1
|
Wu D, Zhang D, Yin H, Zhang B, Xing J. Meta-analysis of the effects of inert gases on cerebral ischemia-reperfusion injury. Sci Rep 2023; 13:16896. [PMID: 37803128 PMCID: PMC10558482 DOI: 10.1038/s41598-023-43859-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2023] [Accepted: 09/29/2023] [Indexed: 10/08/2023] Open
Abstract
Recently, noble gas has become a hot spot within the medical field like respiratory organ cerebral anemia, acute urinary organ injury and transplantation. However, the shield performance in cerebral ischemia-reperfusion injury (CIRI) has not reached an accord. This study aims to evaluate existing evidence through meta-analysis to determine the effects of inert gases on the level of blood glucose, partial pressure of oxygen, and lactate levels in CIRI. We searched relevant articles within the following both Chinese and English databases: PubMed, Web of science, Embase, CNKI, Cochrane Library and Scopus. The search was conducted from the time of database establishment to the end of May 2023, and two researchers independently entered the data into Revman 5.3 and Stata 15.1. There were total 14 articles were enclosed within the search. The results showed that the amount of partial pressure of blood oxygen in the noble gas cluster was beyond that in the medicine gas cluster (P < 0.05), and the inert gas group had lower lactate acid and blood glucose levels than the medical gas group. The partial pressure of oxygen (SMD = 1.51, 95% CI 0.10 ~ 0.91 P = 0.04), the blood glucose level (SMD = - 0.59, 95% CI - 0.92 ~ - 0.27 P = 0.0004) and the lactic acid level (SMD = - 0.42, 95% CI - 0.80 ~ - 0.03 P = 0.03) (P < 0.05). These results are evaluated as medium-quality evidence. Inert gas can effectively regulate blood glucose level, partial pressure of oxygen and lactate level, and this regulatory function mainly plays a protective role in the small animal ischemia-reperfusion injury model. This finding provides an assessment and evidence of the effectiveness of inert gases for clinical practice, and provides the possibility for the application of noble gases in the treatment of CIRI. However, more operations are still needed before designing clinical trials, such as the analysis of the inhalation time, inhalation dose and efficacy of different inert gases, and the effective comparison of the effects in large-scale animal experiments.
Collapse
Affiliation(s)
- Di Wu
- Department of Emergency Medicine, The First Hospital of Jilin University, No.71 Xinmin Street, Changchun, 130021, Jilin, China
| | - Daoyu Zhang
- The First Hospital of Jilin University, Changchun, 130021, Jilin, China
| | - Hang Yin
- Baicheng Medical College, Baicheng, 137000, Jilin, China
| | - Bo Zhang
- The Second Foreign Department, Corps Hospital of the Chinese People's Armed Police Force of Jilin Province, Changchun, 130052, Jilin, China
| | - Jihong Xing
- Department of Emergency Medicine, The First Hospital of Jilin University, No.71 Xinmin Street, Changchun, 130021, Jilin, China.
| |
Collapse
|
2
|
Antonucci F, Bozzi Y. Action of Botulinum Neurotoxin E Type in Experimental Epilepsies. Toxins (Basel) 2023; 15:550. [PMID: 37755976 PMCID: PMC10536604 DOI: 10.3390/toxins15090550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 08/09/2023] [Accepted: 08/26/2023] [Indexed: 09/28/2023] Open
Abstract
Botulinum neurotoxins (BoNTs) are zinc endopeptidases produced by the Clostridium genus of anerobic bacteria, largely known for their ability to cleave synaptic proteins, leading to neuromuscular paralysis. In the central nervous system, BoNTs are known to block the release of glutamate neurotransmitter, and for this reason, researchers explored the possible therapeutic action in disorders characterized by neuronal hyperactivity, such as epilepsy. Thus, using multidisciplinary approaches and models of experimental epilepsy, we investigated the pharmacological potential of BoNT/E serotype. In this review, written in memory of Prof. Matteo Caleo, a pioneer in these studies, we go back over the hypotheses and experimental approaches that led us to the conclusion that intrahippocampal administration of BoNT/E (i) displays anticonvulsant effects if prophylactically delivered in a model of acute generalized seizures; (ii) does not have any antiepileptogenic action after the induction of status epilepticus; (iii) reduces frequency of spontaneous seizures in a model of recurrent seizures if delivered during the chronic phase but in a transient manner. Indeed, the control on spontaneous seizures stops when BoNT/E effects are off (few days), thus limiting its pharmacological potential in humans.
Collapse
Affiliation(s)
- Flavia Antonucci
- Department of Medical Biotechnology and Translational Medicine (BIOMETRA), University of Milan, via Fratelli Cervi 93, 20054 Milan, Italy
- CNR Institute of Neuroscience, via Raoul Follereau 3, 20854 Vedano al Lambro, Italy
- CIMeC-Center for Mind/Brain Sciences, University of Trento, Piazza della Manifattura 1, 38068 Rovereto, Italy
| | - Yuri Bozzi
- CIMeC-Center for Mind/Brain Sciences, University of Trento, Piazza della Manifattura 1, 38068 Rovereto, Italy
- CNR Institute of Neuroscience, via Giuseppe Moruzzi 1, 56124 Pisa, Italy
| |
Collapse
|
3
|
Focht D, Neumann C, Lyons J, Eguskiza Bilbao A, Blunck R, Malinauskaite L, Schwarz IO, Javitch JA, Quick M, Nissen P. A non-helical region in transmembrane helix 6 of hydrophobic amino acid transporter MhsT mediates substrate recognition. EMBO J 2021; 40:e105164. [PMID: 33155685 PMCID: PMC7780149 DOI: 10.15252/embj.2020105164] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Revised: 09/23/2020] [Accepted: 10/01/2020] [Indexed: 12/30/2022] Open
Abstract
MhsT of Bacillus halodurans is a transporter of hydrophobic amino acids and a homologue of the eukaryotic SLC6 family of Na+ -dependent symporters for amino acids, neurotransmitters, osmolytes, or creatine. The broad range of transported amino acids by MhsT prompted the investigation of the substrate recognition mechanism. Here, we report six new substrate-bound structures of MhsT, which, in conjunction with functional studies, reveal how the flexibility of a Gly-Met-Gly (GMG) motif in the unwound region of transmembrane segment 6 (TM6) is central for the recognition of substrates of different size by tailoring the binding site shape and volume. MhsT mutants, harboring substitutions within the unwound GMG loop and substrate binding pocket that mimick the binding sites of eukaryotic SLC6A18/B0AT3 and SLC6A19/B0AT1 transporters of neutral amino acids, exhibited impaired transport of aromatic amino acids that require a large binding site volume. Conservation of a general (G/A/C)ΦG motif among eukaryotic members of SLC6 family suggests a role for this loop in a common mechanism for substrate recognition and translocation by SLC6 transporters of broad substrate specificity.
Collapse
Affiliation(s)
- Dorota Focht
- Department of Molecular Biology and GeneticsDanish Research Institute of Translational Neuroscience—DANDRITENordic‐EMBL Partnership for Molecular MedicineAarhus UniversityAarhus CDenmark
| | - Caroline Neumann
- Department of Molecular Biology and GeneticsDanish Research Institute of Translational Neuroscience—DANDRITENordic‐EMBL Partnership for Molecular MedicineAarhus UniversityAarhus CDenmark
| | - Joseph Lyons
- Department of Molecular Biology and GeneticsDanish Research Institute of Translational Neuroscience—DANDRITENordic‐EMBL Partnership for Molecular MedicineAarhus UniversityAarhus CDenmark
| | - Ander Eguskiza Bilbao
- Department of Molecular Biology and GeneticsDanish Research Institute of Translational Neuroscience—DANDRITENordic‐EMBL Partnership for Molecular MedicineAarhus UniversityAarhus CDenmark
| | - Rickard Blunck
- Department of PhysicsUniversité de MontréalMontréalQCCanada
| | - Lina Malinauskaite
- Department of Molecular Biology and GeneticsDanish Research Institute of Translational Neuroscience—DANDRITENordic‐EMBL Partnership for Molecular MedicineAarhus UniversityAarhus CDenmark
- MRC Laboratory of Molecular BiologyCambridgeUK
| | - Ilona O Schwarz
- Department of PsychiatryColumbia University Vagelos College of Physicians and SurgeonsNew YorkNYUSA
| | - Jonathan A Javitch
- Department of PsychiatryColumbia University Vagelos College of Physicians and SurgeonsNew YorkNYUSA
- Center for Molecular RecognitionColumbia University Vagelos College of Physicians and SurgeonsNew YorkNYUSA
- Department of PharmacologyColumbia University Vagelos College of Physicians and SurgeonsNew YorkNYUSA
- Division of Molecular TherapeuticsNew York State Psychiatric InstituteNew YorkNYUSA
| | - Matthias Quick
- Department of PsychiatryColumbia University Vagelos College of Physicians and SurgeonsNew YorkNYUSA
- Center for Molecular RecognitionColumbia University Vagelos College of Physicians and SurgeonsNew YorkNYUSA
- Division of Molecular TherapeuticsNew York State Psychiatric InstituteNew YorkNYUSA
| | - Poul Nissen
- Department of Molecular Biology and GeneticsDanish Research Institute of Translational Neuroscience—DANDRITENordic‐EMBL Partnership for Molecular MedicineAarhus UniversityAarhus CDenmark
| |
Collapse
|
4
|
AL-Eitan LN, Al-Dalalah IM, Aljamal HA. Effects of GRM4, SCN2A and SCN3B polymorphisms on antiepileptic drugs responsiveness and epilepsy susceptibility. Saudi Pharm J 2019; 27:731-737. [PMID: 31297029 PMCID: PMC6598501 DOI: 10.1016/j.jsps.2019.04.009] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Accepted: 04/19/2019] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND Pharmacotherapy of epilepsy including antiepileptic drugs (AEDs) is one of the main treatment approaches. As a biological target, sodium channels (Nav channels) and glutamate receptor genes are playing a major role in the etiology and treatment of epilepsy. OBJECTIVE This study aims to investigate the genetic associations of certain genetic polymorphisms with increased risk of epilepsy susceptibility and variability in response to AEDs treatment in a Jordanian Arab population. METHOD A pharmacogenetics and case-control study on 296 unrelated epileptic Jordanian patients recruited from the pediatric neurology clinic at the Queen Rania Al-Abdullah Hospital (QRAH) in Amman, Jordan and 299 healthy individuals was conducted. Children up to 15 years old which receiving AEDs for at least three months were scanned for genetic association of 7 single nucleotide polymorphisms (SNPs) within three candidate genes (SCN2A, SCN3B and GRM4) with epilepsy susceptibility. RESULTS SCN2A rs2304016 (P = 0.04) and GRM4 rs2499697 (P = 0.031) were statistically significant with generalized epilepsy. Haplotype of CAACG GRM4 was genetically associated with epilepsy and partial epilepsy (P = 0.036; P = 0.024, respectively). This study also found that TGTAA genetic haplotype formed within GRM4 gene was associated with generalized epilepsy susceptibility (P = 0.006). While, no significant linkage of SCN3B rs3851100 to either disease susceptibility or drug responsiveness was found. CONCLUSION This study identified no significant associations of allelic or genotypic SNPs with the susceptibility of epilepsy and medication response with an exception of rs2304016 and rs2499697 SNPs that were associated with the generalized type of epilepsy among Jordanian population. Further studies are required in different populations to confirm our results and identify genetic factors that involved in susceptibility and treatment response.
Collapse
Affiliation(s)
- Laith N. AL-Eitan
- Department of Applied Biological Sciences, Jordan University of Science and Technology, Irbid 22110, Jordan
- Department of Biotechnology and Genetic Engineering, Jordan University of Science and Technology, Irbid 22110, Jordan
| | - Islam M. Al-Dalalah
- Department of Applied Biological Sciences, Jordan University of Science and Technology, Irbid 22110, Jordan
| | - Hanan A. Aljamal
- Department of Applied Biological Sciences, Jordan University of Science and Technology, Irbid 22110, Jordan
| |
Collapse
|
5
|
Effects of Modafinil on Clonic Seizure Threshold Induced by Pentylenetetrazole in Mice: Involvement of Glutamate, Nitric oxide, GABA, and Serotonin Pathways. Neurochem Res 2018; 43:2025-2037. [DOI: 10.1007/s11064-018-2623-7] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2018] [Revised: 08/13/2018] [Accepted: 08/23/2018] [Indexed: 01/29/2023]
|
6
|
Harguindey S, Stanciu D, Devesa J, Alfarouk K, Cardone RA, Polo Orozco JD, Devesa P, Rauch C, Orive G, Anitua E, Roger S, Reshkin SJ. Cellular acidification as a new approach to cancer treatment and to the understanding and therapeutics of neurodegenerative diseases. Semin Cancer Biol 2017; 43:157-179. [PMID: 28193528 DOI: 10.1016/j.semcancer.2017.02.003] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2016] [Accepted: 02/06/2017] [Indexed: 12/27/2022]
Abstract
During the last few years, the understanding of the dysregulated hydrogen ion dynamics and reversed proton gradient of cancer cells has resulted in a new and integral pH-centric paradigm in oncology, a translational model embracing from cancer etiopathogenesis to treatment. The abnormalities of intracellular alkalinization along with extracellular acidification of all types of solid tumors and leukemic cells have never been described in any other disease and now appear to be a specific hallmark of malignancy. As a consequence of this intracellular acid-base homeostatic failure, the attempt to induce cellular acidification using proton transport inhibitors and other intracellular acidifiers of different origins is becoming a new therapeutic concept and selective target of cancer treatment, both as a metabolic mediator of apoptosis and in the overcoming of multiple drug resistance (MDR). Importantly, there is increasing data showing that different ion channels contribute to mediate significant aspects of cancer pH regulation and etiopathogenesis. Finally, we discuss the extension of this new pH-centric oncological paradigm into the opposite metabolic and homeostatic acid-base situation found in human neurodegenerative diseases (HNDDs), which opens novel concepts in the prevention and treatment of HNDDs through the utilization of a cohort of neural and non-neural derived hormones and human growth factors.
Collapse
Affiliation(s)
- Salvador Harguindey
- Institute of Clinical Biology and Metabolism, c) Postas 13, 01004 Vitoria, Spain.
| | - Daniel Stanciu
- Institute of Clinical Biology and Metabolism, c) Postas 13, 01004 Vitoria, Spain
| | - Jesús Devesa
- Department of Physiology, School of Medicine, University of Santiago de Compostela, Spain and Scientific Director of Foltra Medical Centre, Teo, Spain
| | - Khalid Alfarouk
- Al-Ghad International Colleges for Applied Medical Sciences, Al-Madinah Al-Munawarah, Saudi Arabia
| | - Rosa Angela Cardone
- Department of Biosciences, Biotechnology and Biopharmaceutics, University of Bari, Via E. Orabona 4, 70125 Bari, Italy
| | | | - Pablo Devesa
- Research and Development, Medical Centre Foltra, Teo, Spain
| | - Cyril Rauch
- School of Veterinary Medicine and Science, University of Nottingham,College Road, Sutton Bonington, LE12 5RD, UK
| | - Gorka Orive
- Laboratory of Pharmacy and Pharmaceutical Technology, Faculty of Pharmacy, University of the Basque Country, Networking Biomedical Research Center on Bioengineering, Biomaterials and Nanomedicine, CIBER-BBN, SLFPB-EHU, 01006 Vitoria, Spain
| | - Eduardo Anitua
- BTI Biotechnology Institute ImasD, S.L. C/Jacinto Quincoces, 39, 01007 Vitoria, Spain
| | - Sébastien Roger
- Inserm UMR1069, University François-Rabelais of Tours,10 Boulevard Tonnellé, 37032 Tours, France; Institut Universitaire de France, 1 Rue Descartes, Paris 75231, France
| | - Stephan J Reshkin
- Department of Biosciences, Biotechnology and Biopharmaceutics, University of Bari, Via E. Orabona 4, 70125 Bari, Italy
| |
Collapse
|
7
|
Gao M, Igata H, Takeuchi A, Sato K, Ikegaya Y. Machine learning-based prediction of adverse drug effects: An example of seizure-inducing compounds. J Pharmacol Sci 2017; 133:70-78. [DOI: 10.1016/j.jphs.2017.01.003] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2016] [Revised: 01/08/2017] [Accepted: 01/13/2017] [Indexed: 11/29/2022] Open
|
8
|
Anticonvulsant effect of dextrometrophan on pentylenetetrazole-induced seizures in mice: Involvement of nitric oxide and N-methyl-d-aspartate receptors. Epilepsy Behav 2016; 65:49-55. [PMID: 27875784 DOI: 10.1016/j.yebeh.2016.08.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/10/2016] [Revised: 08/01/2016] [Accepted: 08/01/2016] [Indexed: 11/22/2022]
Abstract
Dextrometrophan (DM), widely used as an antitussive, has recently generated interest as an anticonvulsant drug. Some effects of dextrometrophan are associated with alterations in several pathways, such as inhibition of nitric oxide synthase (NOS) enzyme and N-methyl d-aspartate (NMDA) receptors. In this study, we aimed to investigate the anticonvulsant effect of acute administration of dextrometrophan on pentylenetetrazole (PTZ)-induced seizures and the probable involvement of the nitric oxide (NO) pathway and NMDA receptors in this effect. For this purpose, seizures were induced by intravenous PTZ infusion. All drugs were administrated by intraperitoneal (i.p.) route before PTZ injection. Our results demonstrate that acute DM treatment (10-100mg/kg) increased the seizure threshold. In addition, the nonselective NOS inhibitor L-NAME (10mg/kg) and the neural NOS inhibitor, 7-nitroindazole (40mg/kg), at doses that had no effect on seizure threshold, augmented the anticonvulsant effect of DM (3mg/kg), while the inducible NOS inhibitor, aminoguanidine (100mg/kg), did not affect the anticonvulsant effect of DM. Moreover, the NOS substrate l-arginine (60mg/kg) blunted the anticonvulsant effect of DM (100mg/kg). Also, NMDA antagonists, ketamine (0.5mg/kg) and MK-801 (0.05mg/kg), augmented the anticonvulsant effect of DM (3mg/kg). In conclusion, we demonstrated that the anticonvulsant effect of DM is mediated by a decline in neural nitric oxide activity and inhibition of NMDA receptors.
Collapse
|
9
|
New hybrid molecules with anticonvulsant and antinociceptive activity derived from 3-methyl- or 3,3-dimethyl-1-[1-oxo-1-(4-phenylpiperazin-1-yl)propan-2-yl]pyrrolidine-2,5-diones. Bioorg Med Chem 2016; 24:606-18. [DOI: 10.1016/j.bmc.2015.12.027] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2015] [Revised: 12/14/2015] [Accepted: 12/15/2015] [Indexed: 12/13/2022]
|
10
|
Karpova MN, Zin'kovskii KA, Kuznetsova LV, Klishina NV. Increase of the seizure threshold in C57BL/6 mice after citicoline administration. Bull Exp Biol Med 2015; 158:315-7. [PMID: 25573358 DOI: 10.1007/s10517-015-2750-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2013] [Indexed: 10/24/2022]
Abstract
We studied the dose-dependent effect of preventive intraperitoneal injection of citicoline (cytidine 5'-diphosphocholine) on acute generalized epileptiform activity in C57Bl/6 mice. The duration of citicoline action was also evaluated. Administration of citicoline in doses of 500 and 1000 mg/kg 1 h before treatment with the convulsant agent pentylenetetrazole produced an anticonvulsant effect. This effect was manifested in an increase of the threshold of clonic seizures and tonic phase of seizures with lethal outcome. Moreover, the latency of seizure development was elevated under these conditions. The anticonvulsant effect of citicoline persisted for 6 h after its injection.
Collapse
Affiliation(s)
- M N Karpova
- Research Institute of General Pathology and Pathophysiology, Russian Academy of Medical Sciences, Moscow, Russia,
| | | | | | | |
Collapse
|
11
|
Moha ou Maati H, Widmann C, Gallois DSB, Heurteaux C, Borsotto M, Hugues M. Mapacalcine protects mouse neurons against hypoxia by blocking cell calcium overload. PLoS One 2013; 8:e66194. [PMID: 23843951 PMCID: PMC3699608 DOI: 10.1371/journal.pone.0066194] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2012] [Accepted: 05/07/2013] [Indexed: 12/01/2022] Open
Abstract
Stroke is one of a major cause of death and adult disability. Despite intense researches, treatment for stroke remains reduced to fibrinolysis, a technique useful for less than 10% of patients. Finding molecules able to treat or at least to decrease the deleterious consequences of stroke is an urgent need. Here, we showed that mapacalcine, a homodimeric peptide purified from the marine sponge Cliona vastifica, is able to protect mouse cortical neurons against hypoxia. We have also identified a subtype of L-type calcium channel as a target for mapacalcine and we showed that the channel has to be open for mapacalcine binding. The two main L-type subunits at the brain level are CaV1.3 and CaV1.2 subunits but mapacalcine was unable to block these calcium channels.Mapacalcine did not interfere with N-, P/Q- and R-type calcium channels. The protective effect was studied by measuring internal calcium level variation triggered by Oxygen Glucose Deprivation protocol, which mimics stroke, or glutamate stimulation. We showed that NMDA/AMPA receptors are not involved in the mapacalcine protection. The protective effect was confirmed by measuring the cell survival rate after Oxygen Glucose Deprivation condition. Our data indicate that mapacalcine is a promising molecule for stroke treatment.
Collapse
Affiliation(s)
- Hamid Moha ou Maati
- Institut de Pharmacologie Moléculaire et Cellulaire, Centre National de la Recherche Scientifique (UMR7275), Université de Nice Sophia Antipolis, Valbonne, France
| | - Catherine Widmann
- Institut de Pharmacologie Moléculaire et Cellulaire, Centre National de la Recherche Scientifique (UMR7275), Université de Nice Sophia Antipolis, Valbonne, France
| | - Djamila Sedjelmaci Bernard Gallois
- Institut de Pharmacologie Moléculaire et Cellulaire, Centre National de la Recherche Scientifique (UMR7275), Université de Nice Sophia Antipolis, Valbonne, France
| | - Catherine Heurteaux
- Institut de Pharmacologie Moléculaire et Cellulaire, Centre National de la Recherche Scientifique (UMR7275), Université de Nice Sophia Antipolis, Valbonne, France
| | - Marc Borsotto
- Institut de Pharmacologie Moléculaire et Cellulaire, Centre National de la Recherche Scientifique (UMR7275), Université de Nice Sophia Antipolis, Valbonne, France
- * E-mail: (MB); (MH)
| | - Michel Hugues
- Chimie Biologie des Membranes et des Nanoobjets, Centre National de la Recherche Scientifique (UMR5248), Pessac, France
- * E-mail: (MB); (MH)
| |
Collapse
|
12
|
Wang H, Wang G, Wang C, Wei Y, Wen Z, Wang C, Zhu A. The early stage formation of PI3K-AMPAR GluR2 subunit complex facilitates the long term neuroprotection induced by propofol post-conditioning in rats. PLoS One 2013; 8:e65187. [PMID: 23776449 PMCID: PMC3679144 DOI: 10.1371/journal.pone.0065187] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2013] [Accepted: 04/22/2013] [Indexed: 11/18/2022] Open
Abstract
Previously, we have shown that the phosphoinositide-3-kinase (PI3K) mediated acute (24 h) post-conditioning neuroprotection induced by propofol. We also found that propofol post-conditioning produced long term neuroprotection and inhibited the internalization of α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptor GluR2 subunit up to 28 days post middle cerebral artery occlusion (MCAO). However, the relationship between PI3K with AMPA receptor GluR2 subunit trafficking in propofol post-conditioning has never been explored. Here we showed that propofol post-conditioning promoted the binding of PI3K to the C-terminal of AMPA receptor GluR2 subunit and formed a complex within 1 day after transient MCAO. Interestingly, the enhanced activity of PI3K was observed in the hippocampus of post-conditioning rats at day 1 post ischemia, whereas the decrease of AMPA receptor GluR2 subunit internalization was found up to 28 days in the same group. Administration of PI3K selective antagonist wortmannin inhibited the improvement of spatial learning memory and the increase of neurogenesis in the dentate gyrus up to 28 days post ischemia. It also reversed the inhibition of AMPA receptor GluR2 internalization induced by propofol post-conditioning. Together, our data indicated the critical role of PI3K in regulating the long term neuroprotection induced by propofol post-conditioning. Moreover, this role was established by first day activation of PI3K and formation of PI3K-AMPA receptor GluR2 complex, thus stabilized the structure of postsnaptic AMPA receptor and inhibited the internalization of GluR2 subunit during the early stage of propofol post-conditioning.
Collapse
Affiliation(s)
- Haiyun Wang
- Department of Anesthesiology, Tianjin Medical University General Hospital, Tianjin Research Institute of Anesthesiology, Tianjin, People's Republic of China.
| | | | | | | | | | | | | |
Collapse
|
13
|
Wang H, Luo M, Li C, Wang G. Propofol post-conditioning induced long-term neuroprotection and reduced internalization of AMPAR GluR2 subunit in a rat model of focal cerebral ischemia/reperfusion. J Neurochem 2011; 119:210-9. [PMID: 21790606 DOI: 10.1111/j.1471-4159.2011.07400.x] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
We previously reported that propofol (20 mg/kg/h) post-conditioning provided acute (up to 24 h) neuroprotection in rats with transient middle cerebral artery occlusion. In this study, we extend these data by examining long-term protection and exploring underlying mechanisms involving AMPA receptor GluR2 subunit internalization. Rats were treated with propofol 20 mg/kg/h after 60 min of occlusion (beginning of reperfusion for 4 h). Propofol post-conditioning reduced infarct volume and improved spatial memory deficiencies (up to 28 days) induced by ischemia/reperfusion injury. Additionally, Propofol post-conditioning promoted neurogenesis in the dentate gyrus of hippocampus, as measured by bromodeoxyuridine and neuron-specific nuclear protein immunofluorescence-double staining at day 28 after reperfusion. Finally, propofol post-conditioning increased the surface expression of AMPA receptor GluR2 subunit, thus inhibited the internalization of this part until 28 days after stroke. In conclusion, our data suggest that propofol post-conditioning provides long-term protection against focal cerebral ischemia/reperfusion injury in rats. Furthermore, we found that the inhibition of AMPA receptor GluR2 subunit internalization may contributed to this long-term neuroprotection.
Collapse
Affiliation(s)
- Haiyun Wang
- Department of Anesthesiology, Tianjin Medical University General Hospital, Tianjin, China
| | | | | | | |
Collapse
|
14
|
Cakil D, Yildirim M, Ayyildiz M, Agar E. The effect of co-administration of the NMDA blocker with agonist and antagonist of CB1-receptor on penicillin-induced epileptiform activity in rats. Epilepsy Res 2011; 93:128-37. [DOI: 10.1016/j.eplepsyres.2010.11.008] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2010] [Revised: 11/23/2010] [Accepted: 11/25/2010] [Indexed: 10/18/2022]
|
15
|
Mishra V, Verma R, Raghubir R. Neuroprotective effect of flurbiprofen in focal cerebral ischemia: The possible role of ASIC1a. Neuropharmacology 2010; 59:582-8. [DOI: 10.1016/j.neuropharm.2010.08.015] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2010] [Revised: 08/08/2010] [Accepted: 08/16/2010] [Indexed: 01/09/2023]
|
16
|
Sergutina AV. The effects of L-DOPA on glutamate dehydrogenase activity in the cerebral neurons of rats with different motor activities. NEUROCHEM J+ 2010. [DOI: 10.1134/s1819712410010058] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
17
|
Yildirim M, Ayyildiz M, Agar E. Endothelial nitric oxide synthase activity involves in the protective effect of ascorbic acid against penicillin-induced epileptiform activity. Seizure 2010; 19:102-8. [PMID: 20089420 DOI: 10.1016/j.seizure.2009.12.005] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2009] [Revised: 11/18/2009] [Accepted: 12/17/2009] [Indexed: 10/19/2022] Open
Abstract
Ascorbic acid and nitric oxide are known to play important roles in epilepsy. The aim of present study was to identify the involvement of nitric oxide (NO) in the anticonvulsant effects of ascorbic acid on penicillin-induced epileptiform activity in rats. Intracortical injection of penicillin (500, International Units (IU)) into the left sensorimotor cortex induced epileptiform activity within 2-5 min. Thirty minutes after penicillin injection, nitric oxide synthase (NOS) inhibitor, N(G)-nitro-l-arginine methyl ester (l-NAME, 100mg/kg), neuronal nitric oxide synthase (nNOS) inhibitor 7-nitroindazole (7-NI, 40 mg/kg), NO substrate, l-arginine (500 mg/kg) were administered with the most effective dose of ascorbic acid (100 mg/kg) intraperitoneally (i.p.). The administration of l-arginine significantly decreased the frequency of epileptiform activity while administration of l-NAME did not influence the mean frequency of epileptiform activity. Injection of 7-NI decreased the mean frequency of epileptiform activity but did not influence amplitude. Ascorbic acid decreased both the mean frequency and amplitude of penicillin-induced epileptiform activity in rats. The application of l-NAME partially and temporarily reversed the anticonvulsant effects of ascorbic acid. The results support the hypothesis of neuro-protective role for NO and ascorbic acid. The protective effect of ascorbic acid against epileptiform activity was partially and temporarily reversed by nonspecific nitric oxide synthase inhibitor l-NAME, but not selective neuronal nitric oxide synthase inhibitor 7-NI, indicating that ascorbic acid needs endothelial-NOS/NO route to decrease penicillin-induced epileptiform activity.
Collapse
Affiliation(s)
- Mehmet Yildirim
- Department of Physiology, Faculty of Medicine, University of Ondokuz Mayis, 55139 Samsun, Turkey
| | | | | |
Collapse
|
18
|
Bozzi Y, Costantin L, Antonucci F, Caleo M. Action of botulinum neurotoxins in the central nervous system: Antiepileptic effects. Neurotox Res 2009; 9:197-203. [PMID: 16785118 DOI: 10.1007/bf03033939] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Botulinum neurotoxins (BoNTs) are metalloproteases which act on nerve terminals and cause a long-lasting inhibition of neurotransmitter release. BoNTs act by cleaving core proteins of the neurotransmitter release machinery, namely the SNARE (soluble NSF-attachment receptors) proteins. The action of BoNTs in the peripheral nervous system (PNS) has been extensively documented, and knowledge gained in this field laid the foundations for the use of BoNTs in human disorders characterized by hyperfunction of peripheral nerve terminals. Much less is known about the action of BoNTs on the central nervous system (CNS). In vitro studies have demonstrated that BoNTs can affect the release of several neurotransmitters from central neurons. Recent studies have provided the first characterization of the effects of BoNT/E on CNS neurons in vivo. It has been shown that BoNT/E injected into the rat hippocampus inhibits glutamate release and blocks spike activity of pyramidal neurons. Intrahippocampal injection of BoNT/E resulted in significant inhibition of seizure activity in experimental models of epilepsy, suggesting a potential therapeutic use of BoNTs in the CNS.
Collapse
Affiliation(s)
- Y Bozzi
- Istituto di Neuroscienze del CNR, Pisa, Italy
| | | | | | | |
Collapse
|
19
|
Abstract
The regulated production of neurons in the hippocampus throughout life underpins important brain functions such as learning and memory. Surprisingly, however, studies have so far failed to identify a resident hippocampal stem cell capable of providing the renewable source of these neurons. Here, we report that depolarizing levels of KCl produce a threefold increase in the number of neurospheres generated from the adult mouse hippocampus. Most interestingly, however, depolarizing levels of KCl led to the emergence of a small subpopulation of precursors (approximately eight per hippocampus) with the capacity to generate very large neurospheres (> 250 microm in diameter). Many of these contained cells that displayed the cardinal properties of stem cells: multipotentiality and self-renewal. In contrast, the same conditions led to the opposite effect in the other main neurogenic region of the brain, the subventricular zone, in which neurosphere numbers decreased by approximately 40% in response to depolarizing levels of KCl. Most importantly, we also show that the latent hippocampal progenitor population can be activated in vivo in response to prolonged neural activity found in status epilepticus. This work provides the first direct evidence of a latent precursor and stem cell population in the adult hippocampus, which is able to be activated by neural activity. Because the latent population is also demonstrated to reside in the aged animal, defining the precise mechanisms that underlie its activation may provide a means to combat the cognitive deficits associated with a decline in neurogenesis.
Collapse
|
20
|
Malfatti CRM, Perry MLS, Schweigert ID, Muller AP, Paquetti L, Rigo FK, Fighera MR, Garrido-Sanabria ER, Mello CF. Convulsions induced by methylmalonic acid are associated with glutamic acid decarboxylase inhibition in rats: A role for GABA in the seizures presented by methylmalonic acidemic patients? Neuroscience 2007; 146:1879-87. [PMID: 17467181 DOI: 10.1016/j.neuroscience.2007.03.022] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2006] [Revised: 02/25/2007] [Accepted: 03/17/2007] [Indexed: 11/30/2022]
Abstract
Methylmalonic acid (MMA) is an endogenous convulsing compound that accumulates in methylmalonic acidemia, an inborn error of the metabolism characterized by severe neurological dysfunction, including seizures. The mechanisms by which MMA causes seizures involves the activation of the N-methyl-D-aspartate (NMDA) receptors, but whether GABAergic mechanisms are involved in the convulsions induced by MMA is not known. Therefore, in the current study we investigated the involvement of GABAergic mechanisms in the convulsions induced by MMA. Adult rats were injected (i.c.v.) with muscimol (46 pmol/1 microl), baclofen (0.03, 0.1 and 0.3 micromol/1 microl), MK-801 (6 nmol/1 microl), pyridoxine (2 micromol/4 microl) or physiological saline (0.15 micromol/1 microl). After 30 min, MMA (0.3, 0.1 and 3 micromol/1 microl) or NaCl (6 micromol/1 microl, i.c.v.) was injected. The animals were immediately transferred to an open field and observed for the appearance of convulsions. After behavioral evaluation, glutamic acid decarboxylase (GAD) activity was determined in cerebral cortex homogenates by measuring the 14CO2 released from l-[14C]-glutamic acid. Convulsions were confirmed by electroencephalographic recording in a subset of animals. MMA caused the appearance of clonic convulsions in a dose-dependent manner and decreased GAD activity in the cerebral cortex ex vivo. GAD activity negatively correlated with duration of MMA-induced convulsions (r=-0.873, P<0.01), in an individual basis. Muscimol, baclofen, MK-801 and pyridoxine prevented MMA-induced convulsions, but only MK-801 and pyridoxine prevented MMA-induced GAD inhibition. These data suggest GABAergic mechanisms are involved in the convulsive action of MMA, and that GAD inhibition by MMA depends on the activation of NMDA receptors. While in this study we present novel data about the role of the GABAergic system in MMA-induced convulsions, the central role of NMDA receptors in the neurochemical actions of MMA is further reinforced since they seem to trigger GABAergic failure.
Collapse
Affiliation(s)
- C R M Malfatti
- Departamento de Educação Física e Saúde, Universidade de Santa Cruz do Sul, Santa Cruz do Sul, RS, 96815-900, Brazil
| | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Pignataro G, Studer FE, Wilz A, Simon RP, Boison D. Neuroprotection in ischemic mouse brain induced by stem cell-derived brain implants. J Cereb Blood Flow Metab 2007; 27:919-27. [PMID: 17119544 DOI: 10.1038/sj.jcbfm.9600422] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Protective mechanisms of the brain may reduce the extent of injury after focal cerebral ischemia. Here, we explored in a mouse model of focal cerebral ischemia potential synergistic neuroprotective effects of two mediators of neuroprotection: (i) neuronal or glial precursor cells and (ii) the inhibitory neuromodulator adenosine. Embryonic stem (ES) cells, engineered to release adenosine by biallelic disruption of the adenosine kinase gene, and respective wild-type cells were induced to differentiate into either neural or glial precursor cells and were injected into the striatum of mice 1 week before middle cerebral artery occlusion. All stem cell-derived graft recipients were characterized by a significant reduction in infarct volume, an effect that was augmented by the release of adenosine. Neuroprotection was strongest in adenosine-releasing glial precursor cell recipients, which were characterized by an 85% reduction of the infarct area. Graft-mediated neuroprotection correlated with a significant improvement of general and focal neurologic scores. Histologic analysis before and after ischemia revealed clusters of implanted cells within the striatum of all treated mice. We conclude that ES cell derived adenosine-releasing brain implants provide neuroprotection by synergism of endogenous precursor cell-mediated effects and paracrine adenosine release.
Collapse
Affiliation(s)
- Giuseppe Pignataro
- Robert S Dow Neurobiology Laboratories, Legacy Research, Portland, Oregon 97232, USA
| | | | | | | | | |
Collapse
|
22
|
Abstract
This review considers how recent advances in the physiology of ion channels and other potential molecular targets, in conjunction with new information on the genetics of idiopathic epilepsies, can be applied to the search for improved antiepileptic drugs (AEDs). Marketed AEDs predominantly target voltage-gated cation channels (the alpha subunits of voltage-gated Na+ channels and also T-type voltage-gated Ca2+ channels) or influence GABA-mediated inhibition. Recently, alpha2-delta voltage-gated Ca2+ channel subunits and the SV2A synaptic vesicle protein have been recognized as likely targets. Genetic studies of familial idiopathic epilepsies have identified numerous genes associated with diverse epilepsy syndromes, including genes encoding Na+ channels and GABA(A) receptors, which are known AED targets. A strategy based on genes associated with epilepsy in animal models and humans suggests other potential AED targets, including various voltage-gated Ca2+ channel subunits and auxiliary proteins, A- or M-type voltage-gated K+ channels, and ionotropic glutamate receptors. Recent progress in ion channel research brought about by molecular cloning of the channel subunit proteins and studies in epilepsy models suggest additional targets, including G-protein-coupled receptors, such as GABA(B) and metabotropic glutamate receptors; hyperpolarization-activated cyclic nucleotide-gated cation (HCN) channel subunits, responsible for hyperpolarization-activated current Ih; connexins, which make up gap junctions; and neurotransmitter transporters, particularly plasma membrane and vesicular transporters for GABA and glutamate. New information from the structural characterization of ion channels, along with better understanding of ion channel function, may allow for more selective targeting. For example, Na+ channels underlying persistent Na+ currents or GABA(A) receptor isoforms responsible for tonic (extrasynaptic) currents represent attractive targets. The growing understanding of the pathophysiology of epilepsy and the structural and functional characterization of the molecular targets provide many opportunities to create improved epilepsy therapies.
Collapse
Affiliation(s)
- Brian S Meldrum
- Centre for Neuroscience, Division of Biomedical and Health Sciences, School of Medicine, Kings College, London, United Kingdom
| | | |
Collapse
|
23
|
Kocki T, Wielosz M, Turski WA, Urbanska EM. Enhancement of brain kynurenic acid production by anticonvulsants—Novel mechanism of antiepileptic activity? Eur J Pharmacol 2006; 541:147-51. [PMID: 16765940 DOI: 10.1016/j.ejphar.2006.05.015] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2005] [Revised: 05/08/2006] [Accepted: 05/10/2006] [Indexed: 11/22/2022]
Abstract
In this study, we describe the effect of antiepileptic drugs on the production of kynurenic acid in rat cortical slices, and on the activity of kynurenic acid biosynthetic enzymes, kynurenine aminotransferases (KATs I and II) in the brain tissue. Phenobarbital, felbamate, phenytoin and lamotrigine (all at 0.5-3.0 mM) enhanced kynurenic acid production in vitro, and stimulated the activity of KAT I. In contrast, vigabatrin, gabapentin and tiagabine inhibited kynurenic acid synthesis in cortical slices with IC(50) of 3.9 (2.8-7.9), 3.7 (2.5-5.4) and 7.5 (3.5-14.3) mM, respectively. Vigabatrin, gabapentin and tiagabine reduced also the activity of KAT I with IC(50) of 1.6 (1.1-2.4), 0.1 (0.01-0.15), 0.9 (0.7-1.2) mM, and the activity of KAT II with IC(50) values of 6.0 (4.8-7.5), 0.2 (0.1-0.3) and 2.0 (1.5-2.6) mM, respectively. In conclusion, the enhancement of kynurenic acid formation displayed by carbamazepine, phenytoin, phenobarbital, felbamate and lamotrigine seems to be a novel mechanism, synergistic with other actions of these drugs, and potentially valuable in terms of better control of epilepsy.
Collapse
Affiliation(s)
- Tomasz Kocki
- Department of Pharmacology, Skubiszewski Medical University, Lublin, Poland
| | | | | | | |
Collapse
|
24
|
Goto K, Nakano T, Hozumi Y. Diacylglycerol kinase and animal models: The pathophysiological roles in the brain and heart. ACTA ACUST UNITED AC 2006; 46:192-202. [PMID: 16854450 DOI: 10.1016/j.advenzreg.2006.01.005] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Affiliation(s)
- Kaoru Goto
- Department of Anatomy and Cell Biology, Yamagata University School of Medicine, Iida-Nishi 2-2-2, Yamagata 990-9585, Yamagata, Japan.
| | | | | |
Collapse
|
25
|
Costantin L, Bozzi Y, Richichi C, Viegi A, Antonucci F, Funicello M, Gobbi M, Mennini T, Rossetto O, Montecucco C, Maffei L, Vezzani A, Caleo M. Antiepileptic effects of botulinum neurotoxin E. J Neurosci 2005; 25:1943-51. [PMID: 15728834 PMCID: PMC6726074 DOI: 10.1523/jneurosci.4402-04.2005] [Citation(s) in RCA: 77] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Experimental studies suggest that the delivery of antiepileptic agents into the seizure focus might be of potential utility for the treatment of focal-onset epilepsies. Botulinum neurotoxin E (BoNT/E) causes a prolonged inhibition of neurotransmitter release after its specific cleavage of the synaptic protein synaptosomal-associated protein of 25 kDa (SNAP-25). Here, we show that BoNT/E injected into the rat hippocampus inhibits glutamate release and blocks spike activity of pyramidal neurons. BoNT/E effects persist for at least 3 weeks, as determined by immunodetection of cleaved SNAP-25 and loss of intact SNAP-25. The delivery of BoNT/E to the rat hippocampus dramatically reduces both focal and generalized kainic acid-induced seizures as documented by behavioral and electrographic analysis. BoNT/E treatment also prevents neuronal loss and long-term cognitive deficits associated with kainic acid seizures. Moreover, BoNT/E-injected rats require 50% more electrical stimulations to reach stage 5 of kindling, thus indicating a delayed epileptogenesis. We conclude that BoNT/E delivery to the hippocampus is both antiictal and antiepileptogenic in experimental models of epilepsy.
Collapse
MESH Headings
- Animals
- Anticonvulsants/administration & dosage
- Anticonvulsants/therapeutic use
- Botulinum Toxins/administration & dosage
- Botulinum Toxins/therapeutic use
- Cell Death/drug effects
- Cognition Disorders/etiology
- Cognition Disorders/prevention & control
- Convulsants/toxicity
- Drug Evaluation, Preclinical
- Electric Stimulation
- Electroencephalography
- Epilepsies, Partial/drug therapy
- Epilepsies, Partial/physiopathology
- Epilepsy, Generalized/chemically induced
- Epilepsy, Generalized/complications
- Epilepsy, Generalized/drug therapy
- Epilepsy, Generalized/physiopathology
- Glutamic Acid/metabolism
- Hippocampus/drug effects
- Hippocampus/physiopathology
- Injections, Intralesional
- Kainic Acid/toxicity
- Kindling, Neurologic/drug effects
- Maze Learning/drug effects
- Membrane Proteins/metabolism
- Nerve Tissue Proteins/metabolism
- Pyramidal Cells/drug effects
- Pyramidal Cells/pathology
- Pyramidal Cells/physiology
- Random Allocation
- Rats
- Rats, Long-Evans
- Stereotaxic Techniques
- Synaptosomal-Associated Protein 25
Collapse
Affiliation(s)
- Laura Costantin
- Scuola Normale Superiore, Consiglio Nazionale delle Ricerche, 56100 Pisa, Italy
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Erdo F, Berzsenyi P, Andrási F. The AMPA-antagonist talampanel is neuroprotective in rodent models of focal cerebral ischemia. Brain Res Bull 2005; 66:43-9. [PMID: 15925143 DOI: 10.1016/j.brainresbull.2005.03.012] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2005] [Revised: 03/11/2005] [Accepted: 03/22/2005] [Indexed: 11/22/2022]
Abstract
Cerebroprotection after administration of glutamate receptor antagonists has been well documented. The present study is intended to determine whether the non-competitive alpha-amino-3-hydroxy-methyl-4-isoxazolyl-propionic acid (AMPA) receptor antagonist talampanel, known as antiepileptic drug, has neuroprotective effects in stroke models in rodents. The infarct size was measured in three models of stroke by 2,3,5-triphenyltetrazolium chloride staining. Therapeutic time window was also examined in rats subjected to 1h middle cerebral artery occlusion. The degree of neuroprotection was tested in mice, using 1.5, 2 h or permanent middle cerebral artery occlusions. Effect on photochemically induced thrombosis was investigated in rats applying 30 min time window after brain irradiation. Talampanel reduced the infarct size by 47.3% (p<0.01) after a 30 min delay and 48.5% (p<0.01) after 2 h delay following middle cerebral artery occlusion in rats. In mice, talampanel reduced the extension of the infarcted tissue at the levels of striatum and hippocampus by 44.5% (p<0.05) and 39.3% (p<0.01) after 1.5 h transient ischemia and still caused 37.0% (p<0.05) and 37.0% (p<0.05) inhibitions when 2 h occlusion was applied. In photothrombosis talampanel showed a 40.1% (p<0.05) inhibition. Protective actions of talampanel in various stroke models, in rats and mice, suggest a possible therapeutic role of the compound in stroke patients.
Collapse
Affiliation(s)
- Franciska Erdo
- Department of Pharmacology, IVAX Drug Research Institute Ltd, P.O. Box 82, Budapest H-1325, Hungary.
| | | | | |
Collapse
|
27
|
Fisher A, Wang X, Cock HR, Thom M, Patsalos PN, Walker MC. Synergism between Topiramate and Budipine in Refractory Status Epilepticus in the Rat. Epilepsia 2004; 45:1300-7. [PMID: 15509230 DOI: 10.1111/j.0013-9580.2004.26404.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
PURPOSE To evaluate the antiepileptic and neuroprotective properties of topiramate (TPM) alone and with coadministration of the N-methyl-D-aspartate (NMDA)-receptor antagonist budipine in a rat model of refractory status epilepticus. METHODS Male Sprague-Dawley rats had electrodes implanted into the perforant path and dentate granule cell layer of the hippocampus under halothane anesthesia. Approximately 1 week after surgery, the perforant path of each animal was electrically stimulated for 2 h to induce self-sustaining status epilepticus. Successfully stimulated rats were given intraperitoneally vehicle (n = 6), TPM (20-320 mg/kg; n = 28), budipine (10 mg/kg; n = 5), or budipine (10 mg/kg) and TPM (80 mg/kg; n = 6) 10 min after the end of the stimulation and monitored behaviorally and electroencephalographically for a further 3 h. The animals were killed 14 days later, and histopathology was assessed. RESULTS Neither budipine alone nor TPM at any dose terminated status epilepticus. Despite this, TPM resulted in various degrees of neuroprotection at doses between 40 and 320 mg/kg. Coadministration of budipine with TPM terminated the status epilepticus in all rats. This combination also significantly improved the behavioral profile and prevented status-induced cell death compared with control. CONCLUSIONS Budipine and TPM are an effective drug combination in stopping self-sustained status epilepticus, and TPM alone was neuroprotective, despite the continuation of seizure activity.
Collapse
Affiliation(s)
- Andrew Fisher
- Department of Clinical and Experimental Epilepsy, Institute of Neurology, UCL, London, United Kingdom
| | | | | | | | | | | |
Collapse
|
28
|
Jiang W, Wolfe K, Xiao L, Zhang ZJ, Huang YG, Zhang X. Ionotropic glutamate receptor antagonists inhibit the proliferation of granule cell precursors in the adult brain after seizures induced by pentylenetrazol. Brain Res 2004; 1020:154-60. [PMID: 15312797 DOI: 10.1016/j.brainres.2004.06.028] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/15/2004] [Indexed: 11/27/2022]
Abstract
Seizures have been shown to promote the proliferation of granule cell precursors in the adult brain, but the underlying mechanisms remain largely unknown. Using systemic bromodeoxyuridine (BrdU) to label dividing cells, we examined the effects of selective ionotropic glutamate receptor antagonists on granule cell precursor proliferation in adult rats after pentylenetrazol (PTZ)-induced generalized clonic seizures. We found that the NMDA receptor antagonist MK-801 significantly inhibited behavioral and EEG seizures and completely blocked seizure-induced increase in the number of BrdU-labeled cells in the dentate gyrus. Although the AMPA/KA receptor antagonist DNQX was not observed to affect seizures, it significantly suppressed the number of BrdU-labeled cells in the dentate gyrus. Double immunohistochemical staining showed that both the mature granule cells and the majority of BrdU-labeled, mitotically active cells expressed the NMDA receptor subunit NR1 and the AMPA/KA receptor subunit GluR2. Because accumulated evidence showed that mild seizures are sufficient to promote precursor cell proliferation, the present findings that MK-801 inhibited seizures and completely blocked seizure-induced increase in precursor cell proliferation suggest that the direct blockade action of MK-801 on NMDA receptors on the granule cell precursors may play an important role in blocking seizure-induced precursor cell proliferation. The suppression of seizure-induced proliferation of granule cell precursors by DNQX may be achieved by the direct action of DNQX on AMPA/KA receptors on the granule cell precursors. Thus, our findings indicate that seizures may promote cell proliferation in the adult rat dentate gyrus through glutamatergic mechanisms acting on both NMDA and AMPA/KA receptors.
Collapse
Affiliation(s)
- Wen Jiang
- Neuropsychiatry Research Unit, Department of Psychiatry, A114 Medical Research Building, University of Saskatchewan, 103 Wiggins Road, Saskatoon, SK, Canada S7N5E4.
| | | | | | | | | | | |
Collapse
|
29
|
Xiong ZG, Zhu XM, Chu XP, Minami M, Hey J, Wei WL, MacDonald JF, Wemmie JA, Price MP, Welsh MJ, Simon RP. Neuroprotection in Ischemia. Cell 2004; 118:687-98. [PMID: 15369669 DOI: 10.1016/j.cell.2004.08.026] [Citation(s) in RCA: 805] [Impact Index Per Article: 40.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2004] [Revised: 07/14/2004] [Accepted: 07/26/2004] [Indexed: 12/01/2022]
Abstract
Ca2+ toxicity remains the central focus of ischemic brain injury. The mechanism by which toxic Ca2+ loading of cells occurs in the ischemic brain has become less clear as multiple human trials of glutamate antagonists have failed to show effective neuroprotection in stroke. Acidosis is a common feature of ischemia and is assumed to play a critical role in brain injury; however, the mechanism(s) remain ill defined. Here, we show that acidosis activates Ca2+ -permeable acid-sensing ion channels (ASICs), inducing glutamate receptor-independent, Ca2+ -dependent, neuronal injury inhibited by ASIC blockers. Cells lacking endogenous ASICs are resistant to acid injury, while transfection of Ca2+ -permeable ASIC1a establishes sensitivity. In focal ischemia, intracerebroventricular injection of ASIC1a blockers or knockout of the ASIC1a gene protects the brain from ischemic injury and does so more potently than glutamate antagonism. Thus, acidosis injures the brain via membrane receptor-based mechanisms with resultant toxicity of [Ca2+]i, disclosing new potential therapeutic targets for stroke.
Collapse
Affiliation(s)
- Zhi-Gang Xiong
- Robert S Dow Neurobiology Laboratories, Legacy Research, Portland, OR 97232, USA.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Abstract
Neurodegeneration induced by excitatory neurotransmitter glutamate is considered to be of particular relevance in several types of acute and chronic neurological impairments ranging from cerebral ischaemia to neuropathological conditions such as motor neuron disease, Alzheimer's, Parkinson's disease and epilepsy. The hyperexcitation of glutamate receptors coupled with calcium overload can be prevented or modulated by using well-established competitive and non-competitive antagonists targeting ion/receptor channels. The exponentially increasing body of pharmacological evidence over the years indicates potential applications of peptide toxins, due to their exquisite subtype selectivity on ion channels and receptors, as lead structures for the development of drugs for the treatment of wide variety of neurological disorders. This review comprehensively highlights the overview of the diversity in the molecular as well as neurobiological mechanisms of different peptide toxins derived from venomous animals with particular reference to neuroprotection. In addition, the potential applications of peptide toxins in the diagnosis and treatment of neurological disorders such as neuromuscular disorders, epilepsy, Alzheimer's and Parkinson's diseases, gliomas and ischaemic stroke and their future prospects in the diagnosis as well as in the therapy are addressed.
Collapse
Affiliation(s)
- Wudayagiri Rajendra
- Department of Biochemistry, Faculty of Medicine, National University of Singapore, 8 Medical Drive, Singapore 117597, Singapore
| | | | | |
Collapse
|
31
|
Mohapel P, Ekdahl CT, Lindvall O. Status epilepticus severity influences the long-term outcome of neurogenesis in the adult dentate gyrus. Neurobiol Dis 2004; 15:196-205. [PMID: 15006689 DOI: 10.1016/j.nbd.2003.11.010] [Citation(s) in RCA: 109] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2002] [Revised: 10/03/2003] [Accepted: 11/03/2003] [Indexed: 12/24/2022] Open
Abstract
Status epilepticus (SE) is characterized by continual seizure activity that can vary widely in the intensity of convulsions. We induced seizures by applying continuous electrical stimulation to the hippocampus in adult rats to explore the effects of three different SE states on neurogenesis and neuronal death in the hippocampus. Rats exhibiting the most severe SE state (fully convulsive) demonstrated profound increases in cell proliferation in the dentate gyrus (DG) at 1 week post-insult, but the majority of the new neurons had died at 4 weeks. In contrast, rats exhibiting less severe SE states (ambulatory or masticatory, partial convulsive) had the same degree of cell proliferation at 1 week, but most new neurons survived at 4 weeks. As compared to partially convulsive SE rats, fully convulsive SE rats had significantly greater DG pathology. Our data indicate that SE of varying severity triggers similar short-term proliferation of neural progenitors, but that the long-term outcome of neurogenesis is influenced by the degree of insult-induced degeneration in the DG tissue environment.
Collapse
Affiliation(s)
- Paul Mohapel
- Section of Restorative Neurology, Wallenberg Neuroscience Center, SE-221 84 Lund, Sweden.
| | | | | |
Collapse
|
32
|
Suchak SK, Baloyianni NV, Perkinton MS, Williams RJ, Meldrum BS, Rattray M. The 'glial' glutamate transporter, EAAT2 (Glt-1) accounts for high affinity glutamate uptake into adult rodent nerve endings. J Neurochem 2003; 84:522-32. [PMID: 12558972 DOI: 10.1046/j.1471-4159.2003.01553.x] [Citation(s) in RCA: 89] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The excitatory amino acid transporters (EAAT) removes neurotransmitters glutamate and aspartate from the synaptic cleft. Most CNS glutamate uptake is mediated by EAAT2 into glia, though nerve terminals show evidence for uptake, through an unknown transporter. Reverse-transcriptase PCR identified the expression of EAAT1, EAAT2, EAAT3 and EAAT4 mRNAs in primary cultures of mouse cortical or striatal neurones. We have used synaptosomes and glial plasmalemmal vesicles (GPV) from adult mouse and rat CNS to identify the nerve terminal transporter. Western blotting showed detectable levels of the transporters EAAT1 (GLAST) and EAAT2 (Glt-1) in both synaptosomes and GPVs. Uptake of [3H]D-aspartate or [3H]L-glutamate into these preparations revealed sodium-dependent uptake in GPV and synaptosomes which was inhibited by a range of EAAT blockers: dihydrokainate, serine-o-sulfate, l-trans-2,4-pyrrolidine dicarboxylate (PDC) (+/-)-threo-3-methylglutamate and (2S,4R )-4-methylglutamate. The IC50 values found for these compounds suggested functional expression of the 'glial, transporter, EAAT2 in nerve terminals. Additionally blockade of the majority EAAT2 uptake sites with 100 micro m dihydrokainate, failed to unmask any functional non-EAAT2 uptake sites. The data presented in this study indicate that EAAT2 is the predominant nerve terminal glutamate transporter in the adult rodent CNS.
Collapse
Affiliation(s)
- Sachin K Suchak
- Biochemical Neuropharmacology Group, Centre for Neuroscience Research, GKT School of Biomedical Sciences, King's College London, United Kingdom
| | | | | | | | | | | |
Collapse
|
33
|
Keyvani K, Schallert T. Plasticity-associated molecular and structural events in the injured brain. J Neuropathol Exp Neurol 2002; 61:831-40. [PMID: 12387449 DOI: 10.1093/jnen/61.10.831] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Injury to the brain appears to create a fertile ground for functional and structural plasticity that is, at least partly, responsible for functional recovery. Increases in dendritic arborization, spine density, and synaptogenesis in both peri-injury and intact cortical areas are the potential morphological strategies that enable the brain to reorganize its neuronal circuits. These injury-initiated alterations are time-dependent and frequently proceed in interaction with behavior-related signals. A complex concert of a variety of genes/proteins is required to tightly control these changes. Two broad categories of molecules appear to be involved. First, regulatory molecules or effector molecules with regulatory function, such as immediate early genes/transcription factors, kinase network proteins, growth factors, and neurotransmitter receptors, and second, structural proteins, such as adhesion molecules and compounds of synapses, growth cones, and cytoskeleton. A better understanding of the processes contributing to postinjury plasticity may be an advantage for developing new and more effective therapeutic approaches. This knowledge might also shed light on other forms of brain plasticity, such as those involved in learning processes or ontogeny.
Collapse
Affiliation(s)
- Kathy Keyvani
- Institute of Neuropathology, University of Muenster, Germany
| | | |
Collapse
|
34
|
Blondeau N, Lauritzen I, Widmann C, Lazdunski M, Heurteaux C. A potent protective role of lysophospholipids against global cerebral ischemia and glutamate excitotoxicity in neuronal cultures. J Cereb Blood Flow Metab 2002; 22:821-34. [PMID: 12142567 DOI: 10.1097/00004647-200207000-00007] [Citation(s) in RCA: 81] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Lysophospholipids (LPLs) are important intermediates in the synthesis and degradation of membrane phospholipids. Here we show that certain LPLs, particularly lysophosphatidylcholine and lysophosphatidylinositol, prevent neuronal death both in an in vivo model of transient global ischemia and in an in vitro model of excitotoxicity using primary cultures of cerebellar granule cells exposed to high extracellular concentrations of glutamate (20-40 micromol/L). The intravenous injection of lysophosphatidylcholine or lysophosphatidylinositol at a concentration of 200 nmol/kg induced a survival of CA1 pyramidal neurons as high as approximately 95%, even when the treatment was started 30 minutes after 15-minute global ischemia. In contrast, lysophosphatidic acid induced no protection. This work also provides evidence that a pretreatment with lysophosphatidylcholine or lysophosphatidylinositol (200 nmol/kg) injected as long as 3 days before a severe 6-minute ischemia provided a potent tolerance against neurodegeneration. Neuroprotection was also observed in in vitro experiments with LPLs. Taken together, in vivo and in vitro data suggest a potential therapeutic use of LPLs as antiischemic compounds. The potential role of 2P-domain K+ channels as targets of LPLs in this potent neuroprotective effect is discussed.
Collapse
Affiliation(s)
- Nicolas Blondeau
- Institut de Pharmacologie Moléculaire et Cellulaire, Centre National de la Recherche Scientifique, Valbonne, France
| | | | | | | | | |
Collapse
|
35
|
Mendelowitsch A, Ritz MF, Ros J, Langemann H, Gratzl O. 17beta-Estradiol reduces cortical lesion size in the glutamate excitotoxicity model by enhancing extracellular lactate: a new neuroprotective pathway. Brain Res 2001; 901:230-6. [PMID: 11368971 DOI: 10.1016/s0006-8993(01)02359-9] [Citation(s) in RCA: 80] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Estrogens play an important role in neuronal function and in protecting neurones in the cerebral cortex against pathological conditions. An in vivo model of glutamate excitotoxicity in which glutamate is applied to the cortex of rats through a microdialysis probe has been used to investigate the neuroprotective processes initiated by 17beta-estradiol. Rats were pre-treated with 17beta-estradiol (i.v.) before local application of 100 mM glutamate into the cortex through a microdialysis probe. Pre-treatment with 17beta-estradiol significantly reduced the size of the glutamate-induced cortical lesion. In the cortical microdialysates collected from the probe, a peak of lactate was observed immediately after glutamate application. After 17beta-estradiol pre-treatment this peak of lactate was significantly higher with estradiol than without 120 min after glutamate application, reaching 700% basal level at the end of measurement. The level of extracellular glucose was markedly decreased with and without 17beta-estradiol pre-treatment. Local blockage of neuronal lactate transporters with alpha-cyano-4-hydroxycinnamate (4-CIN) completely abolished the neuroprotective effect of 17beta-estradiol and induced a larger cortical lesion. An accumulation of extracellular lactate was observed after inhibition of the lactate transporters suggesting that transport of lactate into neurones is necessary for the neuroprotective effect of 17beta-estradiol. The anti-estrogen tamoxifen also abolished the neuroprotective effect of 17beta-estradiol on the lesion size and inhibited the production of lactate. These results suggest a new neuroprotective mechanism of 17beta-estradiol by activating glutamate-stimulated lactate production, which is estrogen receptor-dependent.
Collapse
Affiliation(s)
- A Mendelowitsch
- Neurosurgical University Clinic, Department of Research, Cantonal Hospital Basel, Basel, Switzerland.
| | | | | | | | | |
Collapse
|
36
|
Gee CE, Woodhall G, Lacaille JC. Synaptically activated calcium responses in dendrites of hippocampal oriens-alveus interneurons. J Neurophysiol 2001; 85:1603-13. [PMID: 11287484 DOI: 10.1152/jn.2001.85.4.1603] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Activation of metabotropic glutamate receptors (mGluRs) by agonists increases intracellular calcium levels ([Ca(2+)](i)) in interneurons of stratum oriens/alveus (OA) of the hippocampus. We examined the mechanisms that contribute to dendritic Ca(2+) increases in these interneurons during agonist activation of mGluRs and during synaptically evoked burst discharges, using simultaneous whole cell recordings and confocal Ca(2+) imaging in rat hippocampal slices. First, we found that the group I/II mGluR agonist 1S,3R-1-aminocyclopentane-1,3-dicarboxylic acid (ACPD; 100 microM) increased dendritic [Ca(2+)](i) and depolarized OA interneurons. Dendritic Ca(2+) responses were correlated with membrane depolarizations, but Ca(2+) responses induced by ACPD were larger in amplitude than those elicited by equivalent somatic depolarization. Next, we used linescans to measure changes in dendritic [Ca(2+)](i) during synaptically evoked burst discharges and somatically elicited repetitive firing in disinhibited slices. Dendritic Ca(2+) signals and electrophysiological responses were stable over repeated trials. Peak Ca(2+) responses were linearly related to number and frequency of action potentials in burst discharges for both synaptic and somatic stimulation, but the slope of the relationship was steeper for responses evoked somatically. Synaptically evoked [Ca(2+)](i) rises and excitatory postsynaptic potentials were abolished by antagonists of ionotropic glutamate receptors. The group I/II mGluR antagonist S-alpha-methyl-4-carboxyphenylglycine (500 microM) produced a significant partial reduction of synaptically evoked dendritic Ca(2+) responses. The mGluR antagonist did not affect synaptically evoked burst discharges and did not reduce either Ca(2+) responses or burst discharges evoked somatically. Therefore ionotropic glutamate receptors appear necessary for synaptically evoked dendritic Ca(2+) responses, and group I/II mGluRs may contribute partially to these responses. Dendritic [Ca(2+)](i) rises mediated by both ionotropic and metabotropic glutamate receptors may be important for synaptic plasticity and the selective vulnerability to excitotoxicity of OA interneurons.
Collapse
Affiliation(s)
- C E Gee
- Centre de Recherche en Sciences Neurologiques, Département de Physiologie, Université de Montréal, Montreal, Quebec H3C 3J7, Canada
| | | | | |
Collapse
|
37
|
Abstract
Glutamate excitotoxicity plays a key role in the induction of neuronal cell death occurring in many neuropathologies, including epilepsy. Systemic administration of the glutamatergic agonist kainic acid (KA) is a well characterized model to study epilepsy-induced brain damage. KA-evoked seizures in mice result in hippocampal cell death, with the exception of some strains that are resistant to KA excitotoxicity. Little is known about the factors that prevent epilepsy-related neurodegeneration. Here we show that dopamine has such a function through the activation of the D2 receptor (D2R). D2R gene inactivation confers susceptibility to KA excitotoxicity in two mouse strains known to be resistant to KA-induced neurodegeneration. D2R-/- mice develop seizures when administered KA doses that are not epileptogenic for wild-type (WT) littermates. The spatiotemporal pattern of c-fos and c-jun mRNA induction well correlates with the occurrence of seizures in D2R-/- mice. Moreover, KA-induced seizures result in extensive hippocampal cell death in D2R-/- but not WT mice. In KA-treated D2R-/- mice, hippocampal neurons die by apoptosis, as indicated by the presence of fragmented DNA and the induction of the proapoptotic protein BAX. These results reveal a central role of D2Rs in the inhibitory control of glutamate neurotransmission and excitotoxicity.
Collapse
|
38
|
Chen J, Lei T, Ritz MF, Mendelowitsch A. Effect of 17 beta-estradiol on the brain damage and metabolic changes in rats. Curr Med Sci 2001; 21:62-4, 74. [PMID: 11523252 DOI: 10.1007/bf02888040] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2000] [Indexed: 11/27/2022]
Abstract
An in vivo model of glutamate excitotoxicity in which glutamate is applied to the cortex of rats through a microdialysis probe has been used to investigate the neuroprotective processes initiated by 17 beta-estradiol. Rats were pre-treated with 17 beta-estradiol i.v. before local application of glutamate. The experimental results showed that pre-treatment with 17 beta-estradiol significantly reduced the size of the glutamate-induced lesion. In the microdialysates, the peak of lactate observed immediately after glutamate application was significantly higher and longer lasting after 17 beta-estradiol pre-treatment. The level of extracellular glucose was markedly decreased concomitantly to the increase in lactate, but no difference could be observed with and without 17 beta-estradiol pre-treatment. These suggest a new neuroprotective mechanism of 17 beta-estradiol by activating glutamate-induced lactate production. This effect on lactate production and lesion reduction is estrogen receptor dependent and is abolished totally by estrogen antagonist tamoxifen. It was also demonstrated here that high lactate subserves estrogen neuroprotection during glutamate toxicity.
Collapse
Affiliation(s)
- J Chen
- Department of Neurosurgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030
| | | | | | | |
Collapse
|
39
|
Bernabeu R, Sharp FR. NMDA and AMPA/kainate glutamate receptors modulate dentate neurogenesis and CA3 synapsin-I in normal and ischemic hippocampus. J Cereb Blood Flow Metab 2000; 20:1669-80. [PMID: 11129783 DOI: 10.1097/00004647-200012000-00006] [Citation(s) in RCA: 141] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
The effect of N-methyl-D-aspartate (NMDA) and 2-(aminomethyl)phenylacetic acid/kainate (AMPA/kainate) glutamate receptors on dentate cell proliferation and hippocampal synapsin-I induction was examined after global ischemia. Cell proliferation was assessed using BrdU labeling, and synaptic responses were assessed using synapsin-I expression. Systemic glutamate receptor antagonists (MK-801 and NBQX) increased BrdU-labeled cells in the dentate subgranular zone (SGZ) of control adult gerbils (30% to 90%, P < 0.05). After global ischemia (at 15 days after 10 minutes of ischemia), most CA1 pyramidal neurons died, whereas the numbers of BrdU-labeled cells in the SGZ increased dramatically (>1000%, P < 0.0001). Systemic injections of MK801 or NBQX, as well as intrahippocampal injections of either drug, when given at the time of ischemia completely blocked the birth of cells in the SGZ and the death of CA1 pyramidal neurons at 15 days after ischemia. Glutamate receptor antagonists had little effect on cell birth and death when administered 7 days after ischemia. The induction of synapsin-I protein in stratum moleculare of CA3 at 7 and 15 days after global ischemia was blocked by pretreatment with systemic or intrahippocampal MK-801 or NBQX. It is proposed that decreased dentate glutamate receptor activation--produced by glutamate receptor antagonists in normal animals and by chronic ischemic hippocampal injury--may trigger dentate neurogenesis and synaptogenesis. The synapsin-I induction in mossy fiber terminals most likely represents re-modeling of dentate granule cell neuron presynaptic elements in CA3 in response to the ischemia. The dentate neurogenesis and synaptogenesis that occur after ischemia may contribute to memory recovery after hippocampal injury caused by global ischemia.
Collapse
Affiliation(s)
- R Bernabeu
- Department of Neurology, University of California, San Francisco, USA
| | | |
Collapse
|
40
|
Abstract
Epileptic syndromes have very diverse primary causes, which may be genetic, developmental or acquired. In rodent models, altering glutamate receptor or glutamate transporter expression by knockout or knockdown procedures can induce or suppress epileptic seizures. Regardless of the primary cause, synaptically released glutamate acting on ionotropic and metabotropic receptors appears to play a major role in the initiation and spread of seizure activity. In rodent models of acquired epilepsy and in human temporal lobe epilepsy, there is evidence for enhanced functional efficacy of ionotropic N-methyl-D-aspartate (NMDA) and metabotropic (Group I) receptors. In animal models of epilepsy, antagonists acting at NMDA receptors or at Group I metabotropic receptors have potent anticonvulsant actions.
Collapse
Affiliation(s)
- A G Chapman
- Department of Clinical Neuroscience, Institute of Psychiatry, London, England
| |
Collapse
|
41
|
Rao AM, Hatcher JF, Kindy MS, Dempsey RJ. Arachidonic acid and leukotriene C4: role in transient cerebral ischemia of gerbils. Neurochem Res 1999; 24:1225-32. [PMID: 10492517 DOI: 10.1023/a:1020916905312] [Citation(s) in RCA: 73] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Accumulation of arachidonic acid (AA) is greatest in brain regions most sensitive to transient ischemia. Free AA released after ischemia is either: 1) reincorporated into the membrane phospholipids, or 2) oxidized during reperfusion by lipoxygenases and cyclooxygenases, producing leukotrienes (LT), prostaglandins, thromboxanes and oxygen radicals. AA, its metabolite LTC4 and lipid peroxides (generated during AA metabolism) have been implicated in the blood-brain barrier (BBB) dysfunction, edema and neuronal death after ischemia/reperfusion. This report describes the time course of AA release, LTC4 accumulation and association with the physiological outcome during transient cerebral ischemia of gerbils. Significant amount of AA was detected immediately after 10 min ischemia (0 min reperfusion) which returned to sham levels within 30 min reperfusion. A later release of AA occurred after 1 d. LTC4 levels were elevated at 0-6 h and 1 d after ischemia. Increased lipid peroxidation due to AA metabolism was observed between 2-6 h. BBB dysfunction occurred at 6 h. Significant edema developed at 1 and 2 d after ischemia and reached maximum at 3 d. Ischemia resulted in approximately 80% neuronal death in the CA1 hippocampal region. Pretreatment with a 5-lipoxygenase inhibitor, AA861 resulted in significant attenuation of LTC4 levels (Baskaya et al. 1996. J. Neurosurg. 85: 112-116) and CA1 neuronal death. Accumulation of AA and LTC4, together with highly reactive oxygen radicals and lipid peroxides, may alter membrane permeability, resulting in BBB dysfunction, edema and ultimately to neuronal death.
Collapse
Affiliation(s)
- A M Rao
- Department of Neurological Surgery, University of Wisconsin, Madison 53792-3232, USA.
| | | | | | | |
Collapse
|
42
|
Rosa ML, Jefferys JG, Sanders MW, Pearson RC. Expression of mRNAs encoding flip isoforms of GluR1 and GluR2 glutamate receptors is increased in rat hippocampus in epilepsy induced by tetanus toxin. Epilepsy Res 1999; 36:243-51. [PMID: 10515169 DOI: 10.1016/s0920-1211(99)00055-8] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The messenger RNAs encoding the flip and flop isoforms of the glutamate receptor subunits GluR1 and GluR2 were detected and quantified by in situ hybridization in the hippocampal formation of rats following intrahippocampal injection of tetanus on one side. The mRNAs encoding the flip isoforms of both GluR1 and GluR2 were significantly increased 4 weeks after injection. The GluR1 flip mRNA was significantly elevated only in the dentate gyrus, whereas significant increases in the GluR2 flip mRNA were seen in all hippocampal subfields examined. There were no significant changes in the mRNA encoding the flop isoforms of either GluR1 or GluR2. The significant changes in flip isoform mRNAs occurred on both sides.
Collapse
Affiliation(s)
- M L Rosa
- Department of Biomedical Science, University of Sheffield, UK
| | | | | | | |
Collapse
|
43
|
Thomsen C. Pentylenetetrazol-induced seizures increase [3H]L-2-amino-4-phosphonobutyrate binding in discrete regions of the rat brain. Neurosci Lett 1999; 266:5-8. [PMID: 10336170 DOI: 10.1016/s0304-3940(99)00235-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Convulsions were induced in rats by a single injection of pentylenetetrazol (PTZ) and [3H]L-2-amino-4-phosphonobutyrate ([3H]L-AP4) in vitro receptor autoradiography was used to evaluate the effects on the expression of group III metabotropic glutamate receptors. Significant increases by 60-80% in [3H]L-AP4 binding was observed in the frontal parts of cortex (sensory, motor and cingulate cortex) and by 28% in the molecular layer of the cerebellar cortex 24 h after PTZ-induced seizures. Since group III metabotropic glutamate receptors has an inhibitory effect on glutamatergic transmission, the observed increases in binding may indicate that these receptors serve as a mechanism for preventing further seizure activity.
Collapse
Affiliation(s)
- C Thomsen
- Department of Molecular Pharmacology, Novo Nordisk A/S, Måløv, Denmark.
| |
Collapse
|
44
|
Hölscher C, Gigg J, O'Mara SM. Metabotropic glutamate receptor activation and blockade: their role in long-term potentiation, learning and neurotoxicity. Neurosci Biobehav Rev 1999; 23:399-410. [PMID: 9989427 DOI: 10.1016/s0149-7634(98)00045-1] [Citation(s) in RCA: 47] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Metabotropic glutamate receptors represent a fairly recent addition to the family of glutamate receptors. These receptors have the distinguishing feature of being coupled to G-proteins rather than ion channels and they appear to have a variety of functional characteristics. These receptors play a vital role, for example, in the induction and maintenance of long-term potentiation, the most popular current model of the biological correlates of learning and memory. Blockade of metabotropic glutamate receptors prevents long-term potentiation induction and learning in a variety of tasks in different species. Chronic metabotropic glutamate receptor activation is also associated with neurodegeneration and selective neuronal loss when agonists of these receptors are injected in high concentrations directly into the brain. Metabotropic glutamate receptors also play a role in the normal development of the nervous system and these sites within the central nervous system offer possible routes for drug therapies; selective receptor antagonists, for example, may prove to have the very desirable feature of endowing neuroprotection during ischaemic episodes whilst allowing normal excitatory neurotransmission to occur.
Collapse
Affiliation(s)
- C Hölscher
- Department of Physiology, University College, Dublin, Ireland.
| | | | | |
Collapse
|
45
|
Abstract
Glutamatergic synapses play a critical role in all epileptic phenomena. Broadly enhanced activation of post-synaptic glutamate receptors (ionotropic and metabotropic) is proconvulsant. Antagonists of NMDA receptors and AMPA receptors are powerful anticonvulsants in many animal models of epilepsy. A clinical application of pure specific glutamate antagonists has not yet been established. Many different alterations in glutamate receptors or transporters can potentially contribute to epileptogenesis. Several genetic alterations have been shown to be epileptogenic in animal models but no specific mutation relating to glutamatergic function has yet been linked to a human epilepsy syndrome. There is clear evidence for altered NMDA receptor function in acquired epilepsy in animal models and in man. Changes in metabotropic receptor function may also play a key role in epileptogenesis.
Collapse
Affiliation(s)
- A G Chapman
- Department of Clinical Neuroscience, Institute of Psychiatry, London, UK
| |
Collapse
|
46
|
Misane I, Klusa V, Dambrova M, Germane S, Duburs G, Bisenieks E, Rimondini R, Ogren SO. "Atypical" neuromodulatory profile of glutapyrone, a representative of a novel 'class' of amino acid-containing dipeptide-mimicking 1,4-dihydropyridine (DHP) compounds: in vitro and in vivo studies. Eur Neuropsychopharmacol 1998; 8:329-47. [PMID: 9928926 DOI: 10.1016/s0924-977x(97)00097-7] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Glutapyrone, a disodium salt of 2-(2,6-dimethyl-3,5-diethoxycarbonyl-1,4-dihydropyridine-4-carboxamido)- glutaric acid, is a representative of a novel 'class' of amino acid-containing 1,4-dihydropyridine (DHP) compounds developed at the Latvian Institute of Organic Synthesis, Riga, Latvia. Conceptually, the glutapyrone molecule can be regarded as a dipeptide-mimicking structure formed by the "free" amino acid (glutamate) moiety and "crypto" (built into the DHP cycle) amino acid ("GABA") elements. Both of these amino acids are joined by the peptide bond. This compound unlike classical DHPs lacks calcium antagonistic or agonistic properties. Our previous studies revealed a profound and long-term anticonvulsant, stress-protective and neurodeficit-preventive activities of glutapyrone. In view of structural properties the role of glutamatergic mechanisms in the mediation of central effects of glutapyrone was considered. In the present study glutapyrone at the concentration range of 1 microM(-1) mM failed to effect both NMDA ([3H]TCP) and non-NMDA ([3H]KA and [3H]AMPA) receptor ligand binding in the rat cortical membranes in vitro. The compound markedly enhanced motor hyperactivity induced by the NMDA antagonist PCP and the dopamine releasing compound D-amphetamine in the rats. Glutapyrone displayed activity in a variety of animal models relevant for affective/depressive disorders in humans i.e. reserpine-induced ptosis and hypothermia, forced swimming test and open field test. These data indicate that the unusually "broad" pharmacological spectrum of glutapyrone might involve concomitant actions on multiple neurotransmitter systems, particularly, GABA-ergic and the catecholamines. It is discussed whether these functional properties are secondary to action on intracellular events, predominantly, G protein-related since glutapyrone appears to lack direct interactions with a number of receptors including ionotropic glutamate and GABA(A)/Bzd receptors.
Collapse
Affiliation(s)
- I Misane
- Laboratory of Pharmacology, Latvian Institute of Organic Synthesis, Riga
| | | | | | | | | | | | | | | |
Collapse
|
47
|
Vespa P, Prins M, Ronne-Engstrom E, Caron M, Shalmon E, Hovda DA, Martin NA, Becker DP. Increase in extracellular glutamate caused by reduced cerebral perfusion pressure and seizures after human traumatic brain injury: a microdialysis study. J Neurosurg 1998; 89:971-82. [PMID: 9833824 DOI: 10.3171/jns.1998.89.6.0971] [Citation(s) in RCA: 264] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
OBJECT To determine the extent and duration of change in extracellular glutamate levels after human traumatic brain injury (TBI), 17 severely brain injured adults underwent implantation of a cerebral microdialysis probe and systematic sampling was conducted for 1 to 9 days postinjury. METHODS A total of 772 hourly microdialysis samples were obtained in 17 patients (median Glasgow Coma Scale score 5+/-2.5, mean age 39.4+/-20.4 years). The mean (+/-standard deviation) glutamate levels in the dialysate were evaluated for 9 days, during which the mean peak concentration reached 25.4+/-13.7 microM on postinjury Day 3. In each patient transient elevations in glutamate were seen each day. However, these elevations were most commonly seen on Day 3. In all patients there was a mean of 4.5+/-2.5 transient elevations in glutamate lasting a mean duration of 4.4+/-4.9 hours. These increases were seen in conjunction with seizure activity. However, in many seizure-free patients the increase in extracellular glutamate occurred when cerebral perfusion pressure was less than 70 mm Hg (p < 0.001). Given the potential injury-induced uncoupling of cerebral blood flow and metabolism after TBI, these increases in extracellular glutamate may reflect a degree of enhanced cellular crisis, which in severe head injury in humans appears to last up to 9 days. CONCLUSIONS Extracellular neurochemical measurements of excitatory amino acids may provide a marker for secondary insults that can compound human TBI.
Collapse
Affiliation(s)
- P Vespa
- Department of Surgery, University of California Los Angeles School of Medicine, 90024, USA.
| | | | | | | | | | | | | | | |
Collapse
|
48
|
Akbar MT, Rattray M, Williams RJ, Chong NW, Meldrum BS. Reduction of GABA and glutamate transporter messenger RNAs in the severe-seizure genetically epilepsy-prone rat. Neuroscience 1998; 85:1235-51. [PMID: 9681960 DOI: 10.1016/s0306-4522(97)00684-2] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The genetically epilepsy-prone rat is an animal model of inherited generalised tonic-clonic epilepsy that shows abnormal susceptibility to audiogenic seizures and a lowered threshold to a variety of seizure-inducing stimuli. Recent studies suggest a crucial role for glutamate and GABA transporters in epileptogenesis and seizure propagation. The present study examines the levels of expression of the messenger RNAs encoding the glial and neuronal glutamate transporters, GLT-1 and EAAC-1, and the neuronal GABA transporter, GAT-1, in paired male genetically epileptic-prone rats and Sprague Dawley control rats using the technique of in situ hybridization. In a parallel study, semiquantitative immunoblotting was used to assess GLT-1 and EAAC-1 protein levels in similarly paired animals. Animals were assessed for susceptibility to audiogenic seizures on six occasions, and killed seven days following the last audiogenic stimulus exposure. Rat brains were processed for in situ hybridization with radioactive 35S-labelled oligonucleotide probes (EAAC-1 and GAT-1), 35S-labelled riboprobes (GLT-1), and Fluorescein-labelled riboprobes (GLT-1 and GAT-1) or processed for immunoblotting using subtype-specific antibodies for GLT-1 and EAAC-1. Semiquantitative analyses were carried out on X-ray film autoradiograms in several brain regions for both in situ hybridization and immunoblotting studies. Reductions in GAT-1 messenger RNA were found in genetically epileptic-prone rats in all brain regions examined (-8 to -24% compared to control). Similar reductions in GLT-1 messenger RNA expression levels were seen in cortex, striatum, and CA1 (-8 to -12%) of genetically epileptic-prone rats; the largest reduction observed was in the inferior colliculus (-20%). There was a tendency for a reduced expression of EAAC-1 messenger RNA in most regions of the genetically epileptic-prone rat brain although this reached statistical significance only in the striatum (-12%). In contrast, no significant differences in GLT-1 and EAAC-1 protein between genetically epileptic-prone rats and control animals were observed in any region examined, although there was a tendency to follow the changes seen with the corresponding messenger RNAs. These results show differences in the messenger RNA expression levels of three crucial amino acid transporters. For the two glutamate transporters, GLT-1 and EAAC-1, differences in messenger RNA levels are not reflected or are only partially reflected in the expression of the corresponding proteins.
Collapse
Affiliation(s)
- M T Akbar
- Department of Clinical Neurosciences, Institute of Psychiatry, London, UK
| | | | | | | | | |
Collapse
|
49
|
Miles AN, Knuckey NW. Apoptotic neuronal death following cerebral ischaemia. J Clin Neurosci 1998; 5:125-45. [DOI: 10.1016/s0967-5868(98)90027-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/1997] [Accepted: 09/03/1997] [Indexed: 12/23/2022]
|
50
|
Status epilepticus-induced alterations in metabotropic glutamate receptor expression in young and adult rats. J Neurosci 1997. [PMID: 9334430 DOI: 10.1523/jneurosci.17-21-08588.1997] [Citation(s) in RCA: 59] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
In adult rats, kainic acid induces status epilepticus and delayed, selective cell loss of pyramidal neurons in the hippocampal CA3. In pup rats, kainate induces status epilepticus but not the accompanying neuronal cell death. The precise mechanisms underlying this age-dependent vulnerability to seizure-induced cell death are not understood. Metabotropic glutamate receptors (mGluRs) are developmentally and spatially regulated throughout the hippocampus and are implicated in seizure-induced damage. In the present study we used in situ hybridization to examine possible changes in mGluR expression at the level of the hippocampus after status epilepticus in postnatal day 10 (P10) pup and adult (P40) rats. Status epilepticus did not alter expression of mGluR1, mGluR3, or mGluR5 mRNAs. In pup and adult rats, status epilepticus induced a reduction in expression of mGluR2 mRNA in granule cells of the dentate gyrus. This change could lead to augmented glutamate release at mossy fiber synapses on CA3 pyramidal cells and thereby promote hyperexcitation. In pup but not adult rats, mGluR4 mRNA expression was enhanced in CA3 pyramidal neurons. Upregulation of presynaptic mGluR4 in pup CA3 neurons could lead to reduced transmitter release from CA3 axons, including recurrent collaterals, thereby reducing vulnerability of neonatal CA3 neurons to seizure-induced damage. These findings indicate that status epilepticus affects mGluR expression in a gene- and cell-specific manner, and that these changes vary with the developmental stage.
Collapse
|