1
|
Löw K, Roulin A, Kunz S. A proopiomelanocortin-derived peptide sequence enhances plasma stability of peptide drugs. FEBS Lett 2020; 594:2840-2866. [PMID: 32506501 DOI: 10.1002/1873-3468.13855] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Revised: 05/11/2020] [Accepted: 05/26/2020] [Indexed: 12/26/2022]
Abstract
Bioactive peptide drugs hold promise for therapeutic application due to their high potency and selectivity but display short plasma half-life. Examination of selected naturally occurring peptide hormones derived from proteolytic cleavage of the proopiomelanocortin (POMC) precursor lead to the identification of significant plasma-stabilizing properties of a 12-amino acid serine-rich orphan sequence NSSSSGSSGAGQ in human γ3-melanocyte-stimulating hormone (MSH) that is homologous to previously discovered NSn GGH (n = 4-24) sequences in owls. Notably, transfer of this sequence to des-acetyl-α-MSH and the therapeutically relevant peptide hormones neurotensin and glucagon-like peptide-1 likewise enhance their plasma stability without affecting receptor signaling. The stabilizing effect of the sequence module is independent of plasma components, suggesting a direct effect in cis. This natural sequence module may provide a possible strategy to enhance plasma stability, complementing existing methods of chemical modification.
Collapse
Affiliation(s)
- Karin Löw
- Institute of Microbiology, University Hospital Center and University of Lausanne, Switzerland.,Department of Ecology and Evolution, University of Lausanne, Switzerland
| | - Alexandre Roulin
- Department of Ecology and Evolution, University of Lausanne, Switzerland
| | - Stefan Kunz
- Institute of Microbiology, University Hospital Center and University of Lausanne, Switzerland
| |
Collapse
|
2
|
Tang H, Zhang J, Shi K, Aihara H, Du G. Insight into subtilisin E-S7 cleavage pattern based on crystal structure and hydrolysates peptide analysis. Biochem Biophys Res Commun 2019; 512:623-628. [PMID: 30914195 PMCID: PMC6541920 DOI: 10.1016/j.bbrc.2019.03.064] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2019] [Accepted: 03/11/2019] [Indexed: 01/07/2023]
Abstract
The X-ray crystallographic structure of the mature form of subtilisin E-S7 (SES7) at 1.90 Å resolution is reported here. Structural comparisons between the previously reported propeptide-subtilisin E complex (1SCJ) and our mature form subtilisin E-S7 (6O44) provide insight into active site adjustments involved in catalysis and specificity. To further investigate the protease substrate selectivity mechanism, we used SES7 to hydrolyze skim milk and analyzed the hydrolysates by LC-MS for peptide identification. The cleavage pattern suggests a high preference for proline at substrate P2 position. The results based on the peptide analysis are consistent with our structural observations, which is instrumental in future protein engineering by rational design. Furthermore, the ACE-inhibitor and NLN-inhibitor activity of the hydrolysates were determined to assess the utility of SES7 for further industrial applications; IC50-ACE = 67 ± 0.92 μg/mL and IC50-NLN = 263 ± 13 μg/mL.
Collapse
Affiliation(s)
- Heng Tang
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, Jiangsu, China,School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, Jiangsu, Chi
| | - Juan Zhang
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, Jiangsu, China,School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, Jiangsu, Chi
| | - Ke Shi
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota Twin Cities, Minneapolis, MN 55455, USA
| | - Hideki Aihara
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota Twin Cities, Minneapolis, MN 55455, USA.,Corresponding authors: Hideki Aihara, ., Guocheng Du,
| | - Guocheng Du
- School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, Jiangsu, Chi,The Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, 1800 Lihu Road, Wuxi 214122, Jiangsu, China,Corresponding authors: Hideki Aihara, ., Guocheng Du,
| |
Collapse
|
3
|
The role of intraamygdaloid neurotensin and dopamine interaction in conditioned place preference. Behav Brain Res 2018; 344:85-90. [DOI: 10.1016/j.bbr.2018.01.021] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2017] [Revised: 01/18/2018] [Accepted: 01/19/2018] [Indexed: 01/21/2023]
|
4
|
Ferraro L, Tiozzo Fasiolo L, Beggiato S, Borelli AC, Pomierny-Chamiolo L, Frankowska M, Antonelli T, Tomasini MC, Fuxe K, Filip M. Neurotensin: A role in substance use disorder? J Psychopharmacol 2016; 30:112-27. [PMID: 26755548 DOI: 10.1177/0269881115622240] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Neurotensin is a tridecapeptide originally identified in extracts of bovine hypothalamus. This peptide has a close anatomical and functional relationship with the mesocorticolimbic and nigrostriatal dopamine system. Neural circuits containing neurotensin were originally proposed to play a role in the mechanism of action of antipsychotic agents. Additionally, neurotensin-containing pathways were demonstrated to mediate some of the rewarding and/or sensitizing properties of drugs of abuse.This review attempts to contribute to the understanding of the role of neurotensin and its receptors in drug abuse. In particular, we will summarize the potential relevance of neurotensin, its related compounds and neurotensin receptors in substance use disorders, with a focus on the preclinical research.
Collapse
Affiliation(s)
- Luca Ferraro
- Department of Life Sciences and Biotechnology, University of Ferrara, Ferrara, Italy Laboratory for Technologies of Advanced Therapies (LTTA), University of Ferrara, Ferrara, Italy
| | - Laura Tiozzo Fasiolo
- Department of Life Sciences and Biotechnology, University of Ferrara, Ferrara, Italy
| | - Sarah Beggiato
- Department of Medical Sciences, University of Ferrara, Ferrara, Italy
| | - Andrea C Borelli
- Department of Medical Sciences, University of Ferrara, Ferrara, Italy
| | | | - Malgorzata Frankowska
- Laboratory of Drug Addiction Pharmacology, Institute of Pharmacology, Polish Academy of Sciences, Kraków, Poland
| | - Tiziana Antonelli
- Department of Medical Sciences, University of Ferrara, Ferrara, Italy
| | - Maria C Tomasini
- Department of Life Sciences and Biotechnology, University of Ferrara, Ferrara, Italy
| | - Kjell Fuxe
- Department of Medical Sciences, University of Ferrara, Ferrara, Italy
| | - Malgorzata Filip
- Laboratory of Drug Addiction Pharmacology, Institute of Pharmacology, Polish Academy of Sciences, Kraków, Poland
| |
Collapse
|
5
|
Hines CS, Ray K, Schmidt JJ, Xiong F, Feenstra RW, Pras-Raves M, de Moes JP, Lange JHM, Melikishvili M, Fried MG, Mortenson P, Charlton M, Patel Y, Courtney SM, Kruse CG, Rodgers DW. Allosteric inhibition of the neuropeptidase neurolysin. J Biol Chem 2014; 289:35605-19. [PMID: 25378390 DOI: 10.1074/jbc.m114.620930] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
Neuropeptidases specialize in the hydrolysis of the small bioactive peptides that play a variety of signaling roles in the nervous and endocrine systems. One neuropeptidase, neurolysin, helps control the levels of the dopaminergic circuit modulator neurotensin and is a member of a fold group that includes the antihypertensive target angiotensin converting enzyme. We report the discovery of a potent inhibitor that, unexpectedly, binds away from the enzyme catalytic site. The location of the bound inhibitor suggests it disrupts activity by preventing a hinge-like motion associated with substrate binding and catalysis. In support of this model, the inhibition kinetics are mixed, with both noncompetitive and competitive components, and fluorescence polarization shows directly that the inhibitor reverses a substrate-associated conformational change. This new type of inhibition may have widespread utility in targeting neuropeptidases.
Collapse
Affiliation(s)
- Christina S Hines
- From the Department of Molecular and Cellular Biochemistry and the Center for Structural Biology, University of Kentucky, Lexington, Kentucky 40536
| | - Kallol Ray
- From the Department of Molecular and Cellular Biochemistry and the Center for Structural Biology, University of Kentucky, Lexington, Kentucky 40536
| | - Jack J Schmidt
- From the Department of Molecular and Cellular Biochemistry and the Center for Structural Biology, University of Kentucky, Lexington, Kentucky 40536
| | - Fei Xiong
- From the Department of Molecular and Cellular Biochemistry and the Center for Structural Biology, University of Kentucky, Lexington, Kentucky 40536
| | - Rolf W Feenstra
- Abbott Healthcare Products B.V., C.J. van Houtenlaan 36, 1381 CP, Weesp, The Netherlands, and
| | - Mia Pras-Raves
- Abbott Healthcare Products B.V., C.J. van Houtenlaan 36, 1381 CP, Weesp, The Netherlands, and
| | - Jan Peter de Moes
- Abbott Healthcare Products B.V., C.J. van Houtenlaan 36, 1381 CP, Weesp, The Netherlands, and
| | - Jos H M Lange
- Abbott Healthcare Products B.V., C.J. van Houtenlaan 36, 1381 CP, Weesp, The Netherlands, and
| | - Manana Melikishvili
- From the Department of Molecular and Cellular Biochemistry and the Center for Structural Biology, University of Kentucky, Lexington, Kentucky 40536
| | - Michael G Fried
- From the Department of Molecular and Cellular Biochemistry and the Center for Structural Biology, University of Kentucky, Lexington, Kentucky 40536
| | - Paul Mortenson
- Evotec (UK) Ltd., 114 Milton Park, Abingdon, OX14 4SA Oxfordshire, United Kingdom
| | - Michael Charlton
- Evotec (UK) Ltd., 114 Milton Park, Abingdon, OX14 4SA Oxfordshire, United Kingdom
| | - Yogendra Patel
- Evotec (UK) Ltd., 114 Milton Park, Abingdon, OX14 4SA Oxfordshire, United Kingdom
| | - Stephen M Courtney
- Evotec (UK) Ltd., 114 Milton Park, Abingdon, OX14 4SA Oxfordshire, United Kingdom
| | - Chris G Kruse
- Abbott Healthcare Products B.V., C.J. van Houtenlaan 36, 1381 CP, Weesp, The Netherlands, and
| | - David W Rodgers
- From the Department of Molecular and Cellular Biochemistry and the Center for Structural Biology, University of Kentucky, Lexington, Kentucky 40536,
| |
Collapse
|
6
|
Neurotensin and neurotensin receptors: characteristic, structure-activity relationship and pain modulation--a review. Eur J Pharmacol 2013; 716:54-60. [PMID: 23500196 DOI: 10.1016/j.ejphar.2013.03.004] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2012] [Revised: 02/23/2013] [Accepted: 03/03/2013] [Indexed: 12/14/2022]
Abstract
Neurotensin (NT) is a tridecapeptide, which - since its discovery in 1973--has been demonstrated to be involved in the control of various physiological activities in both the central nervous system and in the periphery. Its biological effects are mediated by four receptor types. Exogenously administered NT exerts different behavioral effects, including antinociception. Structure-activity relationship studies performed in recent years resulted in development of several peptidomimetic receptor agonists and non-peptidic receptor antagonists that are useful tools for studies of NT mechanisms in tissue and on cellular level. This may result in design of new generation of analgesics based on neurotensin. NT antinociceptive effects are distinct from opioid analgesia. This creates opportunity of development of hybride analgesics that may simultaneously activate both opioid and NT antinociceptive pathways.
Collapse
|
7
|
Different Interactions of Prolyl Oligopeptidase and Neurotensin in Dopaminergic Function of the Rat Nigrostriatal and Mesolimbic Pathways. Neurochem Res 2012; 37:2033-41. [DOI: 10.1007/s11064-012-0825-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2012] [Revised: 06/05/2012] [Accepted: 06/08/2012] [Indexed: 10/28/2022]
|
8
|
Fawaz CS, Martel P, Leo D, Trudeau LE. Presynaptic action of neurotensin on dopamine release through inhibition of D(2) receptor function. BMC Neurosci 2009; 10:96. [PMID: 19682375 PMCID: PMC2745416 DOI: 10.1186/1471-2202-10-96] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2008] [Accepted: 08/14/2009] [Indexed: 11/10/2022] Open
Abstract
Background Neurotensin (NT) is known to act on dopamine (DA) neurons at the somatodendritic level to regulate cell firing and secondarily enhance DA release. In addition, anatomical and indirect physiological data suggest the presence of NT receptors at the terminal level. However, a clear demonstration of the mechanism of action of NT on dopaminergic axon terminals is lacking. We hypothesize that NT acts to increase DA release by inhibiting the function of terminal D2 autoreceptors. To test this hypothesis, we used fast-scan cyclic voltammetry (FCV) to monitor in real time the axonal release of DA in the nucleus accumbens (NAcc). Results DA release was evoked by single electrical pulses and pulse trains (10 Hz, 30 pulses). Under these two stimulation conditions, we evaluated the characteristics of DA D2 autoreceptors and the presynaptic action of NT in the NAcc shell and shell/core border region. The selective agonist of D2 autoreceptors, quinpirole (1 μM), inhibited DA overflow evoked by both single and train pulses. In sharp contrast, the selective D2 receptor antagonist, sulpiride (5 μM), strongly enhanced DA release triggered by pulse trains, without any effect on DA release elicited by single pulses, thus confirming previous observations. We then determined the effect of NT (8–13) (100 nM) and found that although it failed to increase DA release evoked by single pulses, it strongly enhanced DA release evoked by pulse trains that lead to prolonged DA release and engage D2 autoreceptors. In addition, initial blockade of D2 autoreceptors by sulpiride considerably inhibited further facilitation of DA release generated by NT (8–13). Conclusion Taken together, these data suggest that NT enhances DA release principally by inhibiting the function of terminal D2 autoreceptors and not by more direct mechanisms such as facilitation of terminal calcium influx.
Collapse
Affiliation(s)
- Charbel S Fawaz
- Department of Pharmacology, Groupe de Recherche sur le Système Nerveux Central, Faculty of Medicine, Université de Montréal, Quebec, H3C 3J7, Canada.
| | | | | | | |
Collapse
|
9
|
Lee HK, Zhang L, Smith MD, White HS, Bulaj G. Glycosylated neurotensin analogues exhibit sub-picomolar anticonvulsant potency in a pharmacoresistant model of epilepsy. ChemMedChem 2009; 4:400-5. [PMID: 19173215 DOI: 10.1002/cmdc.200800421] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Neurotensin (NT) is an endogenous neuropeptide involved in a variety of central and peripheral neuromodulatory effects. Herein we show the effects of site-specific glycosylation on the in vitro and in vivo pharmacological properties of this neuropeptide. NT analogues containing O-linked disaccharides (beta-melibiose and alpha-TF antigen) or beta-lactose units linked by a PEG(3) spacer were designed and chemically synthesized using Fmoc chemistry. For the latter analogue, Fmoc-Glu-(beta-Lac-PEG(3)-amide) was prepared. Our results indicate that the addition of the disaccharides does not negatively affect the sub-nanomolar affinity or the low-nanomolar agonist potency for the neurotensin receptor subtype 1 (NTS1). Interestingly, three glycosylated analogues exhibited sub-picomolar potency in the 6 Hz limbic seizure mouse model of pharmacoresistant epilepsy following intracerebroventricular administration. Our results suggest for the first time that chemically modified NT analogues may lead to novel antiepileptic therapies.
Collapse
Affiliation(s)
- Hee-Kyoung Lee
- Department of Medicinal Chemistry, University of Utah, 421 Wakara Way, Suite 360, Salt Lake City, UT 84112, USA
| | | | | | | | | |
Collapse
|
10
|
Norman C, Beckett SRG, Spicer CH, Ashton D, Langlois X, Bennett GW. Effects of chronic infusion of neurotensin and a neurotensin NT1 selective analogue PD149163 on amphetamine-induced hyperlocomotion. J Psychopharmacol 2008; 22:300-7. [PMID: 18208905 DOI: 10.1177/0269881107083838] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Neurotensin (NT) has been proposed as an endogenous antipsychotic based in part on the similarity in behavioural effects to antipsychotic drugs, for example, attenuation of both amphetamine-induced hyperlocomotion (AH) and amphetamine disrupted pre-pulse inhibition in the rat. However, there is some evidence that repeated administration of NT or an analogue produces behavioural tolerance to such effects. The present experiments sought to confirm and extend these findings by testing the effects on AH of 7 days central administration of NT and the NT1 selective analogue PD 149163 and the effects of 21 days central administration of NT. NT and PD149163 continuously administered for 7 days produced no effect on AH (in contrast to attenuation with a single injection here and previously reported), whereas 21 days of NT administration potentiated AH. Together, these studies report that the effects of NT or a NT analogue on AH depends on the duration of administration of peptide. The results are discussed in comparison with the reported antipsychotic properties of acute administration of NT and possible mechanisms involving NT1 receptors.
Collapse
Affiliation(s)
- C Norman
- Division of Psychology, Nottingham Trent University, Burton Street, Nottingham, UK.
| | | | | | | | | | | |
Collapse
|
11
|
Ferraro L, Tomasini MC, Mazza R, Fuxe K, Fournier J, Tanganelli S, Antonelli T. Neurotensin receptors as modulators of glutamatergic transmission. ACTA ACUST UNITED AC 2007; 58:365-73. [PMID: 18096238 DOI: 10.1016/j.brainresrev.2007.11.001] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2007] [Revised: 11/02/2007] [Accepted: 11/05/2007] [Indexed: 12/22/2022]
Abstract
Functional studies have provided evidence supporting the concept that the tridecapeptide neurotensin (NT) acts in the central nervous system as a classical neurotransmitter and/or as an important modulator of neuronal signalling. The role of NT in the regulation of the striatal amino acidergic transmission, mainly by antagonising D2 receptor function, will be analysed. In addition, in different rat brain regions, including the basal ganglia, the contribution of NT receptors in modulating and reinforcing glutamate signalling will be shown including the involvement of interactions between NT and NMDA receptors. Since the enhancement of glutamate transmission and in particular the excessive activation of NMDA receptors, has been postulated to be an important factor in the induction of glutamate-mediated neuronal damage, the involvement of NT in the glutamate-induced neurodegenerative effects will be discussed. Moving from these observations and in order to further investigate this issue, results from preliminary behavioural, functional and biochemical experiments will be presented on the putative neuroprotective effect obtained by the blockade of NT receptor 1 (NTS1) via the systemic administration of the selective NTS1 antagonist SR48692 in an in vivo animal model of Parkinson's disease [unilateral nigral 6-hydroxydopamine (6-OHDA) induced lesion of the nigrostriatal pathway].
Collapse
Affiliation(s)
- Luca Ferraro
- Department of Clinical and Experimental Medicine, Section of Pharmacology, University of Ferrara, Via Fossato di Mortara 17-19, 44100 Ferrara, Italy
| | | | | | | | | | | | | |
Collapse
|
12
|
Antonelli T, Fuxe K, Tomasini MC, Mazzoni E, Agnati LF, Tanganelli S, Ferraro L. Neurotensin receptor mechanisms and its modulation of glutamate transmission in the brain: relevance for neurodegenerative diseases and their treatment. Prog Neurobiol 2007; 83:92-109. [PMID: 17673354 DOI: 10.1016/j.pneurobio.2007.06.006] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2006] [Revised: 05/18/2007] [Accepted: 06/19/2007] [Indexed: 11/30/2022]
Abstract
The extracellular accumulation of glutamate and the excessive activation of glutamate receptors, in particular N-methyl-D-aspartate (NMDA) receptors, have been postulated to contribute to the neuronal cell death associated with chronic neurodegenerative disorders such as Parkinson's disease. Findings are reviewed indicating that the tridecaptide neurotensin (NT) via activation of NT receptor subtype 1 (NTS1) promotes and reinforces endogenous glutamate signalling in discrete brain regions. The increase of striatal, nigral and cortical glutamate outflow by NT and the enhancement of NMDA receptor function by a NTS1/NMDA interaction that involves the activation of protein kinase C may favour the depolarization of NTS1 containing neurons and the entry of calcium. These results strengthen the hypothesis that NT may be involved in the amplification of glutamate-induced neurotoxicity in mesencephalic dopamine and cortical neurons. The mechanisms involved may include also antagonistic NTS1/D2 interactions in the cortico-striatal glutamate terminals and in the nigral DA cell bodies and dendrites as well as in the nigro-striatal DA terminals. The possible increase in NT levels in the basal ganglia under pathological conditions leading to the NTS1 enhancement of glutamate signalling may contribute to the neurodegeneration of the nigro-striatal dopaminergic neurons found in Parkinson's disease, especially in view of the high density of NTS1 receptors in these neurons. The use of selective NTS1 antagonists together with conventional drug treatments could provide a novel therapeutic approach for treatment of Parkinson's disease.
Collapse
Affiliation(s)
- T Antonelli
- Department of Clinical and Experimental Medicine, Section of Pharmacology, University of Ferrara, 44100 Ferrara, Italy
| | | | | | | | | | | | | |
Collapse
|
13
|
Abstract
Neurotensin (NT) is a neuropeptide that, for decades, has been implicated in the biology of schizophrenia. It is closely associated with, and is thought to modulate, dopaminergic and other neurotransmitter systems involved in the pathophysiology of various neuropsychiatric diseases, including schizophrenia. This review outlines the neurochemistry and function of the NT system and the data implicating its role in schizophrenia. The data suggest that NT receptor agonists have the potential to be used as novel therapeutic agents for the treatment of schizophrenia, with the added benefits of (i) not causing weight gain, an adverse effect that is problematic with some of the currently used atypical antipsychotic drugs; and (ii) helping patients to stop smoking, a behaviour that is highly prevalent in those with schizophrenia.
Collapse
Affiliation(s)
- Mona Boules
- Neuropsychopharmacology Laboratory, Mayo Foundation for Medical Education and Research, Mayo Clinic Jacksonville, Florida 32224, USA.
| | | | | | | |
Collapse
|
14
|
Samadi P, Rouillard C, Bédard PJ, Di Paolo T. Functional neurochemistry of the basal ganglia. HANDBOOK OF CLINICAL NEUROLOGY 2007; 83:19-66. [DOI: 10.1016/s0072-9752(07)83002-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
15
|
Martorana A, Martella G, D'Angelo V, Fusco FR, Spadoni F, Bernardi G, Stefani A. Neurotensin effects on N-type calcium currents among rat pallidal neurons: an electrophysiological and immunohistochemical study. Synapse 2006; 60:371-83. [PMID: 16838364 DOI: 10.1002/syn.20306] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
The tridecapeptide neurotensin (NT) is involved in the modulation of dopamine (DA)-mediated functions in the nigrostriatal and mesocorticolimbic pathways. Its relevance in mammalian globus pallidus (GP) is questioned. A recent electrophysiological study on GP slices described NT-mediated robust membrane depolarization, depending upon the suppression of potassium conductance and/or the activation of cation current. Here, we have studied whether NT also affected high-voltage-activated calcium (Ca(2+)) currents, by means of whole-cell recordings on isolated GP neurons. In our hands, the full peptide and the segment NT8-13 reversibly inhibited N-like Ca(2+) current in about 60% of the recorded dissociated neurons, irrespective of their capacitance. The NT-mediated modulation showed no desensitization and was antagonized by the NT1 antagonists SR48692 and SR142948. These results imply an abundant expression of NTS(1) on GP cell somata. Then, we performed a light and immunofluorescence-confocal microscopy study of NTS(1) localization among GP neurons. We found that NTS(1) is localized in about 56% of GP neurons in both subpopulations of neurons, namely parvalbumin positive and negative. We conclude that NT, likely released from the striatal terminals in GP, acts through the postsynaptic NTS(1) preferentially localized in the lateral aspects of the GP. These data suggest a new implication (neither merely presynaptic nor simply "excitatory") for NT in the modulation of GP firing pattern. In addition, NT might have a role in affecting the interplay among the endogenous release of GABA/glutamate and DA. This hypothesis might have implications on both sensori-motor and associative functions of the GP and should be tested in DA-denervated disease models.
Collapse
|
16
|
Boules M, Fredrickson P, Richelson E. Bioactive analogs of neurotensin: focus on CNS effects. Peptides 2006; 27:2523-33. [PMID: 16882457 DOI: 10.1016/j.peptides.2005.12.018] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/16/2005] [Accepted: 12/01/2005] [Indexed: 11/17/2022]
Abstract
Neurotensin (NT) is a 13-amino acid neuropeptide found in the central nervous system and in the gastrointestinal tract. It is closely associated anatomically with dopaminergic and other neurotransmitter systems, and evidence supports a role for NT agonists in the treatment of various neuropsychiatric disorders. However, NT is readily degraded by peptidases, so there is much interest in the development of stable NT agonists, that can be injected systemically, cross the blood-brain barrier (BBB), yet retains the pharmacological characteristics of native NT for therapeutic use in the treatment of diseases such as schizophrenia, Parkinson's disease and addiction.
Collapse
Affiliation(s)
- Mona Boules
- Neuropsychopharmacology Laboratory, Mayo Clinic, 4500 San Pablo Road, Jacksonville, FL 32224, USA.
| | | | | |
Collapse
|
17
|
Ernst A, Hellmich S, Bergmann A. Proneurotensin 1-117, a stable neurotensin precursor fragment identified in human circulation. Peptides 2006; 27:1787-93. [PMID: 16519961 DOI: 10.1016/j.peptides.2006.01.021] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/20/2005] [Revised: 01/25/2006] [Accepted: 01/26/2006] [Indexed: 11/30/2022]
Abstract
Proneurotensin/neuromedin N (pro NT/NMN) is the common precursor of two biologically active peptides, neurotensin (NT) and neuromedin N (NMN). We have established antibodies against peptide sequences of the NT/NMN precursor and developed a sandwich immunoassay for the detection of pro NT/NMN immunoreactivity in human circulation. Endogenous pro NT/NMN immunoreactivity was enriched by affinity chromatography using antibodies against two different pro NT/NMN epitopes, and further purified by reversed phase HPLC. Mass spectrometry analysis revealed pro NT/NMN 1-117 as major pro NT/NMN immunoreactivity in human circulation. Pro NT/NMN 1-117 is detectable in serum from healthy individuals (n = 124; median 338.9 pmol/L). As known for NT, the release of pro NT/NMN 1-117 from the intestine into the circulation is stimulated by ingestion of an ordinary meal. Investigation of the pro NT/NMN 1-117 in vitro stability in human serum and plasma revealed that this molecule is stable for at least 48 h at room temperature. Since pro NT/NMN 1-117 is theoretically produced during precursor processing in stoichiometric amounts relative to NT and NMN, it could be a surrogate marker for the release of these bioactive peptides.
Collapse
Affiliation(s)
- A Ernst
- SphingoTec GmbH, Tulpenweg 6, D-16556 Borgsdorf, Germany.
| | | | | |
Collapse
|
18
|
Fadel J, Dobner PR, Deutch AY. Amphetamine-elicited striatal Fos expression is attenuated in neurotensin null mutant mice. Neurosci Lett 2006; 402:97-101. [PMID: 16632196 DOI: 10.1016/j.neulet.2006.03.043] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2006] [Revised: 03/19/2006] [Accepted: 03/20/2006] [Indexed: 10/24/2022]
Abstract
Neurotensin (NT) has been suggested to interact with dopamine systems in different forebrain sites to exert both antipsychotic- and psychostimulant-like effects. We previously found that genetic or pharmacological manipulations that disrupt endogenous NT signaling attenuate antipsychotic drug-induced Fos expression in the dorsolateral and central striatum but not other striatal regions. To assess the role of NT in psychostimulant responses, we examined the ability of d-amphetamine (AMP) to induce Fos in wild-type and NT null mutant mice. AMP-elicited Fos expression was significantly attenuated in the medial striatum of NT null mutant mice, but was unaffected in other striatal territories. Similar results were obtained in rats and mice pretreated with the high affinity neurotensin receptor (NTR1) antagonist SR 48692. The effect of the NTR1 antagonist was particularly apparent in the striatal patch (striosome) compartment, as defined by mu-opioid receptor immunoreactivity. These data suggest that NT is required for the full activation by AMP of medial striatal neurons.
Collapse
Affiliation(s)
- Jim Fadel
- Department of Pharmacology, Physiology and Neuroscience, University of South Carolina School of Medicine, Columbia, SC 29208, USA.
| | | | | |
Collapse
|
19
|
Wang R, Boules M, Gollatz E, Williams K, Tiner W, Richelson E. Effects of 5 daily injections of the neurotensin-mimetic NT69L on the expression of neurotensin receptors in rat brain. ACTA ACUST UNITED AC 2005; 138:24-34. [PMID: 15878217 DOI: 10.1016/j.molbrainres.2005.03.014] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2004] [Revised: 03/11/2005] [Accepted: 03/27/2005] [Indexed: 11/25/2022]
Abstract
The effects of one or five daily intraperitoneal injections of a neurotensin (NT) receptor agonist NT69L (2 mg/kg, i.p.) on the expression of NT (NTS), dopamine 1 and 2 receptors, tyrosine hydroxylase, and DOPA decarboxylase using immunohistochemical and real-time PCR were investigated in rats. Except for the striatum, acute injection of NT69L did not affect neurotensin receptors as compared to saline control. However, 5 daily injections of NT69L resulted in down-regulation of both NTS-1 protein and mRNA levels in several brain regions with the striatum showing a dramatic decrease in NTS-1 expression (P<0.05). The down-regulation of NTS-1 in the striatum, hypothalamus, and substania nigra (SN) after 5 daily injections was confirmed by autoradiography. Acute injection of NT69L increased NTS-2 mRNA and protein level in prefrontal cortex (PFC). NTS-3 mRNA expression and protein levels were slightly down-regulated in hypothalamus, periaqueductal gray (PAG), and SN, though the difference was not significant. The results indicated a difference in the profile of NT receptors expression in response to NT69L. Tyrosine hydroxylase (TH) and DOPA decarboxylase (DDC) mRNA was significantly down-regulated in striatum but not in SN. Interestingly, Nurr 1, a transcriptional activator of TH, was dramatically up-regulated in striatum, but down-regulated in PFC, suggesting that different modulating mechanisms may participate in NT69L tolerance in different regions. The present results suggest that distinct NT receptors involved in the effects exerted by NT69L may contribute to the interactions of NT69L with both neural networks and cellular proteins.
Collapse
Affiliation(s)
- Rui Wang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 200031, PR China
| | | | | | | | | | | |
Collapse
|
20
|
Gomide VC, de Francisco AC, Chadi G. Localization of neurotensin immunoreactivity in neurons and organ of corti of rat cochlea. Hear Res 2005; 205:1-6. [PMID: 15953510 DOI: 10.1016/j.heares.2005.02.011] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/16/2004] [Accepted: 02/26/2005] [Indexed: 11/20/2022]
Abstract
The distribution of neurotensin-containing cell bodies and fibers has been observed in the central and peripheral nervous system, including sensory ganglia, but no description has been found in the peripheral auditory system. Here, we investigated the presence of neurotensin immunoreactivity in the cochlea of the adult Wistar rat. Strong neurotensin immunoreactivity was detected in the cytoplasm of the inner hair cells (IHC) and Deiters' cells of the organ of Corti. Outer hair cells (OHC) show weak immunoreaction. Neurotensin immunoreactivity was also found in the neurons and fibers of the spiral ganglia. Quantitative microdensitometric image analysis of the neurotensin immunoreactivity showed a strong immunoreaction in the hair cells of organ of Corti and a moderate to strong labeling in the spiral ganglion neurons. A series of double immunolabeling experiments demonstrated a strong neurotensin immunoreactivity in the parvalbumin immunoreactive IHC and also in the calbindin immunoreactive Deiters' cells. Weak neurotensin immunoreactivity was seen in the calbindin positive OHC. Neurofilament and parvalbumin immunoreactive neurons and fibers in the spiral ganglia showed neurotensin immunoreactivity. Calbindin immunoreactivity was not detected in the spiral ganglion neurons, which are labeled by neurotensin immunoreactivity. The presence of neurotensin in the cochlea may be related to its modulation of neurotransmission in the peripheral auditory pathway.
Collapse
Affiliation(s)
- Vânia C Gomide
- Laboratory of Neuroregeneration, Department of Anatomy, Institute of Biomedical Sciences, University of São Paulo, 05508-900 São Paulo, Brazil
| | | | | |
Collapse
|
21
|
Abstract
Neurotensin (NT) is a neuropeptide found in the central nervous system and gastrointestinal tract. It is closely associated with dopaminergic and other neurotransmitter systems, and evidence supports a role for NT in various neuropsychiatric disorders. Because NT is readily degraded by peptidases, our group has developed various NT agonists that can be injected systemically, cross the blood brain barrier (BBB), yet retain the characteristics of native NT. The most widely studied and successful of these compounds, called NT69L, holds promise as a therapeutic agent for Parkinson's disease, schizophrenia, psychostimulant abuse and nicotine dependence, and serves as a tool to study the cellular and molecular effects of NT.
Collapse
Affiliation(s)
- Mona Boules
- Neuropsychopharmacology Laboratory, Mayo Clinic, 4500 San Pablo Road, Jacksonville, FL 32224, USA.
| | | | | |
Collapse
|
22
|
Antonelli T, Tomasini MC, Finetti S, Giardino L, Calzà L, Fuxe K, Soubriè P, Tanganelli S, Ferraro L. Neurotensin enhances glutamate excitotoxicity in mesencephalic neurons in primary culture. J Neurosci Res 2002; 70:766-73. [PMID: 12444598 DOI: 10.1002/jnr.10415] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
The tridecapeptide neurotensin has been demonstrated to increase glutamate release in discrete rat brain regions, leading to the hypothesis of a possible involvement of the peptide in neurodegenerative pathologies. The role of neurotensin in modulating glutamate excitotoxicity and the possible neuroprotective action of the neurotensin receptor antagonist SR48692 were investigated in primary cultures of mesencephalic neurons by measuring [(3)H]dopamine uptake and tyrosine hydroxylase immunocytochemistry 24 hr after glutamate treatment. The exposure to glutamate (30 and 100 microM, 10 min) decreased [(3)H]dopamine uptake into mesencephalic neurons. Neurotensin (10 and 100 nM), added before glutamate (30 microM) exposure, significantly enhanced the glutamate-induced reduction of [(3)H]dopamine uptake. In addition, the peptide (10 nM) also significantly enhanced the effect of 100 microM glutamate. The effects of neurotensin were counteracted by the neurotensin receptor antagonist SR48692 (100 nM) and by the protein kinase C inhibitor calphostin C. The exposure to 100 microM, but not 30 microM, glutamate significantly reduced the number of tyrosine hydroxylase-immunoreactive cells, and neurotensin (10 nM) significantly enhanced this effect. SR48692 (100 nM) prevented the neurotensin-induced action. These findings support the view of a possible pathophysiological role of neurotensin in mesencephalic dopamine neuronal function. Furthermore, selective neurotensin antagonists in combination with conventional drug treatments could provide a novel therapeutic approach for the treatment of neurodegenerative disorders, such as Parkinson's disease.
Collapse
Affiliation(s)
- T Antonelli
- Department of Clinical and Experimental Medicine, Pharmacology Section, University of Ferrara, Ferrara, Italy
| | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Boules M, Warrington L, Fauq A, McCormick D, Richelson E. Antiparkinson-like effects of a novel neurotensin analog in unilaterally 6-hydroxydopamine lesioned rats. Eur J Pharmacol 2001; 428:227-33. [PMID: 11675040 DOI: 10.1016/s0014-2999(01)01260-2] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Parkinson's disease is a neuropathological disorder involving the degeneration of dopamine neurons in the substantia nigra, with the resultant loss of their terminals in the striatum. This dopamine loss causes most of the motor disturbances associated with the disease. One animal model of Parkinson's disease involves destruction of the nigrostriatal pathway with a neurotoxin (6-hydroxydopamine) injected into this pathway. In unilaterally lesioned animals, injection of D-amphetamine causes rotation towards the lesioned side, while injection of apomorphine acting upon supersensitive postsynaptic dopamine receptors causes rotation away from the lesioned side. In this study, we tested the effects of acute and subchronic injection of a neurotensin analog (NT69L) on the rotational behavior induced by D-amphetamine (5 mg/kg) or apomorphine (600 microg/kg) in unilaterally 6-hydroxydopamine lesioned rats. Pretreatment of animals with intraperitoneal injections of NT69L (1 mg/kg) resulted in a significant reduction of apomorphine-induced contralateral rotation and D-amphetamine-induced ipsilateral rotation in these lesioned rats with an ED(50) of 40 and 80 microg/kg, respectively. After three daily injections of NT69L, its effects on this rotational behavior were unchanged, suggesting that no tolerance develops to this effect of NT69L.
Collapse
Affiliation(s)
- M Boules
- Neuropsychopharmacology Laboratory, Mayo Foundation for Medical Education and Research, and Mayo Clinic Jacksonville, 4500 San Pablo Road, Jacksonville, FL 32224, USA.
| | | | | | | | | |
Collapse
|
24
|
Ferraro L, Tomasini MC, Fernandez M, Bebe BW, O'Connor WT, Fuxe K, Glennon JC, Tanganelli S, Antonelli T. Nigral neurotensin receptor regulation of nigral glutamate and nigroventral thalamic GABA transmission: a dual-probe microdialysis study in intact conscious rat brain. Neuroscience 2001; 102:113-20. [PMID: 11226674 DOI: 10.1016/s0306-4522(00)00448-6] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Dual-probe microdialysis in the awake rat was employed to investigate the effects of intranigral perfusion with the tridecapeptide neurotensin on local dialysate glutamate and GABA levels in the substantia nigra pars reticulata and on dialysate GABA levels in the ventral thalamus. Intranigral neurotensin (10-300nM, 60min) dose-dependently increased (+29+/-3% and +46+/-3% vs basal for the 100 and 300nM concentrations, respectively) local dialysate glutamate levels, while the highest 300nM concentration of the peptide exerted a long-lasting and prolonged reduction in both local and ventral thalamic (-20+/-4% and -22+/-2%, respectively) GABA levels. Intranigral perfusion with the inactive neurotensin fragment neurotensin(1-7) (10-300nM, 60min) was without effect. Furthermore, the non-peptide neurotensin receptor antagonist SR 48692 (0.2mg/kg) and tetrodotoxin (1microM) fully counteracted the intranigral neurotensin (300nM)-induced increase in local glutamate. SR 48692 (0.2mg/kg) also counteracted the decreases in nigral and ventral thalamic GABA release induced by the peptide. In addition, intranigral perfusion with the dopamine D(2) receptor antagonist raclopride (1microM) fully antagonized the neurotensin (300nM)-induced decreases in nigral and ventral thalamic GABA levels. The ability of nigral neurotensin receptor activation to differently influence glutamate and GABA levels, whereby it increases nigral glutamate and decreases both nigral and ventral thalamic GABA levels, suggests the involvement of neurotensin receptor in the regulation of basal ganglia output at the level of the nigra.
Collapse
Affiliation(s)
- L Ferraro
- Department of Clinical and Experimental Medicine, Section of Pharmacology, University of Ferrara, Via Fossato di Mortara 17-19, 44100, Ferrara, Italy
| | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Tyler-McMahon BM, Boules M, Richelson E. Neurotensin: peptide for the next millennium. REGULATORY PEPTIDES 2000; 93:125-36. [PMID: 11033059 DOI: 10.1016/s0167-0115(00)00183-x] [Citation(s) in RCA: 123] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Neurotensin is an endogenous tridecapeptide neurotransmitter (pGlu-Leu-Tyr-Glu-Asn-Lys-Pro-Arg-Arg-Pro-Try-Ile-Leu-OH) that was discovered by Carraway and Leeman in bovine hypothalami in the early 1970s. Since then this peptide has been the subject of a multitude of articles detailing discoveries related to its activity, receptors, localization, synthesis, and interactions with other systems. This review article does not intend to summarize again all the history of this fascinating peptide and its receptors, since this has been done quite well by others. The reader will be directed to these other reviews, where appropriate. Instead, this review attempts to provide a summary of current knowledge about neurotensin, why it is an important peptide to study, and where the field is heading. Special emphasis is placed on the behavioral studies, particularly with reference to agonists, antagonists, and antisense studies, as well as, the interaction of neurotensin with other neurotransmitters.
Collapse
Affiliation(s)
- B M Tyler-McMahon
- Laboratory of Neuropharmacology, Mayo Foundation for Medical and Educational Research, 4500 San Pablo Rd., 32224, Jacksonville, FL, USA.
| | | | | |
Collapse
|
26
|
Fassio A, Evans G, Grisshammer R, Bolam JP, Mimmack M, Emson PC. Distribution of the neurotensin receptor NTS1 in the rat CNS studied using an amino-terminal directed antibody. Neuropharmacology 2000; 39:1430-42. [PMID: 10818259 DOI: 10.1016/s0028-3908(00)00060-5] [Citation(s) in RCA: 72] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The distribution of neurotensin receptor 1 immunoreactivity in the rat brain was studied using an antibody against the amino-terminal of the receptor expressed as a fusion protein with glutathione-S transferase. Affinity purified antibodies detected the fusion protein and the complete neurotensin receptor sequence expressed in Escherichia coli. The immunostaining was abolished by preabsorption with the amino-terminal fusion protein. Immunoreactive neurotensin receptor 1 immunoreactivity was detected on cell bodies and their processes in a number of CNS regions. In agreement with previous binding studies neurotensin receptor 1 immunoreactivity was particularly localised in cell bodies in the basal forebrain, nucleus basalis and substantia nigra. At the electron microscope level immunoreactivity was found both in axonal bouton and dendrites and spines in the basal forebrain indicating that neurotensin may act both pre- and post-synaptically. There were several regions such as the substantia gelatinosa, ventral caudate-putamen and the lateral reticular nucleus where the neurotensin receptor 1 positive cells had not previously been reported, indicating that distribution of this receptor is widespread.
Collapse
Affiliation(s)
- A Fassio
- Laboratory of Molecular Neuroscience, Department of Neurobiology, The Babraham Institute, CB2 4AT, Cambridge, UK
| | | | | | | | | | | |
Collapse
|
27
|
Goulet M, Morissette M, Grondin R, Falardeau P, Bédard PJ, Rostène W, Di Paolo T. Neurotensin receptors and dopamine transporters: effects of MPTP lesioning and chronic dopaminergic treatments in monkeys. Synapse 1999; 32:153-64. [PMID: 10340626 DOI: 10.1002/(sici)1098-2396(19990601)32:3<153::aid-syn2>3.0.co;2-x] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
The effect of denervation with 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) of the dopamine (DA) nigrostriatal pathway on neurotensin (NT) receptor and DA transporter (DAT) in basal ganglia of monkeys (Macaca fascicularis) was investigated. The MPTP lesion induced a marked depletion of DA (90% or more vs. control) in the caudate nucleus and putamen. The densities of NT agonist binding sites labeled with [125I]NT and the NT antagonist binding sites labeled with [3H]SR142948A decreased by half in the caudate-putamen of MPTP-monkeys. In addition, the densities of [125I]NT and [3H]SR142948A binding sites markedly decreased (-77 and -63%, respectively) in the substantia nigra of MPTP-monkeys. Levocabastine did not compete with high affinity for [125I]NT binding in the monkey cingulate cortex, suggesting that only one class of NT receptors was labelled in the monkey brain. An extensive decrease of [3H]GBR12935 DAT binding sites (-92% vs. Control) was observed in the striatum of MPTP-monkeys and an important loss of DAT mRNA(-86% vs. Control) was observed in substantia nigra. Treatments for 1 month with either the D1 agonist SKF-82958 (3 mg/kg/day) or the D2 agonist cabergoline (0.25 mg/kg/day) had no effect on the lesion-induced decrease in NT and DAT binding sites or DAT mRNA levels. The decrease of striatal NT binding sites was less than expected from the decrease of DA content in this nucleus, suggesting only partial localization of NT receptors on nigrostriatal DAergic projections. These data also suggest that under severe DA denervation, treatment with D1 or D2 DA agonists does not modulate NT receptors and DAT density.
Collapse
MESH Headings
- 1-Methyl-4-phenyl-1,2,3,6-tetrahydropyridine/pharmacology
- Adamantane/analogs & derivatives
- Adamantane/metabolism
- Animals
- Autoradiography
- Binding Sites/drug effects
- Carrier Proteins/genetics
- Carrier Proteins/metabolism
- Caudate Nucleus/drug effects
- Caudate Nucleus/metabolism
- Denervation
- Dopamine/metabolism
- Dopamine Agents/metabolism
- Dopamine Agents/pharmacology
- Dopamine Plasma Membrane Transport Proteins
- Dose-Response Relationship, Drug
- Down-Regulation/drug effects
- Imidazoles/metabolism
- In Situ Hybridization
- Macaca fascicularis
- Membrane Glycoproteins
- Membrane Transport Proteins
- Neostriatum/drug effects
- Neostriatum/metabolism
- Nerve Tissue Proteins
- Neurotensin/metabolism
- Piperidines/metabolism
- Putamen/drug effects
- Putamen/metabolism
- RNA, Messenger/analysis
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- Receptors, Dopamine/metabolism
- Receptors, Neurotensin/agonists
- Receptors, Neurotensin/antagonists & inhibitors
- Receptors, Neurotensin/metabolism
- Substantia Nigra/drug effects
- Substantia Nigra/metabolism
Collapse
Affiliation(s)
- M Goulet
- Faculty of Pharmacy, Laval University, Québec, Qc, Canada
| | | | | | | | | | | | | |
Collapse
|
28
|
Unno T, Shingu H, Isogai M, Komori S, Ohashi H. Potentiation by neurotensin of carbachol-induced tension development in beta-escin-skinned smooth muscle of guinea-pig ileum. J Vet Med Sci 1998; 60:1227-32. [PMID: 9853304 DOI: 10.1292/jvms.60.1227] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Effect of neurotensin (NT) on carbachol(CCh)-induced tension development due to Ca2+ release from intracellular stores was investigated in beta-escin-skinned smooth muscle of guinea-pig ileum. NT (10 nM) increased the tension development in response to CCh. NT also increased the tension response to caffeine, another store-Ca2+ releaser. NT did not exert such an effect in pertusis toxin (PTX)-treated preparations. Treatment with isoprenaline to elevate endogenous cyclic AMP levels or with dibutyryl cyclic AMP did not affect the effect of NT. A nonpeptide NT antagonist, SR 48692, failed to block the effect of NT. NT shifted the pCa-tension relationship in the lower direction of Ca2+ concentration. NT was incapable of releasing Ca2+ from intracellular stores. The results suggest that NT may cause an increase in Ca2+ sensitivity of contractile elements to potentiate the CCh-induced tension development due to release of stored Ca2+ and that the effect is mediated by SR 48692-insensitive NT receptors linked to a PTX-sensitive G protein which works with no relation to a change in cytosolic cyclic AMP levels.
Collapse
Affiliation(s)
- T Unno
- Department of Veterinary Medicine, Faculty of Agriculture, Gifu University, Japan
| | | | | | | | | |
Collapse
|
29
|
Bozzola M, Ntodou-Thome A, Bona G, Autelli M, Magnani ML, Radetti G, Schimpff RM. Possible role of plasma neurotensin on growth hormone regulation in neonates. J Pediatr Endocrinol Metab 1998; 11:607-13. [PMID: 9829211 DOI: 10.1515/jpem.1998.11.5.607] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
OBJECTIVE To evaluate secretion of plasma neurotensin (NT) which could be involved as a peripheral signal in growth hormone (GH) regulation, NT release was measured during early postnatal life, a period of striking changes in GH secretion. METHODS Blood samples were collected from 19 normal full-term neonates on day 5 and at 3 months of age to evaluate plasma NT concentrations by radioimmunoassay, serum growth hormone (GH) levels using an immunofluorometric assay, and serum insulin-like growth factor-I (IGF-I) values by radioimmunoassay. RESULTS Five day-old neonates showed significantly higher (p < 0.001) mean (+/- SEM) plasma NT levels (83.55 +/- 12.07 fmol/ml) compared with those in 11 prepubertal children and those in 14 adults who were studied as control subjects (13.30 +/- 2.90 and 9.70 +/- 1.10 fmol/ml, respectively). In 5 day-old neonates we observed significantly higher (p < 0.001) serum GH levels (29.53 +/- 3.40 ng/ml) compared with those in the prepubertal children (1.26 +/- 0.28 ng/ml). Five day-old neonates showed significantly lower (p < 0.001) serum IGF-I concentrations (27.01 +/- 0.77 ng/ml) than those in the prepubertal children (210 +/- 25 ng/ml). At 3 months of age, plasma NT levels (59.37 +/- 7.47 fmol/ml) and serum GH values (4.40 +/- 0.60 ng/ml) were significantly decreased (p < 0.001). At the 3rd month of life, serum IGF-I levels (44.88 +/- 4.30 ng/ml) were increased significantly (p < 0.001). CONCLUSIONS The human neonate showed very high concentrations of NT and GH in comparison with those observed in control subjects. The postnatal rise in IGF-I values is presumed to determine the fall in serum GH concentrations by stimulating somatostatin secretion. Neurotensin could be involved as a peripheral signal in the inhibitory mechanisms mediated by release of somatostatin.
Collapse
Affiliation(s)
- M Bozzola
- Department of Pediatrics, University of Pavia, Italy
| | | | | | | | | | | | | |
Collapse
|
30
|
Quéré L, Longfils G, Boigegrain R, Labeeuw B, Gully D, Durant F. X-ray structural characterization of SR 142948, a novel potent synthetic neurotensin receptor antagonist. Bioorg Med Chem Lett 1998; 8:653-8. [PMID: 9871577 DOI: 10.1016/s0960-894x(98)00087-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
SR 142948 is an original and extremely potent neurotensin receptor antagonist developed in a promising approach to novel antipsychotic drugs. The X-ray structure was elucidated and compared to SR 48692 and levocabastine, providing new informations about the possible recognition process of NT receptor subtypes.
Collapse
Affiliation(s)
- L Quéré
- Laboratoire de Chimie Moléculaire Structurale, Facultés Universitaires Notre-Dame de la Paix, Namur, Belgium.
| | | | | | | | | | | |
Collapse
|
31
|
Berger B, Alvarez C, Pelaprat D. Retrosplenial/presubicular continuum in primates: a developmental approach in fetal macaques using neurotensin and parvalbumin as markers. BRAIN RESEARCH. DEVELOPMENTAL BRAIN RESEARCH 1997; 101:207-24. [PMID: 9263594 DOI: 10.1016/s0165-3806(97)00067-9] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
In spite of numerous hodological and neuropsychological studies emphasizing the multimodal connections and integrative functions of the retrosplenial cortex in primates, the precise fate of its caudoventral extent and the composition of the merging area with the hippocampal formation remain a matter of debate. We reported previously how the anlage of the retrosplenial cortex merges with the immature presubicular zone in the fetal rhesus monkey at the end of the first trimester of gestation. In the present study, this caudal area was further defined on a chemoarchitectonic basis, particularly during the late prenatal and perinatal stages, which correspond to the development of the cingulate sulcus and temporal gyri, and the differentiation of the retrosplenial/subicular complex. Neurotensin (NT), a pyramidal cell marker in the limbic cortex, and parvalbumin (PV), a marker of a subset of inhibitory local circuit neurons in the hippocampal formation, were used as immunocytochemical markers. According to distinct chemoarchitectural patterns, (1) areas 29 l and 29 m of the retrosplenial cortex formed a triangle-shaped ventral expansion which merged with a similar but dorsal expansion of the pre/parasubicular fields. A temporal extension of area 29 m down to area TH could not be detected. The pre/parasubiculum contributed with area 29 m to the lateral bank of the calcarine sulcus as far as the most caudal extent of the hippocampal formation. (2) The lamina principalis interna of the presubiculum was well individualized and did not appear as a simple horizontal shift of adjoining fields. (3) NT and PV displayed a distinct temporal profile of development. NT was already expressed in the pyramidal cells of the prospective retrosplenial cortex and ventral hippocampal formation at E47 (term 165 days). Major pathways of the hippocampal formation and retrosplenial cortex (fimbria, fornix, angular and cingulum bundles) were progressively labeled indicating early developing projections. A large set of NT-positive afferents reached the retrosplenial cortex between E114 and E120. Their laminar distribution was compatible with a thalamic or a subicular origin. (4) The development of PV expression was delayed until the last quarter of gestation, supporting its proposal as a signal of functional onset. The developmental fate and the particular connections of the presubiculum suggest that its functional importance should be further investigated during infancy and adulthood.
Collapse
Affiliation(s)
- B Berger
- INSERM U106, Bâtiment de Pédiatrie, Hôpital Salpêtrière, Paris, France
| | | | | |
Collapse
|
32
|
Rostene W, Azzi M, Boudin H, Lepee I, Souaze F, Mendez-Ubach M, Betancur C, Gully D. Use of nonpeptide antagonists to explore the physiological roles of neurotensin. Focus on brain neurotensin/dopamine interactions. Ann N Y Acad Sci 1997; 814:125-41. [PMID: 9160965 DOI: 10.1111/j.1749-6632.1997.tb46151.x] [Citation(s) in RCA: 49] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Affiliation(s)
- W Rostene
- INSERM U.339, Hôpital St. Antoine, Paris, France.
| | | | | | | | | | | | | | | |
Collapse
|
33
|
Abstract
More than two decades of research indicate that the peptide neurotensin (NT) and its cognate receptors participate to a remarkable extent in the regulation of mammalian neuroendocrine systems, potentially at multiple levels in a given system. NT-synthesizing neurons appear to exert a direct or indirect stimulatory influence on neurosecretory cells that synthesize gonadotropin-releasing hormone, dopamine (DA), somatostatin, and corticotropin-releasing hormone (CRH). In addition, context-specific synthesis of NT occurs in hypothalamic neurosecretory cells located in the arcuate nucleus and parvocellular paraventricular nucleus, including distinct subsets of cells which release DA, CRH, or growth hormone-releasing hormone into the hypophysial portal circulation. At the level of the anterior pituitary, NT stimulates secretion of prolactin and occurs in subsets of gonadotropes and thyrotropes. Moreover, circulating hormones influence NT synthesis in the hypothalamus and anterior pituitary, raising the possibility that NT mediates certain feedback effects of the hormones on neuroendocrine cells. Gonadal steroids alter NT levels in the preoptic area, arcuate nucleus, and anterior pituitary; adrenal steroids alter NT levels in the hypothalamic periventricular nucleus and arcuate nucleus; and thyroid hormones alter NT levels in the hypothalamus and anterior pituitary. Finally, clarification of the specific neuroendocrine roles subserved by NT should be greatly facilitated by the use of newly developed agonists and antagonists of the peptide.
Collapse
Affiliation(s)
- W H Rostène
- INSERM U.339, Hôpital St. Antoine, Paris, France.
| | | |
Collapse
|
34
|
Jenkins TA, Chai SY, Mendelsohn FA. Upregulation of angiotensin II AT1 receptors in the mouse nucleus accumbens by chronic haloperidol treatment. Brain Res 1997; 748:137-42. [PMID: 9067454 DOI: 10.1016/s0006-8993(96)01276-0] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
The distribution of angiotensin II AT1 and AT2 receptor subtypes were mapped in the mouse brain by in vitro autoradiography. Along with a differing distribution of AT1 and AT2 receptors in the hind brain compared to the rat, moderate densities of AT1 receptors were observed in dopamine-rich regions, namely the caudate putamen and nucleus accumbens, previously observed in the human, but not rat or rabbit. Considering our previous anatomical and functional studies demonstrating an interaction between brain angiotensin II and dopaminergic systems, the effect of chronic treatment with the dopamine antagonist, haloperidol, on AT1 and AT2 receptor levels was investigated in the mouse brain. Haloperidol treatment for 21 days resulted in an increase in angiotensin II AT1 receptor levels in the nucleus accumbens, accompanied by an increase in dopamine D2 receptors, but no change in dopamine D1 receptors. Striatal AT1 receptors did not alter with treatment, nor did AT1 or AT2 receptors in a number of brain regions not associated with dopaminergic systems, such as the median preoptic nucleus, paraventricular hypothalamic nucleus, and nucleus of the solitary tract. The present study suggests that brain angiotensin II-dopamine interactions extend beyond the known effects on the nigrostriatal dopaminergic system, to the mesocorticolimbic dopaminergic system.
Collapse
Affiliation(s)
- T A Jenkins
- Department of Medicine, University of Melbourne, Victoria, Australia
| | | | | |
Collapse
|
35
|
Azzi M, Boudin H, Mahmudi N, Pélaprat D, Rostène W, Bérod A. In vivo regulation of neurotensin receptors following long-term pharmacological blockade with a specific receptor antagonist. BRAIN RESEARCH. MOLECULAR BRAIN RESEARCH 1996; 42:213-21. [PMID: 9013776 DOI: 10.1016/s0169-328x(96)00124-6] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Adaptive changes in brain neurotensin (NT) receptors were investigated in rats after repeated administration of SR 48692, a potent and selective non-peptide NT receptor antagonist. Administration of SR 48692 (1 mg/kg i.p.) for 15 days did not alter NT content in the brain but highly enhanced the expression of NT receptor mRNA as shown by quantitative in situ hybridization. The increase of the signal was observed in numerous areas of the brain, such as the anterior cingulate, perirhinal and retrosplenial cortices, the suprachiasmatic nucleus, the ventral tegmental area, the substantia nigra and the posterior cortical nucleus of the amygdaloid complex. Moreover, the SR 48692 treatment induced the expression of NT receptor mRNA in several nuclei of the diencephalon where it could not be detected in basal conditions. Immunoblot analysis with a specific antibody directed against the rat cloned NT receptor revealed an important increase in NT receptor protein in the brain of SR 48692-treated rats, correlating well with the increase in NT receptor mRNA levels. Surprisingly, the number and the affinity constant of NT binding sites determined on brain membrane homogenates remained unchanged after SR 48692 treatment, even after membrane permeabilization with low concentrations of digitonin. These results suggest that chronic treatment with a specific NT antagonist induces an up-regulation of NT receptors at the level of mRNA and protein. Moreover, they indicate that after a chronic treatment with SR 48692, the number of NT binding sites remains stable in contrast to what is observed after 5-day treatment or with central monoaminergic receptor following their long-term blockade.
Collapse
Affiliation(s)
- M Azzi
- INSERM U339, Hôpital Saint-Antoine, Paris, France
| | | | | | | | | | | |
Collapse
|
36
|
Lantos TA, Palkovits M, Rostène W, Bérod A. Neurotensin receptors in the human amygdaloid complex. Topographical and quantitative autoradiographic study. J Chem Neuroanat 1996; 11:209-17. [PMID: 8906462 DOI: 10.1016/0891-0618(96)00162-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
The distribution of high affinity 125I-neurotensin (NT) binding sites were investigated in the amygdaloid complex of adult humans by means of dry film and emulsion autoradiography. Autoradiograms were analysed quantitatively using [125I] standards and an image analyser system, and data obtained were converted to nCi of ligand bound per mg tissue. High densities of 125I-NT binding sites were found in the following amygdaloid structures the dorsal part of the accessory basal nucleus, the medial part of the cortical nucleus, the lateral subdivision of the central nucleus, the paralaminar nucleus, the amygdalohippocampal transition area and the rostral portions of the anterior amygdaloid area. The ventral part of the accessory basal nucleus, the intercalated cell groups and the remaining parts of the anterior amygdaloid area showed moderate density of NT binding sites, while the medial, basal and lateral amygdaloid nuclei, the lateral part of the cortical nucleus, the medial subdivision of the central nucleus, as well as the corticoamygdaloid transition area exhibited low densities of 125I-NT binding sites. At microscopic level, silver grains appeared more or less evenly distributed over both neuronal perikarya and the surrounding neuropil. In comparison to NT-immunoreactivity, NT receptors showed mismatching distribution throughout most parts of the amygdala, with the exception of the lateral subdivision of the central nucleus, where NT-immunoreactive perikarya and nerve fibers as well as 125I-NT binding sites were found in high density.
Collapse
|
37
|
Delle Donne KT, Sesack SR, Pickel VM. Ultrastructural immunocytochemical localization of neurotensin and the dopamine D2 receptor in the rat nucleus accumbens. J Comp Neurol 1996; 371:552-66. [PMID: 8841909 DOI: 10.1002/(sici)1096-9861(19960805)371:4<552::aid-cne5>3.0.co;2-3] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
The neuroleptic-like effects of neurotensin (NT) are thought to be due to interactions with dopamine (DA) acting primarily at D2 receptors within the nucleus accumbens septi (Acb). Using electron microscopic dual labeling immunocytochemistry, we sought to demonstrate cellular substrates for functional interactions involving NT and DA D2 receptors in the adult rat Acb. Peroxidase reaction product representing D2 receptor-like immunoreactivity (D2-LI) was seen along membranes of Golgi lamellae and multivesicular bodies of perikarya containing immunogold labeling representing NT-LI. Dually labeled somata usually contained highly indented nuclei, a characteristic of aspiny neurons. Dendrites also occasionally colocalized the two immunomarkers. Other somata, dendrites, and all axon terminals were singly labeled with either NT-LI or D2-LI. In distinct sets of terminals, NT-LI was commonly associated with large, dense-cored vesicles, whereas D2-LI was found along the plasmalemma and over nearby small clear vesicles. Each type of terminal comprised approximately 20% of synaptic input to NT-immunoreactive dendrites. Similar proportions of terminals containing NT-LI or D2-LI contacted unlabeled (approximately 55%) or NT-labeled (approximately 35%) dendrites and, occasionally, were observed converging onto common dendrites. Terminals containing NT-LI or D2-LI also were often closely apposed. These findings provide the first ultrastructural evidence that: (1) NT and D2 receptors are colocalized in aspiny neurons and dendrites, (2) NT may produce a direct postsynaptic effect on neurons receiving input from terminals which are presynaptically modulated by DA via D2 receptors, and (3) NT and DA acting at D2 receptors may interact through presynaptic modulation of common axon terminals.
Collapse
Affiliation(s)
- K T Delle Donne
- Department of Neurology and Neuroscience, Cornell University Medical College, New York, New York 10021, USA
| | | | | |
Collapse
|
38
|
Mulè F, Serio R, Postorino A, Vetri T, Bonvissuto F. Antagonism by SR 48692 of mechanical responses to neurotensin in rat intestine. Br J Pharmacol 1996; 117:488-492. [PMID: 8821538 PMCID: PMC1909323 DOI: 10.1111/j.1476-5381.1996.tb15216.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
1. The effects of SR 48692 on neurotensin (NT)-induced mechanical responses were investigated in rat duodenum and proximal colon by use of isometric, isovolumic preparations. 2. SR 48692 inhibited the relaxant responses to NT in duodenal circular and longitudinal muscle. It also antagonized the NT-induced contractile effects in duodenal circular muscle and in proximal colon (both muscular layers). 3. From Schild analysis and pA2 value for SR 48692 was 8.2 in tissues where NT induced relaxant effects and 7.5 in tissues where NT induced contractile effects and the slope of the regression line was not significantly different from unity, indicating competitive antagonism. 4. SR 48692 did not antagonize the duodenal relaxant effect induced by noradrenaline and the contractile response to carbachol or substance P in duodenum and colon. 5. Our results demonstrate that SR 48692 selectively antagonizes the mechanical actions of NT in rat intestine and confirm the existence of specific NT receptors. Receptors that subserve a relaxant effect seem to be related, but not identical, to those that mediate contractile effects.
Collapse
Affiliation(s)
- F Mulè
- Dipartimento di Biologia cellulare e dello Sviluppo, Università di Palermo, Italy
| | | | | | | | | |
Collapse
|
39
|
Quéré L, Boigegrain R, Jeanjean F, Gully D, Evrard G, Durant F. Structural requirements of non-peptide neurotensin receptor antagonists. ACTA ACUST UNITED AC 1996. [DOI: 10.1039/p29960002639] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
40
|
Yamada M, Bolden-Watson C, Watson MA, Cho T, Coleman NJ, Yamada M, Richelson E. Regulation of neurotensin receptor mRNA expression by the receptor antagonist SR 48692 in the rat midbrain dopaminergic neurons. BRAIN RESEARCH. MOLECULAR BRAIN RESEARCH 1995; 33:343-6. [PMID: 8750895 DOI: 10.1016/0169-328x(95)00094-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
In this study, we demonstrated that the tyrosine hydroxylase-like immuno-reactive (possibly dopaminergic) neurons express neurotensin receptor mRNA in the rat substantia nigra and in the ventral tegmental area. Additionally, 2 weeks treatment with the neurotensin receptor antagonist SR 48692 increased mRNA levels in the substantia nigra. These data suggest that neurotensin receptor expression in the perikarya and in the terminal regions of dopaminergic neurons is regulated by its endogenous agonist in vivo.
Collapse
Affiliation(s)
- M Yamada
- Department of Psychiatry, Mayo Clinic Jacksonville, FL 32224, USA
| | | | | | | | | | | | | |
Collapse
|
41
|
Caillaud T, Opstal WY, Scarceriaux V, Billardon C, Rostene W. Treatment of PC12 cells by nerve growth factor, dexamethasone, and forskolin. Effects on cell morphology and expression of neurotensin and tyrosine hydroxylase. Mol Neurobiol 1995; 10:105-14. [PMID: 7576302 DOI: 10.1007/bf02740670] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Several lines of anatomical, neurochemical, electrophysiological, and behavioral evidence suggest the existence of physiological interactions between neurotensin (NT) and the brain dopaminergic systems. Thus, NT has been shown to exert a neuroleptic-like action and could be implicated in the pathogenesis and treatment of schizophrenia. It is thus of particular importance to develop in vitro cell culture systems as models to study such interactions. Rat adrenal pheochromocytoma PC12 cells, which expressed high levels of tyrosine hydroxylase, were used in the present study. In contrast to rat brain cells in primary cultures, PC12 cells did not express functional NT receptors. However, they were able to express both NTmRNA and NT in response to NGF, forskolin, and dexamethasone. Those neurochemical modifications furthermore may be related to changes in the morphology of the PC12 cells in response to NGF, forskolin, and dexamethasone alone or in combination. These data suggest that PC12 cells may provide a useful model to study in vitro the regulation of both catecholamine and neurotensin phenotypes.
Collapse
Affiliation(s)
- T Caillaud
- Institut National de la Santé et de la Recherche Médicale, Hôpital Saint Antoine, Paris, France
| | | | | | | | | |
Collapse
|
42
|
Boudin H, Grauz-Guyon A, Faure MP, Forgez P, Lhiaubet AM, Dennis M, Beaudet A, Rostene W, Pelaprat D. Immunological recognition of different forms of the neurotensin receptor in transfected cells and rat brain. Biochem J 1995; 305 ( Pt 1):277-83. [PMID: 7826341 PMCID: PMC1136460 DOI: 10.1042/bj3050277] [Citation(s) in RCA: 26] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
In this work, the molecular forms of the rat neurotensin receptor (NTR) expressed in transfected Chinese hamster ovary (CHO) cells, in infected Sf9 insect cells and in rat cerebral cortex were immunologically detected by means of an anti-peptide antibody raised against a fragment of the third intracellular loop of the receptor. Immunoblot experiments against a fusion protein indicated that the anti-peptide antibody recognized, under denaturing conditions, the corresponding amino acid sequence within the NTR. In immunoblot analysis of membranes from NTR-transfected CHO cells, high levels of immunoreactivity were observed between 60 and 72 kDa, while only a faint labelling was observed at 47 kDa, the molecular mass deduced for the rat NTR cDNA. The bands of high molecular mass were no longer observed after deglycosylation of membrane proteins by peptide N-glycosidase F, indicating that they represented glycosylated forms of the receptor. Extracts of membranes derived from baculovirus-infected Sf9 insect-cells expressing the NTR provided a quite different immunoblot pattern, since the major band detected in that case was at 47 kDa, the molecular size of the non-glycosylated receptor. Taken together, these data show that, while most of the NTR protein was glycosylated in CHO cells, it was unglycosylated in Sf9 insect-cells. In addition, molecular sizes of the receptor proteins observed in these two cell lines differed from those obtained for the NTR endogenously expressed in the rat cerebral cortex of 7 day-old rats, where bands at 56 and 54 kDa were detected. Binding experiments carried out on membrane preparations obtained from baculovirus-infected Sf9 cells demonstrated that the immunogenic sequence was still accessible to the antibody when the receptor was embedded in the cell membrane. Immunohistochemical studies carried out on both transfected CHO cells and infected Sf9 cells confirmed this interpretation and further indicated that the antibody could be applied in the visualization of the receptor.
Collapse
Affiliation(s)
- H Boudin
- Institut National de la Santé et de la Recherche Médicale, Unité 339, Hôpital St Antoine, Paris, France
| | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Azzi M, Nicot A, Gully D, Kitabgi P, Bérod A, Rostène W. Increase in neurotensin receptor expression in rat brain induced by chronic treatment with the nonpeptide neurotensin receptor antagonist SR 48692. Neurosci Lett 1994; 172:97-100. [PMID: 8084546 DOI: 10.1016/0304-3940(94)90671-8] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
In the present study, we examined the regulation of neurotensin receptor following a chronic pharmacological blockade of the neurotensin transmission with a nonpeptide neurotensin receptor antagonist, SR 48692. Our results showed that treatment of the rats for five days with SR 48692, at a dose of 1 mg/kg, i.p., induced an increase of both the number of binding sites for 125I-neurotensin to whole brain membrane homogenates and neurotensin receptor mRNA levels in the ventral mesencephalon. This study brings the first evidence for an in vivo up-regulation of neurotensin receptors following their pharmacological blockade, and suggests that endogenous neurotensin exerts a tonic inhibitory control on neurotensin receptor mRNA levels.
Collapse
Affiliation(s)
- M Azzi
- INSERM U339, Hôpital Saint-Antoine, Paris, France
| | | | | | | | | | | |
Collapse
|
44
|
Laurent P, Clerc P, Mattei MG, Forgez P, Dumont X, Ferrara P, Caput D, Rostene W. Chromosomal localization of mouse and human neurotensin receptor genes. Mamm Genome 1994; 5:303-6. [PMID: 8075503 DOI: 10.1007/bf00389545] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Neurotensin is a tridecapeptide that plays several neurotransmitter or neuromodulatory roles both in the central nervous system and in the periphery. These actions are mediated by a high-affinity receptor (Ntsr). Both rat and human cDNAs encoding high-affinity receptors have been recently cloned. The availability of Ntsr probes allowed us to localize the corresponding genes on the mouse and human chromosomes. The present data demonstrate that the Ntsr gene is assigned to the H region of the mouse Chromosome (Chr) 2 and to the long arm of the human Chr 20.
Collapse
Affiliation(s)
- P Laurent
- INSERM U.339, Hôpital St Antoine, Paris, France
| | | | | | | | | | | | | | | |
Collapse
|
45
|
Azzi M, Gully D, Heaulme M, Bérod A, Pélaprat D, Kitabgi P, Boigegrain R, Maffrand JP, LeFur G, Rostène W. Neurotensin receptor interaction with dopaminergic systems in the guinea-pig brain shown by neurotensin receptor antagonists. Eur J Pharmacol 1994; 255:167-74. [PMID: 8026542 DOI: 10.1016/0014-2999(94)90095-7] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Neurotensin has been suggested to be involved in neurological and mental disorders associated with altered dopaminergic transmission. The lack of a potent neurotensin receptor antagonist had prevented us from studying the real physiological implication of this peptide in brain function. We thus recently developed such a non-peptide neurotensin receptor antagonist, SR 48692, (2-(1-(7-chloroquinolin-4-yl)-5-(2,6-dimethoxyphenyl)-1H-pyrazole- 3-carbonyl)amino)-adamantane-2-carboxylic acid), which appeared to be potent in various central and peripheral preparations. In the present study, we tested the pharmacological properties of SR 48692 and of two optically synthetic analogs of this compound on neurotensin binding to both adult guinea-pig brain membrane homogenates and coronal brain sections, as well as on neurotensin stimulation of the K(+)-evoked release of [3H]dopamine in guinea-pig striatal slices. Our results demonstrated that (1) high-affinity neurotensin binding sites are present in the guinea-pig brain in regions rich in both dopamine cell bodies and terminals; (2) the binding of neurotensin is inhibited by SR 48692 and its related S(+) active analog, SR 48527, with IC50 values in the nM range and (3) the non-peptide antagonist has no agonist effect but antagonizes neurotensin-induced [3H]dopamine release from guinea-pig striatal nerve terminals.
Collapse
Affiliation(s)
- M Azzi
- INSERM U.339, Hôpital St. Antoine, Paris, France
| | | | | | | | | | | | | | | | | | | |
Collapse
|