1
|
Zhao M, Chen Z, Ye D, Yu R, Yang Q. Comprehensive lipidomic profiling of human milk from lactating women across varying lactation stages and gestational ages. Food Chem 2024; 463:141242. [PMID: 39278081 DOI: 10.1016/j.foodchem.2024.141242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 08/28/2024] [Accepted: 09/09/2024] [Indexed: 09/17/2024]
Abstract
An untargeted lipidomic analysis was conducted to investigate the lipid composition of human milk across different lactation stages and gestational ages systematically. A total of 25 lipid subclasses and 934 lipid species as well as 90 free fatty acids were identified. Dynamic changes of the lipids throughout lactation and gestational phases were highlighted. In general, lactation stages introduced more variations in the lipid composition of human milk than gestational ages. Most lipids decreased as the milk progressed from the colostral stage to the mature stage, with some reaching a peak at the transitional stage. Significant variations in lipid composition across gestational ages were predominantly evident during early lactation period. In mature milks, most of the lipids exhibited no discernible statistical differences among gestational ages. This elucidation offers valuable insights and guidance for tailoring precise nutritional strategies for infants with diverse health needs.
Collapse
Affiliation(s)
- Min Zhao
- Wuxi School of Medicine, Jiangnan University, Wuxi 214122, China
| | - Zhenying Chen
- Wuxi School of Medicine, Jiangnan University, Wuxi 214122, China
| | - Danni Ye
- Department of Neonatology, Affiliated Women's Hospital of Jiangnan University, Wuxi 214002, China
| | - Renqiang Yu
- Department of Neonatology, Affiliated Women's Hospital of Jiangnan University, Wuxi 214002, China.
| | - Qin Yang
- Wuxi School of Medicine, Jiangnan University, Wuxi 214122, China; Wuxi Translational Medicine Research Center and School of Translational Medicine, Jiangnan University, Wuxi 214122, China.
| |
Collapse
|
2
|
Mu R, Li J, Fu Y, Xie Q, Ma W. Diet Supplemented with Special Formula Milk Powder Promotes the Growth of the Brain in Rats. Nutrients 2024; 16:2188. [PMID: 39064631 PMCID: PMC11279928 DOI: 10.3390/nu16142188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 07/05/2024] [Accepted: 07/07/2024] [Indexed: 07/28/2024] Open
Abstract
This investigation was to study the effects of different formula components on the brain growth of rats. Fifty male SD rats were randomly divided into five groups: a basic diet group; a 20% ordinary milk powder group; a 20% special milk powder group; a 30% ordinary milk powder group; and a 30% special milk powder group by weight. LC-MS was used to detect brain lipidomics. After 28 days of feeding, compared with the basic diet group, the brain/body weights of rats in the 30% ordinary milk powder group were increased. The serum levels of 5-HIAA in the 30% ordinary milk powder group were lower than in the 20% ordinary milk powder group. Compared with the basic diet group, the expressions of DLCL, MePC, PI, and GM1 were higher in the groups with added special milk powder, while the expressions of LPE, LdMePE, SM, and MGTG were higher in the groups with added ordinary milk powder. The expression of MBP was significantly higher in the 20% ordinary group. This study found that different formula components of infant milk powder could affect brain growth in SD rats. The addition of special formula infant milk powder may have beneficial effects on rat brains by regulating brain lipid expression.
Collapse
Affiliation(s)
- Ruiqi Mu
- Capital Medical University, School of Public Health, Beijing Key Laboratory of Environmental Toxicology, Beijing 100069, China; (R.M.); (Y.F.)
| | - Jufang Li
- Feihe Reseach Institute, Heilongjiang Feihe Dairy Co., Ltd., Beijing 100015, China; (J.L.); (Q.X.)
| | - Yu Fu
- Capital Medical University, School of Public Health, Beijing Key Laboratory of Environmental Toxicology, Beijing 100069, China; (R.M.); (Y.F.)
| | - Qinggang Xie
- Feihe Reseach Institute, Heilongjiang Feihe Dairy Co., Ltd., Beijing 100015, China; (J.L.); (Q.X.)
| | - Weiwei Ma
- Capital Medical University, School of Public Health, Beijing Key Laboratory of Environmental Toxicology, Beijing 100069, China; (R.M.); (Y.F.)
| |
Collapse
|
3
|
Hewelt-Belka W, Młynarczyk M, Garwolińska D, Kot-Wasik A. Characterization of GM3 Gangliosides in Human Milk throughout Lactation: Insights from the Analysis with the Use of Reversed-Phase Liquid Chromatography Coupled to Quadrupole Time-Of-Flight Mass Spectrometry. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:17899-17908. [PMID: 37955407 PMCID: PMC10682988 DOI: 10.1021/acs.jafc.3c04489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2023] [Revised: 10/26/2023] [Accepted: 10/30/2023] [Indexed: 11/14/2023]
Abstract
Gangliosides are complex lipids found in human milk that play important structural and biological functions. In this study, we utilized reversed-phase liquid chromatography coupled to quadrupole time-of-flight mass spectrometry to evaluate the molecular distribution of GM3 in human milk samples collected at distinct lactation stages, ranging from colostrum to advanced lactation samples. Throughout lactation, GM3 d40:1 emerged as the most abundant GM3 species, except in colostrum, where GM3 d42:2 prevailed. The relative content of GM3 species containing very long N-fatty acyl (N-FA) substituents with >22 carbon atoms decreased, while the content of GM3 species containing 14:0, 18:0, 18:1, and 20:0 N-FA substituents increased in the later months of lactation. These findings highlight the divergence of GM3 profiles across the lactation period. Moreover, considerable interindividual variance was observed among the analyzed samples. The assessment of the GM3 profiles contributes to our understanding of the dynamic composition of human milk.
Collapse
Affiliation(s)
- Weronika Hewelt-Belka
- Department of Analytical
Chemistry, Faculty of Chemistry, Gdańsk
University of Technology, 80-233 Gdańsk, Poland
| | - Michał Młynarczyk
- Department of Analytical
Chemistry, Faculty of Chemistry, Gdańsk
University of Technology, 80-233 Gdańsk, Poland
| | - Dorota Garwolińska
- Department of Analytical
Chemistry, Faculty of Chemistry, Gdańsk
University of Technology, 80-233 Gdańsk, Poland
| | - Agata Kot-Wasik
- Department of Analytical
Chemistry, Faculty of Chemistry, Gdańsk
University of Technology, 80-233 Gdańsk, Poland
| |
Collapse
|
4
|
Li Z, Wang X, Deng X, Song J, Yang T, Liao Y, Gong G, Huang L, Lu Y, Wang Z. High-sensitivity qualitative and quantitative analysis of human, bovine and goat milk glycosphingolipids using HILIC-MS/MS with internal standards. Carbohydr Polym 2023; 312:120795. [PMID: 37059535 DOI: 10.1016/j.carbpol.2023.120795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2023] [Revised: 03/03/2023] [Accepted: 03/05/2023] [Indexed: 03/17/2023]
Abstract
Glycosphingolipids (GSLs) in human milk regulate the immune system, support intestinal maturation, and prevent gut pathogens. The structural complexity and low abundance of GSLs limits their systematic analysis. Here, we coupled the use of monosialoganglioside 1-2-amino-N-(2-aminoethyl) benzamide (GM1-AEAB) derivatives as internal standards with HILIC-MS/MS to qualitatively and quantitatively compare GSLs in human, bovine, and goat milk. One neutral glycosphingolipid (GB) and 33 gangliosides were found in human milk, of which 22 were newly detected and three were fucosylated. Five GB and 26 gangliosides were identified in bovine milk, of which 21 were newly discovered. Four GB and 33 gangliosides were detected in goat milk, 23 of them newly reported. GM1 was the main GSL in human milk; whereas disialoganglioside 3 (GD3) and monosialogangloside 3 (GM3) were dominant in bovine and goat milk, respectively; N-acetylneuraminic acid (Neu5Ac) was detected in >88 % of GSLs in bovine and goat milk. N-hydroxyacetylneuraminic acid (Neu5Gc)-modified GSLs were 3.5 times more abundant in goat than in bovine milk; whereas GSLs modified with both Neu5Ac and Neu5Gc were 3 times more abundant in bovine than in goat milk. Given the health benefits of different GSLs, these results will facilitate the development of custom-designed human milk-based infant formula.
Collapse
|
5
|
Suteanu-Simulescu A, Sarbu M, Ica R, Petrica L, Zamfir AD. Ganglioside analysis in body fluids by liquid-phase separation techniques hyphenated to mass spectrometry. Electrophoresis 2023; 44:501-520. [PMID: 36416190 DOI: 10.1002/elps.202200229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 11/04/2022] [Accepted: 11/16/2022] [Indexed: 11/24/2022]
Abstract
The expression of gangliosides in central nervous system is a few times higher than in the extraneural tissue, a characteristic highlighting their major role at this level. Although in very low amounts, gangliosides are ubiquitously distributed in body fluids too, where, depending on many factors, including pathological states, their composition fluctuates, thus having diagnostic value. Ganglioside investigation in biological fluids, which, except for cerebrospinal fluid (CSF), may be sampled noninvasively, was for years impeded by the limited sensitivity of the analytical instrumentation available in glycomics. However, because the last decade has witnessed significant developments in biological mass spectrometry (MS) and the hyphenated separation techniques, marked by a major increase in sensitivity, reproducibility, and data reliability, ganglioside research started to be focused on biofluid analysis by separation techniques coupled to MS. In this context, our review presents the achievements in this emerging field of gangliosidomics, with a particular emphasis on modern liquid chromatography (LC), thin-layer chromatography, hydrophilic interaction LC, and ion mobility separation coupled to high-performance MS, as well as the results generated by these systems and allied experimental procedures in profiling and structural analysis of gangliosides in healthy or diseased body fluids, such as CSF, plasma/serum, and milk.
Collapse
Affiliation(s)
- Anca Suteanu-Simulescu
- Department of Internal Medicine II, Division of Nephrology, "Victor Babes" University of Medicine and Pharmacy, Timisoara, Romania.,Department of Nephrology, County Emergency Hospital, Timisoara, Romania.,Centre for Molecular Research in Nephrology and Vascular Disease, Faculty of Medicine, "Victor Babes" University of Medicine and Pharmacy, Timisoara, Romania
| | - Mirela Sarbu
- Department of Condensed Matter, National Institute for Research and Development in Electrochemistry and Condensed Matter, Timisoara, Romania
| | - Raluca Ica
- Department of Condensed Matter, National Institute for Research and Development in Electrochemistry and Condensed Matter, Timisoara, Romania.,Department of Physics, West University of Timisoara, Timisoara, Romania
| | - Ligia Petrica
- Department of Internal Medicine II, Division of Nephrology, "Victor Babes" University of Medicine and Pharmacy, Timisoara, Romania.,Department of Nephrology, County Emergency Hospital, Timisoara, Romania.,Centre for Molecular Research in Nephrology and Vascular Disease, Faculty of Medicine, "Victor Babes" University of Medicine and Pharmacy, Timisoara, Romania.,Department of Neurosciences, Centre for Cognitive Research in Neuropsychiatric Pathology (NeuroPsy-Cog), "Victor Babes" University of Medicine and Pharmacy, Timisoara, Romania
| | - Alina Diana Zamfir
- Department of Condensed Matter, National Institute for Research and Development in Electrochemistry and Condensed Matter, Timisoara, Romania.,Department of Technical and Natural Sciences, "Aurel Vlaicu" University of Arad, Arad, Romania
| |
Collapse
|
6
|
Arnoldussen IAC, Morrison MC, Wiesmann M, van Diepen JA, Worms N, Voskuilen M, Verweij V, Geenen B, Gualdo NP, van der Logt L, Gross G, Kleemann R, Kiliaan AJ. Milk fat globule membrane attenuates high fat diet-induced neuropathological changes in obese Ldlr-/-.Leiden mice. Int J Obes (Lond) 2022; 46:342-349. [PMID: 34716425 DOI: 10.1038/s41366-021-00998-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Revised: 10/02/2021] [Accepted: 10/12/2021] [Indexed: 11/09/2022]
Abstract
BACKGROUND Milk-fat globule membrane (MFGM) is a complex structure secreted by the mammary gland and present in mammalian milk. MFGM contains lipids and glycoproteins as well as gangliosides, which may be involved in myelination processes. Notably, myelination and thereby white matter integrity are often altered in obesity. Furthermore, MFGM interventions showed beneficial effects in obesity by affecting inflammatory processes and the microbiome. In this study, we investigated the impact of a dietary MFGM intervention on fat storage, neuroinflammatory processes and myelination in a rodent model of high fat diet (HFD)-induced obesity. METHODS 12-week-old male low density lipoprotein receptor-deficient Leiden mice were exposed to a HFD, a HFD enriched with 3% whey protein lipid concentrate (WPC) high in MFGM components, or a low fat diet. The impact of MFGM supplementation during 24-weeks of HFD-feeding was examined over time by analyzing body weight and fat storage, assessing cognitive tasks and MRI scanning, analyzing myelinization with polarized light imaging and examining neuroinflammation using immunohistochemistry. RESULTS We found in this study that 24 weeks of HFD-feeding induced excessive fat storage, increased systolic blood pressure, altered white matter integrity, decreased functional connectivity, induced neuroinflammation and impaired spatial memory. Notably, supplementation with 3% WPC high in MFGM components restored HFD-induced neuroinflammation and attenuated the reduction in hippocampal-dependent spatial memory and hippocampal functional connectivity. CONCLUSIONS We showed that supplementation with WPC high in MFGM components beneficially contributed to hippocampal-dependent spatial memory, functional connectivity in the hippocampus and anti-inflammatory processes in HFD-induced obesity in rodents. Current knowledge regarding exact biological mechanisms underlying these effects should be addressed in future studies.
Collapse
Affiliation(s)
- Ilse A C Arnoldussen
- Department of Medical Imaging, Anatomy, Radboud University Medical Center, Donders Institute for Brain, Cognition and Behaviour, Preclinical Imaging Center PRIME, Nijmegen, the Netherlands
| | - Martine C Morrison
- Department of Metabolic Health Research, Netherlands Organisation for Applied Scientific Research (TNO), Leiden, the Netherlands.,Human and Animal Physiology, Wageningen University, Wageningen, the Netherlands
| | - Maximilian Wiesmann
- Department of Medical Imaging, Anatomy, Radboud University Medical Center, Donders Institute for Brain, Cognition and Behaviour, Preclinical Imaging Center PRIME, Nijmegen, the Netherlands
| | - Janna A van Diepen
- Medical and Scientific Affairs, Reckitt Mead Johnson Nutrition Institute, Nijmegen, the Netherlands
| | - Nicole Worms
- Department of Metabolic Health Research, Netherlands Organisation for Applied Scientific Research (TNO), Leiden, the Netherlands
| | - Marijke Voskuilen
- Department of Metabolic Health Research, Netherlands Organisation for Applied Scientific Research (TNO), Leiden, the Netherlands
| | - Vivienne Verweij
- Department of Medical Imaging, Anatomy, Radboud University Medical Center, Donders Institute for Brain, Cognition and Behaviour, Preclinical Imaging Center PRIME, Nijmegen, the Netherlands
| | - Bram Geenen
- Department of Medical Imaging, Anatomy, Radboud University Medical Center, Donders Institute for Brain, Cognition and Behaviour, Preclinical Imaging Center PRIME, Nijmegen, the Netherlands
| | - Natàlia Pujol Gualdo
- Department of Medical Imaging, Anatomy, Radboud University Medical Center, Donders Institute for Brain, Cognition and Behaviour, Preclinical Imaging Center PRIME, Nijmegen, the Netherlands
| | - Lonneke van der Logt
- Department of Medical Imaging, Anatomy, Radboud University Medical Center, Donders Institute for Brain, Cognition and Behaviour, Preclinical Imaging Center PRIME, Nijmegen, the Netherlands
| | - Gabriele Gross
- Medical and Scientific Affairs, Reckitt Mead Johnson Nutrition Institute, Nijmegen, the Netherlands
| | - Robert Kleemann
- Department of Metabolic Health Research, Netherlands Organisation for Applied Scientific Research (TNO), Leiden, the Netherlands.,Department of Vascular Surgery, Leiden University Medical Center, Leiden, the Netherlands
| | - Amanda J Kiliaan
- Department of Medical Imaging, Anatomy, Radboud University Medical Center, Donders Institute for Brain, Cognition and Behaviour, Preclinical Imaging Center PRIME, Nijmegen, the Netherlands.
| |
Collapse
|
7
|
Ali AH, Wei W, Wang X. A review of milk gangliosides: Occurrence, biosynthesis, identification, and nutritional and functional significance. INT J DAIRY TECHNOL 2021. [DOI: 10.1111/1471-0307.12816] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Affiliation(s)
- Abdelmoneim H Ali
- Department of Food Science Faculty of Agriculture Zagazig University Zagazig 44511 Egypt
- International Joint Research Laboratory for Lipid Nutrition and Safety Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province School of Food Science and Technology Jiangnan University Wuxi 214122 China
| | - Wei Wei
- International Joint Research Laboratory for Lipid Nutrition and Safety Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province School of Food Science and Technology Jiangnan University Wuxi 214122 China
| | - Xingguo Wang
- International Joint Research Laboratory for Lipid Nutrition and Safety Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province School of Food Science and Technology Jiangnan University Wuxi 214122 China
| |
Collapse
|
8
|
Jahan M, Francis N, Wynn P, Wang B. The Potential for Sialic Acid and Sialylated Glycoconjugates as Feed Additives to Enhance Pig Health and Production. Animals (Basel) 2021; 11:ani11082318. [PMID: 34438776 PMCID: PMC8388453 DOI: 10.3390/ani11082318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 07/30/2021] [Accepted: 08/03/2021] [Indexed: 11/30/2022] Open
Abstract
Simple Summary This review discusses the current challenges in the pig industry and the potential nutritional significance of sialic acid (Sia) and glycoconjugates (Sia-GC’s) for pig health and nutrition. Sia is a nine-carbon acidic sugar which is present in various organs and body fluids of humans and animals. Sias contribute to many beneficial biological functions including pathogen resistance, immunomodulation, gut microbiota development, gut maturation, anti-inflammation and neurodevelopment. The role of Sias in regulating the metabolism of pigs has seldom been reported. However, we have documented significant beneficial effects of specific Sia-GC’s on health and production performance of sows and piglets. These findings are reviewed in relation to other studies while noting the beneficial effects of the inclusion of Sia, Sia containing oligosaccharide or the sialo-protein lactoferrin in the diets of gilts and sows. The importance of the passive transfer of of Sia and Sia-GC’s through milk to the young and the implications for their growth and development is also reviewed. This information will assist in optimizing the composition of sow/gilt milk replacers designed to increases the survival of IUGR piglets or piglets with dams suffering from agalactia, a common problem in pig production systems worldwide. Abstract Swine are one of the most important agricultural species for human food production. Given the significant disease challenges confronting commercial pig farming systems, introduction of a new feed additive that can enhance animal performance by improving growth and immune status represents a major opportunity. One such candidate is sialic acid (Sia), a diverse family of nine-carbon acidic sugar, present in various organs and body fluid, as well as an essential structural and functional constituent of brain ganglioside of humans and animals. Sias are key monosaccharide and biomarker of sialylated milk oligosaccharide (Sia-MOS’s), sialylated glycoproteins and glycolipids in milk and all vertebrate cells. Sias accomplish many critical endogenous functions by virtue of their physiochemical properties and via recognition by intrinsic receptors. Human milk sialylated glycoconjugates (Sia-GC’s) are bioactive compounds known to act as prebiotics that promote gut microbiota development, gut maturation, pathogen resistance, immunomodulation, anti-inflammation and neurodevelopment. However, the importance of Sia in pig health, especially in the growth, development, immunity of developing piglet and in pig production remains unknown. This review aims to critically discuss the current status of knowledge of the biology and nutritional role of Sia and Sia-GC’s on health of both female sow and newborn piglets.
Collapse
Affiliation(s)
| | | | | | - Bing Wang
- Correspondence: ; Tel.: +61-2-6933-4549
| |
Collapse
|
9
|
Wang X, Cong P, Wang X, Liu Y, Wu L, Li H, Xue C, Xu J. Maternal diet with sea urchin gangliosides promotes neurodevelopment of young offspring via enhancing NGF and BDNF expression. Food Funct 2021; 11:9912-9923. [PMID: 33094781 DOI: 10.1039/d0fo01605e] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Neurodevelopment of fetal and infant brains is an essential process not just during infancy but throughout the whole life. Previous studies have verified the neurotrophic effects of GM1 and milk gangliosides (GLSs) on brain development. However, it remains unclear whether the maternal GLS diet during the perinatal period can program the brain development of young offspring. Sea urchin, as a popular sea food, is a good resource of marine-derived GLSs. This study evaluated the effects of maternal diet with sea urchin gangliosides (SU-GLSs) on the utero and neonatal neurodevelopment and compared their efficacy with common GM1 and sialic acid (SA). Herein, SU-GLSs, as well as GM1 and SA, were orally administered to pregnant mice from pregnancy to lactation. The morphological and functional development of the brain was evaluated in postnatal 15-day (P15) mice. SU-GLSs were superior to GM1 and SA in enhancing neuritogenesis, spinous dendrite growth and synapse function in the hippocampus and cortex of P15 mice. Mechanistic studies found that SU-GLSs upregulated the expressions of NGF and BDNF more effectively than GM1 and SA. Furthermore, different glycosylated SU-GLSs promoted the neural differentiation of Neuro2a cells in a structure-selective manner. Sulfate-type and disialo-type GLSs were more effective than GM1. These findings suggested that maternal SU-GLS diet could promote the neurodevelopment of young offspring and would be a potential nutrition enriching substance for the early developing brain.
Collapse
Affiliation(s)
- Xiaoxu Wang
- College of Food Science and Engineering, Ocean University of China, Qingdao, Shandong 266003, China.
| | | | | | | | | | | | | | | |
Collapse
|
10
|
Bioactive Compounds in Infant Formula and Their Effects on Infant Nutrition and Health: A Systematic Literature Review. INTERNATIONAL JOURNAL OF FOOD SCIENCE 2021; 2021:8850080. [PMID: 34095293 PMCID: PMC8140835 DOI: 10.1155/2021/8850080] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Accepted: 04/22/2021] [Indexed: 12/12/2022]
Abstract
Infant formulas are an alternative to replace or supplement human milk when breastfeeding is not possible. The knowledge of human milk's bioactive compounds and their beneficial effects has attracted the interest of researchers in the field of infant nutrition, as well as researchers of technology and food sciences that seek to improve the nutritional characteristics of infant formulas. Several scientific studies evaluate the optimization of infant formula composition. The bioactive compound inclusion has been used to upgrade the quality and nutrition of infant formulas. In this context, the purpose of this systematic literature review is to assess the scientific evidence of bioactive compounds present in infant formulas (α-lactalbumin, lactoferrin, taurine, milk fat globule membrane, folates, polyamines, long-chain polyunsaturated fatty acids, prebiotics, and probiotics) and their effects on infant nutrition and health. Through previously determined criteria, studies published in the last fifteen years from five different databases were included to identify the advances in the optimization of infant formula composition. Over the last few years, there has been optimization of the infant formula composition, not only to increase the similarities in their content of macro and micronutrients but also to include novel bioactive ingredients with potential health benefits for infants. Although the infant food industry has advanced in the last years, there is no consensus on whether novel bioactive ingredients added to infant formulas have the same functional effects as the compounds found in human milk. Thus, further studies about the impact of bioactive compounds in infant nutrition are fundamental to infant health.
Collapse
|
11
|
Liang N, Nečasová L, Zhao YY, Curtis JM. Advances in the separation of gangliosides by counter-current chromatography (CCC). J Chromatogr B Analyt Technol Biomed Life Sci 2021; 1174:122701. [PMID: 33957356 DOI: 10.1016/j.jchromb.2021.122701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2020] [Revised: 03/30/2021] [Accepted: 04/02/2021] [Indexed: 02/07/2023]
Abstract
Gangliosides play critical roles in the development of many progressive diseases. Due to their structural diversity, efficient methods are needed to separate individual gangliosides for studies of their functions, and for use as standards in the analysis of ganglioside mixtures. This proof-of-concept study reports a useful analytical-semi-preparative scale counter-current chromatography (CCC) enrichment of multiple ganglioside homologues of various species and classes at the milligram level. Since few individual ganglioside standards were available, this research aimed to achieve analytical-semi-preparative scale separation of gangliosides by differences in saccharide monomer compositions (classes), their arrangements (species), or ceramide compositions (homologues), using CCC. The solvent system composition, addition of solvent modifiers, and elution modes were all adjusted to separate porcine gangliosides, mainly GM1 (d36:1), GD1a (d36:1), GD1b (d36:1) and their (d38:1) homologues as a demonstration. The eluted compounds were analyzed by flow-injection analysis (FIA)-MS and LC-MS/MS. A two-phase solvent system, consisting of butanol/methyl t-butyl ether/acetonitrile/water at a ratio of 2:4:3:8 (v/v/v/v) with 0.5% (v/v) acetic acid added to the lower phase, was used to separate mg-levels of porcine gangliosides under dual-mode elution. The relative abundances of the above 6 gangliosides increased from 10 to 21% in the ganglioside extract to 55-73% in the collected fractions through the purification.
Collapse
Affiliation(s)
- Nuanyi Liang
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, Alberta T6G 2P5, Canada.
| | - Lucie Nečasová
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, Alberta T6G 2P5, Canada
| | - Yuan-Yuan Zhao
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, Alberta T6G 2P5, Canada
| | - Jonathan M Curtis
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, Alberta T6G 2P5, Canada
| |
Collapse
|
12
|
Supplementation with milk enriched with complex lipids during pregnancy: A double-blind randomized controlled trial. PLoS One 2021; 16:e0244916. [PMID: 33626041 PMCID: PMC7904220 DOI: 10.1371/journal.pone.0244916] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Accepted: 12/21/2020] [Indexed: 01/10/2023] Open
Abstract
Background Gangliosides are a class of sphingolipids that are present in the cell membranes of vertebrates. Gangliosides influence a broad range of cellular processes through effects on signal transduction, being found abundantly in the brain, and having a role in neurodevelopment. Objective We aimed to assess the effects of maternal daily consumption of ganglioside-enriched milk vs non-enriched milk and a non-supplemented group of pregnant women on maternal ganglioside levels and pregnancy outcomes. Design Double-blind parallel randomized controlled trial. Methods 1,500 women aged 20–40 years were recruited in Chongqing (China) between 11 and 14 weeks of a singleton pregnancy, and randomized into three groups: Control–received standard powdered milk formulation (≥4 mg gangliosides/day); Complex milk lipid-enhanced (CML-E) group–same formulation enriched with complex milk lipids (≥8 mg gangliosides/day) from milk fat globule membrane; Reference–received no milk. Serum ganglioside levels were measured in a randomly selected subsample of 250 women per group. Results CML-E milk was associated with marginally greater total gangliosides levels in maternal serum compared to Control (13.02 vs 12.69 μg/ml; p = 0.034) but not to Reference group. CML-E milk did not affect cord blood ganglioside levels. Among the 1500 women, CML-E milk consumption was associated with a lower rate of gestational diabetes mellitus than control milk [relative risk 0.80 (95% CI 0.64, 0.99)], but which was not different to the Reference group. CML-E milk supplementation had no other effects on maternal or newborn health. Conclusions Maternal supplementation with milk fat globule membrane, as a source of gangliosides, was not associated with any adverse health outcomes, and did not increase serum gangliosides compared with the non-supplemented reference group. Trial registration Chinese Clinical Trial Register (ChiCTR-IOR-16007700). Clinical trial registration ChiCTR-IOR-16007700; www.chictr.org.cn/showprojen.aspx?proj=12972.
Collapse
|
13
|
Brink LR, Lönnerdal B. Milk fat globule membrane: the role of its various components in infant health and development. J Nutr Biochem 2020; 85:108465. [PMID: 32758540 DOI: 10.1016/j.jnutbio.2020.108465] [Citation(s) in RCA: 94] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2020] [Revised: 07/20/2020] [Accepted: 07/23/2020] [Indexed: 12/12/2022]
Abstract
Breastfeeding confers many benefits to the breast-fed infant which are reflected by better short-term and long-term outcomes as compared to formula-fed infants. Many components of breast milk are likely to contribute to these favorable outcomes, and there has recently been focus on the milk fat globule membrane (MFGM). This fraction is a heterogenous mixture of proteins (many of them glycosylated), phospholipids, sphingolipids, gangliosides, choline, sialic acid and cholesterol which is lacking in infant formula as milk fat (which is also low in these components) is replaced by vegetable oils. Many of these components have been shown to have biological effects, and there is considerable evidence from preclinical studies and clinical trials that providing bovine MFGM results in improved outcomes, in particular with regard to infections and neurodevelopment. Since bovine MFGM is commercially available, it is possible to add it to infant formula. There are, however, considerable variations in composition among commercial sources of bovine MFGM, and as it is not known which of the individual components provide the various bioactivities, it becomes important to critically review studies to date and to delineate the mechanisms behind the activities observed. In this review, we critically examine the preclinical and clinical studies on MFGM and its components in relation to resistance to infections, cognitive development, establishment of gut microbiota and infant metabolism, and discuss possible mechanisms of action.
Collapse
Affiliation(s)
- Lauren R Brink
- Department of Nutrition, University of California, Davis, 95616
| | - Bo Lönnerdal
- Department of Nutrition, University of California, Davis, 95616.
| |
Collapse
|
14
|
Brink LR, Herren AW, McMillen S, Fraser K, Agnew M, Roy N, Lönnerdal B. Omics analysis reveals variations among commercial sources of bovine milk fat globule membrane. J Dairy Sci 2020; 103:3002-3016. [DOI: 10.3168/jds.2019-17179] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Accepted: 12/01/2019] [Indexed: 11/19/2022]
|
15
|
Wang X, Wang Y, Xu J, Xue C. Sphingolipids in food and their critical roles in human health. Crit Rev Food Sci Nutr 2020; 61:462-491. [PMID: 32208869 DOI: 10.1080/10408398.2020.1736510] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Sphingolipids (SLs) are ubiquitous structural components of cell membranes and are essential for cell functions under physiological conditions or during disease progression. Abundant evidence supports that SLs and their metabolites, including ceramide (Cer), ceramide-1-phosphate (C1P), sphingosine (So), sphingosine-1-phosphate (S1P), are signaling molecules that regulate a diverse range of cellular processes and human health. However, there are limited reviews on the emerging roles of exogenous dietary SLs in human health. In this review, we discuss the ubiquitous presence of dietary SLs, highlighting their structures and contents in foodstuffs, particularly in sea foods. The digestion and metabolism of dietary SLs is also discussed. Focus is given to the roles of SLs in both the etiology and prevention of diseases, including bacterial infection, cancers, neurogenesis and neurodegenerative diseases, skin integrity, and metabolic syndrome (MetS). We propose that dietary SLs represent a "functional" constituent as emerging strategies for improving human health. Gaps in research that could be of future interest are also discussed.
Collapse
Affiliation(s)
- Xiaoxu Wang
- College of Food Science and Engineering, Ocean University of China, Qingdao, Shandong, China
| | - Yuming Wang
- College of Food Science and Engineering, Ocean University of China, Qingdao, Shandong, China.,Qingdao National Laboratory for Marine Science and Technology, Qingdao, Shandong, China
| | - Jie Xu
- College of Food Science and Engineering, Ocean University of China, Qingdao, Shandong, China
| | - Changhu Xue
- College of Food Science and Engineering, Ocean University of China, Qingdao, Shandong, China.,Qingdao National Laboratory for Marine Science and Technology, Qingdao, Shandong, China
| |
Collapse
|
16
|
Exploring In Vivo Dynamics of Bovine Milk Derived Gangliosides. Nutrients 2020; 12:nu12030711. [PMID: 32155999 PMCID: PMC7146146 DOI: 10.3390/nu12030711] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Revised: 02/28/2020] [Accepted: 03/05/2020] [Indexed: 11/16/2022] Open
Abstract
Gangliosides are glycosphingolipids present in mammalian cell membranes, playing important structural and functional roles. Human studies on the health benefits of gangliosides are increasing, but knowledge gaps regarding ganglioside analysis exist. The study aimed to investigate blood sample type (serum/plasma), storage conditions, diurnal, day-to-day variation and acute effects of consuming bovine-derived gangliosides on circulating monosialylated gangliosides. Seventy-one women (18–40 yrs, 20–≤30.0 kg/m2) were enrolled and 61 completed the intervention. They visited the clinic three times following overnight fasting. Serum/plasma gangliosides were analyzed over 2 h (visit-1), 8 h (visit-2) and 8 h following either zero or high ganglioside meals (visit-3). Samples stored at −20 °C and −70 °C were analyzed at 3-, 6-, 12- and 18-months. Plasma and serum GM3-gangliosides did not differ, plasma GM3 did not change diurnally, from day-to-day, in response to a high vs. low ganglioside meal or after 7-days low ganglioside vs. habitual diet (P > 0.05). GM3 concentrations were lower in samples stored at −70 °C vs. −20 °C from 6-months onwards and decreased over time with lowest levels at 12- and 18-months stored at −70 °C. In conclusion, either serum/plasma stored at −20- or −70 °C for up to 6 months, are acceptable for GM3-ganglioside analysis. Blood samples can be collected at any time of the day and participants do not have to be in the fasted state.
Collapse
|
17
|
Abbink MR, Schipper L, Naninck EF, de Vos CM, Meier R, van der Beek EM, Lucassen PJ, Korosi A. The Effects of Early Life Stress, Postnatal Diet Modulation, and Long-Term Western-Style Diet on Later-Life Metabolic and Cognitive Outcomes. Nutrients 2020; 12:nu12020570. [PMID: 32098348 PMCID: PMC7071477 DOI: 10.3390/nu12020570] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Revised: 01/27/2020] [Accepted: 02/19/2020] [Indexed: 12/22/2022] Open
Abstract
Early life stress (ES) increases the risk to develop metabolic and brain disorders in adulthood. Breastfeeding (exclusivity and duration) is associated with improved metabolic and neurocognitive health outcomes, and the physical properties of the dietary lipids may contribute to this. Here, we tested whether early life exposure to dietary lipids mimicking some physical characteristics of breastmilk (i.e., large, phospholipid-coated lipid droplets; Concept Nuturis® infant milk formula (N-IMF)), could protect against ES-induced metabolic and brain abnormalities under standard circumstances, and in response to prolonged Western-style diet (WSD) in adulthood. ES was induced by exposing mice to limited nesting material from postnatal day (P) 2 to P9. From P16 to P42, male offspring were fed a standard IMF (S-IMF) or N-IMF, followed by either standard rodent diet (SD) or WSD until P230. We then assessed body composition development, fat mass, metabolic hormones, hippocampus-dependent cognitive function, and neurogenesis (proliferation and survival). Prolonged WSD resulted in an obesogenic phenotype at P230, which was not modulated by previous ES or N-IMF exposure. Nevertheless, ES and N-IMF modulated the effect of WSD on neurogenesis at P230, without affecting cognitive function, highlighting programming effects of the early life environment on the hippocampal response to later life challenges at a structural level.
Collapse
Affiliation(s)
- Maralinde R. Abbink
- Brain Plasticity Group, Center for Neuroscience, Swammerdam Institute for Life Sciences, University of Amsterdam, 1098 XH Amsterdam, The Netherlands; (M.R.A.); (R.M.); (P.J.L.)
| | - Lidewij Schipper
- Danone Nutricia Research, 3584 CT Utrecht, The Netherlands; (L.S.); (E.M.v.d.B.)
| | - Eva F.G. Naninck
- Brain Plasticity Group, Center for Neuroscience, Swammerdam Institute for Life Sciences, University of Amsterdam, 1098 XH Amsterdam, The Netherlands; (M.R.A.); (R.M.); (P.J.L.)
| | - Cato M.H. de Vos
- Brain Plasticity Group, Center for Neuroscience, Swammerdam Institute for Life Sciences, University of Amsterdam, 1098 XH Amsterdam, The Netherlands; (M.R.A.); (R.M.); (P.J.L.)
| | - Romy Meier
- Brain Plasticity Group, Center for Neuroscience, Swammerdam Institute for Life Sciences, University of Amsterdam, 1098 XH Amsterdam, The Netherlands; (M.R.A.); (R.M.); (P.J.L.)
| | - Eline M. van der Beek
- Danone Nutricia Research, 3584 CT Utrecht, The Netherlands; (L.S.); (E.M.v.d.B.)
- Department of Pediatrics, University Medical Centre Groningen, University of Groningen, 9713 GZ Groningen, The Netherlands
| | - Paul J. Lucassen
- Brain Plasticity Group, Center for Neuroscience, Swammerdam Institute for Life Sciences, University of Amsterdam, 1098 XH Amsterdam, The Netherlands; (M.R.A.); (R.M.); (P.J.L.)
| | - Aniko Korosi
- Brain Plasticity Group, Center for Neuroscience, Swammerdam Institute for Life Sciences, University of Amsterdam, 1098 XH Amsterdam, The Netherlands; (M.R.A.); (R.M.); (P.J.L.)
- Correspondence: ; Tel.: +0031205257638
| |
Collapse
|
18
|
Zheng L, Fleith M, Giuffrida F, O'Neill BV, Schneider N. Dietary Polar Lipids and Cognitive Development: A Narrative Review. Adv Nutr 2019; 10:1163-1176. [PMID: 31147721 PMCID: PMC6855982 DOI: 10.1093/advances/nmz051] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Polar lipids are amphiphilic lipids with a hydrophilic head and a hydrophobic tail. Polar lipids mainly include phospholipids and sphingolipids. They are structural components of neural tissues, with the peak rate of accretion overlapping with neurodevelopmental milestones. The critical role of polar lipids in cognitive development is thought to be mediated through the regulation of signal transduction, myelination, and synaptic plasticity. Animal products (egg, meat, and dairy) are the major dietary sources of polar lipids for children and adults, whereas human milk and infant formula provide polar lipids to infants. Due to the differences observed in both concentration and proportion of polar lipids in human milk, the estimated daily intake in infants encompasses a wide range. In addition, health authorities define neither intake recommendations nor guidelines for polar lipid intake. However, adequate intake is defined for 2 nutrients that are elements of these polar lipids, namely choline and DHA. To date, limited studies exist on the brain bioavailability of dietary polar lipids via either placental transfer or the blood-brain barrier. Nevertheless, due to their role in pre- and postnatal development of the brain, there is a growing interest for the use of gangliosides, which are sphingolipids, as a dietary supplement for pregnant/lactating mothers or infants. In line with this, supplementing gangliosides and phospholipids in wild-type animals and healthy infants does suggest some positive effects on cognitive performance. Whether there is indeed added benefit of supplementing polar lipids in pregnant/lactating mothers or infants requires more clinical research. In this article, we report findings of a review of the state-of-the-art evidence on polar lipid supplementation and cognitive development. Dietary sources, recommended intake, and brain bioavailability of polar lipids are also discussed.
Collapse
Affiliation(s)
- Lu Zheng
- Nestec Ltd., Nestlé Research, Lausanne, Switzerland
| | | | | | | | | |
Collapse
|
19
|
McJarrow P, Radwan H, Ma L, MacGibbon AK, Hashim M, Hasan H, Obaid RS, Naja F, Mohamed HJJ, Al Ghazal H, Fong BY. Human Milk Oligosaccharide, Phospholipid, and Ganglioside Concentrations in Breast Milk from United Arab Emirates Mothers: Results from the MISC Cohort. Nutrients 2019; 11:E2400. [PMID: 31597293 PMCID: PMC6835464 DOI: 10.3390/nu11102400] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Revised: 09/11/2019] [Accepted: 09/18/2019] [Indexed: 02/07/2023] Open
Abstract
Human milk oligosaccharides (HMOs), phospholipids (PLs), and gangliosides (GAs) are components of human breast milk that play important roles in the development of the rapidly growing infant. The differences in these components in human milk from the United Arab Emirates (UAE) were studied in a cross-sectional trial. High-performance liquid chromatography‒mass spectrometry was used to determine HMO, PL, and GA concentrations in transitional (5-15 days) and mature (at 6 months post-partum) breast milk of mothers of the United Arab Emirates (UAE). The results showed that the average HMO (12 species), PL (7 species), and GA (2 species) concentrations quantified in the UAE mothers' transitional milk samples were (in mg/L) 8204 ± 2389, 269 ± 89, and 21.18 ± 11.46, respectively, while in mature milk, the respective concentrations were (in mg/L) 3905 ± 1466, 220 ± 85, and 20.18 ± 9.75. The individual HMO concentrations measured in this study were all significantly higher in transitional milk than in mature milk, except for 3 fucosyllactose, which was higher in mature milk. In this study, secretor and non-secretor phenotype mothers showed no significant difference in the total HMO concentration. For the PL and GA components, changes in the individual PL and GA species distribution was observed between transitional milk and mature milk. However, the changes were within the ranges found in human milk from other regions.
Collapse
Affiliation(s)
- Paul McJarrow
- Fonterra Research and Development Centre, Dairy Farm Road, Private Bag 11029, Palmerston North 4442, New Zealand; (L.M.); (B.Y.F.)
| | - Hadia Radwan
- Department of Clinical Nutrition and Dietetics, College of Health Sciences, Research Institute of Medical and Health Sciences (RIMHS), University of Sharjah, Sharjah 27272, UAE; (H.R.); (M.H.); (H.H.); (R.S.O.)
| | - Lin Ma
- Fonterra Research and Development Centre, Dairy Farm Road, Private Bag 11029, Palmerston North 4442, New Zealand; (L.M.); (B.Y.F.)
| | - Alastair K.H. MacGibbon
- Fonterra Research and Development Centre, Dairy Farm Road, Private Bag 11029, Palmerston North 4442, New Zealand; (L.M.); (B.Y.F.)
| | - Mona Hashim
- Department of Clinical Nutrition and Dietetics, College of Health Sciences, Research Institute of Medical and Health Sciences (RIMHS), University of Sharjah, Sharjah 27272, UAE; (H.R.); (M.H.); (H.H.); (R.S.O.)
- School of Health Sciences, Universiti Sains Malaysia, Kubang Kerian 16150, Malaysia;
| | - Hayder Hasan
- Department of Clinical Nutrition and Dietetics, College of Health Sciences, Research Institute of Medical and Health Sciences (RIMHS), University of Sharjah, Sharjah 27272, UAE; (H.R.); (M.H.); (H.H.); (R.S.O.)
| | - Reyad Shaker Obaid
- Department of Clinical Nutrition and Dietetics, College of Health Sciences, Research Institute of Medical and Health Sciences (RIMHS), University of Sharjah, Sharjah 27272, UAE; (H.R.); (M.H.); (H.H.); (R.S.O.)
| | - Farah Naja
- Department of Nutrition and Food Sciences, American University of Beirut, Beirut 1107 2020, Lebanon;
| | - Hamid Jan Jan Mohamed
- School of Health Sciences, Universiti Sains Malaysia, Kubang Kerian 16150, Malaysia;
| | | | - Bertram Y. Fong
- Fonterra Research and Development Centre, Dairy Farm Road, Private Bag 11029, Palmerston North 4442, New Zealand; (L.M.); (B.Y.F.)
| |
Collapse
|
20
|
Obelitz-Ryom K, Bering SB, Overgaard SH, Eskildsen SF, Ringgaard S, Olesen JL, Skovgaard K, Pankratova S, Wang B, Brunse A, Heckmann AB, Rydal MP, Sangild PT, Thymann T. Bovine Milk Oligosaccharides with Sialyllactose Improves Cognition in Preterm Pigs. Nutrients 2019; 11:nu11061335. [PMID: 31207876 PMCID: PMC6628371 DOI: 10.3390/nu11061335] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Revised: 06/07/2019] [Accepted: 06/11/2019] [Indexed: 12/18/2022] Open
Abstract
Optimal nutrition is important after preterm birth to facilitate normal brain development. Human milk is rich in sialic acid and preterm infants may benefit from supplementing formula with sialyllactose to support neurodevelopment. Using pigs as models, we hypothesized that sialyllactose supplementation improves brain development after preterm birth. Pigs (of either sex) were delivered by cesarean section at 90% gestation and fed a milk diet supplemented with either an oligosaccharide-enriched whey with sialyllactose (n = 20) or lactose (n = 20) for 19 days. Cognitive performance was tested in a spatial T-maze. Brains were collected for ex vivo magnetic resonance imaging (MRI), gene expression, and sialic acid measurements. For reference, term piglets (n = 14) were artificially reared under identical conditions and compared with vaginally born piglets naturally reared by the sow (n = 12). A higher proportion of sialyllactose supplemented preterm pigs reached the T-maze learning criteria relative to control preterm pigs (p < 0.05), and approximated the cognition level of term reference pigs (p < 0.01). Furthermore, supplemented pigs had upregulated genes related to sialic acid metabolism, myelination, and ganglioside biosynthesis in hippocampus. Sialyllactose supplementation did not lead to higher levels of sialic acid in the hippocampus or change MRI endpoints. Contrary, these parameters were strongly influenced by postconceptional age and postnatal rearing conditions. In conclusion, oligosaccharide-enriched whey with sialyllactose improved spatial cognition, with effects on hippocampal genes related to sialic acid metabolism, myelination, and ganglioside biosynthesis in preterm pigs. Dietary sialic acid enrichment may improve brain development in infants.
Collapse
Affiliation(s)
- Karina Obelitz-Ryom
- Comparative Pediatrics and Nutrition, Department of Veterinary and Animal Sciences, University of Copenhagen, 1870 Frederiksberg, Denmark.
| | - Stine Brandt Bering
- Comparative Pediatrics and Nutrition, Department of Veterinary and Animal Sciences, University of Copenhagen, 1870 Frederiksberg, Denmark.
| | - Silja Hvid Overgaard
- Comparative Pediatrics and Nutrition, Department of Veterinary and Animal Sciences, University of Copenhagen, 1870 Frederiksberg, Denmark.
| | - Simon Fristed Eskildsen
- Department of Clinical Medicine, Center of Functionally Integrative Neuroscience, Aarhus University, 8000 Aarhus, Denmark.
| | - Steffen Ringgaard
- Department of Clinical Medicine, The MR Research Centre, Aarhus University, 8200 Aarhus, Denmark.
| | - Jonas Lynge Olesen
- Department of Clinical Medicine, Center of Functionally Integrative Neuroscience, Aarhus University, 8000 Aarhus, Denmark.
| | - Kerstin Skovgaard
- Department of Biotechnology and Biomedicine, The Technical University of Denmark, 2800 Lyngby, Denmark.
| | - Stanislava Pankratova
- Comparative Pediatrics and Nutrition, Department of Veterinary and Animal Sciences, University of Copenhagen, 1870 Frederiksberg, Denmark.
- Department of Pediatrics and Adolescent Medicine, Rigshospitalet, 2100 Copenhagen, Denmark.
- Laboratory of Neural Plasticity, Department of Neuroscience, University of Copenhagen, 2200 København, Denmark.
| | - Bing Wang
- School of Animal & Veterinary Sciences, Charles Sturt University, Wagga 2678, Australia.
| | - Anders Brunse
- Comparative Pediatrics and Nutrition, Department of Veterinary and Animal Sciences, University of Copenhagen, 1870 Frederiksberg, Denmark.
| | | | - Martin Peter Rydal
- Comparative Pediatrics and Nutrition, Department of Veterinary and Animal Sciences, University of Copenhagen, 1870 Frederiksberg, Denmark.
| | - Per Torp Sangild
- Comparative Pediatrics and Nutrition, Department of Veterinary and Animal Sciences, University of Copenhagen, 1870 Frederiksberg, Denmark.
| | - Thomas Thymann
- Comparative Pediatrics and Nutrition, Department of Veterinary and Animal Sciences, University of Copenhagen, 1870 Frederiksberg, Denmark.
| |
Collapse
|
21
|
Brink LR, Gueniot JP, Lönnerdal B. Effects of milk fat globule membrane and its various components on neurologic development in a postnatal growth restriction rat model. J Nutr Biochem 2019; 69:163-171. [PMID: 31096073 DOI: 10.1016/j.jnutbio.2019.03.013] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2018] [Revised: 03/14/2019] [Accepted: 03/14/2019] [Indexed: 01/02/2023]
Abstract
BACKGROUND Milk fat globule membrane (MFGM) is a component of breast milk that consists of glycosylated membrane-bound proteins, polar lipids and carbohydrates originating from the mammary gland plasma membrane. A commercially available bovine MFGM added to infant formula has been shown to improve cognitive development in infants at 12 months of age. OBJECTIVE Considering that MFGM is a complex mixture, our aim was to determine which component(s) may be leading to these cognitive outcomes. METHODS Growth-restricted rat pups were supplemented with one of five treatments: (a) bovine MFGM, (b) bovine phospholipid concentrate (PL), (c) sialic acid (SIA) at 200 mg/kg body weight (bw) SIA100, (d) SIA at 2 mg/kg bw and (e) nonfat milk as control. Pups were randomized, cross-fostered into litters of 17 pups per dam and supplemented from postnatal day (PD) 2 to PD 21. The following behavioral tests were performed at adulthood: T-Maze Spontaneous Alternation, Novel Object Recognition and Morris Water Maze. Hippocampus was isolated at PD14 and PD21. Expression of four genes were measured including brain-derived neurotrophic factor (BDNF), dopamine receptor 1, (Drd1), glutamate receptor (GluR-1) and ST8 alpha-N-acetyl-neuraminide alpha-2,8-sialytransferase 4 (St8Sia4). Following behavioral testing, brains were collected for nonbiased stereology. RESULTS Increased expression of genes due to supplementation was most pronounced at the PD14 time point. The MFGM group exhibited higher T-Maze scores compared to the SIA group (P=.01), whereas the SIA100 group visited the novel object more frequently than the MFGM group in the Novel Object test (P=.02). No differences due to supplementation were found in the Morris Water Maze or nonbiased stereology, CONCLUSIONS: In this trial, MFGM, compared to its individual components, had the largest impact on neurodevelopment in rat pups through up-regulation of genes and improved T-Maze scores compared to the SIA group.
Collapse
|
22
|
Connor RI, Zain-Ul-Abideen M, Magohe AK, Brickley EB, Housman ML, Lyimo MA, Mchaki B, Maro I, Hendricks KM, Lukmanji Z, Matee M, Bakari M, Pallangyo K, Von Reyn CF. Sialic acid levels in breast milk from HIV-positive Tanzanian women and impact of maternal diet. AIDS 2019; 33:509-514. [PMID: 30702519 DOI: 10.1097/qad.0000000000002081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
OBJECTIVE To quantify total sialic acid in milk from HIV-positive Tanzanian mothers and to determine the impact of maternal diet on milk sialic acid levels. DESIGN Milk samples were analyzed from 74 HIV-positive, Tanzanian women enrolled in a randomized, controlled clinical study of a dietary macronutrient supplement. Women were provided with a daily protein-calorie supplement and a micronutrient supplement or micronutrient supplement only during the last trimester of pregnancy and up to the first 6 months of breastfeeding. METHODS Milk samples were collected at approximately 2 weeks and at least 3 months postpartum and assayed for total sialic acid. Milk sialic acid was assessed relative to maternal macronutrient intake, age, BMI, CD4+ cell count and infant birth weight. RESULTS The mean concentration of milk sialic acid was highest in the first 2 weeks postpartum (6.89 ± 2.79 mmol/l) and declined rapidly by 3 months (2.49 ± 0.60 mmol/l). Sialic acid content in milk was similar between both treatment arms of the study, and did not correlate with maternal macronutrient intake. No correlation was found between maternal age, BMI, CD4+ cell count or infant birth weight and total milk sialic acid concentration. CONCLUSION Milk sialic acid levels in HIV-positive, Tanzanian women without malnutrition are comparable with reported values for women of European descent and show a similar temporal decline during early lactation. These findings suggest that total milk sialic acid is maintained despite macronutrient deficiencies in maternal diet and support a conserved role for milk sialic acid in neonatal development.
Collapse
Affiliation(s)
- Ruth I Connor
- Department of Microbiology and Immunology, Geisel School of Medicine, Dartmouth College, Hanover
- Department of Pediatrics, Dartmouth-Hitchcock Medical Center, Lebanon, New Hampshire, USA
| | | | - Albert K Magohe
- Muhimbili University of Health and Allied Sciences, Dar es Salaam, Tanzania
| | - Elizabeth B Brickley
- Department of Infectious Disease Epidemiology, London School of Hygiene & Tropical Medicine, London, UK
| | - Molly L Housman
- Department of Microbiology and Immunology, Geisel School of Medicine, Dartmouth College, Hanover
| | - Magdalena A Lyimo
- Muhimbili University of Health and Allied Sciences, Dar es Salaam, Tanzania
| | - Betty Mchaki
- Muhimbili University of Health and Allied Sciences, Dar es Salaam, Tanzania
| | - Isaac Maro
- Tokyo Medical and Dental University, Tokyo, Japan
| | - Kristy M Hendricks
- Department of Pediatrics, Dartmouth-Hitchcock Medical Center, Lebanon, New Hampshire, USA
| | - Zohra Lukmanji
- Muhimbili University of Health and Allied Sciences, Dar es Salaam, Tanzania
| | - Mecky Matee
- Muhimbili University of Health and Allied Sciences, Dar es Salaam, Tanzania
| | - Muhammad Bakari
- Muhimbili University of Health and Allied Sciences, Dar es Salaam, Tanzania
| | - Kisali Pallangyo
- Muhimbili University of Health and Allied Sciences, Dar es Salaam, Tanzania
| | - C Fordham Von Reyn
- Section of Infectious Disease and International Health, Geisel School of Medicine, Dartmouth College, Hanover, New Hampshire, USA
| |
Collapse
|
23
|
Garwolińska D, Namieśnik J, Kot-Wasik A, Hewelt-Belka W. Chemistry of Human Breast Milk-A Comprehensive Review of the Composition and Role of Milk Metabolites in Child Development. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2018; 66:11881-11896. [PMID: 30247884 DOI: 10.1021/acs.jafc.8b04031] [Citation(s) in RCA: 75] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Early nutrition has an enormous influence on a child's physiological function, immune system maturation, and cognitive development. Human breast milk (HBM) is recognized as the gold standard for human infant nutrition. According to a WHO report, breastfeeding is considered as an unequaled way of providing ideal food to the infant, which is required for his healthy growth and development. HBM contains various macronutrients (carbohydrates, proteins, lipids, and vitamins) as well as numerous bioactive compounds and interactive elements (growth factors, hormones, cytokines, chemokines, and antimicrobial compounds. The aim of this review is to summarize and discuss the current knowledge about metabolites, which are the least understood components of HBM, and their potential role in infant development. We focus on small metabolites (<1500 Da) and characterize the chemical structure and biological function of polar metabolites such as human milk oligosaccharides, nonprotein molecules containing nitrogen (creatine, amino acids, nucleotides, polyamines), and nonpolar lipids. We believe that this manuscript will provide a comprehensive insight into a HBM metabolite composition, chemical structure, and their role in a child's early life nutrition.
Collapse
Affiliation(s)
- Dorota Garwolińska
- Department of Analytical Chemistry, Faculty of Chemistry , Gdańsk University of Technology , Gabriela Narutowicza 11/12 , 80-233 Gdańsk , Poland
| | - Jacek Namieśnik
- Department of Analytical Chemistry, Faculty of Chemistry , Gdańsk University of Technology , Gabriela Narutowicza 11/12 , 80-233 Gdańsk , Poland
| | - Agata Kot-Wasik
- Department of Analytical Chemistry, Faculty of Chemistry , Gdańsk University of Technology , Gabriela Narutowicza 11/12 , 80-233 Gdańsk , Poland
| | - Weronika Hewelt-Belka
- Department of Analytical Chemistry, Faculty of Chemistry , Gdańsk University of Technology , Gabriela Narutowicza 11/12 , 80-233 Gdańsk , Poland
| |
Collapse
|
24
|
Cozma II, Sarbu M, Ilie C, Zamfir AD. Structural analysis by electrospray ionization mass spectrometry of GT1 ganglioside fraction isolated from fetal brain. J Carbohydr Chem 2017. [DOI: 10.1080/07328303.2017.1397680] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Irma I. Cozma
- Department of Neonatology, “Victor Babes” University of Medicine and Pharmacy, Timisoara, Romania
- National Institute for Research and Development in Electrochemistry and Condensed Matter, Timisoara, Romania
| | - Mirela Sarbu
- National Institute for Research and Development in Electrochemistry and Condensed Matter, Timisoara, Romania
- Department of the Analysis and Modeling of Biological Systems, “Aurel Vlaicu” University of Arad, Arad, Romania
| | - Constantin Ilie
- Department of Neonatology, “Victor Babes” University of Medicine and Pharmacy, Timisoara, Romania
| | - Alina D. Zamfir
- National Institute for Research and Development in Electrochemistry and Condensed Matter, Timisoara, Romania
- Department of the Analysis and Modeling of Biological Systems, “Aurel Vlaicu” University of Arad, Arad, Romania
| |
Collapse
|
25
|
Huang S, Mo TT, Norris T, Sun S, Zhang T, Han TL, Rowan A, Xia YY, Zhang H, Qi HB, Baker PN. The CLIMB (Complex Lipids In Mothers and Babies) study: protocol for a multicentre, three-group, parallel randomised controlled trial to investigate the effect of supplementation of complex lipids in pregnancy, on maternal ganglioside status and subsequent cognitive outcomes in the offspring. BMJ Open 2017; 7:e016637. [PMID: 29025835 PMCID: PMC5652542 DOI: 10.1136/bmjopen-2017-016637] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
INTRODUCTION Complex lipids are important constituents of the central nervous system. Studies have shown that supplementation with complex milk lipids (CML) in pregnancy may increase the level of fetal gangliosides (GA), with the potential to improve cognitive outcomes. METHODS AND ANALYSIS We aim to recruit approximately 1500 pregnant women in the first trimester (11-14 weeks) and randomise them into one of the three treatment groups: standard maternal milk formulation, CML-enhanced maternal milk formulation or no maternal milk intervention with standard pregnancy advice (ie, the standard care). Maternal lifestyle and demographic data will be collected throughout the pregnancy, as well as biological samples (eg, blood, hair, urine, buccal smear, cord blood, cord and placenta samples). Data from standard obstetric care recorded in hospital maternity notes (eg, ultrasound reports, results of oral glucose tolerance test and pregnancy outcome data) will also be extracted. Postnatal follow-up will be at 6 weeks and 12 months of age, at which point infant cognitive development will be assessed (Bayley Scales of Infant Development I). ETHICS AND DISSEMINATION This project was approved by the Ethics Committee of Chongqing Medical University. Dissemination of findings will take the form of publications in peer-reviewed journals and presentations at national and international conferences. TRIAL REGISTRATION NUMBER ChiCTR-IOR-16007700; Pre-results.
Collapse
Affiliation(s)
- Shuai Huang
- Department of Obstetrics and Gynaecology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
- Canada-China-New Zealand Joint Laboratory of Maternal and Fetal Medicine, Chongqing Medical University, Chongqing, China
| | - Ting-Ting Mo
- School of Public Health and Management, Research Centerfor Medicine and Social Development, Innovation Center for Social RiskGovernance in Health, Chongqing Medical University, Chongqing, China
| | - Tom Norris
- School of Health Sciences, University of Leicester, Leicester, UK
| | - Si Sun
- School of Public Health and Management, Research Centerfor Medicine and Social Development, Innovation Center for Social RiskGovernance in Health, Chongqing Medical University, Chongqing, China
| | - Ting Zhang
- Department of Obstetrics and Gynaecology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
- Canada-China-New Zealand Joint Laboratory of Maternal and Fetal Medicine, Chongqing Medical University, Chongqing, China
| | - Ting-Li Han
- Canada-China-New Zealand Joint Laboratory of Maternal and Fetal Medicine, Chongqing Medical University, Chongqing, China
- Liggins Institute, University of Auckland, Auckland, New Zealand
| | - Angela Rowan
- Fonterra Co-operative Group Ltd, Palmerston North, New Zealand
| | - Yin-Yin Xia
- School of Public Health and Management, Research Centerfor Medicine and Social Development, Innovation Center for Social RiskGovernance in Health, Chongqing Medical University, Chongqing, China
| | - Hua Zhang
- Department of Obstetrics and Gynaecology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
- Canada-China-New Zealand Joint Laboratory of Maternal and Fetal Medicine, Chongqing Medical University, Chongqing, China
| | - Hong-Bo Qi
- Department of Obstetrics and Gynaecology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
- Canada-China-New Zealand Joint Laboratory of Maternal and Fetal Medicine, Chongqing Medical University, Chongqing, China
| | - Philip N Baker
- Canada-China-New Zealand Joint Laboratory of Maternal and Fetal Medicine, Chongqing Medical University, Chongqing, China
- Liggins Institute, University of Auckland, Auckland, New Zealand
- College of Medicine, Biological Sciences and Psychology, University of Leicester, Leicester, UK
| |
Collapse
|
26
|
Perea-Sanz L, Garcia-Llatas G, Lagarda MJ. Gangliosides in human milk and infant formula: A review on analytical techniques and contents. FOOD REVIEWS INTERNATIONAL 2017. [DOI: 10.1080/87559129.2017.1347671] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Laura Perea-Sanz
- Nutrition and Food Science Area, University of Valencia, Valencia, Spain
| | | | | |
Collapse
|
27
|
Dietary supplementation with bovine-derived milk fat globule membrane lipids promotes neuromuscular development in growing rats. Nutr Metab (Lond) 2017; 14:9. [PMID: 28127382 PMCID: PMC5259894 DOI: 10.1186/s12986-017-0161-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2016] [Accepted: 01/15/2017] [Indexed: 12/11/2022] Open
Abstract
Background The milk fat globule membrane (MFGM) is primarily composed of polar phospho- and sphingolipids, which have established biological effects on neuroplasticity. The present study aimed to investigate the effect of dietary MFGM supplementation on the neuromuscular system during post-natal development. Methods Growing rats received dietary supplementation with bovine-derived MFGM mixtures consisting of complex milk lipids (CML), beta serum concentrate (BSC) or a complex milk lipid concentrate (CMLc) (which lacks MFGM proteins) from post-natal day 10 to day 70. Results Supplementation with MFGM mixtures enriched in polar lipids (BSC and CMLc, but not CML) increased the plasma phosphatidylcholine (PC) concentration, with no effect on plasma phosphatidylinositol (PI), phosphatidylethanolamine (PE), phosphatidylserine (PS) or sphingomyelin (SM). In contrast, muscle PC was reduced in rats receiving supplementation with both BSC and CMLc, whereas muscle PI, PE, PS and SM remained unchanged. Rats receiving BSC and CMLc (but not CML) displayed a slow-to-fast muscle fibre type profile shift (MyHCI → MyHCIIa) that was associated with elevated expression of genes involved in myogenic differentiation (myogenic regulatory factors) and relatively fast fibre type specialisation (Myh2 and Nfatc4). Expression of neuromuscular development genes, including nerve cell markers, components of the synaptogenic agrin–LRP4 pathway and acetylcholine receptor subunits, was also increased in muscle of rats supplemented with BSC and CMLc (but not CML). Conclusions These findings demonstrate that dietary supplementation with bovine-derived MFGM mixtures enriched in polar lipids can promote neuromuscular development during post-natal growth in rats, leading to shifts in adult muscle phenotype. Electronic supplementary material The online version of this article (doi:10.1186/s12986-017-0161-y) contains supplementary material, which is available to authorized users.
Collapse
|
28
|
Mudd AT, Dilger RN. Early-Life Nutrition and Neurodevelopment: Use of the Piglet as a Translational Model. Adv Nutr 2017; 8:92-104. [PMID: 28096130 PMCID: PMC5227977 DOI: 10.3945/an.116.013243] [Citation(s) in RCA: 66] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Optimal nutrition early in life is critical to ensure proper structural and functional development of infant organ systems. Although pediatric nutrition historically has emphasized research on the relation between nutrition, growth rates, and gastrointestinal maturation, efforts increasingly have focused on how nutrition influences neurodevelopment. The provision of human milk is considered the gold standard in pediatric nutrition; thus, there is interest in understanding how functional nutrients and bioactive components in milk may modulate developmental processes. The piglet has emerged as an important translational model for studying neurodevelopmental outcomes influenced by pediatric nutrition. Given the comparable nutritional requirements and strikingly similar brain developmental patterns between young pigs and humans, the piglet is being used increasingly in developmental nutritional neuroscience studies. The piglet primarily has been used to assess the effects of dietary fatty acids and their accretion in the brain throughout neurodevelopment. However, recent research indicates that other dietary components, including choline, iron, cholesterol, gangliosides, and sialic acid, among other compounds, also affect neurodevelopment in the pig model. Moreover, novel analytical techniques, including but not limited to MRI, behavioral assessments, and molecular quantification, allow for a more holistic understanding of how nutrition affects neurodevelopmental patterns. By combining early-life nutritional interventions with innovative analytical approaches, opportunities abound to quantify factors affecting neurodevelopmental trajectories in the neonate. This review discusses research using the translational pig model with primary emphasis on early-life nutrition interventions assessing neurodevelopment outcomes, while also discussing nutritionally-sensitive methods to characterize brain maturation.
Collapse
Affiliation(s)
- Austin T Mudd
- Piglet Nutrition and Cognition Laboratory
- Neuroscience Program
| | - Ryan N Dilger
- Piglet Nutrition and Cognition Laboratory,
- Neuroscience Program
- Division of Nutritional Sciences, and
- Department of Animal Sciences, University of Illinois, Urbana, IL
| |
Collapse
|
29
|
Röhrig CH, Choi SSH, Baldwin N. The nutritional role of free sialic acid, a human milk monosaccharide, and its application as a functional food ingredient. Crit Rev Food Sci Nutr 2016; 57:1017-1038. [DOI: 10.1080/10408398.2015.1040113] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Affiliation(s)
| | - Sharon S. H. Choi
- Intertek Scientific & Regulatory Consultancy, Mississauga, Ontario, Canada
| | - Nigel Baldwin
- Intertek Scientific & Regulatory Consultancy, Hampshire, United Kingdom
| |
Collapse
|
30
|
Khor GL, Shyam S, Misra S, Fong B, Chong MHZ, Sulaiman N, Lee YL, Cannan R, Rowan A. Correlation between dietary intake and serum ganglioside concentrations: a cross-sectional study among Malaysian toddlers. BMC Nutr 2016. [DOI: 10.1186/s40795-016-0113-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
|
31
|
Reis MG, Bibiloni R, McJarrow P, MacGibbon A, Fong B, Bassett S, Roy N, dos Reis MM. Isotopic labeling of milk disialogangliosides (GD3). Chem Phys Lipids 2016; 200:104-112. [DOI: 10.1016/j.chemphyslip.2016.08.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2016] [Revised: 08/03/2016] [Accepted: 08/29/2016] [Indexed: 11/16/2022]
|
32
|
Fong BY, Ma L, Khor GL, van der Does Y, Rowan A, McJarrow P, MacGibbon AKH. Ganglioside Composition in Beef, Chicken, Pork, and Fish Determined Using Liquid Chromatography-High-Resolution Mass Spectrometry. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2016; 64:6295-6305. [PMID: 27436425 DOI: 10.1021/acs.jafc.6b02200] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Gangliosides (GA) are found in animal tissues and fluids, such as blood and milk. These sialo-glycosphingolipids have bioactivities in neural development, the gastrointestinal tract, and the immune system. In this study, a high-performance liquid chromatography-mass spectrometry (HPLC-MS) method was validated to characterize and quantitate the GA in beef, chicken, pork, and fish species (turbot, snapper, king salmon, and island mackerel). For the first time, we report the concentration of GM3, the dominant GA in these foods, as ranging from 0.35 to 1.1 mg/100 g and 0.70 to 5.86 mg/100 g of meat and fish, respectively. The minor GAs measured were GD3, GD1a, GD1b, and GT1b. Molecular species distribution revealed that the GA contained long- to very-long-chain acyl fatty acids attached to the ceramide moiety. Fish GA contained only N-acetylneuraminic acid (NeuAc) sialic acid, while beef, chicken, and pork contained GD1a/b species that incorporated both NeuAc and N-glycolylneuraminic acid (NeuGc) and hydroxylated fatty acids.
Collapse
Affiliation(s)
- Bertram Y Fong
- Fonterra Research and Development Centre , Dairy Farm Road, Private Bag 11029, Palmerston North 4442, New Zealand
| | - Lin Ma
- Fonterra Research and Development Centre , Dairy Farm Road, Private Bag 11029, Palmerston North 4442, New Zealand
| | - Geok Lin Khor
- School of Health Sciences, International Medical University , No. 126 Jalan Jalil Perkasa 19, Bukit Jalil, 57000 Kuala Lumpur, Malaysia
| | - Yvonne van der Does
- Fonterra Research and Development Centre , Dairy Farm Road, Private Bag 11029, Palmerston North 4442, New Zealand
| | - Angela Rowan
- Fonterra Research and Development Centre , Dairy Farm Road, Private Bag 11029, Palmerston North 4442, New Zealand
| | - Paul McJarrow
- Fonterra Research and Development Centre , Dairy Farm Road, Private Bag 11029, Palmerston North 4442, New Zealand
| | - Alastair K H MacGibbon
- Fonterra Research and Development Centre , Dairy Farm Road, Private Bag 11029, Palmerston North 4442, New Zealand
| |
Collapse
|
33
|
Hernell O, Timby N, Domellöf M, Lönnerdal B. Clinical Benefits of Milk Fat Globule Membranes for Infants and Children. J Pediatr 2016; 173 Suppl:S60-5. [PMID: 27234413 DOI: 10.1016/j.jpeds.2016.02.077] [Citation(s) in RCA: 107] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The milk fat globule membrane (MFGM) in breast milk contains many bioactive components. Infant formulas traditionally have been devoid of the MFGM fraction, but dairy technology now has made the addition of bovine MFGM technically feasible. We identified 6 double-blinded randomized controlled trials exploring the effects of MFGM supplementation on the diets of infants or children. Results suggest that supplementation is safe and indicate positive effects on both neurodevelopment and defense against infections. MFGM supplementation of infant formula may narrow the gap in cognitive performance and infection rates between breastfed and formula-fed infants. Because of the small number of studies and the heterogeneity of interventions, more high-quality double-blinded randomized controlled trials are needed, with well characterized and clearly defined MFGM fractions, before firm conclusions on the effects of MFGM supplementation on the health and development of infants can be drawn.
Collapse
Affiliation(s)
- Olle Hernell
- Department of Clinical Sciences, Umeå University, Umeå, Sweden.
| | - Niklas Timby
- Department of Clinical Sciences, Umeå University, Umeå, Sweden
| | - Magnus Domellöf
- Department of Clinical Sciences, Umeå University, Umeå, Sweden
| | - Bo Lönnerdal
- Department of Nutrition, University of California, Davis, CA
| |
Collapse
|
34
|
Abstract
Sphingomyelin (SM), glycosphingolipids, and gangliosides are important polar lipids in the milk fat globule membrane but are not found in standard milk replacement formulas. Because digestion and absorption of SM and glycosphingolipids generate the bioactive metabolites ceramide, sphingosine, and sphingosine-1-phosphate (S1P), and because intact gangliosides may have beneficial effects in the gut, this may be important for gut integrity and immune maturation in the neonate. The brush border enzymes that hydrolyze milk SM, alkaline sphingomyelinase (nucleotide phosphodiesterase pyrophosphatase 7), and neutral ceramidase are expressed at birth in both term and preterm infants. Released sphingosine is absorbed, phosphorylated to S1P, and converted to palmitic acid via S1P-lyase in the gut mucosa. Hypothetically, S1P also may be released from absorptive cells and exert important paracrine actions favoring epithelial integrity and renewal, as well as immune function, including secretory IgA production and migration of T lymphocyte subpopulations. Gluco-, galacto-, and lactosylceramide are hydrolyzed to ceramide by lactase-phlorizin hydrolase, which also hydrolyzes lactose. Gangliosides may adhere to the brush border and is internalized, modified, and possibly transported into blood, and may exert protective functions by their interactions with bacteria, bacterial toxins, and the brush border.
Collapse
Affiliation(s)
- Åke Nilsson
- Department of Clinical Sciences, Medicine (Gastroenterology), Lund University, Skane University Hospital, Lund, Sweden.
| |
Collapse
|
35
|
Zhang Y, Wang J, Liu J, Han J, Xiong S, Yong W, Zhao Z. Combination of ESI and MALDI mass spectrometry for qualitative, semi-quantitative and in situ analysis of gangliosides in brain. Sci Rep 2016; 6:25289. [PMID: 27142336 PMCID: PMC4855142 DOI: 10.1038/srep25289] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2015] [Accepted: 04/14/2016] [Indexed: 01/04/2023] Open
Abstract
Gangliosides are a family of complex lipids that are abundant in the brain. There is no doubt the investigations about the distribution of gangliosides in brian and the relationship between gangliosides and Alzheimer’s disease is profound. However, these investigations are full of challenges due to the structural complexity of gangliosides. In this work, the method for efficient extraction and enrichment of gangliosides from brain was established. Moreover, the distribution of gangliosides in brain was obtained by matrix-assisted laser desorption ionization (MALDI) mass spectrometry imaging (MSI). It was found that 3-aminoquinoline (3-AQ) as matrix was well-suited for MALDI MS analysis of gangliosides in negative ion mode. In addition, the pretreatment by ethanol (EtOH) cleaning brain section and the addition of ammonium formate greatly improved the MS signal of gangliosides in the brain section when MALDI MSI analysis was employed. The distribution of ganliosides in cerebral cortex, hippocampus and cerebellum was respectively acquired by electrospray ionization (ESI) MS and MALDI MSI, and the data were compared for reliability evaluation of MALDI MSI. Further, applying MALDI MSI technology, the distribution of gangliosides in amyloid precursor protein transgenic mouse brain was obtained, which may provide a new insight for bioresearch of Alzheimer’s disease (AD).
Collapse
Affiliation(s)
- Yangyang Zhang
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry Chinese Academy of Sciences, Beijing Mass Spectrum Center, Beijing, China
| | - Jun Wang
- Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences &Peking Union Medical College, Beijing, China
| | - Jian'an Liu
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry Chinese Academy of Sciences, Beijing Mass Spectrum Center, Beijing, China
| | - Juanjuan Han
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry Chinese Academy of Sciences, Beijing Mass Spectrum Center, Beijing, China
| | - Shaoxiang Xiong
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry Chinese Academy of Sciences, Beijing Mass Spectrum Center, Beijing, China
| | - Weidong Yong
- Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences &Peking Union Medical College, Beijing, China
| | - Zhenwen Zhao
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry Chinese Academy of Sciences, Beijing Mass Spectrum Center, Beijing, China.,Graduate School, University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
36
|
Guerra E, Downey E, O'Mahony JA, Caboni MF, O'Shea C, Ryan AC, Kelly AL. Influence of duration of gestation on fatty acid profiles of human milk. EUR J LIPID SCI TECH 2016. [DOI: 10.1002/ejlt.201500396] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Affiliation(s)
- Elena Guerra
- Department of Agricultural and Food Science (DISTAL)Alma Mater Studiorum – University of BolognaCesena (FC)Italy
| | - Eimear Downey
- School of Food and Nutritional SciencesUniversity College CorkCorkIreland
| | - James A. O'Mahony
- School of Food and Nutritional SciencesUniversity College CorkCorkIreland
| | - Maria Fiorenza Caboni
- Department of Agricultural and Food Science (DISTAL)Alma Mater Studiorum – University of BolognaCesena (FC)Italy
| | - Carol‐Anne O'Shea
- Department of Paediatrics and Child HealthUniversity College CorkCorkIreland
| | - Anthony C. Ryan
- Department of Paediatrics and Child HealthUniversity College CorkCorkIreland
| | - Alan L. Kelly
- School of Food and Nutritional SciencesUniversity College CorkCorkIreland
| |
Collapse
|
37
|
Reis MM, Bermingham EN, Reis MG, Deb-Choudhury S, MacGibbon A, Fong B, McJarrow P, Bibiloni R, Bassett SA, Roy NC. Effect of Dietary Complex Lipids on the Biosynthesis of Piglet Brain Gangliosides. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2016; 64:1245-1255. [PMID: 26808587 DOI: 10.1021/acs.jafc.5b05211] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Gangliosides, found in mammalian milk, are known for their roles in brain development of the newborn. However, the mechanism involved in the impact of dietary gangliosides on brain metabolism is not fully understood. The impact of diets containing complex lipids rich in milk-derived ganglioside GD3 on the biosynthesis of gangliosides (assessed from the incorporation of deuterium) in the frontal lobe of a piglet model is reported. Higher levels of incorporation of deuterium was observed in the GM1 and GD1a containing stearic acid in samples from piglets fed milk containing 18.2 μg/mL of GD3 compared to that in those fed milk containing 25 μg/mL of GD3. This could suggest that the gangliosides from the diet may be used as a precursor for de novo biosynthesis of brain gangliosides or lead to the reduction of de novo biosynthesis of these gangliosides. This effect was more pronounced in the left compared to that in the right brain hemisphere.
Collapse
Affiliation(s)
- Marlon M Reis
- Food Assurance & Meat Quality Team, Food & Bio-Based Products Group, AgResearch Ruakura , Hamilton 3240, New Zealand
| | - Emma N Bermingham
- Food Nutrition & Health Team, Food & Bio-Based Products Group, AgResearch Grasslands , Palmerston North 4442, New Zealand
| | - Mariza G Reis
- Dairy Foods Team, Food & Bio-Based Products Group, AgResearch Ruakura , Hamilton 3240, New Zealand
| | | | - Alastair MacGibbon
- Fonterra Research and Development Centre , Palmerston North 4442, New Zealand
| | - Bertram Fong
- Fonterra Research and Development Centre , Palmerston North 4442, New Zealand
| | - Paul McJarrow
- Fonterra Research and Development Centre , Palmerston North 4442, New Zealand
| | - Rodrigo Bibiloni
- Food Nutrition & Health Team, Food & Bio-Based Products Group, AgResearch Grasslands , Palmerston North 4442, New Zealand
| | - Shalome A Bassett
- Food Nutrition & Health Team, Food & Bio-Based Products Group, AgResearch Grasslands , Palmerston North 4442, New Zealand
| | - Nicole C Roy
- Food Nutrition & Health Team, Food & Bio-Based Products Group, AgResearch Grasslands , Palmerston North 4442, New Zealand
| |
Collapse
|
38
|
Determination of ganglioside concentrations in breast milk and serum from Malaysian mothers using a high performance liquid chromatography-mass spectrometry-multiple reaction monitoring method. Int Dairy J 2015. [DOI: 10.1016/j.idairyj.2015.05.006] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
39
|
Ma L, Liu X, MacGibbon AKH, Rowan A, McJarrow P, Fong BY. Lactational changes in concentration and distribution of ganglioside molecular species in human breast milk from Chinese mothers. Lipids 2015; 50:1145-54. [PMID: 26404454 DOI: 10.1007/s11745-015-4073-1] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2015] [Accepted: 09/04/2015] [Indexed: 02/01/2023]
Abstract
Gangliosides play a critical role in human brain development and function. Human breast milk (HBM) is an important dietary source of gangliosides for the growing infant. In this study, ganglioside concentrations were measured in the breast milk from a cross-sectional sample of Chinese mothers over an 8-month lactation period. The average total ganglioside concentration increased from 13.1 mg/l during the first month to 20.9 mg/l by 8 months of lactation. The average concentration during the typically solely breast-feeding period of 1‒6 months was 18.9 mg/l. This is the first study to report the relative distribution of the individual ganglioside molecular species through lactation for any population group. The ganglioside molecular species are made up of different fatty acid moieties that influence the physical properties of these gangliosides, and hence affect their function. The GM(3) molecular species containing long-chain acyl fatty acids had the most prominent changes, increasing in both concentration and relative distribution. The equivalent long-chain acyl fatty acid GD(3) molecular species typically decreased in concentration and relative distribution. The lactational trends for both concentration and relative distribution for the very long-chain acyl fatty acid molecular species were more varied. The major GM(3) and GD(3) molecular species during lactation were d40:1 and d42:1, respectively. An understanding of ganglioside molecular species distribution in HBM is essential for accurate application of mass spectrometry methods for ganglioside quantification.
Collapse
Affiliation(s)
- Lin Ma
- Fonterra Research and Development Centre, Dairy Farm Road, Private Bag 11029, Palmerston North, 4442, New Zealand
| | - Xihong Liu
- Department of Clinical Nutrition, Guangzhou Woman and Children's Medical Center, Guangzhou Hospital, Guangzhou, China
| | - Alastair K H MacGibbon
- Fonterra Research and Development Centre, Dairy Farm Road, Private Bag 11029, Palmerston North, 4442, New Zealand
| | - Angela Rowan
- Fonterra Co-Operative Group Ltd, Dairy Farm Road, Private Bag 11029, Palmerston North, 4442, New Zealand
| | - Paul McJarrow
- Fonterra Research and Development Centre, Dairy Farm Road, Private Bag 11029, Palmerston North, 4442, New Zealand
| | - Bertram Y Fong
- Fonterra Research and Development Centre, Dairy Farm Road, Private Bag 11029, Palmerston North, 4442, New Zealand.
| |
Collapse
|
40
|
Koyama S, Soini HA, Wager-Miller J, Alley WR, Pizzo MJ, Rodda C, Alberts J, Crystal JD, Lai C, Foley J, Novotny MV. Cross-generational impact of a male murine pheromone 2-sec-butyl-4,5- dihydrothiazole in female mice. Proc Biol Sci 2015; 282:rspb.2015.1074. [PMID: 26136453 PMCID: PMC4528559 DOI: 10.1098/rspb.2015.1074] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2015] [Accepted: 05/29/2015] [Indexed: 12/27/2022] Open
Abstract
The current understanding of the activity of mammalian pheromones is that endocrine and behavioural effects are limited to the exposed individuals. Here, we demonstrate that the nasal exposure of female mice to a male murine pheromone stimulates expansion of mammary glands, leading to prolonged nursing of pups. Subsequent behavioural testing of the pups from pheromone-exposed dams exhibited enhanced learning. Sialic acid components in the milk are known to be involved in brain development. We hypothesized that the offspring might have received more of this key nutrient that promotes brain development. The mRNA for polysialyltransferase, which produces polysialylated neural cell adhesion molecules related to brain development,was increased in the brain of offspring of pheromone-exposed dams at post-natal day 10, while it was not different at embryonic stages, indicating possible differential brain development during early post-natal life.
Collapse
Affiliation(s)
- Sachiko Koyama
- Medical Sciences, Indiana University School of Medicine, Bloomington, IN 47405, USA
| | - Helena A. Soini
- Department of Chemistry and Institute for Pheromone Research, Indiana University, Bloomington, IN 47405, USA
| | - James Wager-Miller
- The Linda and Jack Gill Center for Biomolecular Science and Department of Psychological and Brain Sciences, Indiana University, Bloomington, IN 47405, USA
| | - William R. Alley
- Department of Chemistry and Institute for Pheromone Research, Indiana University, Bloomington, IN 47405, USA
| | - Matthew J. Pizzo
- Department of Psychological and Brain Sciences, Indiana University, Bloomington, IN 47405, USA
| | - Cathleen Rodda
- Department of Psychological and Brain Sciences, Indiana University, Bloomington, IN 47405, USA
| | - Jeffrey Alberts
- Department of Psychological and Brain Sciences, Indiana University, Bloomington, IN 47405, USA
| | - Jonathon D. Crystal
- Department of Psychological and Brain Sciences, Indiana University, Bloomington, IN 47405, USA
| | - Cary Lai
- The Linda and Jack Gill Center for Biomolecular Science and Department of Psychological and Brain Sciences, Indiana University, Bloomington, IN 47405, USA
| | - John Foley
- Medical Sciences, Indiana University School of Medicine, Bloomington, IN 47405, USA
- Department of Dermatology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Milos V. Novotny
- Department of Chemistry and Institute for Pheromone Research, Indiana University, Bloomington, IN 47405, USA
| |
Collapse
|
41
|
Long-Term Supplementation with Beta Serum Concentrate (BSC), a Complex of Milk Lipids, during Post-Natal Brain Development Improves Memory in Rats. Nutrients 2015; 7:4526-41. [PMID: 26056919 PMCID: PMC4488800 DOI: 10.3390/nu7064526] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2015] [Revised: 05/22/2015] [Accepted: 05/26/2015] [Indexed: 11/26/2022] Open
Abstract
We have previously reported that the supplementation of ganglioside-enriched complex-milk-lipids improves cognitive function and that a phospholipid-enriched complex-milk-lipid prevents age-related cognitive decline in rats. This current study evaluated the effects of post-natal supplementation of ganglioside- and phospholipid-enriched complex-milk-lipids beta serum concentrate (BSC) on cognitive function in young rats. The diet of male rats was supplemented with either gels formulated BSC (n = 16) or blank gels (n = 16) from post-natal day 10 to day 70. Memory and anxiety-like behaviors were evaluated using the Morris water maze, dark–light boxes, and elevated plus maze tests. Neuroplasticity and white matter were measured using immunohistochemical staining. The overall performance in seven-day acquisition trials was similar between the groups. Compared with the control group, BSC supplementation reduced the latency to the platform during day one of the acquisition tests. Supplementation improved memory by showing reduced latency and improved path efficiency to the platform quadrant, and smaller initial heading error from the platform zone. Supplemented rats showed an increase in striatal dopamine terminals and hippocampal glutamate receptors. Thus BSC supplementation during post-natal brain development improved learning and memory, independent from anxiety. The moderately enhanced neuroplasticity in dopamine and glutamate may be biological changes underlying the improved cognitive function.
Collapse
|
42
|
Palmano K, Rowan A, Guillermo R, Guan J, McJarrow P. The role of gangliosides in neurodevelopment. Nutrients 2015; 7:3891-913. [PMID: 26007338 PMCID: PMC4446785 DOI: 10.3390/nu7053891] [Citation(s) in RCA: 118] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2015] [Revised: 05/04/2015] [Accepted: 05/08/2015] [Indexed: 11/18/2022] Open
Abstract
Gangliosides are important components of neuronal cell membranes and it is widely accepted that they play a critical role in neuronal and brain development. They are functionally involved in neurotransmission and are thought to support the formation and stabilization of functional synapses and neural circuits required as the structural basis of memory and learning. Available evidence, as reviewed herein, suggests that dietary gangliosides may impact positively on cognitive functions, particularly in the early postnatal period when the brain is still growing. Further, new evidence suggests that the mechanism of action may be through an effect on the neuroplasticity of the brain, mediated through enhanced synaptic plasticity in the hippocampus and nigro-striatal dopaminergic pathway.
Collapse
Affiliation(s)
| | - Angela Rowan
- Fonterra Co-operative Group Ltd., Private Bag 11029, Palmerston North 4442, New Zealand.
| | - Rozey Guillermo
- Centre for Brain Research, Auckland University, Private Bag 92019, Auckland 1142, New Zealand.
| | - Jian Guan
- Centre for Brain Research, Auckland University, Private Bag 92019, Auckland 1142, New Zealand.
| | - Paul McJarrow
- Fonterra Co-operative Group Ltd., Private Bag 11029, Palmerston North 4442, New Zealand.
| |
Collapse
|
43
|
Cong PX, Gao RC, Xue CH, Li ZJ, Zhang HW, Khan MN, Xue Y, Sugawara T, Xu J. Molecular species analysis of monosialogangliosides from sea urchin Strongylocentrotus nudus by RPLC-ESI-MS/MS. Food Chem 2015; 166:473-478. [DOI: 10.1016/j.foodchem.2014.06.028] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2013] [Revised: 10/23/2013] [Accepted: 06/08/2014] [Indexed: 11/15/2022]
|
44
|
Nikolaeva S, Bayunova L, Sokolova T, Vlasova Y, Bachteeva V, Avrova N, Parnova R. GM1 and GD1a gangliosides modulate toxic and inflammatory effects of E. coli lipopolysaccharide by preventing TLR4 translocation into lipid rafts. Biochim Biophys Acta Mol Cell Biol Lipids 2014; 1851:239-47. [PMID: 25499607 DOI: 10.1016/j.bbalip.2014.12.004] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2014] [Revised: 12/02/2014] [Accepted: 12/05/2014] [Indexed: 12/13/2022]
Abstract
Exogenous gangliosides are known to inhibit the effects of Escherichia coli lipopolysaccharide (LPS) in different cells exhibiting anti-inflammatory and immunosuppressive activities. The mechanisms underlying ganglioside action are not fully understood. Because LPS recognition and receptor complex formation occur in lipid rafts, and gangliosides play a key role in their maintenance, we hypothesize that protective effects of exogenous gangliosides would depend on inhibition of LPS signaling via prevention of TLR4 translocation into lipid rafts. The effect of GM1 and GD1a gangliosides on LPS-induced toxic and inflammatory reactions in PC12 cells, and in epithelial cells isolated from the frog urinary bladder, was studied. In PC12 cells, GD1a and GM1 significantly reduced the effect of LPS on the decrease of cell survival and on stimulation of reactive oxygen species production. In epithelial cells, gangliosides decreased LPS-stimulated iNOS expression, NO, and PGE2 production. Subcellular fractionation, in combination with immunoblotting, showed that pretreatment of cells with GM1, GD1a, or methyl-β-cyclodextrin, completely eliminated the effect of LPS on translocation of TLR4 into lipid rafts. The results are consistent with the hypothesis that ganglioside-induced prevention of TLR4 translocation into lipid rafts could be a mechanism of protection against LPS in various cells.
Collapse
Affiliation(s)
- Svetlana Nikolaeva
- I.M. Sechenov Institute of Evolutionary Physiology and Biochemistry of the Russian Academy of Sciences, 194223 Saint Petersburg, Russia
| | - Lubov Bayunova
- I.M. Sechenov Institute of Evolutionary Physiology and Biochemistry of the Russian Academy of Sciences, 194223 Saint Petersburg, Russia
| | - Tatyana Sokolova
- I.M. Sechenov Institute of Evolutionary Physiology and Biochemistry of the Russian Academy of Sciences, 194223 Saint Petersburg, Russia
| | - Yulia Vlasova
- I.M. Sechenov Institute of Evolutionary Physiology and Biochemistry of the Russian Academy of Sciences, 194223 Saint Petersburg, Russia
| | - Vera Bachteeva
- I.M. Sechenov Institute of Evolutionary Physiology and Biochemistry of the Russian Academy of Sciences, 194223 Saint Petersburg, Russia
| | - Natalia Avrova
- I.M. Sechenov Institute of Evolutionary Physiology and Biochemistry of the Russian Academy of Sciences, 194223 Saint Petersburg, Russia
| | - Rimma Parnova
- I.M. Sechenov Institute of Evolutionary Physiology and Biochemistry of the Russian Academy of Sciences, 194223 Saint Petersburg, Russia.
| |
Collapse
|
45
|
Liu H, Radlowski EC, Conrad MS, Li Y, Dilger RN, Johnson RW. Early supplementation of phospholipids and gangliosides affects brain and cognitive development in neonatal piglets. J Nutr 2014; 144:1903-9. [PMID: 25411030 PMCID: PMC4230208 DOI: 10.3945/jn.114.199828] [Citation(s) in RCA: 74] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2014] [Revised: 08/12/2014] [Accepted: 09/09/2014] [Indexed: 11/14/2022] Open
Abstract
BACKGROUND Because human breast milk is a rich source of phospholipids and gangliosides and breastfed infants have improved learning compared with formula-fed infants, the importance of dietary phospholipids and gangliosides for brain development is of interest. OBJECTIVE We sought to determine the effects of phospholipids and gangliosides on brain and cognitive development. METHODS Male and female piglets from multiple litters were artificially reared and fed formula containing 0% (control), 0.8%, or 2.5% Lacprodan PL-20 (PL-20; Arla Foods Ingredients), a phospholipid/ganglioside supplement, from postnatal day (PD) 2 to PD28. Beginning on PD14, performance in a spatial T-maze task was assessed. At PD28, brain MRI data were acquired and piglets were killed to obtain hippocampal tissue for metabolic profiling. RESULTS Diet affected maze performance, with piglets that were fed 0.8% and 2.5% PL-20 making fewer errors than control piglets (80% vs. 75% correct on average; P < 0.05) and taking less time to make a choice (3 vs. 5 s/trial; P < 0.01). Mean brain weight was 5% higher for piglets fed 0.8% and 2.5% PL-20 (P < 0.05) than control piglets, and voxel-based morphometry revealed multiple brain areas with greater volumes and more gray and white matter in piglets fed 0.8% and 2.5% PL-20 than in control piglets. Metabolic profiling of hippocampal tissue revealed that multiple phosphatidylcholine-related metabolites were altered by diet. CONCLUSION In summary, dietary phospholipids and gangliosides improved spatial learning and affected brain growth and composition in neonatal piglets.
Collapse
Affiliation(s)
- Hongnan Liu
- Department of Animal Sciences, Institute of Animal Nutrition, Northeast Agricultural University, Harbin, China
| | - Emily C Radlowski
- Department of Animal Sciences, Division of Nutritional Sciences, and
| | - Matthew S Conrad
- Neuroscience Program, University of Illinois at Urbana-Champaign, Urbana, IL; and
| | - Yao Li
- Institute of Animal Nutrition, Northeast Agricultural University, Harbin, China
| | - Ryan N Dilger
- Department of Animal Sciences, Division of Nutritional Sciences, and Neuroscience Program, University of Illinois at Urbana-Champaign, Urbana, IL; and
| | - Rodney W Johnson
- Department of Animal Sciences, Division of Nutritional Sciences, and Neuroscience Program, University of Illinois at Urbana-Champaign, Urbana, IL; and
| |
Collapse
|
46
|
Galkina OV, Putilina FE, Eshchenko ND. Changes in the lipid composition of the brain during early onthogenesis. NEUROCHEM J+ 2014. [DOI: 10.1134/s1819712414020044] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
47
|
Timby N, Domellöf E, Hernell O, Lönnerdal B, Domellöf M. Neurodevelopment, nutrition, and growth until 12 mo of age in infants fed a low-energy, low-protein formula supplemented with bovine milk fat globule membranes: a randomized controlled trial. Am J Clin Nutr 2014; 99:860-8. [PMID: 24500150 DOI: 10.3945/ajcn.113.064295] [Citation(s) in RCA: 219] [Impact Index Per Article: 21.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
BACKGROUND Observational studies have indicated that differences in the composition of human milk and infant formula yield benefits in cognitive development and early growth for breastfed infants. OBJECTIVE The objective was to test the hypothesis that feeding an infant formula with reduced energy and protein densities and supplemented with bovine milk fat globule membrane (MFGM) reduces differences in cognitive development and early growth between formula-fed and breastfed infants. DESIGN In a prospective, double-blind, randomized controlled trial, 160 infants <2 mo of age were randomly assigned to be fed an MFGM-supplemented, low-energy, low-protein experimental formula (EF) or a standard formula (SF) until 6 mo of age. The energy and protein contents of the EF and SF were 60 and 66 kcal/100 mL and 1.20 and 1.27 g/100 mL, respectively. A breastfed reference (BFR) group consisted of 80 infants. RESULTS At 12 mo of age, the cognitive score (mean ± SD) on testing with the Bayley Scales of Infant and Toddler Development, Third Edition, was significantly higher in the EF group than in the SF group (105.8 ± 9.2 compared with 101.8 ± 8.0; P = 0.008) but was not significantly different from that in the BFR group (106.4 ± 9.5; P = 0.73). The EF group ingested larger volumes of formula than did the SF group (864 ± 174 compared with 797 ± 165 mL/d; P = 0.022), fully compensating for the lower energy density. No significant differences in linear growth, weight gain, body mass index, percentage body fat, or head circumference were found between the EF and SF groups. CONCLUSIONS MFGM supplementation to infant formula narrows the gap in cognitive development between breastfed and formula-fed infants. Between 2 and 6 mo of age, formula-fed term infants have the capacity to upregulate their ingested volumes when the energy density of formula is reduced from 66 to 60 kcal/100 mL.
Collapse
Affiliation(s)
- Niklas Timby
- Department of Clinical Sciences, Pediatrics (NT, OH, and MD) and the Department of Psychology (ED), Umeå University, Umeå, Sweden, and the Department of Nutrition, University of California, Davis, Davis, CA (BL)
| | | | | | | | | |
Collapse
|
48
|
Ghiulai RM, Sarbu M, Vukelić Ž, Ilie C, Zamfir AD. Early stage fetal neocortex exhibits a complex ganglioside profile as revealed by high resolution tandem mass spectrometry. Glycoconj J 2014; 31:231-45. [DOI: 10.1007/s10719-014-9517-y] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2013] [Revised: 02/05/2014] [Accepted: 02/10/2014] [Indexed: 11/30/2022]
|
49
|
Lönnerdal B. Infant formula and infant nutrition: bioactive proteins of human milk and implications for composition of infant formulas. Am J Clin Nutr 2014; 99:712S-7S. [PMID: 24452231 DOI: 10.3945/ajcn.113.071993] [Citation(s) in RCA: 169] [Impact Index Per Article: 16.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Human milk contains an abundance of biologically active components that are highly likely to contribute to the short- and long-term benefits of breastfeeding. Many of these components are proteins; this article describes some of these proteins, such as α-lactalbumin, lactoferrin, osteopontin, and milk fat globule membrane proteins. The possibility of adding their bovine counterparts to infant formula is discussed as well as the implications for infant health and development. An important consideration when adding bioactive proteins to infant formula is that the total protein content of formula needs to be reduced, because formula-fed infants have significantly higher concentrations of serum amino acids, insulin, and blood urea nitrogen than do breastfed infants. When reducing the protein content of formula, the amino acid composition of the formula protein becomes important because serum concentrations of the essential amino acids should not be lower than those in breastfed infants. Both the supply of essential amino acids and the bioactivities of milk proteins are dependent on their digestibility: some proteins act only in intact form, others act in the form of larger or small peptides formed during digestion, and some are completely digested and serve as a source of amino acids. The purity of the proteins or protein fractions, potential contaminants of the proteins (such as lipopolysaccharide), as well as the degree of heat processing used during their isolation also need to be considered. It is likely that there will be more bioactive components added to infant formulas in the near future, but guidelines on how to assess their bioactivities in vitro, in animal models, and in clinical studies need to be established. The extent of testing needed is likely going to depend on the degree of complexity of the components and their bioequivalence with the human compounds whose effects they are intended to mimic.
Collapse
Affiliation(s)
- Bo Lönnerdal
- Department of Nutrition, University of California, Davis, Davis, CA
| |
Collapse
|
50
|
Yao D, McGonigal R, Barrie JA, Cappell J, Cunningham ME, Meehan GR, Fewou SN, Edgar JM, Rowan E, Ohmi Y, Furukawa K, Furukawa K, Brophy PJ, Willison HJ. Neuronal expression of GalNAc transferase is sufficient to prevent the age-related neurodegenerative phenotype of complex ganglioside-deficient mice. J Neurosci 2014; 34:880-91. [PMID: 24431446 PMCID: PMC3891965 DOI: 10.1523/jneurosci.3996-13.2014] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2013] [Revised: 11/15/2013] [Accepted: 11/23/2013] [Indexed: 11/21/2022] Open
Abstract
Gangliosides are widely expressed sialylated glycosphingolipids with multifunctional properties in different cell types and organs. In the nervous system, they are highly enriched in both glial and neuronal membranes. Mice lacking complex gangliosides attributable to targeted ablation of the B4galnt1 gene that encodes β-1,4-N-acetylegalactosaminyltransferase 1 (GalNAc-transferase; GalNAcT(-/-)) develop normally before exhibiting an age-dependent neurodegenerative phenotype characterized by marked behavioral abnormalities, central and peripheral axonal degeneration, reduced myelin volume, and loss of axo-glial junction integrity. The cell biological substrates underlying this neurodegeneration and the relative contribution of either glial or neuronal gangliosides to the process are unknown. To address this, we generated neuron-specific and glial-specific GalNAcT rescue mice crossed on the global GalNAcT(-/-) background [GalNAcT(-/-)-Tg(neuronal) and GalNAcT(-/-)-Tg(glial)] and analyzed their behavioral, morphological, and electrophysiological phenotype. Complex gangliosides, as assessed by thin-layer chromatography, mass spectrometry, GalNAcT enzyme activity, and anti-ganglioside antibody (AgAb) immunohistology, were restored in both neuronal and glial GalNAcT rescue mice. Behaviorally, GalNAcT(-/-)-Tg(neuronal) retained a normal "wild-type" (WT) phenotype throughout life, whereas GalNAcT(-/-)-Tg(glial) resembled GalNAcT(-/-) mice, exhibiting progressive tremor, weakness, and ataxia with aging. Quantitative electron microscopy demonstrated that GalNAcT(-/-) and GalNAcT(-/-)-Tg(glial) nerves had significantly increased rates of axon degeneration and reduced myelin volume, whereas GalNAcT(-/-)-Tg(neuronal) and WT appeared normal. The increased invasion of the paranode with juxtaparanodal Kv1.1, characteristically seen in GalNAcT(-/-) and attributed to a breakdown of the axo-glial junction, was normalized in GalNAcT(-/-)-Tg(neuronal) but remained present in GalNAcT(-/-)-Tg(glial) mice. These results indicate that neuronal rather than glial gangliosides are critical to the age-related maintenance of nervous system integrity.
Collapse
Affiliation(s)
- Denggao Yao
- Institute of Infection, Immunity, and Inflammation, College of Medical Veterinary and Life Sciences, University of Glasgow, Glasgow, G12 8TA, United Kingdom
| | - Rhona McGonigal
- Institute of Infection, Immunity, and Inflammation, College of Medical Veterinary and Life Sciences, University of Glasgow, Glasgow, G12 8TA, United Kingdom
| | - Jennifer A. Barrie
- Institute of Infection, Immunity, and Inflammation, College of Medical Veterinary and Life Sciences, University of Glasgow, Glasgow, G12 8TA, United Kingdom
| | - Joanna Cappell
- Institute of Infection, Immunity, and Inflammation, College of Medical Veterinary and Life Sciences, University of Glasgow, Glasgow, G12 8TA, United Kingdom
| | - Madeleine E. Cunningham
- Institute of Infection, Immunity, and Inflammation, College of Medical Veterinary and Life Sciences, University of Glasgow, Glasgow, G12 8TA, United Kingdom
| | - Gavin R. Meehan
- Institute of Infection, Immunity, and Inflammation, College of Medical Veterinary and Life Sciences, University of Glasgow, Glasgow, G12 8TA, United Kingdom
| | - Simon N. Fewou
- Institute of Infection, Immunity, and Inflammation, College of Medical Veterinary and Life Sciences, University of Glasgow, Glasgow, G12 8TA, United Kingdom
| | - Julia M. Edgar
- Institute of Infection, Immunity, and Inflammation, College of Medical Veterinary and Life Sciences, University of Glasgow, Glasgow, G12 8TA, United Kingdom
| | - Edward Rowan
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow G4 0NR, United Kingdom
| | - Yuhsuke Ohmi
- Department of Biochemistry II, Nagoya University School of Medicine, Nagoya 466-0065, Japan, and
| | - Keiko Furukawa
- Department of Biochemistry II, Nagoya University School of Medicine, Nagoya 466-0065, Japan, and
| | - Koichi Furukawa
- Department of Biochemistry II, Nagoya University School of Medicine, Nagoya 466-0065, Japan, and
| | - Peter J. Brophy
- Centre for Neuroregeneration, University of Edinburgh, Edinburgh EH16 4SB, United Kingdom
| | - Hugh J. Willison
- Institute of Infection, Immunity, and Inflammation, College of Medical Veterinary and Life Sciences, University of Glasgow, Glasgow, G12 8TA, United Kingdom
| |
Collapse
|