1
|
Nakajima C, Tomida K, Shimoda T, Kawakami A, Shimada H. Association between willingness to exercise and incident disability in older adults: a prospective longitudinal cohort study. Eur Geriatr Med 2024; 15:1683-1689. [PMID: 39377895 DOI: 10.1007/s41999-024-01077-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Accepted: 09/27/2024] [Indexed: 10/09/2024]
Abstract
PURPOSE To investigate whether the willingness to exercise (WTE) and exercise habits affect the incidence of disability among older adults. METHODS This study included 8,354 individuals (72.5 ± 6.2 years, 55.9% female). The participants were divided into three categories based on their WTE: unwillingness to exercise, willingness to exercise (but without exercise habits), and exercise habits. The incidence of disability was prospectively determined within 24 months of the follow-up. Cox regression analysis was used to examine the relationship between WTE and the incidence of disability. RESULTS Overall, 600 (7.2%), 4,703 (56.3%), and 3,051 (36.5%) participants were classified as unwillingness to exercise, willingness to exercise, and exercise habits, respectively. Compared with the unwillingness to exercise group, the willingness to exercise group (hazard ratio [HR] 0.71, 95%Confidence Interval [CI] 0.52-0.96) and the exercise habits group (HR 0.65, 95%CI 0.46-0.92) had a lower risk of disability incidence. CONCLUSIONS These results suggest that WTE reduces the risk of disability in older adults. Therefore, the importance of increasing WTE to prevent the occurrence of disabilities is clear. Our results suggest that even though physical activity declines with age, it is important to have the desire to exercise and develop exercise habits.
Collapse
Affiliation(s)
- Chika Nakajima
- Department of Preventive Gerontology, Center for Gerontology and Social Science, National Center for Geriatrics and Gerontology, 7-430 Morioka-Cho, Obu, Aichi, 474-8511, Japan.
- Medical Science Division, Department of Medical Sciences, Graduate School of Medicine, Science and Technology, Shinshu University, Nagano, Japan.
| | - Kouki Tomida
- Department of Preventive Gerontology, Center for Gerontology and Social Science, National Center for Geriatrics and Gerontology, 7-430 Morioka-Cho, Obu, Aichi, 474-8511, Japan
| | - Takahiro Shimoda
- Department of Preventive Gerontology, Center for Gerontology and Social Science, National Center for Geriatrics and Gerontology, 7-430 Morioka-Cho, Obu, Aichi, 474-8511, Japan
| | - Ayuka Kawakami
- Department of Preventive Gerontology, Center for Gerontology and Social Science, National Center for Geriatrics and Gerontology, 7-430 Morioka-Cho, Obu, Aichi, 474-8511, Japan
| | - Hiroyuki Shimada
- Department of Preventive Gerontology, Center for Gerontology and Social Science, National Center for Geriatrics and Gerontology, 7-430 Morioka-Cho, Obu, Aichi, 474-8511, Japan
| |
Collapse
|
2
|
Su Z, Garvert MM, Zhang L, Manohar SG, Vogel TA, Thomas L, Balsters JH, Husain M, Apps MAJ, Lockwood PL. Older adults are relatively more susceptible to impulsive social influence than young adults. COMMUNICATIONS PSYCHOLOGY 2024; 2:87. [PMID: 39313518 PMCID: PMC11420232 DOI: 10.1038/s44271-024-00134-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Accepted: 08/29/2024] [Indexed: 09/25/2024]
Abstract
People differ in their levels of impulsivity and patience, and these preferences are heavily influenced by others. Previous research suggests that susceptibility to social influence may vary with age, but the mechanisms and whether people are more influenced by patience or impulsivity remain unknown. Here, using a delegated inter-temporal choice task and Bayesian computational models, we tested susceptibility to social influence in young (aged 18-36, N = 76) and older (aged 60-80, N = 78) adults. Participants completed a temporal discounting task and then learnt the preferences of two other people (one more impulsive and one more patient) before making their choices again. We used the signed Kullback-Leibler divergence to quantify the magnitude and direction of social influence. We found that, compared to young adults, older adults were relatively more susceptible to impulsive social influence. Factor analyses showed that older adults with higher self-reported levels of affective empathy and emotional motivation were particularly susceptible to impulsive influence. Importantly, older and young adults showed similar learning accuracy about others' preferences, and their baseline impulsivity did not differ. Together, these findings suggest highly affectively empathetic and emotionally motivated older adults may be at higher risk for impulsive decisions, due to their susceptibility to social influence.
Collapse
Affiliation(s)
- Zhilin Su
- Centre for Human Brain Health, School of Psychology, University of Birmingham, Birmingham, B15 2TT, UK.
| | - Mona M Garvert
- Faculty of Human Sciences, Junior professorship of Neuroscience, University of Würzburg, 97070, Würzburg, Germany
| | - Lei Zhang
- Centre for Human Brain Health, School of Psychology, University of Birmingham, Birmingham, B15 2TT, UK
- Institute for Mental Health, School of Psychology, University of Birmingham, Birmingham, B15 2TT, UK
- Centre for Developmental Sciences, School of Psychology, University of Birmingham, Birmingham, B15 2TT, UK
| | - Sanjay G Manohar
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, OX3 9DU, UK
- Department of Experimental Psychology, University of Oxford, Oxford, OX2 6GG, UK
| | - Todd A Vogel
- Centre for Human Brain Health, School of Psychology, University of Birmingham, Birmingham, B15 2TT, UK
- Institute for Mental Health, School of Psychology, University of Birmingham, Birmingham, B15 2TT, UK
- Centre for Developmental Sciences, School of Psychology, University of Birmingham, Birmingham, B15 2TT, UK
| | - Louisa Thomas
- Department of Psychology, Royal Holloway, University of London, Surrey, TW20 0EX, UK
| | - Joshua H Balsters
- Department of Psychology, Royal Holloway, University of London, Surrey, TW20 0EX, UK
| | - Masud Husain
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, OX3 9DU, UK
- Department of Experimental Psychology, University of Oxford, Oxford, OX2 6GG, UK
- Wellcome Centre for Integrative Neuroimaging, University of Oxford, Oxford, OX3 9DU, UK
| | - Matthew A J Apps
- Centre for Human Brain Health, School of Psychology, University of Birmingham, Birmingham, B15 2TT, UK
- Institute for Mental Health, School of Psychology, University of Birmingham, Birmingham, B15 2TT, UK
- Centre for Developmental Sciences, School of Psychology, University of Birmingham, Birmingham, B15 2TT, UK
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, OX3 9DU, UK
- Department of Experimental Psychology, University of Oxford, Oxford, OX2 6GG, UK
- Wellcome Centre for Integrative Neuroimaging, University of Oxford, Oxford, OX3 9DU, UK
| | - Patricia L Lockwood
- Centre for Human Brain Health, School of Psychology, University of Birmingham, Birmingham, B15 2TT, UK.
- Institute for Mental Health, School of Psychology, University of Birmingham, Birmingham, B15 2TT, UK.
- Centre for Developmental Sciences, School of Psychology, University of Birmingham, Birmingham, B15 2TT, UK.
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, OX3 9DU, UK.
- Department of Experimental Psychology, University of Oxford, Oxford, OX2 6GG, UK.
- Wellcome Centre for Integrative Neuroimaging, University of Oxford, Oxford, OX3 9DU, UK.
| |
Collapse
|
3
|
Sharpe AL, Liter LR, Donohue D, Carter KA, Vangeneugden P, Weaver S, Stout MB, Beckstead MJ. Aged mice exhibit faster acquisition of intravenous opioid self-administration with variable effects on intake. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.03.611052. [PMID: 39282417 PMCID: PMC11398421 DOI: 10.1101/2024.09.03.611052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 09/20/2024]
Abstract
Although opioid abuse is more prevalent in young individuals, opioid use, overdose, and use disorders continue to climb at a rapid rate among the elderly. Little is known about abuse potential in a healthy aged population, in part due to technical and logistical difficulties testing intravenous self-administration in aged rodents. The goal of this study was to address the critical gap in the literature regarding age-dependent differences in opioid (remifentanil and fentanyl) self-administration between old and young mice. Male and female mice were grouped into young (mean: 19 weeks) and old (mean: 101 weeks), and were trained to self-administer intravenous fentanyl or remifentanil in daily sessions. In both old and young mice, acquisition, intake, and cue-responding after forced abstinence were measured for both drugs, and a dose-response curve (remifentanil) and dose-escalation (fentanyl) were conducted. Surprisingly, old mice learned to self-administer both remifentanil and fentanyl faster and more accurately than young mice. Baseline intake of remifentanil was also substantially greater in old mice compared to their young counterparts; however, we did not see increased intake of fentanyl with age at either dose tested. Further, compared to young mice, the old mice showed a greater incubation of responding for cues previously associated with remifentanil after a forced abstinence, but again this was not observed with fentanyl. Together these data suggest that an aged population may have an increased drug-abuse vulnerability for opioids compared to young counterparts and underscore the importance of future work on mechanisms responsible for this increased vulnerability.
Collapse
Affiliation(s)
- Amanda L Sharpe
- Department of Pharmaceutical Sciences, University of Oklahoma Health Sciences
| | - Laci R Liter
- Aging and Metabolism Research Program, Oklahoma Medical Research Foundation; Graduate Program in Biomedical Sciences, University of Oklahoma Health Sciences
| | - Darius Donohue
- Aging and Metabolism Research Program, Oklahoma Medical Research Foundation
| | - Kelsey A Carter
- Aging and Metabolism Research Program, Oklahoma Medical Research Foundation
| | | | - Sofia Weaver
- Aging and Metabolism Research Program, Oklahoma Medical Research Foundation
| | - Michael B Stout
- Aging and Metabolism Research Program, Oklahoma Medical Research Foundation
| | - Michael J Beckstead
- Aging and Metabolism Research Program, Oklahoma Medical Research Foundation; Oklahoma City Veterans Affairs Medical Center, Oklahoma City, OK, USA
| |
Collapse
|
4
|
Koch C, Zika O, Bruckner R, Schuck NW. Influence of surprise on reinforcement learning in younger and older adults. PLoS Comput Biol 2024; 20:e1012331. [PMID: 39141681 PMCID: PMC11346965 DOI: 10.1371/journal.pcbi.1012331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 08/26/2024] [Accepted: 07/16/2024] [Indexed: 08/16/2024] Open
Abstract
Surprise is a key component of many learning experiences, and yet its precise computational role, and how it changes with age, remain debated. One major challenge is that surprise often occurs jointly with other variables, such as uncertainty and outcome probability. To assess how humans learn from surprising events, and whether aging affects this process, we studied choices while participants learned from bandits with either Gaussian or bi-modal outcome distributions, which decoupled outcome probability, uncertainty, and surprise. A total of 102 participants (51 older, aged 50-73; 51 younger, 19-30 years) chose between three bandits, one of which had a bimodal outcome distribution. Behavioral analyses showed that both age-groups learned the average of the bimodal bandit less well. A trial-by-trial analysis indicated that participants performed choice reversals immediately following large absolute prediction errors, consistent with heightened sensitivity to surprise. This effect was stronger in older adults. Computational models indicated that learning rates in younger as well as older adults were influenced by surprise, rather than uncertainty, but also suggested large interindividual variability in the process underlying learning in our task. Our work bridges between behavioral economics research that has focused on how outcomes with low probability affect choice in older adults, and reinforcement learning work that has investigated age differences in the effects of uncertainty and suggests that older adults overly adapt to surprising events, even when accounting for probability and uncertainty effects.
Collapse
Affiliation(s)
- Christoph Koch
- Max Planck Institute for Human Development, Berlin, Germany
- Institute of Psychology, Universität Hamburg, Hamburg, Germany
| | - Ondrej Zika
- Max Planck Institute for Human Development, Berlin, Germany
- Max Planck UCL Centre for Computational Psychiatry and Aging Research, Berlin, Germany, and London, United Kingdom
| | - Rasmus Bruckner
- Max Planck Institute for Human Development, Berlin, Germany
- Department of Education and Psychology, Freie Universität Berlin, Berlin, Germany
| | - Nicolas W. Schuck
- Max Planck Institute for Human Development, Berlin, Germany
- Institute of Psychology, Universität Hamburg, Hamburg, Germany
- Max Planck UCL Centre for Computational Psychiatry and Aging Research, Berlin, Germany, and London, United Kingdom
| |
Collapse
|
5
|
Murphy DH, Castel AD, Knowlton BJ. Age-Related Differences in Framing Selective Memory in Terms of Gains and Losses. Exp Aging Res 2024; 50:506-521. [PMID: 37409470 PMCID: PMC10770296 DOI: 10.1080/0361073x.2023.2233366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Accepted: 07/03/2023] [Indexed: 07/07/2023]
Abstract
We examined whether framing younger and older adults learning goals in terms of maximizing gains or minimizing losses impacts their ability to selectively remember high-value information. Specifically, we presented younger and older adults with lists of words paired with point values and participants were either told that they would receive the value associated with each word if they recalled it on a test or that they would lose the points associated with each word if they failed to recall it on the test. We also asked participants to predict the likelihood of recalling each word to determine if younger and older adults were metacognitively aware of any potential framing effects. Results revealed that older adults expected to be more selective when their goals were framed in terms of losses, but younger adults expected to be more selective when their goals were framed in terms of gains. However, this was not the case as both younger and older adults were more selective for high-value information when their goals were framed in terms of maximizing gains compared with minimizing losses. Thus, the framing of learning goals can impact metacognitive decisions and subsequent memory in both younger and older adults.
Collapse
Affiliation(s)
- Dillon H Murphy
- Department of Psychology, University of California Los Angeles, Los Angeles, California, USA
| | - Alan D Castel
- Department of Psychology, University of California Los Angeles, Los Angeles, California, USA
| | - Barbara J Knowlton
- Department of Psychology, University of California Los Angeles, Los Angeles, California, USA
| |
Collapse
|
6
|
Puthusseryppady V, Cossio D, Yu S, Rezwana F, Hegarty M, Jacobs EG, Chrastil ER. Less spatial exploration is associated with poorer spatial memory in midlife adults. Front Aging Neurosci 2024; 16:1382801. [PMID: 38919601 PMCID: PMC11196421 DOI: 10.3389/fnagi.2024.1382801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Accepted: 04/22/2024] [Indexed: 06/27/2024] Open
Abstract
Introduction Despite its importance for navigation, very little is known about how the normal aging process affects spatial exploration behavior. We aimed to investigate: (1) how spatial exploration behavior may be altered early in the aging process, (2) the relationship between exploration behavior and subsequent spatial memory, and (3) whether exploration behavior can classify participants according to age. Methods Fifty healthy young (aged 18-28) and 87 healthy midlife adults (aged 43-61) freely explored a desktop virtual maze, learning the locations of nine target objects. Various exploration behaviors (object visits, distance traveled, turns made, etc.) were measured. In the test phase, participants navigated from one target object to another without feedback, and their wayfinding success (% correct trials) was measured. Results In the exploration phase, midlife adults exhibited less exploration overall compared to young adults, and prioritized learning target object locations over maze layout. In the test phase, midlife adults exhibited less wayfinding success when compared to the young adults. Furthermore, following principal components analysis (PCA), regression analyses indicated that both exploration quantity and quality components were associated with wayfinding success in the midlife group, but not the young adults. Finally, we could classify participants according to age with similar accuracy using either their exploration behavior or wayfinding success scores. Discussion Our results aid in the understanding of how aging impacts spatial exploration, and encourages future investigations into how pathological aging may affect spatial exploration behavior.
Collapse
Affiliation(s)
- Vaisakh Puthusseryppady
- Department of Neurobiology and Behavior, University of California, Irvine, Irvine, CA, United States
| | - Daniela Cossio
- Department of Neurobiology and Behavior, University of California, Irvine, Irvine, CA, United States
| | - Shuying Yu
- Department of Psychological and Brain Sciences, University of California, Santa Barbara, Santa Barbara, CA, United States
| | - Farnaz Rezwana
- Department of Neurobiology and Behavior, University of California, Irvine, Irvine, CA, United States
| | - Mary Hegarty
- Department of Psychological and Brain Sciences, University of California, Santa Barbara, Santa Barbara, CA, United States
| | - Emily G. Jacobs
- Department of Psychological and Brain Sciences, University of California, Santa Barbara, Santa Barbara, CA, United States
- Neuroscience Research Institute, University of California, Santa Barbara, Santa Barbara, CA, United States
| | - Elizabeth R. Chrastil
- Department of Neurobiology and Behavior, University of California, Irvine, Irvine, CA, United States
| |
Collapse
|
7
|
Summerside EM, Courter RJ, Shadmehr R, Ahmed AA. Slowing of Movements in Healthy Aging as a Rational Economic Response to an Elevated Effort Landscape. J Neurosci 2024; 44:e1596232024. [PMID: 38408872 PMCID: PMC11007314 DOI: 10.1523/jneurosci.1596-23.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 01/08/2024] [Accepted: 02/07/2024] [Indexed: 02/28/2024] Open
Abstract
Why do we move slower as we grow older? The reward circuits of the brain, which tend to invigorate movements, decline with aging, raising the possibility that reduced vigor is due to the diminishing value that our brain assigns to movements. However, as we grow older, it also becomes more effortful to make movements. Is age-related slowing principally a consequence of increased effort costs from the muscles, or reduced valuation of reward by the brain? Here, we first quantified the cost of reaching via metabolic energy expenditure in human participants (male and female), and found that older adults consumed more energy than the young at a given speed. Thus, movements are objectively more costly for older adults. Next, we observed that when reward increased, older adults, like the young, responded by initiating their movements earlier. Yet, unlike the young, they were unwilling to increase their movement speed. Was their reluctance to reach quicker for rewards due to the increased effort costs, or because they ascribed less value to the movement? Motivated by a mathematical model, we next made the young experience a component of aging by making their movements more effortful. Now the young responded to reward by reacting faster but chose not to increase their movement speed. This suggests that slower movements in older adults are partly driven by an adaptive response to an elevated effort landscape. Moving slower may be a rational economic response the brain is making to mitigate the elevated effort costs that accompany aging.
Collapse
Affiliation(s)
- Erik M Summerside
- Departments of Integrative Physiology, University of Colorado Boulder, Boulder, Colorado 80309
| | - Robert J Courter
- Departments of Integrative Physiology, University of Colorado Boulder, Boulder, Colorado 80309
- Mechanical Engineering, University of Colorado Boulder, Boulder, Colorado 80309
| | - Reza Shadmehr
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, Maryland 21205
| | - Alaa A Ahmed
- Departments of Integrative Physiology, University of Colorado Boulder, Boulder, Colorado 80309
- Mechanical Engineering, University of Colorado Boulder, Boulder, Colorado 80309
| |
Collapse
|
8
|
Sagheddu C, Stojanovic T, Kouhnavardi S, Savchenko A, Hussein AM, Pistis M, Monje FJ, Plasenzotti R, Aufy M, Studenik CR, Lubec J, Lubec G. Cognitive performance in aged rats is associated with differences in distinctive neuronal populations in the ventral tegmental area and altered synaptic plasticity in the hippocampus. Front Aging Neurosci 2024; 16:1357347. [PMID: 38469164 PMCID: PMC10926450 DOI: 10.3389/fnagi.2024.1357347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Accepted: 02/12/2024] [Indexed: 03/13/2024] Open
Abstract
Introduction Deterioration of cognitive functions is commonly associated with aging, although there is wide variation in the onset and manifestation. Albeit heterogeneity in age-related cognitive decline has been studied at the cellular and molecular level, there is poor evidence for electrophysiological correlates. The aim of the current study was to address the electrophysiological basis of heterogeneity of cognitive functions in cognitively Inferior and Superior old (19-20 months) rats in the ventral tegmental area (VTA) and the hippocampus, having Young (12 weeks) rats as a control. The midbrain VTA operates as a hub amidst affective and cognitive facets, processing sensory inputs related to motivated behaviours and hippocampal memory. Increasing evidence shows direct dopaminergic and non-dopaminergic input from the VTA to the hippocampus. Methods Aged Superior and Inferior male rats were selected from a cohort of 88 animals based on their performance in a spatial learning and memory task. Using in vivo single-cell recording in the VTA, we examined the electrical activity of different neuronal populations (putative dopaminergic, glutamatergic and GABAergic neurons). In the same animals, basal synaptic transmission and synaptic plasticity were examined in hippocampal slices. Results Electrophysiological recordings from the VTA and hippocampus showed alterations associated with aging per se, together with differences specifically linked to the cognitive status of aged animals. In particular, the bursting activity of dopamine neurons was lower, while the firing frequency of glutamatergic neurons was higher in VTA of Inferior old rats. The response to high-frequency stimulation in hippocampal slices also discriminated between Superior and Inferior aged animals. Discussion This study provides new insight into electrophysiological information underlying compromised cerebral ageing. Further understanding of brain senescence, possibly related to neurocognitive decline, will help develop new strategies towards the preservation of a high quality of life.
Collapse
Affiliation(s)
- Claudia Sagheddu
- Division of Neuroscience and Clinical Pharmacology, Department of Biomedical Sciences, University of Cagliari, Monserrato, Italy
| | - Tamara Stojanovic
- Programme for Proteomics, Paracelsus Medical University, Salzburg, Austria
| | - Shima Kouhnavardi
- Programme for Proteomics, Paracelsus Medical University, Salzburg, Austria
- Division of Pharmacology and Toxicology, Department of Pharmaceutical Sciences, University of Vienna, Vienna, Austria
| | - Artem Savchenko
- Programme for Proteomics, Paracelsus Medical University, Salzburg, Austria
- Institute of Pharmacology, Pavlov First Saint Petersburg State Medical University, St. Petersburg, Russia
| | - Ahmed M. Hussein
- Programme for Proteomics, Paracelsus Medical University, Salzburg, Austria
- Division of Pharmacology and Toxicology, Department of Pharmaceutical Sciences, University of Vienna, Vienna, Austria
- Department of Zoology, Faculty of Science, Al-Azhar University, Asyut, Egypt
| | - Marco Pistis
- Division of Neuroscience and Clinical Pharmacology, Department of Biomedical Sciences, University of Cagliari, Monserrato, Italy
- Section of Cagliari, Neuroscience Institute National Research Council of Italy (CNR), Cagliari, Italy
- Unit of Clinical Pharmacology, University Hospital, Cagliari, Italy
| | - Francisco J. Monje
- Center for Physiology and Pharmacology, Department of Neurophysiology and Neuropharmacology, Medical University of Vienna, Vienna, Austria
| | - Roberto Plasenzotti
- Division of Biomedical Research, Medical University of Vienna, Vienna, Austria
| | - Mohammed Aufy
- Division of Pharmacology and Toxicology, Department of Pharmaceutical Sciences, University of Vienna, Vienna, Austria
| | - Christian R. Studenik
- Division of Pharmacology and Toxicology, Department of Pharmaceutical Sciences, University of Vienna, Vienna, Austria
| | - Jana Lubec
- Programme for Proteomics, Paracelsus Medical University, Salzburg, Austria
| | - Gert Lubec
- Programme for Proteomics, Paracelsus Medical University, Salzburg, Austria
| |
Collapse
|
9
|
Horn S. Adult age differences in value-based decision making. Curr Opin Psychol 2024; 55:101765. [PMID: 38103277 DOI: 10.1016/j.copsyc.2023.101765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 11/07/2023] [Accepted: 11/21/2023] [Indexed: 12/19/2023]
Abstract
A better understanding of age-related differences in judgment and decision making is important from both theoretical and applied perspectives. In this review, we focus on value-based decisions across adulthood and specifically on how loss aversion (a relatively stronger weight of losses than gains on decisions) and the relative motivational impact of gains and losses may change with aging. In doing so, we will also cover recent findings about the effects of gain or loss incentives on performance in cognitive tasks that involve attention, learning, and remembering. We point out open questions and critical moderating variables for future theorizing and research.
Collapse
Affiliation(s)
- Sebastian Horn
- Department of Psychology, University of Zurich, Switzerland.
| |
Collapse
|
10
|
Mizell JM, Wang S, Frisvold A, Alvarado L, Farrell-Skupny A, Keung W, Phelps CE, Sundman MH, Franchetti MK, Chou YH, Alexander GE, Wilson RC. Differential impacts of healthy cognitive aging on directed and random exploration. Psychol Aging 2024; 39:88-101. [PMID: 38358695 PMCID: PMC10871551 DOI: 10.1037/pag0000791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2024]
Abstract
Deciding whether to explore unknown opportunities or exploit well-known options is a ubiquitous part of our everyday lives. Extensive work in college students suggests that young people make explore-exploit decisions using a mixture of information seeking and random behavioral variability. Whether, and to what extent, older adults use the same strategies is unknown. To address this question, 51 older adults (ages 65-74) and 32 younger adults (ages 18-25) completed the Horizon Task, a gambling task that quantifies information seeking and behavioral variability as well as how these strategies are controlled for the purposes of exploration. Qualitatively, we found that older adults performed similar to younger adults on this task, increasing both their information seeking and behavioral variability when it was adaptive to explore. Quantitively, however, there were substantial differences between the age groups, with older adults showing less information seeking overall and less reliance on variability as a means to explore. In addition, we found a subset of approximately 26% of older adults whose information seeking was close to zero, avoiding informative options even when they were clearly the better choice. Unsurprisingly, these "information avoiders" performed worse on the task. In contrast, task performance in the remaining "information seeking" older adults was comparable to that of younger adults suggesting that age-related differences in explore-exploit decision making may be adaptive except when they are taken to extremes. (PsycInfo Database Record (c) 2024 APA, all rights reserved).
Collapse
Affiliation(s)
| | - Siyu Wang
- University of Arizona, Department of Psychology
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Petok JR, Merenstein JL, Bennett IJ. Iron content affects age group differences in associative learning-related fMRI activity. Neuroimage 2024; 285:120478. [PMID: 38036152 DOI: 10.1016/j.neuroimage.2023.120478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 08/25/2023] [Accepted: 11/28/2023] [Indexed: 12/02/2023] Open
Abstract
Brain regions accumulate different amounts of iron with age, with older adults having higher iron in the basal ganglia (globus pallidus, putamen, caudate) relative to the hippocampus. This has important implications for functional magnetic resonance imaging (fMRI) studies in aging as the presence of iron may influence both neuronal functioning as well as the measured fMRI (BOLD) signal, and these effects will vary across age groups and brain regions. To test this hypothesis, the current study examined the effect of iron on age group differences in task-related activity within each basal nuclei and the hippocampus. Twenty-eight younger and 22 older adults completed an associative learning task during fMRI acquisition. Iron content (QSM, R2*) was estimated from a multi-echo gradient echo sequence. As previously reported, older adults learned significantly less than younger adults and age group differences in iron content were largest in the basal ganglia (putamen, caudate). In the hippocampus (early task stage) and globus pallidus (late task stage), older adults had significantly higher learning-related activity than younger adults both before and after controlling for iron. In the putamen (late task stage), however, younger adults had significantly higher learning-related activity than older adults that was only seen after controlling for iron. These findings support the notion that age-related differences in iron influence both neuronal functioning and the measured fMRI signal in select basal nuclei. Moreover, previous fMRI studies in aging populations may have under-reported age group differences in task-related activity by not accounting for iron within these regions.
Collapse
Affiliation(s)
| | - Jenna L Merenstein
- Brain Imaging and Analysis Center, Duke University Medical Center, United States
| | - Ilana J Bennett
- Department of Psychology, University of California, Riverside, 900 University Avenue, Riverside CA, 92521-0426, United States.
| |
Collapse
|
12
|
Eppinger B, Ruel A, Bolenz F. Diminished State Space Theory of Human Aging. PERSPECTIVES ON PSYCHOLOGICAL SCIENCE 2023:17456916231204811. [PMID: 37931229 DOI: 10.1177/17456916231204811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2023]
Abstract
Many new technologies, such as smartphones, computers, or public-access systems (like ticket-vending machines), are a challenge for older adults. One feature that these technologies have in common is that they involve underlying, partially observable, structures (state spaces) that determine the actions that are necessary to reach a certain goal (e.g., to move from one menu to another, to change a function, or to activate a new service). In this work we provide a theoretical, neurocomputational account to explain these behavioral difficulties in older adults. Based on recent findings from age-comparative computational- and cognitive-neuroscience studies, we propose that age-related impairments in complex goal-directed behavior result from an underlying deficit in the representation of state spaces of cognitive tasks. Furthermore, we suggest that these age-related deficits in adaptive decision-making are due to impoverished neural representations in the orbitofrontal cortex and hippocampus.
Collapse
Affiliation(s)
- Ben Eppinger
- Institute of Psychology, University of Greifswald
- Department of Psychology, Concordia University
- PERFORM Centre, Concordia University
- Faculty of Psychology, Technische Universität Dresden
| | - Alexa Ruel
- Department of Psychology, Concordia University
- PERFORM Centre, Concordia University
- Institute of Psychology, University of Hamburg
| | - Florian Bolenz
- Center for Adaptive Rationality, Max Planck Institute for Human Development, Berlin, Germany
- Science of Intelligence/Cluster of Excellence, Technical University of Berlin
| |
Collapse
|
13
|
Hwang EJ, Korde S, Han Y, Sambangi J, Lian B, Owusu-Ofori A, Diasamidze M, Wong LM, Pickering N, Begin S. Parietal stimulation reverses age-related decline in exploration, learning, and decision-making. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.10.21.563408. [PMID: 37970542 PMCID: PMC10642975 DOI: 10.1101/2023.10.21.563408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2023]
Abstract
Aging can compromise decision-making and learning, potentially due to reduced exploratory behaviors crucial for novel problem-solving. We posit that invigorating exploration could mitigate these declines. Supporting this hypothesis, we found that older mice mirrored human aging, displaying less exploration and learning during decision-making, but optogenetic stimulation of their posterior parietal cortex boosted initial exploration, subsequently improving learning. Thus, enhancing exploration-driven learning could be a key to countering cognitive aging.
Collapse
Affiliation(s)
- Eun Jung Hwang
- Cell Biology and Anatomy, Chicago Medical School, Stanson Toshok Center for Brain Function and Repair, Rosalind Franklin University of Medicine and Science, North Chicago, IL 60064, USA
| | - Sayli Korde
- Cell Biology and Anatomy, Chicago Medical School, Stanson Toshok Center for Brain Function and Repair, Rosalind Franklin University of Medicine and Science, North Chicago, IL 60064, USA
| | - Ying Han
- Cell Biology and Anatomy, Chicago Medical School, Stanson Toshok Center for Brain Function and Repair, Rosalind Franklin University of Medicine and Science, North Chicago, IL 60064, USA
- Department of Neuroscience, Lake Forest College, Lake Forest, IL 60045, USA
- Department of Computer Science, Lake Forest College, Lake Forest, IL 60045, USA
| | - Jaydeep Sambangi
- Chicago Medical School, Rosalind Franklin University of Medicine and Science, North Chicago, IL 60064, USA
| | - Bowen Lian
- Chicago Medical School, Rosalind Franklin University of Medicine and Science, North Chicago, IL 60064, USA
| | - Ama Owusu-Ofori
- Cell Biology and Anatomy, Chicago Medical School, Stanson Toshok Center for Brain Function and Repair, Rosalind Franklin University of Medicine and Science, North Chicago, IL 60064, USA
- Department of Neuroscience, Lake Forest College, Lake Forest, IL 60045, USA
| | - Megi Diasamidze
- Cell Biology and Anatomy, Chicago Medical School, Stanson Toshok Center for Brain Function and Repair, Rosalind Franklin University of Medicine and Science, North Chicago, IL 60064, USA
- Department of Neuroscience, Lake Forest College, Lake Forest, IL 60045, USA
| | - Lea M. Wong
- Cell Biology and Anatomy, Chicago Medical School, Stanson Toshok Center for Brain Function and Repair, Rosalind Franklin University of Medicine and Science, North Chicago, IL 60064, USA
| | - Nadine Pickering
- Chicago Medical School, Rosalind Franklin University of Medicine and Science, North Chicago, IL 60064, USA
| | - Sam Begin
- Chicago Medical School, Rosalind Franklin University of Medicine and Science, North Chicago, IL 60064, USA
| |
Collapse
|
14
|
Bress JN, Arslanoglou E, Banerjee S, Alexopoulos GS, Kiosses DN. Positive valence system function and anhedonia in middle-aged and older adults at high suicide risk. Biol Psychol 2023; 182:108647. [PMID: 37499781 PMCID: PMC10529097 DOI: 10.1016/j.biopsycho.2023.108647] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 06/08/2023] [Accepted: 07/18/2023] [Indexed: 07/29/2023]
Abstract
Positive valence systems are disrupted in late-life depression and in individuals at risk for suicide. The reward positivity (RewP) is an event-related potential measure of positive valence system function that relates to depression and anhedonia in children and young adults. However, it is unclear whether a reliable RewP signal can be elicited in middle-aged and older adults at high risk for suicide and, if so, whether this signal is similarly associated with clinical symptoms. In the current study, a RewP was elicited with a standard gambling task in middle-aged and older adults (N = 31) at discharge from a hospitalization for suicidal thought or behaviors. The resulting electrocortical response differed significantly for monetary wins compared to losses. Internal reliability of the RewP and the feedback negativity (FN) to monetary loss was good to excellent. Internal reliability of difference measures was lower but still largely acceptable, with residualized differences scores demonstrating stronger reliability than subtraction-based scores. A smaller residualized RewP, after accounting for the influence of the FN, was associated with greater severity of lassitude, an index of appetitive anhedonia. These findings set the groundwork for future studies of positive valence system function and depression in middle-aged and older adults at high risk for suicide.
Collapse
Affiliation(s)
- Jennifer N Bress
- Weill Cornell Institute of Geriatric Psychiatry, Department of Psychiatry, Weill Cornell Medicine, White Plains, New York.
| | - Elizabeth Arslanoglou
- Weill Cornell Institute of Geriatric Psychiatry, Department of Psychiatry, Weill Cornell Medicine, White Plains, New York
| | - Samprit Banerjee
- Department of Population Health Sciences, Weill Cornell Medicine, New York, New York
| | - George S Alexopoulos
- Weill Cornell Institute of Geriatric Psychiatry, Department of Psychiatry, Weill Cornell Medicine, White Plains, New York
| | - Dimitris N Kiosses
- Weill Cornell Institute of Geriatric Psychiatry, Department of Psychiatry, Weill Cornell Medicine, White Plains, New York
| |
Collapse
|
15
|
Summerside EM, Courter RJ, Shadmehr R, Ahmed AA. Effort cost of reaching prompts vigor reduction in older adults. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.08.28.555022. [PMID: 37693378 PMCID: PMC10491094 DOI: 10.1101/2023.08.28.555022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/12/2023]
Abstract
As people age, they move slower. Is age-related reduction in vigor a reflection of a reduced valuation of reward by the brain, or a consequence of increased effort costs by the muscles? Here, we quantified cost of movements objectively via the metabolic energy that young and old participants consumed during reaching and found that in order reach at a given speed, older adults expended more energy than the young. We next quantified how reward modulated movements in the same populations and found that like the young, older adults responded to increased reward by initiating their movements earlier. Yet, their movements were less sensitive to increased reward, resulting in little or no modulation of reach speed. Lastly, we quantified the effect of increased effort on how reward modulated movements in young adults. Like the effects of aging, when faced with increased effort the young adults responded to reward primarily by reacting faster, with little change in movement speed. Therefore, reaching required greater energetic expenditure in the elderly, suggesting that the slower movements and reactions exhibited in aging are partly driven by an adaptive response to an elevation in the energetic landscape of effort. That is, moving slower appears to be a rational economic consequence of aging. Significance statement Healthy aging coincides with a reduction in speed, or vigor, of walking, reaching, and eye movements. Here we focused on disentangling two opposing sources of aging-related movement slowing: reduced reward sensitivity due to loss of dopaminergic tone, or increased energy expenditure movements related to mitochondrial or muscular inefficiencies. Through a series of three experiments and construction of a computational model, here we demonstrate that transient changes in reaction time and movement speed together offer a quantifiable metric to differentiate between reward- and effort-based alterations in movement vigor. Further, we suggest that objective increases in the metabolic cost of moving, not reductions in reward valuation, are driving much of the movement slowing occurring alongside healthy aging.
Collapse
|
16
|
Frank CC, Seaman KL. Aging, uncertainty, and decision making-A review. COGNITIVE, AFFECTIVE & BEHAVIORAL NEUROSCIENCE 2023; 23:773-787. [PMID: 36670294 DOI: 10.3758/s13415-023-01064-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 01/08/2023] [Indexed: 01/21/2023]
Abstract
There is a great deal of uncertainty in the world. One common source of uncertainty results from incomplete or missing information about probabilistic outcomes (i.e., outcomes that may occur), which influences how people make decisions. The impact of this type of uncertainty may particularly pronounced for older adults, who, as the primary leaders around the world, make highly impactful decisions with lasting outcomes. This review examines the ways in which uncertainty about probabilistic outcomes is perceived, handled, and represented in the aging brain, with an emphasis on how uncertainty may specifically affect decision making in later life. We describe the role of uncertainty in decision making and aging from four perspectives, including 1) theoretical, 2) self-report, 3) behavioral, and 4) neuroscientific. We report evidence of any age-related differences in uncertainty among these contexts and describe how these changes may affect decision making. We then integrate the findings across the distinct perspectives, followed by a discussion of important future directions for research on aging and uncertainty, including prospection, domain-specificity in risk-taking behaviors, and choice overload.
Collapse
Affiliation(s)
- Colleen C Frank
- Center for Vital Longevity, The University of Texas at Dallas, Dallas, TX, USA.
| | - Kendra L Seaman
- Center for Vital Longevity, The University of Texas at Dallas, Dallas, TX, USA
- School of Brain and Behavioral Sciences, The University of Texas at Dallas, Richardson, TX, USA
| |
Collapse
|
17
|
Green MA, Crawford JL, Kuhnen CM, Samanez-Larkin GR, Seaman KL. Multivariate associations between dopamine receptor availability and risky investment decision-making across adulthood. Cereb Cortex Commun 2023; 4:tgad008. [PMID: 37255569 PMCID: PMC10225308 DOI: 10.1093/texcom/tgad008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 05/08/2023] [Accepted: 05/10/2023] [Indexed: 06/01/2023] Open
Abstract
Enhancing dopamine increases financial risk taking across adulthood but it is unclear whether baseline individual differences in dopamine function are related to risky financial decisions. Here, thirty-five healthy adults completed an incentive-compatible risky investment decision task and a PET scan at rest using [11C]FLB457 to assess dopamine D2-like receptor availability. Participants made choices between a safe asset (bond) and a risky asset (stock) with either an expected value less than the bond ("bad stock") or expected value greater than the bond ("good stock"). Five measures of behavior (choice inflexibility, risk seeking, suboptimal investment) and beliefs (absolute error, optimism) were computed and D2-like binding potential was extracted from four brain regions of interest (midbrain, amygdala, anterior cingulate, insula). We used canonical correlation analysis to evaluate multivariate associations between decision-making and dopamine function controlling for age. Decomposition of the first dimension (r = 0.76) revealed that the strongest associations were between measures of choice inflexibility, incorrect choice, optimism, amygdala binding potential, and age. Follow-up univariate analyses revealed that amygdala binding potential and age were both independently associated with choice inflexibility. The findings suggest that individual differences in dopamine function may be associated with financial risk taking in healthy adults.
Collapse
Affiliation(s)
- Mikella A Green
- Department of Psychology & Neuroscience, 417 Chapel Dr, Durham, NC 27708, Center for Cognitive Neuroscience, Duke University, 308 Research Drive, Durham, NC 27708
| | - Jennifer L Crawford
- Department of Psychology, Brandeis University, 415 South Street, Waltham, MA 02453
| | - Camelia M Kuhnen
- UNC Kenan-Flagler Business School, 300 Kenan Center Drive, Chapel Hill, NC 27599, National Bureau of Economic Research, 1050 Massachusetts Avenue, Cambridge, MA 02138
| | - Gregory R Samanez-Larkin
- Department of Psychology & Neuroscience, 417 Chapel Dr, Durham, NC 27708, Center for Cognitive Neuroscience, Duke University, 308 Research Drive, Durham, NC 27708
| | - Kendra L Seaman
- Department of Psychology, University of Texas at Dallas, 800 W Campbell Road, Richardson, TX 75080-3021, Center for Vital Longevity, University of Texas at Dallas, 1600 Viceroy Drive, Suite 800, Dallas, TX 75235
| |
Collapse
|
18
|
Gallen CL, Schachtner JN, Anguera-Singla R, Anguera JA, Gazzaley A. Influence of game features on attention in adults. Front Psychol 2023; 14:1123306. [PMID: 37228349 PMCID: PMC10203248 DOI: 10.3389/fpsyg.2023.1123306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Accepted: 04/06/2023] [Indexed: 05/27/2023] Open
Abstract
Introduction The incorporation of game features into cognitive tasks can inform us about the influence of reward and motivation on attention. Continuous performance tasks (CPTs), designed to assess attention abilities, are examples of cognitive tasks that have been targeted for the addition of game features. However, previous results have been mixed regarding how game elements affect attention abilities and task performance. Methods Here, we studied if there were factors that predict which individuals exhibit changes in attention from game features added to a CPT. Participants (N = 94, aged 21-71) played a traditional CPT and a game CPT with identical mechanics, but featured engaging game elements (aesthetics, storyline, competition, feedback, and reward). Results We first found corroborating evidence that game features have mixed effects on attention performance: most attention metrics of interest exhibited no overall difference between the traditional and game CPT, while game elements reduced performance for a few metrics. Importantly, we also found that specific behavioral and demographic profiles predicted individual differences in performance on the game CPT compared to the traditional CPT. Those with more attention difficulties (ADHD symptoms), more reward responsiveness, and younger adults performed better on the game CPT while, conversely, those with fewer ADHD symptoms, less reward responsiveness, and older adults performed better on the traditional CPT. Discussion These findings provide insights into how game features can influence attention in different individuals and have important implications for the use of game elements in cognitive tasks and training interventions.
Collapse
Affiliation(s)
- Courtney L. Gallen
- Department of Neurology, University of California, San Francisco, San Francisco, CA, United States
- Neuroscape Center, University of California, San Francisco, San Francisco, CA, United States
| | - Jessica N. Schachtner
- Department of Neurology, University of California, San Francisco, San Francisco, CA, United States
- Neuroscape Center, University of California, San Francisco, San Francisco, CA, United States
- Department of Psychology, University of Arizona, Tucson, AZ, United States
| | - Roger Anguera-Singla
- Department of Neurology, University of California, San Francisco, San Francisco, CA, United States
- Neuroscape Center, University of California, San Francisco, San Francisco, CA, United States
| | - Joaquin A. Anguera
- Department of Neurology, University of California, San Francisco, San Francisco, CA, United States
- Neuroscape Center, University of California, San Francisco, San Francisco, CA, United States
- Department of Psychiatry, University of California, San Francisco, San Francisco, CA, United States
| | - Adam Gazzaley
- Department of Neurology, University of California, San Francisco, San Francisco, CA, United States
- Neuroscape Center, University of California, San Francisco, San Francisco, CA, United States
- Department of Psychiatry, University of California, San Francisco, San Francisco, CA, United States
- Department of Physiology, University of California, San Francisco, San Francisco, CA, United States
| |
Collapse
|
19
|
Bertran-Gonzalez J, Dinale C, Matamales M. Restoring the youthful state of striatal plasticity in aged mice re-enables cognitive control of action. Curr Biol 2023; 33:1997-2007.e5. [PMID: 37141886 DOI: 10.1016/j.cub.2023.04.020] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 03/21/2023] [Accepted: 04/12/2023] [Indexed: 05/06/2023]
Abstract
Multidisciplinary evidence suggests that the control of voluntary action arbitrates between two major forms of behavioral processing: cognitively guided (or goal directed) and autonomously guided (or habitual). Brain-state irregularities affecting the striatum-such as aging-commonly shift control toward the latter, although the responsible neural mechanisms remain unknown. Combining instrumental conditioning with cell-specific mapping and chemogenetics in striatal neurons, we explored strategies that invigorate goal-directed capacity in aged mice. We found that, under conditions favoring goal-directed control, aged animals resiliently expressed autonomously guided behavior, a response that was underpinned by a characteristic one-to-one functional engagement of the two main neuronal populations in the striatum-D1- and D2-dopamine receptor-expressing spiny projection neurons (SPNs). Chemogenetically induced desensitization of D2-SPN signaling in aged transgenic mice recapitulated the striatal plasticity state observed in young mice, an effect that shifted behavior toward vigorous, goal-directed action. Our findings contribute to the understanding of the neural bases of behavioral control and propose neural system interventions that enhance cognitive functioning in habit-prone brains.
Collapse
Affiliation(s)
- Jesus Bertran-Gonzalez
- Decision Neuroscience Laboratory, School of Psychology, University of New South Wales, Sydney, NSW 2052, Australia.
| | - Caroline Dinale
- Decision Neuroscience Laboratory, School of Psychology, University of New South Wales, Sydney, NSW 2052, Australia
| | - Miriam Matamales
- Decision Neuroscience Laboratory, School of Psychology, University of New South Wales, Sydney, NSW 2052, Australia.
| |
Collapse
|
20
|
Tecilla M, Großbach M, Gentile G, Holland P, Sporn S, Antonini A, Herrojo Ruiz M. Modulation of Motor Vigor by Expectation of Reward Probability Trial-by-Trial Is Preserved in Healthy Ageing and Parkinson's Disease Patients. J Neurosci 2023; 43:1757-1777. [PMID: 36732072 PMCID: PMC10010462 DOI: 10.1523/jneurosci.1583-22.2022] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 12/13/2022] [Accepted: 12/31/2022] [Indexed: 02/04/2023] Open
Abstract
Motor improvements, such as faster movement times or increased velocity, have been associated with reward magnitude in deterministic contexts. Yet whether individual inferences on reward probability influence motor vigor dynamically remains undetermined. We investigated how dynamically inferring volatile action-reward contingencies modulated motor performance trial-by-trial. We conducted three studies that coupled a reversal learning paradigm with a motor sequence task and used a validated hierarchical Bayesian model to fit trial-by-trial data. In Study 1, we tested healthy younger [HYA; 37 (24 females)] and older adults [HOA; 37 (17 females)], and medicated Parkinson's disease (PD) patients [20 (7 females)]. We showed that stronger predictions about the tendency of the action-reward contingency led to faster performance tempo, commensurate with movement time, on a trial-by-trial basis without robustly modulating reaction time (RT). Using Bayesian linear mixed models, we demonstrated a similar invigoration effect on performance tempo in HYA, HOA, and PD, despite HOA and PD being slower than HYA. In Study 2 [HYA, 39 (29 females)], we additionally showed that retrospective subjective inference about credit assignment did not contribute to differences in motor vigor effects. Last, Study 3 [HYA, 33 (27 females)] revealed that explicit beliefs about the reward tendency (confidence ratings) modulated performance tempo trial-by-trial. Our study is the first to reveal that the dynamic updating of beliefs about volatile action-reward contingencies positively biases motor performance through faster tempo. We also provide robust evidence for a preserved sensitivity of motor vigor to inferences about the action-reward mapping in aging and medicated PD.SIGNIFICANCE STATEMENT Navigating a world rich in uncertainty relies on updating beliefs about the probability that our actions lead to reward. Here, we investigated how inferring the action-reward contingencies in a volatile environment modulated motor vigor trial-by-trial in healthy younger and older adults, and in Parkinson's disease (PD) patients on medication. We found an association between trial-by-trial predictions about the tendency of the action-reward contingency and performance tempo, with stronger expectations speeding the movement. We additionally provided evidence for a similar sensitivity of performance tempo to the strength of these predictions in all groups. Thus, dynamic beliefs about the changing relationship between actions and their outcome enhanced motor vigor. This positive bias was not compromised by age or Parkinson's disease.
Collapse
Affiliation(s)
- Margherita Tecilla
- Department of Psychology, Goldsmiths, University of London, London SE146NW, United Kingdom
| | - Michael Großbach
- Institute of Music Physiology and Musicians' Medicine, Hannover University of Music Drama and Media, Hannover 30175, Germany
| | - Giovanni Gentile
- Parkinson and Movement Disorders Unit, Study Center for Neurodegeneration (CESNE), Department of Neuroscience, University of Padua, Padua 35131, Italy
| | - Peter Holland
- Department of Psychology, Goldsmiths, University of London, London SE146NW, United Kingdom
| | - Sebastian Sporn
- Department of Clinical and Movement Neuroscience, Queen Square Institute of Neurology, University College London, London WC1N3BG, United Kingdom
| | - Angelo Antonini
- Parkinson and Movement Disorders Unit, Study Center for Neurodegeneration (CESNE), Department of Neuroscience, University of Padua, Padua 35131, Italy
| | - Maria Herrojo Ruiz
- Department of Psychology, Goldsmiths, University of London, London SE146NW, United Kingdom
| |
Collapse
|
21
|
Human ageing is associated with more rigid concept spaces. Psychon Bull Rev 2022; 30:722-730. [PMID: 36253591 DOI: 10.3758/s13423-022-02197-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/02/2022] [Indexed: 11/08/2022]
Abstract
Prevalence-induced concept change describes a cognitive mechanism by which someone's definition of a concept shifts as the prevalence of instances of that concept changes. While this phenomenon has been established in young adults, it is unclear how it affects older adults. In this study, we explore how prevalence-induced concept change affects older adults' lower-level, perceptual, and higher-order, ethical judgements. We find that older adults are less sensitive to prevalence-induced concept change than younger adults across both domains. Using computational modeling, we demonstrate that these age-related changes in judgements reflect more cautious and deliberate responding in older adults. Based on these findings, we argue that while overly cautious responding by older adults may be maladaptive in some cognitive domains, in the case of prevalence-induced concept change, it might be protective against biased judgements.
Collapse
|
22
|
Sun W, Ueno D, Narumoto J. Brain Neural Underpinnings of Interoception and Decision-Making in Alzheimer's Disease: A Narrative Review. Front Neurosci 2022; 16:946136. [PMID: 35898412 PMCID: PMC9309692 DOI: 10.3389/fnins.2022.946136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Accepted: 06/14/2022] [Indexed: 11/17/2022] Open
Abstract
This study reviews recent literature on interoception directing decision-making in Alzheimer's disease (AD). According to the somatic marker hypothesis, signals from the internal body direct decision-making and involve the ventromedial prefrontal cortex (vmPFC). After reviewing relevant studies, we summarize the brain areas related to interoception and decision-making (e.g., vmPFC, hippocampus, amygdala, hypothalamus, anterior cingulate cortex, and insular cortex) and their roles in and relationships with AD pathology. Moreover, we outline the relationship among interoception, the autonomic nervous system, endocrine system, and AD pathology. We discuss that impaired interoception leads to decreased decision-making ability in people with AD from the perspective of brain neural underpinning. Additionally, we emphasize that anosognosia or reduced self-awareness and metacognition in AD are remarkably congruent with the malfunction of the autonomic nervous system regulating the interoceptive network. Furthermore, we propose that impaired interoception may contribute to a loss in the decision-making ability of patients with AD. However, there still exist empirical challenges in confirming this proposal. First, there has been no standardization for measuring or improving interoception to enhance decision-making ability in patients with AD. Future studies are required to better understand how AD pathology induces impairments in interoception and decision-making.
Collapse
|
23
|
Chen HY, Lombardi G, Li SC, Hare TA. Older adults process the probability of winning sooner but weigh it less during lottery decisions. Sci Rep 2022; 12:11381. [PMID: 35790772 PMCID: PMC9256676 DOI: 10.1038/s41598-022-15432-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Accepted: 06/23/2022] [Indexed: 11/23/2022] Open
Abstract
Empirical evidence has shown that visually enhancing the saliency of reward probabilities can ease the cognitive demands of value comparisons and improve value-based decisions in old age. In the present study, we used a time-varying drift diffusion model that includes starting time parameters to better understand (1) how increasing the saliency of reward probabilities may affect the dynamics of value-based decision-making and (2) how these effects may interact with age. We examined choices made by younger and older adults in a mixed lottery choice task. On a subset of trials, we used a color-coding scheme to highlight the saliency of reward probabilities, which served as a decision-aid. The results showed that, in control trials, older adults started to consider probability relative to magnitude information sooner than younger adults, but that their evidence accumulation processes were less sensitive to reward probabilities than that of younger adults. This may indicate a noisier and more stochastic information accumulation process during value-based decisions in old age. The decision-aid increased the influence of probability information on evidence accumulation rates in both age groups, but did not alter the relative timing of accumulation for probability versus magnitude in either group.
Collapse
Affiliation(s)
- Hsiang-Yu Chen
- Chair of Lifespan Developmental Neuroscience, Faculty of Psychology, Technische Universität Dresden, Dresden, Germany. .,Chair of Methods of Psychology and Cognitive Modelling, Faculty of Psychology, Technische Universität Dresden, Dresden, Germany.
| | - Gaia Lombardi
- Department of Economics, Zurich Center for Neuroeconomics, University of Zurich, 8006, Zurich, Switzerland
| | - Shu-Chen Li
- Chair of Lifespan Developmental Neuroscience, Faculty of Psychology, Technische Universität Dresden, Dresden, Germany.,Centre for Tactile Internet With Human-in-the-Loop (CeTI), Technische Universität Dresden, Dresden, Germany
| | - Todd A Hare
- Department of Economics, Zurich Center for Neuroeconomics, University of Zurich, 8006, Zurich, Switzerland.,Neuroscience Center Zurich, University of Zurich and ETH Zürich, 8006, Zurich, Switzerland
| |
Collapse
|
24
|
Hird E, Beierholm U, De Boer L, Axelsson J, Beckman L, Guitart-Masip M. Dopamine and reward-related vigor in younger and older adults. Neurobiol Aging 2022; 118:34-43. [DOI: 10.1016/j.neurobiolaging.2022.06.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 06/10/2022] [Accepted: 06/12/2022] [Indexed: 10/18/2022]
|
25
|
Duerler P, Vollenweider FX, Preller KH. A neurobiological perspective on social influence: Serotonin and social adaptation. J Neurochem 2022; 162:60-79. [PMID: 35274296 PMCID: PMC9322456 DOI: 10.1111/jnc.15607] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 02/26/2022] [Accepted: 03/02/2022] [Indexed: 01/09/2023]
Abstract
Humans are inherently social beings. Being suggestible to each other's expectations enables pro-social skills that are crucial for social learning and adaptation. Despite its high relevance for psychiatry, the neurobiological mechanisms underlying social adaptation are still not well understood. This review therefore provides a conceptual framework covering various distinct mechanisms underlying social adaptation and explores the neuropharmacology - in particular the role of the serotonin (5-HT) system - modulating these mechanisms. This article therefore reviews empirical results on social influence processing and reconciles them with recent findings from psychedelic research on social processing to elucidate neurobiological and neuropharmacological underpinnings of social adaptation. Various computational, neurobiological, and neurochemical processes are involved in distinct mechanisms underlying social adaptation such as the multisensory process of social information integration that is crucial for the forming of self-representation and representations of social norms. This is again associated with self- and other-perception during social interactions as well as value-based decision making that guides our behaviour in daily interactions. We highlight the critical role of 5-HT in these processes and suggest that 5-HT can facilitate social learning and may represent an important target for treating psychiatric disorders characterized by impairments in social functioning. This framework also has important implications for psychedelic-assisted therapy as well as for the development of novel treatment approaches and future research directions.
Collapse
Affiliation(s)
- Patricia Duerler
- Neuropsychopharmacology and Brain Imaging, Department of Psychiatry, Psychotherapy and Psychosomatics, University Hospital for Psychiatry Zurich, Lenggstr. 31, Zurich, Switzerland
| | - Franz X Vollenweider
- Neuropsychopharmacology and Brain Imaging, Department of Psychiatry, Psychotherapy and Psychosomatics, University Hospital for Psychiatry Zurich, Lenggstr. 31, Zurich, Switzerland
| | - Katrin H Preller
- Neuropsychopharmacology and Brain Imaging, Department of Psychiatry, Psychotherapy and Psychosomatics, University Hospital for Psychiatry Zurich, Lenggstr. 31, Zurich, Switzerland
| |
Collapse
|
26
|
Saito A, Sato W, Yoshikawa S. Rapid detection of neutral faces associated with emotional value among older adults. J Gerontol B Psychol Sci Soc Sci 2022; 77:1219-1228. [PMID: 35137048 DOI: 10.1093/geronb/gbac009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Indexed: 11/14/2022] Open
Abstract
OBJECTIVES Previous studies using visual search paradigms have provided inconsistent results regarding rapid detection of emotional faces among older adults. Furthermore, it is uncertain whether the emotional significance of the faces contributes to efficient searches for emotional faces due to the possible confounding effects of visual saliency. We addressed this issue by excluding the influence of visual factors and examined older adults' ability to detect faces with emotional meaning. METHOD We used an associative learning procedure in which neutral faces were paired with monetary reward or punishment, such that the neutral faces acquired positive or negative emotional value. Older participants completed the associative learning task and then engaged in a visual search task, in which previously learned neutral faces were presented as discrepant faces among newly presented neutral distractor faces. Data of young adults from a previous study that used identical experimental procedures were also analyzed. RESULTS Older participants exhibited lower learning ability than young participants. However, older adults who were successful at learning were able to detect neutral faces associated with reward or punishment more rapidly than those without monetary outcomes, similar to the pattern observed for young adults. DISCUSSION The results suggest that acquired emotional value promotes the detection of value-associated neutral faces among older adults who succeed at learning. It is therefore possible that the ability to detect faces that evoke emotions is preserved in older adults.
Collapse
Affiliation(s)
- Akie Saito
- Psychological Process Research Team, Guardian Robot Project, RIKEN, 2-2-2 Hikaridai, Seika-cho, Soraku-gun, Kyoto 619-0288, Japan
| | - Wataru Sato
- Psychological Process Research Team, Guardian Robot Project, RIKEN, 2-2-2 Hikaridai, Seika-cho, Soraku-gun, Kyoto 619-0288, Japan.,Field Science Education and Research Center, Kyoto University, Oiwake-cho, Kitashirakawa, Sakyo, Kyoto 606-8502, Japan
| | - Sakiko Yoshikawa
- Field Science Education and Research Center, Kyoto University, Oiwake-cho, Kitashirakawa, Sakyo, Kyoto 606-8502, Japan.,Faculty of Art and Design, Kyoto University of The Arts, 2-116 Uryuuzan, Kitashirakawa, Sakyo, Kyoto 606-8501, Japan
| |
Collapse
|
27
|
Influences of dopaminergic system dysfunction on late-life depression. Mol Psychiatry 2022; 27:180-191. [PMID: 34404915 PMCID: PMC8850529 DOI: 10.1038/s41380-021-01265-0] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 07/28/2021] [Accepted: 08/04/2021] [Indexed: 12/15/2022]
Abstract
Deficits in cognition, reward processing, and motor function are clinical features relevant to both aging and depression. Individuals with late-life depression often show impairment across these domains, all of which are moderated by the functioning of dopaminergic circuits. As dopaminergic function declines with normal aging and increased inflammatory burden, the role of dopamine may be particularly salient for late-life depression. We review the literature examining the role of dopamine in the pathogenesis of depression, as well as how dopamine function changes with aging and is influenced by inflammation. Applying a Research Domain Criteria (RDoC) Initiative perspective, we then review work examining how dopaminergic signaling affects these domains, specifically focusing on Cognitive, Positive Valence, and Sensorimotor Systems. We propose a unified model incorporating the effects of aging and low-grade inflammation on dopaminergic functioning, with a resulting negative effect on cognition, reward processing, and motor function. Interplay between these systems may influence development of a depressive phenotype, with an initial deficit in one domain reinforcing decline in others. This model extends RDoC concepts into late-life depression while also providing opportunities for novel and personalized interventions.
Collapse
|
28
|
Sun W, Matsuoka T, Narumoto J. Decision-Making Support for People With Alzheimer's Disease: A Narrative Review. Front Psychol 2021; 12:750803. [PMID: 34867639 PMCID: PMC8633444 DOI: 10.3389/fpsyg.2021.750803] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Accepted: 10/25/2021] [Indexed: 01/01/2023] Open
Abstract
The proportion of people with dementia has been increasing yearly, and the decision-making capacity of these people has become a major concern in fields such as the financial industry and in medical settings. In this narrative review, we discuss decision-making in people with Alzheimer’s disease (AD), and we propose the support for decision-making in people with AD, especially financial and medical decision-making. We summarize several hypotheses and theories on the decision-making capacity of people with AD. These include the frontal lobe hypothesis, physiological theory, dysfunction of the hypothalamic-pituitary-adrenal (HPA) axis, and the Person-Task-Fit (PTF) framework. Both internal and external factors can affect decision-making by people with AD. Internal factors are affected by changes in the brain and neurotransmitters, as well as alterations in cognitive ability and emotion. External factors include task characters, task contents, and situation influence. Since feedback has a significant effect on decision-making capacity, a series of suggestions may be helpful to improve this capacity, such as explicit advice, simple options, pleasant rewards, the Talking Mats approach, memory and organizational aid, support by caregivers, cognitive training and feedback. Thus, in providing decision-making support for people with AD, it is important to identify the internal and external factors that impair this process and to deal with these factors.
Collapse
Affiliation(s)
- Weiyi Sun
- Department of Psychiatry, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Teruyuki Matsuoka
- Department of Psychiatry, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Jin Narumoto
- Department of Psychiatry, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| |
Collapse
|
29
|
Don HJ, Davis T, Ray KL, McMahon MC, Cornwall AC, Schnyer DM, Worthy DA. Neural regions associated with gain-loss frequency and average reward in older and younger adults. Neurobiol Aging 2021; 109:247-258. [PMID: 34818618 DOI: 10.1016/j.neurobiolaging.2021.10.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Revised: 10/04/2021] [Accepted: 10/05/2021] [Indexed: 11/17/2022]
Abstract
Research on the biological basis of reinforcement-learning has focused on how brain regions track expected value based on average reward. However, recent work suggests that humans are more attuned to reward frequency. Furthermore, older adults are less likely to use expected values to guide choice than younger adults. This raises the question of whether brain regions assumed to be sensitive to average reward, like the medial and lateral PFC, also track reward frequency, and whether there are age-based differences. Older (60-81 years) and younger (18-30 years) adults performed the Soochow Gambling task, which separates reward frequency from average reward, while undergoing fMRI. Overall, participants preferred options that provided negative net payoffs, but frequent gains. Older adults improved less over time, were more reactive to recent negative outcomes, and showed greater frequency-related activation in several regions, including DLPFC. We also found broader recruitment of prefrontal and parietal regions associated with frequency value and reward prediction errors in older adults, which may indicate compensation. The results suggest greater reliance on average reward for younger adults than older adults.
Collapse
Affiliation(s)
- Hilary J Don
- Texas A&M University, Department of Psychological & Brain Sciences, College Station, Texas, USA.
| | - Tyler Davis
- Texas Tech University, Department of Psychological Sciences, Lubbock, Texas, USA
| | - Kimberly L Ray
- University of Texas at Austin, Department of Psychology, Austin, Texas, USA
| | - Megan C McMahon
- University of Texas at Austin, Department of Psychology, Austin, Texas, USA
| | - Astin C Cornwall
- Texas A&M University, Department of Psychological & Brain Sciences, College Station, Texas, USA
| | - David M Schnyer
- University of Texas at Austin, Department of Psychology, Austin, Texas, USA
| | - Darrell A Worthy
- Texas A&M University, Department of Psychological & Brain Sciences, College Station, Texas, USA
| |
Collapse
|
30
|
Abstract
Motivational and emotional changes across adulthood have a profound impact on cognition. In this registered report, we conducted an experimental investigation of motivational influence on remembering intentions after a delay (prospective memory; PM) in younger, middle-aged, and older adults, using gain- and loss-framing manipulations. The present study examined for the first time whether motivational framing in a PM task has different effects on younger and older adults' PM performance (N = 180; age range: 18-85 years) in a controlled laboratory setting. Based on lifespan theories of motivation, we assumed that the prevention of losses becomes more relevant with increasing age: We expected that older adults show relatively higher PM performance in a task with loss-related consequences following PM failure than in a task in which successful PM leads to gains. The opposite pattern of performance was expected for younger adults. The findings suggest that the relevance of reward and positive gain-related consequences for successful remembering appears to decrease with age. As hypothesised, a motivational framing × age interaction indicated that age differences in memory performance were smaller with loss-related than gain-related consequences, supporting a loss-prevention view on motivated cognition.
Collapse
Affiliation(s)
- Sebastian S Horn
- Department of Psychology, University of Zurich, Zurich, Switzerland
| | | |
Collapse
|
31
|
Pilgrim MJD, Ou ZYA, Sharp M. Exploring reward-related attention selectivity deficits in Parkinson's disease. Sci Rep 2021; 11:18751. [PMID: 34548517 PMCID: PMC8455525 DOI: 10.1038/s41598-021-97526-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Accepted: 08/24/2021] [Indexed: 02/08/2023] Open
Abstract
An important aspect of managing a limited cognitive resource like attention is to use the reward value of stimuli to prioritize the allocation of attention to higher-value over lower-value stimuli. Recent evidence suggests this depends on dopaminergic signaling of reward. In Parkinson's disease, both reward sensitivity and attention are impaired, but whether these deficits are directly related to one another is unknown. We tested whether Parkinson's patients use reward information when automatically allocating their attention and whether this is modulated by dopamine replacement. We compared patients, tested both ON and OFF dopamine replacement medication, to older controls using a standard attention capture task. First, participants learned the different reward values of stimuli. Then, these reward-associated stimuli were used as distractors in a visual search task. We found that patients were generally distracted by the presence of the distractors but that the degree of distraction caused by the high-value and low-value distractors was similar. Furthermore, we found no evidence to support the possibility that dopamine replacement modulates the effect of reward on automatic attention allocation. Our results suggest a possible inability in Parkinson's patients to use the reward value of stimuli when automatically allocating their attention, and raise the possibility that reward-driven allocation of resources may affect the adaptive modulation of other cognitive processes.
Collapse
Affiliation(s)
- Matthew J D Pilgrim
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montréal, QC, H3A 2B4, Canada
| | - Zhen-Yi Andy Ou
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montréal, QC, H3A 2B4, Canada
| | - Madeleine Sharp
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montréal, QC, H3A 2B4, Canada.
| |
Collapse
|
32
|
Alexopoulos GS, Raue PJ, Banerjee S, Marino P, Renn BN, Solomonov N, Adeagbo A, Sirey JA, Hull TD, Kiosses DN, Mauer E, Areán PA. Comparing the streamlined psychotherapy "Engage" with problem-solving therapy in late-life major depression. A randomized clinical trial. Mol Psychiatry 2021; 26:5180-5189. [PMID: 32612251 PMCID: PMC7775269 DOI: 10.1038/s41380-020-0832-3] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/29/2020] [Revised: 06/01/2020] [Accepted: 06/23/2020] [Indexed: 12/12/2022]
Abstract
Effective psychotherapies for late-life depression are underutilized, mainly because of their complexity. "Engage" is a novel, streamlined psychotherapy that relies on neurobiology to identify core behavioral pathology of late-life depression and targets it with simple interventions, co-designed with community therapists so that they can be delivered in community settings. Consecutively recruited adults (≥60 years) with major depression (n = 249) were randomly assigned to 9 weekly sessions of "Engage" or to the evidence-based Problem-Solving Therapy (PST) offered by 35 trained community social workers and assessed by blind raters. "Engage" therapists required an average of 30% less training time to achieve fidelity to treatment than PST therapists and had one-third of the PST therapists' skill drift. Both treatments led to reduction of HAM-D scores over 9 weeks. The mixed effects model-estimated HAM-D ratings were not significantly different between the two treatments at any assessment point of the trial. The one-sided 95% CI for treatment-end difference was (-∞, 0.07) HAM-D points, indicating a non-inferiority margin of 1.3 HAM-D points or greater; this margin is lower than the pre-determined 2.2-point margin. The two treatment arms had similar response (HR = 1.08, 95% CI (0.76, 1.52), p = 0.67) and remission rates (HR = 0.89, 95% CI (0.57, 1.39), p = 0.61). We conclude that "Engage" is non-inferior to PST. If disseminated, "Engage" will increase the number of therapists who can reliably treat late-life depression and make effective psychotherapy available to large numbers of depressed older adults.
Collapse
Affiliation(s)
- George S Alexopoulos
- Weill Cornell Institute of Geriatric Psychiatry, Weill Cornell Medicine, White Plains, NY, USA.
| | - Patrick J Raue
- Department of Psychiatry and Behavioral Sciences, University of Washington School of Medicine, Seattle, WA
| | - Samprit Banerjee
- Weill Cornell Institute of Geriatric Psychiatry, Weill Cornell Medicine, White Plains, NY
| | - Patricia Marino
- Weill Cornell Institute of Geriatric Psychiatry, Weill Cornell Medicine, White Plains, NY
| | - Brenna N. Renn
- Department of Psychiatry and Behavioral Sciences, University of Washington School of Medicine, Seattle, WA
| | - Nili Solomonov
- Weill Cornell Institute of Geriatric Psychiatry, Weill Cornell Medicine, White Plains, NY
| | - Adenike Adeagbo
- Weill Cornell Institute of Geriatric Psychiatry, Weill Cornell Medicine, White Plains, NY
| | - Jo Anne Sirey
- Weill Cornell Institute of Geriatric Psychiatry, Weill Cornell Medicine, White Plains, NY
| | - Thomas D. Hull
- Talkspace, New York, NY,Teachers College, Columbia University, New York, NY
| | - Dimitris N. Kiosses
- Weill Cornell Institute of Geriatric Psychiatry, Weill Cornell Medicine, White Plains, NY
| | - Elizabeth Mauer
- Weill Cornell Institute of Geriatric Psychiatry, Weill Cornell Medicine, White Plains, NY
| | - Patricia A. Areán
- Department of Psychiatry and Behavioral Sciences, University of Washington School of Medicine, Seattle, WA
| |
Collapse
|
33
|
Sinclair AH, Stanley ML, Hakimi S, Cabeza R, Adcock RA, Samanez-Larkin GR. Imagining a Personalized Scenario Selectively Increases Perceived Risk of Viral Transmission for Older Adults. NATURE AGING 2021; 1:677-683. [PMID: 35990532 PMCID: PMC9387905 DOI: 10.1038/s43587-021-00095-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Accepted: 07/06/2021] [Indexed: 05/15/2023]
Abstract
The COVID-19 pandemic has created a serious and prolonged public-health emergency. Older adults have been at substantially greater risk of hospitalization, ICU admission, and death due to COVID-19; as of February 2021, over 81% of COVID-19-related deaths in the U.S. occurred for people over the age of 651,2. Converging evidence from around the world suggests that age is the greatest risk factor for severe COVID-19 illness and for the experience of adverse health outcomes3,4. Therefore, effectively communicating health-related risk information requires tailoring interventions to older adults' needs5. Using a novel informational intervention with a nationally-representative sample of 546 U.S. residents, we found that older adults reported increased perceived risk of COVID-19 transmission after imagining a personalized scenario with social consequences. Although older adults tended to forget numerical information over time, the personalized simulations elicited increases in perceived risk that persisted over a 1-3 week delay. Overall, our results bear broad implications for communicating information about health risks to older adults, and they suggest new strategies to combat annual influenza outbreaks.
Collapse
Affiliation(s)
- Alyssa H. Sinclair
- Duke University, Center for Cognitive Neuroscience
- Duke University, Department of Psychology & Neuroscience
| | - Matthew L. Stanley
- Duke University, Center for Cognitive Neuroscience
- Duke University, Department of Psychology & Neuroscience
| | | | - Roberto Cabeza
- Duke University, Center for Cognitive Neuroscience
- Duke University, Department of Psychology & Neuroscience
| | - R. Alison Adcock
- Duke University, Center for Cognitive Neuroscience
- Duke University, Department of Psychology & Neuroscience
- Duke University, Department of Psychiatry & Behavioral Sciences
| | - Gregory R. Samanez-Larkin
- Duke University, Center for Cognitive Neuroscience
- Duke University, Department of Psychology & Neuroscience
| |
Collapse
|
34
|
Lux V, Non AL, Pexman PM, Stadler W, Weber LAE, Krüger M. A Developmental Framework for Embodiment Research: The Next Step Toward Integrating Concepts and Methods. Front Syst Neurosci 2021; 15:672740. [PMID: 34393730 PMCID: PMC8360894 DOI: 10.3389/fnsys.2021.672740] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Accepted: 06/28/2021] [Indexed: 12/17/2022] Open
Abstract
Embodiment research is at a turning point. There is an increasing amount of data and studies investigating embodiment phenomena and their role in mental processing and functions from across a wide range of disciplines and theoretical schools within the life sciences. However, the integration of behavioral data with data from different biological levels is challenging for the involved research fields such as movement psychology, social and developmental neuroscience, computational psychosomatics, social and behavioral epigenetics, human-centered robotics, and many more. This highlights the need for an interdisciplinary framework of embodiment research. In addition, there is a growing need for a cross-disciplinary consensus on level-specific criteria of embodiment. We propose that a developmental perspective on embodiment is able to provide a framework for overcoming such pressing issues, providing analytical tools to link timescales and levels of embodiment specific to the function under study, uncovering the underlying developmental processes, clarifying level-specific embodiment criteria, and providing a matrix and platform to bridge disciplinary boundaries among the involved research fields.
Collapse
Affiliation(s)
- Vanessa Lux
- Department of Genetic Psychology, Faculty of Psychology, Ruhr-Universität Bochum, Bochum, Germany
| | - Amy L Non
- Department of Anthropology, University of California, San Diego, La Jolla, CA, United States
| | - Penny M Pexman
- Department of Psychology, University of Calgary, Calgary, AB, Canada
| | - Waltraud Stadler
- Chair of Human Movement Science, Department of Sports and Health Sciences, Technical University of Munich, Munich, Germany
| | - Lilian A E Weber
- Department of Psychiatry, Oxford Centre for Human Brain Activity, Warneford Hospital, Oxford, United Kingdom.,Translational Neuromodeling Unit, Institute for Biomedical Engineering, University of Zurich and ETH Zurich, Zurich, Switzerland
| | - Melanie Krüger
- Institute of Sports Science, Faculty of Humanities, Leibniz University Hannover, Hannover, Germany
| |
Collapse
|
35
|
Pocuca N, Walter TJ, Minassian A, Young JW, Geyer MA, Perry W. The Effects of Cannabis Use on Cognitive Function in Healthy Aging: A Systematic Scoping Review. Arch Clin Neuropsychol 2021; 36:673-685. [PMID: 33159510 DOI: 10.1093/arclin/acaa105] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/01/2020] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND Older adults (≥50 years) represent the fastest-growing population of people who use cannabis, potentially due to the increasing promotion of cannabis as medicine by dispensaries and cannabis websites. Given healthy aging and cannabis use are both associated with cognitive decline, it is important to establish the effects of cannabis on cognition in healthy aging. OBJECTIVE This systematic scoping review used preferred reporting items for systematic reviews and meta-analyses guidelines to critically examine the extent of literature on this topic and highlight areas for future research. METHOD A search of six databases (PubMed, EMBASE, PsycINFO, Web of Science, Family and Society Studies Worldwide, and CINAHL) for articles published by September 2019, yielded 1,014 unique results. RESULTS Six articles reported findings for older populations (three human and three rodent studies), highlighting the paucity of research in this area. Human studies revealed largely null results, likely due to several methodological limitations. Better-controlled rodent studies indicate that the relationship between ∆9-tetrahydrocannabinol (THC) and cognitive function in healthy aging depends on age and level of THC exposure. Extremely low doses of THC improved cognition in very old rodents. Somewhat higher chronic doses improved cognition in moderately aged rodents. No studies examined the effects of cannabidiol (CBD) or high-CBD cannabis on cognition. CONCLUSIONS This systematic scoping review provides crucial, timely direction for future research on this emerging issue. Future research that combines neuroimaging and cognitive assessment would serve to advance understanding of the effects of age and quantity of THC and CBD on cognition in healthy aging.
Collapse
Affiliation(s)
- Nina Pocuca
- Department of Psychiatry, University of California San Diego, San Diego, CA, USA
| | - T Jordan Walter
- Department of Psychiatry, University of California San Diego, San Diego, CA, USA
| | - Arpi Minassian
- Department of Psychiatry, University of California San Diego, San Diego, CA, USA.,Center for Stress and Mental Health, Veteran's Administration San Diego Hospital, San Diego, CA, USA
| | - Jared W Young
- Department of Psychiatry, University of California San Diego, San Diego, CA, USA.,Research Service, VA San Diego Healthcare System, San Diego, CA, USA
| | - Mark A Geyer
- Department of Psychiatry, University of California San Diego, San Diego, CA, USA.,Research Service, VA San Diego Healthcare System, San Diego, CA, USA
| | - William Perry
- Department of Psychiatry, University of California San Diego, San Diego, CA, USA
| |
Collapse
|
36
|
Cutler J, Wittmann MK, Abdurahman A, Hargitai LD, Drew D, Husain M, Lockwood PL. Ageing is associated with disrupted reinforcement learning whilst learning to help others is preserved. Nat Commun 2021; 12:4440. [PMID: 34290236 PMCID: PMC8295324 DOI: 10.1038/s41467-021-24576-w] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Accepted: 06/25/2021] [Indexed: 12/23/2022] Open
Abstract
Reinforcement learning is a fundamental mechanism displayed by many species. However, adaptive behaviour depends not only on learning about actions and outcomes that affect ourselves, but also those that affect others. Using computational reinforcement learning models, we tested whether young (age 18-36) and older (age 60-80, total n = 152) adults learn to gain rewards for themselves, another person (prosocial), or neither individual (control). Detailed model comparison showed that a model with separate learning rates for each recipient best explained behaviour. Young adults learned faster when their actions benefitted themselves, compared to others. Compared to young adults, older adults showed reduced self-relevant learning rates but preserved prosocial learning. Moreover, levels of subclinical self-reported psychopathic traits (including lack of concern for others) were lower in older adults and the core affective-interpersonal component of this measure negatively correlated with prosocial learning. These findings suggest learning to benefit others is preserved across the lifespan with implications for reinforcement learning and theories of healthy ageing.
Collapse
Affiliation(s)
- Jo Cutler
- Centre for Human Brain Health and Institute for Mental Health, School of Psychology, University of Birmingham, Birmingham, UK.
- Wellcome Centre for Integrative Neuroimaging, University of Oxford, Oxford, UK.
- Department of Experimental Psychology, University of Oxford, Oxford, UK.
| | - Marco K Wittmann
- Wellcome Centre for Integrative Neuroimaging, University of Oxford, Oxford, UK
- Department of Experimental Psychology, University of Oxford, Oxford, UK
| | - Ayat Abdurahman
- Wellcome Centre for Integrative Neuroimaging, University of Oxford, Oxford, UK
- Department of Experimental Psychology, University of Oxford, Oxford, UK
- Department of Psychology, University of Cambridge, Cambridge, UK
| | - Luca D Hargitai
- Department of Experimental Psychology, University of Oxford, Oxford, UK
| | - Daniel Drew
- Wellcome Centre for Integrative Neuroimaging, University of Oxford, Oxford, UK
- Department of Experimental Psychology, University of Oxford, Oxford, UK
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| | - Masud Husain
- Wellcome Centre for Integrative Neuroimaging, University of Oxford, Oxford, UK
- Department of Experimental Psychology, University of Oxford, Oxford, UK
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| | - Patricia L Lockwood
- Centre for Human Brain Health and Institute for Mental Health, School of Psychology, University of Birmingham, Birmingham, UK.
- Wellcome Centre for Integrative Neuroimaging, University of Oxford, Oxford, UK.
- Department of Experimental Psychology, University of Oxford, Oxford, UK.
- Christ Church, University of Oxford, Oxford, UK.
| |
Collapse
|
37
|
Wiegand I, Wolfe JM. Target value and prevalence influence visual foraging in younger and older age. Vision Res 2021; 186:87-102. [PMID: 34062375 DOI: 10.1016/j.visres.2021.05.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 05/04/2021] [Accepted: 05/07/2021] [Indexed: 01/13/2023]
Abstract
The prevalence and reward-value of targets have an influence on visual search. The strength of the effect of an item's reward-value on attentional selection varies substantially between individuals and is potentially sensitive to aging. We investigated individual and age differences in a hybrid foraging task, in which the prevalence and value of multiple target types was varied. Using optimal foraging theory measures, foraging was more efficient overall in younger than older observers. However, the influence of prevalence and value on target selections was similar across age groups, suggesting that the underlying cognitive mechanisms are preserved in older age. When prevalence was varied but target value was balanced, younger and older observers preferably selected the most frequent target type and were biased to select another instance of the previously selected target type. When value was varied, younger and older observers showed a tendency to select high-value targets, but preferences were more diverse between individuals. When value and prevalence were inversely related, some observers showed particularly strong preferences for high-valued target types, while others showed a preference for high-prevalent, albeit low-value, target types. In younger adults, individual differences in the selection choices correlated with a personality index, suggesting that avoiding selections of low-value targets may be related to reward-seeking behaviour.
Collapse
Affiliation(s)
- Iris Wiegand
- Donders Institute for Brain, Cognition and Behavior, Department of Neuropsychology and Rehabilitation Psychology, Radboud University, Nijmegen, Netherlands; Visual Attention Lab, Brigham & Women's Hospital, Harvard Medical School, Boston, MA, USA.
| | - Jeremy M Wolfe
- Visual Attention Lab, Brigham & Women's Hospital, Harvard Medical School, Boston, MA, USA; Departments of Ophthalmology & Radiology, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
38
|
Jackson MG, Lightman SL, Gilmour G, Marston H, Robinson ESJ. Evidence for deficits in behavioural and physiological responses in aged mice relevant to the psychiatric symptom of apathy. Brain Neurosci Adv 2021; 5:23982128211015110. [PMID: 34104800 PMCID: PMC8161852 DOI: 10.1177/23982128211015110] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Accepted: 04/13/2021] [Indexed: 11/30/2022] Open
Abstract
Apathy is widely reported in patients with neurological disorders or post viral infection but is also seen in otherwise-healthy aged individuals. This study investigated whether aged male mice express behavioural and physiological changes relevant to an apathy phenotype. Using measures of motivation to work for reward, we found deficits in the progressive ratio task related to rate of responding. In an effort-related decision-making task, aged mice were less willing to exert effort for high value reward. Aged mice exhibited reduced reward sensitivity but also lower measures of anxiety in the novelty supressed feeding test and an attenuated response to restraint stress with lower corticosterone and reduced paraventricular nucleus c-fos activation. This profile of affective changes did not align with those observed in models of depression but suggested emotional blunting. In a test of cognition (novel object recognition), aged mice showed no impairments, but activity was lower in a measure of exploration in a novel environment. Together, these data suggest aged mice show changes across the domains of motivated behaviour, reward sensitivity and emotional reactivity and may be a suitable model for the pre-clinical study of the psychiatric symptom of apathy.
Collapse
Affiliation(s)
- Megan G Jackson
- School of Physiology, Pharmacology and Neuroscience, University of Bristol, Bristol, UK
| | - Stafford L Lightman
- Bristol Medical School: Translational Health Sciences, University of Bristol, Bristol, UK
| | | | | | - Emma S J Robinson
- School of Physiology, Pharmacology and Neuroscience, University of Bristol, Bristol, UK
| |
Collapse
|
39
|
Sombric CJ, Torres-Oviedo G. Cognitive and Motor Perseveration Are Associated in Older Adults. Front Aging Neurosci 2021; 13:610359. [PMID: 33986654 PMCID: PMC8110726 DOI: 10.3389/fnagi.2021.610359] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Accepted: 03/22/2021] [Indexed: 11/13/2022] Open
Abstract
Aging causes perseveration (difficulty to switch between actions) in motor and cognitive tasks, suggesting that the same neural processes could govern these abilities in older adults. To test this, we evaluated the relation between independently measured motor and cognitive perseveration in young (21.4 ± 3.7 y/o) and older participants (76.5 ± 2.9 y/o). Motor perseveration was measured with a locomotor task in which participants had to transition between distinct walking patterns. Cognitive perseveration was measured with a card matching task in which participants had to switch between distinct matching rules. We found that perseveration in the cognitive and motor domains were positively related in older, but not younger individuals, such that participants exhibiting greater perseveration in the motor task also perseverated more in the cognitive task. Additionally, exposure reduces motor perseveration: older adults who had practiced the motor task could transition between walking patterns as proficiently as naïve, young individuals. Our results suggest an overlap in neural processes governing cognitive and motor perseveration with aging and that exposure can counteract the age-related motor perseveration.
Collapse
Affiliation(s)
| | - Gelsy Torres-Oviedo
- Sensorimotor Learning Laboratory, Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, United States
| |
Collapse
|
40
|
de Haan T, van den Berg B, Woldorff MG, Aleman A, Lorist MM. Diminished Feedback Evaluation and Knowledge Updating Underlying Age-Related Differences in Choice Behavior During Feedback Learning. Front Hum Neurosci 2021; 15:635996. [PMID: 33746726 PMCID: PMC7973460 DOI: 10.3389/fnhum.2021.635996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Accepted: 02/02/2021] [Indexed: 11/16/2022] Open
Abstract
In our daily lives, we continuously evaluate feedback information, update our knowledge, and adapt our behavior in order to reach desired goals. This ability to learn from feedback information, however, declines with age. Previous research has indicated that certain higher-level learning processes, such as feedback evaluation, integration of feedback information, and updating of knowledge, seem to be affected by age, and recent studies have shown how the adaption of choice behavior following feedback can differ with age. The neural mechanisms underlying this age-related change in choice behavior during learning, however, remain unclear. The aim of this study is therefore to investigate the relation between learning-related neural processes and choice behavior during feedback learning in two age groups. Behavioral and fMRI data were collected, while a group of young (age 18–30) and older (age 60–75) adults performed a probabilistic learning task consisting of 10 blocks of 20 trials each. On each trial, the participants chose between a house and a face, after which they received visual feedback (loss vs. gain). In each block, either the house or the face image had a higher probability of yielding a reward (62.5 vs. 37.5%). Participants were instructed to try to maximize their gains. Our results showed that less successful learning in older adults, as indicated by a lower learning rate, corresponded with a higher tendency to switch to the other stimulus option, and with a reduced adaptation of this switch choice behavior following positive feedback. At the neural level, activation following positive and negative feedback was found to be less distinctive in the older adults, due to a smaller feedback-evaluation response to positive feedback in this group. Furthermore, whereas young adults displayed increased levels of knowledge updating prior to adapting choice behavior, we did not find this effect in older adults. Together, our results suggest that diminished learning performance with age corresponds with diminished evaluation of positive feedback and reduced knowledge updating related to changes in choice behavior, indicating how such differences in feedback processing at the trial level in older adults might lead to reduced learning performance across trials.
Collapse
Affiliation(s)
- Tineke de Haan
- Department of Experimental Psychology, University of Groningen, Groningen, Netherlands
| | - Berry van den Berg
- Department of Experimental Psychology, University of Groningen, Groningen, Netherlands
| | - Marty G Woldorff
- Center for Cognitive Neuroscience, Duke University, Durham, NC, United States
| | - André Aleman
- Department of Biomedical Sciences of Cells and Systems, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| | - Monicque M Lorist
- Department of Experimental Psychology, University of Groningen, Groningen, Netherlands.,Department of Biomedical Sciences of Cells and Systems, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| |
Collapse
|
41
|
Thornton IM. A Search Advantage for Horizontal Targets in Dynamic Displays. Iperception 2021; 12:20416695211004616. [PMID: 33912338 PMCID: PMC8047869 DOI: 10.1177/20416695211004616] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Accepted: 03/02/2021] [Indexed: 11/16/2022] Open
Abstract
Several lines of evidence point to the existence of a visual processing advantage for horizontal over vertical orientations. We investigated whether such a horizontal advantage exists in the context of top-down visual search. Inspired by change detection studies, we created displays where a dynamic target -- a horizontal or a vertical group of five dots that changed contrast synchronously -- was embedded within a randomly flickering grid of dots. The display size (total dots) varied across trials, and the orientation of the target was constant within interleaved blocks. As expected, search was slow and inefficient. Importantly, participants were almost a second faster finding horizontal compared to vertical targets. They were also more efficient and more accurate during horizontal search. Such findings establish that the attentional templates thought to guide search for known targets can exhibit strong orientation anisotropies. We discuss possible underlying mechanisms and how these might be explored in future studies.
Collapse
Affiliation(s)
- Ian M. Thornton
- Department of Cognitive Science, Faculty of Media and Knowledge Sciences, University of Malta, Msida, Malta
| |
Collapse
|
42
|
Modak P, Hutslar C, Polk R, Atkinson E, Fisher L, Macy J, Chassin L, Presson C, Finn PR, Brown JW. Neural bases of risky decisions involving nicotine vapor versus monetary reward. NEUROIMAGE: CLINICAL 2021; 32:102869. [PMID: 34768145 PMCID: PMC8591353 DOI: 10.1016/j.nicl.2021.102869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Revised: 10/26/2021] [Accepted: 10/27/2021] [Indexed: 11/06/2022] Open
Abstract
• Most studies of addiction with fMRI use only money reward. • Little is known about the neural basis of real-time drug use decisions. • Subjects gambled for either money or immediate nicotine vape reward in scanner. • The neural response to immediate drug reward is different from monetary reward. • Money reward has limitations as a proxy for studying addiction.
Substantial effort has gone into neuroimaging studies of neural mechanisms underlying addiction. Human studies of smoking typically either give monetary reward during an fMRI task or else allow subjects to smoke outside the scanner, after the session. This raises a fundamental issue of construct validity, as it is unclear whether the same neural mechanisms process decisions about nicotine that process decisions about money. To address this, we developed a novel MR-compatible nicotine vaping device, such that access to nicotine vapor could be controlled and monitored. We recruited heavy smokers (Money: 45 subjects, 13 females and 32 males; Nicotine: 21 subjects, 4 females and 17 males) to perform a gambling task with nicotine and monetary reward on separate days. We collected BOLD fMRI data while they performed the task inside the scanner and analyzed it using general linear modeling, with inference based on cluster-size correction. This allowed a direct comparison between the neural mechanisms of choosing and receiving immediate drug vs. monetary reward. We found substantial differences in the neural mechanisms that underlie risky choices about money vs. drug reward, including a reversal of the well-known error effects in the medial prefrontal cortex.
Collapse
|
43
|
Bowen HJ. Examining Memory in the Context of Emotion and Motivation. Curr Behav Neurosci Rep 2020. [DOI: 10.1007/s40473-020-00223-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
44
|
Friedman A, Hueske E, Drammis SM, Toro Arana SE, Nelson ED, Carter CW, Delcasso S, Rodriguez RX, Lutwak H, DiMarco KS, Zhang Q, Rakocevic LI, Hu D, Xiong JK, Zhao J, Gibb LG, Yoshida T, Siciliano CA, Diefenbach TJ, Ramakrishnan C, Deisseroth K, Graybiel AM. Striosomes Mediate Value-Based Learning Vulnerable in Age and a Huntington's Disease Model. Cell 2020; 183:918-934.e49. [PMID: 33113354 DOI: 10.1016/j.cell.2020.09.060] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Revised: 07/10/2020] [Accepted: 09/24/2020] [Indexed: 12/21/2022]
Abstract
Learning valence-based responses to favorable and unfavorable options requires judgments of the relative value of the options, a process necessary for species survival. We found, using engineered mice, that circuit connectivity and function of the striosome compartment of the striatum are critical for this type of learning. Calcium imaging during valence-based learning exhibited a selective correlation between learning and striosomal but not matrix signals. This striosomal activity encoded discrimination learning and was correlated with task engagement, which, in turn, could be regulated by chemogenetic excitation and inhibition. Striosomal function during discrimination learning was disturbed with aging and severely so in a mouse model of Huntington's disease. Anatomical and functional connectivity of parvalbumin-positive, putative fast-spiking interneurons (FSIs) to striatal projection neurons was enhanced in striosomes compared with matrix in mice that learned. Computational modeling of these findings suggests that FSIs can modulate the striosomal signal-to-noise ratio, crucial for discrimination and learning.
Collapse
Affiliation(s)
- Alexander Friedman
- McGovern Institute for Brain Research and Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Emily Hueske
- McGovern Institute for Brain Research and Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Sabrina M Drammis
- McGovern Institute for Brain Research and Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Sebastian E Toro Arana
- McGovern Institute for Brain Research and Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Erik D Nelson
- McGovern Institute for Brain Research and Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Cody W Carter
- McGovern Institute for Brain Research and Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Sebastien Delcasso
- McGovern Institute for Brain Research and Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Raimundo X Rodriguez
- McGovern Institute for Brain Research and Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Hope Lutwak
- McGovern Institute for Brain Research and Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Kaden S DiMarco
- McGovern Institute for Brain Research and Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Qingyang Zhang
- McGovern Institute for Brain Research and Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Lara I Rakocevic
- McGovern Institute for Brain Research and Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Dan Hu
- McGovern Institute for Brain Research and Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Joshua K Xiong
- McGovern Institute for Brain Research and Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Jiajia Zhao
- McGovern Institute for Brain Research and Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Leif G Gibb
- McGovern Institute for Brain Research and Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Tomoko Yoshida
- McGovern Institute for Brain Research and Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Cody A Siciliano
- McGovern Institute for Brain Research and Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | | | - Charu Ramakrishnan
- Department of Bioengineering, Stanford University, Stanford, CA 94305, USA
| | - Karl Deisseroth
- Department of Bioengineering, Stanford University, Stanford, CA 94305, USA
| | - Ann M Graybiel
- McGovern Institute for Brain Research and Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.
| |
Collapse
|
45
|
Marstaller L, Fynes-Clinton S, Burianová H, Reutens DC. Salience and default-mode network connectivity during threat and safety processing in older adults. Hum Brain Mapp 2020; 42:14-23. [PMID: 32936998 PMCID: PMC7721242 DOI: 10.1002/hbm.25199] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Revised: 08/14/2020] [Accepted: 08/19/2020] [Indexed: 11/10/2022] Open
Abstract
The appropriate assessment of threat and safety is important for decision‐making but might be altered in old age due to neurobiological changes. The literature on threat and safety processing in older adults is sparse and it is unclear how healthy ageing affects the brain's functional networks associated with affective processing. We measured skin conductance responses as an indicator of sympathetic arousal and used functional magnetic resonance imaging and independent component analysis to compare young and older adults' functional connectivity in the default mode (DMN) and salience networks (SN) during a threat conditioning and extinction task. While our results provided evidence for differential threat processing in both groups, they also showed that functional connectivity within the SN – but not the DMN – was weaker during threat processing in older compared to young adults. This reduction of within‐network connectivity was accompanied by an age‐related decrease in low frequency spectral power in the SN and a reduction in inter‐network connectivity between the SN and DMN during threat and safety processing. Similarly, we found that skin conductance responses were generally lower in older compared to young adults. Our results are the first to demonstrate age‐related changes in brain activation during aversive conditioning and suggest that the ability to adaptively filter affective information is reduced in older adults.
Collapse
Affiliation(s)
- Lars Marstaller
- Department of Psychology, Bournemouth University, Bournemouth, UK.,Department of Psychology, Swansea University, Swansea, UK.,Centre for Advanced Imaging, University of Queensland, Brisbane, Australia
| | | | - Hana Burianová
- Department of Psychology, Bournemouth University, Bournemouth, UK.,Department of Psychology, Swansea University, Swansea, UK.,Centre for Advanced Imaging, University of Queensland, Brisbane, Australia
| | - David C Reutens
- Centre for Advanced Imaging, University of Queensland, Brisbane, Australia
| |
Collapse
|
46
|
Motivation and sensitivity to monetary reward in late-life insomnia: moderating role of sex and the inflammatory marker CRP. Neuropsychopharmacology 2020; 45:1664-1671. [PMID: 32544926 PMCID: PMC7419294 DOI: 10.1038/s41386-020-0735-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Revised: 05/13/2020] [Accepted: 06/08/2020] [Indexed: 11/09/2022]
Abstract
Insomnia is a well-established risk factor for late-life depression, yet the intermediary mechanisms are not known. One plausible mechanism is dysregulation of the reward system, a common feature of depression. The main objective of the current study was to determine whether late-life insomnia is associated with reduced motivation and reduced sensitivity for monetary reward. Secondary exploratory objectives were to test for sex-specific effects and whether elevated inflammation potentiated these associations. Nondepressed community dwelling older adults (n = 104; aged 60-80) who either met (n = 31) or did not meet (n = 73) criteria for insomnia disorder as assessed by the Structured Clinical Interview for DSM-5 completed the Effort Expenditure for Rewards Task and provided blood samples for the assessment of C-reactive protein (CRP). Older adults with late-life insomnia showed reduced reward motivation 95% CI [-0.955, -0.569] and reduced reward sensitivity 95% CI [-0.430, -0.075] relative to comparison controls. In secondary exploratory analyses, late-life insomnia was associated with reduced motivation to a greater degree in males than in females 95% CI [0.072, 0.775], particularly when CRP was also elevated 95% CI [0.672, 1.551]. Late-life insomnia is associated with reduced motivation and sensitivity for monetary reward, which suggests insomnia may confer risk for late-life depression by dysregulation of reward mechanisms. Exploratory analyses suggest that older males with insomnia and elevated CRP may be particularly vulnerable to deficits in reward motivation. Although in need of replication and further study, results suggest that interventions that target insomnia or deficits in reward processing may mitigate the risk of depression in nondepressed older adults, especially older males with insomnia.
Collapse
|
47
|
van de Vijver I, Ligneul R. Relevance of working memory for reinforcement learning in older adults varies with timescale of learning. NEUROPSYCHOLOGY, DEVELOPMENT, AND COGNITION. SECTION B, AGING, NEUROPSYCHOLOGY AND COGNITION 2020; 27:654-676. [PMID: 31544587 DOI: 10.1080/13825585.2019.1664389] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2018] [Accepted: 09/02/2019] [Indexed: 06/10/2023]
Abstract
In young adults, individual differences in working memory (WM) contribute to reinforcement learning (RL). Age-related RL changes, however, are mostly attributed to decreased reward prediction-error (RPE) signaling. Here, we investigated the contribution of WM to RL in young (18-35) and older (≥65) adults. Because WM supports maintenance across a limited timescale, we only expected a relation between RL and WM with short delays between stimulus repetitions. Our results demonstrated better learning with short than long delays. A week later, however, long-delay associations were remembered better. Computational modeling corroborated that during learning, WM was more engaged by young adults in the short-delay condition than in any other age-condition combination. Crucially, both model-derived and neuropsychological assessments of WM predicted short-delay learning in older adults, who further benefitted from using self-conceived learning strategies. Thus, depending on the timescale of learning, age-related RL changes may not only reflect decreased RPE signaling but also WM decline.
Collapse
Affiliation(s)
- Irene van de Vijver
- Behavioural Science Institute, Radboud University , Nijmegen, The Netherlands
- Department of Clinical Psychology, University of Amsterdam , Amsterdam, The Netherlands
- Amsterdam Brain and Cognition, University of Amsterdam , Amsterdam, The Netherlands
| | - Romain Ligneul
- Champalimaud Neuroscience Program, Champalimaud Foundation , Lisboa, Portugal
| |
Collapse
|
48
|
Bowen HJ, Gallant SN, Moon DH. Influence of Reward Motivation on Directed Forgetting in Younger and Older Adults. Front Psychol 2020; 11:1764. [PMID: 32849044 PMCID: PMC7411084 DOI: 10.3389/fpsyg.2020.01764] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Accepted: 06/26/2020] [Indexed: 01/22/2023] Open
Abstract
An important feature of the memory system is the ability to forget, but aging is associated with declines in the ability to intentionally forget potentially due to declines in cognitive control. Despite cognitive deficits, older adults are sensitive to affective manipulations, such as reward motivation, and reward anticipation can improve older adults' memory performance. The goal of the current studies was to examine the effect of reward motivation on directed remembering and forgetting. Participants were healthy CloudResearch/Turk Prime workers aged 18-35 and 60-85. In Experiment 1, we conducted a typical item-method directed forgetting task using neutral words presented one at a time followed by a to-be-remembered (TBR) or to-be-forgotten (TBF) cue. A recognition memory test followed that included all words from the encoding task, as well as new words. We replicated prior findings of better memory for TBR compared to TBF items, but not typical age-related differences in recognition of TBF items. In Experiments 2-4, we repeated this paradigm except that in the second block of trials, each word was presented with a high ($0.75) or low ($0.01) reward cue indicating the value that could be earned if the item was successfully Remembered or Forgotten (depending on cue). During recognition, correct responses to target items (both TBR and TBF) resulted in the associated reward, but incorrect "old" responses resulted in a loss of $0.50. In three experiments, high rewards led to better memory for younger and older adults compared to low rewards, regardless of the directed cue to remember or forget the word. In Experiments 3 and 4, older adults showed typical deficits in directed forgetting, but this was across reward conditions. For older adults, there was no evidence that including reward motivation improved cognitive control abilities as high value reward anticipation did not improve directed forgetting. Instead, in line with hypotheses, high compared to low value reward anticipation leads to engagement of processes that result in better memory regardless of the TBR or TBF cue, and reward anticipation bolsters memory in a relatively automatic, rather than strategic, fashion that overrides one's ability to cognitively control encoding processes.
Collapse
Affiliation(s)
- Holly J Bowen
- Department of Psychology, Southern Methodist University, Dallas, TX, United States
| | - Sara N Gallant
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA, United States
| | - Diane H Moon
- Department of Psychology, Southern Methodist University, Dallas, TX, United States
| |
Collapse
|
49
|
Kuo CY, Lee PL, Hung SC, Liu LK, Lee WJ, Chung CP, Yang AC, Tsai SJ, Wang PN, Chen LK, Chou KH, Lin CP. Large-Scale Structural Covariance Networks Predict Age in Middle-to-Late Adulthood: A Novel Brain Aging Biomarker. Cereb Cortex 2020; 30:5844-5862. [PMID: 32572452 DOI: 10.1093/cercor/bhaa161] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Revised: 05/05/2020] [Accepted: 05/21/2020] [Indexed: 12/31/2022] Open
Abstract
The aging process is accompanied by changes in the brain's cortex at many levels. There is growing interest in summarizing these complex brain-aging profiles into a single, quantitative index that could serve as a biomarker both for characterizing individual brain health and for identifying neurodegenerative and neuropsychiatric diseases. Using a large-scale structural covariance network (SCN)-based framework with machine learning algorithms, we demonstrate this framework's ability to predict individual brain age in a large sample of middle-to-late age adults, and highlight its clinical specificity for several disease populations from a network perspective. A proposed estimator with 40 SCNs could predict individual brain age, balancing between model complexity and prediction accuracy. Notably, we found that the most significant SCN for predicting brain age included the caudate nucleus, putamen, hippocampus, amygdala, and cerebellar regions. Furthermore, our data indicate a larger brain age disparity in patients with schizophrenia and Alzheimer's disease than in healthy controls, while this metric did not differ significantly in patients with major depressive disorder. These findings provide empirical evidence supporting the estimation of brain age from a brain network perspective, and demonstrate the clinical feasibility of evaluating neurological diseases hypothesized to be associated with accelerated brain aging.
Collapse
Affiliation(s)
- Chen-Yuan Kuo
- Department of Biomedical Imaging and Radiological Sciences, National Yang Ming University, Taipei 11221, Taiwan
| | - Pei-Lin Lee
- Institute of Neuroscience, National Yang Ming University, Taipei 11221, Taiwan
| | - Sheng-Che Hung
- Department of Radiology, University of North Carolina, Chapel Hill, NC 27514, USA
| | - Li-Kuo Liu
- Aging and Health Research Center, National Yang Ming University, Taipei 11221, Taiwan.,Center for Geriatrics and Gerontology, Taipei Veterans General Hospital, Taipei 11217, Taiwan
| | - Wei-Ju Lee
- Aging and Health Research Center, National Yang Ming University, Taipei 11221, Taiwan.,Department of Family Medicine, Yuanshan Branch, Taipei Veterans General Hospital, Yi-Lan 264, Taiwan
| | - Chih-Ping Chung
- Department of Neurology, School of Medicine, National Yang Ming University, Taipei 11221, Taiwan.,Department of Neurology, Neurological Institute, Taipei Veterans General Hospital, Taipei 11217, Taiwan
| | - Albert C Yang
- Department of Psychiatry, Taipei Veterans General Hospital, Taipei 11217, Taiwan
| | - Shih-Jen Tsai
- Department of Psychiatry, Taipei Veterans General Hospital, Taipei 11217, Taiwan
| | - Pei-Ning Wang
- Department of Neurology, School of Medicine, National Yang Ming University, Taipei 11221, Taiwan.,Department of Neurology, Neurological Institute, Taipei Veterans General Hospital, Taipei 11217, Taiwan.,Brain Research Center, National Yang Ming University, Taipei 11221, Taiwan
| | - Liang-Kung Chen
- Aging and Health Research Center, National Yang Ming University, Taipei 11221, Taiwan.,Center for Geriatrics and Gerontology, Taipei Veterans General Hospital, Taipei 11217, Taiwan
| | - Kun-Hsien Chou
- Institute of Neuroscience, National Yang Ming University, Taipei 11221, Taiwan.,Brain Research Center, National Yang Ming University, Taipei 11221, Taiwan
| | - Ching-Po Lin
- Department of Biomedical Imaging and Radiological Sciences, National Yang Ming University, Taipei 11221, Taiwan.,Institute of Neuroscience, National Yang Ming University, Taipei 11221, Taiwan.,Aging and Health Research Center, National Yang Ming University, Taipei 11221, Taiwan.,Brain Research Center, National Yang Ming University, Taipei 11221, Taiwan
| |
Collapse
|
50
|
Age-related variability in decision-making: Insights from neurochemistry. COGNITIVE AFFECTIVE & BEHAVIORAL NEUROSCIENCE 2020; 19:415-434. [PMID: 30536205 DOI: 10.3758/s13415-018-00678-9] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Despite dopamine's significant role in models of value-based decision-making and findings demonstrating loss of dopamine function in aging, evidence of systematic changes in decision-making over the life span remains elusive. Previous studies attempting to resolve the neural basis of age-related alteration in decision-making have typically focused on physical age, which can be a poor proxy for age-related effects on neural systems. There is growing appreciation that aging has heterogeneous effects on distinct components of the dopamine system within subject in addition to substantial variability between subjects. We propose that some of the conflicting findings in age-related effects on decision-making may be reconciled if we can observe the underlying dopamine components within individuals. This can be achieved by incorporating in vivo imaging techniques including positron emission tomography (PET) and neuromelanin-sensitive MR. Further, we discuss how affective factors may contribute to individual differences in decision-making performance among older adults. Specifically, we propose that age-related shifts in affective attention ("positivity effect") can, in some cases, counteract the impact of altered dopamine function on specific decision-making processes, contributing to variability in findings. In an effort to provide clarity to the field and advance productive hypothesis testing, we propose ways in which in vivo dopamine imaging can be leveraged to disambiguate dopaminergic influences on decision-making, and suggest strategies for assessing individual differences in the contribution of affective attentional focus.
Collapse
|