1
|
Elbohy OA, Iqbal M, Daly JM, Dunham SP. Development of Virus-like Particle Plant-Based Vaccines against Avian H5 and H9 Influenza A Viruses. Vet Sci 2024; 11:93. [PMID: 38393111 PMCID: PMC10891754 DOI: 10.3390/vetsci11020093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2024] [Revised: 02/05/2024] [Accepted: 02/13/2024] [Indexed: 02/25/2024] Open
Abstract
Avian influenza A virus (AIV) is a significant cause of mortality in poultry, causing substantial economic loss, particularly in developing countries, and has zoonotic potential. For example, highly pathogenic avian influenza (HPAI) viruses of the H5 subtype have been circulating in Egypt for around two decades. In the last decade, H5N1 viruses of clade 2.2.1 have been succeeded by the antigenically distinct H5N8 clade 2.3.4.4b viruses. Furthermore, H9N2 viruses co-circulate with the H5N8 viruses in Egyptian poultry. It is widely recognised that effective vaccination against IAV requires a close antigenic match between the vaccine and viruses circulating in the field. Therefore, approaches to develop cost-effective vaccines that can be rapidly adapted to local virus strains are required for developing countries such as Egypt. In this project, the haemagglutinin (HA) proteins of Egyptian H5 and H9 viruses were expressed by transient transfection of plants (Nicotiana benthamiana). The formation of virus-like particles (VLPs) was confirmed by transmission electron microscopy. Mice were immunised with four doses of either H5 or H9 VLPs with adjuvant. Antibody and cellular immune responses were measured against the corresponding recombinant protein using ELISA and enzyme-linked immunosorbent assay (ELISpot), respectively. Chickens were immunised with one dose of H5 VLPs, eliciting HA-specific antibodies measured by ELISA and a pseudotyped virus neutralisation test using a heterologous H5 HA. In conclusion, plant-based VLP vaccines have potential for producing an effective vaccine candidate within a short time at a relatively low cost.
Collapse
Affiliation(s)
- Ola A Elbohy
- School of Veterinary Medicine and Science, University of Nottingham, Sutton Bonington Campus, Loughborough LE12 5RD, UK
- Department of Virology, Faculty of Veterinary Medicine, Mansoura University, Mansoura 35516, Egypt
| | - Munir Iqbal
- Avian Influenza Group and Newcastle Disease, The Pirbright Institute, Woking GU24 0NF, UK
| | - Janet M Daly
- School of Veterinary Medicine and Science, University of Nottingham, Sutton Bonington Campus, Loughborough LE12 5RD, UK
| | - Stephen P Dunham
- School of Veterinary Medicine and Science, University of Nottingham, Sutton Bonington Campus, Loughborough LE12 5RD, UK
| |
Collapse
|
2
|
Masoomi Nomandan SZ, Azimzadeh Irani M, Hosseini SM. In silico design of refined ferritin-SARS-CoV-2 glyco-RBD nanoparticle vaccine. Front Mol Biosci 2022; 9:976490. [PMID: 36148012 PMCID: PMC9486171 DOI: 10.3389/fmolb.2022.976490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Accepted: 08/11/2022] [Indexed: 12/04/2022] Open
Abstract
With the onset of Coronavirus disease 2019 (COVID-19) pandemic, all attention was drawn to finding solutions to cure the coronavirus disease. Among all vaccination strategies, the nanoparticle vaccine has been shown to stimulate the immune system and provide optimal immunity to the virus in a single dose. Ferritin is a reliable self-assembled nanoparticle platform for vaccine production that has already been used in experimental studies. Furthermore, glycosylation plays a crucial role in the design of antibodies and vaccines and is an essential element in developing effective subunit vaccines. In this computational study, ferritin nanoparticles and glycosylation, which are two unique facets of vaccine design, were used to model improved nanoparticle vaccines for the first time. In this regard, molecular modeling and molecular dynamics simulation were carried out to construct three atomistic models of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) receptor binding domain (RBD)-ferritin nanoparticle vaccine, including unglycosylated, glycosylated, and modified with additional O-glycans at the ferritin–RBD interface. It was shown that the ferritin–RBD complex becomes more stable when glycans are added to the ferritin–RBD interface and optimal performance of this nanoparticle can be achieved. If validated experimentally, these findings could improve the design of nanoparticles against all microbial infections.
Collapse
|
3
|
Plant-Derived Recombinant Vaccines against Zoonotic Viruses. Life (Basel) 2022; 12:life12020156. [PMID: 35207444 PMCID: PMC8878793 DOI: 10.3390/life12020156] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 01/15/2022] [Accepted: 01/19/2022] [Indexed: 12/12/2022] Open
Abstract
Emerging and re-emerging zoonotic diseases cause serious illness with billions of cases, and millions of deaths. The most effective way to restrict the spread of zoonotic viruses among humans and animals and prevent disease is vaccination. Recombinant proteins produced in plants offer an alternative approach for the development of safe, effective, inexpensive candidate vaccines. Current strategies are focused on the production of highly immunogenic structural proteins, which mimic the organizations of the native virion but lack the viral genetic material. These include chimeric viral peptides, subunit virus proteins, and virus-like particles (VLPs). The latter, with their ability to self-assemble and thus resemble the form of virus particles, are gaining traction among plant-based candidate vaccines against many infectious diseases. In this review, we summarized the main zoonotic diseases and followed the progress in using plant expression systems for the production of recombinant proteins and VLPs used in the development of plant-based vaccines against zoonotic viruses.
Collapse
|
4
|
Mardanova ES, Kotlyarov RY, Ravin NV. High-Yield Production of Receptor Binding Domain of SARS-CoV-2 Linked to Bacterial Flagellin in Plants Using Self-Replicating Viral Vector pEff. PLANTS (BASEL, SWITZERLAND) 2021; 10:plants10122682. [PMID: 34961153 PMCID: PMC8708900 DOI: 10.3390/plants10122682] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 11/30/2021] [Accepted: 12/03/2021] [Indexed: 05/07/2023]
Abstract
The development of recombinant vaccines against SARS-CoV-2 is required to eliminate the COVID-19 pandemic. We reported the expression of a recombinant protein Flg-RBD comprising receptor binding domain of SARS-CoV-2 spike glycoprotein (RBD) fused to flagellin of Salmonella typhimurium (Flg), known as mucosal adjuvant, in Nicotiana benthamiana plants. The fusion protein, targeted to the cytosol, was transiently expressed using the self-replicating vector pEff based on potato virus X genome. The recombinant protein Flg-RBD was expressed at the level of about 110-140 μg per gram of fresh leaf tissue and was found to be insoluble. The fusion protein was purified using metal affinity chromatography under denaturing conditions. To increase the yield of Flg-RBD, the flow-through fraction obtained after loading of the protein sample on the Ni-NTA resin was re-loaded on the sorbent. The yield of Flg-RBD after purification reached about 100 μg per gram of fresh leaf tissue and the purified protein remained soluble after dialysis. The control flagellin was expressed in a soluble form and its yield after purification was about 300 μg per gram of fresh leaf biomass. Plant-produced Flg-RBD protein could be further used for the development of intranasal recombinant mucosal vaccines against COVID-19.
Collapse
|
5
|
Maharjan PM, Choe S. Plant-Based COVID-19 Vaccines: Current Status, Design, and Development Strategies of Candidate Vaccines. Vaccines (Basel) 2021; 9:992. [PMID: 34579229 PMCID: PMC8473425 DOI: 10.3390/vaccines9090992] [Citation(s) in RCA: 48] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Revised: 08/27/2021] [Accepted: 08/31/2021] [Indexed: 01/01/2023] Open
Abstract
The prevalence of the coronavirus disease 2019 (COVID-19) pandemic in its second year has led to massive global human and economic losses. The high transmission rate and the emergence of diverse SARS-CoV-2 variants demand rapid and effective approaches to preventing the spread, diagnosing on time, and treating affected people. Several COVID-19 vaccines are being developed using different production systems, including plants, which promises the production of cheap, safe, stable, and effective vaccines. The potential of a plant-based system for rapid production at a commercial scale and for a quick response to an infectious disease outbreak has been demonstrated by the marketing of carrot-cell-produced taliglucerase alfa (Elelyso) for Gaucher disease and tobacco-produced monoclonal antibodies (ZMapp) for the 2014 Ebola outbreak. Currently, two plant-based COVID-19 vaccine candidates, coronavirus virus-like particle (CoVLP) and Kentucky Bioprocessing (KBP)-201, are in clinical trials, and many more are in the preclinical stage. Interim phase 2 clinical trial results have revealed the high safety and efficacy of the CoVLP vaccine, with 10 times more neutralizing antibody responses compared to those present in a convalescent patient's plasma. The clinical trial of the CoVLP vaccine could be concluded by the end of 2021, and the vaccine could be available for public immunization thereafter. This review encapsulates the efforts made in plant-based COVID-19 vaccine development, the strategies and technologies implemented, and the progress accomplished in clinical trials and preclinical studies so far.
Collapse
Affiliation(s)
- Puna Maya Maharjan
- G+FLAS Life Sciences, 123 Uiryodanji-gil, Osong-eup, Heungdeok-gu, Cheongju-si 28161, Korea;
| | - Sunghwa Choe
- G+FLAS Life Sciences, 38 Nakseongdae-ro, Gwanak-gu, Seoul 08790, Korea
- School of Biological Sciences, College of Natural Sciences, Seoul National University, Gwanak-gu, Seoul 08826, Korea
| |
Collapse
|
6
|
Producing Vaccines against Enveloped Viruses in Plants: Making the Impossible, Difficult. Vaccines (Basel) 2021; 9:vaccines9070780. [PMID: 34358196 PMCID: PMC8310165 DOI: 10.3390/vaccines9070780] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 07/07/2021] [Accepted: 07/08/2021] [Indexed: 12/13/2022] Open
Abstract
The past 30 years have seen the growth of plant molecular farming as an approach to the production of recombinant proteins for pharmaceutical and biotechnological uses. Much of this effort has focused on producing vaccine candidates against viral diseases, including those caused by enveloped viruses. These represent a particular challenge given the difficulties associated with expressing and purifying membrane-bound proteins and achieving correct assembly. Despite this, there have been notable successes both from a biochemical and a clinical perspective, with a number of clinical trials showing great promise. This review will explore the history and current status of plant-produced vaccine candidates against enveloped viruses to date, with a particular focus on virus-like particles (VLPs), which mimic authentic virus structures but do not contain infectious genetic material.
Collapse
|
7
|
Mamedov T, Gurbuzaslan I, Yuksel D, Ilgin M, Mammadova G, Ozkul A, Hasanova G. Soluble Human Angiotensin- Converting Enzyme 2 as a Potential Therapeutic Tool for COVID-19 is Produced at High Levels In Nicotiana benthamiana Plant With Potent Anti-SARS-CoV-2 Activity. FRONTIERS IN PLANT SCIENCE 2021; 12:742875. [PMID: 34938305 PMCID: PMC8685454 DOI: 10.3389/fpls.2021.742875] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Accepted: 11/08/2021] [Indexed: 05/05/2023]
Abstract
The coronavirus disease 2019 (COVID-19) pandemic, which is caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has rapidly spread to more than 222 countries and has put global public health at high risk. The world urgently needs a safe, cost-effective SARS-CoV-2 vaccine as well as therapeutic and antiviral drugs to combat COVID-19. Angiotensin-converting enzyme 2 (ACE2), as a key receptor for SARS-CoV-2 infections, has been proposed as a potential therapeutic tool in patients with COVID-19. In this study, we report a high-level production (about ∼0.75 g/kg leaf biomass) of human soluble (truncated) ACE2 in the Nicotiana benthamiana plant. After the Ni-NTA single-step, the purification yields of recombinant plant produced ACE2 protein in glycosylated and deglycosylated forms calculated as ∼0.4 and 0.5 g/kg leaf biomass, respectively. The plant produced recombinant human soluble ACE2s successfully bind to the SARS-CoV-2 spike protein. Importantly, both deglycosylated and glycosylated forms of ACE2 are stable at increased temperatures for extended periods of time and demonstrated strong anti-SARS-CoV-2 activities in vitro. The half maximal inhibitory concentration (IC50) values of glycosylated ACE2 (gACE2) and deglycosylated ACE2 (dACE2) were ∼1.0 and 8.48 μg/ml, respectively, for the pre-entry infection, when incubated with 100TCID50 of SARS-CoV-2. Therefore, plant produced soluble ACE2s are promising cost-effective and safe candidates as a potential therapeutic tool in the treatment of patients with COVID-19.
Collapse
Affiliation(s)
- Tarlan Mamedov
- Department of Agricultural Biotechnology, Akdeniz University, Antalya, Turkey
- Institute of Molecular Biology and Biotechnology, Azerbaijan National Academy of Sciences, Baku, Azerbaijan
- *Correspondence: Tarlan Mamedov,
| | - Irem Gurbuzaslan
- Department of Agricultural Biotechnology, Akdeniz University, Antalya, Turkey
| | - Damla Yuksel
- Department of Agricultural Biotechnology, Akdeniz University, Antalya, Turkey
| | - Merve Ilgin
- Department of Agricultural Biotechnology, Akdeniz University, Antalya, Turkey
| | - Gunay Mammadova
- Department of Agricultural Biotechnology, Akdeniz University, Antalya, Turkey
| | - Aykut Ozkul
- Department of Virology, Faculty of Veterinary Medicine, Ankara University, Ankara, Turkey
- Biotechnology Institute, Ankara University, Ankara, Turkey
| | - Gulnara Hasanova
- Department of Agricultural Biotechnology, Akdeniz University, Antalya, Turkey
| |
Collapse
|
8
|
Margolin E, Chapman R, Williamson A, Rybicki EP, Meyers AE. Production of complex viral glycoproteins in plants as vaccine immunogens. PLANT BIOTECHNOLOGY JOURNAL 2018; 16:1531-1545. [PMID: 29890031 PMCID: PMC6097131 DOI: 10.1111/pbi.12963] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2018] [Revised: 05/30/2018] [Accepted: 06/05/2018] [Indexed: 05/19/2023]
Abstract
Plant molecular farming offers a cost-effective and scalable approach to the expression of recombinant proteins which has been proposed as an alternative to conventional production platforms for developing countries. In recent years, numerous proofs of concept have established that plants can produce biologically active recombinant proteins and immunologically relevant vaccine antigens that are comparable to those made in conventional expression systems. Driving many of these advances is the remarkable plasticity of the plant proteome which enables extensive engineering of the host cell, as well as the development of improved expression vectors facilitating higher levels of protein production. To date, the only plant-derived viral glycoprotein to be tested in humans is the influenza haemagglutinin which expresses at ~50 mg/kg. However, many other viral glycoproteins that have potential as vaccine immunogens only accumulate at low levels in planta. A critical consideration for the production of many of these proteins in heterologous expression systems is the complexity of post-translational modifications, such as control of folding, glycosylation and disulphide bridging, which is required to reproduce the native glycoprotein structure. In this review, we will address potential shortcomings of plant expression systems and discuss strategies to optimally exploit the technology for the production of immunologically relevant and structurally authentic glycoproteins for use as vaccine immunogens.
Collapse
Affiliation(s)
- Emmanuel Margolin
- Division of Medical VirologyDepartment of PathologyFaculty of Health SciencesUniversity of Cape TownCape TownSouth Africa
- Institute of Infectious Disease and Molecular MedicineFaculty of Health SciencesUniversity of Cape TownCape TownSouth Africa
- Biopharming Research UnitDepartment of Molecular and Cell BiologyUniversity of Cape TownCape TownSouth Africa
| | - Ros Chapman
- Division of Medical VirologyDepartment of PathologyFaculty of Health SciencesUniversity of Cape TownCape TownSouth Africa
- Institute of Infectious Disease and Molecular MedicineFaculty of Health SciencesUniversity of Cape TownCape TownSouth Africa
| | - Anna‐Lise Williamson
- Division of Medical VirologyDepartment of PathologyFaculty of Health SciencesUniversity of Cape TownCape TownSouth Africa
- Institute of Infectious Disease and Molecular MedicineFaculty of Health SciencesUniversity of Cape TownCape TownSouth Africa
| | - Edward P. Rybicki
- Division of Medical VirologyDepartment of PathologyFaculty of Health SciencesUniversity of Cape TownCape TownSouth Africa
- Institute of Infectious Disease and Molecular MedicineFaculty of Health SciencesUniversity of Cape TownCape TownSouth Africa
- Biopharming Research UnitDepartment of Molecular and Cell BiologyUniversity of Cape TownCape TownSouth Africa
| | - Ann E. Meyers
- Biopharming Research UnitDepartment of Molecular and Cell BiologyUniversity of Cape TownCape TownSouth Africa
| |
Collapse
|
9
|
Ceballo Y, Tiel K, López A, Cabrera G, Pérez M, Ramos O, Rosabal Y, Montero C, Menassa R, Depicker A, Hernández A. High accumulation in tobacco seeds of hemagglutinin antigen from avian (H5N1) influenza. Transgenic Res 2017; 26:775-789. [PMID: 28986672 DOI: 10.1007/s11248-017-0047-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2017] [Accepted: 09/21/2017] [Indexed: 01/13/2023]
Abstract
Tobacco seeds can be used as a cost effective system for production of recombinant vaccines. Avian influenza is an important respiratory pathogen that causes a high degree of mortality and becomes a serious threat for the poultry industry. A safe vaccine against avian flu produced at low cost could help to prevent future outbreaks. We have genetically engineered tobacco plants to express extracellular domain of hemagglutinin protein from H5N1 avian influenza virus as an inexpensive alternative for production purposes. Two regulatory sequences of seed storage protein genes from Phaseolus vulgaris L. were used to direct the expression, yielding 3.0 mg of the viral antigen per g of seeds. The production and stability of seed-produced recombinant HA protein was characterized by different molecular techniques. The aqueous extract of tobacco seed proteins was used for subcutaneous immunization of chickens, which developed antibodies that inhibited the agglutination of erythrocytes after the second application of the antigen. The feasibility of using tobacco seeds as a vaccine carrier is discussed.
Collapse
Affiliation(s)
- Yanaysi Ceballo
- Plant Biotechnology Department, Center for Genetic Engineering and Biotechnology (CIGB), PO Box 6162, 10600, Havana, Havana, Cuba.
| | - Kenia Tiel
- Plant Biotechnology Department, Center for Genetic Engineering and Biotechnology (CIGB), PO Box 6162, 10600, Havana, Havana, Cuba
| | - Alina López
- Plant Biotechnology Department, Center for Genetic Engineering and Biotechnology (CIGB), PO Box 6162, 10600, Havana, Havana, Cuba
| | - Gleysin Cabrera
- Department of Carbohydrate Chemistry, Center for Genetic Engineering and Biotechnology (CIGB), Havana, Cuba
| | - Marlene Pérez
- Plant Biotechnology Department, Center for Genetic Engineering and Biotechnology (CIGB), PO Box 6162, 10600, Havana, Havana, Cuba
| | - Osmany Ramos
- Plant Biotechnology Department, Center for Genetic Engineering and Biotechnology (CIGB), PO Box 6162, 10600, Havana, Havana, Cuba
| | - Yamilka Rosabal
- Plant Biotechnology Department, Center for Genetic Engineering and Biotechnology (CIGB), PO Box 6162, 10600, Havana, Havana, Cuba
| | - Carlos Montero
- Animal Biotechnology Department, Center for Genetic Engineering and Biotechnology (CIGB), Havana, Cuba
| | - Rima Menassa
- London Research and Development Centre, Agriculture and Agri-Food Canada, London, ON, Canada
| | - Ann Depicker
- Department Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- Department Plant Systems Biologie, VIB, Ghent, Belgium
| | - Abel Hernández
- Plant Biotechnology Department, Center for Genetic Engineering and Biotechnology (CIGB), PO Box 6162, 10600, Havana, Havana, Cuba
| |
Collapse
|
10
|
Tottey S, Shoji Y, Jones RM, Chichester JA, Green BJ, Musiychuk K, Si H, Manceva SD, Rhee A, Shamloul M, Norikane J, Guimarães RC, Caride E, Silva ANMR, Simões M, Neves PCC, Marchevsky R, Freire MS, Streatfield SJ, Yusibov V. Plant-Produced Subunit Vaccine Candidates against Yellow Fever Induce Virus Neutralizing Antibodies and Confer Protection against Viral Challenge in Animal Models. Am J Trop Med Hyg 2017; 98:420-431. [PMID: 29231157 DOI: 10.4269/ajtmh.16-0293] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
Yellow fever (YF) is a viral disease transmitted by mosquitoes and endemic mostly in South America and Africa with 20-50% fatality. All current licensed YF vaccines, including YF-Vax® (Sanofi-Pasteur, Lyon, France) and 17DD-YFV (Bio-Manguinhos, Rio de Janeiro, Brazil), are based on live attenuated virus produced in hens' eggs and have been widely used. The YF vaccines are considered safe and highly effective. However, a recent increase in demand for YF vaccines and reports of rare cases of YF vaccine-associated fatal adverse events have provoked interest in developing a safer YF vaccine that can be easily scaled up to meet this increased global demand. To this point, we have engineered the YF virus envelope protein (YFE) and transiently expressed it in Nicotiana benthamiana as a stand-alone protein (YFE) or as fusion to the bacterial enzyme lichenase (YFE-LicKM). Immunogenicity and challenge studies in mice demonstrated that both YFE and YFE-LicKM elicited virus neutralizing (VN) antibodies and protected over 70% of mice from lethal challenge infection. Furthermore, these two YFE-based vaccine candidates induced VN antibody responses with high serum avidity in nonhuman primates and these VN antibody responses were further enhanced after challenge infection with the 17DD strain of YF virus. These results demonstrate partial protective efficacy in mice of YFE-based subunit vaccines expressed in N. benthamiana. However, their efficacy is inferior to that of the live attenuated 17DD vaccine, indicating that formulation development, such as incorporating a more suitable adjuvant, may be required for product development.
Collapse
Affiliation(s)
- Stephen Tottey
- Fraunhofer USA Center for Molecular Biotechnology, Newark, Delaware
| | - Yoko Shoji
- Fraunhofer USA Center for Molecular Biotechnology, Newark, Delaware
| | - R Mark Jones
- Fraunhofer USA Center for Molecular Biotechnology, Newark, Delaware
| | | | - Brian J Green
- Fraunhofer USA Center for Molecular Biotechnology, Newark, Delaware
| | | | - Huaxin Si
- Fraunhofer USA Center for Molecular Biotechnology, Newark, Delaware
| | | | - Amy Rhee
- Fraunhofer USA Center for Molecular Biotechnology, Newark, Delaware
| | - Moneim Shamloul
- Fraunhofer USA Center for Molecular Biotechnology, Newark, Delaware
| | - Joey Norikane
- Fraunhofer USA Center for Molecular Biotechnology, Newark, Delaware
| | - Rosane C Guimarães
- Instituto de Tecnologia em Imunobiológicos, Bio-Manguinhos, Fiocruz, Rio de Janeiro, Brazil
| | - Elena Caride
- Instituto de Tecnologia em Imunobiológicos, Bio-Manguinhos, Fiocruz, Rio de Janeiro, Brazil
| | - Andrea N M R Silva
- Instituto de Tecnologia em Imunobiológicos, Bio-Manguinhos, Fiocruz, Rio de Janeiro, Brazil
| | - Marisol Simões
- Instituto de Tecnologia em Imunobiológicos, Bio-Manguinhos, Fiocruz, Rio de Janeiro, Brazil
| | - Patricia C C Neves
- Instituto de Tecnologia em Imunobiológicos, Bio-Manguinhos, Fiocruz, Rio de Janeiro, Brazil
| | - Renato Marchevsky
- Instituto de Tecnologia em Imunobiológicos, Bio-Manguinhos, Fiocruz, Rio de Janeiro, Brazil
| | - Marcos S Freire
- Instituto de Tecnologia em Imunobiológicos, Bio-Manguinhos, Fiocruz, Rio de Janeiro, Brazil
| | | | - Vidadi Yusibov
- Fraunhofer USA Center for Molecular Biotechnology, Newark, Delaware
| |
Collapse
|
11
|
Plant Virus Expression Vectors: A Powerhouse for Global Health. Biomedicines 2017; 5:biomedicines5030044. [PMID: 28758953 PMCID: PMC5618302 DOI: 10.3390/biomedicines5030044] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2017] [Revised: 07/20/2017] [Accepted: 07/24/2017] [Indexed: 12/25/2022] Open
Abstract
Plant-made biopharmaceuticals have long been considered a promising technology for providing inexpensive and efficacious medicines for developing countries, as well as for combating pandemic infectious diseases and for use in personalized medicine. Plant virus expression vectors produce high levels of pharmaceutical proteins within a very short time period. Recently, plant viruses have been employed as nanoparticles for novel forms of cancer treatment. This review provides a glimpse into the development of plant virus expression systems both for pharmaceutical production as well as for immunotherapy.
Collapse
|
12
|
Pua TL, Chan XY, Loh HS, Omar AR, Yusibov V, Musiychuk K, Hall AC, Coffin MV, Shoji Y, Chichester JA, Bi H, Streatfield SJ. Purification and immunogenicity of hemagglutinin from highly pathogenic avian influenza virus H5N1 expressed in Nicotiana benthamiana. Hum Vaccin Immunother 2017; 13:306-313. [PMID: 27929750 PMCID: PMC5328219 DOI: 10.1080/21645515.2017.1264783] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Revised: 06/18/2015] [Accepted: 09/19/2015] [Indexed: 12/13/2022] Open
Abstract
Highly pathogenic avian influenza (HPAI) H5N1 is an ongoing global health concern due to its severe sporadic outbreaks in Asia, Africa and Europe, which poses a potential pandemic threat. The development of safe and cost-effective vaccine candidates for HPAI is considered the best strategy for managing the disease and addressing the pandemic preparedness. The most potential vaccine candidate is the antigenic determinant of influenza A virus, hemagglutinin (HA). The present research was aimed at developing optimized expression in Nicotiana benthamiana and protein purification process for HA from the Malaysian isolate of H5N1 as a vaccine antigen for HPAI H5N1. Expression of HA from the Malaysian isolate of HPAI in N. benthamiana was confirmed, and more soluble protein was expressed as truncated HA, the HA1 domain over the entire ectodomain of HA. Two different purification processes were evaluated for efficiency in terms of purity and yield. Due to the reduced yield, protein degradation and length of the 3-column purification process, the 2-column method was chosen for target purification. Purified HA1 was found immunogenic in mice inducing H5 HA-specific IgG and a hemagglutination inhibition antibody. This paper offers an alternative production system of a vaccine candidate against a locally circulating HPAI, which has a regional significance.
Collapse
MESH Headings
- Animals
- Antibodies, Viral/blood
- Disease Models, Animal
- Female
- Gene Expression
- Hemagglutinin Glycoproteins, Influenza Virus/genetics
- Hemagglutinin Glycoproteins, Influenza Virus/immunology
- Hemagglutinin Glycoproteins, Influenza Virus/isolation & purification
- Immunoglobulin G/blood
- Influenza A Virus, H5N1 Subtype/immunology
- Influenza Vaccines/administration & dosage
- Influenza Vaccines/genetics
- Influenza Vaccines/immunology
- Mice, Inbred BALB C
- Orthomyxoviridae Infections/prevention & control
- Recombinant Proteins/genetics
- Recombinant Proteins/immunology
- Recombinant Proteins/isolation & purification
- Nicotiana/genetics
- Nicotiana/metabolism
- Treatment Outcome
- Vaccines, Subunit/administration & dosage
- Vaccines, Subunit/genetics
- Vaccines, Subunit/immunology
- Vaccines, Synthetic/administration & dosage
- Vaccines, Synthetic/genetics
- Vaccines, Synthetic/immunology
Collapse
Affiliation(s)
- Teen-Lee Pua
- School of Biosciences, Faculty of Science, The University of Nottingham Malaysia Campus, Selangor, Malaysia
| | - Xiao Ying Chan
- School of Biosciences, Faculty of Science, The University of Nottingham Malaysia Campus, Selangor, Malaysia
| | - Hwei-San Loh
- School of Biosciences, Faculty of Science, The University of Nottingham Malaysia Campus, Selangor, Malaysia
- Biotechnology Research Centre, The University of Nottingham Malaysia Campus, Selangor, Malaysia
| | - Abdul Rahman Omar
- Institute of Bioscience, Universiti Putra Malaysia, Selangor, Malaysia
| | - Vidadi Yusibov
- Fraunhofer USA Center for Molecular Biotechnology, Newark, DE, USA
| | | | | | - Megan V. Coffin
- Fraunhofer USA Center for Molecular Biotechnology, Newark, DE, USA
| | - Yoko Shoji
- Fraunhofer USA Center for Molecular Biotechnology, Newark, DE, USA
| | | | - Hong Bi
- Fraunhofer USA Center for Molecular Biotechnology, Newark, DE, USA
| | | |
Collapse
|
13
|
Lambkin-Williams R, Gelder C, Broughton R, Mallett CP, Gilbert AS, Mann A, He D, Oxford JS, Burt D. An Intranasal Proteosome-Adjuvanted Trivalent Influenza Vaccine Is Safe, Immunogenic & Efficacious in the Human Viral Influenza Challenge Model. Serum IgG & Mucosal IgA Are Important Correlates of Protection against Illness Associated with Infection. PLoS One 2016; 11:e0163089. [PMID: 28005959 PMCID: PMC5179046 DOI: 10.1371/journal.pone.0163089] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2015] [Accepted: 09/01/2016] [Indexed: 12/23/2022] Open
Abstract
INTRODUCTION A Proteosome-adjuvanted trivalent inactivated influenza vaccine (P-TIV) administered intra-nasally was shown to be safe, well tolerated and immunogenic in both systemic and mucosal compartments, and effective at preventing illness associated with evidence of influenza infection. METHODS In two separate studies using the human viral challenge model, subjects were selected to be immunologically naive to A/Panama/2007/1999 (H3N2) virus and then dosed via nasal spray with one of three regimens of P-TIV or placebo. One or two doses, 15 μg or 30 μg, were given either once only or twice 14 days apart (1 x 30 μg, 2 x 30 μg, 2 x 15 μg) and subjects were challenged with A/Panama/2007/1999 (H3N2) virus. Immune responses to the vaccine antigens were measured by haemagglutination inhibition assay (HAI) and nasal wash secretory IgA (sIgA) antibodies. RESULTS Vaccine reactogenicity was mild, predictable and generally consistent with earlier Phase I studies with this vaccine. Seroconversion to A/Panama/2007/1999 (H3N2), following vaccination but prior to challenge, occurred in 57% to 77% of subjects in active dosing groups and 2% of placebo subjects. The greatest relative rise in sIgA, following vaccination but prior to challenge, was observed in groups that received 2 doses. CONCLUSION Intranasal vaccination significantly protected against influenza (as defined by influenza symptoms combined with A/Panama seroconversion) following challenge with A/Panama/2007/1999 (H3N2). When data were pooled from both studies, efficacy ranged from 58% to 82% in active dosing groups for any influenza symptoms with seroconversion, 67% to 85% for systemic or lower respiratory illness and seroconversion, and 65% to 100% for febrile illness and seroconversion. The two dose regimen was found to be superior to the single dose regimen. In this study, protection against illness associated with evidence of influenza infection (evidence determined by seroconversion) following challenge with virus, significantly correlated with pre-challenge HAI titres (p = 0.0003) and mucosal sIgA (p≤0.0001) individually, and HAI (p = 0.028) and sIgA (p = 0.0014) together. HAI and sIgA levels were inversely related to rates of illness. TRIAL REGISTRATION ClinicalTrials.gov NCT02522754.
Collapse
Affiliation(s)
- Rob Lambkin-Williams
- hVIVO Group PLC., Queen Mary BioEnterprises Innovation Centre, London, United Kingdom
| | - Colin Gelder
- University Hospitals Coventry & Warwickshire NHS|| Trust, Clifford Bridge Road, Walsgrave, Coventry, United Kingdom
| | - Richard Broughton
- ID Biomedical Corporation of Québec, 7150 Frederick Banting, Saint-Laurent, Québec, Canada
| | - Corey P. Mallett
- ID Biomedical Corporation of Québec, 7150 Frederick Banting, Saint-Laurent, Québec, Canada
| | - Anthony S. Gilbert
- hVIVO Group PLC., Queen Mary BioEnterprises Innovation Centre, London, United Kingdom
| | - Alex Mann
- hVIVO Group PLC., Queen Mary BioEnterprises Innovation Centre, London, United Kingdom
| | - David He
- Analytical Solutions Group, Inc., 14730 Soft Wind Drive, North Potomac, MD, United States of America
| | - John S. Oxford
- Queen Mary’s School of Medicine and Dentistry, London, United Kingdom
| | - David Burt
- ID Biomedical Corporation of Québec, 7150 Frederick Banting, Saint-Laurent, Québec, Canada
| |
Collapse
|
14
|
Joung YH, Park SH, Moon KB, Jeon JH, Cho HS, Kim HS. The Last Ten Years of Advancements in Plant-Derived Recombinant Vaccines against Hepatitis B. Int J Mol Sci 2016; 17:E1715. [PMID: 27754367 PMCID: PMC5085746 DOI: 10.3390/ijms17101715] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2016] [Revised: 09/23/2016] [Accepted: 09/29/2016] [Indexed: 12/22/2022] Open
Abstract
Disease prevention through vaccination is considered to be the greatest contribution to public health over the past century. Every year more than 100 million children are vaccinated with the standard World Health Organization (WHO)-recommended vaccines including hepatitis B (HepB). HepB is the most serious type of liver infection caused by the hepatitis B virus (HBV), however, it can be prevented by currently available recombinant vaccine, which has an excellent record of safety and effectiveness. To date, recombinant vaccines are produced in many systems of bacteria, yeast, insect, and mammalian and plant cells. Among these platforms, the use of plant cells has received considerable attention in terms of intrinsic safety, scalability, and appropriate modification of target proteins. Research groups worldwide have attempted to develop more efficacious plant-derived vaccines for over 30 diseases, most frequently HepB and influenza. More inspiring, approximately 12 plant-made antigens have already been tested in clinical trials, with successful outcomes. In this study, the latest information from the last 10 years on plant-derived antigens, especially hepatitis B surface antigen, approaches are reviewed and breakthroughs regarding the weak points are also discussed.
Collapse
Affiliation(s)
- Young Hee Joung
- School of Biological Sciences & Technology, Chonnam National University, Gwangju 61186, Korea.
| | - Se Hee Park
- School of Biological Sciences & Technology, Chonnam National University, Gwangju 61186, Korea.
| | - Ki-Beom Moon
- Molecular Biofarming Research Center, Korea Research Institute of Bioscience & Biotechnology (KRIBB), Daejeon 34141, Korea.
| | - Jae-Heung Jeon
- Molecular Biofarming Research Center, Korea Research Institute of Bioscience & Biotechnology (KRIBB), Daejeon 34141, Korea.
| | - Hye-Sun Cho
- Molecular Biofarming Research Center, Korea Research Institute of Bioscience & Biotechnology (KRIBB), Daejeon 34141, Korea.
| | - Hyun-Soon Kim
- Molecular Biofarming Research Center, Korea Research Institute of Bioscience & Biotechnology (KRIBB), Daejeon 34141, Korea.
| |
Collapse
|
15
|
Abstract
For over two decades now, plants have been explored for their potential to act as production platforms for biopharmaceuticals, such as vaccines and monoclonal antibodies. More recently, plant viruses have been designed as nontoxic nanoparticles that can target a variety of cancers and thus empower the immune system to slow or even reverse tumor progression. The following paper describes the employment of plant virus expression vectors for the treatment of some of the most challenging diseases known today. The paper concludes with a projection of the multiple avenues by which virus nanoparticles could impact developing countries.
Collapse
Affiliation(s)
- Kathleen Hefferon
- Department of Food Sciences, Cornell University, Ithaca, NY 14886, USA
| |
Collapse
|
16
|
Blagborough AM, Musiychuk K, Bi H, Jones RM, Chichester JA, Streatfield S, Sala KA, Zakutansky SE, Upton LM, Sinden RE, Brian I, Biswas S, Sattabonkot J, Yusibov V. Transmission blocking potency and immunogenicity of a plant-produced Pvs25-based subunit vaccine against Plasmodium vivax. Vaccine 2016; 34:3252-9. [PMID: 27177945 PMCID: PMC4915602 DOI: 10.1016/j.vaccine.2016.05.007] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2016] [Revised: 04/06/2016] [Accepted: 05/03/2016] [Indexed: 01/18/2023]
Abstract
Malaria transmission blocking (TB) vaccines (TBVs) directed against proteins expressed on the sexual stages of Plasmodium parasites are a potentially effective means to reduce transmission. Antibodies induced by TBVs block parasite development in the mosquito, and thus inhibit transmission to further human hosts. The ookinete surface protein P25 is a primary target for TBV development. Recently, transient expression in plants using hybrid viral vectors has demonstrated potential as a strategy for cost-effective and scalable production of recombinant vaccines. Using a plant virus-based expression system, we produced recombinant P25 protein of Plasmodium vivax (Pvs25) in Nicotiana benthamiana fused to a modified lichenase carrier protein. This candidate vaccine, Pvs25-FhCMB, was purified, characterized and evaluated for immunogenicity and efficacy using multiple adjuvants in a transgenic rodent model. An in vivo TB effect of up to a 65% reduction in intensity and 54% reduction in prevalence was observed using Abisco-100 adjuvant. The ability of this immunogen to induce a TB response was additionally combined with heterologous prime-boost vaccination with viral vectors expressing Pvs25. Significant blockade was observed when combining both platforms, achieving a 74% and 68% reduction in intensity and prevalence, respectively. This observation was confirmed by direct membrane feeding on field P. vivax samples, resulting in reductions in intensity/prevalence of 85.3% and 25.5%. These data demonstrate the potential of this vaccine candidate and support the feasibility of expressing Plasmodium antigens in a plant-based system for the production of TBVs, while demonstrating the potential advantages of combining multiple vaccine delivery systems to maximize efficacy.
Collapse
Affiliation(s)
- A M Blagborough
- Department of Life Sciences, Sir Alexander Fleming Building, Imperial College London, Imperial College Road, South Kensington, London SW7 2AZ, UK.
| | - K Musiychuk
- Fraunhofer USA Center for Molecular Biotechnology, Newark, DE, USA
| | - H Bi
- Fraunhofer USA Center for Molecular Biotechnology, Newark, DE, USA
| | - R M Jones
- Fraunhofer USA Center for Molecular Biotechnology, Newark, DE, USA
| | - J A Chichester
- Fraunhofer USA Center for Molecular Biotechnology, Newark, DE, USA
| | - S Streatfield
- Fraunhofer USA Center for Molecular Biotechnology, Newark, DE, USA
| | - K A Sala
- Department of Life Sciences, Sir Alexander Fleming Building, Imperial College London, Imperial College Road, South Kensington, London SW7 2AZ, UK
| | - S E Zakutansky
- Department of Life Sciences, Sir Alexander Fleming Building, Imperial College London, Imperial College Road, South Kensington, London SW7 2AZ, UK
| | - L M Upton
- Department of Life Sciences, Sir Alexander Fleming Building, Imperial College London, Imperial College Road, South Kensington, London SW7 2AZ, UK
| | - R E Sinden
- Jenner Institute, The University of Oxford, Roosevelt Road, Oxford OX9 2PP, UK
| | - I Brian
- Jenner Institute, The University of Oxford, Roosevelt Road, Oxford OX9 2PP, UK
| | - S Biswas
- Jenner Institute, The University of Oxford, Roosevelt Road, Oxford OX9 2PP, UK
| | - J Sattabonkot
- Department of Entomology, Armed Forces Research Institute of Medical Sciences, Bangkok 10400, Thailand
| | - V Yusibov
- Fraunhofer USA Center for Molecular Biotechnology, Newark, DE, USA
| |
Collapse
|
17
|
Streatfield SJ, Kushnir N, Yusibov V. Plant-produced candidate countermeasures against emerging and reemerging infections and bioterror agents. PLANT BIOTECHNOLOGY JOURNAL 2015; 13:1136-59. [PMID: 26387510 PMCID: PMC7167919 DOI: 10.1111/pbi.12475] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2015] [Revised: 08/06/2015] [Accepted: 08/19/2015] [Indexed: 05/20/2023]
Abstract
Despite progress in the prevention and treatment of infectious diseases, they continue to present a major threat to public health. The frequency of emerging and reemerging infections and the risk of bioterrorism warrant significant efforts towards the development of prophylactic and therapeutic countermeasures. Vaccines are the mainstay of infectious disease prophylaxis. Traditional vaccines, however, are failing to satisfy the global demand because of limited scalability of production systems, long production timelines and product safety concerns. Subunit vaccines are a highly promising alternative to traditional vaccines. Subunit vaccines, as well as monoclonal antibodies and other therapeutic proteins, can be produced in heterologous expression systems based on bacteria, yeast, insect cells or mammalian cells, in shorter times and at higher quantities, and are efficacious and safe. However, current recombinant systems have certain limitations associated with production capacity and cost. Plants are emerging as a promising platform for recombinant protein production due to time and cost efficiency, scalability, lack of harboured mammalian pathogens and possession of the machinery for eukaryotic post-translational protein modification. So far, a variety of subunit vaccines, monoclonal antibodies and therapeutic proteins (antivirals) have been produced in plants as candidate countermeasures against emerging, reemerging and bioterrorism-related infections. Many of these have been extensively evaluated in animal models and some have shown safety and immunogenicity in clinical trials. Here, we overview ongoing efforts to producing such plant-based countermeasures.
Collapse
Affiliation(s)
| | - Natasha Kushnir
- Fraunhofer USA Center for Molecular Biotechnology, Newark, DE, USA
| | - Vidadi Yusibov
- Fraunhofer USA Center for Molecular Biotechnology, Newark, DE, USA
| |
Collapse
|
18
|
Bitrus Y, Andrew JN, Owolodun OA, Luka PD, Umaru DA. The reoccurrence of H5N1 outbreaks necessitates the development of safe and effective influenza vaccine technologies for the prevention and control of avian influenza in Sub-Saharan Africa. ACTA ACUST UNITED AC 2015. [DOI: 10.5897/bmbr2015.0246] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
|
19
|
Mardanova ES, Kotlyarov RY, Kuprianov VV, Stepanova LA, Tsybalova LM, Lomonosoff GP, Ravin NV. Rapid high-yield expression of a candidate influenza vaccine based on the ectodomain of M2 protein linked to flagellin in plants using viral vectors. BMC Biotechnol 2015; 15:42. [PMID: 26022390 PMCID: PMC4446962 DOI: 10.1186/s12896-015-0164-6] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2015] [Accepted: 05/15/2015] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND The extracellular domain of matrix protein 2 (M2e) of influenza A virus is a promising target for the development of a universal vaccine against influenza because M2e sequences are highly conserved among human influenza A strains. However, native M2e is poorly immunogenic, but its immunogenicity can be increased by delivery in combination with adjuvants or carrier particles. It was previously shown that fusion of M2e to bacterial flagellin, the ligand for Toll-like receptor (TLR) 5 and powerful mucosal adjuvant, significantly increases the immunogenicity and protective capacity of M2e. RESULTS In this study, we report for the first time the transient expression in plants of a recombinant protein Flg-4M comprising flagellin of Salmonella typhimurium fused to four tandem copies of the M2e peptide. The chimeric construct was expressed in Nicotiana benthamiana plants using either the self-replicating potato virus X (PVX) based vector, pA7248AMV-GFP, or the cowpea mosaic virus (CPMV)-derived expression vector, pEAQ-HT. The highest expression level up to 30% of total soluble protein (about 1 mg/g of fresh leaf tissue) was achieved with the PVX-based expression system. Intranasal immunization of mice with purified Flg-4M protein induced high levels of M2e-specific serum antibodies and provided protection against lethal challenge with influenza virus. CONCLUSIONS This study confirms the usefulness of flagellin as a carrier of M2e and its relevance for the production of M2e-based candidate influenza vaccines in plants.
Collapse
Affiliation(s)
- Eugenia S Mardanova
- Centre 'Bioengineering', Russian Academy of Sciences, Prosp. 60-letya Oktyabrya, bld 7-1, 117312, Moscow, Russia.
| | - Roman Y Kotlyarov
- Centre 'Bioengineering', Russian Academy of Sciences, Prosp. 60-letya Oktyabrya, bld 7-1, 117312, Moscow, Russia.
| | - Victor V Kuprianov
- Centre 'Bioengineering', Russian Academy of Sciences, Prosp. 60-letya Oktyabrya, bld 7-1, 117312, Moscow, Russia.
| | - Liudmila A Stepanova
- Research Institute of Influenza, Russian Federation Ministry of Health, 15/17 Prof. Popova str., 197376, St. Petersburg, Russia.
| | - Liudmila M Tsybalova
- Research Institute of Influenza, Russian Federation Ministry of Health, 15/17 Prof. Popova str., 197376, St. Petersburg, Russia.
| | - George P Lomonosoff
- Department of Biological Chemistry, John Innes Centre, Norwich Research Park, NR4 7UH, Norwich, UK.
| | - Nikolai V Ravin
- Centre 'Bioengineering', Russian Academy of Sciences, Prosp. 60-letya Oktyabrya, bld 7-1, 117312, Moscow, Russia.
| |
Collapse
|
20
|
Mohammadzadeh S, Roohvand F, Memarnejadian A, Jafari A, Ajdary S, Salmanian AH, Ehsani P. Co-expression of hepatitis C virus polytope-HBsAg and p19-silencing suppressor protein in tobacco leaves. PHARMACEUTICAL BIOLOGY 2015; 54:465-73. [PMID: 25990925 DOI: 10.3109/13880209.2015.1048371] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
CONTEXT Plants transformed by virus-based vectors have emerged as promising tools to rapidly express large amounts and inexpensive antigens in transient condition. OBJECTIVE We studied the possibility of transient-expression of an HBsAg-fused polytopic construct (HCVpc) [containing H-2d and HLA-A2-restricted CD8+CTL-epitopic peptides of C (Core; aa 132-142), E6 (Envelope2; aa 614-622), N (NS3; aa 1406-1415), and E4 (Envelope2; aa 405-414) in tandem of CE6NE4] in tobacco (Nicotiana tabacum) leaves for the development of a plant-based HCV vaccine. MATERIALS AND METHODS A codon-optimized gene encoding the Kozak sequence, hexahistidine (6×His)-tag peptide, and HCVpc in tandem was designed, chemically synthesized, fused to HBsAg gene, and inserted into Potato virus X (PVX-GW) vector under the control of duplicated PVX coat protein promoter (CPP). The resulted recombinant plasmids (after confirmation by restriction and sequencing analyses) were transferred into Agrobacterium tumefaciens strain GV3101 and vacuum infiltrated into tobacco leaves. The effect of gene-silencing suppressor, p19 protein from tomato bushy stunt virus, on the expression yield of HCVpc-HBsAg was also evaluated by co-infiltration of a p19 expression vector. RESULTS Codon-optimized gene increased adaptation index (CAI) value (from 0.61 to 0.92) in tobacco. The expression of the HCVpc-HBsAg was confirmed by western blot and HBsAg-based detection ELISA on total extractable proteins of tobacco leaves. The expression level of the fusion protein was significantly higher in p19 co-agroinfiltrated plants. DISCUSSION AND CONCLUSION The results indicated the possibility of expression of HCVpc-HBsAg constructs with proper protein conformations in tobacco for final application as a plant-derived HCV vaccine.
Collapse
Affiliation(s)
| | | | | | | | - Soheila Ajdary
- d Department of Immunology , Pasteur Institute of Iran , Tehran , Iran , and
| | - Ali-Hatef Salmanian
- e Department of Plant Biotechnology , National Institute of Genetic Engineering and Biotechnology , Tehran , Iran
| | | |
Collapse
|
21
|
Salazar-González JA, Bañuelos-Hernández B, Rosales-Mendoza S. Current status of viral expression systems in plants and perspectives for oral vaccines development. PLANT MOLECULAR BIOLOGY 2015; 87:203-17. [PMID: 25560432 DOI: 10.1007/s11103-014-0279-5] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2014] [Accepted: 12/22/2014] [Indexed: 05/23/2023]
Abstract
During the last 25 years, the technology to produce recombinant vaccines in plant cells has evolved from modest proofs of the concept to viable technologies adopted by some companies due to significant improvements in the field. Viral-based expression strategies have importantly contributed to this success owing to high yields, short production time (which is in most cases free of tissue culture steps), and the implementation of confined processes for production under GMPs. Herein the distinct expression systems based on viral elements are analyzed. This review also presents the outlook on how these technologies have been successfully applied to the development of plant-based vaccines, some of them being in advanced stages of development. Perspectives on how viral expression systems could allow for the development of innovative oral vaccines constituted by minimally-processed plant biomass are discussed.
Collapse
Affiliation(s)
- Jorge A Salazar-González
- Laboratorio de Biofarmacéuticos Recombinantes, Facultad de Ciencias Químicas, Universidad Autónoma de San Luis Potosí, Av. Dr. Manuel Nava 6, 78210, San Luis Potosí, SLP, Mexico
| | | | | |
Collapse
|
22
|
Yusibov V, Kushnir N, Streatfield SJ. Advances and challenges in the development and production of effective plant-based influenza vaccines. Expert Rev Vaccines 2014; 14:519-35. [PMID: 25487788 DOI: 10.1586/14760584.2015.989988] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Influenza infections continue to present a major threat to public health. Traditional modes of influenza vaccine manufacturing are failing to satisfy the global demand because of limited scalability and long production timelines. In contrast, subunit vaccines (SUVs) can be produced in heterologous expression systems in shorter times and at higher quantities. Plants are emerging as a promising platform for SUV production due to time efficiency, scalability, lack of harbored mammalian pathogens and possession of the machinery for eukaryotic post-translational protein modifications. So far, several organizations have utilized plant-based transient expression systems to produce SUVs against influenza, including vaccines based on virus-like particles. Plant-produced influenza SUV candidates have been extensively evaluated in animal models and some have shown safety and immunogenicity in clinical trials. Here, the authors review ongoing efforts and challenges to producing influenza SUV candidates in plants and discuss the likelihood of bringing these products to the market.
Collapse
Affiliation(s)
- Vidadi Yusibov
- Fraunhofer USA Center for Molecular Biotechnology, 9 Innovation Way, Suite 200, Newark, DE 19711, USA
| | | | | |
Collapse
|
23
|
Mohammadzadeh S, Khabiri A, Roohvand F, Memarnejadian A, Salmanian AH, Ajdary S, Ehsani P. Enhanced-Transient Expression of Hepatitis C Virus Core Protein in Nicotiana tabacum, a Protein With Potential Clinical Applications. HEPATITIS MONTHLY 2014; 14:e20524. [PMID: 25598788 PMCID: PMC4286711 DOI: 10.5812/hepatmon.20524] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/25/2014] [Revised: 09/29/2014] [Accepted: 10/23/2014] [Indexed: 12/11/2022]
Abstract
BACKGROUND Hepatitis C virus (HCV) is major cause of liver cirrhosis in humans. HCV capsid (core) protein (HCVcp) is a highly demanded antigen for various diagnostic, immunization and pathogenesis studies. Plants are considered as an expression system for producing safe and inexpensive biopharmaceutical proteins. Although invention of transgenic (stable) tobacco plants expressing HCVcp with proper antigenic properties was recently reported, no data for "transient-expression" that is currently the method of choice for rapid, simple and lower-priced protein expression in plants is available for HCVcp. OBJECTIVES The purpose of this study was to design a highly codon-optimized HCVcp gene for construction of an efficient transient-plant expression system for production of HCVcp with proper antigenic properties in a regional tobacco plant (Iranian Jafarabadi-cultivar) by evaluation of different classes of vectors and suppression of gene-silencing in tobacco. MATERIALS AND METHODS A codon-optimized gene encoding the Kozak sequence, 6xHis-tag, HCVcp (1-122) and KDEL peptide in tandem (from N- to C-terminal) was designed and inserted into potato virus-X (PVX) and classic pBI121 binary vectors in separate cloning reactions. The resulted recombinant plasmids were transferred into Agrobacterium tumefaciens and vacuum infiltrated into tobacco leaves. The effect of gene silencing suppressor P19 protein derived from tomato bushy stunt virus on the expression yield of HCVcp by each construct was also evaluated by co-infiltration in separate groups. The expressed HCVcp was evaluated by dot and western blotting and ELISA assays. RESULTS The codon-optimized gene had an increased adaptation index value (from 0.65 to 0.85) and reduced GC content (from 62.62 to 51.05) in tobacco and removed the possible deleterious effect of "GGTAAG" splice site in native HCVcp. Blotting assays via specific antibodies confirmed the expression of the 15 kDa HCVcp. The expression level of HCVcp was enhanced by 4-5 times in P19 co-agroinfiltrated plants with better outcomes for PVX, compared to pBI121 vector (0.022% versus 0.019% of the total soluble protein). The plant-derived HCVcp (pHCVcp) could properly identify the HCVcp antibody in HCV-infected human sera compared to Escherichia coli-derived HCVcp (eHCVcp), indicating its potential for diagnostic/immunization applications. CONCLUSIONS By employment of gene optimization strategies, use of viral-based vectors and suppression of plant-derived gene silencing effect, efficient transient expression of HCVcp in tobacco with proper antigenic properties could be possible.
Collapse
Affiliation(s)
- Sara Mohammadzadeh
- Department of Molecular Biology, Pasteur Institute of Iran, Tehran, IR Iran
| | - Alireza Khabiri
- Department of Mycology, Pasteur Institute of Iran, Tehran, IR Iran
| | - Farzin Roohvand
- Department of Virology, Pasteur Institute of Iran, Tehran, IR Iran
- Corresponding Authors: Parastoo Ehsani, Department of Molecular Biology, Pasteur Institute of Iran, Tehran, IR Iran. Tel/Fax.: +98 21 6411-2167, E-mail: . Farzin Roohvand, Department of Virology, Pasteur Institute of Iran, Tehran, IR Iran. Tel/Fax: +98-2166496682, E-mail:
| | - Arash Memarnejadian
- Department of Hepatitis and AIDS, Pasteur Institute of Iran, Tehran, IR Iran
| | - Ali Hatef Salmanian
- Department of Plant Biotechnology, National Institute of Genetic Engineering and Biotechnology, Tehran, IR Iran
| | - Soheila Ajdary
- Department of Immunology, Pasteur Institute of Iran, Tehran, IR Iran
| | - Parastoo Ehsani
- Department of Molecular Biology, Pasteur Institute of Iran, Tehran, IR Iran
- Corresponding Authors: Parastoo Ehsani, Department of Molecular Biology, Pasteur Institute of Iran, Tehran, IR Iran. Tel/Fax.: +98 21 6411-2167, E-mail: . Farzin Roohvand, Department of Virology, Pasteur Institute of Iran, Tehran, IR Iran. Tel/Fax: +98-2166496682, E-mail:
| |
Collapse
|
24
|
Jones RM, Chichester JA, Manceva S, Gibbs SK, Musiychuk K, Shamloul M, Norikane J, Streatfield SJ, van de Vegte-Bolmer M, Roeffen W, Sauerwein RW, Yusibov V. A novel plant-produced Pfs25 fusion subunit vaccine induces long-lasting transmission blocking antibody responses. Hum Vaccin Immunother 2014; 11:124-32. [PMID: 25483525 PMCID: PMC4514342 DOI: 10.4161/hv.34366] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2014] [Accepted: 07/10/2014] [Indexed: 11/19/2022] Open
Abstract
Malaria transmission blocking vaccines (TBV) directed against proteins expressed on sexual stages of Plasmodium falciparum in the mosquito midgut are considered an effective means to reduce malaria transmission. Antibodies induced by TBV block sporogonic development in the mosquito, and thus transmission to the next human host. The Pfs25 protein, expressed on the surface of gametes, zygotes and ookinetes, is one of the primary targets for TBV development. Using a plant virus-based transient expression system, we have successfully produced Pfs25 fused to a modified lichenase (LicKM) carrier in Nicotiana benthamiana, purified and characterized the protein (Pfs25-FhCMB), and evaluated this vaccine candidate in animal models for the induction of transmission blocking antibodies. Soluble Pfs25-FhCMB was expressed in plants at a high level, and induced transmission blocking antibodies that persisted for up to 6 months post immunization in mice and rabbits. These data demonstrate the potential of the new malaria vaccine candidate and also support feasibility of expressing Plasmodium antigens in a plant-based system.
Collapse
MESH Headings
- Animals
- Antibodies, Protozoan/blood
- Carrier Proteins/genetics
- Carrier Proteins/metabolism
- Disease Transmission, Infectious/prevention & control
- Female
- Gene Expression
- Genetic Vectors
- Glycoside Hydrolases/genetics
- Glycoside Hydrolases/metabolism
- Malaria/prevention & control
- Malaria Vaccines/administration & dosage
- Malaria Vaccines/genetics
- Malaria Vaccines/immunology
- Mice, Inbred BALB C
- Plants, Genetically Modified/genetics
- Plants, Genetically Modified/metabolism
- Plasmodium falciparum/genetics
- Plasmodium falciparum/immunology
- Potyvirus/genetics
- Protozoan Proteins/genetics
- Protozoan Proteins/immunology
- Rabbits
- Recombinant Fusion Proteins/genetics
- Recombinant Fusion Proteins/immunology
- Time Factors
- Nicotiana/genetics
- Nicotiana/metabolism
- Vaccines, Subunit/administration & dosage
- Vaccines, Subunit/genetics
- Vaccines, Subunit/immunology
- Vaccines, Synthetic/administration & dosage
- Vaccines, Synthetic/genetics
- Vaccines, Synthetic/immunology
Collapse
Affiliation(s)
- R Mark Jones
- Fraunhofer USA Center for Molecular Biotechnology; Newark, DE USA
| | | | | | - Sandra K Gibbs
- Fraunhofer USA Center for Molecular Biotechnology; Newark, DE USA
| | | | - Moneim Shamloul
- Fraunhofer USA Center for Molecular Biotechnology; Newark, DE USA
| | - Joey Norikane
- Fraunhofer USA Center for Molecular Biotechnology; Newark, DE USA
| | | | - Marga van de Vegte-Bolmer
- Departments of Medical Microbiology; Nijmegen Center for Molecular Life Sciences; Radboud University Nijmegen Medical Center; Nijmegen, The Netherlands
| | - Will Roeffen
- Departments of Medical Microbiology; Nijmegen Center for Molecular Life Sciences; Radboud University Nijmegen Medical Center; Nijmegen, The Netherlands
| | - Robert W Sauerwein
- Departments of Medical Microbiology; Nijmegen Center for Molecular Life Sciences; Radboud University Nijmegen Medical Center; Nijmegen, The Netherlands
| | - Vidadi Yusibov
- Fraunhofer USA Center for Molecular Biotechnology; Newark, DE USA
| |
Collapse
|
25
|
Hernández M, Rosas G, Cervantes J, Fragoso G, Rosales-Mendoza S, Sciutto E. Transgenic plants: a 5-year update on oral antipathogen vaccine development. Expert Rev Vaccines 2014; 13:1523-36. [PMID: 25158836 DOI: 10.1586/14760584.2014.953064] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The progressive interest in transgenic plants as advantageous platforms for the production and oral delivery of vaccines has led to extensive research and improvements in this technology over recent years. In this paper, the authors examine the most significant advances in this area, including novel approaches for higher yields and better containment, and the continued evaluation of new vaccine prototypes against several infectious diseases. The use of plants to deliver vaccine candidates against viruses, bacteria, and eukaryotic parasites within the last 5 years is discussed, focusing on innovative expression strategies and the immunogenic potential of new vaccines. A brief section on the state of the art in mucosal immunity is also included.
Collapse
Affiliation(s)
- Marisela Hernández
- Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, 04510 México, DF, México
| | | | | | | | | | | |
Collapse
|
26
|
Shamloul M, Trusa J, Mett V, Yusibov V. Optimization and utilization of Agrobacterium-mediated transient protein production in Nicotiana. J Vis Exp 2014:51204. [PMID: 24796351 PMCID: PMC4174718 DOI: 10.3791/51204] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Agrobacterium-mediated transient protein production in plants is a promising approach to produce vaccine antigens and therapeutic proteins within a short period of time. However, this technology is only just beginning to be applied to large-scale production as many technological obstacles to scale up are now being overcome. Here, we demonstrate a simple and reproducible method for industrial-scale transient protein production based on vacuum infiltration of Nicotiana plants with Agrobacteria carrying launch vectors. Optimization of Agrobacterium cultivation in AB medium allows direct dilution of the bacterial culture in Milli-Q water, simplifying the infiltration process. Among three tested species of Nicotiana, N. excelsiana (N. benthamiana × N. excelsior) was selected as the most promising host due to the ease of infiltration, high level of reporter protein production, and about two-fold higher biomass production under controlled environmental conditions. Induction of Agrobacterium harboring pBID4-GFP (Tobacco mosaic virus-based) using chemicals such as acetosyringone and monosaccharide had no effect on the protein production level. Infiltrating plant under 50 to 100 mbar for 30 or 60 sec resulted in about 95% infiltration of plant leaf tissues. Infiltration with Agrobacterium laboratory strain GV3101 showed the highest protein production compared to Agrobacteria laboratory strains LBA4404 and C58C1 and wild-type Agrobacteria strains at6, at10, at77 and A4. Co-expression of a viral RNA silencing suppressor, p23 or p19, in N. benthamiana resulted in earlier accumulation and increased production (15-25%) of target protein (influenza virus hemagglutinin).
Collapse
Affiliation(s)
| | - Jason Trusa
- Fraunhofer USA Center for Molecular Biotechnology
| | - Vadim Mett
- Fraunhofer USA Center for Molecular Biotechnology
| | | |
Collapse
|
27
|
Mallajosyula JK, Hiatt E, Hume S, Johnson A, Jeevan T, Chikwamba R, Pogue GP, Bratcher B, Haydon H, Webby RJ, McCormick AA. Single-dose monomeric HA subunit vaccine generates full protection from influenza challenge. Hum Vaccin Immunother 2013; 10:586-95. [PMID: 24378714 DOI: 10.4161/hv.27567] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Recombinant subunit vaccines are an efficient strategy to meet the demands of a possible influenza pandemic, because of rapid and scalable production. However, vaccines made from recombinant hemagglutinin (HA) subunit protein are often of low potency, requiring high dose or boosting to generate a sustained immune response. We have improved the immunogenicity of a plant-made HA vaccine by chemical conjugation to the surface of the Tobacco mosaic virus (TMV) which is non infectious in mammals. We have previously shown that TMV is taken up by mammalian dendritic cells and is a highly effective antigen carrier. In this work, we tested several TMV-HA conjugation chemistries, and compared immunogenicity in mice as measured by anti-HA IgG titers and hemagglutination inhibition (HAI). Importantly, pre-existing immunity to TMV did not reduce initial or boosted titers. Further optimization included dosing with and without alum or oil-in water adjuvants. Surprisingly, we were able to stimulate potent immunogenicity and HAI titers with a single 15 µg dose of HA as a TMV conjugate. We then evaluated the efficacy of the TMV-HA vaccine in a lethal virus challenge in mice. Our results show that a single dose of the TMV-HA conjugate vaccine is sufficient to generate 50% survival, or 100% survival with adjuvant, compared with 10% survival after vaccination with a commercially available H1N1 vaccine. TMV-HA is an effective dose-sparing influenza vaccine, using a single-step process to rapidly generate large quantities of highly effective flu vaccine from an otherwise low potency HA subunit protein.
Collapse
Affiliation(s)
| | - Ernie Hiatt
- Kentucky BioProcessing LLC; Owensboro, KY USA
| | - Steve Hume
- Kentucky BioProcessing LLC; Owensboro, KY USA
| | | | | | - Rachel Chikwamba
- Council for Scientific and Industrial Research; Pretoria, South Africa
| | - Gregory P Pogue
- Kentucky BioProcessing LLC; Owensboro, KY USA; IC2 Institute; The University of Texas at Austin; Austin, TX USA
| | | | - Hugh Haydon
- Kentucky BioProcessing LLC; Owensboro, KY USA
| | | | | |
Collapse
|
28
|
Jones RM, Chichester JA, Mett V, Jaje J, Tottey S, Manceva S, Casta LJ, Gibbs SK, Musiychuk K, Shamloul M, Norikane J, Mett V, Streatfield SJ, van de Vegte-Bolmer M, Roeffen W, Sauerwein RW, Yusibov V. A plant-produced Pfs25 VLP malaria vaccine candidate induces persistent transmission blocking antibodies against Plasmodium falciparum in immunized mice. PLoS One 2013; 8:e79538. [PMID: 24260245 PMCID: PMC3832600 DOI: 10.1371/journal.pone.0079538] [Citation(s) in RCA: 79] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2013] [Accepted: 09/20/2013] [Indexed: 11/18/2022] Open
Abstract
Malaria transmission blocking vaccines (TBVs) are considered an effective means to control and eventually eliminate malaria. The Pfs25 protein, expressed predominantly on the surface of the sexual and sporogonic stages of Plasmodium falciparum including gametes, zygotes and ookinetes, is one of the primary targets for TBV. It has been demonstrated that plants are an effective, highly scalable system for the production of recombinant proteins, including virus-like particles (VLPs). We engineered VLPs (Pfs25-CP VLP) comprising Pfs25 fused to the Alfalfa mosaic virus coat protein (CP) and produced these non-enveloped hybrid VLPs in Nicotiana benthamiana plants using a Tobacco mosaic virus-based ‘launch’ vector. Purified Pfs25-CP VLPs were highly consistent in size (19.3±2.4 nm in diameter) with an estimated 20–30% incorporation of Pfs25 onto the VLP surface. Immunization of mice with one or two doses of Pfs25-CP VLPs plus Alhydrogel® induced serum antibodies with complete transmission blocking activity through the 6 month study period. These results support the evaluation of Pfs25-CP VLP as a potential TBV candidate and the feasibility of the ‘launch’ vector technology for the production of VLP-based recombinant vaccines against infectious diseases.
Collapse
Affiliation(s)
- R. Mark Jones
- Fraunhofer USA Center for Molecular Biotechnology, Newark, Delaware, United States of America
| | - Jessica A. Chichester
- Fraunhofer USA Center for Molecular Biotechnology, Newark, Delaware, United States of America
| | - Vadim Mett
- Fraunhofer USA Center for Molecular Biotechnology, Newark, Delaware, United States of America
| | - Jennifer Jaje
- Fraunhofer USA Center for Molecular Biotechnology, Newark, Delaware, United States of America
| | - Stephen Tottey
- Fraunhofer USA Center for Molecular Biotechnology, Newark, Delaware, United States of America
| | - Slobodanka Manceva
- Fraunhofer USA Center for Molecular Biotechnology, Newark, Delaware, United States of America
| | - Louis J. Casta
- Fraunhofer USA Center for Molecular Biotechnology, Newark, Delaware, United States of America
| | - Sandra K. Gibbs
- Fraunhofer USA Center for Molecular Biotechnology, Newark, Delaware, United States of America
| | - Konstantin Musiychuk
- Fraunhofer USA Center for Molecular Biotechnology, Newark, Delaware, United States of America
| | - Moneim Shamloul
- Fraunhofer USA Center for Molecular Biotechnology, Newark, Delaware, United States of America
| | - Joey Norikane
- Fraunhofer USA Center for Molecular Biotechnology, Newark, Delaware, United States of America
| | - Valentina Mett
- Fraunhofer USA Center for Molecular Biotechnology, Newark, Delaware, United States of America
| | - Stephen J. Streatfield
- Fraunhofer USA Center for Molecular Biotechnology, Newark, Delaware, United States of America
| | | | - Will Roeffen
- Radboud University Nijmegen Medical Center, Nijmegen, The Netherlands
| | | | - Vidadi Yusibov
- Fraunhofer USA Center for Molecular Biotechnology, Newark, Delaware, United States of America
- * E-mail:
| |
Collapse
|
29
|
Musiychuk K, Sivalenka R, Jaje J, Bi H, Flores R, Shaw B, Jones RM, Golovina T, Schnipper J, Khandker L, Sun R, Li C, Kang L, Voskinarian-Berse V, Zhang X, Streatfield S, Hambor J, Abbot S, Yusibov V. Plant-produced human recombinant erythropoietic growth factors support erythroid differentiation in vitro. Stem Cells Dev 2013; 22:2326-40. [PMID: 23517237 PMCID: PMC3730378 DOI: 10.1089/scd.2012.0489] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2012] [Accepted: 03/21/2013] [Indexed: 01/11/2023] Open
Abstract
Clinically available red blood cells (RBCs) for transfusions are at high demand, but in vitro generation of RBCs from hematopoietic stem cells requires significant quantities of growth factors. Here, we describe the production of four human growth factors: erythropoietin (EPO), stem cell factor (SCF), interleukin 3 (IL-3), and insulin-like growth factor-1 (IGF-1), either as non-fused proteins or as fusions with a carrier molecule (lichenase), in plants, using a Tobacco mosaic virus vector-based transient expression system. All growth factors were purified and their identity was confirmed by western blotting and peptide mapping. The potency of these plant-produced cytokines was assessed using TF1 cell (responsive to EPO, IL-3 and SCF) or MCF-7 cell (responsive to IGF-1) proliferation assays. The biological activity estimated here for the cytokines produced in plants was slightly lower or within the range cited in commercial sources and published literature. By comparing EC50 values of plant-produced cytokines with standards, we have demonstrated that all four plant-produced growth factors stimulated the expansion of umbilical cord blood-derived CD34+ cells and their differentiation toward erythropoietic precursors with the same potency as commercially available growth factors. To the best of our knowledge, this is the first report on the generation of all key bioactive cytokines required for the erythroid development in a cost-effective manner using a plant-based expression system.
Collapse
Affiliation(s)
| | | | - Jennifer Jaje
- Fraunhofer USA Center for Molecular Biotechnology, Newark, Delaware
| | - Hong Bi
- Fraunhofer USA Center for Molecular Biotechnology, Newark, Delaware
| | - Rosemary Flores
- Fraunhofer USA Center for Molecular Biotechnology, Newark, Delaware
| | - Brenden Shaw
- Fraunhofer USA Center for Molecular Biotechnology, Newark, Delaware
| | - R. Mark Jones
- Fraunhofer USA Center for Molecular Biotechnology, Newark, Delaware
| | - Tatiana Golovina
- Fraunhofer USA Center for Molecular Biotechnology, Newark, Delaware
| | | | | | - Ruiqiang Sun
- Celgene Cellular Therapeutics, Warren, New Jersey
| | - Chang Li
- Celgene Cellular Therapeutics, Warren, New Jersey
| | - Lin Kang
- Celgene Cellular Therapeutics, Warren, New Jersey
| | | | | | | | - John Hambor
- Celgene Cellular Therapeutics, Warren, New Jersey
| | | | - Vidadi Yusibov
- Fraunhofer USA Center for Molecular Biotechnology, Newark, Delaware
| |
Collapse
|
30
|
Phan HT, Pohl J, Floss DM, Rabenstein F, Veits J, Le BT, Chu HH, Hause G, Mettenleiter T, Conrad U. ELPylated haemagglutinins produced in tobacco plants induce potentially neutralizing antibodies against H5N1 viruses in mice. PLANT BIOTECHNOLOGY JOURNAL 2013; 11:582-93. [PMID: 23398695 DOI: 10.1111/pbi.12049] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2012] [Revised: 12/17/2012] [Accepted: 01/07/2013] [Indexed: 06/01/2023]
Abstract
Reducing the cost of vaccine production is a key priority for veterinary research, and the possibility of heterologously expressing antigen in plants provides a particularly attractive means of achieving this. Here, we report the expression of the avian influenza virus haemagglutinin (AIV HA) in tobacco, both as a monomer and as a trimer in its native and its ELPylated form. We firstly presented evidence to produce stabilized trimers of soluble HA in plants. ELPylation of these trimers does not influence the trimerization. Strong expression enhancement in planta caused by ELPylation was demonstrated for trimerized H5-ELP. ELPylated trimers could be purified by a membrane-based inverse transition cycling procedure with the potential of successful scale-up. The trimeric form of AIV HA was found to enhance the HA-specific immune response compared with the monomeric form. Plant-derived AIV HA trimers elicited potentially neutralizing antibodies interacting with both homologous virus-like particles from plants and heterologous inactivated AIV. ELPylation did not influence the functionality and the antigenicity of the stabilized H5 trimers. These data allow further developments including scale-up of production, purification and virus challenge experiments with the final goal to achieve suitable technologies for efficient avian flu vaccine production.
Collapse
Affiliation(s)
- Hoang T Phan
- Leibniz Institute of Plant Genetics and Crop Plant Research-IPK, Gatersleben, Germany
| | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Bayne ACV, Boltz D, Owen C, Betz Y, Maia G, Azadi P, Archer-Hartmann S, Zirkle R, Lippmeier JC. Vaccination against influenza with recombinant hemagglutinin expressed by Schizochytrium sp. confers protective immunity. PLoS One 2013; 8:e61790. [PMID: 23626728 PMCID: PMC3634000 DOI: 10.1371/journal.pone.0061790] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2012] [Accepted: 03/13/2013] [Indexed: 11/18/2022] Open
Abstract
For the rapid production of influenza vaccine antigens in unlimited quantities, a transition from conventional egg-based production to cell-based and recombinant systems is required. The need for higher-yield, lower-cost, and faster production processes is critical to provide adequate supplies of influenza vaccine to counter global pandemic threats. In this study, recombinant hemagglutinin proteins of influenza virus were expressed in the microalga Schizochytrium sp., an established, fermentable organism grown in large scale for the manufacture of polyunsaturated fatty acids for animal and human health applications. Schizochytrium was capable of exporting the full-length membrane-bound proteins in a secreted form suitable for vaccine formulation. One recombinant hemagglutinin (rHA) protein derived from A/Puerto Rico/8/34 (H1N1) influenza virus was evaluated as a vaccine in a murine challenge model. Protective immunity from lethal challenge with homologous virus was elicited by a single dose of 1.7, 5 or 15 µg rHA with or without adjuvant at survival rates between 80–100%. Full protection (100%) was established at all dose levels with or without adjuvant when mice were given a second vaccination. These data demonstrate the potential of Schizochytrium sp. as a platform for the production of recombinant antigens useful for vaccination against influenza.
Collapse
MESH Headings
- Adjuvants, Immunologic/administration & dosage
- Animals
- Antibodies, Viral/blood
- Antibodies, Viral/immunology
- Dose-Response Relationship, Immunologic
- Female
- Hemagglutinin Glycoproteins, Influenza Virus/administration & dosage
- Hemagglutinin Glycoproteins, Influenza Virus/genetics
- Hemagglutinin Glycoproteins, Influenza Virus/immunology
- Humans
- Immunization, Secondary
- Influenza A Virus, H1N1 Subtype/chemistry
- Influenza A Virus, H1N1 Subtype/immunology
- Influenza Vaccines/administration & dosage
- Influenza Vaccines/genetics
- Influenza Vaccines/immunology
- Influenza, Human/immunology
- Influenza, Human/prevention & control
- Mice
- Mice, Inbred BALB C
- Microalgae/genetics
- Orthomyxoviridae Infections/immunology
- Orthomyxoviridae Infections/mortality
- Orthomyxoviridae Infections/prevention & control
- Recombinant Proteins/administration & dosage
- Recombinant Proteins/genetics
- Recombinant Proteins/immunology
- Stramenopiles/genetics
Collapse
Affiliation(s)
- Anne-Cécile V. Bayne
- Nutritional Lipids, DSM Nutritional Products, Columbia, Maryland, United States of America
| | - David Boltz
- Division of Microbiology & Molecular Biology, IIT Research Institute, Illinois Institute of Technology, Chicago, Illinois, United States of America
| | - Carole Owen
- Nutritional Lipids, DSM Nutritional Products, Columbia, Maryland, United States of America
| | - Yelena Betz
- Nutritional Lipids, DSM Nutritional Products, Columbia, Maryland, United States of America
| | - Goncalo Maia
- Nutritional Lipids, DSM Nutritional Products, Columbia, Maryland, United States of America
| | - Parastoo Azadi
- Complex Carbohydrate Research Center, University of Georgia, Athens, Georgia, United States of America
| | - Stephanie Archer-Hartmann
- Complex Carbohydrate Research Center, University of Georgia, Athens, Georgia, United States of America
| | - Ross Zirkle
- Nutritional Lipids, DSM Nutritional Products, Columbia, Maryland, United States of America
| | - J. Casey Lippmeier
- Nutritional Lipids, DSM Nutritional Products, Columbia, Maryland, United States of America
- * E-mail:
| |
Collapse
|
32
|
Hefferon KL. Plant virus expression vectors set the stage as production platforms for biopharmaceutical proteins. Virology 2013; 433:1-6. [PMID: 22979981 DOI: 10.1016/j.virol.2012.06.012] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2012] [Revised: 05/16/2012] [Accepted: 06/05/2012] [Indexed: 12/18/2022]
Abstract
Transgenic plants present enormous potential as a cost-effective and safe platform for large-scale production of vaccines and other therapeutic proteins. A number of different technologies are under development for the production of pharmaceutical proteins from plant tissues. One method used to express high levels of protein in plants involves the employment of plant virus expression vectors. Plant virus vectors have been designed to carry vaccine epitopes as well as full therapeutic proteins such as monoclonal antibodies in plant tissue both safely and effectively. Biopharmaceuticals such as these offer enormous potential on many levels, from providing relief to those who have little access to modern medicine, to playing an active role in the battle against cancer. This review describes the current design and status of plant virus expression vectors used as production platforms for biopharmaceutical proteins.
Collapse
|
33
|
Jul-Larsen Å, Madhun AS, Brokstad KA, Montomoli E, Yusibov V, Cox RJ. The human potential of a recombinant pandemic influenza vaccine produced in tobacco plants. Hum Vaccin Immunother 2012; 8:653-61. [PMID: 22634440 PMCID: PMC3495720 DOI: 10.4161/hv.19503] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Rapid production of influenza vaccine antigen is an important challenge when a new pandemic occurs. Production of recombinant antigens in plants is a quick, cost effective and up scalable new strategy for influenza vaccine production. In this study, we have characterized a recombinant influenza haemagglutinin antigen (HAC1) that was derived from the 2009 pandemic H1N1 (pdmH1N1) virus and expressed in tobacco plants. Volunteers vaccinated with the 2009 pdmH1N1 oil-in-water adjuvanted vaccine provided serum and lymphocyte samples that were used to study the immunogenic properties of the HAC1 antigen in vitro. By 7 d post vaccination, the vaccine fulfilled the licensing criteria for antibody responses to the HA detected by haemagglutination inhibition and single radial hemolysis. By ELISA and ELISPOT analysis we showed that HAC1 was recognized by specific serum antibodies and antibody secreting cells, respectively. We conducted a kinetic analysis and found a peak of serum HAC1 specific antibody response between day 14 and 21 post vaccination by ELISA. We also detected elevated production of IL-2 and IFNγ and low frequencies of CD4(+) T cells producing single or multiple Th1 cytokines after stimulating PBMCs (peripheral blood mononuclear cells) with the HAC1 antigen in vitro. This indicates that the antigen can interact with T cells, although confirming an effective adjuvant would be required to improve the T-cell stimulation of plant based vaccines. We conclude that the tobacco derived recombinant HAC1 antigen is a promising vaccine candidate recognized by both B- and T cells.
Collapse
MESH Headings
- Adult
- Antibodies, Viral/blood
- B-Lymphocytes/immunology
- CD4-Positive T-Lymphocytes/immunology
- Cytokines/metabolism
- Enzyme-Linked Immunosorbent Assay
- Enzyme-Linked Immunospot Assay
- Female
- Hemagglutinin Glycoproteins, Influenza Virus/genetics
- Hemagglutinin Glycoproteins, Influenza Virus/immunology
- Human Experimentation
- Humans
- Influenza A Virus, H1N1 Subtype/genetics
- Influenza A Virus, H1N1 Subtype/immunology
- Influenza Vaccines/administration & dosage
- Influenza Vaccines/genetics
- Influenza Vaccines/immunology
- Influenza Vaccines/isolation & purification
- Influenza, Human/prevention & control
- Male
- Middle Aged
- Plants, Genetically Modified
- Th1 Cells/immunology
- Time Factors
- Nicotiana
- Vaccines, Synthetic/administration & dosage
- Vaccines, Synthetic/genetics
- Vaccines, Synthetic/immunology
- Vaccines, Synthetic/isolation & purification
Collapse
Affiliation(s)
- Åsne Jul-Larsen
- Influenza Centre, The Gade Institute, University of Bergen, Bergen, Norway.
| | | | | | | | | | | |
Collapse
|
34
|
Mortimer E, Maclean JM, Mbewana S, Buys A, Williamson AL, Hitzeroth II, Rybicki EP. Setting up a platform for plant-based influenza virus vaccine production in South Africa. BMC Biotechnol 2012; 12:14. [PMID: 22536810 PMCID: PMC3358240 DOI: 10.1186/1472-6750-12-14] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2011] [Accepted: 04/26/2012] [Indexed: 11/30/2022] Open
Abstract
Background During a global influenza pandemic, the vaccine requirements of developing countries can surpass their supply capabilities, if these exist at all, compelling them to rely on developed countries for stocks that may not be available in time. There is thus a need for developing countries in general to produce their own pandemic and possibly seasonal influenza vaccines. Here we describe the development of a plant-based platform for producing influenza vaccines locally, in South Africa. Plant-produced influenza vaccine candidates are quicker to develop and potentially cheaper than egg-produced influenza vaccines, and their production can be rapidly upscaled. In this study, we investigated the feasibility of producing a vaccine to the highly pathogenic avian influenza A subtype H5N1 virus, the most generally virulent influenza virus identified to date. Two variants of the haemagglutinin (HA) surface glycoprotein gene were synthesised for optimum expression in plants: these were the full-length HA gene (H5) and a truncated form lacking the transmembrane domain (H5tr). The genes were cloned into a panel of Agrobacterium tumefaciens binary plant expression vectors in order to test HA accumulation in different cell compartments. The constructs were transiently expressed in tobacco by means of agroinfiltration. Stable transgenic tobacco plants were also generated to provide seed for stable storage of the material as a pre-pandemic strategy. Results For both transient and transgenic expression systems the highest accumulation of full-length H5 protein occurred in the apoplastic spaces, while the highest accumulation of H5tr was in the endoplasmic reticulum. The H5 proteins were produced at relatively high concentrations in both systems. Following partial purification, haemagglutination and haemagglutination inhibition tests indicated that the conformation of the plant-produced HA variants was correct and the proteins were functional. The immunisation of chickens and mice with the candidate vaccines elicited HA-specific antibody responses. Conclusions We managed, after synthesis of two versions of a single gene, to produce by transient and transgenic expression in plants, two variants of a highly pathogenic avian influenza virus HA protein which could have vaccine potential. This is a proof of principle of the potential of plant-produced influenza vaccines as a feasible pandemic response strategy for South Africa and other developing countries.
Collapse
Affiliation(s)
- Elizabeth Mortimer
- Department of Molecular and Cell Biology, University of Cape Town, Cape Town, South Africa
| | | | | | | | | | | | | |
Collapse
|
35
|
Ling HY, Edwards AM, Gantier MP, DeBoer KD, Neale AD, Hamill JD, Walmsley AM. An interspecific Nicotiana hybrid as a useful and cost-effective platform for production of animal vaccines. PLoS One 2012; 7:e35688. [PMID: 22539991 PMCID: PMC3334924 DOI: 10.1371/journal.pone.0035688] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2011] [Accepted: 03/23/2012] [Indexed: 01/26/2023] Open
Abstract
The use of transgenic plants to produce novel products has great biotechnological potential as the relatively inexpensive inputs of light, water, and nutrients are utilised in return for potentially valuable bioactive metabolites, diagnostic proteins and vaccines. Extensive research is ongoing in this area internationally with the aim of producing plant-made vaccines of importance for both animals and humans. Vaccine purification is generally regarded as being integral to the preparation of safe and effective vaccines for use in humans. However, the use of crude plant extracts for animal immunisation may enable plant-made vaccines to become a cost-effective and efficacious approach to safely immunise large numbers of farm animals against diseases such as avian influenza. Since the technology associated with genetic transformation and large-scale propagation is very well established in Nicotiana, the genus has attributes well-suited for the production of plant-made vaccines. However the presence of potentially toxic alkaloids in Nicotiana extracts impedes their use as crude vaccine preparations. In the current study we describe a Nicotiana tabacum and N. glauca hybrid that expresses the HA glycoprotein of influenza A in its leaves but does not synthesize alkaloids. We demonstrate that injection with crude leaf extracts from these interspecific hybrid plants is a safe and effective approach for immunising mice. Moreover, this antigen-producing alkaloid-free, transgenic interspecific hybrid is vigorous, with a high capacity for vegetative shoot regeneration after harvesting. These plants are easily propagated by vegetative cuttings and have the added benefit of not producing viable pollen, thus reducing potential problems associated with bio-containment. Hence, these Nicotiana hybrids provide an advantageous production platform for partially purified, plant-made vaccines which may be particularly well suited for use in veterinary immunization programs.
Collapse
Affiliation(s)
- Huai-Yian Ling
- School of Biological Sciences, Monash University, Clayton, Melbourne, Victoria, Australia
| | - Aaron M. Edwards
- School of Biological Sciences, Monash University, Clayton, Melbourne, Victoria, Australia
| | - Michael P. Gantier
- Monash Institute of Medical Research, Centre for Cancer Research, Clayton, Melbourne, Victoria, Australia
| | - Kathleen D. DeBoer
- Department of Anatomy and Development Biology, Monash University, Clayton, Melbourne, Victoria, Australia
| | - Alan D. Neale
- School of Biological Sciences, Monash University, Clayton, Melbourne, Victoria, Australia
| | - John D. Hamill
- Department of Forest and Ecosystem Science, University of Melbourne, Creswick, Victoria, Australia
| | - Amanda M. Walmsley
- School of Biological Sciences, Monash University, Clayton, Melbourne, Victoria, Australia
| |
Collapse
|
36
|
Kanagarajan S, Tolf C, Lundgren A, Waldenström J, Brodelius PE. Transient expression of hemagglutinin antigen from low pathogenic avian influenza A (H7N7) in Nicotiana benthamiana. PLoS One 2012; 7:e33010. [PMID: 22442675 PMCID: PMC3307706 DOI: 10.1371/journal.pone.0033010] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2011] [Accepted: 02/02/2012] [Indexed: 01/18/2023] Open
Abstract
The influenza A virus is of global concern for the poultry industry, especially the H5 and H7 subtypes as they have the potential to become highly pathogenic for poultry. In this study, the hemagglutinin (HA) of a low pathogenic avian influenza virus of the H7N7 subtype isolated from a Swedish mallard Anas platyrhynchos was sequenced, characterized and transiently expressed in Nicotiana benthamiana. Recently, plant expression systems have gained interest as an alternative for the production of vaccine antigens. To examine the possibility of expressing the HA protein in N. benthamiana, a cDNA fragment encoding the HA gene was synthesized de novo, modified with a Kozak sequence, a PR1a signal peptide, a C-terminal hexahistidine (6×His) tag, and an endoplasmic retention signal (SEKDEL). The construct was cloned into a Cowpea mosaic virus (CPMV)-based vector (pEAQ-HT) and the resulting pEAQ-HT-HA plasmid, along with a vector (pJL3:p19) containing the viral gene-silencing suppressor p19 from Tomato bushy stunt virus, was agro-infiltrated into N. benthamiana. The highest gene expression of recombinant plant-produced, uncleaved HA (rHA0), as measured by quantitative real-time PCR was detected at 6 days post infiltration (dpi). Guided by the gene expression profile, rHA0 protein was extracted at 6 dpi and subsequently purified utilizing the 6×His tag and immobilized metal ion adsorption chromatography. The yield was 0.2 g purified protein per kg fresh weight of leaves. Further molecular characterizations showed that the purified rHA0 protein was N-glycosylated and its identity confirmed by liquid chromatography-tandem mass spectrometry. In addition, the purified rHA0 exhibited hemagglutination and hemagglutination inhibition activity indicating that the rHA0 shares structural and functional properties with native HA protein of H7 influenza virus. Our results indicate that rHA0 maintained its native antigenicity and specificity, providing a good source of vaccine antigen to induce immune response in poultry species.
Collapse
MESH Headings
- Animals
- Antigens, Viral/biosynthesis
- Antigens, Viral/genetics
- Antigens, Viral/immunology
- Hemagglutinin Glycoproteins, Influenza Virus/biosynthesis
- Hemagglutinin Glycoproteins, Influenza Virus/genetics
- Hemagglutinin Glycoproteins, Influenza Virus/immunology
- Influenza A Virus, H7N7 Subtype
- Influenza in Birds/genetics
- Influenza in Birds/immunology
- Influenza in Birds/prevention & control
- Plants, Genetically Modified/genetics
- Plants, Genetically Modified/immunology
- Plants, Genetically Modified/metabolism
- Poultry/immunology
- Poultry Diseases/genetics
- Poultry Diseases/immunology
- Poultry Diseases/prevention & control
- Recombinant Proteins/biosynthesis
- Recombinant Proteins/genetics
- Recombinant Proteins/immunology
- Nicotiana
Collapse
Affiliation(s)
- Selvaraju Kanagarajan
- Section for Biomaterials and Medicinal Chemistry, School of Natural Sciences, Linnaeus University, Kalmar, Sweden
| | - Conny Tolf
- Section for Zoonotic Ecology and Epidemiology, School of Natural Sciences, Linnaeus University, Kalmar, Sweden
| | - Anneli Lundgren
- Section for Biomaterials and Medicinal Chemistry, School of Natural Sciences, Linnaeus University, Kalmar, Sweden
| | - Jonas Waldenström
- Section for Zoonotic Ecology and Epidemiology, School of Natural Sciences, Linnaeus University, Kalmar, Sweden
| | - Peter E. Brodelius
- Section for Biomaterials and Medicinal Chemistry, School of Natural Sciences, Linnaeus University, Kalmar, Sweden
| |
Collapse
|
37
|
Ravin NV, Kotlyarov RY, Mardanova ES, Kuprianov VV, Migunov AI, Stepanova LA, Tsybalova LM, Kiselev OI, Skryabin KG. Plant-produced recombinant influenza vaccine based on virus-like HBc particles carrying an extracellular domain of M2 protein. BIOCHEMISTRY. BIOKHIMIIA 2012; 77:33-40. [PMID: 22339631 DOI: 10.1134/s000629791201004x] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Conventional influenza vaccines are based on a virus obtained in chicken embryos or its components. The high variability of the surface proteins of influenza virus, hemagglutinin and neuraminidase, requires strain-specific vaccines matching the antigenic specificity of newly emerging virus strains to be developed. A recombinant vaccine based on a highly conservative influenza virus protein M2 fused to a nanosized carrier particle can be an attractive alternative to traditional vaccines. We have constructed a recombinant viral vector based on potato X virus that provides for expression in the Nicotiana benthamiana plants of a hybrid protein M2eHBc consisting of an extracellular domain of influenza virus M2 protein (M2e) fused to hepatitis B core antigen (HBc). This vector was introduced into plant cells by infiltrating leaves with agrobacteria carrying the viral vector. The hybrid protein M2eHBc was synthesized in the infected N. benthamiana plants in an amount reaching 1-2% of the total soluble protein and formed virus-like particles with the M2e peptide presented on the surface. Methods of isolation and purification of M2eHBc particles from plant producers were elaborated. Experiments on mice have shown a high immunogenicity of the plant-produced M2eHBc particles and their protective effect against lethal influenza challenge. The developed transient expression system can be used for production of M2e-based candidate influenza vaccine in plants.
Collapse
Affiliation(s)
- N V Ravin
- Centre "Bioengineering", Russian Academy of Sciences, Moscow, Russia.
| | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Arzola L, Chen J, Rattanaporn K, Maclean JM, McDonald KA. Transient co-expression of post-transcriptional gene silencing suppressors for increased in planta expression of a recombinant anthrax receptor fusion protein. Int J Mol Sci 2011; 12:4975-90. [PMID: 21954339 PMCID: PMC3179146 DOI: 10.3390/ijms12084975] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2011] [Revised: 06/18/2011] [Accepted: 07/20/2011] [Indexed: 11/16/2022] Open
Abstract
Potential epidemics of infectious diseases and the constant threat of bioterrorism demand rapid, scalable, and cost-efficient manufacturing of therapeutic proteins. Molecular farming of tobacco plants provides an alternative for the recombinant production of therapeutics. We have developed a transient production platform that uses Agrobacterium infiltration of Nicotiana benthamiana plants to express a novel anthrax receptor decoy protein (immunoadhesin), CMG2-Fc. This chimeric fusion protein, designed to protect against the deadly anthrax toxins, is composed of the von Willebrand factor A (VWA) domain of human capillary morphogenesis 2 (CMG2), an effective anthrax toxin receptor, and the Fc region of human immunoglobulin G (IgG). We evaluated, in N. benthamiana intact plants and detached leaves, the expression of CMG2-Fc under the control of the constitutive CaMV 35S promoter, and the co-expression of CMG2-Fc with nine different viral suppressors of post-transcriptional gene silencing (PTGS): p1, p10, p19, p21, p24, p25, p38, 2b, and HCPro. Overall, transient CMG2-Fc expression was higher on intact plants than detached leaves. Maximum expression was observed with p1 co-expression at 3.5 days post-infiltration (DPI), with a level of 0.56 g CMG2-Fc per kg of leaf fresh weight and 1.5% of the total soluble protein, a ten-fold increase in expression when compared to absence of suppression. Co-expression with the p25 PTGS suppressor also significantly increased the CMG2-Fc expression level after just 3.5 DPI.
Collapse
Affiliation(s)
- Lucas Arzola
- Department of Chemical Engineering and Materials Science, University of California, Davis, One Shields Ave, Davis, CA 95616, USA; E-Mails: (L.A.); (J.C.); (K.R.)
| | - Junxing Chen
- Department of Chemical Engineering and Materials Science, University of California, Davis, One Shields Ave, Davis, CA 95616, USA; E-Mails: (L.A.); (J.C.); (K.R.)
| | - Kittipong Rattanaporn
- Department of Chemical Engineering and Materials Science, University of California, Davis, One Shields Ave, Davis, CA 95616, USA; E-Mails: (L.A.); (J.C.); (K.R.)
| | - James M. Maclean
- Planet Biotechnology Inc., 25571 Clawiter Road, Hayward, CA 94545, USA; E-Mail:
| | - Karen A. McDonald
- Department of Chemical Engineering and Materials Science, University of California, Davis, One Shields Ave, Davis, CA 95616, USA; E-Mails: (L.A.); (J.C.); (K.R.)
| |
Collapse
|
39
|
A plant-produced Pfs230 vaccine candidate blocks transmission of Plasmodium falciparum. CLINICAL AND VACCINE IMMUNOLOGY : CVI 2011; 18:1351-7. [PMID: 21715576 DOI: 10.1128/cvi.05105-11] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Plasmodium falciparum is transmitted to a new host after completing its sexual cycle within a mosquito. Developing vaccines against the parasite sexual stages is a critical component in the fight against malaria. We are targeting multiple proteins of P. falciparum which are found only on the surfaces of the sexual forms of the parasite and where antibodies against these proteins have been shown to block the progression of the parasite's life cycle in the mosquito and thus block transmission to the next human host. We have successfully produced a region of the Pfs230 antigen in our plant-based transient-expression system and evaluated this vaccine candidate in an animal model. This plant-produced protein, 230CMB, is expressed at approximately 800 mg/kg in fresh whole leaf tissue and is 100% soluble. Administration of 230CMB with >90% purity induces strong immune responses in rabbits with high titers of transmission-blocking antibodies, resulting in a greater than 99% reduction in oocyst counts in the presence of complement, as determined by a standard membrane feeding assay. Our data provide a clear perspective on the clinical development of a Pfs230-based transmission-blocking malaria vaccine.
Collapse
|
40
|
Phan HT, Conrad U. Membrane-based inverse transition cycling: an improved means for purifying plant-derived recombinant protein-elastin-like polypeptide fusions. Int J Mol Sci 2011; 12:2808-21. [PMID: 21686152 PMCID: PMC3116158 DOI: 10.3390/ijms12052808] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2011] [Revised: 04/11/2011] [Accepted: 04/11/2011] [Indexed: 11/17/2022] Open
Abstract
Elastin-like peptide (ELP) was fused to two different avian flu H5N1 antigens and expressed in transgenic tobacco plants. The presence of the ELP tag enhanced the accumulation of the heterologous proteins in the tobacco leaves. An effective membrane-based Inverse Transition Cycling was developed to recover the ELPylated antigens and antibodies from plant material. The functionality of both the ELPylated neuraminidase and an ELPylated nanobody was demonstrated.
Collapse
Affiliation(s)
- Hoang Trong Phan
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Corrensstrasse 3, Gatersleben 06466, Germany; E-Mail:
| | - Udo Conrad
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Corrensstrasse 3, Gatersleben 06466, Germany; E-Mail:
| |
Collapse
|
41
|
Abstract
Influenza is responsible for the infection of approximately 20% of the population every season and for an annual death toll of approximately half a million people. The most effective means for controlling infection and thereby reducing morbidity and mortality is vaccination by injection with an inactivated vaccine, or by intranasal administration of a live-attenuated vaccine. Protection is not always optimal and there is a need for the development of new vaccines with improved efficacy and for the expansion of enrollment into vaccination programs. An overview of old and new vaccines is presented. Methods of monitoring immune responses such as hemagglutination-inhibition, ELISA and neutralization tests are evaluated for their accuracy in the assessment of current and new-generation vaccines.
Collapse
Affiliation(s)
- Zichria Zakay-Rones
- Chanock Center of Virology, The Department of Biochemistry and Molecular Biology, The Institute for Medical Research Israel Canada (IMRIC), Hebrew University Hadassah Medical School, Jerusalem, Israel.
| |
Collapse
|
42
|
Rybicki EP. Plant-made vaccines for humans and animals. PLANT BIOTECHNOLOGY JOURNAL 2010; 8:620-37. [PMID: 20233333 PMCID: PMC7167690 DOI: 10.1111/j.1467-7652.2010.00507.x] [Citation(s) in RCA: 187] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2009] [Revised: 11/30/2009] [Accepted: 12/02/2009] [Indexed: 05/17/2023]
Abstract
The concept of using plants to produce high-value pharmaceuticals such as vaccines is 20 years old this year and is only now on the brink of realisation as an established technology. The original reliance on transgenic plants has largely given way to transient expression; proofs of concept for human and animal vaccines and of efficacy for animal vaccines have been established; several plant-produced vaccines have been through Phase I clinical trials in humans and more are scheduled; regulatory requirements are more clear than ever, and more facilities exist for manufacture of clinic-grade materials. The original concept of cheap edible vaccines has given way to a realisation that formulated products are required, which may well be injectable. The technology has proven its worth as a means of cheap, easily scalable production of materials: it now needs to find its niche in competition with established technologies. The realised achievements in the field as well as promising new developments will be reviewed, such as rapid-response vaccines for emerging viruses with pandemic potential and bioterror agents.
Collapse
Affiliation(s)
- Edward P Rybicki
- Department of Molecular and Cell Biology, University of Cape Town, Rondebosch, South Africa. ed.rybicki@ uct.ac.za
| |
Collapse
|
43
|
Chichester JA, Haaheim LR, Yusibov V. Using plant cells as influenza vaccine substrates. Expert Rev Vaccines 2009; 8:493-8. [PMID: 19348564 DOI: 10.1586/erv.09.3] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The reappearance of highly pathogenic avian influenza H5N1 in poultry in 2003, and the subsequent high-fatality zoonoses in Asia, Europe and Africa, has heightened the awareness of a potential pandemic and the need for global vaccine supply. Most manufacturers still use embryonated hens' eggs to produce influenza vaccines, a system that has demonstrated its value throughout six decades. There are, however, some challenges with this approach, both for seasonal and particularly for pandemic vaccine production. This review highlights some of these challenges and describes emerging alternative production platforms with the potential to deliver safe and effective vaccines to the global market in a timely fashion. A particular emphasis of this review will be on the production of recombinant influenza vaccines using transient plant expression systems.
Collapse
Affiliation(s)
- Jessica A Chichester
- Fraunhofer USA Center for Molecular Biotechnology, 9 Innovation Way, Suite 200, Newark, DE 19711, USA.
| | | | | |
Collapse
|
44
|
D'Aoust MA, Lavoie PO, Couture MMJ, Trépanier S, Guay JM, Dargis M, Mongrand S, Landry N, Ward BJ, Vézina LP. Influenza virus-like particles produced by transient expression in Nicotiana benthamiana induce a protective immune response against a lethal viral challenge in mice. PLANT BIOTECHNOLOGY JOURNAL 2008; 6:930-40. [PMID: 19076615 DOI: 10.1111/j.1467-7652.2008.00384.x] [Citation(s) in RCA: 179] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
A strain-specific vaccine represents the best possible response to the threat of an influenza pandemic. Rapid delivery of such a vaccine to the world's population before the peak of the first infection wave seems to be an unattainable goal with the current influenza vaccine manufacturing capacity. Plant-based transient expression is one of the few production systems that can meet the anticipated surge requirement. To assess the capability of plant agroinfiltration to produce an influenza vaccine, we expressed haemagglutinin (HA) from strains A/Indonesia/5/05 (H5N1) and A/New Caledonia/20/99 (H1N1) by agroinfiltration of Nicotiana benthamiana plants. Size distribution analysis of protein content in infiltrated leaves revealed that HA was predominantly assembled into high-molecular-weight structures. H5-containing structures were purified and examination by transmission electron microscopy confirmed virus-like particle (VLP) assembly. High-performance thin layer chromatography analysis of VLP lipid composition highlighted polar and neutral lipid contents comparable with those of purified plasma membranes from tobacco plants. Electron microscopy of VLP-producing cells in N. benthamiana leaves confirmed that VLPs accumulated in apoplastic indentations of the plasma membrane. Finally, immunization of mice with two doses of as little as 0.1 microg of purified influenza H5-VLPs triggered a strong immune response against the homologous virus, whereas two doses of 0.5 microg of H5-VLPs conferred complete protection against a lethal challenge with the heterologous A/Vietnam/1194/04 (H5N1) strain. These results show, for the first time, that plants are capable of producing enveloped influenza VLPs budding from the plasma membrane; such VLPs represent very promising candidates for vaccination against influenza pandemic strains.
Collapse
MESH Headings
- Animals
- Hemagglutination Inhibition Tests
- Hemagglutinin Glycoproteins, Influenza Virus/immunology
- Influenza A Virus, H1N1 Subtype/genetics
- Influenza A Virus, H1N1 Subtype/immunology
- Influenza A Virus, H1N1 Subtype/isolation & purification
- Influenza A Virus, H3N2 Subtype/genetics
- Influenza A Virus, H3N2 Subtype/immunology
- Influenza A Virus, H3N2 Subtype/isolation & purification
- Influenza A Virus, H5N1 Subtype/genetics
- Influenza A Virus, H5N1 Subtype/immunology
- Influenza A Virus, H5N1 Subtype/isolation & purification
- Influenza Vaccines/genetics
- Influenza Vaccines/immunology
- Mice
- Orthomyxoviridae/immunology
- Orthomyxoviridae Infections/immunology
- Plants, Genetically Modified/genetics
- Plants, Genetically Modified/virology
- Nicotiana/genetics
- Nicotiana/virology
Collapse
Affiliation(s)
- Marc-André D'Aoust
- Medicago Inc., 1020 Route de l'Eglise, Bureau 600, Québec, QC, Canada, G1V 3V9
| | | | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Fujiki M, Kaczmarczyk JF, Yusibov V, Rabindran S. Development of a new cucumber mosaic virus-based plant expression vector with truncated 3a movement protein. Virology 2008; 381:136-42. [PMID: 18804833 DOI: 10.1016/j.virol.2008.08.022] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2008] [Revised: 08/11/2008] [Accepted: 08/13/2008] [Indexed: 11/19/2022]
Abstract
We have developed a Cucumber mosaic virus (CMV)-based expression vector for the production of heterologous proteins in plants. Cell-to-cell movement of CMV is dependent on the presence of coat protein (CP). Previous studies have shown that deletion of 33 amino acids (aa) from the carboxy-terminus of the 3a movement protein facilitates cell-to-cell movement that is independent of CP. The CMV-based expression vector that we have designed utilizes this truncated 3a protein, allowing the expression of target genes from the strong CP subgenomic promoter and without the need for providing CP in trans for cell-to-cell spread. Using this vector we achieved expression levels of ~450 mg/kg leaf tissue of green fluorescent protein (GFP) when the vector was delivered into Nicotiana benthamiana plants by agroinfiltration. Human growth hormone (hGH), on the other hand, accumulated to ~170 mg/kg of leaf tissue when the same approach was used to deliver the vector.
Collapse
Affiliation(s)
- Masaaki Fujiki
- Fraunhofer USA Center for Molecular Biotechnology, 9 Innovation Way, Suite 200, Newark, DE 19711, USA
| | | | | | | |
Collapse
|
46
|
Mett V, Farrance CE, Green BJ, Yusibov V. Plants as biofactories. Biologicals 2008; 36:354-8. [PMID: 18938088 DOI: 10.1016/j.biologicals.2008.09.001] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2008] [Revised: 09/01/2008] [Accepted: 09/09/2008] [Indexed: 12/01/2022] Open
Abstract
Cell substrates are a key component of successful vaccine development and throughout the last several decades there has been a dramatic increase in the types of cells available for vaccine production. Nevertheless, there is a continued demand for new and innovative approaches for vaccine development and manufacturing. Recent developments involving cells of insect and plant origin are attracting considerable scientific interest. Here we review vaccine antigen production in plant-based systems as was presented by Dr. Vidadi Yusibov of Fraunhofer USA Center for Molecular Biotechnology at the IABS International Scientific Workshop on NEW CELLS FOR NEW VACCINES II that was held in Wilmington, Delaware on September 17-19, 2007.
Collapse
Affiliation(s)
- Vadim Mett
- Fraunhofer USA Center for Molecular Biotechnology, 9 Innovation Way, Suite 200, Newark, DE 19711, USA
| | | | | | | |
Collapse
|
47
|
Hampson AW. Vaccines for Pandemic Influenza. The History of our Current Vaccines, their Limitations and the Requirements to Deal with a Pandemic Threat. ANNALS OF THE ACADEMY OF MEDICINE, SINGAPORE 2008. [DOI: 10.47102/annals-acadmedsg.v37n6p510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
Abstract
Fears of a potential pandemic due to A(H5N1) viruses have focussed new attention on our current vaccines, their shortcomings, and concerns regarding global vaccine supply in a pandemic. The bulk of current vaccines are inactivated split virus vaccines produced from egggrown virus and have only modest improvements compared with those first introduced over 60 years ago. Splitting, which was introduced some years ago to reduce reactogenicity, also reduces the immunogenicity of vaccines in immunologically naïve recipients. The A(H5N1) viruses have been found poorly immunogenic and present other challenges for vaccine producers which further exacerbate an already limited global production capacity. There have been some recent improvements in vaccine production methods and improvements to immunogenicity by the development of new adjuvants, however, these still fall short of providing timely supplies of vaccine for all in the face of a pandemic. New approaches to influenza vaccines which might fulfil the demands of a pandemic situation are under evaluation, however, these remain some distance from clinical reality and face significant regulatory hurdles.
Key words: Adjuvant, Antigen, Cell-culture, Immune response, Immunogenicity, Influenza A(H5N1), Split vaccine
Collapse
|