1
|
Mao R, Zhang T, Yang Z, Li J. Unveiling Novel Protein Biomarkers for Psoriasis Through Integrated Analysis of Human Plasma Proteomics and Mendelian Randomization. PSORIASIS (AUCKLAND, N.Z.) 2024; 14:179-193. [PMID: 39669686 PMCID: PMC11635628 DOI: 10.2147/ptt.s492205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Accepted: 11/26/2024] [Indexed: 12/14/2024]
Abstract
Background Current pharmacological treatments for psoriasis are generally non-specific and have significant limitations, particularly in the realm of targeted biologic therapies. There is an urgent need to identify and develop new therapeutic targets to improve treatment options. Objective The aim of this study was to explore the proteome associated with psoriasis in large population cohorts to discover novel biomarkers that could guide therapy. Methods We analyzed data from 54,306 participants enrolled in the UK Biobank Pharmacological Proteomics Project (UKB-PPP). We investigated the relationship between 2923 serum proteins and the risk of psoriasis using multivariate Cox regression models initially. This was complemented by two-sample Mendelian randomization (TSMR), Summary-data-based Mendelian Randomization (SMR), and coloc colocalization studies to identify genetic correlations with protein targets linked to psoriasis. A protein scoring system was created using the Cox proportional hazards model, and cumulative risk curves were generated to analyze psoriasis incidence variations. Results Our study pinpointed 62 proteins significantly linked to the risk of developing psoriasis. Further analysis through TSMR narrowed these down to ten proteins with strong causal relationships to the disease. Additional deep-dive analyses such as SMR, colocalization, and differential expression studies highlighted four critical proteins (MMP12, PCSK9, PRSS8, and SCLY). We calculated a protein score based on the levels of these proteins, with higher scores correlating with increased risk of psoriasis. Conclusion This study's integration of proteomic and genetic data from a European adult cohort provides compelling evidence of several proteins as viable predictive biomarkers and potential therapeutic targets for psoriasis, facilitating the advancement of targeted treatment strategies.
Collapse
Affiliation(s)
- Rui Mao
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, People’s Republic of China
- Hunan Key Laboratory of Aging Biology, Xiangya Hospital, Central South University, Changsha, People’s Republic of China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, People’s Republic of China
| | - Tongtong Zhang
- Center of Gastrointestinal and Minimally Invasive Surgery, Department of General Surgery, The Third People’s Hospital of Chengdu, Affiliated Hospital of Southwest Jiaotong University & The Second Affiliated Hospital of Chengdu, Chongqing Medical University, Chengdu, 610031, People’s Republic of China
| | - Ziye Yang
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, People’s Republic of China
- Hunan Key Laboratory of Aging Biology, Xiangya Hospital, Central South University, Changsha, People’s Republic of China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, People’s Republic of China
| | - Ji Li
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, People’s Republic of China
- Hunan Key Laboratory of Aging Biology, Xiangya Hospital, Central South University, Changsha, People’s Republic of China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, People’s Republic of China
| |
Collapse
|
2
|
Cecchi R, Ikeda T, Camatti J, Nosaka M, Ishida Y, Kondo T. Expression of matrix metalloproteinase-9 (MMP-9) in human skin within 1 hour after injury through immunohistochemical staining: a pilot study. Int J Legal Med 2024; 138:1985-1990. [PMID: 38691159 DOI: 10.1007/s00414-024-03243-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Accepted: 04/23/2024] [Indexed: 05/03/2024]
Abstract
Matrix metalloproteinase-9 (MMP-9) is involved in tissue remodeling and in skin wound healing. The present study focuses on the MMP-9 expression in epidermal wound healing within 1 h after injury, to test whether MMP-9 can be used to estimate the time of injury in forensic practice.A sample consisting of 5 individuals undergoing surgery was analyzed. With the consent of the patients, sections of skin were removed from the surgical wound at predefined time intervals. For each subject, 8 sections were taken, one for each time interval defined at 0 '- 1' - 3 '- 5' - 10 '- 15' - 30 '- 60' minutes. The specimens were immunostained with MMP-9, and the number of positively stained cells was examined.The number of positively stained cells showed an increasing trend as a function of time. Less than 30 positively stained cells were found in all cases within 3 min. At the post-infliction time of 5 min, the number of positively stained cells exceeded 30 in 3 out of 5 cases. The number of MMP-positive cells exceeded 40 in all cases in over 10 min.In the light of these results, the count of MMP-9 positive cells might be a useful marker in the wound-age estimation within 1 h in forensic setting. More research is required to collect more samples and to compare samples from the hyperacute phase with those from several days after injury.
Collapse
Affiliation(s)
| | | | | | | | - Yuko Ishida
- Wakayama Medical University, Wakayama, Japan
| | | |
Collapse
|
3
|
Putri IL, Alyssa A, Aisyah IF, Permatasari AAIY, Pramanasari R, Wungu CDK. The efficacy of topical oxygen therapy for wound healing: A meta-analysis of randomized controlled trials and observational studies. Int Wound J 2024; 21:e14960. [PMID: 38984473 PMCID: PMC11234139 DOI: 10.1111/iwj.14960] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 06/13/2024] [Accepted: 06/18/2024] [Indexed: 07/11/2024] Open
Abstract
In preclinical studies, topical oxygen treatment (TOT) was shown to enhance wound healing by applying supplemental oxygen topically to the surface of a moist wound at normobaric conditions. The objective of this systematic review and meta-analysis is to provide a thorough evaluation of published RCTs and observational studies that compare supplemental TOT with standard wound care. A total of 1077 studies were obtained from a variety of databases, including PubMed, ScienceDirect, Web of Science, ProQuest, Scopus, ClinicalTrials.gov, EU Clinical Trial Registers, and Preprints.org. The Jadad scale was employed to assess the reliability of RCT studies, while the Newcastle-Ottawa Scale (NOS) was employed to assess the quality of observational studies. Seven RCT studies (n = 692) and two controlled observational studies (n = 111) were analysed. The rate of healed wounds was 25.8% in the control group and 43.25% in the adjuvant TOT group, which shows the use of TOT significantly increased the number of healed wounds (RR = 1.77; 95% CI 1.18-2.64; p = 0.005). A significant decrease in the percentage of wound area was found in the TOT group in RCT studies (mean difference = 15.64; 95% CI 5.22-26.06; p = 0.003). In observational studies, the rate of healed wounds was 37.5% in the standard care group and 80.95% in the adjuvant TOT group, which shows a significant increase in the number of healed wounds in the adjuvant TOT group (RR = 2.15; 95% CI 1.46-3.15; p < 0.00001). Topical oxygen therapy is considered a great adjuvant therapy for chronic wound healing, particularly wounds with vascular compromise such as diabetic ulcers and pressure ulcers. Further studies on this topic are still needed as there are a lot of potential uses for this technology in various types of wounds.
Collapse
Affiliation(s)
- Indri Lakhsmi Putri
- Department of Plastic Reconstructive and Aesthetic Surgery, Faculty of Medicine, Airlangga University, Surabaya, Indonesia
- Plastic Reconstructive and Aesthetic Surgery Unit, Airlangga University Hospital, Surabaya, Indonesia
| | - Agnesia Alyssa
- Plastic Reconstructive and Aesthetic Surgery Unit, Airlangga University Hospital, Surabaya, Indonesia
| | - Imaniar Fitri Aisyah
- Department of Mechanical Engineering, Institut Teknologi Sepuluh Nopember, Surabaya, Indonesia
| | | | - Rachmaniar Pramanasari
- Plastic Reconstructive and Aesthetic Surgery Unit, Airlangga University Hospital, Surabaya, Indonesia
| | - Citrawati Dyah Kencono Wungu
- Department of Physiology and Medical Biochemistry, Faculty of Medicine, Airlangga University, Surabaya, Indonesia
| |
Collapse
|
4
|
Begum F, Manandhar S, Kumar G, Keni R, Sankhe R, Gurram PC, Beegum F, Teja MS, Nandakumar K, Shenoy RR. Dehydrozingerone promotes healing of diabetic foot ulcers: a molecular insight. J Cell Commun Signal 2023; 17:673-688. [PMID: 36280629 PMCID: PMC10409929 DOI: 10.1007/s12079-022-00703-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Accepted: 09/26/2022] [Indexed: 11/26/2022] Open
Abstract
INTRODUCTION One of the most common problems of diabetes are diabetic foot ulcers (DFUs). According to National Institute for Health, initial management of DFUs can decrease the complication of limb amputations and can improve the patient's quality of life. DFU treatment can be optimized with the help of multidisciplinary approach. Based on many studies, control of glucose levels in blood, antioxidant activity, reduction in cytokine levels, re-epithelialization, collagen formation, migration of fibroblasts are major phases involved in managing DFU. Dehydrozingerone (DHZ), has been known for its anti-inflammatory, antioxidant and wound healing properties. METHODOLOGY Three months high-fat diet and low dose of streptozotocin-induced type-II diabetic foot ulcer model was used to evaluate the effectiveness of dehydrozingerone. DHZ was given orally to rats for 15 days post wounding. TNF-α, IL-1β and antioxidant parameters like lipid peroxidation, glutathione reductase were estimated. Immunoblotting was done to investigate the effect of DHZ on the expression of ERK, JNK, HSP-27, P38, SIRT-1, NFκB, SMA, VEGF and MMP-9 in skin tissue. Histopathology was performed for analyzing DHZ effect on migration of fibroblasts, formation of epithelium, granulation tissue formation, angiogenesis and collagen formation. RESULTS DHZ decreased the levels of malondialdehyde, TNF-α, IL-1β and increased glutathione levels in wound tissue. Western blotting results suggested that DHZ activated ERK1/2/JNK/p38 signaling, increased expression of HSP-27, SIRT-1, VEGF, SMA thus facilitating the migration and proliferation of fibroblasts, angiogenesis and decreased inflammation. Masson Trichrome & histopathology showed an increase in collagen, epithelial and granulation tissue formation. CONCLUSION DHZ significantly accelerates the healing of diabetic foot ulcers in high fat diet fed plus low dose streptozotocin induced type-II diabetic Wistar rats.
Collapse
Affiliation(s)
- Farmiza Begum
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - Suman Manandhar
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - Gautam Kumar
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - Raghuvir Keni
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - Runali Sankhe
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - Prasada Chowdari Gurram
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - Fathima Beegum
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - Meka Sai Teja
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - Krishnadas Nandakumar
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - Rekha R Shenoy
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India.
| |
Collapse
|
5
|
Tassara E, Oliveri C, Vezzulli L, Cerrano C, Xiao L, Giovine M, Pozzolini M. 2D Collagen Membranes from Marine Demosponge Chondrosia reniformis (Nardo, 1847) for Skin-Regenerative Medicine Applications: An In Vitro Evaluation. Mar Drugs 2023; 21:428. [PMID: 37623709 PMCID: PMC10455478 DOI: 10.3390/md21080428] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 07/17/2023] [Accepted: 07/26/2023] [Indexed: 08/26/2023] Open
Abstract
Research in tissue engineering and regenerative medicine has an ever-increasing need for innovative biomaterials suitable for the production of wound-dressing devices and artificial skin-like substitutes. Marine collagen is one of the most promising biomaterials for the production of such devices. In this study, for the first time, 2D collagen membranes (2D-CMs) created from the extracellular matrix extract of the marine demosponge Chondrosia reniformis have been evaluated in vitro as possible tools for wound healing. Fibrillar collagen was extracted from a pool of fresh animals and used for the creation of 2D-CMs, in which permeability to water, proteins, and bacteria, and cellular response in the L929 fibroblast cell line were evaluated. The biodegradability of the 2D-CMs was also assessed by following their degradation in PBS and collagenase solutions for up to 21 days. Results showed that C. reniformis-derived membranes avoided liquid and protein loss in the regeneration region and also functioned as a strong barrier against bacteria infiltration into a wound. Gene expression analyses on fibroblasts stated that their interaction with 2D-CMs is able to improve fibronectin production without interfering with the regular extracellular matrix remodeling processes. These findings, combined with the high extraction yield of fibrillar collagen obtained from C. reniformis with a solvent-free approach, underline how important further studies on the aquaculture of this sponge could be for the sustainable production and biotechnological exploitation of this potentially promising and peculiar biopolymer of marine origin.
Collapse
Affiliation(s)
- Eleonora Tassara
- Department of Earth, Environment and Life Sciences (DISTAV), University of Genova, Via Pastore 3, 16132 Genova, Italy; (E.T.); (C.O.); (L.V.)
| | - Caterina Oliveri
- Department of Earth, Environment and Life Sciences (DISTAV), University of Genova, Via Pastore 3, 16132 Genova, Italy; (E.T.); (C.O.); (L.V.)
| | - Luigi Vezzulli
- Department of Earth, Environment and Life Sciences (DISTAV), University of Genova, Via Pastore 3, 16132 Genova, Italy; (E.T.); (C.O.); (L.V.)
| | - Carlo Cerrano
- Department of Life and Environmental Sciences, Polytechnic University of Marche, 60131 Ancona, Italy;
| | - Lian Xiao
- Faculty of Naval Medicine, Naval Medical University, Shanghai 200433, China;
| | - Marco Giovine
- Department of Earth, Environment and Life Sciences (DISTAV), University of Genova, Via Pastore 3, 16132 Genova, Italy; (E.T.); (C.O.); (L.V.)
| | - Marina Pozzolini
- Department of Earth, Environment and Life Sciences (DISTAV), University of Genova, Via Pastore 3, 16132 Genova, Italy; (E.T.); (C.O.); (L.V.)
| |
Collapse
|
6
|
Wang Y, Pi Y, Hu L, Peng Z, Hu H, Zhao J, Zhou Y, Wang D. Proteomic analysis of foot ulcer tissue reveals novel potential therapeutic targets of wound healing in diabetic foot ulcers. Comput Biol Med 2023; 159:106858. [PMID: 37087778 DOI: 10.1016/j.compbiomed.2023.106858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 02/13/2023] [Accepted: 03/30/2023] [Indexed: 04/25/2023]
Abstract
Foot ulcers are a common complication of diabetes mellitus, which is associated with high morbidity and mortality among diabetic patients. The present study aims to investigate novel wound healing pathways in diabetic foot ulcers (DFU) through proteomics and a network pharmacology analysis. Tandem mass tag (TMT) labeled quantitative proteomics method was performed to evaluate the protein expression profile in wound tissues from healthy controls (HC) and DFU. Kyoto Encyclopedia of Genes (KEGG) and Genomes enrichment analysis (GO) was conducted based on differentially expressed proteins (DEPs) to discover the potential pathways associated with DFU. Western blot analysis was used to confirm the probable DFU-related targets. Proteomics analysis discovered 509 DEPs (248 upregulated and 261 downregulated proteins). Go and KEGG further evaluated the DEPs to discover the DFU-related pathways. According to network pharmacology study, three main targets (metalloproteinase 9 (MMP9), Fatty acid-binding protein 5 (FABP5), and integrin subunit alpha M (ITGAM)) play crucial roles in signaling pathways. Staphylococcus aureus infection and leukocyte transendothelial migration pathways significantly enriched in DFU. In addition, it was confirmed that three critical targets were elevated in diabetes mouse wound tissues. The study confirmed the presence of protein alterations in the wound-healing process of DFU mice and may provide fresh insights into the molecular mechanisms driving DFU.
Collapse
Affiliation(s)
- Yanling Wang
- The First Hospital of Changsha, Changsha, 410005, China; The Affiliated Changsha Hospital of Xiangya School of Medicine, Central South University, Changsha, 410008, China; Changsha Maternal and Child Health Hospital Affiliated to Hunan Normal University, Changsha, 410007, China
| | - Yinzhen Pi
- The First Hospital of Changsha, Changsha, 410005, China; The Affiliated Changsha Hospital of Xiangya School of Medicine, Central South University, Changsha, 410008, China
| | - Li Hu
- The First Hospital of Changsha, Changsha, 410005, China; The Affiliated Changsha Hospital of Xiangya School of Medicine, Central South University, Changsha, 410008, China
| | - Zhihong Peng
- National & Local Joint Engineering Research Center of High-Throughput Drug Screening Technology, College of Health Science and Engineering, Hubei University, Wuhan, China
| | - Hanyang Hu
- Department of Histology and Embryology, School of Basic Medical Sciences, Wuhan University, Wuhan, 430071, China
| | - Jinjin Zhao
- The First Hospital of Changsha, Changsha, 410005, China; The Affiliated Changsha Hospital of Xiangya School of Medicine, Central South University, Changsha, 410008, China
| | - Yun Zhou
- The First Hospital of Changsha, Changsha, 410005, China; The Affiliated Changsha Hospital of Xiangya School of Medicine, Central South University, Changsha, 410008, China
| | - Dongbo Wang
- The First Hospital of Changsha, Changsha, 410005, China; The Affiliated Changsha Hospital of Xiangya School of Medicine, Central South University, Changsha, 410008, China.
| |
Collapse
|
7
|
Obesity and Wound Healing: Focus on Mesenchymal Stem Cells. Life (Basel) 2023; 13:life13030717. [PMID: 36983872 PMCID: PMC10059997 DOI: 10.3390/life13030717] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 02/20/2023] [Accepted: 03/03/2023] [Indexed: 03/09/2023] Open
Abstract
Chronic wounds represent nowadays a major challenge for both clinicians and researchers in the regenerative setting. Obesity represents one of the major comorbidities in patients affected by chronic ulcers and therefore diverse studies aimed at assessing possible links between these two morbid conditions are currently ongoing. In particular, adipose tissue has recently been described as having metabolic and endocrine functions rather than serving as a mere fat storage deposit. In this setting, adipose-derived stem cells, a peculiar subset of mesenchymal stromal/stem cells (MSCs) located in adipose tissue, have been demonstrated to possess regenerative and immunological functions with a key role in regulating both adipocyte function and skin regeneration. The aim of the present review is to give an overview of the most recent findings on wound healing, with a special focus on adipose tissue biology and obesity.
Collapse
|
8
|
Zhang X, Wei P, Yang Z, Liu Y, Yang K, Cheng Y, Yao H, Zhang Z. Current Progress and Outlook of Nano-Based Hydrogel Dressings for Wound Healing. Pharmaceutics 2022; 15:pharmaceutics15010068. [PMID: 36678696 PMCID: PMC9864871 DOI: 10.3390/pharmaceutics15010068] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 12/21/2022] [Accepted: 12/22/2022] [Indexed: 12/28/2022] Open
Abstract
Wound dressing is an important tool for wound management. Designing wound dressings by combining various novel materials and drugs to optimize the peri-wound environment and promote wound healing is a novel concept. Hydrogels feature good ductility, high water content, and favorable oxygen transport, which makes them become some of the most promising materials for wound dressings. In addition, nanomaterials exhibit superior biodegradability, biocompatibility, and colloidal stability in wound healing and can play a role in promoting healing through their nanoscale properties or as carriers of other drugs. By combining the advantages of both technologies, several outstanding and efficient wound dressings have been developed. In this paper, we classify nano-based hydrogel dressings into four categories: hydrogel dressings loaded with a nanoantibacterial drug; hydrogel dressings loaded with oxygen-delivering nanomedicines; hydrogel dressings loaded with nanonucleic acid drugs; and hydrogel dressings loaded with other nanodelivered drugs. The design ideas, advantages, and challenges of these nano-based hydrogel wound dressings are reviewed and analyzed. Finally, we envisaged possible future directions for wound dressings in the context of relevant scientific and technological advances, which we hope will inform further research in wound management.
Collapse
Affiliation(s)
- Xiao Zhang
- Department of General Surgery, Beijing Friendship Hospital, Capital Medical University, Beijing 100050, China
- National Clinical Research Center for Digestive Diseases, Beijing 100050, China
| | - Pengyu Wei
- Department of General Surgery, Beijing Friendship Hospital, Capital Medical University, Beijing 100050, China
- National Clinical Research Center for Digestive Diseases, Beijing 100050, China
| | - Zhengyang Yang
- Department of General Surgery, Beijing Friendship Hospital, Capital Medical University, Beijing 100050, China
- National Clinical Research Center for Digestive Diseases, Beijing 100050, China
| | - Yishan Liu
- Department of General Surgery, Beijing Friendship Hospital, Capital Medical University, Beijing 100050, China
| | - Kairui Yang
- Jun Skincare Co., Ltd., Jiangsu Life Science & Technology Innovation Park, Nanjing 210093, China
- School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Yuhao Cheng
- Jun Skincare Co., Ltd., Jiangsu Life Science & Technology Innovation Park, Nanjing 210093, China
- State Key Laboratory of Pharmaceutical Biotechnology, Medical School and School of Life Sciences, Nanjing University, Nanjing 210093, China
- Correspondence: (Y.C.); (H.Y.)
| | - Hongwei Yao
- Department of General Surgery, Beijing Friendship Hospital, Capital Medical University, Beijing 100050, China
- National Clinical Research Center for Digestive Diseases, Beijing 100050, China
- Correspondence: (Y.C.); (H.Y.)
| | - Zhongtao Zhang
- Department of General Surgery, Beijing Friendship Hospital, Capital Medical University, Beijing 100050, China
- National Clinical Research Center for Digestive Diseases, Beijing 100050, China
| |
Collapse
|
9
|
Sparks HD, Mandla S, Vizely K, Rosin N, Radisic M, Biernaskie J. Application of an instructive hydrogel accelerates re-epithelialization of xenografted human skin wounds. Sci Rep 2022; 12:14233. [PMID: 35987767 PMCID: PMC9392759 DOI: 10.1038/s41598-022-18204-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Accepted: 08/08/2022] [Indexed: 11/27/2022] Open
Abstract
Poor quality (eg. excessive scarring) or delayed closure of skin wounds can have profound physical and pyschosocial effects on patients as well as pose an enormous economic burden on the healthcare system. An effective means of improving both the rate and quality of wound healing is needed for all patients suffering from skin injury. Despite wound care being a multi-billion-dollar industry, effective treatments aimed at rapidly restoring the skin barrier function or mitigating the severity of fibrotic scar remain elusive. Previously, a hydrogel conjugated angiopoietin-1 derived peptide (QHREDGS; Q-peptide) was shown to increase keratinocyte migration and improve wound healing in diabetic mice. Here, we evaluated the effect of this Q-Peptide Hydrogel on human skin wound healing using a mouse xenograft model. First, we confirmed that the Q-Peptide Hydrogel promoted the migration of adult human keratinocytes and modulated their cytokine profile in vitro. Next, utilizing our human to mouse split-thickness skin xenograft model, we found improved healing of wounded human epidermis following Q-Peptide Hydrogel treatment. Importantly, Q-Peptide Hydrogel treatment enhanced this wound re-epithelialization via increased keratinocyte migration and survival, rather than a sustained increase in proliferation. Overall, these data provide strong evidence that topical application of QHREDGS peptide-modified hydrogels results in accelerated wound closure that may lead to improved outcomes for patients.
Collapse
Affiliation(s)
- Holly D Sparks
- Department of Comparative Biology and Experimental Medicine, Faculty of Veterinary Medicine, University of Calgary, Calgary, AB, T2N 4N1, Canada
| | - Serena Mandla
- Toronto General Research Institute, University of Toronto, Toronto, Canada
- Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, Canada
| | - Katrina Vizely
- Toronto General Research Institute, University of Toronto, Toronto, Canada
- Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, Canada
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, Canada
| | - Nicole Rosin
- Department of Comparative Biology and Experimental Medicine, Faculty of Veterinary Medicine, University of Calgary, Calgary, AB, T2N 4N1, Canada
| | - Milica Radisic
- Toronto General Research Institute, University of Toronto, Toronto, Canada.
- Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, Canada.
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, Canada.
| | - Jeff Biernaskie
- Department of Comparative Biology and Experimental Medicine, Faculty of Veterinary Medicine, University of Calgary, Calgary, AB, T2N 4N1, Canada.
- Alberta Children's Hospital Research Institute, Calgary, AB, Canada.
- Hotchkiss Brain Institute, Calgary, AB, Canada.
| |
Collapse
|
10
|
Kim HS, Hwang HJ, Kim HJ, Choi Y, Lee D, Jung HH, Do SH. Effect of Decellularized Extracellular Matrix Bioscaffolds Derived from Fibroblasts on Skin Wound Healing and Remodeling. Front Bioeng Biotechnol 2022; 10:865545. [PMID: 35845393 PMCID: PMC9277482 DOI: 10.3389/fbioe.2022.865545] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Accepted: 03/22/2022] [Indexed: 11/13/2022] Open
Abstract
The mammalian tissue extracellular matrix (ECM) has been used as a scaffold to facilitate the repair and reconstruction of numerous tissues. However, the material properties of decellularized ECM (dECM) from in vitro cell cultures and the effect of these properties on wound remodeling remain unclear. To elucidate its biological activity, we extracted dECM from human lung fibroblasts, fabricated it into a patch, and applied it to a full-thickness skin wound. The fibroblast-derived dECM (fdECM) maintained the content of collagen Ⅰ, collagen Ⅳ, and elastin, and the extraction process did not damage its critical growth factors. The fdECM-conjugated collagen patch (COL-fdECM) facilitated wound contraction and angiogenesis in the proliferative phase when applied to the in vivo full-thickness skin wound model. Moreover, the COL-fdECM treated wound showed increased regeneration of the epidermal barrier function, mature collagen, hair follicle, and subepidermal nerve plexus, suggesting qualitative skin remodeling. This therapeutic efficacy was similarly observed when applied to the diabetic ulcer model. fdECM was shown to help remodel the tissue by regulating fibroblast growth factors, matrix metalloproteinases, and tissue inhibitors of metalloproteinases via the p38 and ERK signaling pathways in an in vitro experiment for understanding the underlying mechanism. These results provide a biological basis for cell-derived ECM as a multi-functional biomaterial applicable to various diseases.
Collapse
Affiliation(s)
- Hyo-Sung Kim
- Department of Veterinary Clinical Pathology, College of Veterinary Medicine, Konkuk University, Seoul, South Korea
| | - Hyun-Jeong Hwang
- Department of Veterinary Clinical Pathology, College of Veterinary Medicine, Konkuk University, Seoul, South Korea
| | - Han-Jun Kim
- Department of Veterinary Clinical Pathology, College of Veterinary Medicine, Konkuk University, Seoul, South Korea
- Terasaki Institute for Biomedical Innovation, Los Angeles, CA, United States
| | - Yeji Choi
- Advanced Medical Device R&D Center, HansBiomed Co. Ltd., Seoul, South Korea
| | - Daehyung Lee
- Advanced Medical Device R&D Center, HansBiomed Co. Ltd., Seoul, South Korea
| | - Hong-Hee Jung
- Advanced Medical Device R&D Center, HansBiomed Co. Ltd., Seoul, South Korea
| | - Sun Hee Do
- Department of Veterinary Clinical Pathology, College of Veterinary Medicine, Konkuk University, Seoul, South Korea
- *Correspondence: Sun Hee Do,
| |
Collapse
|
11
|
Özdemir Bahadir A, Balcioğlu BK, Serhatli M, Işik Ş, Erdağ B. Identifying specific matrix metalloproteinase-2-inhibiting peptides through phage display-based subtractive screening. Turk J Biol 2022; 45:674-682. [PMID: 35068948 PMCID: PMC8733953 DOI: 10.3906/biy-2105-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Accepted: 09/27/2021] [Indexed: 11/03/2022] Open
Abstract
Gelatinases A and B, which are members of the matrix metalloproteinase (MMP) family, play essential roles in cancer development and metastasis, as they can break down basal membranes. Therefore, the determination and inhibition of gelatinases is essential for cancer treatment. Peptides that can specifically block each gelatinase may, therefore, be useful for cancer treatment. In this study, subtractive panning was carried out using a 12-mer peptide library to identify peptides that block gelatinase A activity (MMP-2), which is a key pharmacological target. Using this method, 17 unique peptide sequences were determined. MMP-2 inhibition by these peptides was evaluated through zymogram analyses, which revealed that four peptides inhibited MMP-2 activity by at least 65%. These four peptides were synthesized and used for in vitro wound healing using human umbilical vein endothelial cells, and two peptides, AOMP12 and AOMP29, were found to inhibit wound healing by 40%. These peptides are, thus, potential candidates for MMP-2 inhibition for cancer treatment. Furthermore, our findings suggest that our substractive biopanning screening method is a suitable strategy for identifying peptides that selectively inhibit MMP-2.
Collapse
Affiliation(s)
- Aylin Özdemir Bahadir
- Genetic Engineering and Biotechnology Institute, Marmara Research Center, TÜBİTAK, Kocaeli Turkey
| | - Bertan Koray Balcioğlu
- Genetic Engineering and Biotechnology Institute, Marmara Research Center, TÜBİTAK, Kocaeli Turkey
| | - Müge Serhatli
- Genetic Engineering and Biotechnology Institute, Marmara Research Center, TÜBİTAK, Kocaeli Turkey
| | - Şeyma Işik
- Department of Medical Biotechnology Institute of Health Sciences Acıbadem Mehmet Ali Aydınlar University, İstanbul Turkey
| | - Berrin Erdağ
- Department of Medical Biology, Basic Medical Sciences, İstanbul Aydın University, İs-tanbul Turkey
| |
Collapse
|
12
|
Bist D, Pawde AM, Amarpal, Kinjavdekar P, Mukherjee R, Singh KP, Verma MR, Sharun K, Kumar A, Dubey PK, Mohan D, Verma A, Sharma GT. Evaluation of canine bone marrow-derived mesenchymal stem cells for experimental full-thickness cutaneous wounds in a diabetic rat model. Expert Opin Biol Ther 2021; 21:1655-1664. [PMID: 34620044 DOI: 10.1080/14712598.2022.1990260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
BACKGROUND The wound healing potential of canine bone marrow-derived mesenchymal stem cells (BMSCs) was evaluated in the excisional wound of streptozotocin-induced diabetic rats. RESEARCH DESIGN AND METHODS Xenogenic BMSCs were collected aseptically from the iliac crest of healthy canine donors under general anesthesia. Full-thickness experimental wounds (20 × 20 mm2) on the dorsum of forty-eight adult healthy Wistar white rats. The wounds were assigned randomly to three treatment groups: PBS (Group A) or BMSCs (Group B) injected into the wound margins on days 0, 7, and 14 or BMSCs (Group C) injected into the wound margins on days 7, 14, and 21 post-wounding. The degree of wound healing was evaluated based on macroscopical, hemato-biochemical, histopathological, and histochemical parameters. RESULTS The results indicated granulation tissue formation with reduced exudation and peripheral swelling in the treatment groups compared to the control group A. Similarly, the degree of wound contraction was significantly higher in groups B and C animals than group A on days 14 and 21 post-wounding. The transplantation of BMSCs resulted in early drying of wounds, granulation tissue appearance, and enhanced cosmetic appearance. CONCLUSION The histopathological, histochemical, and gross findings suggested the therapeutic potential of xenogeneic mesenchymal stem cell therapy in managing diabetic wounds. ABBREVIATIONS BMSCs-bone marrow-derived mesenchymal stem cells, PBS-phosphate-buffered saline, MSCs-mesenchymal stem cells, FBS-fetal bovine serum, ECM-extracellular matrix.
Collapse
Affiliation(s)
- Deepika Bist
- Division of Surgery, ICAR-Indian Veterinary Research Institute, Bareilly, Uttar Pradesh, India
| | - A M Pawde
- Division of Surgery, ICAR-Indian Veterinary Research Institute, Bareilly, Uttar Pradesh, India
| | - Amarpal
- Division of Surgery, ICAR-Indian Veterinary Research Institute, Bareilly, Uttar Pradesh, India
| | - Prakash Kinjavdekar
- Division of Surgery, ICAR-Indian Veterinary Research Institute, Bareilly, Uttar Pradesh, India
| | - Reena Mukherjee
- Division of Medicine, ICAR-Indian Veterinary Research Institute, Bareilly, Uttar Pradesh, India
| | - K P Singh
- Division of Pathology, ICAR-Indian Veterinary Research Institute, Bareilly, Uttar Pradesh, India
| | - Med Ram Verma
- Division of Livestock Economics, Statistics and Information Technology, ICAR-Indian Veterinary Research Institute, Bareilly, Uttar Pradesh, India
| | - Khan Sharun
- Division of Surgery, ICAR-Indian Veterinary Research Institute, Bareilly, Uttar Pradesh, India
| | - Amit Kumar
- Animal Genetics Division, ICAR-Indian Veterinary Research Institute, Bareilly, Uttar Pradesh, India
| | - Pawan K Dubey
- Centre for Genetic Disorders, Institute of Science, Banaras Hindu University, Varanasi, India
| | - Divya Mohan
- Veterinary Surgeon, Animal Husbandry Department, Government of Kerala, India
| | - Amit Verma
- Veterinary Officer, Veterinary Hospital, Sirmour, Himachal Pradesh, India
| | - G Taru Sharma
- Division of Physiology & Climatology, ICAR-Indian Veterinary Research Institute, Bareilly, Uttar Pradesh, India
| |
Collapse
|
13
|
Bounds K, Colmer-Hamood JA, Myntti M, Jeter RM, Hamood AN. The influence of a biofilm-dispersing wound gel on the wound healing process. Int Wound J 2021; 19:553-572. [PMID: 34263993 PMCID: PMC8874046 DOI: 10.1111/iwj.13653] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2021] [Revised: 06/14/2021] [Accepted: 06/21/2021] [Indexed: 01/02/2023] Open
Abstract
Topical antimicrobials that reduce the bacterial bioburden within a chronically‐infected wound may have helpful or harmful effects on the healing process. We used murine models of full‐thickness skin wounds to determine the effects of the novel biofilm‐dispersing wound gel (BDWG) and its gel base on the healing of uninfected wounds. The rate of wound closure over 19 days was comparable among the BDWG‐treated (BT) wounds and the controls. Compared with the controls, histology of the BT wounds showed formation of a stable blood clot at day 1, more neovascularisation and reepithelialisation at day 3, and more organised healing at day 7. Fluorescence‐activated cell sorting analysis showed a lower percentage of neutrophils in wounded tissues of the BT group at days 1 and 3, and significantly more M2 macrophages at day 3. Levels of proinflammatory cytokines and chemokines were increased over the uninjured baseline within the wounds of all treatment groups but the levels were significantly lower in the BT group at day 1, modulating the inflammatory response. Our results suggest that BDWG does not interfere with the wound healing process and may enhance it by lowering inflammation and allowing transition to the proliferative stage of wound healing by day 3.
Collapse
Affiliation(s)
- Kayla Bounds
- Department of Biological Sciences, Texas Tech University, Lubbock, Texas, USA.,Department of Immunology and Molecular Microbiology, Texas Tech University Health Sciences Center, Lubbock, Texas, USA
| | - Jane A Colmer-Hamood
- Department of Immunology and Molecular Microbiology, Texas Tech University Health Sciences Center, Lubbock, Texas, USA.,Department of Medical Education, Texas Tech University Health Sciences Center, Lubbock, Texas, USA
| | - Matthew Myntti
- Research and Development, Next Science LLC, Jacksonville, Florida, USA
| | - Randall M Jeter
- Department of Biological Sciences, Texas Tech University, Lubbock, Texas, USA
| | - Abdul N Hamood
- Department of Immunology and Molecular Microbiology, Texas Tech University Health Sciences Center, Lubbock, Texas, USA.,Department of Surgery, Texas Tech University Health Sciences Center, Lubbock, Texas, USA
| |
Collapse
|
14
|
Cioni P, Gabellieri E, Campanini B, Bettati S, Raboni S. Use of Exogenous Enzymes in Human Therapy: Approved Drugs and Potential Applications. Curr Med Chem 2021; 29:411-452. [PMID: 34259137 DOI: 10.2174/0929867328666210713094722] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 03/05/2021] [Accepted: 03/17/2021] [Indexed: 11/22/2022]
Abstract
The development of safe and efficacious enzyme-based human therapies has increased greatly in the last decades, thanks to remarkable advances in the understanding of the molecular mechanisms responsible for different diseases, and the characterization of the catalytic activity of relevant exogenous enzymes that may play a remedial effect in the treatment of such pathologies. Several enzyme-based biotherapeutics have been approved by FDA (the U.S. Food and Drug Administration) and EMA (the European Medicines Agency) and many are undergoing clinical trials. Apart from enzyme replacement therapy in human genetic diseases, which is not discussed in this review, approved enzymes for human therapy find applications in several fields, from cancer therapy to thrombolysis and the treatment, e.g., of clotting disorders, cystic fibrosis, lactose intolerance and collagen-based disorders. The majority of therapeutic enzymes are of microbial origin, the most convenient source due to fast, simple and cost-effective production and manipulation. The use of microbial recombinant enzymes has broadened prospects for human therapy but some hurdles such as high immunogenicity, protein instability, short half-life and low substrate affinity, still need to be tackled. Alternative sources of enzymes, with reduced side effects and improved activity, as well as genetic modification of the enzymes and novel delivery systems are constantly searched. Chemical modification strategies, targeted- and/or nanocarrier-mediated delivery, directed evolution and site-specific mutagenesis, fusion proteins generated by genetic manipulation are the most explored tools to reduce toxicity and improve bioavailability and cellular targeting. This review provides a description of exogenous enzymes that are presently employed for the therapeutic management of human diseases with their current FDA/EMA-approved status, along with those already experimented at the clinical level and potential promising candidates.
Collapse
Affiliation(s)
- Patrizia Cioni
- Institute of Biophysics, National Research Council, Via Moruzzi 1, 56124 Pisa. Italy
| | - Edi Gabellieri
- Institute of Biophysics, National Research Council, Via Moruzzi 1, 56124 Pisa. Italy
| | - Barbara Campanini
- Department of Food and Drug, University of Parma, Parco Area delle Scienze 23/A, 43124 Parma. Italy
| | - Stefano Bettati
- Institute of Biophysics, National Research Council, Via Moruzzi 1, 56124 Pisa. Italy
| | - Samanta Raboni
- Institute of Biophysics, National Research Council, Via Moruzzi 1, 56124 Pisa. Italy
| |
Collapse
|
15
|
Ting HK, Chen CL, Meng E, Cherng JH, Chang SJ, Kao CC, Yang MH, Leung FS, Wu ST. Inflammatory Regulation by TNF-α-Activated Adipose-Derived Stem Cells in the Human Bladder Cancer Microenvironment. Int J Mol Sci 2021; 22:ijms22083987. [PMID: 33924332 PMCID: PMC8069705 DOI: 10.3390/ijms22083987] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 04/07/2021] [Accepted: 04/09/2021] [Indexed: 12/21/2022] Open
Abstract
Mesenchymal stem cells (MSCs), such as adipose-derived stem cells (ADSCs), have the most impressive ability to reduce inflammation through paracrine growth factors and cytokines that participate in inflammation. Tumor necrosis factor (TNF)-α bioactivity is a prerequisite in several inflammatory and autoimmune disease models. This study investigated the effects of TNF-α stimulate on ADSCs in the tumor microenvironment. The RNAseq analysis and cytokines assay demonstrated that TNF-α stimulated ADSCs proliferation and pro-inflammatory genes that correlated to leukocytes differentiation were upregulated. We found that upregulation of TLR2 or PTGS2 toward to IRF7 gene-associated with immunomodulatory and antitumor pathway under TNF-α treatment. In TNF-α-treated ADSCs cultured with the bladder cancer (BC) cell medium, the results showed that apoptosis ratio and OCT-4 and TLR2 genes which maintained the self-renewal ability of stem cells were decreased. Furthermore, the cell survival regulation genes including TRAF1, NF-kB, and IRF7 were upregulated in TNF-α-treated ADSCs. Additionally, these genes have not been upregulated in BC cell medium. A parallel study showed that tumor progressing genes were downregulated in TNF-α-treated ADSCs. Hence, the study suggests that TNF-α enhances the immunomodulatory potential of ADSCs during tumorigenesis and provides insight into highly efficacious MSC-based therapeutic options for BC.
Collapse
Affiliation(s)
- Hui-Kung Ting
- Division of Urology, Department of Surgery, Tri-Service General Hospital, National Defense Medical Center, Taipei 114, Taiwan; (H.-K.T.); (C.-L.C.); (E.M.); (C.-C.K.); (M.-H.Y.)
| | - Chin-Li Chen
- Division of Urology, Department of Surgery, Tri-Service General Hospital, National Defense Medical Center, Taipei 114, Taiwan; (H.-K.T.); (C.-L.C.); (E.M.); (C.-C.K.); (M.-H.Y.)
| | - En Meng
- Division of Urology, Department of Surgery, Tri-Service General Hospital, National Defense Medical Center, Taipei 114, Taiwan; (H.-K.T.); (C.-L.C.); (E.M.); (C.-C.K.); (M.-H.Y.)
- Department and Graduate Institute of Biochemistry, National Defense Medical Center, Taipei 114, Taiwan
| | - Juin-Hong Cherng
- Department and Graduate Institute of Biology and Anatomy, National Defense Medical Center, Taipei 114, Taiwan;
- Department of Gerontological Health Care, National Taipei University of Nursing and Health Sciences, Taipei 112, Taiwan
| | - Shu-Jen Chang
- Laboratory of Adult Stem Cell and Tissue Regeneration, National Defense Medical Center, Taipei 114, Taiwan;
| | - Chien-Chang Kao
- Division of Urology, Department of Surgery, Tri-Service General Hospital, National Defense Medical Center, Taipei 114, Taiwan; (H.-K.T.); (C.-L.C.); (E.M.); (C.-C.K.); (M.-H.Y.)
| | - Ming-Hsin Yang
- Division of Urology, Department of Surgery, Tri-Service General Hospital, National Defense Medical Center, Taipei 114, Taiwan; (H.-K.T.); (C.-L.C.); (E.M.); (C.-C.K.); (M.-H.Y.)
| | - Fang-Shiuan Leung
- College of Biological Science, University of California-Davis, Davis, CA 95616, USA;
| | - Sheng-Tang Wu
- Division of Urology, Department of Surgery, Tri-Service General Hospital, National Defense Medical Center, Taipei 114, Taiwan; (H.-K.T.); (C.-L.C.); (E.M.); (C.-C.K.); (M.-H.Y.)
- Correspondence: ; Tel.: +886-2-87927169; Fax: +886-2-87927172
| |
Collapse
|
16
|
Khurana A, Sayed N, Allawadhi P, Weiskirchen R. It's all about the spaces between cells: role of extracellular matrix in liver fibrosis. ANNALS OF TRANSLATIONAL MEDICINE 2021; 9:728. [PMID: 33987426 PMCID: PMC8106070 DOI: 10.21037/atm-20-2948] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/28/2020] [Accepted: 07/22/2020] [Indexed: 12/19/2022]
Abstract
Liver fibrosis is one of the leading complications of a variety of chronic liver disorders, including the nonalcoholic fatty liver disease, nonalcoholic steatohepatitis, liver cirrhosis and liver failure. The progression of liver fibrosis is driven by chronic inflammation, which activates the secretory fibroblasts to the myofibroblast phenotype. These specialized liver cells are called as hepatic stellate cells (HSCs). The excessive extracellular matrix (ECM) secretion creates a large number of complications. Fibrosis is the result of imbalance between the matrix synthesizing and matrix degrading factors. The major ECM proteins include the matrix metalloproteinases (MMPs), tissue inhibitor of metalloproteinases (TIMPs), lysyl oxidases (LOX), lysyl oxidase-like (LOXLs) enzymes, tenascins and others. These ECM proteins present novel avenues for the therapeutics of liver fibrosis. The current review highlights the major role played by these critical matrix proteins in liver fibrosis. Further, some of the targeted formulations used against these proteins are discussed and suggestions are provided to select the course of research for successful clinical translation of basic research findings for the amelioration of liver fibrosis.
Collapse
Affiliation(s)
- Amit Khurana
- Center for Biomedical Engineering (CBME), Indian Institute of Technology (IIT), Hauz Khas, New Delhi, India
- Institute of Molecular Pathobiochemistry, Experimental Gene Therapy and Clinical Chemistry (IFMPEGKC), RWTH University Hospital Aachen, Aachen, Germany
| | - Nilofer Sayed
- Department of Veterinary Pharmacology and Toxicology, College of Veterinary Science, Rajendranagar, Hyderabad, Telangana, India
| | - Prince Allawadhi
- Department of Biotechnology, Indian Institute of Technology (IIT), Roorkee, Uttarakhand, India
| | - Ralf Weiskirchen
- Institute of Molecular Pathobiochemistry, Experimental Gene Therapy and Clinical Chemistry (IFMPEGKC), RWTH University Hospital Aachen, Aachen, Germany
| |
Collapse
|
17
|
Yuan J, Zhang Y, Zhang Y, Mo Y, Zhang Q. Effects of metal nanoparticles on tight junction-associated proteins via HIF-1α/miR-29b/MMPs pathway in human epidermal keratinocytes. Part Fibre Toxicol 2021; 18:13. [PMID: 33740985 PMCID: PMC7980342 DOI: 10.1186/s12989-021-00405-2] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Accepted: 03/08/2021] [Indexed: 12/21/2022] Open
Abstract
Background The increasing use of metal nanoparticles in industry and biomedicine raises the risk for unintentional exposure. The ability of metal nanoparticles to penetrate the skin ranges from stopping at the stratum corneum to passing below the dermis and entering the systemic circulation. Despite the potential health risks associated with skin exposure to metal nanoparticles, the mechanisms underlying the toxicity of metal nanoparticles on skin keratinocytes remain unclear. In this study, we proposed that exposure of human epidermal keratinocytes (HaCaT) to metal nanoparticles, such as nickel nanoparticles, dysregulates tight-junction associated proteins by interacting with the HIF-1α/miR-29b/MMPs axis. Methods We performed dose-response and time-response studies in HaCaT cells to observe the effects of Nano-Ni or Nano-TiO2 on the expression and activity of MMP-2 and MMP-9, and on the expression of tight junction-associated proteins, TIMP-1, TIMP-2, miR-29b, and HIF-1α. In the dose-response studies, cells were exposed to 0, 10, or 20 μg/mL of Nano-Ni or Nano-TiO2 for 24 h. In the time-response studies, cells were exposed to 20 μg/mL of Nano-Ni for 12, 24, 48, or 72 h. After treatment, cells were collected to either assess the expression of mRNAs and miR-29b by real-time PCR or to determine the expression of tight junction-associated proteins and HIF-1α nuclear accumulation by Western blot and/or immunofluorescent staining; the conditioned media were collected to evaluate the MMP-2 and MMP-9 activities by gelatin zymography assay. To further investigate the mechanisms underlying Nano-Ni-induced dysregulation of tight junction-associated proteins, we employed a HIF-1α inhibitor, CAY10585, to perturb HIF-1α accumulation in one experiment, and transfected a miR-29b-3p mimic into the HaCaT cells before Nano-Ni exposure in another experiment. Cells and conditioned media were collected, and the expression and activities of MMPs and the expression of tight junction-associated proteins were determined as described above. Results Exposure of HaCaT cells to Nano-Ni resulted in a dose-dependent increase in the expression of MMP-2, MMP-9, TIMP-1, and TIMP-2 and the activities of MMP-2 and MMP-9. However, exposure of cells to Nano-TiO2 did not cause these effects. Nano-Ni caused a dose-dependent decrease in the expression of miR-29b and tight junction-associated proteins, such as ZO-1, occludin, and claudin-1, while Nano-TiO2 did not. Nano-Ni also caused a dose-dependent increase in HIF-1α nuclear accumulation. The time-response studies showed that Nano-Ni caused significantly increased expressions of MMP-2 at 24 h, MMP-9 at 12, 24, and 48 h, TIMP-1 from 24 to 72 h, and TIMP-2 from 12 to 72 h post-exposure. The expression of miR-29b and tight junction-associated proteins such as ZO-1, occludin, and claudin-1 decreased as early as 12 h post-exposure, and their levels declined gradually over time. Pretreatment of cells with a HIF-1α inhibitor, CAY10585, abolished Nano-Ni-induced miR-29b down-regulation and MMP-2/9 up-regulation. Introduction of a miR-29b-3p mimic into HaCaT cells by transfection before Nano-Ni exposure ameliorated Nano-Ni-induced increased expression and activity of MMP-2 and MMP-9 and restored Nano-Ni-induced down-regulation of tight junction-associated proteins. Conclusion Our study herein demonstrated that exposure of human epidermal keratinocytes to Nano-Ni caused increased HIF-1α nuclear accumulation and increased transcription and activity of MMP-2 and MMP-9 and down-regulation of miR-29b and tight junction-associated proteins. Nano-Ni-induced miR-29b down-regulation was through Nano-Ni-induced HIF-1α nuclear accumulation. Restoration of miR-29b level by miR-29b-3p mimic transfection abolished Nano-Ni-induced MMP-2 and MMP-9 activation and down-regulation of tight junction-associated proteins. In summary, our results demonstrated that Nano-Ni-induced dysregulation of tight junction-associated proteins in skin keratinocytes was via HIF-1α/miR-29b/MMPs pathway. Supplementary Information The online version contains supplementary material available at 10.1186/s12989-021-00405-2.
Collapse
Affiliation(s)
- Jiali Yuan
- Department of Environmental and Occupational Health Sciences, School of Public Health and Information Sciences, University of Louisville, 485 E. Gray Street, Louisville, KY, 40202, USA
| | - Yue Zhang
- Department of Environmental and Occupational Health Sciences, School of Public Health and Information Sciences, University of Louisville, 485 E. Gray Street, Louisville, KY, 40202, USA
| | - Yuanbao Zhang
- Department of Environmental and Occupational Health Sciences, School of Public Health and Information Sciences, University of Louisville, 485 E. Gray Street, Louisville, KY, 40202, USA
| | - Yiqun Mo
- Department of Environmental and Occupational Health Sciences, School of Public Health and Information Sciences, University of Louisville, 485 E. Gray Street, Louisville, KY, 40202, USA
| | - Qunwei Zhang
- Department of Environmental and Occupational Health Sciences, School of Public Health and Information Sciences, University of Louisville, 485 E. Gray Street, Louisville, KY, 40202, USA.
| |
Collapse
|
18
|
Nikitovic D. The role of extracellular matrix in allergic contact dermatitis pathogenesis. TOXICOLOGICAL RISK ASSESSMENT AND MULTI-SYSTEM HEALTH IMPACTS FROM EXPOSURE 2021:205-214. [DOI: 10.1016/b978-0-323-85215-9.00012-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
|
19
|
Bayona-Serrano JD, Viala VL, Rautsaw RM, Schramer TD, Barros-Carvalho GA, Nishiyama MY, Freitas-de-Sousa LA, Moura-da-Silva AM, Parkinson CL, Grazziotin FG, Junqueira-de-Azevedo ILM. Replacement and Parallel Simplification of Nonhomologous Proteinases Maintain Venom Phenotypes in Rear-Fanged Snakes. Mol Biol Evol 2020; 37:3563-3575. [PMID: 32722789 PMCID: PMC8525196 DOI: 10.1093/molbev/msaa192] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/29/2023] Open
Abstract
Novel phenotypes are commonly associated with gene duplications and neofunctionalization, less documented are the cases of phenotypic maintenance through the recruitment of novel genes. Proteolysis is the primary toxic character of many snake venoms, and ADAM metalloproteinases, named snake venom metalloproteinases (SVMPs), are largely recognized as the major effectors of this phenotype. However, by investigating original transcriptomes from 58 species of advanced snakes (Caenophidia) across their phylogeny, we discovered that a different enzyme, matrix metalloproteinase (MMP), is actually the dominant venom component in three tribes (Tachymenini, Xenodontini, and Conophiini) of rear-fanged snakes (Dipsadidae). Proteomic and functional analyses of these venoms further indicate that MMPs are likely playing an "SVMP-like" function in the proteolytic phenotype. A detailed look into the venom-specific sequences revealed a new highly expressed MMP subtype, named snake venom MMP (svMMP), which originated independently on at least three occasions from an endogenous MMP-9. We further show that by losing ancillary noncatalytic domains present in its ancestors, svMMPs followed an evolutionary path toward a simplified structure during their expansion in the genomes, thus paralleling what has been proposed for the evolution of their Viperidae counterparts, the SVMPs. Moreover, we inferred an inverse relationship between the expression of svMMPs and SVMPs along the evolutionary history of Xenodontinae, pointing out that one type of enzyme may be substituting for the other, whereas the general (metallo)proteolytic phenotype is maintained. These results provide rare evidence on how relevant phenotypic traits can be optimized via natural selection on nonhomologous genes, yielding alternate biochemical components.
Collapse
Affiliation(s)
| | - Vincent Louis Viala
- Laboratório Especial de Toxinologia Aplicada, Instituto Butantan, São Paulo, Brazil
- Center of Toxins, Immune-Response and Cell Signaling (CeTICS), São Paulo, Brazil
| | - Rhett M Rautsaw
- Department of Biological Sciences, Clemson University, Clemson, SC
| | | | | | - Milton Yutaka Nishiyama
- Laboratório Especial de Toxinologia Aplicada, Instituto Butantan, São Paulo, Brazil
- Center of Toxins, Immune-Response and Cell Signaling (CeTICS), São Paulo, Brazil
| | | | - Ana Maria Moura-da-Silva
- Laboratório de Imunopatologia, Instituto Butantan, São Paulo, Brazil
- Instituto de Pesquisa Clínica Carlos Borborema, Fundação de Medicina Tropical Dr. Heitor Vieira Dourado, Manaus, Brazil
| | - Christopher L Parkinson
- Department of Biological Sciences, Clemson University, Clemson, SC
- Department of Forestry and Environmental Conservation, Clemson University, Clemson, SC
| | | | - Inácio L M Junqueira-de-Azevedo
- Laboratório Especial de Toxinologia Aplicada, Instituto Butantan, São Paulo, Brazil
- Center of Toxins, Immune-Response and Cell Signaling (CeTICS), São Paulo, Brazil
| |
Collapse
|
20
|
Wang H, Wu JX, Chen XP, Zhang Q, Wei HB, Wang HJ, Yang X, Zhang DH. Expression and Clinical Significance of MMP-28 in Bladder Cancer. Technol Cancer Res Treat 2020; 19:1533033820974017. [PMID: 33191847 PMCID: PMC7672764 DOI: 10.1177/1533033820974017] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Aims: The aim of this study to determine the expression of MMP-28 in bladder urothelial carcinoma and to analyze the correlation between MMP-28 and the clinicopathological characteristics of human bladder carcinoma, and its relationship with patient prognosis. Methods: A total of 491 surgically resected bladder cancer samples and 80 normal tissue adjacent to the tumor were stained by immunohistochemistry. The expression of MMP-28 in these samples was quantitated, and the value of MMP-28 as a marker of bladder cancer and prognosis was assessed. Results: The expression of MMP-28 in urinary bladder carcinoma was higher than in normal bladder mucosa. The high level of MMP-28 was significantly correlated with tumor histology grade, lymphatic metastasis, lymph node infiltration, and distant metastasis (P < 0.05). The upregulation of MMP-28 was also closely related to the risk of cancer progression and the survival of patients. Further analysis documented that high expression of MMP-28 was associated with decreased overall survival in bladder cancer patients. Conclusions: The abnormal expression of MMP-28 may be related to the initiation and development of urothelial carcinoma. The upregulation of MMP-28 can be used as one of the effective indicators to diagnose bladder cancer and predict tumor progression.
Collapse
Affiliation(s)
- Heng Wang
- Graduate Department, 74539Bengbu Medical College, Bengbu, China
| | - Jun-Xiu Wu
- The Second Clinical Medical College, 70571Zhejiang Chinese Medical University, Hangzhou, China
| | - Xin-Peng Chen
- Graduate Department, 74539Bengbu Medical College, Bengbu, China
| | - Qi Zhang
- Department of Urology, Zhejiang Provincial People's Hospital, Hangzhou Medical College, Hangzhou, China
| | - Hai-Bin Wei
- Department of Urology, Zhejiang Provincial People's Hospital, Hangzhou Medical College, Hangzhou, China
| | - Hui-Ju Wang
- Clinical Research Institute, 74678Zhejiang Provincial People's Hospital, Hangzhou Medical College, Hangzhou, China
| | - Xue Yang
- Clinical Research Institute, 74678Zhejiang Provincial People's Hospital, Hangzhou Medical College, Hangzhou, China
| | - Da-Hong Zhang
- Graduate Department, 74539Bengbu Medical College, Bengbu, China.,Department of Urology, Zhejiang Provincial People's Hospital, Hangzhou Medical College, Hangzhou, China
| |
Collapse
|
21
|
Higher Gene Expression Related to Wound Healing by Fibroblasts on Silk Fibroin Biomaterial than on Collagen. Molecules 2020; 25:molecules25081939. [PMID: 32331316 PMCID: PMC7221890 DOI: 10.3390/molecules25081939] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Revised: 04/17/2020] [Accepted: 04/20/2020] [Indexed: 01/01/2023] Open
Abstract
Silk fibroin (SF), which offers the benefits of biosafety, biocompatibility, and mechanical strength, has potential for use as a good biomedical material, especially in the tissue engineering field. This study investigated the use of SF biomaterials as a wound dressing compared to commercially available collagen materials. After human fibroblasts (WI-38) were cultured on both films and sponges, their cell motilities and gene expressions related to wound repair and tissue reconstruction were evaluated. Compared to the collagen film (Col film), the SF film induced higher cell motility; higher expressions of genes were observed on the SF film. Extracellular matrix production-related genes were up-regulated in WI-38 fibroblasts cultured on the SF sponges. These results suggest that SF-based biomaterials can accelerate wound healing and tissue reconstruction. They can be useful biomaterials for functional wound dressings.
Collapse
|
22
|
Ferianec V, Fülöp M, Ježovičová M, Radošinská J, Husseinová M, Feriancová M, Radošinská D, Barančík M, Muchová J, Hȍgger P, Ďuračková Z. The Oak-wood Extract Robuvit ® Improves Recovery and Oxidative Stress after Hysterectomy: A Randomized, Double-blind, Placebo-controlled Pilot Study. Nutrients 2020; 12:nu12040913. [PMID: 32230721 PMCID: PMC7230691 DOI: 10.3390/nu12040913] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Revised: 03/23/2020] [Accepted: 03/25/2020] [Indexed: 01/23/2023] Open
Abstract
Hysterectomy has a variety of medical indications and improves pre-operative symptoms but might compromise the quality of life during recovery due to symptoms such as fatigue, headache, nausea, depression, or pain. The aim of the present study was to determine the effect of a standardized extract from French oak wood (Quercus robur) containing at least 40% polyphenols of the ellagitannins class, Robuvit®, on convalescence and oxidative stress of women after hysterectomy. Recovery status was monitored with the SF-36 questionnaire. The supplementation with Robuvit® (300 mg/day) during 4 weeks significantly improved general and mental health, while under placebo some items significantly deteriorated. Oxidative stress and enhancement of MMP–9 activity was significantly reduced by Robuvit® versus placebo. After 8 weeks of intervention, the patients’ condition improved independently of the intervention. Our results suggest that the use of Robuvit® as a natural supplement relieves post-operative symptoms of patients after hysterectomy and reduces oxidative stress. The study was registered with ID ISRCTN 11457040 (13/09/2019).
Collapse
Affiliation(s)
- Vladimír Ferianec
- Department of II. Gynecology and Obstetrics, Medical Faculty, Comenius University, 82606 Bratislava, Slovakia; (V.F.); (M.F.)
| | - Matej Fülöp
- Institute of Medical Chemistry, Biochemistry and Clinical Biochemistry, Medical Faculty, Comenius University, 81108 Bratislava, Slovakia; (M.F.); (M.J.); (J.M.)
| | - Miriam Ježovičová
- Institute of Medical Chemistry, Biochemistry and Clinical Biochemistry, Medical Faculty, Comenius University, 81108 Bratislava, Slovakia; (M.F.); (M.J.); (J.M.)
| | - Jana Radošinská
- Institute of Physiology, Faculty of Medicine, Comenius University in Bratislava, 81108 Bratislava, Slovakia; (J.R.); (M.H.)
- Center of Experimental Medicine, Institute for Heart Research, Slovak Academy of Sciences, 84104 Bratislava, Slovakia;
| | - Marta Husseinová
- Institute of Physiology, Faculty of Medicine, Comenius University in Bratislava, 81108 Bratislava, Slovakia; (J.R.); (M.H.)
| | - Michaela Feriancová
- Department of II. Gynecology and Obstetrics, Medical Faculty, Comenius University, 82606 Bratislava, Slovakia; (V.F.); (M.F.)
| | - Dominika Radošinská
- Faculty of Natural Sciences, Comenius University in Bratislava, 84215 Bratislava, Slovakia;
| | - Miroslav Barančík
- Center of Experimental Medicine, Institute for Heart Research, Slovak Academy of Sciences, 84104 Bratislava, Slovakia;
| | - Jana Muchová
- Institute of Medical Chemistry, Biochemistry and Clinical Biochemistry, Medical Faculty, Comenius University, 81108 Bratislava, Slovakia; (M.F.); (M.J.); (J.M.)
| | - Petra Hȍgger
- Institut für Pharmazie und Lebensmittelchemie, Universität Würzburg, 97074 Würzburg, Germany;
| | - Zdeňka Ďuračková
- Institute of Medical Chemistry, Biochemistry and Clinical Biochemistry, Medical Faculty, Comenius University, 81108 Bratislava, Slovakia; (M.F.); (M.J.); (J.M.)
- Institute of Medical Chemistry, Biochemistry and Clinical Biochemistry, Faculty of Medicine, Comenius University, Sasinkova 2, 81108 Bratislava, Slovakia
- Correspondence:
| |
Collapse
|
23
|
Naturally-occurring bacterial cellulose-hyperbranched cationic polysaccharide derivative/MMP-9 siRNA composite dressing for wound healing enhancement in diabetic rats. Acta Biomater 2020; 102:298-314. [PMID: 31751808 DOI: 10.1016/j.actbio.2019.11.005] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Revised: 10/20/2019] [Accepted: 11/04/2019] [Indexed: 12/16/2022]
Abstract
The anomalous high expression of matrix metalloproteinase 9 (MMP-9) is one important factor that impedes diabetic wound healing. Therefore, inhibition of MMP-9 expression in a diabetic wound could be a feasible method to promote wound healing. In this study, we studied the possibility of self-therapy using wound dressings that contain bacterial cellulose-hyperbranched cationic polysaccharide (BC-HCP) derivatives that encapsulate siRNA (BC-HCP/siMMP-9) and have controlled release properties. Herein, we used four HCPs (Gly-DMAPA, Gly-D4, Amyp-DMAPA, Amyp-D4) as gene carriers. Our results showed that all HCP derivatives were minimally toxic to cells in vitro, while the cationic properties of HCP could be used as a complexation agent for MMP-9 siRNA (siMMP-9). Upon exposure to bacterial cellulose (BC), the BC slowly released HCP/siMMP-9. The released siMMP-9 effectively reduced the gene expression and protein levels of MMP-9 in a human immortalized epithelial cell line (HaCAT) and in diabetic rat wounds. Inhibition of MMP-9 in the wounds of diabetic rats resulted in a significant enhancement of wound healing, suggesting that the BC-HCP/siMMP-9 composite dressing could be used as a safe and effective dressing to promote wound healing in diabetic rats. STATEMENT OF SIGNIFICANCE: In this work, we evaluated the possibility of using bacterial cellulose-hyperbranched cationic polysaccharide derivatives (BC-HCP) as a self-therapeutic wound dressing with siRNA encapsulated and controlled release properties. Our results showed that the BC-HCP/siMMP-9 composite dressing slowly released HCP/siMMP-9. The released siMMP-9 effectively reduced the gene expression and protein level of MMP-9 in human immortalized epithelial cell line and in the wound of diabetic rats. The BC-HCP/siMMP-9 composite dressing promoted diabetic wound healing by the unique nanostructure of BC and by releasing siMMP-9 for specific MMP-9 inhibition. Therefore, it could be used as a safe and effective dressing to promote wound healing in diabetic rats. This is the first evidence on the study of using BC as a dressing composite by encapsulating HCP/siRNA complexes for efficient RNAi gene silencing for better wound healing in diabetic rats.
Collapse
|
24
|
A Matrix Metalloproteinase Sensing Biosensor for the Evaluation of Chronic Wounds. BIOCHIP JOURNAL 2019. [DOI: 10.1007/s13206-019-3403-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
|
25
|
Hussain AA, Lee Y, Marshall J. Understanding the complexity of the matrix metalloproteinase system and its relevance to age-related diseases: Age-related macular degeneration and Alzheimer's disease. Prog Retin Eye Res 2019; 74:100775. [PMID: 31473329 DOI: 10.1016/j.preteyeres.2019.100775] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Revised: 08/25/2019] [Accepted: 08/27/2019] [Indexed: 01/26/2023]
Abstract
Extracellular matrices (ECMs) are maintained by tightly coupled processes of continuous synthesis and degradation. The degradative arm is mediated by a family of proteolytic enzymes called the matrix metalloproteinases (MMPs). These enzymes are released as latent proteins (pro-MMPs) and on activation are capable of degrading most components of an ECM. Activity of these enzymes is checked by the presence of tissue inhibitors of MMPs (TIMPs) and current opinion holds that the ratio of TIMPs/MMPs determines the relative rate of degradation. Thus, elevated ratios are thought to compromise degradation leading to the accumulation of abnormal ECM material, whilst diminished ratios are thought to lead to excessive ECM degradation (facilitating angiogenesis and the spread of cancer cells). Our recent work has shown this system to be far more complex. MMP species tend to undergo covalent modification leading to homo- and hetero-dimerization and aggregation resulting in the formation of very large macromolecular weight MMP complexes (LMMCs). In addition, the various MMP species also show a bound-free compartmentalisation. The net result of these changes is to reduce the availability of the latent forms of MMPs for the activation process. An assessment of the degradation potential of the MMP system in any tissue must therefore take into account the degree of sequestration of the latent MMP species, a protocol that has not previously been addressed. Taking into consideration the complexities already described, we will present an analysis of the MMP system in two common neurodegenerative disorders, namely age-related macular degeneration (AMD) and Alzheimer's disease (AD).
Collapse
Affiliation(s)
- Ali A Hussain
- Department of Genetics, UCL Institute of Ophthalmology, London, UK.
| | - Yunhee Lee
- Alt-Regen Co., Ltd, Heungdeok IT Valley, Yongin, Republic of Korea.
| | - John Marshall
- Department of Genetics, UCL Institute of Ophthalmology, London, UK.
| |
Collapse
|
26
|
Tan ST, Dosan R. Lessons From Epithelialization: The Reason Behind Moist Wound Environment. ACTA ACUST UNITED AC 2019. [DOI: 10.2174/1874372201913010034] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Wound healing consists of multiple structured mechanism and is influenced by various factors. Epithelialization is one of the major aspect in wound healing and inhibition of this mechanism will greatly impair wound healing. Epithelialization is a process where epithelial cells migrate upwards and repair the wounded area. This process is the most essential part in wound healing and occurs in proliferative phase of wound healing. Skin stem cells which reside in several locations of epidermis contribute in the re-epithelialization when the skin is damaged. Epithelialization process is activated by inflammatory signal and then keratinocyte migrate, differentiate and stratify to close the defect in the skin. Several theories of epithelialization model in wound healing have been proposed for decades and have shown the mechanism of epidermal cell migration during epithelialization even though the exact mechanism is still controversial. This process is known to be influenced by the wound environment where moist wound environment is preferred rather than dry wound environment. In dry wound environment, epithelialization is known to be inhibited because of scab or crust which is formed from dehydrated and dead cells. Moist wound environment enhances the epithelialization process by easier migration of epidermal cells, faster epithelialization, and prolonged presence of proteinases and growth factors. This article focuses on the epithelialization process in wound healing, epithelialization models, effects of wound environment on epithelialization and epithelialization as the basis for products that enhance wound healing.
Collapse
|
27
|
Paatela E, Munson D, Kikyo N. Circadian Regulation in Tissue Regeneration. Int J Mol Sci 2019; 20:ijms20092263. [PMID: 31071906 PMCID: PMC6539890 DOI: 10.3390/ijms20092263] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Revised: 04/29/2019] [Accepted: 05/03/2019] [Indexed: 12/22/2022] Open
Abstract
Circadian rhythms regulate over 40% of protein-coding genes in at least one organ in the body through mechanisms tied to the central circadian clock and to cell-intrinsic auto-regulatory feedback loops. Distinct diurnal differences in regulation of regeneration have been found in several organs, including skin, intestinal, and hematopoietic systems. Each regenerating system contains a complex network of cell types with different circadian mechanisms contributing to regeneration. In this review, we elucidate circadian regeneration mechanisms in the three representative systems. We also suggest circadian regulation of global translational activity as an understudied global regulator of regenerative capacity. A more detailed understanding of the molecular mechanisms underlying circadian regulation of tissue regeneration would accelerate the development of new regenerative therapies.
Collapse
Affiliation(s)
- Ellen Paatela
- Stem Cell Institute, University of Minnesota, Minneapolis, MN 55455, USA.
- Department of Genetics, Cell Biology, and Development, University of Minnesota, Minneapolis, MN 55455, USA.
| | - Dane Munson
- Stem Cell Institute, University of Minnesota, Minneapolis, MN 55455, USA.
| | - Nobuaki Kikyo
- Stem Cell Institute, University of Minnesota, Minneapolis, MN 55455, USA.
- Department of Genetics, Cell Biology, and Development, University of Minnesota, Minneapolis, MN 55455, USA.
| |
Collapse
|
28
|
Increased levels of circulating MMP3 correlate with severe rejection in face transplantation. Sci Rep 2018; 8:14915. [PMID: 30297859 PMCID: PMC6175842 DOI: 10.1038/s41598-018-33272-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2018] [Accepted: 09/26/2018] [Indexed: 12/16/2022] Open
Abstract
Face transplantation is a viable treatment option for carefully selected patients with devastating injuries to the face. However, acute rejection episodes occur in more than 80% of recipients in the first postoperative year. Unfortunately, neither a correlation between histological grades of rejection and anti-rejection treatment nor systemic surrogate markers of rejection in face transplantation are established in clinical routine. Therefore, we utilized next generation aptamer-based SOMAscan proteomics platform for non-invasive rejection biomarker discovery. Longitudinal serum samples from face transplant recipients with long-term follow-up were included in this study. From the 1,310 proteins analyzed by SOMAscan, a 5-protein signature (MMP3, ACY1, IL1R2, SERPINA4, CPB2) was able to discriminate severe rejection from both no-rejection and nonsevere rejection samples. Technical validation on ELISA platform showed high correlation with the SOMAscan data for the MMP3 protein (rs = 0.99). Additionally, MMP3 levels were significantly increased during severe rejection as compared to no-rejection (p = 0.0009) and nonsevere rejection (p = 0.0173) episodes. Pathway analyses revealed significant activation of the metallopeptidase activity during severe face transplant rejection. This pilot study demonstrates the feasibility of SOMAscan to identify non-invasive candidate biomarkers of rejection in face transplantation. Further validation in a larger independent patient cohort is needed.
Collapse
|
29
|
Tomic-Canic M, Wong LL, Smola H. The epithelialisation phase in wound healing: options to enhance wound closure. J Wound Care 2018; 27:646-658. [DOI: 10.12968/jowc.2018.27.10.646] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Majana Tomic-Canic
- Professor and Vice Chair of Research; Director, Wound Healing and Regenerative Medicine Research Program; Wound Healing and Regenerative Medicine Research Program, Department of Dermatology and Cutaneous Surgery, University of Miami, Miller School of Medicine, Miami, Florida, US
| | - Lulu L. Wong
- MD Candidate; Wound Healing and Regenerative Medicine Research Program, Department of Dermatology and Cutaneous Surgery, University of Miami, Miller School of Medicine, Miami, Florida, US
| | - Hans Smola
- Professor of Dermatology, Medical Director, PAUL HARTMANN AG, Heidenheim and Department of Dermatology, University of Cologne, Cologne, Germany
| |
Collapse
|
30
|
Optimization of Storage Temperature for Retention of Undifferentiated Cell Character of Cultured Human Epidermal Cell Sheets. Sci Rep 2017; 7:8206. [PMID: 28811665 PMCID: PMC5557837 DOI: 10.1038/s41598-017-08586-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2015] [Accepted: 07/17/2017] [Indexed: 11/11/2022] Open
Abstract
Cultured epidermal cell sheets (CES) containing undifferentiated cells are useful for treating skin burns and have potential for regenerative treatment of other types of epithelial injuries. The undifferentiated phenotype is therefore important for success in both applications. This study aimed to optimize a method for one-week storage of CES for their widespread distribution and use in regenerative medicine. The effect of storage temperatures 4 °C, 8 °C, 12 °C, 16 °C, and 24 °C on CES was evaluated. Analyses included assessment of viability, mitochondrial reactive oxygen species (ROS), membrane damage, mitochondrial DNA (mtDNA) integrity, morphology, phenotype and cytokine secretion into storage buffer. Lowest cell viability was seen at 4 °C. Compared to non-stored cells, ABCG2 expression increased between temperatures 8–16 °C. At 24 °C, reduced ABCG2 expression coincided with increased mitochondrial ROS, as well as increased differentiation, cell death and mtDNA damage. P63, C/EBPδ, CK10 and involucrin fluorescence combined with morphology observations supported retention of undifferentiated cell phenotype at 12 °C, transition to differentiation at 16 °C, and increased differentiation at 24 °C. Several cytokines relevant to healing were upregulated during storage. Importantly, cells stored at 12 °C showed similar viability and undifferentiated phenotype as the non-stored control suggesting that this temperature may be ideal for storage of CES.
Collapse
|
31
|
Krishnaswamy VR, Mintz D, Sagi I. Matrix metalloproteinases: The sculptors of chronic cutaneous wounds. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2017; 1864:2220-2227. [PMID: 28797647 DOI: 10.1016/j.bbamcr.2017.08.003] [Citation(s) in RCA: 94] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2017] [Revised: 08/01/2017] [Accepted: 08/04/2017] [Indexed: 02/07/2023]
Abstract
Cutaneous wound healing is a complex mechanism with multiple processes orchestrating harmoniously for structural and functional restoration of the damaged tissue. Chronic non-healing wounds plagued with infection create a major healthcare burden and is one of the most frustrating clinical problems. Chronic wounds are manifested by prolonged inflammation, defective re-epithelialization and haphazard remodeling. Matrix metalloproteinases (MMPs) are zinc dependent enzymes that play cardinal functions in wound healing. Understanding the pathological events mediated by MMPs during wound healing may pave way in identifying novel drug targets for chronic wounds. Here, we discuss the functions and skewed regulation of different MMPs during infection and chronic tissue repair. This review also points out the potential of MMPs and their inhibitors as therapeutic agents in treating chronic wounds during distinct phases of the wound healing. This article is part of a Special Issue entitled: Proteolysis as a Regulatory Event in Pathophysiology edited by Stefan Rose-John.
Collapse
Affiliation(s)
| | - Dvir Mintz
- Department of Biological Regulation, Weizmann Institute of Science, Rehovot, 7610001, Israel
| | - Irit Sagi
- Department of Biological Regulation, Weizmann Institute of Science, Rehovot, 7610001, Israel.
| |
Collapse
|
32
|
Abstract
Transplantation of cultured epidermal cell sheets (CES) has long been used to treat patients with burns, chronic wounds, and stable vitiligo. In patients with large area burns this can be a life-saving procedure. The ultimate goal, however, is to restore all normal functions of the skin and prevent scar formation. Increased focus on the incorporation of epidermal stem cells (EpiSCs) within CES transplants may ultimately prove to be key to achieving this. Transplanted EpiSCs contribute to restoring the complete epidermis and provide long-term renewal.Maintenance of the regenerative potential of EpiSCs is anchorage-dependent. The extracellular matrix (ECM) provides physical cues that are interpreted by EpiSCs and reciprocal signaling between cells and ECM are integrated to determine cell fate. Thus, the carrier scaffold chosen for culture and transplant influences maintenance of EpiSC phenotype and may enhance or detract from regenerative healing following transfer.Long-term effectiveness and safety of genetically modified EpiSCs to correct the severe skin blistering disease epidermolysis bullosa has been shown clinically. Furthermore, skin is gaining interest as an easily accessible source of adult epithelial stem cells potentially useful for restoration of other types of epithelia. This review highlights the role of EpiSCs in the current treatment of skin injury and disease, as well as their potential in novel regenerative medicine applications involving other epithelia.
Collapse
Affiliation(s)
- Catherine J Jackson
- Department of Medical Biochemistry, Oslo University Hospital, Oslo, Norway. .,Department of Plastic Surgery, Oslo University Hospital, Oslo, Norway. .,Institute of Oral biology, Faculty of Dentistry, University of Oslo, Oslo, Norway.
| | - Kim Alexander Tønseth
- Department of Plastic Surgery, Oslo University Hospital, Oslo, Norway.,Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Tor Paaske Utheim
- Department of Medical Biochemistry, Oslo University Hospital, Oslo, Norway.,Department of Plastic Surgery, Oslo University Hospital, Oslo, Norway.,Institute of Oral biology, Faculty of Dentistry, University of Oslo, Oslo, Norway.,Department of Ophthalmology, Oslo University Hospital, Oslo, Norway
| |
Collapse
|
33
|
Evaluation of subcutaneous infiltration of autologous platelet-rich plasma on skin-wound healing in dogs. Biosci Rep 2017; 37:BSR20160503. [PMID: 28246352 PMCID: PMC5469334 DOI: 10.1042/bsr20160503] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2016] [Revised: 02/23/2017] [Accepted: 02/27/2017] [Indexed: 12/29/2022] Open
Abstract
Platelet-rich plasma (PRP) is known to be rich in growth factors and cytokines, which are crucial to the healing process. This study investigate the effect of subcutaneous (S/C) infiltration of autologous PRP at the wound boundaries on wound epithelization and contraction. Five adult male mongrel dogs were used. Bilateral acute full thickness skin wounds (3 cm diameter) were created on the thorax symmetrically. Right side wounds were subcutaneously infiltrated with activated PRP at day 0 and then every week for three consecutive weeks. The left wound was left as control. Wound contraction and epithelization were clinically evaluated. Expression of collagen type I (COLI) A2, (COLIA2),histopathology and immunohistochemical (IHC) staining of COLI α1 (COLIA1) were performed on skin biopsies at first, second and third weeks. The catalase activity, malondialdehyde (MDA) concentration and matrix metalloproteinase (MMP) 9 (MMP-9) activity were assessed in wound fluid samples. All data were analysed statistically. The epithelization percent significantly increased in the PRP-treated wound at week 3. Collagen was well organized in the PRP-treated wounds compared with control wounds at week 3. The COLIA2 expression and intensity of COLIA1 significantly increased in PRP-treated wounds. MDA concentration was significantly decreased in PRP-treated wound at week 3. The catalase activity exhibited no difference between PRP treated and untreated wounds. The activity of MMP-9 reached its peak at the second week and was significantly high in the PRP-treated group. S/C infiltration of autologous PRP at the wound margins enhances the wound epithelization and reduces the scar tissue formation.
Collapse
|
34
|
Hussain AA, Lee Y, Zhang JJ, Francis PT, Marshall J. Disturbed Matrix Metalloproteinase Pathway in Both Age-Related Macular Degeneration and Alzheimer's Disease. JOURNAL OF NEURODEGENERATIVE DISEASES 2017; 2017:4810232. [PMID: 28197357 PMCID: PMC5286539 DOI: 10.1155/2017/4810232] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/21/2016] [Revised: 10/12/2016] [Accepted: 11/17/2016] [Indexed: 02/02/2023]
Abstract
Purpose. Abnormal protein deposits including β-amyloid, found in ageing Bruch's membrane and brain, are susceptible to degradation by matrix metalloproteinases (MMPs). In ageing Bruch's membrane, these MMPs become less effective due to polymerisation and aggregation reactions (constituting the MMP Pathway), a situation much advanced in age-related macular degeneration (AMD). The likely presence of this MMP Pathway in brain with the potential to compromise the degradation of β-amyloid associated with Alzheimer's disease (AD) has been investigated. Methods. Presence of high molecular weight MMP species (HMW1 and HMW2) together with the much larger aggregate termed LMMC was determined by standard zymographic techniques. Centrigugation and gel filtration techniques were used to separate and quantify the distribution between bound and free MMP species. Results. The MMP Pathway, initially identified in Bruch's membrane, was also present in brain tissue. The various MMP species displayed bound-free equilibrium and in AD samples, the amount of bound HMW1 and pro-MMP9 species was significantly reduced (p < 0.05). The abnormal operation of the MMP Pathway in AD served to reduce the degradation potential of the MMP system. Conclusion. The presence and abnormalities of the MMP Pathway in both brain and ocular tissues may therefore contribute to the anomalous deposits associated with AD and AMD.
Collapse
Affiliation(s)
| | - Yunhee Lee
- Nanobiotech Co., Ltd., Heungdeok IT Valley, Yongin, Republic of Korea
| | - Jin-Jun Zhang
- Department of Genetics, UCL Institute of Ophthalmology, London, UK
| | - Paul T. Francis
- Wolfson Centre for Age-Related Diseases, King's College London, London, UK
| | - John Marshall
- Department of Genetics, UCL Institute of Ophthalmology, London, UK
| |
Collapse
|
35
|
Martinez RM, Pinho-Ribeiro FA, Steffen VS, Caviglione CV, Fattori V, Bussmann AJC, Bottura C, Fonseca MJV, Vignoli JA, Baracat MM, Georgetti SR, Verri WA, Casagrande R. trans-Chalcone, a flavonoid precursor, inhibits UV-induced skin inflammation and oxidative stress in mice by targeting NADPH oxidase and cytokine production. Photochem Photobiol Sci 2017; 16:1162-1173. [DOI: 10.1039/c6pp00442c] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
trans-Chalcone inhibits UV-induced skin inflammation and also indirectly reduces oxidative stress.
Collapse
|
36
|
Devlieger R, Riley SC, Verbist L, Leask R, Pijnenborg R, Deprest JA. Matrix Metalloproteinases-2 and -9 and Their Endogenous Tissue Inhibitors in Tissue Remodeling After Sealing of the Fetal Membranes in a Sheep Model of Fetoscopic Surgery. ACTA ACUST UNITED AC 2016. [DOI: 10.1177/107155760200900304] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Affiliation(s)
| | | | | | | | - R. Pijnenborg
- Centre for Surgical Technologies and Department of Obstetrics and Gynecology, University Hospitals, Katholieke Universiteit Leuven, Leuven, Belgium; Obstetrics and Gynaecology Section, Department of Reproductive and Developmental Sciences, Centre for Reproductive Biology, University of Edinburgh, Edinburgh, United Kingdom
| | - J. A. Deprest
- Center for Surgical Technologies, Mindebroedersstraat 17, 3000-Leuven, Belgium
| |
Collapse
|
37
|
The neglected role of copper ions in wound healing. J Inorg Biochem 2016; 161:1-8. [DOI: 10.1016/j.jinorgbio.2016.02.012] [Citation(s) in RCA: 76] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2015] [Revised: 01/19/2016] [Accepted: 02/10/2016] [Indexed: 12/30/2022]
|
38
|
Yang YH, Hsieh TL, Ji ATQ, Hsu WT, Liu CY, Lee OKS, Ho JHC. Stromal Tissue Rigidity Promotes Mesenchymal Stem Cell-Mediated Corneal Wound Healing Through the Transforming Growth Factor β Signaling Pathway. Stem Cells 2016; 34:2525-2535. [DOI: 10.1002/stem.2405] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2015] [Accepted: 05/19/2016] [Indexed: 12/22/2022]
Affiliation(s)
- Yun-Hsiang Yang
- Graduate Institute of Clinical Medicine, College of Medicine; Taipei Medical University; Taipei Taiwan
- Department of Ophthalmology; Taipei Tzu Chi Hospital, The Buddhist Tzu Chi Medical Foundation; New Taipei City Taiwan
| | - Ting-Lieh Hsieh
- Center for Stem Cell Research, Wan Fang Hospital, Taipei Medical University; Taipei Taiwan
| | - Andrea Tung-Qian Ji
- Center for Stem Cell Research, Wan Fang Hospital, Taipei Medical University; Taipei Taiwan
| | - Wei-Tse Hsu
- Center for Stem Cell Research, Wan Fang Hospital, Taipei Medical University; Taipei Taiwan
| | - Chia-Yu Liu
- Center for Stem Cell Research, Wan Fang Hospital, Taipei Medical University; Taipei Taiwan
| | - Oscar Kuang-Sheng Lee
- Department of Orthopaedic Surgery; Taipei City Hospital; Taipei Taiwan
- Institute of Clinical Medicine, National Yang-Ming University; Taipei Taiwan
- Stem Cell Research Center, National Yang-Ming University; Taipei Taiwan
| | - Jennifer Hui-Chun Ho
- Graduate Institute of Clinical Medicine, College of Medicine; Taipei Medical University; Taipei Taiwan
- Center for Stem Cell Research, Wan Fang Hospital, Taipei Medical University; Taipei Taiwan
- Department of Ophthalmology; Wan Fang Hospital, Taipei Medical University; Taipei Taiwan
| |
Collapse
|
39
|
Wu X, Yang L, Zheng Z, Li Z, Shi J, Li Y, Han S, Gao J, Tang C, Su L, Hu D. Src promotes cutaneous wound healing by regulating MMP-2 through the ERK pathway. Int J Mol Med 2016; 37:639-48. [PMID: 26821191 PMCID: PMC4771097 DOI: 10.3892/ijmm.2016.2472] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2015] [Accepted: 01/22/2016] [Indexed: 12/21/2022] Open
Abstract
Wound healing is a highly orchestrated, multistep process, and delayed wound healing is a significant symptomatic clinical problem. Keratinocyte migration and re-epithelialization play the most important roles in wound healing, as they determine the rate of wound healing. In our previous study, we found that Src, one of the oldest proto-oncogenes encoding a membrane-associated, non-receptor protein tyrosine kinase, promotes keratinocyte migration. We therefore hypothesized that Src promotes wound healing through enhanced keratinocyte migration. In order to test this hypothesis, vectors for overexpressing Src and small interfering RNAs (siRNAs) for silencing of Src were used in the present study. We found that the overexpression of Src accelerated keratinocyte migration in vitro and promoted wound healing in vivo without exerting a marked effect on cell proliferation. The extracellular signal-regulated kinase (ERK) and c-Jun N-terminal kinase (JNK) signaling pathways play important roles in Src-accelerated keratinocyte migration. Further experiments demonstrated that Src induced the protein expression of matrix metallopro-teinase-2 (MMP-2) and decreased the protein expression of E-cadherin. We suggest that ERK signaling is involved in the Src-mediated regulation of MMP-2 expression. The present study provided evidence that Src promotes keratinocyte migration and cutaneous wound healing, in which the regulation of MMP-2 through the ERK pathway plays an important role, and thus we also demonstrated a potential therapeutic role for Src in cutaneous wound healing.
Collapse
Affiliation(s)
- Xue Wu
- Department of Burns and Cutaneous Surgery, Xijing Hospital, The Fourth Military Medical University, Xi'an, Shaanxi 710032, P.R. China
| | - Longlong Yang
- Department of Burns and Cutaneous Surgery, Xijing Hospital, The Fourth Military Medical University, Xi'an, Shaanxi 710032, P.R. China
| | - Zhao Zheng
- Department of Burns and Cutaneous Surgery, Xijing Hospital, The Fourth Military Medical University, Xi'an, Shaanxi 710032, P.R. China
| | - Zhenzhen Li
- Department of Burns and Cutaneous Surgery, Xijing Hospital, The Fourth Military Medical University, Xi'an, Shaanxi 710032, P.R. China
| | - Jihong Shi
- Department of Burns and Cutaneous Surgery, Xijing Hospital, The Fourth Military Medical University, Xi'an, Shaanxi 710032, P.R. China
| | - Yan Li
- Department of Burns and Cutaneous Surgery, Xijing Hospital, The Fourth Military Medical University, Xi'an, Shaanxi 710032, P.R. China
| | - Shichao Han
- Department of Burns and Cutaneous Surgery, Xijing Hospital, The Fourth Military Medical University, Xi'an, Shaanxi 710032, P.R. China
| | - Jianxin Gao
- Department of Burns and Cutaneous Surgery, Xijing Hospital, The Fourth Military Medical University, Xi'an, Shaanxi 710032, P.R. China
| | - Chaowu Tang
- Department of Burns and Cutaneous Surgery, Xijing Hospital, The Fourth Military Medical University, Xi'an, Shaanxi 710032, P.R. China
| | - Linlin Su
- Department of Burns and Cutaneous Surgery, Xijing Hospital, The Fourth Military Medical University, Xi'an, Shaanxi 710032, P.R. China
| | - Dahai Hu
- Department of Burns and Cutaneous Surgery, Xijing Hospital, The Fourth Military Medical University, Xi'an, Shaanxi 710032, P.R. China
| |
Collapse
|
40
|
Zhang Y, McClain SA, Lee HM, Elburki MS, Yu H, Gu Y, Zhang Y, Wolff M, Johnson F, Golub LM. A Novel Chemically Modified Curcumin "Normalizes" Wound-Healing in Rats with Experimentally Induced Type I Diabetes: Initial Studies. J Diabetes Res 2016; 2016:5782904. [PMID: 27190999 PMCID: PMC4846750 DOI: 10.1155/2016/5782904] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/16/2015] [Revised: 02/10/2016] [Accepted: 03/02/2016] [Indexed: 01/25/2023] Open
Abstract
Introduction. Impaired wound-healing in diabetics can lead to life-threatening complications, such as limb amputation, associated in part with excessive matrix metalloproteinase- (MMP-) mediated degradation of collagen and other matrix constituents. In the current study, a novel triketonic chemically modified curcumin, CMC2.24, was tested for efficacy in healing of standardized skin wounds in streptozotocin-induced diabetic rats. Initially, CMC2.24 was daily applied topically at 1% or 3% concentrations or administered systemically (oral intubation; 30 mg/kg); controls received vehicle treatment only. Over 7 days, the diabetics exhibited impaired wound closure, assessed by gross and histologic measurements, compared to the nondiabetic controls. All drug treatments significantly improved wound closure with efficacy ratings as follows: 1% 2.24 > systemic 2.24 > 3% 2.24 with no effect on the severe hyperglycemia. In subsequent experiments, 1% CMC2.24 "normalized" wound-healing in the diabetics, whereas 1% curcumin was no more effective than 0.25% CMC2.24, and the latter remained 34% worse than normal. MMP-8 was increased 10-fold in the diabetic wounds and topically applied 1% (but not 0.25%) CMC2.24 significantly reduced this excessive collagenase-2; MMP-13/collagenase-3 did not show significant changes. Additional studies indicated efficacy of 1% CMC2.24 over more prolonged periods of time up to 30 days.
Collapse
Affiliation(s)
- Yazhou Zhang
- Department of Oral Biology and Pathology, School of Dental Medicine, Stony Brook University, Stony Brook, NY 11794, USA
- Department of Cariology and Comprehensive Care, College of Dentistry, New York University, New York, NY 10010, USA
| | - Steve A. McClain
- Departments of Dermatology and Emergency Medicine, Stony Brook University, Stony Brook, NY 11794, USA
| | - Hsi-Ming Lee
- Department of Oral Biology and Pathology, School of Dental Medicine, Stony Brook University, Stony Brook, NY 11794, USA
| | - Muna S. Elburki
- Department of Oral Biology and Pathology, School of Dental Medicine, Stony Brook University, Stony Brook, NY 11794, USA
| | - Huiwen Yu
- Department of Oral Biology and Pathology, School of Dental Medicine, Stony Brook University, Stony Brook, NY 11794, USA
| | - Ying Gu
- Department of General Dentistry, School of Dental Medicine, Stony Brook University, Stony Brook, NY 11794, USA
| | - Yu Zhang
- Department of Pharmacological Sciences, Stony Brook University, Stony Brook, NY 11794, USA
| | - Mark Wolff
- Department of Cariology and Comprehensive Care, College of Dentistry, New York University, New York, NY 10010, USA
| | - Francis Johnson
- Department of Pharmacological Sciences, Stony Brook University, Stony Brook, NY 11794, USA
| | - Lorne M. Golub
- Department of Oral Biology and Pathology, School of Dental Medicine, Stony Brook University, Stony Brook, NY 11794, USA
- *Lorne M. Golub:
| |
Collapse
|
41
|
Franceschini G, Visconti G, Sanchez AM, Di Leone A, Salgarello M, Masetti R. Oxidized regenerated cellulose in breast surgery: experimental model. J Surg Res 2015; 198:237-44. [DOI: 10.1016/j.jss.2015.05.012] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2015] [Revised: 04/20/2015] [Accepted: 05/07/2015] [Indexed: 12/22/2022]
|
42
|
Huang SM, Wu CS, Chao D, Wu CH, Li CC, Chen GS, Lan CCE. High-glucose-cultivated peripheral blood mononuclear cells impaired keratinocyte function via reduced IL-22 expression: implications on impaired diabetic wound healing. Exp Dermatol 2015; 24:639-41. [PMID: 25939251 DOI: 10.1111/exd.12733] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/26/2015] [Indexed: 11/30/2022]
Affiliation(s)
- Shu-Mei Huang
- Department of Biological Science, National Sun Yat-sen University, Kaohsiung, Taiwan
- Department of Dermatology, College of Medicine, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
| | - Ching-Shuang Wu
- Department of Medical Laboratory Science and Biotechnology, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - David Chao
- Department of Biological Science, National Sun Yat-sen University, Kaohsiung, Taiwan
| | - Chin-Han Wu
- Department of Dermatology, College of Medicine, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
- Center for Lipid and Glycomedicine Research, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Ching-Chia Li
- Department of Urology, College of Medicine, Kaohsiung Municipal Ta-Tung Hospital, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Gwo-Shing Chen
- Department of Dermatology, College of Medicine, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
| | - Cheng-Che E Lan
- Department of Dermatology, College of Medicine, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
- Center for Lipid and Glycomedicine Research, Kaohsiung Medical University, Kaohsiung, Taiwan
- Department of Dermatology, Kaohsiung Municipal Ta-Tung Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan
| |
Collapse
|
43
|
Cavalla F, Osorio C, Paredes R, Valenzuela MA, García-Sesnich J, Sorsa T, Tervahartiala T, Hernández M. Matrix metalloproteinases regulate extracellular levels of SDF-1/CXCL12, IL-6 and VEGF in hydrogen peroxide-stimulated human periodontal ligament fibroblasts. Cytokine 2015; 73:114-21. [PMID: 25748833 DOI: 10.1016/j.cyto.2015.02.001] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2014] [Revised: 01/22/2015] [Accepted: 02/02/2015] [Indexed: 12/19/2022]
Abstract
Periodontitis is a highly prevalent infectious disease characterized by the progressive inflammatory destruction of tooth-supporting structures, leading to tooth loss. The underling molecular mechanisms of the disease are incompletely understood, precluding the development of more efficient screening, diagnostic and therapeutic approaches. We investigated the interrelation of three known effector mechanisms of the cellular response to periodontal infection, namely reactive oxygen species (ROS), matrix metalloproteinases (MMPs) and cytokines in primary cell cultures of human periodontal ligament fibroblast (hPDLF). We demonstrated that ROS increase the activity/levels of gelatinolytic MMPs, and stimulate cytokine secretion in hPDLF. Additionally, we proved that MMPs possesses immune modulatory capacity, regulating the secreted levels of cytokines in ROS-stimulated hPDLF cultures. This evidence provides further insight in the molecular pathogenesis of periodontitis, contributing to the future development of more effective therapies.
Collapse
Affiliation(s)
- Franco Cavalla
- Conservative Dentistry Department, Faculty of Dentistry Universidad de Chile, Santiago, Chile; Laboratory of Periodontal Biology, Faculty of Dentistry Universidad de Chile, Santiago, Chile
| | - Constanza Osorio
- Conservative Dentistry Department, Faculty of Dentistry Universidad de Chile, Santiago, Chile
| | - Rodolfo Paredes
- Escuela Medicina Veterinaria, Facultad de Ecología y Recursos Naturales, Universidad Andrés Bello, Santiago, Chile
| | - María Antonieta Valenzuela
- Biochemistry and Molecular Biology Department, Faculty of Chemical and Pharmaceutical Sciences Universidad de Chile, Santiago, Chile
| | - Jocelyn García-Sesnich
- Laboratory of Periodontal Biology, Faculty of Dentistry Universidad de Chile, Santiago, Chile
| | - Timo Sorsa
- Institute of Dentistry University of Helsinki, Helsinki, Finland; Department of Oral and Maxillofacial Diseases, Helsinki University Central Hospital, Helsinki, Finland; Division of Periodontology, Department of Dental Medicine, Karolinska Institutet, Huddinge, Sweden
| | | | - Marcela Hernández
- Laboratory of Periodontal Biology, Faculty of Dentistry Universidad de Chile, Santiago, Chile; Oral Pathology Department, Faculty of Dentistry, Universidad de Chile, Santiago, Chile.
| |
Collapse
|
44
|
Pastar I, Stojadinovic O, Yin NC, Ramirez H, Nusbaum AG, Sawaya A, Patel SB, Khalid L, Isseroff RR, Tomic-Canic M. Epithelialization in Wound Healing: A Comprehensive Review. Adv Wound Care (New Rochelle) 2014; 3:445-464. [PMID: 25032064 DOI: 10.1089/wound.2013.0473] [Citation(s) in RCA: 839] [Impact Index Per Article: 76.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2013] [Accepted: 09/20/2013] [Indexed: 12/20/2022] Open
Abstract
Significance: Keratinocytes, a major cellular component of the epidermis, are responsible for restoring the epidermis after injury through a process termed epithelialization. This review will focus on the pivotal role of keratinocytes in epithelialization, including cellular processes and mechanisms of their regulation during re-epithelialization, and their cross talk with other cell types participating in wound healing. Recent Advances: Discoveries in epidermal stem cells, keratinocyte immune function, and the role of the epidermis as an independent neuroendocrine organ will be reviewed. Novel mechanisms of gene expression regulation important for re-epithelialization, including microRNAs and histone modifications, will also be discussed. Critical Issues: Epithelialization is an essential component of wound healing used as a defining parameter of a successful wound closure. A wound cannot be considered healed in the absence of re-epithelialization. The epithelialization process is impaired in all types of chronic wounds. Future Directions: A comprehensive understanding of the epithelialization process will ultimately lead to the development of novel therapeutic approaches to promote wound closure.
Collapse
Affiliation(s)
- Irena Pastar
- Wound Healing and Regenerative Medicine Research Program, Department of Dermatology and Cutaneous Surgery, University of Miami Miller School of Medicine, Miami, Florida
| | - Olivera Stojadinovic
- Wound Healing and Regenerative Medicine Research Program, Department of Dermatology and Cutaneous Surgery, University of Miami Miller School of Medicine, Miami, Florida
| | - Natalie C. Yin
- Wound Healing and Regenerative Medicine Research Program, Department of Dermatology and Cutaneous Surgery, University of Miami Miller School of Medicine, Miami, Florida
| | - Horacio Ramirez
- Wound Healing and Regenerative Medicine Research Program, Department of Dermatology and Cutaneous Surgery, University of Miami Miller School of Medicine, Miami, Florida
| | - Aron G. Nusbaum
- Wound Healing and Regenerative Medicine Research Program, Department of Dermatology and Cutaneous Surgery, University of Miami Miller School of Medicine, Miami, Florida
| | - Andrew Sawaya
- Wound Healing and Regenerative Medicine Research Program, Department of Dermatology and Cutaneous Surgery, University of Miami Miller School of Medicine, Miami, Florida
| | - Shailee B. Patel
- Wound Healing and Regenerative Medicine Research Program, Department of Dermatology and Cutaneous Surgery, University of Miami Miller School of Medicine, Miami, Florida
| | - Laiqua Khalid
- Department of Surgery, University of Miami Miller School of Medicine, Miami, Florida
| | | | - Marjana Tomic-Canic
- Wound Healing and Regenerative Medicine Research Program, Department of Dermatology and Cutaneous Surgery, University of Miami Miller School of Medicine, Miami, Florida
| |
Collapse
|
45
|
Epidermal cells help coordinate leukocyte migration during inflammation through fatty acid-fuelled matrix metalloproteinase production. Nat Commun 2014; 5:3880. [PMID: 24852213 DOI: 10.1038/ncomms4880] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2013] [Accepted: 04/11/2014] [Indexed: 02/07/2023] Open
Abstract
In addition to satisfying the metabolic demands of cells, mitochondrial metabolism helps regulate immune cell function. To date, such cell-intrinsic metabolic-immunologic cross-talk has only been described operating in cells of the immune system. Here we show that epidermal cells utilize fatty acid β-oxidation to fuel their contribution to the immune response during cutaneous inflammation. By live imaging metabolic and immunological processes within intact zebrafish embryos during cutaneous inflammation, we uncover a mechanism where elevated β-oxidation-fuelled mitochondria-derived reactive oxygen species within epidermal cells helps guide matrix metalloproteinase-driven leukocyte recruitment. This mechanism requires the activity of a zebrafish homologue of the mammalian mitochondrial enzyme, Immunoresponsive gene 1. This study describes the first example of metabolic reprogramming operating within a non-immune cell type to help control its contribution to the immune response. Targeting of this metabolic-immunologic interface within keratinocytes may prove useful in treating inflammatory dermatoses.
Collapse
|
46
|
Almodóvar-García K, Kwon M, Samaras SE, Davidson JM. ANKRD1 acts as a transcriptional repressor of MMP13 via the AP-1 site. Mol Cell Biol 2014; 34:1500-11. [PMID: 24515436 PMCID: PMC3993579 DOI: 10.1128/mcb.01357-13] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2013] [Revised: 12/02/2013] [Accepted: 01/31/2014] [Indexed: 01/21/2023] Open
Abstract
The transcriptional cofactor ANKRD1 is sharply induced during wound repair, and its overexpression enhances healing. We recently found that global deletion of murine Ankrd1 impairs wound contraction and enhances necrosis of ischemic wounds. A quantitative PCR array of Ankrd1(-/-) (KO) fibroblasts indicated that ANKRD1 regulates MMP genes. Yeast two-hybrid and coimmunoprecipitation analyses associated ANKRD1 with nucleolin, which represses AP-1 activation of MMP13. Ankrd1 deletion enhanced both basal and phorbol 12-myristate 13-acetate (PMA)-induced MMP13 promoter activity; conversely, Ankrd1 overexpression in control cells decreased PMA-induced MMP13 promoter activity. Ankrd1 reconstitution in KO fibroblasts decreased MMP13 mRNA, while Ankrd1 knockdown increased these levels. MMP13 mRNA and protein were elevated in intact skin and wounds of KO versus Ankrd1(fl/fl) (FLOX) mice. Electrophoretic mobility shift assay gel shift patterns suggested that additional transcription factors bind to the MMP13 AP-1 site in the absence of Ankrd1, and this concept was reinforced by chromatin immunoprecipitation analysis as greater binding of c-Jun to the AP-1 site in extracts from FLOX versus KO fibroblasts. We propose that ANKRD1, in association with factors such as nucleolin, represses MMP13 transcription. Ankrd1 deletion additionally relieved MMP10 transcriptional repression. Nuclear ANKRD1 appears to modulate extracellular matrix remodeling by MMPs.
Collapse
Affiliation(s)
- Karinna Almodóvar-García
- Department of Pathology, Microbiology and Immunology, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
| | - Minjae Kwon
- Department of Pathology, Microbiology and Immunology, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
| | - Susan E. Samaras
- Department of Pathology, Microbiology and Immunology, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
| | - Jeffrey M. Davidson
- Department of Pathology, Microbiology and Immunology, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
- VA Tennessee Valley Healthcare System, Nashville, Tennessee, USA
| |
Collapse
|
47
|
Koppel AC, Kiss A, Hindes A, Burns CJ, Marmer BL, Goldberg G, Blumenberg M, Efimova T. Delayed skin wound repair in proline-rich protein tyrosine kinase 2 knockout mice. Am J Physiol Cell Physiol 2014; 306:C899-909. [PMID: 24598361 DOI: 10.1152/ajpcell.00331.2013] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Proline-rich protein tyrosine kinase 2 (Pyk2) is a member of the focal adhesion kinase family. We used Pyk2 knockout (Pyk2-KO) mice to study the role of Pyk2 in cutaneous wound repair. We report that the rate of wound closure was delayed in Pyk2-KO compared with control mice. To examine whether impaired wound healing of Pyk2-KO mice was caused by a keratinocyte cell-autonomous defect, the capacities of primary keratinocytes from Pyk2-KO and wild-type (WT) littermates to heal scratch wounds in vitro were compared. The rate of scratch wound repair was decreased in Pyk2-KO keratinocytes compared with WT cells. Moreover, cultured human epidermal keratinocytes overexpressing the dominant-negative mutant of Pyk2 failed to heal scratch wounds. Conversely, stimulation of Pyk2-dependent signaling via WT Pyk2 overexpression induced accelerated scratch wound closure and was associated with increased expression of matrix metalloproteinase (MMP)-1, MMP-9, and MMP-10. The Pyk2-stimulated increase in the rate of scratch wound repair was abolished by coexpression of the dominant-negative mutant of PKCδ and by GM-6001, a broad-spectrum inhibitor of MMP activity. These results suggest that Pyk2 is essential for skin wound reepithelialization in vivo and in vitro and that it regulates epidermal keratinocyte migration via a pathway that requires PKCδ and MMP functions.
Collapse
Affiliation(s)
- Aaron C Koppel
- Division of Dermatology, Department of Internal Medicine, Washington University School of Medicine, St. Louis, Missouri; and
| | - Alexi Kiss
- Division of Dermatology, Department of Internal Medicine, Washington University School of Medicine, St. Louis, Missouri; and
| | - Anna Hindes
- Division of Dermatology, Department of Internal Medicine, Washington University School of Medicine, St. Louis, Missouri; and
| | - Carole J Burns
- Division of Dermatology, Department of Internal Medicine, Washington University School of Medicine, St. Louis, Missouri; and
| | - Barry L Marmer
- Division of Dermatology, Department of Internal Medicine, Washington University School of Medicine, St. Louis, Missouri; and
| | - Gregory Goldberg
- Division of Dermatology, Department of Internal Medicine, Washington University School of Medicine, St. Louis, Missouri; and
| | - Miroslav Blumenberg
- R. O. Perelman Department of Dermatology, NYU Langone Medical Center, New York, New York
| | - Tatiana Efimova
- Division of Dermatology, Department of Internal Medicine, Washington University School of Medicine, St. Louis, Missouri; and
| |
Collapse
|
48
|
Mezentsev A, Nikolaev A, Bruskin S. Matrix metalloproteinases and their role in psoriasis. Gene 2014; 540:1-10. [PMID: 24518811 DOI: 10.1016/j.gene.2014.01.068] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2013] [Revised: 12/20/2013] [Accepted: 01/22/2014] [Indexed: 01/11/2023]
Abstract
This review summarizes the contribution of matrix metalloproteinases to the pathogenesis of psoriasis. In psoriasis, matrix metalloproteinases are involved in the structural changes of the epidermis via the modification of intracellular contacts and the composition of the extracellular matrix, promoting angiogenesis in the dermal blood vessels and the infiltration of immune cells. Moreover, some matrix metalloproteinases become differentially expressed during the disease eruption and their expression correlates with the clinical score. A separate section of the review is dedicated to the pharmacological approaches that are used to control matrix metalloproteinases, such as oral metalloproteinase inhibitors, such as azasugars and phosphonamides. The aim of this manuscript is to assess the role of matrix metalloproteinases in the physiological processes that accompany the disease. Moreover, it is especially important to evaluate progress in this field and characterize recently appeared medicines. Because any experimental drugs that target matrix metalloproteinases are involved in active clinical trials, this manuscript also reviews the latest experimental data regarding distribution and expression of matrix metalloproteinases in healthy skin and lesional skin. Therefore, the performed analysis highlights potential problems associated with the use of metalloproteinase inhibitors in clinical studies and suggests simple and easy understandable criteria that future innovative metalloproteinase inhibitors shall satisfy.
Collapse
Affiliation(s)
- Alexandre Mezentsev
- Vavilov Institute of General Genetics RAS, Gubkina str., Bld. 3, 119991 Moscow, Russia.
| | - Alexander Nikolaev
- Vavilov Institute of General Genetics RAS, Gubkina str., Bld. 3, 119991 Moscow, Russia.
| | - Sergey Bruskin
- Vavilov Institute of General Genetics RAS, Gubkina str., Bld. 3, 119991 Moscow, Russia.
| |
Collapse
|
49
|
Coriolano MC, de Melo CML, Silva FDO, Schirato GV, Porto CS, dos Santos PJP, Correia MTDS, Porto ALF, Carneiro-Leão AMDA, Coelho LCBB. Parkia pendula seed lectin: potential use to treat cutaneous wounds in healthy and immunocompromised mice. Appl Biochem Biotechnol 2014; 172:2682-93. [PMID: 24425299 DOI: 10.1007/s12010-013-0692-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2013] [Accepted: 12/25/2013] [Indexed: 12/26/2022]
Abstract
Parkia pendula seed lectin was used to treat cutaneous wounds of normal and immunocompromised mice, inducing cicatrization. Methotrexate (0.8 mg/kg/week) was used as immunosuppressive drug. Wounds were produced in the dorsal region (1 cm(2)) of female albino Swiss mice (Mus musculus), health and immunocompromised. Wounds were daily topically treated with 100 μL of the following solutions: (1) control (NaCl 0.15 M), (2) control Im (0.15 M NaCl), (3) P. pendula seed lectin (100 μg/mL), and (4) P. pendula seed lectin Im (100 μg/mL). Clinical evaluation was performed during 12 days. Biopsies for histopathology analysis and microbiological examinations were carried out in the second, seventh, and 12th days. The presence of edema and hyperemia was observed in all groups during inflammatory period. The first crust was detected from the second day, only in the groups treated with P. pendula seed lectin. Microbiological analysis of wounds from day 0 to day 2 did not show bacterium at P. pendula seed lectin group; however, Staphylococcus sp. was detected every day in the other groups. The lectin markedly induced a total wound closing at P. pendula seed lectin and P. pendula seed lectin Im groups on 11th day of evolution. The present study suggests that P. pendula seed lectin is a biomaterial potential to show pharmacological effect in the repair process of cutaneous wounds.
Collapse
Affiliation(s)
- Marília Cavalcanti Coriolano
- Departamento de Bioquímica, Centro de Ciências Biológicas, Universidade Federal de Pernambuco, Recife, Pernambuco, 50670-420, Brazil
| | | | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Batra J, Soares AS, Mehner C, Radisky ES. Matrix metalloproteinase-10/TIMP-2 structure and analyses define conserved core interactions and diverse exosite interactions in MMP/TIMP complexes. PLoS One 2013; 8:e75836. [PMID: 24073280 PMCID: PMC3779175 DOI: 10.1371/journal.pone.0075836] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2013] [Accepted: 08/21/2013] [Indexed: 11/18/2022] Open
Abstract
Matrix metalloproteinases (MMPs) play central roles in vertebrate tissue development, remodeling, and repair. The endogenous tissue inhibitors of metalloproteinases (TIMPs) regulate proteolytic activity by binding tightly to the MMP active site. While each of the four TIMPs can inhibit most MMPs, binding data reveal tremendous heterogeneity in affinities of different TIMP/MMP pairs, and the structural features that differentiate stronger from weaker complexes are poorly understood. Here we report the crystal structure of the comparatively weakly bound human MMP-10/TIMP-2 complex at 2.1 Å resolution. Comparison with previously reported structures of MMP-3/TIMP-1, MT1-MMP/TIMP-2, MMP-13/TIMP-2, and MMP-10/TIMP-1 complexes offers insights into the structural basis of binding selectivity. Our analyses identify a group of highly conserved contacts at the heart of MMP/TIMP complexes that define the conserved mechanism of inhibition, as well as a second category of diverse adventitious contacts at the periphery of the interfaces. The AB loop of the TIMP N-terminal domain and the contact loops of the TIMP C-terminal domain form highly variable peripheral contacts that can be considered as separate exosite interactions. In some complexes these exosite contacts are extensive, while in other complexes the AB loop or C-terminal domain contacts are greatly reduced and appear to contribute little to complex stability. Our data suggest that exosite interactions can enhance MMP/TIMP binding, although in the relatively weakly bound MMP-10/TIMP-2 complex they are not well optimized to do so. Formation of highly variable exosite interactions may provide a general mechanism by which TIMPs are fine-tuned for distinct regulatory roles in biology.
Collapse
Affiliation(s)
- Jyotica Batra
- Department of Cancer Biology, Mayo Clinic Cancer Center, Jacksonville, Florida, United States of America
| | - Alexei S. Soares
- Biology Department, Brookhaven National Laboratory, Upton, New York, United States of America
| | - Christine Mehner
- Department of Cancer Biology, Mayo Clinic Cancer Center, Jacksonville, Florida, United States of America
| | - Evette S. Radisky
- Department of Cancer Biology, Mayo Clinic Cancer Center, Jacksonville, Florida, United States of America
- * E-mail:
| |
Collapse
|