1
|
Scafidi A, Lind-Holm Mogensen F, Campus E, Pailas A, Neumann K, Legrave N, Bernardin F, Pereira SL, Antony PM, Nicot N, Mittelbronn M, Grünewald A, Nazarov PV, Poli A, Van Dyck E, Michelucci A. Metformin impacts the differentiation of mouse bone marrow cells into macrophages affecting tumour immunity. Heliyon 2024; 10:e37792. [PMID: 39315158 PMCID: PMC11417223 DOI: 10.1016/j.heliyon.2024.e37792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 09/04/2024] [Accepted: 09/10/2024] [Indexed: 09/25/2024] Open
Abstract
Background Epidemiological studies suggest that metformin reduces the risk of developing several types of cancer, including gliomas, and improves the overall survival in cancer patients. Nevertheless, while the effect of metformin on cancer cells has been extensively studied, its impact on other components of the tumour microenvironment, such as macrophages, is less understood. Results Metformin-treated mouse bone marrow cells differentiate into spindle-shaped macrophages exhibiting increased phagocytic activity and tumour cell cytotoxicity coupled with modulated expression of co-stimulatory molecules displaying reduced sensitivity to inflammatory cues compared with untreated cells. Transcriptional analyses of metformin-treated mouse bone marrow-derived macrophages show decreased expression levels of pro-tumour genes, including Tgfbi and Il1β, related to enhanced mTOR/HIF1α signalling and metabolic rewiring towards glycolysis. Significance Our study provides novel insights into the immunomodulatory properties of metformin in macrophages and its potential application in preventing tumour onset and in cancer immunotherapy.
Collapse
Affiliation(s)
- Andrea Scafidi
- Neuro-Immunology Group, Department of Cancer Research, Luxembourg Institute of Health, L-1210 Luxembourg, Luxembourg
- Faculty of Science, Technology and Medicine, University of Luxembourg, L-4365 Esch-sur-Alzette, Luxembourg
| | - Frida Lind-Holm Mogensen
- Neuro-Immunology Group, Department of Cancer Research, Luxembourg Institute of Health, L-1210 Luxembourg, Luxembourg
- Faculty of Science, Technology and Medicine, University of Luxembourg, L-4365 Esch-sur-Alzette, Luxembourg
| | - Eleonora Campus
- Neuro-Immunology Group, Department of Cancer Research, Luxembourg Institute of Health, L-1210 Luxembourg, Luxembourg
- Faculty of Science, Technology and Medicine, University of Luxembourg, L-4365 Esch-sur-Alzette, Luxembourg
| | - Alexandros Pailas
- Faculty of Science, Technology and Medicine, University of Luxembourg, L-4365 Esch-sur-Alzette, Luxembourg
- DNA Repair and Chemoresistance, Department of Cancer Research, Luxembourg Institute of Health, L-1210 Luxembourg, Luxembourg
| | - Katrin Neumann
- DNA Repair and Chemoresistance, Department of Cancer Research, Luxembourg Institute of Health, L-1210 Luxembourg, Luxembourg
| | - Nathalie Legrave
- Metabolomics Platform, Department of Cancer Research, Luxembourg Institute of Health, L-1445 Strassen, Luxembourg
| | - François Bernardin
- Metabolomics Platform, Department of Cancer Research, Luxembourg Institute of Health, L-1445 Strassen, Luxembourg
| | - Sandro L. Pereira
- Molecular and Functional Neurobiology Group, Luxembourg Centre for Systems Biomedicine, University of Luxembourg, L-4362 Esch-sur-Alzette, Luxembourg
| | - Paul M.A. Antony
- Bioimaging Platform, Luxembourg Centre for Systems Biomedicine, University of Luxembourg, L-4362 Esch-sur-Alzette, Luxembourg
| | - Nathalie Nicot
- LuxGen Genome Center, Luxembourg Institute of Health & Laboratoire National de Santé, L-3555 Dudelange, Luxembourg
| | - Michel Mittelbronn
- Department of Life Sciences and Medicine, Faculty of Science, Technology and Medicine, University of Luxembourg, L-4367 Belvaux, Luxembourg
- Luxembourg Centre for Systems Biomedicine, University of Luxembourg, L-4362 Esch-sur-Alzette, Luxembourg
- Department of Cancer Research, Luxembourg Institute of Health, L-1210 Luxembourg, Luxembourg
- Luxembourg Center of Neuropathology, Laboratoire National de Santé, L-3555 Dudelange, Luxembourg
- National Center of Pathology, Laboratoire National de Santé, L-3555 Dudelange, Luxembourg
| | - Anne Grünewald
- Molecular and Functional Neurobiology Group, Luxembourg Centre for Systems Biomedicine, University of Luxembourg, L-4362 Esch-sur-Alzette, Luxembourg
| | - Petr V. Nazarov
- Bioinformatics and AI unit, Department of Medical Informatics, Luxembourg Institute of Health, L-1445 Strassen, Luxembourg
- Multiomics Data Science Group, Department of Cancer Research, Luxembourg Institute of Health, L-1445 Strassen, Luxembourg
| | - Aurélie Poli
- Neuro-Immunology Group, Department of Cancer Research, Luxembourg Institute of Health, L-1210 Luxembourg, Luxembourg
| | - Eric Van Dyck
- DNA Repair and Chemoresistance, Department of Cancer Research, Luxembourg Institute of Health, L-1210 Luxembourg, Luxembourg
| | - Alessandro Michelucci
- Neuro-Immunology Group, Department of Cancer Research, Luxembourg Institute of Health, L-1210 Luxembourg, Luxembourg
| |
Collapse
|
2
|
Liu B, Zhang Y, Wang Y, Meng Q, Zhang D, Yang H, Li G, Wang Y, Zhou H. Pharmacological targeting of AMPK to restore glucose and fatty acid metabolism homeostasis attenuates transplanted kidney fibrosis. Biochim Biophys Acta Mol Basis Dis 2024; 1871:167510. [PMID: 39278511 DOI: 10.1016/j.bbadis.2024.167510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 08/10/2024] [Accepted: 09/07/2024] [Indexed: 09/18/2024]
Abstract
Chronic fibrosis often occurs in transplanted kidneys, leading to progressive functional decline. The underlying mechanisms may involve disruption in the metabolism of renal tubular epithelial cells. The liver kinase B1 (LKB1)-AMPK pathway is a pivotal regulatory hub for glucose and fatty acid metabolism and may play a role in transplanted kidney fibrosis, but it has not been reported. In this study we administered fenofibrate, 2-deoxyglucose, or metformin to modulate metabolism in Brown Norway rat kidney transplants and investigated pathways involved in fibrosis using various assays. We identified an impaired LKB1-AMPK pathway within epithelial cells, resulting in perturbed glucose and fatty acid metabolism, collagen secretion, extracellular matrix remodeling, and epithelial-mesenchymal transition. ACOX1, a pivotal enzyme in the fatty acid peroxisomal β-oxidation pathway, played an important role in transplanted renal fibrosis. Furthermore, several metabolism-targeting drugs, particularly metformin, emerged as potent fibrosis inhibitors. Metformin attenuated fibrosis, improved renal function, and reduced inflammation and macrophage infiltration in the transplanted kidneys. These results provide new perspectives for understanding the complex molecular basis underlying transplanted renal fibrosis and developing novel therapeutic strategies.
Collapse
Affiliation(s)
- Bin Liu
- Department of Urology II, The First Hospital of Jilin University, Changchun 130021, Jilin, China
| | - Yanghe Zhang
- Department of Urology II, The First Hospital of Jilin University, Changchun 130021, Jilin, China
| | - Yuxiong Wang
- Department of Urology II, The First Hospital of Jilin University, Changchun 130021, Jilin, China
| | - Qingfei Meng
- Key Laboratory of Pathobiology, Ministry of Education, Jilin University, Changchun 130021, Jilin, China
| | - Dan Zhang
- Key Laboratory of Pathobiology, Ministry of Education, Jilin University, Changchun 130021, Jilin, China
| | - Hongxia Yang
- Key Laboratory of Pathobiology, Ministry of Education, Jilin University, Changchun 130021, Jilin, China
| | - Guangtao Li
- Key Laboratory of Pathobiology, Ministry of Education, Jilin University, Changchun 130021, Jilin, China
| | - Yishu Wang
- Key Laboratory of Pathobiology, Ministry of Education, Jilin University, Changchun 130021, Jilin, China
| | - Honglan Zhou
- Department of Urology II, The First Hospital of Jilin University, Changchun 130021, Jilin, China
| |
Collapse
|
3
|
Li J, Chen S, Xiao J, Ji J, Huang C, Shu G. FOXC1 transcriptionally suppresses ABHD5 to inhibit the progression of renal cell carcinoma through AMPK/mTOR pathway. Cell Biol Toxicol 2024; 40:62. [PMID: 39093497 PMCID: PMC11297099 DOI: 10.1007/s10565-024-09899-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Accepted: 07/04/2024] [Indexed: 08/04/2024]
Abstract
BACKGROUND Increased activity of the transcription factor FOXC1 leads to elevated transcription of target genes, ultimately facilitating the progression of various cancer types. However, there are currently no literature reports on the role of FOXC1 in renal cell carcinoma. METHODS By using RT-qPCR, immunohistochemistry and Western blotting, FOXC1 mRNA and protein expression was evaluated. Gain of function experiments were utilized to assess the proliferation and metastasis ability of cells. A nude mouse model was created for transplanting tumors and establishing a lung metastasis model to observe cell proliferation and spread in a living organism. Various techniques including biological analysis, CHIP assay, luciferase assay, RT-qRCR and Western blotting experiments were utilized to investigate how FOXC1 contributes to the transcription of ABHD5 on a molecular level. FOXC1 was assessed by Western blot for its impact on AMPK/mTOR signaling pathway. RESULTS FOXC1 is down-regulated in RCC, causing unfavorable prognosis of patients with RCC. Further experiments showed that forced FOXC1 expression significantly restrains RCC cell growth and cell metastasis. Mechanically, FOXC1 promotes the transcription of ABHD5 to activate AMPK signal pathway to inhibit mTOR signal pathway. Finally, knockdown of ABHD5 recovered the inhibitory role of FOXC1 overexpression induced cell growth and metastasis suppression. CONCLUSION In general, our study demonstrates that FOXC1 exerts its tumor suppressor role by promoting ABHD5 transcription to regulating AMPK/mTOR signal pathway. FOXC1 could serve as both a diagnostic indicator and potential treatment focus for RCC.
Collapse
Affiliation(s)
- Jianfa Li
- Department of Urology, Beijing Friendship Hospital, Capital Medical University, Beijing, China
- Department of Urology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Shuangchen Chen
- Department of Urology, Peking University First Hospital, Beijing, China
| | - Jing Xiao
- Department of Urology, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Jiayuan Ji
- Department of Urology, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Chenchen Huang
- Department of Urology, Peking University First Hospital, Beijing, China.
| | - Ge Shu
- Shenzhen Key Laboratory of Male Reproductive Medicine and Genetics, Institute of Urology, Peking University Shenzhen Hospital, Shenzhen, Guangdong, China.
| |
Collapse
|
4
|
Zhao W, Zhang W, Hu Y, Zhou Y, Zhao J, Li Y, Xu Z. AdipoRon Ameliorates Synaptic Dysfunction and Inhibits tau Hyperphosphorylation through the AdipoR/AMPK/mTOR Pathway in T2DM Mice. Neurochem Res 2024; 49:2075-2086. [PMID: 38819697 DOI: 10.1007/s11064-024-04162-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Revised: 02/20/2024] [Accepted: 05/22/2024] [Indexed: 06/01/2024]
Abstract
There is growing evidence showing that adiponectin (APN) can improve Alzheimer's disease(AD)-like pathological changes by improving insulin resistance. However, the role of AdipoRon (an Adiponectin receptor agonist) on synaptic plasticity and cognitive dysfunction in the early stages of type 2 diabetes mellitus(T2DM) remains unknown. In this study, we investigated the neuroprotective effect and the molecular mechanism underlying the effect of AdipoRon in T2DM mice. We found that AdipoRon significantly restored the cognitive deficits in T2DM mice, including shorter escape latency, more crossing times, increased distances, and percentage of time in the target quadrant. In addition, AdipoRon treatment up-regulated synaptic proteins (PSD95, SYN, GAP43, and SYP), increased the number of hippocampal synapses and attenuated synaptic damage, including the length, the number and the density of dendritic spines in CA1 and DG regions. Furthermore, AdipoRon attenuated Tau phosphorylation at multiple AD-related sites (p-tau 205, p-tau 396, p-tau 404) by promoting AdipoR expression and activating the AMPK/mTOR pathway. Our data suggests that AdipoRon exerts neuroprotective effects on the T2DM mice, which may be mediated by the activation of the AdipoR/AMPK/mTOR signaling pathway.
Collapse
Affiliation(s)
- Wenyan Zhao
- Department of Neuropsychology, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China
| | - Wei Zhang
- Department of Neuropsychology, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China
| | - Yingying Hu
- Department of Neuropsychology, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China
| | - Yuliang Zhou
- Department of Neuropsychology, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China
| | - Jinying Zhao
- Department of Neuropsychology, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China
| | - Yahong Li
- Department of Applied Psychology, South-Central Minzu University, Wuhan, Hubei, China.
| | - Zhipeng Xu
- Department of Neuropsychology, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China.
| |
Collapse
|
5
|
Yang X, Tian S, Min Z, Garbarino E, Ma J, Jia J, Tang H, Li L. AMPK restricts HHV-6A replication by inhibiting glycolysis and mTOR signaling. Virology 2024; 595:110080. [PMID: 38631099 DOI: 10.1016/j.virol.2024.110080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 03/22/2024] [Accepted: 04/03/2024] [Indexed: 04/19/2024]
Abstract
AMP-activated protein kinase (AMPK) is a cellular energy sensor regulating metabolic homeostasis. In this study, we investigated the role of AMPK in response to human herpesvirus 6A (HHV-6A) infection. We show that HHV-6A infection significantly downregulates the active phosphorylated state of AMPK in infected T cells. Pharmacological activation of AMPK highly attenuated HHV-6A propagation. Mechanistically, we found that the activation of AMPK by AICAR blocked HHV-6-induced glycolysis by inhibiting glucose metabolism and lactate secretion, as well as decreasing expressions of key glucose transporters and glycolytic enzymes. In addition, mTOR signaling has been inactivated in HHV-6A infected T cells by AICAR treatment. We also showed that HHV-6A infection of human umbilical cord blood mononuclear cells (CBMCs) reduced AMPK activity whereas the activation of AMPK by metformin drastically reduced HHV-6A DNA replication and virions production. Taken together, this study demonstrates that AMPK is a promising antiviral therapeutic target against HHV-6A infection.
Collapse
Affiliation(s)
- Xiaodi Yang
- Department of Medical Genetics, School of Basic Medical Sciences, Nanjing Medical University, Nanjing, 211166, China
| | - Siyu Tian
- Department of Medical Genetics, School of Basic Medical Sciences, Nanjing Medical University, Nanjing, 211166, China
| | - Zhujiang Min
- Department of Medical Genetics, School of Basic Medical Sciences, Nanjing Medical University, Nanjing, 211166, China
| | - Emanuela Garbarino
- Department of Immunology, National Vaccine Innovation Platform, School of Basic Medical Sciences, Nanjing Medical University, Nanjing, 211166, China
| | - Jingjing Ma
- Department of Immunology, National Vaccine Innovation Platform, School of Basic Medical Sciences, Nanjing Medical University, Nanjing, 211166, China
| | - Junli Jia
- Department of Immunology, National Vaccine Innovation Platform, School of Basic Medical Sciences, Nanjing Medical University, Nanjing, 211166, China
| | - Huamin Tang
- Department of Immunology, National Vaccine Innovation Platform, School of Basic Medical Sciences, Nanjing Medical University, Nanjing, 211166, China; The Laboratory Center for Basic Medical Sciences, Nanjing Medical University, Nanjing, 211166, China.
| | - Lingyun Li
- Department of Medical Genetics, School of Basic Medical Sciences, Nanjing Medical University, Nanjing, 211166, China.
| |
Collapse
|
6
|
Trelford CB, Shepherd TG. LKB1 biology: assessing the therapeutic relevancy of LKB1 inhibitors. Cell Commun Signal 2024; 22:310. [PMID: 38844908 PMCID: PMC11155146 DOI: 10.1186/s12964-024-01689-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Accepted: 05/28/2024] [Indexed: 06/10/2024] Open
Abstract
Liver Kinase B1 (LKB1), encoded by Serine-Threonine Kinase 11 (STK11), is a master kinase that regulates cell migration, polarity, proliferation, and metabolism through downstream adenosine monophosphate-activated protein kinase (AMPK) and AMPK-related kinase signalling. Since genetic screens identified STK11 mutations in Peutz-Jeghers Syndrome, STK11 mutants have been implicated in tumourigenesis labelling it as a tumour suppressor. In support of this, several compounds reduce tumour burden through upregulating LKB1 signalling, and LKB1-AMPK agonists are cytotoxic to tumour cells. However, in certain contexts, its role in cancer is paradoxical as LKB1 promotes tumour cell survival by mediating resistance against metabolic and oxidative stressors. LKB1 deficiency has also enhanced the selectivity and cytotoxicity of several cancer therapies. Taken together, there is a need to develop LKB1-specific pharmacological compounds, but prior to developing LKB1 inhibitors, further work is needed to understand LKB1 activity and regulation. However, investigating LKB1 activity is strenuous as cell/tissue type, mutations to the LKB1 signalling pathway, STE-20-related kinase adaptor protein (STRAD) binding, Mouse protein 25-STRAD binding, splicing variants, nucleocytoplasmic shuttling, post-translational modifications, and kinase conformation impact the functional status of LKB1. For these reasons, guidelines to standardize experimental strategies to study LKB1 activity, associate proteins, spliced isoforms, post-translational modifications, and regulation are of upmost importance to the development of LKB1-specific therapies. Therefore, to assess the therapeutic relevancy of LKB1 inhibitors, this review summarizes the importance of LKB1 in cell physiology, highlights contributors to LKB1 activation, and outlines the benefits and risks associated with targeting LKB1.
Collapse
Affiliation(s)
- Charles B Trelford
- The Mary &, John Knight Translational Ovarian Cancer Research Unit, London Regional Cancer Program, 790 Commissioners Road East, Room A4‑921, London, ON, N6A 4L6, Canada.
- Department of Anatomy and Cell Biology, Schulich School of Medicine and Dentistry, Western University, London, ON, Canada.
| | - Trevor G Shepherd
- The Mary &, John Knight Translational Ovarian Cancer Research Unit, London Regional Cancer Program, 790 Commissioners Road East, Room A4‑921, London, ON, N6A 4L6, Canada
- Department of Anatomy and Cell Biology, Schulich School of Medicine and Dentistry, Western University, London, ON, Canada
- Department of Oncology, Schulich School of Medicine and Dentistry, Western University, London, ON, Canada
- Department of Obstetrics and Gynaecology, Schulich School of Medicine and Dentistry, Western University, London, ON, Canada
| |
Collapse
|
7
|
Xiao Z, Wang S, Luo L, Lv W, Feng P, Sun Y, Yang Q, He J, Cao G, Yin Z, Yang M. Lkb1 orchestrates γδ T-cell metabolic and functional fitness to control IL-17-mediated autoimmune hepatitis. Cell Mol Immunol 2024; 21:546-560. [PMID: 38641698 PMCID: PMC11143210 DOI: 10.1038/s41423-024-01163-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Accepted: 04/02/2024] [Indexed: 04/21/2024] Open
Abstract
γδ T cells play a crucial role in immune surveillance and serve as a bridge between innate and adaptive immunity. However, the metabolic requirements and regulation of γδ T-cell development and function remain poorly understood. In this study, we investigated the role of liver kinase B1 (Lkb1), a serine/threonine kinase that links cellular metabolism with cell growth and proliferation, in γδ T-cell biology. Our findings demonstrate that Lkb1 is not only involved in regulating γδ T lineage commitment but also plays a critical role in γδ T-cell effector function. Specifically, T-cell-specific deletion of Lkb1 resulted in impaired thymocyte development and distinct alterations in γδ T-cell subsets in both the thymus and peripheral lymphoid tissues. Notably, loss of Lkb1 inhibited the commitment of Vγ1 and Vγ4 γδ T cells, promoted the maturation of IL-17-producing Vγ6 γδ T cells, and led to the occurrence of fatal autoimmune hepatitis (AIH). Notably, clearance of γδ T cells or blockade of IL-17 significantly attenuated AIH. Mechanistically, Lkb1 deficiency disrupted metabolic homeostasis and AMPK activity, accompanied by increased mTORC1 activation, thereby causing overactivation of γδ T cells and enhanced apoptosis. Interestingly, activation of AMPK or suppression of mTORC1 signaling effectively inhibited IL-17 levels and attenuated AIH in Lkb1-deficient mice. Our findings highlight the pivotal role of Lkb1 in maintaining the homeostasis of γδ T cells and preventing IL-17-mediated autoimmune diseases, providing new insights into the metabolic programs governing the subset determination and functional differentiation of thymic γδ T cells.
Collapse
Affiliation(s)
- Zhiqiang Xiao
- Guangdong Provincial Key Laboratory of Tumor Interventional Diagnosis and Treatment, Zhuhai Institute of Translational Medicine, Zhuhai People's Hospital Affiliated with Jinan University, Jinan University, Zhuhai, 519000, China
- The Biomedical Translational Research Institute, School of Medicine, Jinan University, Guangzhou, 510632, China
| | - Shanshan Wang
- The Biomedical Translational Research Institute, School of Medicine, Jinan University, Guangzhou, 510632, China
| | - Liang Luo
- The Biomedical Translational Research Institute, School of Medicine, Jinan University, Guangzhou, 510632, China
| | - Wenkai Lv
- The Biomedical Translational Research Institute, School of Medicine, Jinan University, Guangzhou, 510632, China
| | - Peiran Feng
- Guangdong Provincial Key Laboratory of Spine and Spinal Cord Reconstruction, The Fifth Affiliated Hospital (Heyuan Shenhe People's Hospital), Jinan University, Heyuan, 517000, China
| | - Yadong Sun
- The Biomedical Translational Research Institute, School of Medicine, Jinan University, Guangzhou, 510632, China
| | - Quanli Yang
- Guangdong Provincial Key Laboratory of Tumor Interventional Diagnosis and Treatment, Zhuhai Institute of Translational Medicine, Zhuhai People's Hospital Affiliated with Jinan University, Jinan University, Zhuhai, 519000, China
| | - Jun He
- Key Laboratory of Ministry of Education for Viral Pathogenesis & Infection Prevention and Control (Jinan University). Guangzhou Key Laboratory for Germ-Free Animals and Microbiota Application. Institute of Laboratory Animal Science, School of Medicine, Jinan University, Guangzhou, 510632, China
| | - Guangchao Cao
- Guangdong Provincial Key Laboratory of Tumor Interventional Diagnosis and Treatment, Zhuhai Institute of Translational Medicine, Zhuhai People's Hospital Affiliated with Jinan University, Jinan University, Zhuhai, 519000, China
- The Biomedical Translational Research Institute, School of Medicine, Jinan University, Guangzhou, 510632, China
| | - Zhinan Yin
- Guangdong Provincial Key Laboratory of Tumor Interventional Diagnosis and Treatment, Zhuhai Institute of Translational Medicine, Zhuhai People's Hospital Affiliated with Jinan University, Jinan University, Zhuhai, 519000, China.
- The Biomedical Translational Research Institute, School of Medicine, Jinan University, Guangzhou, 510632, China.
| | - Meixiang Yang
- Guangdong Provincial Key Laboratory of Tumor Interventional Diagnosis and Treatment, Zhuhai Institute of Translational Medicine, Zhuhai People's Hospital Affiliated with Jinan University, Jinan University, Zhuhai, 519000, China.
- The Biomedical Translational Research Institute, School of Medicine, Jinan University, Guangzhou, 510632, China.
- Guangdong Provincial Key Laboratory of Spine and Spinal Cord Reconstruction, The Fifth Affiliated Hospital (Heyuan Shenhe People's Hospital), Jinan University, Heyuan, 517000, China.
- Key Laboratory of Ministry of Education for Viral Pathogenesis & Infection Prevention and Control (Jinan University). Guangzhou Key Laboratory for Germ-Free Animals and Microbiota Application. Institute of Laboratory Animal Science, School of Medicine, Jinan University, Guangzhou, 510632, China.
| |
Collapse
|
8
|
Wang N, Wang B, Maswikiti EP, Yu Y, Song K, Ma C, Han X, Ma H, Deng X, Yu R, Chen H. AMPK-a key factor in crosstalk between tumor cell energy metabolism and immune microenvironment? Cell Death Discov 2024; 10:237. [PMID: 38762523 PMCID: PMC11102436 DOI: 10.1038/s41420-024-02011-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 04/30/2024] [Accepted: 05/07/2024] [Indexed: 05/20/2024] Open
Abstract
Immunotherapy has now garnered significant attention as an essential component in cancer therapy during this new era. However, due to immune tolerance, immunosuppressive environment, tumor heterogeneity, immune escape, and other factors, the efficacy of tumor immunotherapy has been limited with its application to very small population size. Energy metabolism not only affects tumor progression but also plays a crucial role in immune escape. Tumor cells are more metabolically active and need more energy and nutrients to maintain their growth, which causes the surrounding immune cells to lack glucose, oxygen, and other nutrients, with the result of decreased immune cell activity and increased immunosuppressive cells. On the other hand, immune cells need to utilize multiple metabolic pathways, for instance, cellular respiration, and oxidative phosphorylation pathways to maintain their activity and normal function. Studies have shown that there is a significant difference in the energy expenditure of immune cells in the resting and activated states. Notably, competitive uptake of glucose is the main cause of impaired T cell function. Conversely, glutamine competition often affects the activation of most immune cells and the transformation of CD4+T cells into inflammatory subtypes. Excessive metabolite lactate often impairs the function of NK cells. Furthermore, the metabolite PGE2 also often inhibits the immune response by inhibiting Th1 differentiation, B cell function, and T cell activation. Additionally, the transformation of tumor-suppressive M1 macrophages into cancer-promoting M2 macrophages is influenced by energy metabolism. Therefore, energy metabolism is a vital factor and component involved in the reconstruction of the tumor immune microenvironment. Noteworthy and vital is that not only does the metabolic program of tumor cells affect the antigen presentation and recognition of immune cells, but also the metabolic program of immune cells affects their own functions, ultimately leading to changes in tumor immune function. Metabolic intervention can not only improve the response of immune cells to tumors, but also increase the immunogenicity of tumors, thereby expanding the population who benefit from immunotherapy. Consequently, identifying metabolic crosstalk molecules that link tumor energy metabolism and immune microenvironment would be a promising anti-tumor immune strategy. AMPK (AMP-activated protein kinase) is a ubiquitous serine/threonine kinase in eukaryotes, serving as the central regulator of metabolic pathways. The sequential activation of AMPK and its associated signaling cascades profoundly impacts the dynamic alterations in tumor cell bioenergetics. By modulating energy metabolism and inflammatory responses, AMPK exerts significant influence on tumor cell development, while also playing a pivotal role in tumor immunotherapy by regulating immune cell activity and function. Furthermore, AMPK-mediated inflammatory response facilitates the recruitment of immune cells to the tumor microenvironment (TIME), thereby impeding tumorigenesis, progression, and metastasis. AMPK, as the link between cell energy homeostasis, tumor bioenergetics, and anti-tumor immunity, will have a significant impact on the treatment and management of oncology patients. That being summarized, the main objective of this review is to pinpoint the efficacy of tumor immunotherapy by regulating the energy metabolism of the tumor immune microenvironment and to provide guidance for the development of new immunotherapy strategies.
Collapse
Affiliation(s)
- Na Wang
- The Second Clinical Medical School, Lanzhou University, Lanzhou, Gansu, 730030, China
| | - Bofang Wang
- The Second Clinical Medical School, Lanzhou University, Lanzhou, Gansu, 730030, China
| | - Ewetse Paul Maswikiti
- The Second Clinical Medical School, Lanzhou University, Lanzhou, Gansu, 730030, China
| | - Yang Yu
- The Second Clinical Medical School, Lanzhou University, Lanzhou, Gansu, 730030, China
| | - Kewei Song
- The Second Clinical Medical School, Lanzhou University, Lanzhou, Gansu, 730030, China
| | - Chenhui Ma
- The Second Clinical Medical School, Lanzhou University, Lanzhou, Gansu, 730030, China
| | - Xiaowen Han
- The Second Clinical Medical School, Lanzhou University, Lanzhou, Gansu, 730030, China
| | - Huanhuan Ma
- The Second Clinical Medical School, Lanzhou University, Lanzhou, Gansu, 730030, China
| | - Xiaobo Deng
- The Second Clinical Medical School, Lanzhou University, Lanzhou, Gansu, 730030, China
| | - Rong Yu
- The Second Clinical Medical School, Lanzhou University, Lanzhou, Gansu, 730030, China
| | - Hao Chen
- The Department of Tumor Surgery, The Second Hospital of Lanzhou University, Lanzhou, Gansu, 730030, China.
- Key Laboratory of Environmental Oncology of Gansu Province, Lanzhou, Gansu, 730030, China.
| |
Collapse
|
9
|
Lv Y, Zhao C, Jiang Q, Rong Y, Ma M, Liang L, Li W, Zhang J, Xu N, Wu H. Dapagliflozin promotes browning of white adipose tissue through the FGFR1-LKB1-AMPK signaling pathway. Mol Biol Rep 2024; 51:562. [PMID: 38644407 PMCID: PMC11033239 DOI: 10.1007/s11033-024-09540-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Accepted: 04/10/2024] [Indexed: 04/23/2024]
Abstract
BACKGROUND Obesity is associated with a wide variety of metabolic disorders that impose significant burdens on patients and society. The "browning" phenomenon in white adipose tissue (WAT) has emerged as a promising therapeutic strategy to combat metabolic disturbances. However, though the anti-diabetic drug dapagliflozin (DAPA) is thought to promote "browning," the specific mechanism of this was previously unclear. METHODS In this study, C57BL/6 J male mice were used to establish an obesity model by high-fat diet feeding, and 3T3-L1 cells were used to induce mature adipocytes and to explore the role and mechanism of DAPA in "browning" through a combination of in vitro and in vivo experiments. RESULTS The results show that DAPA promotes WAT "browning" and improves metabolic disorders. Furthermore, we discovered that DAPA activated "browning" through the fibroblast growth factor receptors 1-liver kinase B1-adenosine monophosphate-activated protein kinase signaling pathway. CONCLUSION These findings provide a rational basis for the use of DAPA in treating obesity by promoting the browning of white adipose tissue.
Collapse
MESH Headings
- Animals
- Male
- Mice
- 3T3-L1 Cells
- Adipocytes/metabolism
- Adipocytes/drug effects
- Adipose Tissue, Brown/drug effects
- Adipose Tissue, Brown/metabolism
- Adipose Tissue, White/metabolism
- Adipose Tissue, White/drug effects
- AMP-Activated Protein Kinases/metabolism
- Benzhydryl Compounds/pharmacology
- Diet, High-Fat
- Glucosides/pharmacology
- Mice, Inbred C57BL
- Obesity/metabolism
- Obesity/drug therapy
- Protein Serine-Threonine Kinases/metabolism
- Receptor, Fibroblast Growth Factor, Type 1/metabolism
- Receptor, Fibroblast Growth Factor, Type 1/genetics
- Signal Transduction/drug effects
Collapse
Affiliation(s)
- Yue Lv
- Science and Technology Center of Fenyang College, Shanxi Medical University, No. 16 Xueyuan Road, Fenyang, Shanxi, 032200, People's Republic of China
| | - Chengrui Zhao
- Science and Technology Center of Fenyang College, Shanxi Medical University, No. 16 Xueyuan Road, Fenyang, Shanxi, 032200, People's Republic of China
| | - Qiuyan Jiang
- Science and Technology Center of Fenyang College, Shanxi Medical University, No. 16 Xueyuan Road, Fenyang, Shanxi, 032200, People's Republic of China
| | - Yilin Rong
- Science and Technology Center of Fenyang College, Shanxi Medical University, No. 16 Xueyuan Road, Fenyang, Shanxi, 032200, People's Republic of China
| | - Mingfeng Ma
- Cultivation Key Laboratory of Metabolic Cardiovascular Diseases Research, Fenyang, 032200, People's Republic of China
| | - Lili Liang
- Cultivation Key Laboratory of Metabolic Cardiovascular Diseases Research, Fenyang, 032200, People's Republic of China
| | - Weiping Li
- Basic Sciences Department of Fenyang College, Shanxi Medical University, Fenyang, 032200, People's Republic of China
| | - Jiuxuan Zhang
- Science and Technology Center of Fenyang College, Shanxi Medical University, No. 16 Xueyuan Road, Fenyang, Shanxi, 032200, People's Republic of China
| | - Ning Xu
- Department of Oncology, Shanxi Province Fenyang Hospital, Fenyang, 032200, People's Republic of China
| | - Huiwen Wu
- Science and Technology Center of Fenyang College, Shanxi Medical University, No. 16 Xueyuan Road, Fenyang, Shanxi, 032200, People's Republic of China.
- Cultivation Key Laboratory of Metabolic Cardiovascular Diseases Research, Fenyang, 032200, People's Republic of China.
- Department of Oncology, Shanxi Province Fenyang Hospital, Fenyang, 032200, People's Republic of China.
| |
Collapse
|
10
|
Qin P, Li Q, Zu Q, Dong R, Qi Y. Natural products targeting autophagy and apoptosis in NSCLC: a novel therapeutic strategy. Front Oncol 2024; 14:1379698. [PMID: 38628670 PMCID: PMC11019012 DOI: 10.3389/fonc.2024.1379698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 03/18/2024] [Indexed: 04/19/2024] Open
Abstract
Lung cancer is the leading cause of cancer-related mortality worldwide, with non-small cell lung cancer (NSCLC) being the predominant type. The roles of autophagy and apoptosis in NSCLC present a dual and intricate nature. Additionally, autophagy and apoptosis interconnect through diverse crosstalk molecules. Owing to their multitargeting nature, safety, and efficacy, natural products have emerged as principal sources for NSCLC therapeutic candidates. This review begins with an exploration of the mechanisms of autophagy and apoptosis, proceeds to examine the crosstalk molecules between these processes, and outlines their implications and interactions in NSCLC. Finally, the paper reviews natural products that have been intensively studied against NSCLC targeting autophagy and apoptosis, and summarizes in detail the four most retrieved representative drugs. This paper clarifies good therapeutic effects of natural products in NSCLC by targeting autophagy and apoptosis and aims to promote greater consideration by researchers of natural products as candidates for anti-NSCLC drug discovery.
Collapse
Affiliation(s)
- Peiyi Qin
- First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan, China
- Shandong College of Traditional Chinese Medicine, Yantai, Shandong, China
| | - Qingchen Li
- Department of Orthopedics, First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Qi Zu
- Shandong College of Traditional Chinese Medicine, Yantai, Shandong, China
| | - Ruxue Dong
- Shandong College of Traditional Chinese Medicine, Yantai, Shandong, China
| | - Yuanfu Qi
- Department of Oncology, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| |
Collapse
|
11
|
Chen L, Taniguchi H, Bagnicka E. Microproteomic-Based Analysis of the Goat Milk Protein Synthesis Network and Casein Production Evaluation. Foods 2024; 13:619. [PMID: 38397596 PMCID: PMC10887518 DOI: 10.3390/foods13040619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 02/09/2024] [Accepted: 02/13/2024] [Indexed: 02/25/2024] Open
Abstract
Goat milk has been consumed by humans since ancient times and is highly nutritious. Its quality is mainly determined by its casein content. Milk protein synthesis is controlled by a complex network with many signal pathways. Therefore, the aim of our study is to clearly depict the signal pathways involved in milk protein synthesis in goat mammary epithelial cells (GMECs) using state-of-the-art microproteomic techniques and to identify the key genes involved in the signal pathway. The microproteomic analysis identified more than 2253 proteins, with 323 pathways annotated from the identified proteins. Knockdown of IRS1 expression significantly influenced goat casein composition (α, β, and κ); therefore, this study also examined the insulin receptor substrate 1 (IRS1) gene more closely. A total of 12 differential expression proteins (DEPs) were characterized as upregulated or downregulated in the IRS1-silenced sample compared to the negative control. The enrichment and signal pathways of these DEPs in GMECs were identified using GO annotation and KEGG, as well as KOG analysis. Our findings expand our understanding of the functional genes involved in milk protein synthesis in goats, paving the way for new approaches for modifying casein content for the dairy goat industry and milk product development.
Collapse
Affiliation(s)
- Li Chen
- Department of Biotechnology and Nutrigenomics, Institute of Genetics and Animal Biotechnology, Polish Academy of Sciences, 05-552 Jastrzębiec, Poland
- College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi’an 710119, China
| | - Hiroaki Taniguchi
- Department of Experimental Embryology, Institute of Genetics and Animal Biotechnology, Polish Academy of Sciences, 05-552 Jastrzębiec, Poland;
- African Genome Center, University Mohammed VI Polytechnic (UM6P), Lot 660, Hay Moulay Rachid, Ben Guerir 43150, Morocco
| | - Emilia Bagnicka
- Department of Biotechnology and Nutrigenomics, Institute of Genetics and Animal Biotechnology, Polish Academy of Sciences, 05-552 Jastrzębiec, Poland
| |
Collapse
|
12
|
Qi Y, Zhang YM, Gao YN, Chen WG, Zhou T, Chang L, Zang Y, Li J. AMPK role in epilepsy: a promising therapeutic target? J Neurol 2024; 271:748-771. [PMID: 38010498 DOI: 10.1007/s00415-023-12062-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 10/11/2023] [Accepted: 10/12/2023] [Indexed: 11/29/2023]
Abstract
Epilepsy is a complex and multifaceted neurological disorder characterized by spontaneous and recurring seizures. It poses significant therapeutic challenges due to its diverse etiology and often-refractory nature. This comprehensive review highlights the pivotal role of AMP-activated protein kinase (AMPK), a key metabolic regulator involved in cellular energy homeostasis, which may be a promising therapeutic target for epilepsy. Current therapeutic strategies such as antiseizure medication (ASMs) can alleviate seizures (up to 70%). However, 30% of epileptic patients may develop refractory epilepsy. Due to the complicated nature of refractory epilepsy, other treatment options such as ketogenic dieting, adjunctive therapy, and in limited cases, surgical interventions are employed. These therapy options are only suitable for a select group of patients and have limitations of their own. Current treatment options for epilepsy need to be improved. Emerging evidence underscores a potential association between impaired AMPK functionality in the brain and the onset of epilepsy, prompting an in-depth examination of AMPK's influence on neural excitability and ion channel regulation, both critical factors implicated in epileptic seizures. AMPK activation through agents such as metformin has shown promising antiepileptic effects in various preclinical and clinical settings. These effects are primarily mediated through the inhibition of the mTOR signaling pathway, activation of the AMPK-PI3K-c-Jun pathway, and stimulation of the PGC-1α pathway. Despite the potential of AMPK-targeted therapies, several aspects warrant further exploration, including the detailed mechanisms of AMPK's role in different brain regions, the impact of AMPK under various conditional circumstances such as neural injury and zinc toxicity, the long-term safety and efficacy of chronic metformin use in epilepsy treatment, and the potential benefits of combination therapy involving AMPK activators. Moreover, the efficacy of AMPK activators in refractory epilepsy remains an open question. This review sets the stage for further research with the aim of enhancing our understanding of the role of AMPK in epilepsy, potentially leading to the development of more effective, AMPK-targeted therapeutic strategies for this challenging and debilitating disorder.
Collapse
Affiliation(s)
- Yingbei Qi
- School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, 310024, Zhejiang, China
- National Center for Drug Screening, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yong-Mei Zhang
- School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, 310024, Zhejiang, China
- National Center for Drug Screening, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Ya-Nan Gao
- National Center for Drug Screening, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
- China Pharmaceutical University, Nanjing, 210009, Jiangsu, China
| | - Wen-Gang Chen
- National Center for Drug Screening, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
- China Pharmaceutical University, Nanjing, 210009, Jiangsu, China
| | - Ting Zhou
- National Center for Drug Screening, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Liuliu Chang
- National Center for Drug Screening, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yi Zang
- National Center for Drug Screening, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China.
| | - Jia Li
- School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, 310024, Zhejiang, China.
- National Center for Drug Screening, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
13
|
He K, Chen M, Liu J, Du S, Ren C, Zhang J. Nanomedicine for cancer targeted therapy with autophagy regulation. Front Immunol 2024; 14:1238827. [PMID: 38239356 PMCID: PMC10794438 DOI: 10.3389/fimmu.2023.1238827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Accepted: 12/13/2023] [Indexed: 01/22/2024] Open
Abstract
Nanoparticles have unique physical and chemical properties and are currently widely used in disease diagnosis, drug delivery, and new drug development in biomedicine. In recent years, the role of nanomedical technology in cancer treatment has become increasingly obvious. Autophagy is a multi-step degradation process in cells and an important pathway for material and energy recovery. It is closely related to the occurrence and development of cancer. Because nanomaterials are highly targeted and biosafe, they can be used as carriers to deliver autophagy regulators; in addition to their favorable physicochemical properties, nanomaterials can be employed to carry autophagy inhibitors, reducing the breakdown of chemotherapy drugs by cancer cells and thereby enhancing the drug's efficacy. Furthermore, certain nanomaterials can induce autophagy, triggering oxidative stress-mediated autophagy enhancement and cell apoptosis, thus constraining the progression of cancer cells.There are various types of nanoparticles, including liposomes, micelles, polymers, metal-based materials, and carbon-based materials. The majority of clinically applicable drugs are liposomes, though other materials are currently undergoing continuous optimization. This review begins with the roles of autophagy in tumor treatment, and then focuses on the application of nanomaterials with autophagy-regulating functions in tumor treatment.
Collapse
Affiliation(s)
- Ketai He
- Department of Neurology, Joint Research Institution of Altitude Health, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- West China School of Stomatology, Sichuan University, Sichuan, China
| | - Mingkun Chen
- West China School of Stomatology, Sichuan University, Sichuan, China
| | - Jiao Liu
- Department of Pharmacy, Chengdu Fifth People’s Hospital, Sichuan, China
| | - Shufang Du
- West China School of Stomatology, Sichuan University, Sichuan, China
| | - Changyu Ren
- Department of Pharmacy, Chengdu Fifth People’s Hospital, Sichuan, China
| | - Jifa Zhang
- Department of Neurology, Joint Research Institution of Altitude Health, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| |
Collapse
|
14
|
Engin A. Protein Kinases in Obesity, and the Kinase-Targeted Therapy. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 1460:199-229. [PMID: 39287853 DOI: 10.1007/978-3-031-63657-8_7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/19/2024]
Abstract
The action of protein kinases and protein phosphatases is essential for multiple physiological responses. Each protein kinase displays its own unique substrate specificity and a regulatory mechanism that may be modulated by association with other proteins. Protein kinases are classified as dual-specificity kinases and dual-specificity phosphatases. Dual-specificity phosphatases are important signal transduction enzymes that regulate various cellular processes in coordination with protein kinases and play an important role in obesity. Impairment of insulin signaling in obesity is largely mediated by the activation of the inhibitor of kappa B-kinase beta and the c-Jun N-terminal kinase (JNK). Oxidative stress and endoplasmic reticulum (ER) stress activate the JNK pathway which suppresses insulin biosynthesis. Adenosine monophosphate (AMP)-activated protein kinase (AMPK) and mammalian target of rapamycin (mTOR) are important for proper regulation of glucose metabolism in mammals at both the hormonal and cellular levels. Additionally, obesity-activated calcium/calmodulin dependent-protein kinase II/p38 suppresses insulin-induced protein kinase B phosphorylation by activating the ER stress effector, activating transcription factor-4. To alleviate lipotoxicity and insulin resistance, promising targets are pharmacologically inhibited. Nifedipine, calcium channel blocker, stimulates lipogenesis and adipogenesis by downregulating AMPK and upregulating mTOR, which thereby enhances lipid storage. Contrary to the nifedipine, metformin activates AMPK, increases fatty acid oxidation, suppresses fatty acid synthesis and deposition, and thus alleviates lipotoxicity. Obese adults with vascular endothelial dysfunction have greater endothelial cells activation of unfolded protein response stress sensors, RNA-dependent protein kinase-like ER eukaryotic initiation factor-2 alpha kinase (PERK), and activating transcription factor-6. The transcriptional regulation of adipogenesis in obesity is influenced by AGC (protein kinase A (PKA), PKG, PKC) family signaling kinases. Obesity may induce systemic oxidative stress and increase reactive oxygen species in adipocytes. An increase in intracellular oxidative stress can promote PKC-β activation. Activated PKC-β induces growth factor adapter Shc phosphorylation. Shc-generated peroxides reduce mitochondrial oxygen consumption and enhance triglyceride accumulation and lipotoxicity. Liraglutide attenuates mitochondrial dysfunction and reactive oxygen species generation. Co-treatment of antiobesity and antidiabetic herbal compound, berberine with antipsychotic drug olanzapine decreases the accumulation of triglyceride. While low-dose rapamycin, metformin, amlexanox, thiazolidinediones, and saroglitazar protect against insulin resistance, glucagon-like peptide-1 analog liraglutide inhibits palmitate-induced inflammation by suppressing mTOR complex 1 (mTORC1) activity and protects against lipotoxicity.
Collapse
Affiliation(s)
- Atilla Engin
- Faculty of Medicine, Department of General Surgery, Gazi University, Besevler, Ankara, Turkey.
- Mustafa Kemal Mah. 2137. Sok. 8/14, 06520, Cankaya, Ankara, Turkey.
| |
Collapse
|
15
|
Kataoka R, Hammert WB, Yamada Y, Song JS, Seffrin A, Kang A, Spitz RW, Wong V, Loenneke JP. The Plateau in Muscle Growth with Resistance Training: An Exploration of Possible Mechanisms. Sports Med 2024; 54:31-48. [PMID: 37787845 DOI: 10.1007/s40279-023-01932-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/01/2023] [Indexed: 10/04/2023]
Abstract
It is hypothesized that there is likely a finite ability for muscular adaptation. While it is difficult to distinguish between a true plateau following a long-term training period and short-term stalling in muscle growth, a plateau in muscle growth has been attributed to reaching a genetic potential, with limited discussion on what might physiologically contribute to this muscle growth plateau. The present paper explores potential physiological factors that may drive the decline in muscle growth after prolonged resistance training. Overall, with chronic training, the anabolic signaling pathways may become more refractory to loading. While measures of anabolic markers may have some predictive capabilities regarding muscle growth adaptation, they do not always demonstrate a clear connection. Catabolic processes may also constrain the ability to achieve further muscle growth, which is influenced by energy balance. Although speculative, muscle cells may also possess cell scaling mechanisms that sense and regulate their own size, along with molecular brakes that hinder growth rate over time. When considering muscle growth over the lifespan, there comes a point when the anabolic response is attenuated by aging, regardless of whether or not individuals approach their muscle growth potential. Our goal is that the current review opens avenues for future experimental studies to further elucidate potential mechanisms to explain why muscle growth may plateau.
Collapse
Affiliation(s)
- Ryo Kataoka
- Department of Health, Exercise Science, and Recreation Management, Kevser Ermin Applied Physiology Laboratory, The University of Mississippi, P.O. Box 1848, University, MS, 38677, USA
| | - William B Hammert
- Department of Health, Exercise Science, and Recreation Management, Kevser Ermin Applied Physiology Laboratory, The University of Mississippi, P.O. Box 1848, University, MS, 38677, USA
| | - Yujiro Yamada
- Department of Health, Exercise Science, and Recreation Management, Kevser Ermin Applied Physiology Laboratory, The University of Mississippi, P.O. Box 1848, University, MS, 38677, USA
| | - Jun Seob Song
- Department of Health, Exercise Science, and Recreation Management, Kevser Ermin Applied Physiology Laboratory, The University of Mississippi, P.O. Box 1848, University, MS, 38677, USA
| | - Aldo Seffrin
- Department of Health, Exercise Science, and Recreation Management, Kevser Ermin Applied Physiology Laboratory, The University of Mississippi, P.O. Box 1848, University, MS, 38677, USA
| | - Anna Kang
- Department of Health, Exercise Science, and Recreation Management, Kevser Ermin Applied Physiology Laboratory, The University of Mississippi, P.O. Box 1848, University, MS, 38677, USA
| | - Robert W Spitz
- Department of Health, Exercise Science, and Recreation Management, Kevser Ermin Applied Physiology Laboratory, The University of Mississippi, P.O. Box 1848, University, MS, 38677, USA
| | - Vickie Wong
- Department of Health, Exercise Science, and Recreation Management, Kevser Ermin Applied Physiology Laboratory, The University of Mississippi, P.O. Box 1848, University, MS, 38677, USA
| | - Jeremy P Loenneke
- Department of Health, Exercise Science, and Recreation Management, Kevser Ermin Applied Physiology Laboratory, The University of Mississippi, P.O. Box 1848, University, MS, 38677, USA.
| |
Collapse
|
16
|
Khalil MI, Ali MM, Holail J, Houssein M. Growth or death? Control of cell destiny by mTOR and autophagy pathways. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2023; 185:39-55. [PMID: 37944568 DOI: 10.1016/j.pbiomolbio.2023.10.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 10/08/2023] [Accepted: 10/23/2023] [Indexed: 11/12/2023]
Abstract
One of the central regulators of cell growth, proliferation, and metabolism is the mammalian target of rapamycin, mTOR, which exists in two structurally and functionally different complexes: mTORC1 and mTORC2; unlike m TORC2, mTORC1 is activated in response to the sufficiency of nutrients and is inhibited by rapamycin. mTOR complexes have critical roles not only in protein synthesis, gene transcription regulation, proliferation, tumor metabolism, but also in the regulation of the programmed cell death mechanisms such as autophagy and apoptosis. Autophagy is a conserved catabolic mechanism in which damaged molecules are recycled in response to nutrient starvation. Emerging evidence indicates that the mTOR signaling pathway is frequently activated in tumors. In addition, dysregulation of autophagy was associated with the development of a variety of human diseases, such as cancer and aging. Since mTOR can inhibit the induction of the autophagic process from the early stages of autophagosome formation to the late stage of lysosome degradation, the use of mTOR inhibitors to regulate autophagy could be considered a potential therapeutic option. The present review sheds light on the mTOR and autophagy signaling pathways and the mechanisms of regulation of mTOR-autophagy.
Collapse
Affiliation(s)
- Mahmoud I Khalil
- Department of Biological Sciences, Faculty of Science, Beirut Arab University, Beirut, 11072809, Lebanon; Molecular Biology Unit, Department of Zoology, Faculty of Science, Alexandria University, Alexandria, 21511, Egypt.
| | - Mohamad M Ali
- Department of Medical Biochemistry and Microbiology, Science for Life Laboratory, Uppsala University, SE-751 23, Uppsala, Sweden.
| | - Jasmine Holail
- Department of Biochemistry and Molecular Medicine, College of Medicine, Alfaisal University, Riyadh, Saudi Arabia; Translational Health Sciences, Bristol Medical School, University of Bristol, Bristol, United Kingdom.
| | - Marwa Houssein
- Department of Biological Sciences, Faculty of Science, Beirut Arab University, Beirut, 11072809, Lebanon.
| |
Collapse
|
17
|
Yuan R, Hascup E, Hascup K, Bartke A. Relationships among Development, Growth, Body Size, Reproduction, Aging, and Longevity - Trade-Offs and Pace-Of-Life. BIOCHEMISTRY. BIOKHIMIIA 2023; 88:1692-1703. [PMID: 38105191 PMCID: PMC10792675 DOI: 10.1134/s0006297923110020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 10/18/2023] [Accepted: 10/19/2023] [Indexed: 12/19/2023]
Abstract
Relationships of growth, metabolism, reproduction, and body size to the biological process of aging and longevity have been studied for decades and various unifying "theories of aging" have been proposed to account for the observed associations. In general, fast development, early sexual maturation leading to early reproductive effort, as well as production of many offspring, have been linked to shorter lifespans. The relationship of adult body size to longevity includes a remarkable contrast between the positive correlation in comparisons between different species and the negative correlation seen in comparisons of individuals within the same species. We now propose that longevity and presumably also the rate of aging are related to the "pace-of-life." A slow pace-of-life including slow growth, late sexual maturation, and a small number of offspring, predicts slow aging and long life. The fast pace of life (rapid growth, early sexual maturation, and major reproductive effort) is associated with faster aging and shorter life, presumably due to underlying trade-offs. The proposed relationships between the pace-of-life and longevity apply to both inter- and intra-species comparisons as well as to dietary, genetic, and pharmacological interventions that extend life and to evidence for early life programming of the trajectory of aging. Although available evidence suggests the causality of at least some of these associations, much further work will be needed to verify this interpretation and to identify mechanisms that are responsible.
Collapse
Affiliation(s)
- Rong Yuan
- Southern Illinois University School of Medicine, Department of Internal Medicine, Springfield, IL 19628, USA.
| | - Erin Hascup
- Southern Illinois University School of Medicine, Department of Medical, Microbial, Cellular Immunology and Biology, Springfield, IL 19628, USA.
| | - Kevin Hascup
- Southern Illinois University School of Medicine, Department of Medical, Microbial, Cellular Immunology and Biology, Springfield, IL 19628, USA.
- Department of Neurology, Dale and Deborah Smith Center for Alzheimer's Research and Treatment, Neuroscience Institute, Southern Illinois University School of Medicine, Springfield, Illinois, USA
| | - Andrzej Bartke
- Southern Illinois University School of Medicine, Department of Internal Medicine, Springfield, IL 19628, USA.
| |
Collapse
|
18
|
Liu L, Hao M, Zhang J, Chen Z, Zhou J, Wang C, Zhang H, Wang J. FSHR-mTOR-HIF1 signaling alleviates mouse follicles from AMPK-induced atresia. Cell Rep 2023; 42:113158. [PMID: 37733588 DOI: 10.1016/j.celrep.2023.113158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 07/24/2023] [Accepted: 09/05/2023] [Indexed: 09/23/2023] Open
Abstract
The majority of activated ovarian follicles undergo atresia during reproductive life in mammals, and only a small number of follicles are ovulated. Though hormone treatment has been widely used to promote folliculogenesis, the molecular mechanism behind follicle selection and atresia remains under debate due to inconsistency among investigation models. Using a high-throughput molecular pathology strategy, we depicted a transcriptional atlas of mouse follicular granulosa cells (GCs) under physiological condition and obtained molecular signatures in healthy and atresia GCs during development. Functional results revealed hypoxia-inducible factor 1 (HIF1) as a major effector downstream of follicle-stimulating hormone (FSH), and HIF1 activation is essential for follicle growth. Energy shortage leads to prevalent AMP-activated protein kinase (AMPK) activation and drives follicular atresia. FSHR-mTOR-HIF1 signaling helps follicles escape from the atresia fate, while energy stress persists. Our work provides a comprehensive understanding of the molecular network behind follicle selection and atresia under physiological condition.
Collapse
Affiliation(s)
- Longping Liu
- School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Ming Hao
- School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Jianyun Zhang
- Department of Oral Pathology, Peking University School, Hospital of Stomatology, National Center for Stomatology, National Clinical Research Center for Oral Diseases, National Engineering Research Center of Oral Biomaterials, Digital Medical Devices, Beijing 100081, P.R. China
| | - Ziqi Chen
- State Key Laboratory of Farm Animal Biotech Breeding, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Jiaqi Zhou
- State Key Laboratory of Farm Animal Biotech Breeding, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Chao Wang
- State Key Laboratory of Farm Animal Biotech Breeding, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Hua Zhang
- State Key Laboratory of Farm Animal Biotech Breeding, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Jianbin Wang
- School of Life Sciences, Tsinghua University, Beijing 100084, China.
| |
Collapse
|
19
|
Qu JH, Tarasov KV, Tarasova YS, Chakir K, Lakatta EG. Transcriptome of Left Ventricle and Sinoatrial Node in Young and Old C57 Mice. FORTUNE JOURNAL OF HEALTH SCIENCES 2023; 6:332-356. [PMID: 37920273 PMCID: PMC10621664 DOI: 10.26502/fjhs.134] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/04/2023]
Abstract
Advancing age is the most important risk factor for cardiovascular diseases (CVDs). Two types of cells, within the heart pacemaker, sinoatrial node (SAN), and within the left ventricle (LV), control two crucial characteristics of heart function, heart beat rate and contraction strength. As age advances, the heart's structure becomes remodeled, and SAN and LV cell functions deteriorate, thus increasing the risk for CVDs. However, the different molecular features of age-associated changes in SAN and LV cells have never been compared in omics scale in the context of aging. We applied deep RNA sequencing to four groups of samples, young LV, old LV, young SAN and old SAN, followed by numerous bioinformatic analyses. In addition to profiling the differences in gene expression patterns between the two heart chambers (LV vs. SAN), we also identified the chamber-specific concordant or discordant age-associated changes in: (1) genes linked to energy production related to cardiomyocyte contraction, (2) genes related to post-transcriptional processing, (3) genes involved in KEGG longevity regulating pathway, (4) prolongevity and antilongevity genes recorded and curated in the GenAge database, and (5) CVD marker genes. Our bioinformatic analysis also predicted the regulation activities and mapped the expression of upstream regulators including transcription regulators and post-transcriptional regulator miRNAs. This comprehensive analysis promotes our understanding of regulation of heart functions and will enable discovery of gene-specific therapeutic targets of CVDs in advanced age.
Collapse
Affiliation(s)
- Jia-Hua Qu
- Laboratory of Cardiovascular Science, Intramural Research Program, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224, USA
| | - Kirill V Tarasov
- Laboratory of Cardiovascular Science, Intramural Research Program, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224, USA
| | - Yelena S Tarasova
- Laboratory of Cardiovascular Science, Intramural Research Program, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224, USA
| | - Khalid Chakir
- Laboratory of Cardiovascular Science, Intramural Research Program, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224, USA
| | - Edward G Lakatta
- Laboratory of Cardiovascular Science, Intramural Research Program, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224, USA
| |
Collapse
|
20
|
Doshi H, Spengler K, Godbole A, Gee YS, Baell J, Oakhill JS, Henke A, Heller R. AMPK protects endothelial cells against HSV-1 replication via inhibition of mTORC1 and ACC1. Microbiol Spectr 2023; 11:e0041723. [PMID: 37702499 PMCID: PMC10580915 DOI: 10.1128/spectrum.00417-23] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Accepted: 07/06/2023] [Indexed: 09/14/2023] Open
Abstract
Herpes simplex virus type 1 (HSV-1) is a widespread contagious pathogen, mostly causing mild symptoms on the mucosal entry side. However, systemic distribution, in particular upon reactivation of the virus in immunocompromised patients, may trigger an innate immune response and induce damage of organs. In these conditions, HSV-1 may infect vascular endothelial cells, but little is known about the regulation of HSV-1 replication and possible defense mechanisms in these cells. The current study addresses the question of whether the host cell protein AMP-activated protein kinase (AMPK), an important metabolic sensor, can control HSV-1 replication in endothelial cells. We show that downregulation of the catalytic subunits AMPKα1 and/or AMPKα2 increased HSV-1 replication as monitored by TCID50 titrations, while a potent AMPK agonist, MK-8722, strongly inhibited it. MK-8722 induced a persistent phosphorylation of the AMPK downstream targets acetyl-CoA carboxylase (ACC) and the rapamycin-sensitive adaptor protein of mTOR (Raptor) and, related to this, impairment of ACC1-mediated lipid synthesis and the mechanistic target of the rapamycin complex-1 (mTORC1) pathway. Since blockade of mTOR by Torin-2 as well as downregulation of ACC1 by siRNA also decreased HSV-1 replication, MK-8722 is likely to exert its anti-viral effect via mTORC1 and ACC1 inhibition. Importantly, MK-8722 was able to reduce virus replication even when added after HSV-1. Together, our data highlight the importance of endothelial cells as host cells for HSV-1 replication upon systemic infection and identify AMPK, a metabolic host cell protein, as a potential target for antiviral strategies against HSV-1 infection and its severe consequences. IMPORTANCE Herpes simplex virus type 1 (HSV-1) is a common pathogen that causes blisters or cold sores in humans. It remains latent in infected individuals and can be reactivated multiple times. In adverse conditions, for instance, in immunocompromised patients, HSV-1 can lead to serious complications such as encephalitis, meningitis, or blindness. In these situations, infection of endothelial cells lining the surface of blood vessels may contribute to the manifestation of disease. Here, we describe the role of AMP-activated protein kinase (AMPK), a potent regulator of cellular energy metabolism, in HSV-1 replication in endothelial cells. While downregulation of AMPK potentiates HSV-1 replication, pharmacological AMPK activation inhibits it by limiting the availability of required host cell macromolecules such as proteins or fatty acids. These data highlight the role of metabolic host cell proteins as antiviral targets and reveal activation of endothelial AMPK as a potential strategy to protect from severe consequences of HSV-1 infection.
Collapse
Affiliation(s)
- Heena Doshi
- Institute for Molecular Cell Biology, Center for Molecular Biomedicine, Jena University Hospital, Jena, Germany
| | - Katrin Spengler
- Institute for Molecular Cell Biology, Center for Molecular Biomedicine, Jena University Hospital, Jena, Germany
| | - Amod Godbole
- Institute for Molecular Cell Biology, Center for Molecular Biomedicine, Jena University Hospital, Jena, Germany
| | - Yi Sing Gee
- Medicinal Chemistry, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia
| | - Jonathan Baell
- Medicinal Chemistry, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia
- School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing, China
| | - Jonathan S. Oakhill
- Metabolic Signaling Laboratory, St. Vincent’s Institute of Medical Research, Fitzroy, Victoria, Australia
- Exercise and Nutrition Research Program, Mary MacKillop Institute for Health Research, Australian Catholic University, Melbourne, Victoria, Australia
| | - Andreas Henke
- Section of Experimental Virology, Institute of Medical Microbiology, Jena University Hospital, Jena, Germany
| | - Regine Heller
- Institute for Molecular Cell Biology, Center for Molecular Biomedicine, Jena University Hospital, Jena, Germany
| |
Collapse
|
21
|
Malakar P, Singha D, Choudhury D, Shukla S. Glutamine regulates the cellular proliferation and cell cycle progression by modulating the mTOR mediated protein levels of β-TrCP. Cell Cycle 2023; 22:1937-1950. [PMID: 37771151 PMCID: PMC10599172 DOI: 10.1080/15384101.2023.2260166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 09/01/2023] [Accepted: 09/07/2023] [Indexed: 09/30/2023] Open
Abstract
The amino acid glutamine plays an important role in cell growth and proliferation. Reliance on glutamine has long been considered a hallmark of highly proliferating cancer cells. Development of strategies for cancer therapy that primarily target glutamine metabolism has been an active area of research. Glutamine depletion is associated with growth arrest and apoptosis-induced cell death; however, the molecular mechanisms involved in this process are not clearly understood. Here, we show that glutamine depletion activates the energetic stress AMPK pathway and inhibits mTORC1 activity. Furthermore, inhibition of mTORC1 reduces the protein levels of β-TrCP, resulting in aberrant cell cycle progression and reduced proliferation. In agreement with the role of β-TrCP in glutamine metabolism, knockdown of β-TrCP resulted in proliferation and cell cycle defects similar to those observed for glutamine depletion. In summary, our results provide mechanistic insights into the role of glutamine metabolism in regulation of cell growth and proliferation via β-TrCP, uncovering a previously undescribed molecular process involved in glutamine metabolism.
Collapse
Affiliation(s)
- Pushkar Malakar
- Department of Medical Biotechnology, School of Biological Sciences, Ramakrishna Mission Vivekananda Educational and Research Institute (RKMVERI), Kolkata, India
| | - Didhiti Singha
- Department of Medical Biotechnology, School of Biological Sciences, Ramakrishna Mission Vivekananda Educational and Research Institute (RKMVERI), Kolkata, India
| | - Debopriyo Choudhury
- Department of Medical Biotechnology, School of Biological Sciences, Ramakrishna Mission Vivekananda Educational and Research Institute (RKMVERI), Kolkata, India
| | - Sudhanshu Shukla
- Department of Biosciences and Bioengineering, Indian Institute of Technology Dharwad, Dharwad, India
| |
Collapse
|
22
|
Pencik J, Philippe C, Schlederer M, Atas E, Pecoraro M, Grund-Gröschke S, Li WJ, Tracz A, Heidegger I, Lagger S, Trachtová K, Oberhuber M, Heitzer E, Aksoy O, Neubauer HA, Wingelhofer B, Orlova A, Witzeneder N, Dillinger T, Redl E, Greiner G, D'Andrea D, Östman JR, Tangermann S, Hermanova I, Schäfer G, Sternberg F, Pohl EE, Sternberg C, Varady A, Horvath J, Stoiber D, Malcolm TI, Turner SD, Parkes EE, Hantusch B, Egger G, Rose-John S, Poli V, Jain S, Armstrong CWD, Hoermann G, Goffin V, Aberger F, Moriggl R, Carracedo A, McKinney C, Kennedy RD, Klocker H, Speicher MR, Tang DG, Moazzami AA, Heery DM, Hacker M, Kenner L. STAT3/LKB1 controls metastatic prostate cancer by regulating mTORC1/CREB pathway. Mol Cancer 2023; 22:133. [PMID: 37573301 PMCID: PMC10422794 DOI: 10.1186/s12943-023-01825-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Accepted: 07/14/2023] [Indexed: 08/14/2023] Open
Abstract
Prostate cancer (PCa) is a common and fatal type of cancer in men. Metastatic PCa (mPCa) is a major factor contributing to its lethality, although the mechanisms remain poorly understood. PTEN is one of the most frequently deleted genes in mPCa. Here we show a frequent genomic co-deletion of PTEN and STAT3 in liquid biopsies of patients with mPCa. Loss of Stat3 in a Pten-null mouse prostate model leads to a reduction of LKB1/pAMPK with simultaneous activation of mTOR/CREB, resulting in metastatic disease. However, constitutive activation of Stat3 led to high LKB1/pAMPK levels and suppressed mTORC1/CREB pathway, preventing mPCa development. Metformin, one of the most widely prescribed therapeutics against type 2 diabetes, inhibits mTORC1 in liver and requires LKB1 to mediate glucose homeostasis. We find that metformin treatment of STAT3/AR-expressing PCa xenografts resulted in significantly reduced tumor growth accompanied by diminished mTORC1/CREB, AR and PSA levels. PCa xenografts with deletion of STAT3/AR nearly completely abrogated mTORC1/CREB inhibition mediated by metformin. Moreover, metformin treatment of PCa patients with high Gleason grade and type 2 diabetes resulted in undetectable mTORC1 levels and upregulated STAT3 expression. Furthermore, PCa patients with high CREB expression have worse clinical outcomes and a significantly increased risk of PCa relapse and metastatic recurrence. In summary, we have shown that STAT3 controls mPCa via LKB1/pAMPK/mTORC1/CREB signaling, which we have identified as a promising novel downstream target for the treatment of lethal mPCa.
Collapse
Affiliation(s)
- Jan Pencik
- Department of Pathology, Medical University of Vienna, 1090, Vienna, Austria.
- Center for Biomarker Research in Medicine, 8010, Graz, Austria.
- Molecular and Cell Biology Laboratory, The Salk Institute for Biological Studies, La Jolla, CA, 92037, USA.
- Division of Nuclear Medicine, Department of Biomedical Imaging and Image-Guided Therapy, Medical University of Vienna, 1090, Vienna, Austria.
| | - Cecile Philippe
- Division of Nuclear Medicine, Department of Biomedical Imaging and Image-Guided Therapy, Medical University of Vienna, 1090, Vienna, Austria
| | - Michaela Schlederer
- Department of Pathology, Medical University of Vienna, 1090, Vienna, Austria
| | - Emine Atas
- Department of Pathology, Medical University of Vienna, 1090, Vienna, Austria
| | - Matteo Pecoraro
- Institute for Research in Biomedicine, Università Della Svizzera Italiana, 6500, Bellinzona, Switzerland
| | - Sandra Grund-Gröschke
- Department of Biosciences and Medical Biology, Cancer Cluster Salzburg, Paris-Lodron University of Salzburg, 5020, Salzburg, Austria
| | - Wen Jess Li
- Department of Pharmacology & Therapeutics, Roswell Park Comprehensive Cancer Center, Buffalo, NY, 14263, USA
- Experimental Therapeutics Graduate Program, Roswell Park Comprehensive Cancer Center, Buffalo, NY, 14203, USA
| | - Amanda Tracz
- Department of Pharmacology & Therapeutics, Roswell Park Comprehensive Cancer Center, Buffalo, NY, 14263, USA
| | - Isabel Heidegger
- Department of Urology, Medical University Innsbruck, 6020, Innsbruck, Austria
| | - Sabine Lagger
- Unit for Pathology of Laboratory Animals, University of Veterinary Medicine Vienna, 1210, Vienna, Austria
| | - Karolína Trachtová
- Department of Pathology, Medical University of Vienna, 1090, Vienna, Austria
- Central European Institute of Technology, Masaryk University, 60177, Brno, Czech Republic
- Christian Doppler Laboratory for Applied Metabolomics (CDL-AM), Medical University of Vienna, 1090, Vienna, Austria
| | | | - Ellen Heitzer
- Institute of Human Genetics, Medical University of Graz, 8010, Graz, Austria
| | - Osman Aksoy
- Department of Pathology, Medical University of Vienna, 1090, Vienna, Austria
- Department for Basic and Translational Oncology and Hematology, Division Molecular Oncology and Hematology, Karl Landsteiner University of Health Sciences, 3500, Krems, Austria
| | - Heidi A Neubauer
- Institute of Animal Breeding and Genetics, University of Veterinary Medicine Vienna, 1210, Vienna, Austria
| | - Bettina Wingelhofer
- Institute of Animal Breeding and Genetics, University of Veterinary Medicine Vienna, 1210, Vienna, Austria
| | - Anna Orlova
- Institute of Animal Breeding and Genetics, University of Veterinary Medicine Vienna, 1210, Vienna, Austria
| | - Nadine Witzeneder
- Department of Laboratory Medicine, Medical University of Vienna, 1090, Vienna, Austria
| | - Thomas Dillinger
- Department of Pathology, Medical University of Vienna, 1090, Vienna, Austria
| | - Elisa Redl
- Department of Pathology, Medical University of Vienna, 1090, Vienna, Austria
| | - Georg Greiner
- Department of Laboratory Medicine, Medical University of Vienna, 1090, Vienna, Austria
| | - David D'Andrea
- Department of Urology, Medical University of Vienna, 1090, Vienna, Austria
| | - Johnny R Östman
- Department of Molecular Sciences, Swedish University of Agricultural Sciences, 75007, Uppsala, Sweden
| | - Simone Tangermann
- Unit for Pathology of Laboratory Animals, University of Veterinary Medicine Vienna, 1210, Vienna, Austria
| | - Ivana Hermanova
- Center for Cooperative Research in Biosciences, Basque Research and Technology Alliance (BRTA), 20850, Derio, Spain
| | - Georg Schäfer
- Department of Pathology, Medical University Innsbruck, 6020, Innsbruck, Austria
| | - Felix Sternberg
- Institute of Physiology, Pathophysiology and Biophysics, University of Veterinary Medicine, 1210, Vienna, Austria
| | - Elena E Pohl
- Institute of Physiology, Pathophysiology and Biophysics, University of Veterinary Medicine, 1210, Vienna, Austria
| | - Christina Sternberg
- Department of Pathology, Medical University of Vienna, 1090, Vienna, Austria
- Unit for Pathology of Laboratory Animals, University of Veterinary Medicine Vienna, 1210, Vienna, Austria
- Biochemical Institute, University of Kiel, 24098, Kiel, Germany
| | - Adam Varady
- Department of Pathology, Medical University of Vienna, 1090, Vienna, Austria
| | - Jaqueline Horvath
- Institute of Pharmacology, Center for Physiology and Pharmacology, Medical University of Vienna, 1090, Vienna, Austria
| | - Dagmar Stoiber
- Institute of Pharmacology, Center for Physiology and Pharmacology, Medical University of Vienna, 1090, Vienna, Austria
- Division Pharmacology, Department of Pharmacology, Physiology and Microbiology, Karl Landsteiner University of Health Sciences, 3500, Krems, Austria
| | - Tim I Malcolm
- Department of Pathology, University of Cambridge, Cambridge, CB20QQ, UK
| | - Suzanne D Turner
- Department of Pathology, University of Cambridge, Cambridge, CB20QQ, UK
- Institute of Medical Genetics and Genomics, Faculty of Medicine, Masaryk University, Kamenice 5, 62500, Brno, Czech Republic
| | - Eileen E Parkes
- Department of Oncology, University of Oxford, Oxford, OX37DQ, UK
| | - Brigitte Hantusch
- Department of Pathology, Medical University of Vienna, 1090, Vienna, Austria
| | - Gerda Egger
- Department of Pathology, Medical University of Vienna, 1090, Vienna, Austria
- Ludwig Boltzmann Institute Applied Diagnostics, 1090, Vienna, Austria
- Comprehensive Cancer Center, Medical University of Vienna, 1090, Vienna, Austria
| | | | - Valeria Poli
- Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology Center, University of Turin, 10126, Turin, Italy
| | - Suneil Jain
- Patrick G Johnston Centre for Cancer Research, Queen's University Belfast, Belfast, BT71NN, UK
| | - Chris W D Armstrong
- Patrick G Johnston Centre for Cancer Research, Queen's University Belfast, Belfast, BT71NN, UK
| | | | - Vincent Goffin
- Université Paris Cité, INSERM UMR-S1151, CNRS UMR-S8253, Institut Necker Enfants Malades, 75015, Paris, France
| | - Fritz Aberger
- Department of Biosciences and Medical Biology, Cancer Cluster Salzburg, Paris-Lodron University of Salzburg, 5020, Salzburg, Austria
| | - Richard Moriggl
- Institute of Animal Breeding and Genetics, University of Veterinary Medicine Vienna, 1210, Vienna, Austria
| | - Arkaitz Carracedo
- Center for Cooperative Research in Biosciences, Basque Research and Technology Alliance (BRTA), 20850, Derio, Spain
| | - Cathal McKinney
- Patrick G Johnston Centre for Cancer Research, Queen's University Belfast, Belfast, BT71NN, UK
- Almac Diagnostics, Craigavon, BT63 5QD, UK
| | - Richard D Kennedy
- Patrick G Johnston Centre for Cancer Research, Queen's University Belfast, Belfast, BT71NN, UK
- Almac Diagnostics, Craigavon, BT63 5QD, UK
| | - Helmut Klocker
- Department of Urology, Medical University Innsbruck, 6020, Innsbruck, Austria
| | - Michael R Speicher
- Institute of Human Genetics, Medical University of Graz, 8010, Graz, Austria
| | - Dean G Tang
- Department of Pharmacology & Therapeutics, Roswell Park Comprehensive Cancer Center, Buffalo, NY, 14263, USA
- Experimental Therapeutics Graduate Program, Roswell Park Comprehensive Cancer Center, Buffalo, NY, 14203, USA
| | - Ali A Moazzami
- Department of Molecular Sciences, Swedish University of Agricultural Sciences, 75007, Uppsala, Sweden
| | - David M Heery
- School of Pharmacy, University of Nottingham, Nottingham, NG7 2RD, UK
| | - Marcus Hacker
- Division of Nuclear Medicine, Department of Biomedical Imaging and Image-Guided Therapy, Medical University of Vienna, 1090, Vienna, Austria
| | - Lukas Kenner
- Department of Pathology, Medical University of Vienna, 1090, Vienna, Austria.
- Center for Biomarker Research in Medicine, 8010, Graz, Austria.
- Unit for Pathology of Laboratory Animals, University of Veterinary Medicine Vienna, 1210, Vienna, Austria.
- Christian Doppler Laboratory for Applied Metabolomics (CDL-AM), Medical University of Vienna, 1090, Vienna, Austria.
| |
Collapse
|
23
|
Wang Y, Gao J, Fan B, Hu Y, Yang Y, Wu Y, Li F, Ju H. Different levels of autophagy induced by transient serum starvation regulate metabolism and differentiation of porcine skeletal muscle satellite cells. Sci Rep 2023; 13:13153. [PMID: 37573414 PMCID: PMC10423287 DOI: 10.1038/s41598-023-40350-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Accepted: 08/09/2023] [Indexed: 08/14/2023] Open
Abstract
This study aimed to investigate the effects of different levels of autophagy induced by transient serum starvation on the metabolism, lipid metabolism, and differentiation of porcine skeletal muscle satellite cells (SMSCs) to preliminary elucidate the role and function of autophagy in the regulatory network of skeletal muscle development. Different levels of autophagy were induced by controlling the serum concentration in the culture system for 24 h. Apoptosis, membrane potential, reactive oxygen species (ROS), ATP, and myogenic and lipogenic differentiation markers were monitored to determine if autophagy affected the metabolism and differentiation of SMSCs. Autophagy was induced in SMSCs via serum starvation (5%, 15%), as evidenced by decreased p62 and mTOR phosphorylation levels and increased LC3B lipidation and AMPK phosphorylation levels. Transmission electron microscopy revealed the presence of autophagosomes, and the rates of morphologically abnormal nuclei and mitochondria gradually increased with the decrease in serum concentration, the number of autophagic lysosomes also increased, indicating that 5% serum starvation induced severe autophagy, while 15% serum starvation induced mild autophagy. Compared with the control group and 15% serum-starved SMSCs, SMSCs undergoing 5% serum starvation had the highest intracellular ATP and ROS levels, the highest percentage of apoptotic cells, and the lowest membrane potential. The 15% serum-starved SMSCs had the highest membrane potential, but the percentage of apoptotic cells did not change significantly compared with the control group. The levels of the myogenic markers MyoD1 and MHC were significantly higher in 15% serum-starved SMSCs than in serum-sufficient SMSCs and the lowest in the 5% serum-starved SMSCs. The lipid contents (measured by Oil Red O staining and quantification of triglycerides) and lipogenic markers Peroxisome Proliferators-activated Receptors γ and Lipoprotein Lipase were also significantly higher in SMSCs undergoing 15% serum starvation than in the control group, and the lowest in the 5% serum-starved SMSCs. Different levels of starvation stress induce different levels of autophagy. Mild autophagy induced by moderate serum starvation promotes the metabolism and differentiation of SMSCs, while severe autophagy renders SMSCs more apoptotic, abnormal metabolism and suppresses SMSC differentiation into adipocytes or myocytes, and reduces lipid metabolisms. Our study suggests that autophagy plays a role in skeletal muscle development and may help design strategies for improving meat production traits in domestic pigs.
Collapse
Affiliation(s)
- Yi Wang
- College of Veterinary Medicine, Yangzhou University/Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Yangzhou, 225009, Jiangsu, People's Republic of China
| | - Juan Gao
- College of Veterinary Medicine, Yangzhou University/Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Yangzhou, 225009, Jiangsu, People's Republic of China
- Biocytogen JiangSu Co., Ltd., Nantong, 226000, Jiangsu, People's Republic of China
| | - Bojun Fan
- College of Veterinary Medicine, Yangzhou University/Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Yangzhou, 225009, Jiangsu, People's Republic of China
| | - Yuemin Hu
- College of Veterinary Medicine, Yangzhou University/Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Yangzhou, 225009, Jiangsu, People's Republic of China
| | - Yuefei Yang
- College of Veterinary Medicine, Yangzhou University/Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Yangzhou, 225009, Jiangsu, People's Republic of China
| | - Yajie Wu
- College of Veterinary Medicine, Yangzhou University/Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Yangzhou, 225009, Jiangsu, People's Republic of China
| | - Feng Li
- Department of Reproductive Medicine Center, Northern Jiangsu People's Hospital Affiliated to Yangzhou University/Clinical Medical College, Yangzhou University, Yangzhou, 225009, Jiangsu, People's Republic of China
| | - Huiming Ju
- College of Veterinary Medicine, Yangzhou University/Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Yangzhou, 225009, Jiangsu, People's Republic of China.
| |
Collapse
|
24
|
Mayor E. Neurotrophic effects of intermittent fasting, calorie restriction and exercise: a review and annotated bibliography. FRONTIERS IN AGING 2023; 4:1161814. [PMID: 37334045 PMCID: PMC10273285 DOI: 10.3389/fragi.2023.1161814] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Accepted: 05/09/2023] [Indexed: 06/20/2023]
Abstract
In the last decades, important progress has been achieved in the understanding of the neurotrophic effects of intermittent fasting (IF), calorie restriction (CR) and exercise. Improved neuroprotection, synaptic plasticity and adult neurogenesis (NSPAN) are essential examples of these neurotrophic effects. The importance in this respect of the metabolic switch from glucose to ketone bodies as cellular fuel has been highlighted. More recently, calorie restriction mimetics (CRMs; resveratrol and other polyphenols in particular) have been investigated thoroughly in relation to NSPAN. In the narrative review sections of this manuscript, recent findings on these essential functions are synthesized and the most important molecules involved are presented. The most researched signaling pathways (PI3K, Akt, mTOR, AMPK, GSK3β, ULK, MAPK, PGC-1α, NF-κB, sirtuins, Notch, Sonic hedgehog and Wnt) and processes (e.g., anti-inflammation, autophagy, apoptosis) that support or thwart neuroprotection, synaptic plasticity and neurogenesis are then briefly presented. This provides an accessible entry point to the literature. In the annotated bibliography section of this contribution, brief summaries are provided of about 30 literature reviews relating to the neurotrophic effects of interest in relation to IF, CR, CRMs and exercise. Most of the selected reviews address these essential functions from the perspective of healthier aging (sometimes discussing epigenetic factors) and the reduction of the risk for neurodegenerative diseases (Alzheimer's disease, Huntington's disease, Parkinson's disease) and depression or the improvement of cognitive function.
Collapse
|
25
|
Sharma A, Anand SK, Singh N, Dwivedi UN, Kakkar P. AMP-activated protein kinase: An energy sensor and survival mechanism in the reinstatement of metabolic homeostasis. Exp Cell Res 2023; 428:113614. [PMID: 37127064 DOI: 10.1016/j.yexcr.2023.113614] [Citation(s) in RCA: 30] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2023] [Revised: 04/18/2023] [Accepted: 04/22/2023] [Indexed: 05/03/2023]
Abstract
Cells are programmed to favorably respond towards the nutrient availability by adapting their metabolism to meet energy demands. AMP-activated protein kinase (AMPK) is a highly conserved serine/threonine energy-sensing kinase. It gets activated upon a decrease in the cellular energy status as reflected by an increased AMP/ATP ratio, ADP, and also during the conditions of glucose starvation without change in the adenine nucelotide ratio. AMPK functions as a centralized regulator of metabolism, acting at cellular and physiological levels to circumvent the metabolic stress by restoring energy balance. This review intricately highlights the integrated signaling pathways by which AMPK gets activated allosterically or by multiple non-canonical upstream kinases. AMPK activates the ATP generating processes (e.g., fatty acid oxidation) and inhibits the ATP consuming processes that are non-critical for survival (e.g., cell proliferation, protein and triglyceride synthesis). An integrated signaling network with AMPK as the central effector regulates all the aspects of enhanced stress resistance, qualified cellular housekeeping, and energy metabolic homeostasis. Importantly, the AMPK mediated amelioration of cellular stress and inflammatory responses are mediated by stimulation of transcription factors such as Nrf2, SIRT1, FoxO and inhibition of NF-κB serving as main downstream effectors. Moreover, many lines of evidence have demonstrated that AMPK controls autophagy through mTOR and ULK1 signaling to fine-tune the metabolic pathways in response to different cellular signals. This review also highlights the critical involvement of AMPK in promoting mitochondrial health, and homeostasis, including mitophagy. Loss of AMPK or ULK1 activity leads to aberrant accumulation of autophagy-related proteins and defective mitophagy thus, connecting cellular energy sensing to autophagy and mitophagy.
Collapse
Affiliation(s)
- Ankita Sharma
- Herbal Research Laboratory, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Vishvigyan Bhawan, 31, Mahatma Gandhi Marg, Lucknow, 226001, India; Department of Biochemistry, University of Lucknow, Lucknow, 226007, India; Department of Biotechnology, National Institute of Pharmaceutical Education and Research-Raebareli, Bijnor-Sisendi Road, Post Office Mati, Lucknow, 226002, India.
| | - Sumit Kr Anand
- Herbal Research Laboratory, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Vishvigyan Bhawan, 31, Mahatma Gandhi Marg, Lucknow, 226001, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India; Department of Pathology, LSU Health, 1501 Kings Hwy, Shreveport, LA, 71103, USA.
| | - Neha Singh
- Herbal Research Laboratory, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Vishvigyan Bhawan, 31, Mahatma Gandhi Marg, Lucknow, 226001, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India.
| | | | - Poonam Kakkar
- Herbal Research Laboratory, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Vishvigyan Bhawan, 31, Mahatma Gandhi Marg, Lucknow, 226001, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India.
| |
Collapse
|
26
|
Rahman M, Ravichandran R, Sankpal NV, Bansal S, Sureshbabu A, Fleming T, Perincheri S, Bharat A, Smith MA, Bremner RM, Mohanakumar T. Downregulation of a tumor suppressor gene LKB1 in lung transplantation as a biomarker for chronic murine lung allograft rejection. Cell Immunol 2023; 386:104690. [PMID: 36812767 PMCID: PMC11019891 DOI: 10.1016/j.cellimm.2023.104690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 02/07/2023] [Accepted: 02/13/2023] [Indexed: 02/17/2023]
Abstract
BACKGROUND We recently demonstrated decreased tumor suppressor gene liver kinase B1 (LKB1) level in lung transplant recipients diagnosed with bronchiolitis obliterans syndrome. STE20-related adaptor alpha (STRADα) functions as a pseudokinase that binds and regulates LKB1 activity. METHODS A murine model of chronic lung allograft rejection in which a single lung from a B6D2F1 mouse was orthotopically transplanted into a DBA/2J mouse was employed. We examined the effect of LKB1 knockdown using CRISPR-CAS9 in vitro culture system. RESULTS Significant downregulation of LKB1 and STRADα expression was found in donor lung compared to recipient lung. STRADα knockdown significantly inhibited LKB1, pAMPK expression but induced phosphorylated mammalian target of rapamycin (mTOR), fibronectin, and Collagen-I, expression in BEAS-2B cells. LKB1 overexpression decreased fibronectin, Collagen-I, and phosphorylated mTOR expression in A549 cells. CONCLUSIONS We demonstrated that downregulation of LKB1-STRADα pathway accompanied with increased fibrosis, results in development of chronic rejection following murine lung transplantation.
Collapse
Affiliation(s)
- Mohammad Rahman
- Norton Thoracic Institute, St. Joseph's Hospital and Medical Center, Phoenix, AZ 85013, United States
| | - Ranjithkumar Ravichandran
- Norton Thoracic Institute, St. Joseph's Hospital and Medical Center, Phoenix, AZ 85013, United States
| | - Narendra V Sankpal
- Norton Thoracic Institute, St. Joseph's Hospital and Medical Center, Phoenix, AZ 85013, United States
| | - Sandhya Bansal
- Norton Thoracic Institute, St. Joseph's Hospital and Medical Center, Phoenix, AZ 85013, United States
| | - Angara Sureshbabu
- Norton Thoracic Institute, St. Joseph's Hospital and Medical Center, Phoenix, AZ 85013, United States
| | - Timothy Fleming
- Norton Thoracic Institute, St. Joseph's Hospital and Medical Center, Phoenix, AZ 85013, United States
| | | | - Ankit Bharat
- Northwestern University, Chicago, IL, United States
| | - Michael A Smith
- Norton Thoracic Institute, St. Joseph's Hospital and Medical Center, Phoenix, AZ 85013, United States
| | - Ross M Bremner
- Norton Thoracic Institute, St. Joseph's Hospital and Medical Center, Phoenix, AZ 85013, United States
| | - T Mohanakumar
- Norton Thoracic Institute, St. Joseph's Hospital and Medical Center, Phoenix, AZ 85013, United States.
| |
Collapse
|
27
|
Lu S, Xu J, Xu Y, Liu Y, Shi D, Wang J, Qiu F. Glycyrol attenuates colon injury via promotion of SQSTM1/p62 ubiquitination and autophagy by inhibiting the ubiquitin-specific protease USP8. J Funct Foods 2023. [DOI: 10.1016/j.jff.2023.105492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/19/2023] Open
|
28
|
Ghavami G, Kiasari RE, Pakzad F, Sardari S. Effect of metformin alone and in combination with etoposide and epirubicin on proliferation, apoptosis, necrosis, and migration of B-CPAP and SW cells as thyroid cancer cell lines. Res Pharm Sci 2023; 18:185-201. [PMID: 36873273 PMCID: PMC9976061 DOI: 10.4103/1735-5362.367797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2022] [Revised: 08/27/2022] [Accepted: 01/07/2023] [Indexed: 01/20/2023] Open
Abstract
Background and purpose There has not been a comprehensive study on the simultaneous effects of metformin, etoposide, and epirubicin on thyroid cancer cells. Hence, the current research proposed the in vitro study on the effect of metformin alone and in combination with etoposide and epirubicin on the rate of proliferation, apoptosis, necrosis, and migration against B-CPAP and SW-1736 cells as thyroid cancer cell lines. Experimental approach MTT-based proliferation assay, combination index method, flow cytometry, and scratch wound healing assays were used to evaluate the simultaneous effects of the three approved drugs against thyroid cancer cells. Findings/Results This study showed that the toxic concentration of metformin on normal Hu02 cells was more than 10 folds higher than B-CPAP and SW cancerous cells. Metformin in combination with epirubicin and etoposide could increase percentages of B-CPAP and SW cells in early and late apoptosis and necrosis phases in comparison with their single concentrations, significantly. Metformin in combination with epirubicin and etoposide could arrest the S phase in B-CPAP and SW cells, significantly. Metformin in combination with epirubicin and etoposide could reduce ~100% migration rate, whereas single concentrations of epirubicin and etoposide could reduce ~50% migration rate. Conclusion and implication Combined treatment of metformin with anticancer drugs epirubicin and etoposide can increase the mortality in thyroid cancer cell lines and reduce the toxicity of these drugs on the normal cell line, which could be the starting point for proposing a new combination strategy in the therapy of thyroid cancer to induce more potency and reduce acute toxicity.
Collapse
Affiliation(s)
- Ghazaleh Ghavami
- Drug Design and Bioinformatics Unit, Medical Biotechnology Department, Biotechnology Research Center, Pasteur Institute of Iran, Tehran, I.R. Iran
| | - Ramin Ebrahimi Kiasari
- Drug Design and Bioinformatics Unit, Medical Biotechnology Department, Biotechnology Research Center, Pasteur Institute of Iran, Tehran, I.R. Iran
| | - Faezeh Pakzad
- Drug Design and Bioinformatics Unit, Medical Biotechnology Department, Biotechnology Research Center, Pasteur Institute of Iran, Tehran, I.R. Iran
| | - Soroush Sardari
- Drug Design and Bioinformatics Unit, Medical Biotechnology Department, Biotechnology Research Center, Pasteur Institute of Iran, Tehran, I.R. Iran
| |
Collapse
|
29
|
Bashiri H, Tabatabaeian H. Autophagy: A Potential Therapeutic Target to Tackle Drug Resistance in Multiple Myeloma. Int J Mol Sci 2023; 24:ijms24076019. [PMID: 37046991 PMCID: PMC10094562 DOI: 10.3390/ijms24076019] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 03/17/2023] [Accepted: 03/22/2023] [Indexed: 04/14/2023] Open
Abstract
Multiple myeloma (MM) is the second most prevalent hematologic malignancy. In the past few years, the survival of MM patients has increased due to the emergence of novel drugs and combination therapies. Nevertheless, one of the significant obstacles in treating most MM patients is drug resistance, especially for individuals who have experienced relapses or developed resistance to such cutting-edge treatments. One of the critical processes in developing drug resistance in MM is autophagic activity, an intracellular self-digestive process. Several possible strategies of autophagy involvement in the induction of MM-drug resistance have been demonstrated thus far. In multiple myeloma, it has been shown that High mobility group box protein 1 (HMGB1)-dependent autophagy can contribute to drug resistance. Moreover, activation of autophagy via proteasome suppression induces drug resistance. Additionally, the effectiveness of clarithromycin as a supplemental drug in treating MM has been reported recently, in which autophagy blockage is proposed as one of the potential action mechanisms of CAM. Thus, a promising therapeutic approach that targets autophagy to trigger the death of MM cells and improve drug susceptibility could be considered. In this review, autophagy has been addressed as a survival strategy crucial for drug resistance in MM.
Collapse
Affiliation(s)
- Hamed Bashiri
- Institute of Molecular and Cell Biology (IMCB), Agency of Science, Technology and Research (A*STAR), Singapore 138673, Singapore
- Cancer Science Institute of Singapore, National University of Singapore, Singapore 117599, Singapore
| | | |
Collapse
|
30
|
Rindone GM, Dasso ME, Centola CL, Pellizzari EH, Camberos MDC, Toneatto J, Galardo MN, Meroni SB, Riera MF. Sertoli cell adaptation to glucose deprivation: Potential role of AMPK in the regulation of lipid metabolism. J Cell Biochem 2023; 124:716-730. [PMID: 36946523 DOI: 10.1002/jcb.30399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Revised: 01/17/2023] [Accepted: 03/02/2023] [Indexed: 03/23/2023]
Abstract
Sertoli cells (SCs) provide an adequate environment for germ cell development. SCs possess unique features that meet germ cells' metabolic demands: they produce lactate from glucose, which is delivered as energy substrate to germ cells. SCs store fatty acids (FAs) as triacylglycerols (TAGs) in lipid droplets (LDs) and can oxidize FAs to sustain their own energetic demands. They also produce ketone bodies from FAs. It has been shown that exposure of SCs to metabolic stresses, such as glucose deprivation, triggers specific adaptive responses that sustain cell survival and preserve lactate supply to germ cells. The aim of the present study was to investigate whether there are modifications in rat SCs lipid metabolism, including LD content, FA oxidation, and ketone bodies production, as part of their adaptive response to glucose deprivation. The present study was performed in 20-day-old rat SCs cultures. We determined LD content by Oil Red O staining, FA oxidation by measuring the release of 3 H2 O from [3 H] palmitate, TAGs and 3-hydroxybutyrate levels by spectrophotometric methods, and mRNA levels by RT-qPCR. Results show that the absence of glucose in SC culture medium entails: (1) a decrease in LD content and TAGs levels that is accompanied by decreased perilipin 1 mRNA levels, (2) an increase in FA oxidation that is in part mediated by AMP kinase (AMPK) activation and (3) a decrease in 3-hydroxybutyrate production. Additionally, we studied whether sestrins (SESN1, 2 and 3), proteins involved in the cellular response to stress, are regulated in glucose deprivation conditions. We show that there is an increase in SESN2 mRNA levels in deprived conditions. In conclusion, glucose deprivation affects SC lipid metabolism promoting FA mobilization from LDs to be used as energy source.
Collapse
Affiliation(s)
- Gustavo M Rindone
- Centro de Investigaciones Endocrinológicas "Dr. César Bergadá" (CEDIE)-Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET)-FEI-División de Endocrinología, Hospital de Niños Ricardo Gutiérrez, Buenos Aires, Argentina
| | - Marina E Dasso
- Centro de Investigaciones Endocrinológicas "Dr. César Bergadá" (CEDIE)-Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET)-FEI-División de Endocrinología, Hospital de Niños Ricardo Gutiérrez, Buenos Aires, Argentina
| | - Cecilia L Centola
- Centro de Investigaciones Endocrinológicas "Dr. César Bergadá" (CEDIE)-Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET)-FEI-División de Endocrinología, Hospital de Niños Ricardo Gutiérrez, Buenos Aires, Argentina
| | - Eliana H Pellizzari
- Centro de Investigaciones Endocrinológicas "Dr. César Bergadá" (CEDIE)-Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET)-FEI-División de Endocrinología, Hospital de Niños Ricardo Gutiérrez, Buenos Aires, Argentina
| | - María Del C Camberos
- Centro de Investigaciones Endocrinológicas "Dr. César Bergadá" (CEDIE)-Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET)-FEI-División de Endocrinología, Hospital de Niños Ricardo Gutiérrez, Buenos Aires, Argentina
| | - Judith Toneatto
- Instituto de Biología y Medicina Experimental (IBYME), CONICET, Buenos Aires, Argentina
| | - María N Galardo
- Centro de Investigaciones Endocrinológicas "Dr. César Bergadá" (CEDIE)-Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET)-FEI-División de Endocrinología, Hospital de Niños Ricardo Gutiérrez, Buenos Aires, Argentina
| | - Silvina B Meroni
- Centro de Investigaciones Endocrinológicas "Dr. César Bergadá" (CEDIE)-Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET)-FEI-División de Endocrinología, Hospital de Niños Ricardo Gutiérrez, Buenos Aires, Argentina
| | - María F Riera
- Centro de Investigaciones Endocrinológicas "Dr. César Bergadá" (CEDIE)-Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET)-FEI-División de Endocrinología, Hospital de Niños Ricardo Gutiérrez, Buenos Aires, Argentina
| |
Collapse
|
31
|
The mTORC1-G9a-H3K9me2 axis negatively regulates autophagy in fatty acid-induced hepatocellular lipotoxicity. J Biol Chem 2023; 299:102937. [PMID: 36690274 PMCID: PMC9957777 DOI: 10.1016/j.jbc.2023.102937] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 01/13/2023] [Accepted: 01/16/2023] [Indexed: 01/22/2023] Open
Abstract
Defective autophagy and lipotoxicity are the hallmarks of nonalcoholic fatty liver disease. However, the precise molecular mechanism for the defective autophagy in lipotoxic conditions is not fully known. In the current study, we elucidated that activation of the mammalian target of rapamycin complex 1 (mTORC1)-G9a-H3K9me2 axis in fatty acid-induced lipotoxicity blocks autophagy by repressing key autophagy genes. The fatty acid-treated cells show mTORC1 activation, increased histone methyltransferase G9a levels, and suppressed autophagy as indicated by increased accumulation of the key autophagic cargo SQSTM1/p62 and decreased levels of autophagy-related proteins LC3II, Beclin1, and Atg7. Our chromatin immunoprecipitation analysis showed that decrease in autophagy was associated with increased levels of the G9a-mediated repressive H3K9me2 mark and decreased RNA polymerase II occupancy at the promoter regions of Beclin1 and Atg7 in fatty acid-treated cells. Inhibition of mTORC1 in fatty acid-treated cells decreased G9a-mediated H3K9me2 occupancy and increased polymerase II occupancy at Beclin1 and Atg7 promoters. Furthermore, mTORC1 inhibition increased the expression of Beclin1 and Atg7 in fatty acid-treated cells and decreased the accumulation of SQSTM1/p62. Interestingly, the pharmacological inhibition of G9a alone in fatty acid-treated cells decreased the H3K9me2 mark at Atg7 and Beclin1 promoters and restored the expression of Atg7 and Beclin1. Taken together, our findings have identified the mTORC1-G9a-H3K9me2 axis as a negative regulator of the autophagy pathway in hepatocellular lipotoxicity and suggest that the G9a-mediated epigenetic repression is mechanistically a key step during the repression of autophagy in lipotoxic conditions.
Collapse
|
32
|
Bai S, Wu Q, Zhu S, Zhang Y, Chen X, Su M, Pan J, Li S, Yue T, Xu L, Xie D, Tian C, Zhao D, Li X, Hou J, Wang L, Fu S, Xue Y, Jiang A, Li D, Xu T, Tian Z, Zhou R, Zhang H, Bai L. Vam6 reduces iNKT cell function in tumor via modulating AMPK/mTOR pathways. Front Immunol 2023; 13:1051045. [PMID: 36741382 PMCID: PMC9892639 DOI: 10.3389/fimmu.2022.1051045] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Accepted: 12/30/2022] [Indexed: 01/20/2023] Open
Abstract
Activation of mTORC1 is essential for anti-tumor function of iNKT cells. The mechanisms underlying impaired mTORC1 activation in intratumoral iNKT cells remain unclear. Via generating Vam6+/- mice and using flow cytometry, image approach, and RNA sequencing, we studied the role of Vam6 in controlling mTORC1 activation and intratumoral iNKT cell functions. Here, we find that increased Vam6 expression in intratumoral iNKT cells leads to impaired mTORC1 activation and IFN-γ production. Mechanistically, Vam6 in iNKT cells is essential for Rab7a-Vam6-AMPK complex formation and thus for recruitment of AMPK to lysosome to activate AMPK, a negative regulator of mTORC1. Additionally, Vam6 relieves inhibitory effect of VDAC1 on Rab7a-Vam6-AMPK complex formation at mitochondria-lysosome contact site. Moreover, we report that lactic acid produced by tumor cells increases Vam6 expression in iNKT cells. Given the key roles of increased Vam6 in promoting AMPK activation in intratumoral iNKT cells, reducing Vam6 expression signifificantly enhances the mTORC1 activation in intratumoral iNKT cells as well as their anti-tumor effificacy. Together, we propose Vam6 as a target for iNKT cell-based immunotherapy.
Collapse
Affiliation(s)
- Shiyu Bai
- Department of Oncology of the First Affiliated Hospital, The CAS Key Laboratory of Innate Immunity and Chronic Disease, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China,School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Qielan Wu
- Department of Oncology of the First Affiliated Hospital, The CAS Key Laboratory of Innate Immunity and Chronic Disease, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China,School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Shasha Zhu
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Yuwei Zhang
- Department of Oncology of the First Affiliated Hospital, The CAS Key Laboratory of Innate Immunity and Chronic Disease, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China,School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Xuran Chen
- Department of Oncology of the First Affiliated Hospital, The CAS Key Laboratory of Innate Immunity and Chronic Disease, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China,School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Miya Su
- Department of Oncology of the First Affiliated Hospital, The CAS Key Laboratory of Innate Immunity and Chronic Disease, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China,School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Jun Pan
- Department of Oncology of the First Affiliated Hospital, The CAS Key Laboratory of Innate Immunity and Chronic Disease, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China,School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Shuhang Li
- Department of Oncology of the First Affiliated Hospital, The CAS Key Laboratory of Innate Immunity and Chronic Disease, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China,School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Ting Yue
- Biomedical Sciences and Health Laboratory of Anhui Province, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Linfeng Xu
- Biomedical Sciences and Health Laboratory of Anhui Province, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Di Xie
- Department of Oncology of the First Affiliated Hospital, The CAS Key Laboratory of Innate Immunity and Chronic Disease, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China,School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Chenxi Tian
- Department of Oncology of the First Affiliated Hospital, The CAS Key Laboratory of Innate Immunity and Chronic Disease, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China,School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Dan Zhao
- School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Xiang Li
- Department of Oncology of the First Affiliated Hospital, The CAS Key Laboratory of Innate Immunity and Chronic Disease, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China,School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Junjie Hou
- Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Lu Wang
- Institute of Molecular Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Sicheng Fu
- Department of Oncology of the First Affiliated Hospital, The CAS Key Laboratory of Innate Immunity and Chronic Disease, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China,School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Yanhong Xue
- Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Amin Jiang
- Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Dong Li
- Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Tao Xu
- Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Zhigang Tian
- Department of Oncology of the First Affiliated Hospital, The CAS Key Laboratory of Innate Immunity and Chronic Disease, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China,School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China,Biomedical Sciences and Health Laboratory of Anhui Province, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Rongbin Zhou
- Department of Oncology of the First Affiliated Hospital, The CAS Key Laboratory of Innate Immunity and Chronic Disease, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China,School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China,Biomedical Sciences and Health Laboratory of Anhui Province, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Huimin Zhang
- Department of Oncology of the First Affiliated Hospital, The CAS Key Laboratory of Innate Immunity and Chronic Disease, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China,School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China,*Correspondence: Huimin Zhang, ; Li Bai,
| | - Li Bai
- Department of Oncology of the First Affiliated Hospital, The CAS Key Laboratory of Innate Immunity and Chronic Disease, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China,School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China,Biomedical Sciences and Health Laboratory of Anhui Province, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China,Institute of Health and Medicine, Hefei Comprehensive National Science Center, Hefei, China,National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei, China,*Correspondence: Huimin Zhang, ; Li Bai,
| |
Collapse
|
33
|
Cao Y, Han S, Lu H, Luo Y, Guo T, Wu Q, Luo F. Targeting mTOR Signaling by Dietary Polyphenols in Obesity Prevention. Nutrients 2022; 14:nu14235171. [PMID: 36501200 PMCID: PMC9735788 DOI: 10.3390/nu14235171] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 11/29/2022] [Accepted: 12/01/2022] [Indexed: 12/09/2022] Open
Abstract
Dietary polyphenols can be utilized to treat obesity and chronic disorders linked to it. Dietary polyphenols can inhibit pre-adipocyte proliferation, adipocyte differentiation, and triglyceride accumulation; meanwhile, polyphenols can also stimulate lipolysis and fatty acid β-oxidation, but the molecular mechanisms of anti-obesity are still unclear. The mechanistic target of rapamycin (mTOR) is a protein kinase that regulates cell growth, survival, metabolism, and immunity. mTOR signaling is also thought to play a key role in the development of metabolic diseases such as obesity. Recent studies showed that dietary polyphenols could target mTOR to reduce obesity. In this review, we systematically summarized the research progress of polyphenols in preventing obesity through the mTOR signaling pathway. Mechanistically, polyphenols can target multiple signaling pathways and gut microbiota to regulate the mTOR signaling pathway to exert anti-obesity effects. The main mechanisms include: modulating lipid metabolism, adipogenesis, inflammation, etc. Dietary polyphenols exerting an anti-obesity effect by targeting mTOR signaling will broaden our understanding of the anti-obesity mechanisms of polyphenols and provide valuable insights for researchers in this novel field.
Collapse
Affiliation(s)
- Yunyun Cao
- Hunan Provincial Key Laboratory of Grain-Oil Deep Process and Quality Control, Hunan Provincial Key Laboratory of Forestry Edible Resources Safety and Processing, Hunan Provincial Key Laboratory of Processed Food for Special Medical Purpose, College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, China
| | - Shuai Han
- Hunan Provincial Key Laboratory of Grain-Oil Deep Process and Quality Control, Hunan Provincial Key Laboratory of Forestry Edible Resources Safety and Processing, Hunan Provincial Key Laboratory of Processed Food for Special Medical Purpose, College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, China
| | - Han Lu
- Hunan Provincial Key Laboratory of Grain-Oil Deep Process and Quality Control, Hunan Provincial Key Laboratory of Forestry Edible Resources Safety and Processing, Hunan Provincial Key Laboratory of Processed Food for Special Medical Purpose, College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, China
| | - Yi Luo
- Department of Clinic Medicine, Xiangya School of Medicine, Central South University, Changsha 410008, China
| | - Tianyi Guo
- Hunan Provincial Key Laboratory of Grain-Oil Deep Process and Quality Control, Hunan Provincial Key Laboratory of Forestry Edible Resources Safety and Processing, Hunan Provincial Key Laboratory of Processed Food for Special Medical Purpose, College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, China
| | - Qi Wu
- Hunan Provincial Key Laboratory of Grain-Oil Deep Process and Quality Control, Hunan Provincial Key Laboratory of Forestry Edible Resources Safety and Processing, Hunan Provincial Key Laboratory of Processed Food for Special Medical Purpose, College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, China
| | - Feijun Luo
- Hunan Provincial Key Laboratory of Grain-Oil Deep Process and Quality Control, Hunan Provincial Key Laboratory of Forestry Edible Resources Safety and Processing, Hunan Provincial Key Laboratory of Processed Food for Special Medical Purpose, College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, China
- Correspondence:
| |
Collapse
|
34
|
Autophagy and polyphenol intervention strategy in aging. Trends Food Sci Technol 2022. [DOI: 10.1016/j.tifs.2022.12.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
35
|
Minchev D, Kazakova M, Sarafian V. Neuroinflammation and Autophagy in Parkinson's Disease-Novel Perspectives. Int J Mol Sci 2022; 23:ijms232314997. [PMID: 36499325 PMCID: PMC9735607 DOI: 10.3390/ijms232314997] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 11/22/2022] [Accepted: 11/28/2022] [Indexed: 12/02/2022] Open
Abstract
Parkinson's disease (PD) is the second most prevalent neurodegenerative disorder. It is characterized by the accumulation of α-Synuclein aggregates and the degeneration of dopaminergic neurons in substantia nigra in the midbrain. Although the exact mechanisms of neuronal degeneration in PD remain largely elusive, various pathogenic factors, such as α-Synuclein cytotoxicity, mitochondrial dysfunction, oxidative stress, and pro-inflammatory factors, may significantly impair normal neuronal function and promote apoptosis. In this context, neuroinflammation and autophagy have emerged as crucial processes in PD that contribute to neuronal loss and disease development. They are regulated in a complex interconnected manner involving most of the known PD-associated genes. This review summarizes evidence of the implication of neuroinflammation and autophagy in PD and delineates the role of inflammatory factors and autophagy-related proteins in this complex condition. It also illustrates the particular significance of plasma and serum immune markers in PD and their potential to provide a personalized approach to diagnosis and treatment.
Collapse
Affiliation(s)
- Danail Minchev
- Department of Medical Biology, Medical University-Plovdiv, 4000 Plovdiv, Bulgaria
- Research Institute at Medical University-Plovdiv, 4000 Plovdiv, Bulgaria
- Correspondence:
| | - Maria Kazakova
- Department of Medical Biology, Medical University-Plovdiv, 4000 Plovdiv, Bulgaria
- Research Institute at Medical University-Plovdiv, 4000 Plovdiv, Bulgaria
| | - Victoria Sarafian
- Department of Medical Biology, Medical University-Plovdiv, 4000 Plovdiv, Bulgaria
- Research Institute at Medical University-Plovdiv, 4000 Plovdiv, Bulgaria
| |
Collapse
|
36
|
Hwang CY, Choe W, Yoon KS, Ha J, Kim SS, Yeo EJ, Kang I. Molecular Mechanisms for Ketone Body Metabolism, Signaling Functions, and Therapeutic Potential in Cancer. Nutrients 2022; 14:nu14224932. [PMID: 36432618 PMCID: PMC9694619 DOI: 10.3390/nu14224932] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 11/15/2022] [Accepted: 11/17/2022] [Indexed: 11/23/2022] Open
Abstract
The ketone bodies (KBs) β-hydroxybutyrate and acetoacetate are important alternative energy sources for glucose during nutrient deprivation. KBs synthesized by hepatic ketogenesis are catabolized to acetyl-CoA through ketolysis in extrahepatic tissues, followed by the tricarboxylic acid cycle and electron transport chain for ATP production. Ketogenesis and ketolysis are regulated by the key rate-limiting enzymes, 3-hydroxy-3-methylglutaryl-CoA synthase 2 and succinyl-CoA:3-oxoacid-CoA transferase, respectively. KBs participate in various cellular processes as signaling molecules. KBs bind to G protein-coupled receptors. The most abundant KB, β-hydroxybutyrate, regulates gene expression and other cellular functions by inducing post-translational modifications. KBs protect tissues by regulating inflammation and oxidative stress. Recently, interest in KBs has been increasing due to their potential for treatment of various diseases such as neurological and cardiovascular diseases and cancer. Cancer cells reprogram their metabolism to maintain rapid cell growth and proliferation. Dysregulation of KB metabolism also plays a role in tumorigenesis in various types of cancer. Targeting metabolic changes through dietary interventions, including fasting and ketogenic diets, has shown beneficial effects in cancer therapy. Here, we review current knowledge of the molecular mechanisms involved in the regulation of KB metabolism and cellular signaling functions, and the therapeutic potential of KBs and ketogenic diets in cancer.
Collapse
Affiliation(s)
- Chi Yeon Hwang
- Department of Biomedical Sciences, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea
- Biomedical Science Institute, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Wonchae Choe
- Department of Biomedical Sciences, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea
- Biomedical Science Institute, Kyung Hee University, Seoul 02447, Republic of Korea
- Department of Biochemistry and Molecular Biology, School of Medicine, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Kyung-Sik Yoon
- Department of Biomedical Sciences, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea
- Biomedical Science Institute, Kyung Hee University, Seoul 02447, Republic of Korea
- Department of Biochemistry and Molecular Biology, School of Medicine, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Joohun Ha
- Department of Biomedical Sciences, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea
- Biomedical Science Institute, Kyung Hee University, Seoul 02447, Republic of Korea
- Department of Biochemistry and Molecular Biology, School of Medicine, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Sung Soo Kim
- Department of Biomedical Sciences, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea
- Biomedical Science Institute, Kyung Hee University, Seoul 02447, Republic of Korea
- Department of Biochemistry and Molecular Biology, School of Medicine, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Eui-Ju Yeo
- Department of Biochemistry, College of Medicine, Gachon University, Incheon 21999, Republic of Korea
- Correspondence: (E.-J.Y.); (I.K.); Tel.: +82-32-899-6050 (E.-J.Y.); +82-2-961-0922 (I.K.)
| | - Insug Kang
- Department of Biomedical Sciences, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea
- Biomedical Science Institute, Kyung Hee University, Seoul 02447, Republic of Korea
- Department of Biochemistry and Molecular Biology, School of Medicine, Kyung Hee University, Seoul 02447, Republic of Korea
- Correspondence: (E.-J.Y.); (I.K.); Tel.: +82-32-899-6050 (E.-J.Y.); +82-2-961-0922 (I.K.)
| |
Collapse
|
37
|
Metformin as a Potential Antitumor Agent. SERBIAN JOURNAL OF EXPERIMENTAL AND CLINICAL RESEARCH 2022. [DOI: 10.2478/sjecr-2022-0023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Abstract
Some recent findings suggest that metformin, an oral antidiabetic drug, may have antitumor properties. Studies have shown that metformin can alter cell metabolism, both tumor and immune cells, which can greatly influence disease outcome. In this review, we discuss the potential mechanisms in which metformin can directly induce apoptosis of tumor cells as well as mechanisms in which metformin can elicit or enhance antitumor immune response.
Collapse
|
38
|
High-Resolution Crystal Structure of Muscle Phosphoglycerate Mutase Provides Insight into Its Nuclear Import and Role. Int J Mol Sci 2022; 23:ijms232113198. [DOI: 10.3390/ijms232113198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2022] [Revised: 10/25/2022] [Accepted: 10/27/2022] [Indexed: 11/16/2022] Open
Abstract
Phosphoglycerate mutase (PGAM) is a glycolytic enzyme converting 3-phosphoglycerate to 2-phosphoglycerate, which in mammalian cells is expressed in two isoforms: brain (PGAM1) and muscle (PGAM2). Recently, it was shown that besides its enzymatic function, PGAM2 can be imported to the cell nucleus where it co-localizes with the nucleoli. It was suggested that it functions there to stabilize the nucleolar structure, maintain mRNA expression, and assist in the assembly of new pre-ribosomal subunits. However, the precise mechanism by which the protein translocates to the nucleus is unknown. In this study, we present the first crystal structure of PGAM2, identify the residues involved in the nuclear localization of the protein and propose that PGAM contains a “quaternary nuclear localization sequence (NLS)”, i.e., one that consists of residues from different protein chains. Additionally, we identify potential interaction partners for PGAM2 in the nucleoli and demonstrate that 14-3-3ζ/δ is indeed an interaction partner of PGAM2 in the nucleus. We also present evidence that the insulin/IGF1–PI3K–Akt–mTOR signaling pathway is responsible for the nuclear localization of PGAM2.
Collapse
|
39
|
Metabolic signatures of immune cells in chronic kidney disease. Expert Rev Mol Med 2022; 24:e40. [PMID: 36268748 PMCID: PMC9884772 DOI: 10.1017/erm.2022.35] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Immune cells play a key role in maintaining renal dynamic balance and dealing with renal injury. The physiological and pathological functions of immune cells are intricately connected to their metabolic characteristics. However, immunometabolism in chronic kidney disease (CKD) is not fully understood. Pathophysiologically, disruption of kidney immune cells homeostasis causes inflammation and tissue damage via triggering metabolic reprogramming. The diverse metabolic characteristics of immune cells at different stages of CKD are strongly associated with their different pathological effect. In this work, we reviewed the metabolic characteristics of immune cells (macrophages, natural killer cells, T cells, natural killer T cells and B cells) and several non-immune cells, as well as potential treatments targeting immunometabolism in CKD. We attempt to elaborate on the metabolic signatures of immune cells and their intimate correlation with non-immune cells in CKD.
Collapse
|
40
|
Role of AMPK in Myocardial Ischemia-Reperfusion Injury-Induced Cell Death in the Presence and Absence of Diabetes. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:7346699. [PMID: 36267813 PMCID: PMC9578802 DOI: 10.1155/2022/7346699] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Accepted: 09/29/2022] [Indexed: 11/26/2022]
Abstract
Recent studies indicate cell death is the hallmark of cardiac pathology in myocardial infarction and diabetes. The AMP-activated protein kinase (AMPK) signalling pathway is considered a putative salvaging phenomenon, plays a decisive role in almost all cellular, metabolic, and survival functions, and therefore entails precise regulation of its activity. AMPK regulates various programmed cell death depending on the stimuli and context, including autophagy, apoptosis, necroptosis, and ferroptosis. There is substantial evidence suggesting that AMPK is down-regulated in cardiac tissues of animals and humans with type 2 diabetes or metabolic syndrome compared to non-diabetic control and that stimulation of AMPK (physiological or pharmacological) can ameliorate diabetes-associated cardiovascular complications, such as myocardial ischemia-reperfusion injury. Furthermore, AMPK is an exciting therapeutic target for developing novel drug candidates to treat cell death in diabetes-associated myocardial ischemia-reperfusion injury. Therefore, in this review, we summarized how AMPK regulates autophagic, apoptotic, necroptotic, and ferroptosis pathways in the context of myocardial ischemia-reperfusion injury in the presence and absence of diabetes.
Collapse
|
41
|
Melnik BC, Schmitz G. Milk Exosomal microRNAs: Postnatal Promoters of β Cell Proliferation but Potential Inducers of β Cell De-Differentiation in Adult Life. Int J Mol Sci 2022; 23:ijms231911503. [PMID: 36232796 PMCID: PMC9569743 DOI: 10.3390/ijms231911503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 09/15/2022] [Accepted: 09/20/2022] [Indexed: 11/16/2022] Open
Abstract
Pancreatic β cell expansion and functional maturation during the birth-to-weaning period is driven by epigenetic programs primarily triggered by growth factors, hormones, and nutrients provided by human milk. As shown recently, exosomes derived from various origins interact with β cells. This review elucidates the potential role of milk-derived exosomes (MEX) and their microRNAs (miRs) on pancreatic β cell programming during the postnatal period of lactation as well as during continuous cow milk exposure of adult humans to bovine MEX. Mechanistic evidence suggests that MEX miRs stimulate mTORC1/c-MYC-dependent postnatal β cell proliferation and glycolysis, but attenuate β cell differentiation, mitochondrial function, and insulin synthesis and secretion. MEX miR content is negatively affected by maternal obesity, gestational diabetes, psychological stress, caesarean delivery, and is completely absent in infant formula. Weaning-related disappearance of MEX miRs may be the critical event switching β cells from proliferation to TGF-β/AMPK-mediated cell differentiation, whereas continued exposure of adult humans to bovine MEX miRs via intake of pasteurized cow milk may reverse β cell differentiation, promoting β cell de-differentiation. Whereas MEX miR signaling supports postnatal β cell proliferation (diabetes prevention), persistent bovine MEX exposure after the lactation period may de-differentiate β cells back to the postnatal phenotype (diabetes induction).
Collapse
Affiliation(s)
- Bodo C. Melnik
- Department of Dermatology, Environmental Medicine and Health Theory, University of Osnabrück, D-49076 Osnabrück, Germany
- Correspondence: ; Tel.: +49-52-4198-8060
| | - Gerd Schmitz
- Institute for Clinical Chemistry and Laboratory Medicine, University Hospital of Regensburg, University of Regensburg, D-93053 Regensburg, Germany
| |
Collapse
|
42
|
Feng X, Xiao J, Bai L. Role of adiponectin in osteoarthritis. Front Cell Dev Biol 2022; 10:992764. [PMID: 36158216 PMCID: PMC9492855 DOI: 10.3389/fcell.2022.992764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Accepted: 08/17/2022] [Indexed: 11/20/2022] Open
Abstract
Osteoarthritis (OA) is a widespread and most common joint disease which leads to social cost increasing accompany with aging population. Surgery is often the final treatment option. The major progression of OA includes cartilage degradation caused by chondrocytes metabolism imbalance. So, the molecular mechanisms of action in chondrocytes may provide insights into treatment methods for OA. Adiponectin is an adipokine with many biological functions in the cell metabolism. Numerous studies have illustrated that adiponectin has diverse biological effects, such as inhibition of cell apoptosis. It regulates various functions in different organs, including muscle, adipose tissue, brain, and bone, and regulates skeletal homeostasis. However, the relationship between adiponectin and cell death in the progression of OA needs further investigation. We elaborate the structure and function and the effect of adiponectin and state the correlation and intersection between adiponectin, autophagy, inflammation, and OA. From the perspective of oxidative stress, apoptosis, pyroptosis, and autophagy, we discuss the possible association between adiponectin, chondrocyte metabolism, and inflammatory factor efforts in OA. What’s more, we summarize the possible treatment methods, including the use of adiponectin as a drug target, and highlight the potential future mechanistic research. In this review, we summarize the molecular pathways and mechanisms of action of adiponectin in chondrocyte inflammation and death and the pathogenesis of OA. We also review the research on adiponectin as a target for treating OA. These studies provide a novel perspective to explore more effective treatment options considering the complex interrelationship between inflammation and metabolism in OA.
Collapse
Affiliation(s)
- Xinyuan Feng
- Department of Orthopedic Surgery, Shengjing Hospital, China Medical University, Shenyang, China
| | - Jiaying Xiao
- Department of Internal Medicine Integrated Ward 2, Shengjing Hospital, China Medical University, Shenyang, China
| | - Lunhao Bai
- Department of Orthopedic Surgery, Shengjing Hospital, China Medical University, Shenyang, China
- *Correspondence: Lunhao Bai,
| |
Collapse
|
43
|
Bian T, Wang Y, Botello JF, Hu Q, Jiang Y, Zingone A, Ding H, Wu Y, Zahra Aly F, Salloum RG, Warren G, Huo Z, Ryan BM, Jin L, Xing C. LKB1 phosphorylation and deactivation in lung cancer by NNAL, a metabolite of tobacco-specific carcinogen, in an isomer-dependent manner. Oncogene 2022; 41:4042-4054. [PMID: 35835853 DOI: 10.1038/s41388-022-02410-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Revised: 07/01/2022] [Accepted: 07/04/2022] [Indexed: 11/09/2022]
Abstract
LKB1 loss of function is one key oncogenic event in lung cancer. Clinical data suggest that LKB1 loss of function is associated with patients' smoking status. The responsible ingredients and molecular mechanisms in tobacco for LKB1 loss of function, however, are not defined. In this study, we reported that NNAL, a major metabolite of a tobacco-specific carcinogen NNK, induces LKB1 phosphorylation and its loss of function via the β-AR/PKA signaling pathway in an isomer-dependent manner in human lung cancer cells. NNAL exposure also resulted in enhanced lung cancer cell migration and chemoresistance in an LKB1-dependent manner. A 120-day NNAL exposure in lung cancer cells, mimicking its chronic exposure among smokers, resulted in more prominent LKB1 phosphorylation, cell migration, and chemoresistance even in the absence of NNAL, indicating the long-lasting LKB1 loss of function although such an effect eventually disappeared after NNAL was removed for two months. These observations were confirmed in a lung cancer xenograft model. More importantly, human lung cancer tissues revealed elevated LKB1 phosphorylation in comparison to the paired normal lung tissues. These results suggest that LKB1 loss of function in human lung cancer could be extended to its phosphorylation, which may be mediated by NNAL from tobacco smoke in an isomer-dependent manner via the β-AR/PKA signaling pathway.
Collapse
Affiliation(s)
- Tengfei Bian
- Department of Medicinal Chemistry, Center for Natural Products, Drug Discovery and Development (CNPD3), University of Florida, Gainesville, FL, 32610, USA
| | - Yuzhi Wang
- Department of Medicinal Chemistry, Center for Natural Products, Drug Discovery and Development (CNPD3), University of Florida, Gainesville, FL, 32610, USA
| | - Jordy F Botello
- Department of Medicinal Chemistry, Center for Natural Products, Drug Discovery and Development (CNPD3), University of Florida, Gainesville, FL, 32610, USA
| | - Qi Hu
- Department of Medicinal Chemistry, Center for Natural Products, Drug Discovery and Development (CNPD3), University of Florida, Gainesville, FL, 32610, USA
| | - Yunhan Jiang
- Department of Molecular Medicine, UT Health San Antonio, San Antonio, TX, 78229, USA
| | - Adriana Zingone
- Laboratory of Human Carcinogenesis, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Haocheng Ding
- Department of Biostatistics, College of Public Health & Health Professions, College of Medicine, University of Florida, Gainesville, FL, 32610, USA
| | - Yougen Wu
- Department of Medicinal Chemistry, Center for Natural Products, Drug Discovery and Development (CNPD3), University of Florida, Gainesville, FL, 32610, USA
- College of Tropical Agriculture and Forestry, Hainan University, 58 Renmin Avenue, Haikou, 570228, China
| | - F Zahra Aly
- Department of Pathology, Immunology and Laboratory Medicine, University of Florida, 1345 Center Drive, Gainesville, FL, 32610, USA
| | - Ramzi G Salloum
- Department of Health Outcome & Biomedical Informatics, College of Medicine, University of Florida, Gainesville, FL, 32610, USA
| | - Graham Warren
- Department of Radiation Oncology, Medical University of South Carolina, Charleston, SC, 29425, USA
| | - Zhiguang Huo
- Department of Biostatistics, College of Public Health & Health Professions, College of Medicine, University of Florida, Gainesville, FL, 32610, USA
| | - Bríd M Ryan
- Laboratory of Human Carcinogenesis, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Lingtao Jin
- Department of Molecular Medicine, UT Health San Antonio, San Antonio, TX, 78229, USA
| | - Chengguo Xing
- Department of Medicinal Chemistry, Center for Natural Products, Drug Discovery and Development (CNPD3), University of Florida, Gainesville, FL, 32610, USA.
| |
Collapse
|
44
|
Triggle CR, Mohammed I, Bshesh K, Marei I, Ye K, Ding H, MacDonald R, Hollenberg MD, Hill MA. Metformin: Is it a drug for all reasons and diseases? Metabolism 2022; 133:155223. [PMID: 35640743 DOI: 10.1016/j.metabol.2022.155223] [Citation(s) in RCA: 104] [Impact Index Per Article: 52.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Revised: 05/22/2022] [Accepted: 05/25/2022] [Indexed: 12/15/2022]
Abstract
Metformin was first used to treat type 2 diabetes in the late 1950s and in 2022 remains the first-choice drug used daily by approximately 150 million people. An accumulation of positive pre-clinical and clinical data has stimulated interest in re-purposing metformin to treat a variety of diseases including COVID-19. In polycystic ovary syndrome metformin improves insulin sensitivity. In type 1 diabetes metformin may help reduce the insulin dose. Meta-analysis and data from pre-clinical and clinical studies link metformin to a reduction in the incidence of cancer. Clinical trials, including MILES (Metformin In Longevity Study), and TAME (Targeting Aging with Metformin), have been designed to determine if metformin can offset aging and extend lifespan. Pre-clinical and clinical data suggest that metformin, via suppression of pro-inflammatory pathways, protection of mitochondria and vascular function, and direct actions on neuronal stem cells, may protect against neurodegenerative diseases. Metformin has also been studied for its anti-bacterial, -viral, -malaria efficacy. Collectively, these data raise the question: Is metformin a drug for all diseases? It remains unclear as to whether all of these putative beneficial effects are secondary to its actions as an anti-hyperglycemic and insulin-sensitizing drug, or result from other cellular actions, including inhibition of mTOR (mammalian target for rapamycin), or direct anti-viral actions. Clarification is also sought as to whether data from ex vivo studies based on the use of high concentrations of metformin can be translated into clinical benefits, or whether they reflect a 'Paracelsus' effect. The environmental impact of metformin, a drug with no known metabolites, is another emerging issue that has been linked to endocrine disruption in fish, and extensive use in T2D has also raised concerns over effects on human reproduction. The objectives for this review are to: 1) evaluate the putative mechanism(s) of action of metformin; 2) analyze the controversial evidence for metformin's effectiveness in the treatment of diseases other than type 2 diabetes; 3) assess the reproducibility of the data, and finally 4) reach an informed conclusion as to whether metformin is a drug for all diseases and reasons. We conclude that the primary clinical benefits of metformin result from its insulin-sensitizing and antihyperglycaemic effects that secondarily contribute to a reduced risk of a number of diseases and thereby enhancing healthspan. However, benefits like improving vascular endothelial function that are independent of effects on glucose homeostasis add to metformin's therapeutic actions.
Collapse
Affiliation(s)
- Chris R Triggle
- Department of Pharmacology, Weill Cornell Medicine in Qatar, P.O. Box 24144, Education City, Doha, Qatar; Department of Medical Education, Weill Cornell Medicine in Qatar, P.O. Box 24144, Education City, Doha, Qatar.
| | - Ibrahim Mohammed
- Department of Medical Education, Weill Cornell Medicine in Qatar, P.O. Box 24144, Education City, Doha, Qatar
| | - Khalifa Bshesh
- Department of Medical Education, Weill Cornell Medicine in Qatar, P.O. Box 24144, Education City, Doha, Qatar
| | - Isra Marei
- Department of Pharmacology, Weill Cornell Medicine in Qatar, P.O. Box 24144, Education City, Doha, Qatar
| | - Kevin Ye
- Department of Biomedical Physiology & Kinesiology, Simon Fraser University, Burnaby, British Columbia V5A 1S6, Canada
| | - Hong Ding
- Department of Pharmacology, Weill Cornell Medicine in Qatar, P.O. Box 24144, Education City, Doha, Qatar; Department of Medical Education, Weill Cornell Medicine in Qatar, P.O. Box 24144, Education City, Doha, Qatar
| | - Ross MacDonald
- Distribution eLibrary, Weill Cornell Medicine in Qatar, P.O. Box 24144, Education City, Doha, Qatar
| | - Morley D Hollenberg
- Department of Physiology & Pharmacology, a Cumming School of Medicine, University of Calgary, T2N 4N1, Canada
| | - Michael A Hill
- Dalton Cardiovascular Research Center, Department of Medical Pharmacology & Physiology, School of Medicine, University of Missouri, Columbia 65211, MO, USA
| |
Collapse
|
45
|
Pearanpan L, Nordin FJ, Siew EL, Kumolosasi E, Mohamad Hanif EA, Masre SF, Chua EW, Cheng HS, Rajab NF. A Cell-Based Systematic Review on the Role of Annexin A1 in Triple-Negative Breast Cancers. Int J Mol Sci 2022; 23:ijms23158256. [PMID: 35897832 PMCID: PMC9367890 DOI: 10.3390/ijms23158256] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 07/22/2022] [Accepted: 07/23/2022] [Indexed: 02/04/2023] Open
Abstract
Triple-negative breast cancer (TNBC) is an aggressive breast cancer subtype that is often associated with a poorer prognosis and does not respond to hormonal therapy. Increasing evidence highlights the exploitability of Annexin A1 (AnxA1), a calcium dependent protein, as a precision medicine for TNBC. To systematically summarize the role of AnxA1 and its associated mechanisms in TNBC, we performed data mining using three main databases: PubMed, Scopus, and Ovid/Medline. The papers retrieved were based on two different sets of key words such as “Annexin A1” or “Lipocortin 1” and “Breast cancer” or “TNBC”. A total of 388 articles were identified, with 210 chosen for comprehensive screening and 13 papers that met inclusion criteria were included. Current evidence from cell culture studies showed that AnxA1 expression is correlated with NF-κB, which promotes migration by activating ERK phosphorylation. AnxaA1 also activates TGF-β signaling which upregulates MMP-9 and miR196a expression to enhance epithelial-mesenchymal transition and migratory capacity of TNBC cells. AnxA1 can steer the macrophage polarization toward the M2 phenotype to create a pro-tumor immune environment. Existing research suggests a potential role of AnxA1 in the metastasis and immune landscape of TNBC tumors. Preclinical and clinical experiments are warranted to investigate the feasibility and effectiveness of targeting AnxA1 in TNBC.
Collapse
Affiliation(s)
- Lishantini Pearanpan
- Biomedical Science Program, Center for Healthy Aging and Wellness, Faculty of Health Sciences, Universiti Kebangsaan Malaysia (UKM), Jalan Raja Muda Abdul Aziz, Kuala Lumpur 50300, Malaysia; (L.P.); (F.J.N.)
| | - Fariza Juliana Nordin
- Biomedical Science Program, Center for Healthy Aging and Wellness, Faculty of Health Sciences, Universiti Kebangsaan Malaysia (UKM), Jalan Raja Muda Abdul Aziz, Kuala Lumpur 50300, Malaysia; (L.P.); (F.J.N.)
- Department of Biotechnology, Faculty of Applied Sciences, UCSI University, Kuala Lumpur 56000, Malaysia
| | - Ee Ling Siew
- ASASIpintar Program, Pusat Genius@Pintar Negara, Universiti Kebangsaan Malaysia (UKM), Bangi 43600, Malaysia;
- Biocompatibility and Toxicology Laboratory, Centre for Research and Instrumentation Management (CRIM), Universiti Kebangsaan Malaysia (UKM), Bangi 43600, Malaysia
- Faculty of Health Sciences, Universiti Kebangsaan Malaysia (UKM), Jalan Raja Muda Abdul Aziz, Kuala Lumpur 50300, Malaysia
| | - Endang Kumolosasi
- Centre for Drug and Herbal Development, Faculty of Pharmacy, Universiti Kebangsaan Malaysia (UKM), Kuala Lumpur 50300, Malaysia; (E.K.); (E.W.C.)
| | - Ezanee Azlina Mohamad Hanif
- UKM Medical Molecular Biology Institute (UMBI), UKM Medical Centre, Jalan Ya’acob Latiff, Bandar Tun Razak, Cheras, Kuala Lumpur 56000, Malaysia;
| | - Siti Fathiah Masre
- Center for Toxicology and Health Risk Studies, Faculty of Health Sciences, Universiti Kebangsaan Malaysia (UKM), Jalan Raja Muda Abdul Aziz, Kuala Lumpur 50300, Malaysia;
| | - Eng Wee Chua
- Centre for Drug and Herbal Development, Faculty of Pharmacy, Universiti Kebangsaan Malaysia (UKM), Kuala Lumpur 50300, Malaysia; (E.K.); (E.W.C.)
| | - Hong Sheng Cheng
- Lee Kong Chian School of Medicine, Nanyang Technological University Singapore, Singapore 308232, Singapore;
| | - Nor Fadilah Rajab
- Biomedical Science Program, Center for Healthy Aging and Wellness, Faculty of Health Sciences, Universiti Kebangsaan Malaysia (UKM), Jalan Raja Muda Abdul Aziz, Kuala Lumpur 50300, Malaysia; (L.P.); (F.J.N.)
- Biocompatibility and Toxicology Laboratory, Centre for Research and Instrumentation Management (CRIM), Universiti Kebangsaan Malaysia (UKM), Bangi 43600, Malaysia
- Correspondence: ; Tel.: +60-3-8921-5555
| |
Collapse
|
46
|
Cotton JL, Dang K, Hu L, Sun Y, Singh A, Rajurkar MS, Li Q, Wu X, Mao J. PTEN and LKB1 are differentially required in Gli1-expressing mesenchymal cells to suppress gastrointestinal polyposis. Cell Rep 2022; 40:111125. [PMID: 35858546 DOI: 10.1016/j.celrep.2022.111125] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 04/28/2022] [Accepted: 06/29/2022] [Indexed: 11/29/2022] Open
Abstract
PTEN and LKB1 are intimately associated with gastrointestinal tumorigenesis. Mutations of PTEN or LKB1 lead to Cowden syndrome and Peutz-Jeghers syndrome characterized by development of gastrointestinal polyps. However, the cells of origin of these polyps and underlying mechanism remain unclear. Here, we reveal that PTEN or LKB1 deficiency in Gli1+ gut mesenchymal cells, but not intestinal epithelium, drives polyp formation histologically resembling polyposis in human patients. Mechanistically, although PTEN and LKB1 converge to regulate mTOR/AKT signaling in various tumor contexts, we find that mTOR is essential for PTEN-deletion-induced polyp formation but is largely dispensable for polyposis induced by mesenchymal LKB1 deficiency. Altogether, our studies identify Gli1-expressing mesenchymal cells as a common cell of origin for polyposis associated with PTEN and LKB1 and reveal their engagement of different downstream pathways in gut mesenchyme to suppress gastrointestinal tumorigenesis.
Collapse
Affiliation(s)
- Jennifer L Cotton
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Kyvan Dang
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Lu Hu
- Cutaneous Biology Research Center, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, USA
| | - Yang Sun
- Cutaneous Biology Research Center, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, USA
| | - Alka Singh
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Mihir S Rajurkar
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Qi Li
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Xu Wu
- Cutaneous Biology Research Center, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, USA.
| | - Junhao Mao
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Chan Medical School, Worcester, MA, USA.
| |
Collapse
|
47
|
Zou N, Liu R, Li C. Cathepsin K+ Non-Osteoclast Cells in the Skeletal System: Function, Models, Identity, and Therapeutic Implications. Front Cell Dev Biol 2022; 10:818462. [PMID: 35912093 PMCID: PMC9326176 DOI: 10.3389/fcell.2022.818462] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Accepted: 05/31/2022] [Indexed: 11/13/2022] Open
Abstract
Cathepsin K (Ctsk) is a cysteine protease of the papain superfamily initially identified in differentiated osteoclasts; it plays a critical role in degrading the bone matrix. However, subsequent in vivo and in vitro studies based on animal models elucidate novel subpopulations of Ctsk-expressing cells, which display markers and properties of mesenchymal stem/progenitor cells. This review introduces the function, identity, and role of Ctsk+ cells and their therapeutic implications in related preclinical osseous disorder models. It also summarizes the available in vivo models for studying Ctsk+ cells and their progeny. Further investigations of detailed properties and mechanisms of Ctsk+ cells in transgenic models are required to guide potential therapeutic targets in multiple diseases in the future.
Collapse
Affiliation(s)
- Nanyu Zou
- Department of Endocrinology, Endocrinology Research Center, The Xiangya Hospital of Central South University, Changsha, China
| | - Ran Liu
- Department of Endocrinology, Endocrinology Research Center, The Xiangya Hospital of Central South University, Changsha, China
| | - Changjun Li
- Department of Endocrinology, Endocrinology Research Center, The Xiangya Hospital of Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders (Xiangya Hospital), Changsha, China
- Key Laboratory of Organ Injury, Aging and Regenerative Medicine of Hunan Province, Changsha, China
- *Correspondence: Changjun Li,
| |
Collapse
|
48
|
Ma X, Ru Y, Luo Y, Kuai L, Chen QL, Bai Y, Liu YQ, Chen J, Luo Y, Song JK, Zhou M, Li B. Post-Translational Modifications in Atopic Dermatitis: Current Research and Clinical Relevance. Front Cell Dev Biol 2022; 10:942838. [PMID: 35874824 PMCID: PMC9301047 DOI: 10.3389/fcell.2022.942838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Accepted: 06/16/2022] [Indexed: 11/20/2022] Open
Abstract
Atopic dermatitis (AD) is a chronic and relapsing cutaneous disorder characterized by compromised immune system, excessive inflammation, and skin barrier disruption. Post-translational modifications (PTMs) are covalent and enzymatic modifications of proteins after their translation, which have been reported to play roles in inflammatory and allergic diseases. However, less attention has been paid to the effect of PTMs on AD. This review summarized the knowledge of six major classes (including phosphorylation, acetylation, ubiquitination, SUMOylation, glycosylation, o-glycosylation, and glycation) of PTMs in AD pathogenesis and discussed the opportunities for disease management.
Collapse
Affiliation(s)
- Xin Ma
- Department of Dermatology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Shanghai Skin Disease Hospital of Tongji University, Shanghai, China
| | - Yi Ru
- Department of Dermatology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Institute of Dermatology, Shanghai Academy of Traditional Chinese Medicine, Shanghai, China
| | - Ying Luo
- Department of Dermatology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Institute of Dermatology, Shanghai Academy of Traditional Chinese Medicine, Shanghai, China
| | - Le Kuai
- Department of Dermatology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Institute of Dermatology, Shanghai Academy of Traditional Chinese Medicine, Shanghai, China
| | - Qi-Long Chen
- Shanghai Skin Disease Hospital of Tongji University, Shanghai, China
| | - Yun Bai
- Shanghai Skin Disease Hospital of Tongji University, Shanghai, China
| | - Ye-Qiang Liu
- Shanghai Skin Disease Hospital of Tongji University, Shanghai, China
| | - Jia Chen
- Shanghai Skin Disease Hospital of Tongji University, Shanghai, China
| | - Yue Luo
- Shanghai Skin Disease Hospital of Tongji University, Shanghai, China
| | - Jian-Kun Song
- Shanghai Skin Disease Hospital of Tongji University, Shanghai, China
| | - Mi Zhou
- Department of Dermatology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Institute of Dermatology, Shanghai Academy of Traditional Chinese Medicine, Shanghai, China
- *Correspondence: Mi Zhou, ; Bin Li,
| | - Bin Li
- Shanghai Skin Disease Hospital of Tongji University, Shanghai, China
- Institute of Dermatology, Shanghai Academy of Traditional Chinese Medicine, Shanghai, China
- *Correspondence: Mi Zhou, ; Bin Li,
| |
Collapse
|
49
|
MiR-21 modulates proliferation and apoptosis of human airway smooth muscle cells by regulating autophagy via PARP-1/AMPK/mTOR signalling pathway. Respir Physiol Neurobiol 2022; 301:103891. [PMID: 35341975 DOI: 10.1016/j.resp.2022.103891] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Revised: 02/21/2022] [Accepted: 03/21/2022] [Indexed: 11/22/2022]
Abstract
Superfluous human airway smooth muscle (HASM) cell proliferation is an important pathological feature of airway remodelling in asthma. This study aimed to determine whether miR-21 is involved in the regulation of HASM cell survival. Overexpressed miR-21 inhibited HASM cell apoptosis and autophagy and promoted proliferation, whereas a miR-21 inhibitor exerted the opposite effects (P < 0.05). Overexpressed poly (ADP-ribose) polymerase-1 (PARP-1) promoted apoptosis and inhibited proliferation of HASM cells (P < 0.05). Dual-luciferase assays confirmed that miR-21 directly targeted poly (ADP-ribose) polymerase-1 (PARP-1) mRNA (P < 0.05). Silencing PARP-1 based on miR-21 downregulation mimicked the role of 3-methyladenine (3-MA), an autophagy inhibitor (P < 0.05). Overexpressed PARP-1 reversed the effects of miR-21 on HASM cells, somewhat dependently on PARP-1-induced enhanced autophagy, which we elucidated by 3-MA block (P < 0.05). MicroRNA-21 mimics reduced AMPK and increased mTOR signalling by downregulating PARP-1, and a miR-21 inhibitor exerted the opposite effects (P < 0.05). Collectively, miR-21 inhibitor could upregulate PARP-1 in HASM cells to promote autophagy and thus inhibit proliferation and promote apoptosis that might be mediated by the AMPK/mTOR signalling pathway.
Collapse
|
50
|
Shen Z, Xiang M, Chen C, Ding F, Wang Y, Shang C, Xin L, Zhang Y, Cui X. Glutamate excitotoxicity: Potential therapeutic target for ischemic stroke. Biomed Pharmacother 2022; 151:113125. [PMID: 35609367 DOI: 10.1016/j.biopha.2022.113125] [Citation(s) in RCA: 67] [Impact Index Per Article: 33.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 05/01/2022] [Accepted: 05/13/2022] [Indexed: 11/29/2022] Open
Abstract
Glutamate-mediated excitotoxicity is an important mechanism leading to post ischemic stroke damage. After acute stroke, the sudden reduction in cerebral blood flow is most initially followed by ion transport protein dysfunction and disruption of ion homeostasis, which in turn leads to impaired glutamate release, reuptake, and excessive N-methyl-D-aspartate receptor (NMDAR) activation, promoting neuronal death. Despite extensive evidence from preclinical studies suggesting that excessive NMDAR stimulation during ischemic stroke is a central step in post-stroke damage, NMDAR blockers have failed to translate into clinical stroke treatment. Current treatment options for stroke are very limited, and there is therefore a great need to develop new targets for neuroprotective therapeutic agents in ischemic stroke to extend the therapeutic time window. In this review, we highlight recent findings on glutamate release, reuptake mechanisms, NMDAR and its downstream cellular signaling pathways in post-ischemic stroke damage, and review the pathological changes in each link to help develop viable new therapeutic targets. We then also summarize potential neuroprotective drugs and therapeutic approaches for these new targets in the treatment of ischemic stroke.
Collapse
Affiliation(s)
- Zihuan Shen
- Department of Cardiovascular, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, China; Clinical Medical School, Beijing University of Traditional Chinese Medicine, Beijing 100029, China
| | - Mi Xiang
- Department of Cardiovascular, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, China
| | - Chen Chen
- Department of Cardiovascular, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, China
| | - Fan Ding
- Department of Cardiovascular, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, China; Clinical Medical School, Beijing University of Traditional Chinese Medicine, Beijing 100029, China
| | - Yuling Wang
- Department of Cardiovascular, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, China; Clinical Medical School, Beijing University of Traditional Chinese Medicine, Beijing 100029, China
| | - Chang Shang
- Department of Cardiovascular, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, China; Clinical Medical School, Beijing University of Traditional Chinese Medicine, Beijing 100029, China
| | - Laiyun Xin
- Department of Cardiovascular, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, China
| | - Yang Zhang
- Department of Cardiovascular, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, China.
| | - Xiangning Cui
- Department of Cardiovascular, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, China.
| |
Collapse
|