep and wakefulness, critical to the survival of species, is the result of a complex, dynamic interaction between 2 regulatory processes: the clock and a homeostatic drive that increases with wake duration and decreases during sleep. When circadian rhythmicity and sleep homeostasis are misaligned-as in shifted schedules, time zone transitions, aging, or disease-sleep, metabolic, and other disorders may ensue.
Collapse
|
19
|
Hastings MH, Maywood ES, Brancaccio M. The Mammalian Circadian Timing System and the Suprachiasmatic Nucleus as Its Pacemaker. BIOLOGY 2019; 8:E13. [PMID: 30862123 PMCID: PMC6466121 DOI: 10.3390/biology8010013] [Citation(s) in RCA: 110] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Revised: 03/05/2019] [Accepted: 03/08/2019] [Indexed: 11/16/2022]
Abstract
The past twenty years have witnessed the most remarkable breakthroughs in our understanding of the molecular and cellular mechanisms that underpin circadian (approximately one day) time-keeping. Across model organisms in diverse taxa: cyanobacteria (Synechococcus), fungi (Neurospora), higher plants (Arabidopsis), insects (Drosophila) and mammals (mouse and humans), a common mechanistic motif of delayed negative feedback has emerged as the Deus ex machina for the cellular definition of ca. 24 h cycles. This review will consider, briefly, comparative circadian clock biology and will then focus on the mammalian circadian system, considering its molecular genetic basis, the properties of the suprachiasmatic nucleus (SCN) as the principal circadian clock in mammals and its role in synchronising a distributed peripheral circadian clock network. Finally, it will consider new directions in analysing the cell-autonomous and circuit-level SCN clockwork and will highlight the surprising discovery of a central role for SCN astrocytes as well as SCN neurons in controlling circadian behaviour.
Collapse
Affiliation(s)
- Michael H Hastings
- MRC Laboratory of Molecular Biology, Division of Neurobiology, CB2 0QH Cambridge, UK.
| | - Elizabeth S Maywood
- MRC Laboratory of Molecular Biology, Division of Neurobiology, CB2 0QH Cambridge, UK.
| | - Marco Brancaccio
- UK Dementia Research Institute at Imperial College London, Division of Brain Sciences, Department of Medicine, W12 0NN London, UK.
| |
Collapse
|
20
|
Hannou L, Roy P, Ballester Roig MN, Mongrain V. Transcriptional control of synaptic components by the clock machinery. Eur J Neurosci 2019; 51:241-267. [DOI: 10.1111/ejn.14294] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2018] [Revised: 11/01/2018] [Accepted: 11/27/2018] [Indexed: 12/21/2022]
Affiliation(s)
- Lydia Hannou
- Center for Advanced Research in Sleep Medicine and Research CenterHôpital du Sacré‐Cœur de Montréal (CIUSSS‐NIM) Montreal Quebec Canada
- Department of PsychiatryUniversité de Montréal Montreal Quebec Canada
| | - Pierre‐Gabriel Roy
- Center for Advanced Research in Sleep Medicine and Research CenterHôpital du Sacré‐Cœur de Montréal (CIUSSS‐NIM) Montreal Quebec Canada
- Department of NeuroscienceUniversité de Montréal Montreal Quebec Canada
| | - Maria Neus Ballester Roig
- Center for Advanced Research in Sleep Medicine and Research CenterHôpital du Sacré‐Cœur de Montréal (CIUSSS‐NIM) Montreal Quebec Canada
- Department of NeuroscienceUniversité de Montréal Montreal Quebec Canada
| | - Valérie Mongrain
- Center for Advanced Research in Sleep Medicine and Research CenterHôpital du Sacré‐Cœur de Montréal (CIUSSS‐NIM) Montreal Quebec Canada
- Department of NeuroscienceUniversité de Montréal Montreal Quebec Canada
| |
Collapse
|
21
|
Negri L, Ferrara N. The Prokineticins: Neuromodulators and Mediators of Inflammation and Myeloid Cell-Dependent Angiogenesis. Physiol Rev 2018. [PMID: 29537336 DOI: 10.1152/physrev.00012.2017] [Citation(s) in RCA: 73] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
The mammalian prokineticins family comprises two conserved proteins, EG-VEGF/PROK1 and Bv8/PROK2, and their two highly related G protein-coupled receptors, PKR1 and PKR2. This signaling system has been linked to several important biological functions, including gastrointestinal tract motility, regulation of circadian rhythms, neurogenesis, angiogenesis and cancer progression, hematopoiesis, and nociception. Mutations in PKR2 or Bv8/PROK2 have been associated with Kallmann syndrome, a developmental disorder characterized by defective olfactory bulb neurogenesis, impaired development of gonadotropin-releasing hormone neurons, and infertility. Also, Bv8/PROK2 is strongly upregulated in neutrophils and other inflammatory cells in response to granulocyte-colony stimulating factor or other myeloid growth factors and functions as a pronociceptive mediator in inflamed tissues as well as a regulator of myeloid cell-dependent tumor angiogenesis. Bv8/PROK2 has been also implicated in neuropathic pain. Anti-Bv8/PROK2 antibodies or small molecule PKR inhibitors ameliorate pain arising from tissue injury and inhibit angiogenesis and inflammation associated with tumors or some autoimmune disorders.
Collapse
Affiliation(s)
- Lucia Negri
- Sapienza University of Rome, Rome, Italy ; and University of California, San Diego, La Jolla, California
| | - Napoleone Ferrara
- Sapienza University of Rome, Rome, Italy ; and University of California, San Diego, La Jolla, California
| |
Collapse
|
22
|
Zhao Y, Wu J, Wang X, Jia H, Chen DN, Li JD. Prokineticins and their G protein-coupled receptors in health and disease. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2018; 161:149-179. [PMID: 30711026 DOI: 10.1016/bs.pmbts.2018.09.006] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Prokineticins are two conserved small proteins (~8kDa), prokineticin 1 (PROK1; also called EG-VEGF) and prokineticin 2 (PROK2; also called Bv8), with an N-terminal AVITGA sequence and 10 cysteines forming 5 disulfide bridges. PROK1 and PROK2 bind to two highly related G protein-coupled receptors (GPCRs), prokineticin receptor 1 (PROKR1) and prokineticin receptor 2 (PROKR2). Prokineticins and their receptors are widely expressed. PROK1 is predominantly expressed in peripheral tissues, especially steroidogenic organs, whereas PROK2 is mainly expressed in the central nervous system and nonsteroidogenic cells of the testes. Prokineticins signaling has been implicated in several important physiological functions, including gastrointestinal smooth muscle contraction, circadian rhythm regulation, neurogenesis, angiogenesis, pain perception, mood regulation, and reproduction. Dysregulation of prokineticins signaling has been observed in a variety of diseases, such as cancer, ischemia, and neurodegeneration, in which prokineticins signaling seems to be a promising therapeutic target. Based on the phenotypes of knockout mice, PROKR2 and PROK2 have recently been identified as causative genes for idiopathic hypogonadotropic hypogonadism, a developmental disorder characterized by impaired development of gonadotropin-releasing hormone neurons and infertility. In vitro functional studies with these disease-associated PROKR2 mutations uncovered some novel features for this receptor, such as biased signaling, which may be used to understand GPCR signaling regulation in general.
Collapse
Affiliation(s)
- Yaguang Zhao
- School of Life Sciences, Central South University, Changsha, China; Hunan Key Laboratory of Animal Models for Human Diseases, Central South University, Changsha, China; Hunan Key Laboratory of Medical Genetics, Central South University, Changsha, China
| | - Jiayu Wu
- School of Life Sciences, Central South University, Changsha, China; Hunan Key Laboratory of Animal Models for Human Diseases, Central South University, Changsha, China; Hunan Key Laboratory of Medical Genetics, Central South University, Changsha, China
| | - Xinying Wang
- School of Life Sciences, Central South University, Changsha, China; Hunan Key Laboratory of Animal Models for Human Diseases, Central South University, Changsha, China; Hunan Key Laboratory of Medical Genetics, Central South University, Changsha, China
| | - Hong Jia
- School of Life Sciences, Central South University, Changsha, China; Hunan Key Laboratory of Animal Models for Human Diseases, Central South University, Changsha, China; Hunan Key Laboratory of Medical Genetics, Central South University, Changsha, China
| | - Dan-Na Chen
- Department of Basic Medical Sciences, Changsha Medical University, Changsha, China.
| | - Jia-Da Li
- School of Life Sciences, Central South University, Changsha, China; Hunan Key Laboratory of Animal Models for Human Diseases, Central South University, Changsha, China; Hunan Key Laboratory of Medical Genetics, Central South University, Changsha, China.
| |
Collapse
|
23
|
Neal M, Luo J, Harischandra DS, Gordon R, Sarkar S, Jin H, Anantharam V, Désaubry L, Kanthasamy A, Kanthasamy A. Prokineticin-2 promotes chemotaxis and alternative A2 reactivity of astrocytes. Glia 2018; 66:2137-2157. [PMID: 30277602 DOI: 10.1002/glia.23467] [Citation(s) in RCA: 91] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2017] [Revised: 05/15/2018] [Accepted: 05/16/2018] [Indexed: 12/27/2022]
Abstract
Astrocyte reactivity is disease- and stimulus-dependent, adopting either a proinflammatory A1 phenotype or a protective, anti-inflammatory A2 phenotype. Recently, we demonstrated, using cell culture, animal models and human brain samples, that dopaminergic neurons produce and secrete higher levels of the chemokine-like signaling protein Prokineticin-2 (PK2) as a compensatory protective response against neurotoxic stress. As astrocytes express a high level of PK2 receptors, herein, we systematically characterize the role of PK2 in astrocyte structural and functional properties. PK2 treatment greatly induced astrocyte migration, which was accompanied by a shift in mitochondrial energy metabolism, a reduction in proinflammatory factors, and an increase in the antioxidant genes Arginase-1 and Nrf2. Overexpression of PK2 in primary astrocytes or in the in vivo mouse brain induced the A2 astrocytic phenotype with upregulation of key protective genes and A2 reactivity markers including Arginase-1 and Nrf2, PTX3, SPHK1, and TM4SF1. A small-molecule PK2 agonist, IS20, not only mimicked the protective effect of PK2 in primary cultures, but also increased glutamate uptake by upregulating GLAST. Notably, IS20 blocked not only MPTP-induced reductions in the A2 phenotypic markers SPHK1 and SCL10a6 but also elevation of the of A1 marker GBP2. Collectively, our results reveal that PK2 regulates a novel neuron-astrocyte signaling mechanism by promoting an alternative A2 protective phenotype in astrocytes, which could be exploited for development of novel therapeutic strategies for PD and other related chronic neurodegenerative diseases. PK2 signals through its receptors on astrocytes and promotes directed chemotaxis. PK2-induced astrocyte reactivity leads to an increase in antioxidant and anti-inflammatory proteins while increasing glutamate uptake, along with decreased inflammatory factors. © 2018 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Matthew Neal
- Parkinson Disorders Research Program, Iowa Center for Advanced Neurotoxicology, Department of Biomedical Sciences, Iowa State University, Ames, IA, 50011
| | - Jie Luo
- Parkinson Disorders Research Program, Iowa Center for Advanced Neurotoxicology, Department of Biomedical Sciences, Iowa State University, Ames, IA, 50011
| | - Dilshan S Harischandra
- Parkinson Disorders Research Program, Iowa Center for Advanced Neurotoxicology, Department of Biomedical Sciences, Iowa State University, Ames, IA, 50011
| | - Richard Gordon
- Parkinson Disorders Research Program, Iowa Center for Advanced Neurotoxicology, Department of Biomedical Sciences, Iowa State University, Ames, IA, 50011
| | - Souvarish Sarkar
- Parkinson Disorders Research Program, Iowa Center for Advanced Neurotoxicology, Department of Biomedical Sciences, Iowa State University, Ames, IA, 50011
| | - Huajun Jin
- Parkinson Disorders Research Program, Iowa Center for Advanced Neurotoxicology, Department of Biomedical Sciences, Iowa State University, Ames, IA, 50011
| | - Vellareddy Anantharam
- Parkinson Disorders Research Program, Iowa Center for Advanced Neurotoxicology, Department of Biomedical Sciences, Iowa State University, Ames, IA, 50011
| | - Laurent Désaubry
- Therapeutic Innovation Laboratory (UMR7200), CNRS-University of Strasbourg, Illkirch, France
| | - Anumantha Kanthasamy
- Parkinson Disorders Research Program, Iowa Center for Advanced Neurotoxicology, Department of Biomedical Sciences, Iowa State University, Ames, IA, 50011
| | - Arthi Kanthasamy
- Parkinson Disorders Research Program, Iowa Center for Advanced Neurotoxicology, Department of Biomedical Sciences, Iowa State University, Ames, IA, 50011
| |
Collapse
|
24
|
PRDM Histone Methyltransferase mRNA Levels Increase in Response to Curative Hormone Treatment for Cryptorchidism-Dependent Male Infertility. Genes (Basel) 2018; 9:genes9080391. [PMID: 30071651 PMCID: PMC6116052 DOI: 10.3390/genes9080391] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2018] [Revised: 07/16/2018] [Accepted: 07/24/2018] [Indexed: 12/17/2022] Open
Abstract
There is a correlation between cryptorchidism and an increased risk of testicular cancer and infertility. During orchidopexy, testicular biopsies are performed to confirm the presence of type A dark (Ad) spermatogonia, which are a marker for low infertility risk (LIR). The Ad spermatogonia are absent in high infertility risk (HIR) patients, who are treated with a gonadotropin-releasing hormone agonist (GnRHa) to significantly lower the risk of infertility. Despite its prevalence, little is known about the molecular events involved in cryptorchidism. Previously, we compared the transcriptomes of LIR versus HIR patients treated with and without hormones. Here, we interpreted data regarding members of the positive regulatory domain-containing (PRDM) family; some of which encoded histone methyltransferases that are important for reproduction. We found there were lower levels of PRDM1, PRDM6, PRDM9, PRDM13, and PRDM14 mRNA in the testes of HIR patients compared with LIR patients, and that PRDM7, PRDM9, PRDM12, and PRDM16 were significantly induced after GnRHa treatment. Furthermore, we observed PRDM9 protein staining in the cytoplasm of germ cells in the testes from LIR and HIR patients, indicating that the mRNA and protein levels corresponded. This result indicated that the curative hormonal therapy for cryptorchidism involved conserved chromatin modification enzymes.
Collapse
|
25
|
Belle MDC, Diekman CO. Neuronal oscillations on an ultra-slow timescale: daily rhythms in electrical activity and gene expression in the mammalian master circadian clockwork. Eur J Neurosci 2018; 48:2696-2717. [PMID: 29396876 DOI: 10.1111/ejn.13856] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2017] [Revised: 01/16/2018] [Accepted: 01/28/2018] [Indexed: 12/17/2022]
Abstract
Neuronal oscillations of the brain, such as those observed in the cortices and hippocampi of behaving animals and humans, span across wide frequency bands, from slow delta waves (0.1 Hz) to ultra-fast ripples (600 Hz). Here, we focus on ultra-slow neuronal oscillators in the hypothalamic suprachiasmatic nuclei (SCN), the master daily clock that operates on interlocking transcription-translation feedback loops to produce circadian rhythms in clock gene expression with a period of near 24 h (< 0.001 Hz). This intracellular molecular clock interacts with the cell's membrane through poorly understood mechanisms to drive the daily pattern in the electrical excitability of SCN neurons, exhibiting an up-state during the day and a down-state at night. In turn, the membrane activity feeds back to regulate the oscillatory activity of clock gene programs. In this review, we emphasise the circadian processes that drive daily electrical oscillations in SCN neurons, and highlight how mathematical modelling contributes to our increasing understanding of circadian rhythm generation, synchronisation and communication within this hypothalamic region and across other brain circuits.
Collapse
Affiliation(s)
- Mino D C Belle
- Institute of Clinical and Biomedical Sciences, University of Exeter Medical School, University of Exeter, Exeter, EX4 4PS, UK
| | - Casey O Diekman
- Department of Mathematical Sciences, New Jersey Institute of Technology, Newark, NJ, USA.,Institute for Brain and Neuroscience Research, New Jersey Institute of Technology, Newark, NJ, USA
| |
Collapse
|
26
|
Mohsen Z, Sim H, Garcia-Galiano D, Han X, Bellefontaine N, Saunders TL, Elias CF. Sexually dimorphic distribution of Prokr2 neurons revealed by the Prokr2-Cre mouse model. Brain Struct Funct 2017; 222:4111-4129. [PMID: 28616754 DOI: 10.1007/s00429-017-1456-5] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2016] [Accepted: 06/05/2017] [Indexed: 01/18/2023]
Abstract
Prokineticin receptor 2 (PROKR2) is predominantly expressed in the mammalian central nervous system. Loss-of-function mutations of PROKR2 in humans are associated with Kallmann syndrome due to the disruption of gonadotropin releasing hormone neuronal migration and deficient olfactory bulb morphogenesis. PROKR2 has been also implicated in the neuroendocrine control of GnRH neurons post-migration and other physiological systems. However, the brain circuitry and mechanisms associated with these actions have been difficult to investigate mainly due to the widespread distribution of Prokr2-expressing cells, and the lack of animal models and molecular tools. Here, we describe the generation, validation and characterization of a new mouse model that expresses Cre recombinase driven by the Prokr2 promoter, using CRISPR-Cas9 technology. Cre expression was visualized using reporter genes, tdTomato and GFP, in males and females. Expression of Cre-induced reporter genes was found in brain sites previously described to express Prokr2, e.g., the paraventricular and the suprachiasmatic nuclei, and the area postrema. The Prokr2-Cre mouse model was further validated by colocalization of Cre-induced GFP and Prokr2 mRNA. No disruption of Prokr2 expression, GnRH neuronal migration or fertility was observed. Comparative analysis of Prokr2-Cre expression in male and female brains revealed a sexually dimorphic distribution confirmed by in situ hybridization. In females, higher Cre activity was found in the medial preoptic area, ventromedial nucleus of the hypothalamus, arcuate nucleus, medial amygdala and lateral parabrachial nucleus. In males, Cre was higher in the amygdalo-hippocampal area. The sexually dimorphic pattern of Prokr2 expression indicates differential roles in reproductive function and, potentially, in other physiological systems.
Collapse
Affiliation(s)
- Zaid Mohsen
- Department of Molecular and Integrative Physiology, University of Michigan, 1137 E. Catherine St., 7732B Med Sci II, Ann Arbor, MI, 48109-5622, USA
| | - Hosung Sim
- Department of Molecular and Integrative Physiology, University of Michigan, 1137 E. Catherine St., 7732B Med Sci II, Ann Arbor, MI, 48109-5622, USA
| | - David Garcia-Galiano
- Department of Molecular and Integrative Physiology, University of Michigan, 1137 E. Catherine St., 7732B Med Sci II, Ann Arbor, MI, 48109-5622, USA
| | - Xingfa Han
- Department of Molecular and Integrative Physiology, University of Michigan, 1137 E. Catherine St., 7732B Med Sci II, Ann Arbor, MI, 48109-5622, USA.,Isotope Research Lab, Sichuan Agricultural University, Ya'an, 625014, People's Republic of China
| | - Nicole Bellefontaine
- Department of Molecular and Integrative Physiology, University of Michigan, 1137 E. Catherine St., 7732B Med Sci II, Ann Arbor, MI, 48109-5622, USA
| | - Thomas L Saunders
- Department of Internal Medicine, University of Michigan, Ann Arbor, MI, USA.,University of Michigan Transgenic Animal Model Core, Ann Arbor, MI, USA
| | - Carol F Elias
- Department of Molecular and Integrative Physiology, University of Michigan, 1137 E. Catherine St., 7732B Med Sci II, Ann Arbor, MI, 48109-5622, USA. .,Department of Obstetrics and Gynecology, University of Michigan, Ann Arbor, MI, USA.
| |
Collapse
|
27
|
Evans JA. Collective timekeeping among cells of the master circadian clock. J Endocrinol 2016; 230:R27-49. [PMID: 27154335 PMCID: PMC4938744 DOI: 10.1530/joe-16-0054] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/11/2016] [Accepted: 05/06/2016] [Indexed: 01/09/2023]
Abstract
The suprachiasmatic nucleus (SCN) of the anterior hypothalamus is the master circadian clock that coordinates daily rhythms in behavior and physiology in mammals. Like other hypothalamic nuclei, the SCN displays an impressive array of distinct cell types characterized by differences in neurotransmitter and neuropeptide expression. Individual SCN neurons and glia are able to display self-sustained circadian rhythms in cellular function that are regulated at the molecular level by a 24h transcriptional-translational feedback loop. Remarkably, SCN cells are able to harmonize with one another to sustain coherent rhythms at the tissue level. Mechanisms of cellular communication in the SCN network are not completely understood, but recent progress has provided insight into the functional roles of several SCN signaling factors. This review discusses SCN organization, how intercellular communication is critical for maintaining network function, and the signaling mechanisms that play a role in this process. Despite recent progress, our understanding of SCN circuitry and coupling is far from complete. Further work is needed to map SCN circuitry fully and define the signaling mechanisms that allow for collective timekeeping in the SCN network.
Collapse
Affiliation(s)
- Jennifer A Evans
- Department of Biomedical SciencesMarquette University, Milwaukee, WI, USA
| |
Collapse
|
28
|
Evans JA, Gorman MR. In synch but not in step: Circadian clock circuits regulating plasticity in daily rhythms. Neuroscience 2016; 320:259-80. [PMID: 26861419 DOI: 10.1016/j.neuroscience.2016.01.072] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2015] [Revised: 01/26/2016] [Accepted: 01/27/2016] [Indexed: 11/16/2022]
Abstract
The suprachiasmatic nucleus (SCN) is a network of neural oscillators that program daily rhythms in mammalian behavior and physiology. Over the last decade much has been learned about how SCN clock neurons coordinate together in time and space to form a cohesive population. Despite this insight, much remains unknown about how SCN neurons communicate with one another to produce emergent properties of the network. Here we review the current understanding of communication among SCN clock cells and highlight a collection of formal assays where changes in SCN interactions provide for plasticity in the waveform of circadian rhythms in behavior. Future studies that pair analytical behavioral assays with modern neuroscience techniques have the potential to provide deeper insight into SCN circuit mechanisms.
Collapse
Affiliation(s)
- J A Evans
- Department of Biomedical Sciences, Marquette University, Milwaukee, WI, USA.
| | - M R Gorman
- Department of Psychology, University of San Diego, La Jolla, CA, USA
| |
Collapse
|
29
|
Burton KJ, Li X, Li B, Cheng MY, Urbanski HF, Zhou QY. Expression of prokineticin 2 and its receptor in the macaque monkey brain. Chronobiol Int 2016; 33:191-9. [PMID: 26818846 PMCID: PMC4959799 DOI: 10.3109/07420528.2015.1125361] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Prokineticin 2 (PK2) has been indicated as an output signaling molecule for the suprachiasmatic nucleus (SCN) circadian clock. Most of these studies were performed with nocturnal animals, particularly mice and rats. In the current study, the PK2 and its receptor, PKR2, was cloned from a species of diurnal macaque monkey. The macaque monkey PK2 and PKR2 were found to be highly homologous to that of other mammalian species. The mRNA expression of PK2 and PKR2 in the macaque brain was examined by in situ hybridization. The expression patterns of PK2 and PKR2 in the macaque brain were found to be quite similar to that of the mouse brain. Particularly, PK2 mRNA was shown to oscillate in the SCN of the macaque brain in the same phase and with similar amplitude with that of nocturnal mouse brain. PKR2 expression was also detected in known primary SCN targets, including the midline thalamic and hypothalamic nuclei. In addition, we detected the expression of PKR2 mRNA in the dorsal raphe nucleus (DR) of both macaque and mouse brains. As a likely SCN to dorsal raphe projection has previously been indicated, the expression of PKR2 in the raphe nuclei of both macaque and mouse brain signifies a possible role of DR as a previously unrecognized primary SCN projection target.
Collapse
Affiliation(s)
- Katherine J. Burton
- Department of Pharmacology, University of California, Irvine, Irvine, CA, USA
| | - Xiaohan Li
- Department of Pharmacology, University of California, Irvine, Irvine, CA, USA
| | - Baoan Li
- Department of Pharmacology, University of California, Irvine, Irvine, CA, USA
| | - Michelle Y. Cheng
- Department of Pharmacology, University of California, Irvine, Irvine, CA, USA
| | - Henryk F. Urbanski
- Division of Neuroscience, Oregon National Primate Research Center, Beaverton, OR, USA
| | - Qun-Yong Zhou
- Department of Pharmacology, University of California, Irvine, Irvine, CA, USA
| |
Collapse
|
30
|
Burnik Papler T, Vrtacnik Bokal E, Maver A, Kopitar AN, Lovrečić L. Transcriptomic Analysis and Meta-Analysis of Human Granulosa and Cumulus Cells. PLoS One 2015; 10:e0136473. [PMID: 26313571 PMCID: PMC4552299 DOI: 10.1371/journal.pone.0136473] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2015] [Accepted: 08/03/2015] [Indexed: 11/30/2022] Open
Abstract
Specific gene expression in oocytes and its surrounding cumulus (CC) and granulosa (GC) cells is needed for successful folliculogenesis and oocyte maturation. The aim of the present study was to compare genome-wide gene expression and biological functions of human GC and CC. Individual GC and CC were derived from 37 women undergoing IVF procedures. Gene expression analysis was performed using microarrays, followed by a meta-analysis. Results were validated using quantitative real-time PCR. There were 6029 differentially expressed genes (q < 10−4); of which 650 genes had a log2 FC ≥ 2. After the meta-analysis there were 3156 genes differentially expressed. Among these there were genes that have previously not been reported in human somatic follicular cells, like prokineticin 2 (PROK2), higher expressed in GC, and pregnancy up-regulated nonubiquitous CaM kinase (PNCK), higher expressed in CC. Pathways like inflammatory response and angiogenesis were enriched in GC, whereas in CC, cell differentiation and multicellular organismal development were among enriched pathways. In conclusion, transcriptomes of GC and CC as well as biological functions, are distinctive for each cell subpopulation. By describing novel genes like PROK2 and PNCK, expressed in GC and CC, we upgraded the existing data on human follicular biology.
Collapse
Affiliation(s)
- Tanja Burnik Papler
- Department of Human Reproduction, Division of Obstetrics and Gynaecology, University Medical Centre Ljubljana, Slajmerjeva 2, Ljubljana, Slovenia
| | - Eda Vrtacnik Bokal
- Department of Human Reproduction, Division of Obstetrics and Gynaecology, University Medical Centre Ljubljana, Slajmerjeva 2, Ljubljana, Slovenia
| | - Ales Maver
- Department of Medical Genetics, Division of Obstetrics and Gynaecology, University Medical Centre, Slajmerjeva 4, Ljubljana, Slovenia
| | - Andreja Natasa Kopitar
- Institute of Microbiology and Immunology, Faculty of Medicine, University of Ljubljana, Zaloska 4, Ljubljana, Slovenia
| | - Luca Lovrečić
- Department of Medical Genetics, Division of Obstetrics and Gynaecology, University Medical Centre, Slajmerjeva 4, Ljubljana, Slovenia
- * E-mail:
| |
Collapse
|
31
|
Evans JA, Suen TC, Callif BL, Mitchell AS, Castanon-Cervantes O, Baker KM, Kloehn I, Baba K, Teubner BJW, Ehlen JC, Paul KN, Bartness TJ, Tosini G, Leise T, Davidson AJ. Shell neurons of the master circadian clock coordinate the phase of tissue clocks throughout the brain and body. BMC Biol 2015; 13:43. [PMID: 26099272 PMCID: PMC4489020 DOI: 10.1186/s12915-015-0157-x] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2015] [Accepted: 06/16/2015] [Indexed: 11/18/2022] Open
Abstract
Background Daily rhythms in mammals are programmed by a master clock in the suprachiasmatic nucleus (SCN). The SCN contains two main compartments (shell and core), but the role of each region in system-level coordination remains ill defined. Herein, we use a functional assay to investigate how downstream tissues interpret region-specific outputs by using in vivo exposure to long day photoperiods to temporally dissociate the SCN. We then analyze resulting changes in the rhythms of clocks located throughout the brain and body to examine whether they maintain phase synchrony with the SCN shell or core. Results Nearly all of the 17 tissues examined in the brain and body maintain phase synchrony with the SCN shell, but not the SCN core, which indicates that downstream oscillators are set by cues controlled specifically by the SCN shell. Interestingly, we also found that SCN dissociation diminished the amplitude of rhythms in core clock gene and protein expression in brain tissues by 50–75 %, which suggests that light-driven changes in the functional organization of the SCN markedly influence the strength of rhythms in downstream tissues. Conclusions Overall, our results reveal that body clocks receive time-of-day cues specifically from the SCN shell, which may be an adaptive design principle that serves to maintain system-level phase relationships in a changing environment. Further, we demonstrate that lighting conditions alter the amplitude of the molecular clock in downstream tissues, which uncovers a new form of plasticity that may contribute to seasonal changes in physiology and behavior. Electronic supplementary material The online version of this article (doi:10.1186/s12915-015-0157-x) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Jennifer A Evans
- Department of Biomedical Sciences, Marquette University, Milwaukee, WI, 53233, USA.
| | - Ting-Chung Suen
- Department of Neurobiology, Morehouse School of Medicine, Atlanta, GA, 30310, USA
| | - Ben L Callif
- Department of Biomedical Sciences, Marquette University, Milwaukee, WI, 53233, USA
| | - Andrew S Mitchell
- Department of Neurobiology, Morehouse School of Medicine, Atlanta, GA, 30310, USA
| | | | - Kimberly M Baker
- Department of Biomedical Sciences, Marquette University, Milwaukee, WI, 53233, USA
| | - Ian Kloehn
- Department of Biomedical Sciences, Marquette University, Milwaukee, WI, 53233, USA
| | - Kenkichi Baba
- Department of Pharmacology, Morehouse School of Medicine, Atlanta, GA, 30310, USA
| | - Brett J W Teubner
- Department of Biology and Center for Obesity Reversal, Georgia State University, Atlanta, GA, 30302, USA.,Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - J Christopher Ehlen
- Department of Neurobiology, Morehouse School of Medicine, Atlanta, GA, 30310, USA
| | - Ketema N Paul
- Department of Neurobiology, Morehouse School of Medicine, Atlanta, GA, 30310, USA
| | - Timothy J Bartness
- Department of Biology and Center for Obesity Reversal, Georgia State University, Atlanta, GA, 30302, USA
| | - Gianluca Tosini
- Department of Pharmacology, Morehouse School of Medicine, Atlanta, GA, 30310, USA
| | - Tanya Leise
- Department of Mathematics and Statistics, Amherst College, Amherst, MA, 01002, USA
| | - Alec J Davidson
- Department of Neurobiology, Morehouse School of Medicine, Atlanta, GA, 30310, USA
| |
Collapse
|
32
|
Rhythmic Trafficking of TRPV2 in the Suprachiasmatic Nucleus is Regulated by Prokineticin 2 Signaling. J Circadian Rhythms 2015; 13:2. [PMID: 27103928 PMCID: PMC4832818 DOI: 10.5334/jcr.ad] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022] Open
Abstract
The mammalian circadian clock is composed of single-cell oscillators. Neurochemical and
electrical signaling among these oscillators is important for the normal expression of circadian
rhythms. Prokineticin 2 (PK2), encoding a cysteine-rich secreted protein, has been shown to be a
critical signaling molecule for the regulation of circadian rhythms. PK2 expression in the
suprachiasmatic nucleus (SCN) is highly rhythmic, peaking during the day and being essentially
absent during the night. Mice with disrupted PK2 gene or its receptor PKR2 display greatly reduced
rhythmicity of broad circadian parameters such as locomotor activity, body temperature and
sleep/wake patterns. PK2 has been shown to increase the firing rate of SCN neurons, with unknown
molecular mechanisms. Here we report that TRPV2, an ion channel belonging to the family of TRP, is
co-expressed with PKR2 in the SCN neurons. Further, TRPV2 protein, but not TRPV2 mRNA, was shown to
oscillate in the SCN in a PK2-dependent manner. Functional studies revealed that TRPV2 enhanced
signaling of PKR2 in calcium mobilization or ion current conductance, likely via the increased
trafficking of TRPV2 to the cell surface. Taken together, these results indicate that TRPV2 is
likely part of the downstream signaling of PK2 in the regulation of the circadian rhythms.
Collapse
|
33
|
Bonmati-Carrion MA, Arguelles-Prieto R, Martinez-Madrid MJ, Reiter R, Hardeland R, Rol MA, Madrid JA. Protecting the melatonin rhythm through circadian healthy light exposure. Int J Mol Sci 2014; 15:23448-500. [PMID: 25526564 PMCID: PMC4284776 DOI: 10.3390/ijms151223448] [Citation(s) in RCA: 127] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2014] [Revised: 11/02/2014] [Accepted: 11/09/2014] [Indexed: 12/14/2022] Open
Abstract
Currently, in developed countries, nights are excessively illuminated (light at night), whereas daytime is mainly spent indoors, and thus people are exposed to much lower light intensities than under natural conditions. In spite of the positive impact of artificial light, we pay a price for the easy access to light during the night: disorganization of our circadian system or chronodisruption (CD), including perturbations in melatonin rhythm. Epidemiological studies show that CD is associated with an increased incidence of diabetes, obesity, heart disease, cognitive and affective impairment, premature aging and some types of cancer. Knowledge of retinal photoreceptors and the discovery of melanopsin in some ganglion cells demonstrate that light intensity, timing and spectrum must be considered to keep the biological clock properly entrained. Importantly, not all wavelengths of light are equally chronodisrupting. Blue light, which is particularly beneficial during the daytime, seems to be more disruptive at night, and induces the strongest melatonin inhibition. Nocturnal blue light exposure is currently increasing, due to the proliferation of energy-efficient lighting (LEDs) and electronic devices. Thus, the development of lighting systems that preserve the melatonin rhythm could reduce the health risks induced by chronodisruption. This review addresses the state of the art regarding the crosstalk between light and the circadian system.
Collapse
Affiliation(s)
| | | | | | - Russel Reiter
- Department of Cellular and Structural Biology, University of Texas Health Science Center, San Antonio, TX 78229, USA.
| | - Ruediger Hardeland
- Johann Friedrich Blumenbach Institute of Zoology and Anthropology, University of Göttingen, Göttingen 37073, Germany.
| | - Maria Angeles Rol
- Department of Physiology, Faculty of Biology, University of Murcia, Murcia 30100, Spain.
| | - Juan Antonio Madrid
- Department of Physiology, Faculty of Biology, University of Murcia, Murcia 30100, Spain.
| |
Collapse
|
34
|
Zhou L, Gao Q, Zhang P, Guo S, Gu J, Hao W, Cao JM. Activation of growth hormone secretagogue receptor induces time-dependent clock phase delay in mice. Am J Physiol Endocrinol Metab 2014; 307:E515-26. [PMID: 25074983 DOI: 10.1152/ajpendo.00535.2013] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Early studies have reported a phase-shifting effect of growth hormone secretagogues (GHSs). This study aimed to determine the mechanism of action of GHSs. We examined the response of the hypothalamic suprachiasmatic nuclei (SCN) to growth hormone releasing peptide-6 (GHRP-6) by assessing effects on the phase of locomotor activity rhythms, SCN neuronal discharges, and the potential signaling pathways involved in the drug action on circadian rhythms. The results showed that bolus administration of GHRP-6 (100 μg/kg ip) at the beginning of subjective night (CT12) induced a phase delay of the free-running rhythms in male C57BL/6J mice under constant darkness, but did not elicit phase shift at other checked circadian time (CT) points. The phase-delay effect of GHRP-6 was abolished by d-(+)-Lys-GHRP-6 (GHS receptor antagonist), KN-93 [calcium/calmodulin-dependent protein kinase II (CaMK) II inhibitor], or anti-phosphorylated (p)-cAMP response element-binding protein (CREB) antibody. Further analyses demonstrated that GHRP-6 at CT12 induced higher calcium mobilization and neuronal discharge in the SCN compared with that at CT6, decreased the levels of glutamate and γ-aminobutyric acid, increased the levels of p-CaMKII, p-CREB, and period 1, and delayed the circadian expressions of circadian locomotor output cycles kaput, Bmal1, and prokineticin 2 in the SCN; these signaling changes resulted in behavioral phase delay. Collectively, GHRP-6 induces a CT-dependent phase delay via activating GHS receptor and the downstream signaling, which is partially similar to the signaling cascade of light-induced phase delay at early night. These novel observations may help to better understand the role of GHSs in circadian physiology.
Collapse
Affiliation(s)
- Lan Zhou
- Department of Physiology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine, Peking Union Medical College, Beijing, China
| | - Qian Gao
- Department of Physiology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine, Peking Union Medical College, Beijing, China
| | - Peng Zhang
- Department of Physiology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine, Peking Union Medical College, Beijing, China
| | - Shu Guo
- Department of Physiology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine, Peking Union Medical College, Beijing, China
| | - Jingli Gu
- Department of Physiology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine, Peking Union Medical College, Beijing, China
| | - Wei Hao
- Department of Physiology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine, Peking Union Medical College, Beijing, China
| | - Ji-Min Cao
- Department of Physiology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine, Peking Union Medical College, Beijing, China
| |
Collapse
|
35
|
The relationships between clinical characteristics, alcohol and psychotropic exposure, and circadian gene expression in human postmortem samples of affective disorder and control subjects. Psychiatry Res 2014; 218:359-62. [PMID: 24837424 DOI: 10.1016/j.psychres.2014.04.048] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/02/2013] [Revised: 04/11/2014] [Accepted: 04/29/2014] [Indexed: 11/22/2022]
Abstract
Circadian abnormalities may be related to mood disorders. Circadian gene expression was measured in postmortem brain tissue from individuals with affective disorders and controls. Relationships between circadian gene expression, clinical characteristics, and alcohol and psychotropic medication use were noted. Further study is warranted to characterize these relationships.
Collapse
|
36
|
Abstract
Organisms experience dramatic fluctuations in demands and stresses over the course of the day. In order to maintain biological processes within physiological boundaries, mechanisms have evolved for anticipation of, and adaptation to, these daily fluctuations. Endocrine factors have an integral role in homeostasis. Not only do circulating levels of various endocrine factors oscillate over the 24 h period, but so too does responsiveness of target tissues to these signals or stimuli. Emerging evidence suggests that these daily endocrine oscillations do not occur solely in response to behavioural fluctuations associated with sleep-wake and feeding-fasting cycles, but are orchestrated by an intrinsic timekeeping mechanism known as the circadian clock. Disruption of circadian clocks by genetic and/or environmental factors seems to precipitate numerous common disorders, including the metabolic syndrome and cancer. Collectively, these observations suggest that strategies designed to realign normal circadian rhythmicities hold potential for the treatment of various endocrine-related disorders.
Collapse
Affiliation(s)
- Karen L. Gamble
- Division of Behavioral Neurobiology, Department of Psychiatry, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Ryan Berry
- Division of Endocrinology, Diabetes, and Metabolism Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Stuart J. Frank
- Division of Endocrinology, Diabetes, and Metabolism Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, USA
- Endocrinology Section, Medical Service, Birmingham VA Medical Center, Birmingham, AL, USA
| | - Martin E. Young
- Division of Cardiovascular Diseases, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, USA
| |
Collapse
|
37
|
Chen DN, Ma YT, Liu H, Zhou QY, Li JD. Functional rescue of Kallmann syndrome-associated prokineticin receptor 2 (PKR2) mutants deficient in trafficking. J Biol Chem 2014; 289:15518-26. [PMID: 24753254 DOI: 10.1074/jbc.m114.556381] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Mutations in the G protein-coupled prokineticin receptor 2 (PKR2) are known to cause Kallmann syndrome and idiopathic hypogonadotropic hypogonadism manifesting with delayed puberty and infertility. Some of the mutant receptors are not routed to the cell surface; instead, they are trapped in the cellular secretory pathway. The cell-permeant agonists/antagonists have been used to rescue some membrane receptors that are not targeted onto the cell membrane. Here, we chose three disease-associated mutations (W178S, G234D, and P290S), which all resulted in retention of PKR2 intracellularly. We show that a small molecule PKR2 antagonist (A457) dramatically increased cell surface expression and rescued the function of P290S PKR2, but had no effect on W178S and G234D PKR2. Furthermore, we also tested chemical chaperone glycerol on the cell surface expression and function of PKR2 mutants. Treatment with 10% glycerol significantly increased the cell surface expression and signaling of P290S and W178S PKR2. These data demonstrate that some Kallmann syndrome-associated, intracellularly retained mutant PKR2 receptors can be functionally rescued, suggesting a potential treatment strategy for patients bearing such mutations.
Collapse
Affiliation(s)
- Dan-Na Chen
- From the State Key Laboratory of Medical Genetics, Central South University, Changsha, Hunan 410078, China, the Department of Basic Medical Sciences, Changsha Medical University, Changsha, Hunan 410219, China
| | - Yan-Tao Ma
- From the State Key Laboratory of Medical Genetics, Central South University, Changsha, Hunan 410078, China
| | - Huadie Liu
- From the State Key Laboratory of Medical Genetics, Central South University, Changsha, Hunan 410078, China
| | - Qun-Yong Zhou
- the Department of Pharmacology, University of California, Irvine, California 92697
| | - Jia-Da Li
- From the State Key Laboratory of Medical Genetics, Central South University, Changsha, Hunan 410078, China, the Department of Pharmacology, Hubei University of Science and Technology, 88 Xianning Road, Xianning, Hubei 437100, China, and
| |
Collapse
|
38
|
McCabe MJ, Gaston-Massuet C, Gregory LC, Alatzoglou KS, Tziaferi V, Sbai O, Rondard P, Masumoto KH, Nagano M, Shigeyoshi Y, Pfeifer M, Hulse T, Buchanan CR, Pitteloud N, Martinez-Barbera JP, Dattani MT. Variations in PROKR2, but not PROK2, are associated with hypopituitarism and septo-optic dysplasia. J Clin Endocrinol Metab 2013; 98:E547-57. [PMID: 23386640 PMCID: PMC3612801 DOI: 10.1210/jc.2012-3067] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
CONTEXT Loss-of-function mutations in PROK2 and PROKR2 have been implicated in Kallmann syndrome (KS), characterized by hypogonadotropic hypogonadism and anosmia. Recent data suggest overlapping phenotypes/genotypes between KS and congenital hypopituitarism (CH), including septo-optic dysplasia (SOD). OBJECTIVE We screened a cohort of patients with complex forms of CH (n = 422) for mutations in PROK2 and PROKR2. RESULTS We detected 5 PROKR2 variants in 11 patients with SOD/CH: novel p.G371R and previously reported p.A51T, p.R85L, p.L173R, and p.R268C-the latter 3 being known functionally deleterious variants. Surprisingly, 1 patient with SOD was heterozygous for the p.L173R variant, whereas his phenotypically unaffected mother was homozygous for the variant. We sought to clarify the role of PROKR2 in hypothalamopituitary development through analysis of Prokr2(-/-) mice. Interestingly, these revealed predominantly normal hypothalamopituitary development and terminal cell differentiation, with the exception of reduced LH; this was inconsistent with patient phenotypes and more analogous to the healthy mother, although she did not have KS, unlike the Prokr2(-/-) mice. CONCLUSIONS The role of PROKR2 in the etiology of CH, SOD, and KS is uncertain, as demonstrated by no clear phenotype-genotype correlation; loss-of-function variants in heterozygosity or homozygosity can be associated with these disorders. However, we report a phenotypically normal parent, homozygous for p.L173R. Our data suggest that the variants identified herein are unlikely to be implicated in isolation in these disorders; other genetic or environmental modifiers may also impact on the etiology. Given the phenotypic variability, genetic counseling may presently be inappropriate.
Collapse
Affiliation(s)
- Mark J McCabe
- Developmental Endocrinology Research Group, Clinical and Molecular Genetics Unit, University College London (UCL)-Institute of Child Health, London WC1N 1EH, United Kingdom
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
The suprachiasmatic nucleus and the circadian timing system. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2013; 119:1-28. [PMID: 23899592 DOI: 10.1016/b978-0-12-396971-2.00001-4] [Citation(s) in RCA: 85] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The circadian timing system (CTS) in mammals may be defined as a network of interconnected diencephalic structures that regulate the timing of physiological processes and behavioral state. The central feature of the CTS is the suprachiasmatic nucleus (SCN) of the hypothalamus, a self-sustaining circadian oscillator entrained by visual afferents, input from other brain and peripheral oscillators. The SCN was first noted as a distinct component of the hypothalamus during the late nineteenth century and recognized soon after as a uniform feature of the mammalian and lower vertebrate brain. But, as was true for so many brain components identified in that era, its function was unknown and remained so for nearly a century. In the latter half of the twentieth century, numerous tools for studying the brain were developed including neuroanatomical tracing methods, electrophysiological methods including long-term recording in vivo and in vitro, precise methods for producing localized lesions in the brain, and molecular neurobiology. Application of these methods provided a body of data strongly supporting the view that the SCN is a circadian pacemaker in the mammalian brain. This chapter presents an analysis of the functional organization of the SCN as a component of a neural network, the CTS. This network functions as a coordinator of hypothalamic regulatory systems imposing a temporal organization of physiological processes and behavioral state to promote environmental adaptation.
Collapse
|
40
|
Abstract
The master coordinator of daily schedules in mammals, located in the ventral hypothalamus, is the suprachiasmatic nucleus (SCN). This relatively small population of neurons and glia generates circadian rhythms in physiology and behavior and synchronizes them to local time. Recent advances have begun to define the roles of specific cells and signals (e.g., peptides, amino acids, and purine derivatives) within this network that generate and synchronize daily rhythms. Here we focus on the best-studied signals between neurons and between glia in the mammalian circadian system with an emphasis on time-of-day pharmacology. Where possible, we highlight how commonly used drugs affect the circadian system.
Collapse
|
41
|
Gall AJ, Todd WD, Blumberg MS. Development of SCN connectivity and the circadian control of arousal: a diminishing role for humoral factors? PLoS One 2012; 7:e45338. [PMID: 23028945 PMCID: PMC3441626 DOI: 10.1371/journal.pone.0045338] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2012] [Accepted: 08/20/2012] [Indexed: 11/19/2022] Open
Abstract
The suprachiasmatic nucleus (SCN) is part of a wake-promoting circuit comprising the dorsomedial hypothalamus (DMH) and locus coeruleus (LC). Although widely considered a "master clock," the SCN of adult rats is also sensitive to feedback regarding an animal's behavioral state. Interestingly, in rats at postnatal day (P)2, repeated arousing stimulation does not increase neural activation in the SCN, despite doing so in the LC and DMH. Here we show that, by P8, the SCN is activated by arousing stimulation and that selective destruction of LC terminals with DSP-4 blocks this activational effect. We next show that bidirectional projections among the SCN, DMH, and LC are nearly absent at P2 but present at P8. Despite the relative lack of SCN connectivity with downstream structures at P2, day-night differences in sleep-wake activity are observed, suggesting that the SCN modulates behavior at this age via humoral factors. To test this hypothesis, we lesioned the SCN at P1 and recorded sleep-wake behavior at P2: Day-night differences in sleep and wake were eliminated. We next performed precollicular transections at P2 and P8 that isolate the SCN and DMH from the brainstem and found that day-night differences in sleep-wake behavior were retained at P2 but eliminated at P8. Finally, the SCN or DMH was lesioned at P8: When recorded at P21, rats with either lesion exhibited similarly fragmented wake bouts and no evidence of circadian modulation of wakefulness. These results suggest an age-related decline in the SCN's humoral influence on sleep-wake behavior that coincides with the emergence of bidirectional connectivity among the SCN, DMH, and LC.
Collapse
Affiliation(s)
- Andrew J. Gall
- Department of Psychology, University of Iowa, Iowa City, Iowa, United States of America
| | - William D. Todd
- Department of Psychology, University of Iowa, Iowa City, Iowa, United States of America
| | - Mark S. Blumberg
- Department of Psychology, University of Iowa, Iowa City, Iowa, United States of America
| |
Collapse
|
42
|
Zhou W, Li JD, Hu WP, Cheng MY, Zhou QY. Prokineticin 2 is involved in the thermoregulation and energy expenditure. ACTA ACUST UNITED AC 2012; 179:84-90. [PMID: 22960406 DOI: 10.1016/j.regpep.2012.08.003] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2012] [Revised: 06/28/2012] [Accepted: 08/27/2012] [Indexed: 01/26/2023]
Abstract
Animals have developed adaptive strategies to survive tough situations such as food shortage. However, the underlying molecular mechanism is not fully understood. Here, we provided evidence that the regulatory peptide prokineticin 2 (PK2) played an important role in such an adaptation. The PK2 expression was rapidly induced in the hypothalamic paraventricular nucleus (PVN) after fasting, which can be mimicked by 2-deoxy-D-glucose (2-DG) injection. The fasting-induced arousal was absent in the PK2-deficient (PK2(-/-)) mice. Furthermore, PK2(-/-) mice showed less energy expenditure and body weight loss than wild-type (WT) controls upon fasting. As a result, PK2(-/-) mice entered torpor after fasting. Supply of limited food (equal to 5% of body weight) daily during fasting rescued the body weight loss and hypothermal phenotype in WT mice, but not in PK2(-/-) mice. Our study thus demonstrated PK2 as a regulator in the thermoregulation and energy expenditure.
Collapse
Affiliation(s)
- Wenbai Zhou
- Department of Pharmacology, University of California, Irvine, CA 92697, USA
| | | | | | | | | |
Collapse
|
43
|
Prokineticin 2 is an endangering mediator of cerebral ischemic injury. Proc Natl Acad Sci U S A 2012; 109:5475-80. [PMID: 22431614 DOI: 10.1073/pnas.1113363109] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Stroke causes brain dysfunction and neuron death, and the lack of effective therapies heightens the need for new therapeutic targets. Here we identify prokineticin 2 (PK2) as a mediator for cerebral ischemic injury. PK2 is a bioactive peptide initially discovered as a regulator of gastrointestinal motility. Multiple biological roles for PK2 have been discovered, including circadian rhythms, angiogenesis, and neurogenesis. However, the role of PK2 in neuropathology is unknown. Using primary cortical cultures, we found that PK2 mRNA is up-regulated by several pathological stressors, including hypoxia, reactive oxygen species, and excitotoxic glutamate. Glutamate-induced PK2 expression is dependent on NMDA receptor activation and extracellular calcium. Enriched neuronal culture studies revealed that neurons are the principal source of glutamate-induced PK2. Using in vivo models of stroke, we found that PK2 mRNA is induced in the ischemic cortex and striatum. Central delivery of PK2 worsens infarct volume, whereas PK2 receptor antagonist decreases infarct volume and central inflammation while improving functional outcome. Direct central inhibition of PK2 using RNAi also reduces infarct volume. These findings indicate that PK2 can be activated by pathological stimuli such as hypoxia-ischemia and excitotoxic glutamate and identify PK2 as a deleterious mediator for cerebral ischemia.
Collapse
|
44
|
Li JD, Hu WP, Zhou QY. The circadian output signals from the suprachiasmatic nuclei. PROGRESS IN BRAIN RESEARCH 2012; 199:119-127. [DOI: 10.1016/b978-0-444-59427-3.00028-9] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
45
|
Kishi T, Kitajima T, Tsunoka T, Okumura T, Kawashima K, Okochi T, Yamanouchi Y, Kinoshita Y, Ujike H, Inada T, Yamada M, Uchimura N, Sora I, Iyo M, Ozaki N, Iwata N. Lack of association between prokineticin 2 gene and Japanese methamphetamine dependence. Curr Neuropharmacol 2011; 9:133-6. [PMID: 21886578 PMCID: PMC3137168 DOI: 10.2174/157015911795016994] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2009] [Revised: 04/17/2010] [Accepted: 05/26/2010] [Indexed: 12/13/2022] Open
Abstract
Disruption of circadian rhythms may be involved in the pathophysiology of psychiatric disorders, including drug addiction. Recently, we detected the significant association between prokineticin 2 receptor gene (PROKR2) and Japanese methamphetamine dependence patients. Also, prokineticin 2 (PK2) gene deficient mice showed reduced physiological and behavioral parameters, including circadian locomotor activity, circulating glucocorticoid, glucose levels and the expression of peripheral clock genes compared with WT mice. These evidences indicate that PK2 gene (PROK2) is a good candidate gene for the pathogenesis of methamphetamine dependence. To evaluate the association between PROK2 and methamphetamine dependence, we conducted a case-control study of Japanese samples (215 methamphetamine dependence and 232 controls) with four tagging SNPs selected by HapMap database. The age and sex of the control subjects did not differ from those of the methamphetamine dependence patients. Written informed consent was obtained from each subject. This study was approved by the ethics committees at Fujita Health University, Nagoya University Graduate School of Medicine and each participating member of the Institute of the Japanese Genetics Initiative for Drug Abuse (JGIDA). We did not detect an association between PROK2 and Japanese methamphetamine dependence patients in allele/genotype-wise analysis, or the haplotype analysis. Our findings suggest that PROK2 does not play a major role in the pathophysiology of methamphetamine dependence in the Japanese population.
Collapse
Affiliation(s)
- Taro Kishi
- Department of Psychiatry, Fujita Health University School of Medicine, Toyoake, Aichi 470-1192, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Abstract
Abstract
Major contributions to research in hematopoiesis in invertebrate animals have come from studies in the fruit fly, Drosophila melanogaster, and the freshwater crayfish, Pacifastacus leniusculus. These animals lack oxygen-carrying erythrocytes and blood cells of the lymphoid lineage, which participate in adaptive immune defense, thus making them suitable model animals to study the regulation of blood cells of the innate immune system. This review presents an overview of crustacean blood cell formation, the role of these cells in innate immunity, and how their synthesis is regulated by the astakine cytokines. Astakines are among the first invertebrate cytokines shown to be involved in hematopoiesis, and they can stimulate the proliferation, differentiation, and survival of hematopoietic tissue cells. The astakines and their vertebrate homologues, prokineticins, share similar functions in hematopoiesis; thus, studies of astakine-induced hematopoiesis in crustaceans may not only advance our understanding of the regulation of invertebrate hematopoiesis but may also provide new evolutionary perspectives about this process.
Collapse
|
47
|
Ren P, Zhang H, Qiu F, Liu YQ, Gu H, O'Dowd DK, Zhou QY, Hu WP. Prokineticin 2 regulates the electrical activity of rat suprachiasmatic nuclei neurons. PLoS One 2011; 6:e20263. [PMID: 21687716 PMCID: PMC3110640 DOI: 10.1371/journal.pone.0020263] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2011] [Accepted: 04/21/2011] [Indexed: 12/11/2022] Open
Abstract
Neuropeptide signaling plays roles in coordinating cellular activities and maintaining robust oscillations within the mammalian suprachiasmatic nucleus (SCN). Prokineticin2 (PK2) is a signaling molecule from the SCN and involves in the generation of circadian locomotor activity. Prokineticin receptor 2 (PKR2), a receptor for PK2, has been shown to be expressed in the SCN. However, very little is known about the cellular action of PK2 within the SCN. In the present study, we investigated the effect of PK2 on spontaneous firing and miniature inhibitory postsynaptic currents (mIPSCs) using whole cell patch-clamp recording in the SCN slices. PK2 dose-dependently increased spontaneous firing rates in most neurons from the dorsal SCN. PK2 acted postsynaptically to reduce γ-aminobutyric acid (GABA)-ergic function within the SCN, and PK2 reduced the amplitude but not frequency of mIPSCs. Furthermore, PK2 also suppressed exogenous GABA-induced currents. And the inhibitory effect of PK2 required PKC activation in the postsynaptic cells. Our data suggest that PK2 could alter cellular activities within the SCN and may influence behavioral and physiological rhythms.
Collapse
Affiliation(s)
- Ping Ren
- Department of Pharmacology, Xianning College, Xianning, Hubei, People's Republic of China
| | - Huiping Zhang
- Family Planning Research Institute, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China
| | - Fang Qiu
- Department of Pharmacology, Xianning College, Xianning, Hubei, People's Republic of China
| | - Yu-Qiang Liu
- Department of Pharmacology, Xianning College, Xianning, Hubei, People's Republic of China
| | - Huaiyu Gu
- Departments of Anatomy and Neurobiology, Developmental and Cell Biology, University of California Irvine, Irvine, California, United States of America
| | - Diane K. O'Dowd
- Departments of Anatomy and Neurobiology, Developmental and Cell Biology, University of California Irvine, Irvine, California, United States of America
| | - Qun-Yong Zhou
- Department of Pharmacology, University of California Irvine, Irvine, California, United States of America
| | - Wang-Ping Hu
- Department of Pharmacology, Xianning College, Xianning, Hubei, People's Republic of China
- * E-mail:
| |
Collapse
|
48
|
Yan L. Structural and functional changes in the suprachiasmatic nucleus following chronic circadian rhythm perturbation. Neuroscience 2011; 183:99-107. [PMID: 21443932 DOI: 10.1016/j.neuroscience.2011.03.041] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2011] [Accepted: 03/20/2011] [Indexed: 12/11/2022]
Abstract
Circadian rhythms, generated in the suprachiasmatic nucleus (SCN), are synchronized to the ambient light/dark (LD) cycle. Long-term disruptions in circadian rhythms are associated with many health problems. However, the underlying mechanisms for such pathologies are not well understood. In the present study, we utilized a chronic jet lag paradigm consisting of weekly 6 h phase shifts in the LD cycle to investigate the circadian responses in behavior and in the functioning of the SCN following long-term circadian perturbation, and to explore the duration and direction dependent changes of the SCN using rats subjected to weekly phase advances or delays. Wheel-running activity was monitored over four weekly phase advances. The nocturnal activity pattern was re-established by the end of each shift, and the rate for recovering the nocturnality appeared to accelerate following multiple shifts. SCN function was assessed by the expressions of the protein product of clock gene PER1 and of two putative SCN output signals, arginine vasopressin (AVP) and prokineticin2 (Pk2). At the end of the 4th weekly advance, the amplitude of the PER1 rhythm in the SCN decreased, and this reduction was more prominent in the dorsomedial SCN than in the ventrolateral SCN. The levels of AVP and Pk2 expression were also attenuated in the SCN and in targets of its efferent projections. Comparing rats subjected to four or eight shifts of either delay or advance, the results revealed that the responses of the SCN depended on both duration and direction of the shifts, such that the level of PER1 expression further decreased at the end of the 8th compared to the 4th phase advance, but did not change significantly following phase delays. Taken together, the results suggest that rhythm perturbation could compromise the time-keeping function of the SCN, which could contribute to the associated health issues.
Collapse
Affiliation(s)
- L Yan
- Department of Psychology, Michigan State University, East Lansing, MI 48824, USA; Neuroscience Program, Michigan State University, East Lansing, MI 48824, USA.
| |
Collapse
|
49
|
Jacobson O, Weiss ID, Niu G, Balboni G, Congiu C, Onnis V, Kiesewetter DO, Lattanzi R, Salvadori S, Chen X. Prokineticin receptor 1 antagonist PC-10 as a biomarker for imaging inflammatory pain. J Nucl Med 2011; 52:600-7. [PMID: 21421710 PMCID: PMC3629974 DOI: 10.2967/jnumed.110.084772] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
UNLABELLED Prokineticin receptor 1 (PKR1) and its ligand Bv8 were shown to be expressed in inflammation-induced pain and by tumor-supporting fibroblasts. Blocking this receptor might prove useful for reducing pain and for cancer therapy. However, there is no method to quantify the levels of these receptors in vivo. METHODS A nonpeptidic PKR1 antagonist, N-{2-[5-(4-fluoro-benzyl)-1-(4-methoxy-benzyl)-4,6-dioxo-1,4,5,6-tetrahydro-[1,3,5]triazin-2-ylamino]-ethyl}-guanidine, which contains a free guanidine group, was labeled with (18)F by reacting the guanidine function with N-succinimidyl-4-(18)F-fluorobenzoate to give the guanidinyl amide N-(4-(18)F-fluoro-benzoyl)-N'-{2-[5-(4-fluoro-benzyl)-1-(4-methoxy-benzyl)-4,6-dioxo-1,4,5,6-tetrahydro-[1,3,5]triazin-2-ylamino]-ethyl}-guanidine ((18)F-PC-10). Inflammation was induced in C57BL/6 mice by subcutaneous injection of complete Freund adjuvant in the paw. The mice were imaged with (18)F-PC-10, (18)F-FDG, and (64)Cu-pyruvaldehyde bis(4-methyl-3-thiosemicarbazone) ((64)Cu-PTSM) at 24 h after complete Freund adjuvant injection using a small-animal PET device. RESULTS (18)F-PC-10 was synthesized with a radiochemical yield of 16% ± 3% (decay-corrected). (18)F-PC-10 accumulated specifically in the inflamed paw 4- to 5-fold more than in the control paw. Compared with (18)F-PC-10, (18)F-FDG and (64)Cu-PTSM displayed higher accumulation in the inflamed paw but also had higher accumulation in the control paw, demonstrating a reduced signal-to-background ratio. (18)F-PC-10 also accumulated in PKR1-expressing organs, such as the salivary gland and gastrointestinal tract. CONCLUSION (18)F-PC-10 can be used to image PKR1, a biomarker of the inflammation process. However, the high uptake of (18)F-PC-10 in the gastrointestinal tract, due to specific uptake and the metabolic processing of this highly lipophilic molecule, would restrict its utility.
Collapse
Affiliation(s)
- Orit Jacobson
- Laboratory of Molecular Imaging and Nanomedicine, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, Maryland
| | - Ido D. Weiss
- Laboratory of Molecular Immunology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland
| | - Gang Niu
- Laboratory of Molecular Imaging and Nanomedicine, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, Maryland
| | | | - Cenzo Congiu
- Department of Toxicology, University of Cagliari, Cagliari, Italy
| | - Valentina Onnis
- Department of Toxicology, University of Cagliari, Cagliari, Italy
| | - Dale O. Kiesewetter
- Laboratory of Molecular Imaging and Nanomedicine, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, Maryland
| | - Roberta Lattanzi
- Department of Physiology and Pharmacology Vittorio Erspamer, Sapienza University Rome, Rome, Italy
| | - Severo Salvadori
- Department of Pharmaceutical Sciences and Biotechnology Center, University of Ferrara, Ferrara, Italy
| | - Xiaoyuan Chen
- Laboratory of Molecular Imaging and Nanomedicine, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, Maryland
| |
Collapse
|
50
|
Li QF, Zhu HY, Yang YF, Liu J, Xiao FJ, Zhang QW, Wu CT, Wang H, Wang LS. Prokineticin-1/endocrine gland-derived vascular endothelial growth factor is a survival factor for human multiple myeloma cells. Leuk Lymphoma 2011; 51:1902-12. [PMID: 20795791 DOI: 10.3109/10428194.2010.512963] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Prokineticin-1 (PK1) has been identified as a mitogen-specific protein for the endothelium of steroidogenic glands. Here we report a novel function of PK1 in the regulation of multiple myeloma (MM) cells. PK1 activates multiple signals including mitogen-activated protein kinase (MAPK), PI3K-AKT, and Jak-STAT3, sphingosine kinase-1 (SPK1) in MM cells. Treatment of MM cells with PK1 causes a time- and dose-dependent phosphorylation of MAPK, AKT and STAT3 and upregulation of SPK1 expression and cellular activity. We also show that PK1 upregulates Mcl-1 expression in a time- and dose-dependent manner in human MM cell lines and in the cells of patients with MM. Pertussis toxin, a pan-PK1 receptor inhibitor, can block PK1-induced upregulation of Mcl-1, indicating it relates to a G-protein-coupled receptor. We also show that PK1 protects MM cells against apoptosis induced by starvation for fetal calf serum (FBS), or for FBS and IL-6. Taken together, PK1 activates multiple signaling pathways and, upregulates Mcl-1 expression, leading to proliferation and survival of MM cells.
Collapse
Affiliation(s)
- Qing-Fang Li
- Department of Experimental Hematology, Beijing Institute of Radiation Medicine, Beijing, People's Republic of China
| | | | | | | | | | | | | | | | | |
Collapse
|