1
|
Piacquadio KA, Gwin JA, Leidy HJ. A Higher-Protein, Energy Restriction Diet Containing 4 Servings of Fresh, Lean Beef per Day Does Not Negatively Influence Circulating miRNAs Associated with Cardiometabolic Disease Risk in Women with Overweight. Curr Dev Nutr 2024; 8:104442. [PMID: 39310667 PMCID: PMC11416494 DOI: 10.1016/j.cdnut.2024.104442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 08/10/2024] [Accepted: 08/13/2024] [Indexed: 09/25/2024] Open
Abstract
This study examined the acute effects of 7-d energy restriction normal-protein (NP; ∼15% of daily intake as protein) compared with higher-protein (HP; ∼38% of daily intake as protein) diets varying in quantities of fresh, lean beef on circulating miRNA expression associated with cardiometabolic disease in 16 women with overweight (mean ± SD; age: 35 ± 8.7 y; body mass index: 28.5 ± 1.9 kg/m2). Fasting blood samples were collected at the end of each diet for miRNA expression, glucose, insulin, adiponectin, C-reactive protein (CRP), and IL-6. Of the 12 surveyed, 10 miRNAs (miR-320a-3p, miR-146a-5p, miR-150-5p, miR-423-5p, miR-122-5p, miR-223-3p, miR-199a-5p, miR-214-3p, miR-24-3p, and miR-126-3p) were detected. Several miRNAs were associated with fasting CRP (i.e., miR-150-5p, miR-24-3p, miR-423-5p; all P < 0.05). miR-423-5p was also associated with fasting glucose, IL-6, and homeostasis model assessment 2 %β cell function (all, P < 0.05). No differences in miRNA expression were identified between diets. These data suggest that fresh, lean beef in a short-term HP, energy restriction diet does not negatively influence circulating miRNAs associated with cardiometabolic disease in women. This trial was registered at clinicaltrials.gov as NCT02614729.
Collapse
Affiliation(s)
- Kamille A Piacquadio
- Department of Nutritional Sciences and Department of Pediatrics; University of Texas at Austin; Austin, TX, United States
| | - Jess A Gwin
- Military Nutrition Division, U.S. Army Research Institute of Environmental Medicine, Natick, MA, United States
| | - Heather J Leidy
- Department of Nutritional Sciences and Department of Pediatrics; University of Texas at Austin; Austin, TX, United States
| |
Collapse
|
2
|
Giacone L, Siegrist M, Hartmann C. Food choices for weight loss: what dietary strategies would people use? Br J Nutr 2024; 131:1268-1280. [PMID: 38012836 PMCID: PMC10918523 DOI: 10.1017/s0007114523002726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 10/04/2023] [Accepted: 11/16/2023] [Indexed: 11/29/2023]
Abstract
Previous observational research showed that one of the most common strategies used to lose weight is to avoid or restrict the consumption of specific food items. However, the question of how people behave and implement strategies in actual decision-making situations involving food choices for weight loss purposes remains inconclusive. This experimental study using a food buffet aimed to examine people's different dietary strategies and motives for selecting foods for an entire day for weight loss purposes compared with a normal-day (ND) food selection. A total of 111 participants (55 % women) had to choose foods for both a ND and a weight loss day (WLD) (within-study design). Kilocalories and nutrients were calculated based on the weights of the foods selected, and food choice motives were assessed using a questionnaire. The results showed that for weight loss purposes, the participants selected more vegetables (both sexes) and unsweetened beverages (only men) while reducing their choices of high-fat and high-energy products (both sexes). Participants' food choices in both conditions (ND and WLD) differed from the official nutrition recommendations. They chose less carbohydrates and fibres and more fat and sugar than recommended. Health, kilocalories and nutrient content (carbohydrates, sugar, fat and protein) were more important food choice motives for weight loss purposes than for a ND food selection, while taste became less important. In conclusion, the participants appeared to be well capable of implementing several appropriate dietary strategies. Further research is needed to explore strategies to help them maintain these dietary changes over the long term.
Collapse
Affiliation(s)
- Luana Giacone
- ETH Zurich, Department of Health Sciences and Technology, Consumer Behavior, Universitaetstrasse 22, CH-8092 Zurich, Switzerland
| | - Michael Siegrist
- ETH Zurich, Department of Health Sciences and Technology, Consumer Behavior, Universitaetstrasse 22, CH-8092 Zurich, Switzerland
| | - Christina Hartmann
- ETH Zurich, Department of Health Sciences and Technology, Consumer Behavior, Universitaetstrasse 22, CH-8092 Zurich, Switzerland
| |
Collapse
|
3
|
Effects of Omega-3 Fatty Acids Supplementation on Serum Lipid Profile and Blood Pressure in Patients with Metabolic Syndrome: A Systematic Review and Meta-Analysis of Randomized Controlled Trials. Foods 2023; 12:foods12040725. [PMID: 36832799 PMCID: PMC9956263 DOI: 10.3390/foods12040725] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 01/28/2023] [Accepted: 02/02/2023] [Indexed: 02/11/2023] Open
Abstract
The purpose of this study was to explore the effect of omega-3 polyunsaturated fatty acids (n-3 PUFAs) supplementation on serum lipid profile and blood pressure in patients with metabolic syndrome. We searched PubMed, Web of Science, Embase, and the Cochrane library from database inception to 30 April 2022. This meta-analysis included eight trials with 387 participants. We found that supplementation of n-3 PUFAs has no significant reduction in TC level (SMD = -0.02; 95% CI: -0.22 ~ 0.18, I2 = 23.7%) and LDL-c level in serum (SMD = 0.18; 95% CI: -0.18 ~ 0.53, I2 = 54.9%) of patients with metabolic syndrome. Moreover, we found no significant increase in serum high-density lipoprotein cholesterol level (SMD = 0.02; 95% CI: -0.21 ~ 0.25, I2 = 0%) in patients with metabolic syndrome after consuming n-3 PUFAs. In addition, we found that n-3 PUFAs can significantly decrease serum triglyceride levels (SMD= -0.39; 95% CI: -0.59 ~ -0.18, I2 = 17.2%), systolic blood pressure (SMD = -0.54; 95% CI: -0.86 ~ -0.22, I2 = 48.6%), and diastolic blood pressure (SMD = -0.56; 95% CI: -0.79 ~ 0.33, I2 = 14.0%) in patients with metabolic syndrome. The results from the sensitivity analysis confirmed that our results were robust. These findings suggest that n-3 PUFA supplementation may serve as a potential dietary supplement for improving lipids and blood pressure in metabolic syndrome. Given the quality of the included studies, further studies are still needed to verify our findings.
Collapse
|
4
|
Drabińska N, Romaszko J, White P. The effect of isocaloric, energy-restrictive, KETOgenic diet on metabolism, inflammation, nutrition deficiencies and oxidative stress in women with overweight and obesity (KETO-MINOX): Study protocol. PLoS One 2023; 18:e0285283. [PMID: 37155645 PMCID: PMC10166534 DOI: 10.1371/journal.pone.0285283] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Accepted: 04/12/2023] [Indexed: 05/10/2023] Open
Abstract
Obesity is considered one of the biggest health problems of the 21st century, becoming a worldwide epidemic, leading to the development of many diseases and increasing the risk of premature death. The first step in reducing body weight is a calorie-restricted diet. To date, there are many different diet types available, including the ketogenic diet (KD) which is recently gaining a lot of attention. However, all the physiological consequences of KD in the human body are not fully understood. Therefore, this study aims to evaluate the effectiveness of an eight-week, isocaloric, energy-restricted, KD as a weight management solution in women with overweight and obesity compared to a standard, balanced diet with the same calorie content. The primary outcome is to evaluate the effects of a KD on body weight and composition. The secondary outcomes are to evaluate the effect of KD-related weight loss on inflammation, oxidative stress, nutritional status, profiles of metabolites in breath, which informs about the metabolic changes in the body, obesity and diabetes-associated parameters, including a lipid profile, status of adipokines and hormones. Notably, in this trial, the long-term effects and efficiency of the KD will be studied. In summary, the proposed study will fill the gap in knowledge about the effects of KD on inflammation, obesity-associated parameters, nutritional deficiencies, oxidative stress and metabolism in a single study. ClinicalTrail.gov registration number: NCT05652972.
Collapse
Affiliation(s)
- Natalia Drabińska
- Department of Chemistry and Biodynamics of Food, Institute of Animal Reproduction and Food Research of Polish Academy of Sciences, Olsztyn, Poland
| | - Jerzy Romaszko
- Department of Family Medicine and Infectious Diseases, University of Warmia and Mazury in Olsztyn, Olsztyn, Poland
| | - Paul White
- Department of Mathematics and Data Science, University of the West of England, Bristol, United Kingdom
| |
Collapse
|
5
|
Portincasa P, Bonfrate L, Wang DQH, Frühbeck G, Garruti G, Di Ciaula A. Novel insights into the pathogenic impact of diabetes on the gastrointestinal tract. Eur J Clin Invest 2022; 52:e13846. [PMID: 35904418 DOI: 10.1111/eci.13846] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/28/2022] [Revised: 06/20/2022] [Accepted: 06/26/2022] [Indexed: 11/09/2022]
Abstract
Type 2 and type 1 diabetes are common endocrine disorders with a progressively increasing incidence worldwide. These chronic, systemic diseases have multiorgan implications, and the whole gastrointestinal (GI) tract represents a frequent target in terms of symptom appearance and interdependent pathophysiological mechanisms. Metabolic alterations linked with diabetic complications, neuropathy and disrupted hormone homeostasis can lead to upper and/or lower GI symptoms in up to 75% of diabetic patients, with multifactorial involvement of the oesophagus, stomach, upper and lower intestine, and of the gallbladder. On the other hand, altered gastrointestinal motility and/or secretions are able to affect glucose and lipid homeostasis in the short and long term. Finally, diabetes has been linked with increased cancer risk at different levels of the GI tract. The presence of GI symptoms and a comprehensive assessment of GI function should be carefully considered in the management of diabetic patients to avoid further complications and to ameliorate the quality of life. Additionally, the presence of gastrointestinal dysfunction should be adequately managed to improve metabolic homeostasis, the efficacy of antidiabetic treatments and secondary prevention strategies.
Collapse
Affiliation(s)
- Piero Portincasa
- Clinica Medica "A. Murri", Department of Biomedical Sciences and Human Oncology, University of Bari Aldo Moro, Bari, Italy
| | - Leonilde Bonfrate
- Clinica Medica "A. Murri", Department of Biomedical Sciences and Human Oncology, University of Bari Aldo Moro, Bari, Italy
| | - David Q-H Wang
- Department of Medicine and Genetics, Division of Gastroenterology and Liver Diseases, Marion Bessin Liver Research Center, Einstein-Mount Sinai Diabetes Research Center, Albert Einstein College of Medicine, Bronx, New York, USA
| | - Gema Frühbeck
- Department of Endocrinology & Nutrition, Clínica Universidad de Navarra, Pamplona, Spain Metabolic Research Laboratory, Clínica Universidad de Navarra, Pamplona, Spain.,CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), ISCIII, Pamplona, Spain.,Obesity and Adipobiology Group, Instituto de Investigación Sanitaria de Navarra (IdiSNA), Pamplona, Spain
| | - Gabriella Garruti
- Department of Emergency and Organ Transplants, Unit of Endocrinology, University of Bari Medical School, Bari, Italy
| | - Agostino Di Ciaula
- Clinica Medica "A. Murri", Department of Biomedical Sciences and Human Oncology, University of Bari Aldo Moro, Bari, Italy
| |
Collapse
|
6
|
Associations of Diet Quality and Heavy Metals with Obesity in Adults: A Cross-Sectional Study from National Health and Nutrition Examination Survey (NHANES). Nutrients 2022; 14:nu14194038. [PMID: 36235691 PMCID: PMC9571327 DOI: 10.3390/nu14194038] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 09/22/2022] [Accepted: 09/22/2022] [Indexed: 11/17/2022] Open
Abstract
A poor diet cannot fully explain the prevalence of obesity. Other environmental factors (e.g., heavy metals) have been reported to be associated with obesity. However, limited evidence is available for the combined effect of these factors on obesity. Therefore, we conducted a cross-sectional study and used the data from the National Health and Examination Survey (2007−2018) to explore the associations between diet quality and heavy metals and obesity. Diet quality was evaluated by the Healthy Eating Index-2015 (HEI-2015) score. Heavy metals included serum cadmium (Cd), lead (Pb), and mercury (Hg). We included 15,959 adults, with 5799 of obesity (body mass index ≥ 30 kg/m2). After adjustment for covariates, every interquartile range increase in HEI-2015 scores, Pb, Cd and Hg was associated with a 35% (odds ratios [OR] = 0.65, 95% confidence interval [CI]: 0.60, 0.70), 11% (OR = 0.89, 95% CI: 0.82, 0.98), 9% (OR = 0.91, 95% CI: 0.87, 0.96), 5% (OR = 0.85, 95% CI: 0.82, 0.89) reduction in risk of peripheral obesity, respectively. In addition, the association between the HEI-2015 scores and peripheral obesity was attenuated by higher levels of heavy metals (All p interaction < 0.05). Results remained similar for abdominal obesity. Our study reveals the distinct effects of a high-quality diet and heavy metals on obesity prevalence, and the beneficial effect of a high-quality diet could be weakened by higher levels of heavy metals.
Collapse
|
7
|
Mohammadi S, Lotfi K, Mirzaei S, Asadi A, Akhlaghi M, Saneei P. Dietary total antioxidant capacity in relation to metabolic health status in overweight and obese adolescents. Nutr J 2022; 21:54. [PMID: 36038871 PMCID: PMC9426225 DOI: 10.1186/s12937-022-00806-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Accepted: 08/25/2022] [Indexed: 11/28/2022] Open
Abstract
Background Although several studies evaluated the relationship between individual dietary antioxidants and metabolic health conditions, data on the association between dietary total antioxidant capacity and metabolic health among children and adolescents is limited. This study investigated the relationship between dietary total antioxidant capacity and metabolic health status in Iranian overweight/obese adolescents. Methods This cross-sectional study was conducted on 203 overweight/obese adolescents. Dietary intakes were evaluated by a validated food frequency questionnaire. Ferric Reducing-Antioxidant Power (FRAP) was considered to indicate dietary total antioxidant capacity. Anthropometric parameters and blood pressure status were measured. Fasting blood samples were obtained to determine circulating insulin, glucose, and lipid profile. Two different methods (modified International Diabetes Federation (IDF) criteria and IDF criteria along with insulin resistance) were applied to classify participants as metabolically healthy obese (MHO) or metabolically unhealthy obese (MUO). Results According to IDF and IDF/HOMA definitions, a total of 79 (38.9%) and 67 (33.0%) adolescents were respectively defined as MUO. Considering IDF criteria, the highest tertile of FRAP was related to lower odds of being MUO in the maximally-adjusted model (OR: 0.40; 95%CI: 0.16–0.96), compared to the lowest tertile. However, based on the IDF/HOMA-IR criteria, no significant relation was found between FRAP and odds of MUO (OR: 0.49; 95%CI: 0.19–1.23) after considering all possible confounders. Conclusions Adolescents with higher intakes of dietary antioxidants have a lower possibility of being MUO based on IDF criteria. However, no substantial relation was found considering HOMA-IR/IDF definition. Further prospective cohort studies need to be done to confirm these findings.
Collapse
Affiliation(s)
- Sobhan Mohammadi
- Department of Community Nutrition, School of Nutrition and Food Science, Nutrition and Food Security Research Center, Students' Research Committee, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Keyhan Lotfi
- Department of Community Nutrition, School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences, Tehran, Iran
| | - Saeideh Mirzaei
- Department of Community Nutrition, School of Nutrition and Food Science, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Ali Asadi
- Department of Exercise Physiology, School of Physical Education and Sport Sciences, University of Tehran, Tehran, Iran
| | - Masoumeh Akhlaghi
- Department of Community Nutrition, School of Nutrition and Food Sciences, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Parvane Saneei
- Department of Community Nutrition, School of Nutrition and Food Science, Nutrition and Food Security Research Center, Isfahan University of Medical Sciences, PO Box 81745-151, Isfahan, Iran.
| |
Collapse
|
8
|
Aiassa V, Del Rosario Ferreira M, Villafañe N, Eugenia D'Alessandro M. α-Linolenic acid rich-chia seed modulates visceral adipose tissue collagen deposition, lipolytic enzymes expression, insulin signaling and GLUT-4 levels in a diet-induced adiposity rodent model. Food Res Int 2022; 156:111164. [PMID: 35651030 DOI: 10.1016/j.foodres.2022.111164] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 02/28/2022] [Accepted: 03/15/2022] [Indexed: 11/19/2022]
Abstract
Given obesity and its associated metabolic disorders have reached epidemic proportions, the study of therapeutic strategies targeting white adipose tissue (WAT) are of main research interest. We previously shown that α-linolenic acid-rich chia seed was able to ameliorate a wide range of metabolic disorders including body fat accretion in sucrose-rich diet (SRD)-fed rats, an experimental model of visceral adiposity and insulin resistance. However, the mechanisms involved are not fully clarified. The aim of this study was to evaluate the effect of chia seed administration upon WAT remodeling and key enzymes that controls lipolysis, insulin signaling (tAKT, pAKT), and GLUT-4 levels in different visceral fat pad depots (epididymal -eWAT- and retroperitoneal -rWAT- adipose tissues) of SRD-fed rats. Results showed that chia seed reduces adipocytes hypertrophy, the increased lipid content and collagen deposition in both WAT. These changes were accompanied by a significant reduction of HSL and ATGL protein levels in eWAT and HSL protein levels in rWAT. Moreover, chia seed restored the altered expression pattern of the pAKT observed in SRD-fed rats, and modulated GLUT-4 levels. Chia seed could be a dietary intervention of great relevance with potential beneficial effects in the management of body fat excess and WAT function.
Collapse
Affiliation(s)
- Victoria Aiassa
- Laboratorio de Estudio de Enfermedades Metabólicas relacionadas con la Nutrición. Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Ciudad Universitaria, Santa Fe, Argentina
| | - María Del Rosario Ferreira
- Laboratorio de Estudio de Enfermedades Metabólicas relacionadas con la Nutrición. Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Ciudad Universitaria, Santa Fe, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Argentina
| | - Noelia Villafañe
- Departamento de Morfología. Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Ciudad Universitaria, Santa Fe, Argentina
| | - María Eugenia D'Alessandro
- Laboratorio de Estudio de Enfermedades Metabólicas relacionadas con la Nutrición. Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Ciudad Universitaria, Santa Fe, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Argentina.
| |
Collapse
|
9
|
Chlorophyll Inhibits the Digestion of Soybean Oil in Simulated Human Gastrointestinal System. Nutrients 2022; 14:nu14091749. [PMID: 35565719 PMCID: PMC9101154 DOI: 10.3390/nu14091749] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 04/08/2022] [Accepted: 04/11/2022] [Indexed: 11/17/2022] Open
Abstract
Nowadays, much available processed and highly palatable food such as cream products and fried and convenient food, which usually showed a high energy density, had caused an increase in the intake of dietary lipids, further leading to significant growth in the prevalence of obesity. Chlorophyll, widespread in fruits and vegetables, was proven to have beneficial effects on alleviating obesity. This study investigated the effects of chlorophyll on the digestive characteristics of lipids under in vitro simulated adult and infant gastrointestinal systems. Chlorophyll decreased the release rate of free fatty acid (FFA) during in vitro adult and infant intestinal digestion by 69.2% and 60.0%, respectively. Meanwhile, after gastrointestinal digestion, chlorophyll changed the FFA composition of soybean oil emulsion and increased the particle size of oil droplets. Interestingly, with the addition of chlorophyll, the activity of pancreatic lipase was inhibited during digestion, which may be related to pheophytin (a derivative of chlorophyll after gastric digestion). Therefore, the results obtained from isothermal titration calorimetry and molecular docking further elucidated that pheophytin could bind to pancreatic lipase with a strong affinity of (4.38 ± 0.76) × 107 M-1 (Ka), while the binding site was amino acid residue Trp253. The investigation not only explained why chlorophyll inhibited digestive enzyme activity to reduce lipids digestion but also provided exciting opportunities for developing novel chlorophyll-based healthy products for dietary application in preventing obesity.
Collapse
|
10
|
Dietary Patterns and Their Association with Metabolic Syndrome and Their Components in Middle-Class Adults from Damascus, Syria: A Cross-Sectional Study. J Nutr Metab 2022; 2022:5621701. [PMID: 35371568 PMCID: PMC8970872 DOI: 10.1155/2022/5621701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 02/17/2022] [Accepted: 02/26/2022] [Indexed: 11/17/2022] Open
Abstract
Prior to the 2016 crisis in Syria, a study conducted in Aleppo found the prevalence of metabolic syndrome to be 39.6%, which is known to be favoured by age and poor lifestyle (including physical inactivity and the consumption of hypercaloric foods, rich in saturated fats, concentrated carbohydrates, and salt), so the objective of this study was to identify the association of different dietary patterns with metabolic syndrome and their components. A cross-sectional analytical study was carried out in 104 adults aged 40 to 65 years who did not suffer from previous diseases. The sample was chosen from middle-class citizens of the city of Damascus who were contacted by telephone; they were explained about the study, the information that would be collected, and the studies that should be carried out in the clinical analysis laboratory of the Private University of Syria. A nutritional and food study was carried out using previously validated forms containing 62 items in which the food intake of the participants was studied. We apply principal component analysis and factor analysis to detect nutritional components and dietary patterns. Dietary pattern 3 (foods with simple carbohydrates and saturated fat) increased glucose levels, while dietary patterns 1 (high intake of calories, protein, and saturated fat) and 5 (fast food) increased serum triglyceride levels. In addition, pattern 1 (carbonated beverages, grains, chicken, and meat) was associated with elevated LDL cholesterol levels and the presence of the metabolic syndrome. The study findings suggest that the presence of metabolic syndrome and its components are associated with dietary patterns high in calories, protein, simple carbohydrates, and saturated fat.
Collapse
|
11
|
Abachi S, Pilon G, Marette A, Bazinet L, Beaulieu L. Beneficial effects of fish and fish peptides on main metabolic syndrome associated risk factors: Diabetes, obesity and lipemia. Crit Rev Food Sci Nutr 2022; 63:7896-7944. [PMID: 35297701 DOI: 10.1080/10408398.2022.2052261] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
The definition of metabolic syndrome (MetS) fairly varies from one to another guideline and health organization. Per description of world health organization, occurrence of hyperinsulinemia or hyperglycemia in addition to two or more factors of dyslipidemia, hypoalphalipoproteinemia, hypertension and or large waist circumference factors would be defined as MetS. Conventional therapies and drugs, commonly with adverse effects, are used to treat these conditions and diseases. Nonetheless, in the recent decades scientific community has focused on the discovery of natural compounds to diminish the side effects of these medications. Among many available bioactives, biologically active peptides have notable beneficial effects on the management of diabetes, obesity, hypercholesterolemia, and hypertension. Marine inclusive of fish peptides have exerted significant bioactivities in different experimental in-vitro, in-vivo and clinical settings. This review exclusively focuses on studies from the recent decade investigating hypoglycemic, hypolipidemic, hypercholesterolemic and anti-obesogenic fish and fish peptides. Related extraction, isolation, and purification methodologies of anti-MetS fish biopeptides are reviewed herein for comparison purposes only. Moreover, performance of biopeptides in simulated gastrointestinal environment and structure-activity relationship along with absorption, distribution, metabolism, and excretion properties of selected oligopeptides have been discussed, in brief, to broaden the knowledge of readers on the design and discovery trends of anti-MetS compounds.Supplemental data for this article is available online at https://doi.org/10.1080/10408398.2022.2052261 .
Collapse
Affiliation(s)
- Soheila Abachi
- Institute of Nutrition and Functional Foods (INAF), Université Laval, Quebec, Quebec, Canada
- Department of Food Science, Faculty of Agricultural and Food Sciences, Université Laval, Quebec, Quebec, Canada
| | - Geneviève Pilon
- Institute of Nutrition and Functional Foods (INAF), Université Laval, Quebec, Quebec, Canada
- Department of Medicine, Faculty of Medicine, Cardiology Axis of the Quebec Heart and Lung Institute, Quebec, Quebec, Canada
| | - André Marette
- Institute of Nutrition and Functional Foods (INAF), Université Laval, Quebec, Quebec, Canada
- Department of Medicine, Faculty of Medicine, Cardiology Axis of the Quebec Heart and Lung Institute, Quebec, Quebec, Canada
| | - Laurent Bazinet
- Institute of Nutrition and Functional Foods (INAF), Université Laval, Quebec, Quebec, Canada
- Department of Food Science, Faculty of Agricultural and Food Sciences, Université Laval, Quebec, Quebec, Canada
- Laboratory of Food Processing and ElectroMembrane Processes (LTAPEM), Université Laval, Quebec, Quebec, Canada
| | - Lucie Beaulieu
- Institute of Nutrition and Functional Foods (INAF), Université Laval, Quebec, Quebec, Canada
- Department of Food Science, Faculty of Agricultural and Food Sciences, Université Laval, Quebec, Quebec, Canada
| |
Collapse
|
12
|
Vidal-Ostos F, Ramos-Lopez O, Blaak EE, Astrup A, Martinez JA. The triglyceride-glucose index as an adiposity marker and a predictor of fat loss induced by a low-calorie diet. Eur J Clin Invest 2022; 52:e13674. [PMID: 34453322 DOI: 10.1111/eci.13674] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 07/08/2021] [Accepted: 07/12/2021] [Indexed: 01/16/2023]
Abstract
BACKGROUND This study aimed to investigate the putative role of the triglyceride-glucose index (TyG index) computed as ln[TG (mg/dl) × glucose (mg/dl)/2] and derived proxies as predictors of adiposity and weight loss changes after a low-calorie diet (LCD) intervention. METHODS A total of 744 adult participants from the multicentre DIOGenes intervention study were prescribed a LCD (800 kcal/day) during 8 weeks. Body composition and fat content at baseline and after 8 weeks were estimated by DEXA/BIA. A multivariate analysis approach was used to estimate the difference in ΔWeight1-2 (kg), ΔBMI1-2 (kg/m2 ) or ΔFat1-2 (%) between the basal value (point 1) and after 8 weeks following a LCD (point 2), respectively. The TyG index at baseline (TyG1 ), after following the LCD for 8 weeks (TyG2 ) or the TyG index differences between both time points (ΔTyG1-2 ) were analysed as predictors of weight and fat changes. RESULTS TyG1 was associated with ΔWeight1-2 (kg) and ΔBMI1-2 (kg/m2 ), with β = 0.812 (p = .017) and β = 0.265 (p = .018), respectively. Also, TyG2 values were inversely related to ΔFat1-2 (%), β = -1.473 (p = .015). Moreover, ΔTyG1-2 was associated with ΔWeight1-2 (kg) and ΔFat1-2 (%), β = 0.689 (p = .045) and β = 1.764 (p = .002), respectively. Furthermore, an association between TyG2 and resistance to fat loss was found (p = .015). CONCLUSION TyG1 index is a good predictor of weight loss induced by LCD. Moreover, TyG2 was closely related to resistance to fat loss, while ΔTyG1-2 values were positively associated with body fat changes. Therefore, TyG index and derived estimations could be used as markers of individualized responses to energy restriction and a surrogate of body composition outcomes in clinical/epidemiological settings in obesity conditions.
Collapse
Affiliation(s)
| | - Omar Ramos-Lopez
- Medicine and Psychology School, Autonomous University of Baja California, Tijuana, Mexico
| | - Ellen E Blaak
- Department of Human Biology, NUTRIM, School for Nutrition and Translational Research in Metabolism, Maastricht University, Maastricht, the Netherlands
| | - Arne Astrup
- Department of Nutrition, Exercise and Sports, Faculty of Science, University of Copenhagen, Copenhagen, Denmark
| | - Jose Alfredo Martinez
- Navarra's Health Research Institute (IdiSNA), Pamplona, Spain.,CIBERobn Physiopathology of Obesity and Nutrition, Carlos III Health Institute, Madrid, Spain.,Precision Nutrition Program, IMDEA Food Institute, CEI UAM + CSIC, Madrid, Spain
| |
Collapse
|
13
|
Mehrazad Saber Z, Takeuchi Y, Sawada Y, Aita Y, Ho MH, Karkoutly S, Tao D, Katabami K, Ye C, Murayama Y, Shikama A, Masuda Y, Izumida Y, Miyamoto T, Matsuzaka T, Sugasawa T, Takekoshi K, Kawakami Y, Shimano H, Yahagi N. High protein diet-induced metabolic changes are transcriptionally regulated via KLF15-dependent and independent pathways. Biochem Biophys Res Commun 2021; 582:35-42. [PMID: 34688045 DOI: 10.1016/j.bbrc.2021.10.027] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 10/08/2021] [Accepted: 10/12/2021] [Indexed: 01/11/2023]
Abstract
High protein diet (HPD) is an affordable and positive approach in prevention and treatment of many diseases. It is believed that transcriptional regulation is responsible for adaptation after HPD feeding and Kruppel-like factor 15 (KLF15), a zinc finger transcription factor that has been proved to perform transcriptional regulation over amino acid, lipid and glucose metabolism, is known to be involved at least in part in this HPD response. To gain more insight into molecular mechanisms by which HPD controls expressions of genes involved in amino acid metabolism in the liver, we performed RNA-seq analysis of mice fed HPD for a short period (3 days). Compared to a low protein diet, HPD feeding significantly increased hepatic expressions of enzymes involved in the breakdown of all the 20 amino acids. Moreover, using KLF15 knockout mice and in vivo Ad-luc analytical system, we were able to identify Cth (cystathionine gamma-lyase) as a new target gene of KLF15 transcription as well as Ast (aspartate aminotransferase) as an example of KLF15-independent gene despite its remarkable responsiveness to HPD. These findings provide us with a clue to elucidate the entire transcriptional regulatory mechanisms of amino acid metabolic pathways.
Collapse
Affiliation(s)
- Zahra Mehrazad Saber
- Nutrigenomics Research Group, Faculty of Medicine, University of Tsukuba, Ibaraki, Japan; Department of Internal Medicine (Endocrinology and Metabolism), Faculty of Medicine, University of Tsukuba, Ibaraki, Japan
| | - Yoshinori Takeuchi
- Nutrigenomics Research Group, Faculty of Medicine, University of Tsukuba, Ibaraki, Japan; Department of Internal Medicine (Endocrinology and Metabolism), Faculty of Medicine, University of Tsukuba, Ibaraki, Japan
| | - Yoshikazu Sawada
- Nutrigenomics Research Group, Faculty of Medicine, University of Tsukuba, Ibaraki, Japan
| | - Yuichi Aita
- Nutrigenomics Research Group, Faculty of Medicine, University of Tsukuba, Ibaraki, Japan; Department of Internal Medicine (Endocrinology and Metabolism), Faculty of Medicine, University of Tsukuba, Ibaraki, Japan
| | - Man Hei Ho
- Nutrigenomics Research Group, Faculty of Medicine, University of Tsukuba, Ibaraki, Japan; Department of Internal Medicine (Endocrinology and Metabolism), Faculty of Medicine, University of Tsukuba, Ibaraki, Japan
| | - Samia Karkoutly
- Nutrigenomics Research Group, Faculty of Medicine, University of Tsukuba, Ibaraki, Japan; Department of Internal Medicine (Endocrinology and Metabolism), Faculty of Medicine, University of Tsukuba, Ibaraki, Japan
| | - Duhan Tao
- Nutrigenomics Research Group, Faculty of Medicine, University of Tsukuba, Ibaraki, Japan; Department of Internal Medicine (Endocrinology and Metabolism), Faculty of Medicine, University of Tsukuba, Ibaraki, Japan
| | - Kyoka Katabami
- Nutrigenomics Research Group, Faculty of Medicine, University of Tsukuba, Ibaraki, Japan; Department of Internal Medicine (Endocrinology and Metabolism), Faculty of Medicine, University of Tsukuba, Ibaraki, Japan
| | - Chen Ye
- Nutrigenomics Research Group, Faculty of Medicine, University of Tsukuba, Ibaraki, Japan; Department of Internal Medicine (Endocrinology and Metabolism), Faculty of Medicine, University of Tsukuba, Ibaraki, Japan
| | - Yuki Murayama
- Nutrigenomics Research Group, Faculty of Medicine, University of Tsukuba, Ibaraki, Japan; Department of Internal Medicine (Endocrinology and Metabolism), Faculty of Medicine, University of Tsukuba, Ibaraki, Japan
| | - Akito Shikama
- Nutrigenomics Research Group, Faculty of Medicine, University of Tsukuba, Ibaraki, Japan; Department of Internal Medicine (Endocrinology and Metabolism), Faculty of Medicine, University of Tsukuba, Ibaraki, Japan
| | - Yukari Masuda
- Nutrigenomics Research Group, Faculty of Medicine, University of Tsukuba, Ibaraki, Japan
| | - Yoshihiko Izumida
- Nutrigenomics Research Group, Faculty of Medicine, University of Tsukuba, Ibaraki, Japan
| | - Takafumi Miyamoto
- Department of Internal Medicine (Endocrinology and Metabolism), Faculty of Medicine, University of Tsukuba, Ibaraki, Japan
| | - Takashi Matsuzaka
- Department of Internal Medicine (Endocrinology and Metabolism), Faculty of Medicine, University of Tsukuba, Ibaraki, Japan
| | - Takehito Sugasawa
- Department of Internal Medicine (Endocrinology and Metabolism), Faculty of Medicine, University of Tsukuba, Ibaraki, Japan
| | - Kazuhiro Takekoshi
- Department of Internal Medicine (Endocrinology and Metabolism), Faculty of Medicine, University of Tsukuba, Ibaraki, Japan
| | - Yasushi Kawakami
- Department of Internal Medicine (Endocrinology and Metabolism), Faculty of Medicine, University of Tsukuba, Ibaraki, Japan
| | - Hitoshi Shimano
- Department of Internal Medicine (Endocrinology and Metabolism), Faculty of Medicine, University of Tsukuba, Ibaraki, Japan
| | - Naoya Yahagi
- Nutrigenomics Research Group, Faculty of Medicine, University of Tsukuba, Ibaraki, Japan; Department of Internal Medicine (Endocrinology and Metabolism), Faculty of Medicine, University of Tsukuba, Ibaraki, Japan.
| |
Collapse
|
14
|
Ghanbari M, Pourreza S, Mohammadpour S, Bazshahi E, Akbarzade Z, Djafarian K, Clark CCT, Shab-Bidar S. The association between meal specific low carbohydrate diet score and cardiometabolic risk factors: A cross-sectional study of Iranian adults. Int J Clin Pract 2021; 75:e14826. [PMID: 34492138 DOI: 10.1111/ijcp.14826] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/05/2021] [Revised: 08/27/2021] [Accepted: 09/05/2021] [Indexed: 11/29/2022] Open
Abstract
BACKGROUND AND AIM Since evidence regarding low-CHO diet and cardiometabolic risk factors is controversial, this study aimed to assess the relation between low-CHO diet score and metabolic syndrome (MetS) and cardiometabolic risk factors among a group of Iranian adults. METHODS This cross-sectional study was conducted with 840 subjects with the age range of 20-65 years. Dietary intakes were assessed by completing three 24-hour recalls. Total, animal- and vegetable-based low-CHO diet score were calculated. We used logistic regression with different models to determine whether there were relationships between low-CHO diet score and MetS and MetS components. RESULTS We found that there was no significant association between low-CHO diet, animal-based and vegetable-based low-CHO diet scores and risk of MetS in three meals. Except for the animal-based low-CHO diet score, which was significantly associated with general obesity at lunch meal (OR: 1.17, 95% CI: 0.76-1.82, P = .03). There were a significant association between low-CHO diet and high-density lipoprotein cholesterol (HDL-C) levels in lunch meal (OR: 1.50, 95% CI: 1.06-2.14, P = .03). Vegetable-based low-CHO diet score was associated with a lower risk of elevated TG in lunch meal in the fully adjusted model (OR: 0.59, 95% CI: 0.39-0.90, P = .04). CONCLUSION Diets with lower amounts of carbohydrate and higher contents of fat and protein were not significantly associated with the risk for MetS in Iranian adults. Only animal-based low-CHO diet score was significantly associated with general obesity at lunch meal.
Collapse
Affiliation(s)
- Mahtab Ghanbari
- Department of Community Nutrition, School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences (TUMS), Tehran, Iran
| | - Sanaz Pourreza
- Department of Community Nutrition, School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences (TUMS), Tehran, Iran
| | - Saba Mohammadpour
- Department of Community Nutrition, School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences (TUMS), Tehran, Iran
| | - Elham Bazshahi
- Department of Community Nutrition, School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences (TUMS), Tehran, Iran
| | - Zahra Akbarzade
- Department of Community Nutrition, School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences (TUMS), Tehran, Iran
| | - Kurosh Djafarian
- Department of Clinical Nutrition, School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences (TUMS), Tehran, Iran
| | - Cain C T Clark
- Centre for Sport, Exercise and Life Sciences, Coventry University, Coventry, UK
| | - Sakineh Shab-Bidar
- Department of Community Nutrition, School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences (TUMS), Tehran, Iran
| |
Collapse
|
15
|
Navas-Carretero S, San-Cristobal R, Siig Vestentoft P, Brand-Miller JC, Jalo E, Westerterp-Plantenga M, Simpson EJ, Handjieva-Darlenska T, Stratton G, Huttunen-Lenz M, Lam T, Muirhead R, Poppitt S, Pietiläinen KH, Adam T, Taylor MA, Handjiev S, McNarry MA, Hansen S, Brodie S, Silvestre MP, Macdonald IA, Boyadjieva N, Mackintosh KA, Schlicht W, Liu A, Larsen TM, Fogelholm M, Raben A, Martinez JA. Appraisal of Triglyceride-Related Markers as Early Predictors of Metabolic Outcomes in the PREVIEW Lifestyle Intervention: A Controlled Post-hoc Trial. Front Nutr 2021; 8:733697. [PMID: 34790686 PMCID: PMC8592084 DOI: 10.3389/fnut.2021.733697] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Accepted: 09/24/2021] [Indexed: 12/19/2022] Open
Abstract
Background: Individuals with pre-diabetes are commonly overweight and benefit from dietary and physical activity strategies aimed at decreasing body weight and hyperglycemia. Early insulin resistance can be estimated via the triglyceride glucose index {TyG = Ln [TG (mg/dl) × fasting plasma glucose (FPG) (mg/dl)/2]} and the hypertriglyceridemic-high waist phenotype (TyG-waist), based on TyG x waist circumference (WC) measurements. Both indices may be useful for implementing personalized metabolic management. In this secondary analysis of a randomized controlled trial (RCT), we aimed to determine whether the differences in baseline TyG values and TyG-waist phenotype predicted individual responses to type-2 diabetes (T2D) prevention programs. Methods: The present post-hoc analyses were conducted within the Prevention of Diabetes through Lifestyle intervention and population studies in Europe and around the world (PREVIEW) study completers (n = 899), a multi-center RCT conducted in eight countries (NCT01777893). The study aimed to reduce the incidence of T2D in a population with pre-diabetes during a 3-year randomized intervention with two sequential phases. The first phase was a 2-month weight loss intervention to achieve ≥8% weight loss. The second phase was a 34-month weight loss maintenance intervention with two diets providing different amounts of protein and different glycemic indices, and two physical activity programs with different exercise intensities in a 2 x 2 factorial design. On investigation days, we assessed anthropometrics, glucose/lipid metabolism markers, and diet and exercise questionnaires under standardized procedures. Results: Diabetes-related markers improved during all four lifestyle interventions. Higher baseline TyG index (p < 0.001) was associated with greater reductions in body weight, fasting glucose, and triglyceride (TG), while a high TyG-waist phenotype predicted better TG responses, particularly in those randomized to physical activity (PA) of moderate intensity. Conclusions: Two novel indices of insulin resistance (TyG and TyG-waist) may allow for a more personalized approach to avoiding progression to T2D. Clinical Trial Registration: https://clinicaltrials.gov/ct2/show/NCT01777893 reference, identifier: NCT01777893.
Collapse
Affiliation(s)
- Santiago Navas-Carretero
- Center for Nutrition Research, University of Navarra, Pamplona, Spain.,Centro de Investigación Biomédica en Red (CIBER) obn, Instituto de Salud Carlos III, Madrid, Spain.,IdiSNA, Navarra Institute for Health Research, Pamplona, Spain
| | | | - Pia Siig Vestentoft
- Department of Nutrition, Exercise and Sports, Faculty of Science, University of Copenhagen, Copenhagen, Denmark
| | - Jennie C Brand-Miller
- School of Life and Environmental Sciences and Charles Perkins Centre, The University of Sydney, Sydney, NSW, Australia
| | - Elli Jalo
- Department of Food and Nutrition, University of Helsinki, Helsinki, Finland
| | - Margriet Westerterp-Plantenga
- Department of Nutrition and Movement Sciences, NUTRIM, School of Nutrition and Translational Research in Metabolism, Maastricht University, Maastricht, Netherlands
| | - Elizabeth J Simpson
- Division of Physiology, Pharmacology and Neuroscience, MRC/ARUK Centre for Musculoskeletal Ageing Research, ARUK Centre for Sport, Exercise and Osteoarthritis, National Institute for Health Research (NIHR) Nottingham Biomedical Research Centre, School of Life Sciences, Queen's Medical Centre, Nottingham, United Kingdom
| | | | - Gareth Stratton
- Applied Sports Technology, Exercise and Medicine (A-STEM) Research Centre, College of Engineering, Swansea, United Kingdom
| | - Maija Huttunen-Lenz
- Institute of Nursing Science, University of Education, Schwäbisch Gmünd, Germany
| | - Tony Lam
- NetUnion Sarl, Lausanne, Switzerland
| | - Roslyn Muirhead
- School of Life and Environmental Sciences and Charles Perkins Centre, The University of Sydney, Sydney, NSW, Australia
| | - Sally Poppitt
- Human Nutrition Unit, Department of Medicine, School of Biological Sciences, University of Auckland, Auckland, New Zealand
| | - Kirsi H Pietiläinen
- Obesity Research Unit, Diabetes and Obesity Research Program, University of Helsinki and Endocrinology, Helsinki, Finland.,Abdominal Center, Helsinki University Hospital and University of Helsinki, Helsinki, Finland
| | - Tanja Adam
- Department of Nutrition and Movement Sciences, NUTRIM, School of Nutrition and Translational Research in Metabolism, Maastricht University, Maastricht, Netherlands
| | - Moira A Taylor
- Division of Physiology, Pharmacology and Neuroscience, MRC/ARUK Centre for Musculoskeletal Ageing Research, ARUK Centre for Sport, Exercise and Osteoarthritis, National Institute for Health Research (NIHR) Nottingham Biomedical Research Centre, School of Life Sciences, Queen's Medical Centre, Nottingham, United Kingdom
| | - Svetoslav Handjiev
- Department of Pharmacology and Toxicology, Medical University of Sofia, Sofia, Bulgaria
| | - Melitta A McNarry
- Applied Sports Technology, Exercise and Medicine (A-STEM) Research Centre, College of Engineering, Swansea, United Kingdom
| | - Sylvia Hansen
- Cologne Center for Ethics, Rights, Economics, and Social Sciences of Health, University of Cologne, Cologne, Germany
| | - Shannon Brodie
- School of Life and Environmental Sciences and Charles Perkins Centre, The University of Sydney, Sydney, NSW, Australia
| | - Marta P Silvestre
- Human Nutrition Unit, Department of Medicine, School of Biological Sciences, University of Auckland, Auckland, New Zealand.,Center for Health Technology Services Research (CINTESIS), NOVA Medical School, NMS, Universidade Nova de Lisboa, Lisboa, Portugal
| | - Ian A Macdonald
- Division of Physiology, Pharmacology and Neuroscience, MRC/ARUK Centre for Musculoskeletal Ageing Research, ARUK Centre for Sport, Exercise and Osteoarthritis, National Institute for Health Research (NIHR) Nottingham Biomedical Research Centre, School of Life Sciences, Queen's Medical Centre, Nottingham, United Kingdom
| | - Nadka Boyadjieva
- Department of Pharmacology and Toxicology, Medical University of Sofia, Sofia, Bulgaria
| | - Kelly A Mackintosh
- Applied Sports Technology, Exercise and Medicine (A-STEM) Research Centre, College of Engineering, Swansea, United Kingdom
| | - Wolfgang Schlicht
- Exercise and Health Sciences, University of Stuttgart, Nobelstraße, Germany
| | - Amy Liu
- Human Nutrition Unit, Department of Medicine, School of Biological Sciences, University of Auckland, Auckland, New Zealand
| | - Thomas M Larsen
- Department of Nutrition, Exercise and Sports, Faculty of Science, University of Copenhagen, Copenhagen, Denmark
| | - Mikael Fogelholm
- Department of Food and Nutrition, University of Helsinki, Helsinki, Finland
| | - Anne Raben
- Department of Nutrition, Exercise and Sports, Faculty of Science, University of Copenhagen, Copenhagen, Denmark.,Steno Diabetes Centre Copenhagen, Gentofte, Denmark
| | - J Alfredo Martinez
- Center for Nutrition Research, University of Navarra, Pamplona, Spain.,Centro de Investigación Biomédica en Red (CIBER) obn, Instituto de Salud Carlos III, Madrid, Spain.,IdiSNA, Navarra Institute for Health Research, Pamplona, Spain
| |
Collapse
|
16
|
Jayawardena R, Sooriyaarachchi P, Misra A. Abdominal obesity and metabolic syndrome in South Asians: prevention and management. Expert Rev Endocrinol Metab 2021; 16:339-349. [PMID: 34586004 DOI: 10.1080/17446651.2021.1982381] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Accepted: 09/15/2021] [Indexed: 12/12/2022]
Abstract
INTRODUCTION The prevalence of metabolic syndrome (MetS) and abdominal obesity are escalating in South Asian countries. It is well established that MetS is associated with increased risk for both Type 2 diabetes mellitus and cardiovascular diseases. South Asians have an increased risk of MetS due to a variety of factors including unhealthy lifestyle and their unique body composition. AREAS COVERED In this review, we discuss the prevalence, associated risk factors, and evidence-based preventive and curative strategies for MetS and abdominal obesity in South Asians. A literature search through PubMed®, Web of Science®, and Scopus® was performed for studies published before 31st April 2021. A combination of the following keywords was used with the names of the individual South Asian countries: 'metabolic syndrome,' 'syndrome X,' 'abdominal obesity,' 'central obesity,' 'visceral obesity,' 'prevention,' and 'management.' EXPERT OPINION According to current evidence, MetS and abdominal obesity are highly prevalent among South Asians. Several risk factors, such as lifestyle, socio-demography, cultural, and body composition, are associated with MetS. Limited research shows culturally tailored lifestyle interventions are effective in preventing and managing MetS and abdominal obesity among South Asians.
Collapse
Affiliation(s)
- Ranil Jayawardena
- Department of Physiology, Faculty of Medicine, University of Colombo, Colombo, Sri Lanka
- School of Exercise & Nutrition Sciences, Queensland University of Technology, Brisbane, Queensland, Australia
| | - Piumika Sooriyaarachchi
- School of Exercise & Nutrition Sciences, Queensland University of Technology, Brisbane, Queensland, Australia
| | - Anoop Misra
- Fortis-C-DOC Centre of Excellence for Diabetes, Metabolic Diseases and Endocrinology, Chirag Enclave, New Delhi, India
| |
Collapse
|
17
|
Wade KH, Clifford L, Simpkin AJ, Beynon R, Birch L, Northstone K, Matthews S, Davey Smith G, Hamilton-Shield J, Timpson NJ. Piloting the objective measurement of eating weight and speed at a population scale: a nested study within the Avon Longitudinal Study of Parents and Children. Wellcome Open Res 2021; 5:185. [PMID: 34195383 PMCID: PMC8215563 DOI: 10.12688/wellcomeopenres.16091.3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/09/2021] [Indexed: 11/24/2022] Open
Abstract
Background: Effective measurement and adaption of eating behaviours (e.g., eating speed) may improve weight loss and weight over time. We assessed whether the Mandometer, a portable weighing scale connected to a computer that generates a graph of food removal rate from the plate to which it is connected, together with photo-imaging of food, might prove a less intensive and more economical approach to measuring eating behaviours at large scale. Methods: We deployed the Mandometer in the home environment to measure main meals over three days of 95 21-year-old participants of the Avon Longitudinal Study of Parents and Children. We used multi-level models to describe food weight and eating speed and, as exemplar analyses, examined the relationship of eating behaviours with body mass index (BMI), dietary composition (fat content) and genotypic variation (the FTO rs9939609 variant). Using this pilot data, we calculated the sample size required to detect differences in food weight and eating speed between groups of an exposure variable. Results: All participants were able to use the Mandometer effectively after brief training. In exemplar analyses, evidence suggested that obese participants consumed more food than those of "normal" weight (i.e., BMI 19 to <25 kg/m 2) and that A/A FTO homozygotes (an indicator of higher weight) ate at a faster rate compared to T/T homozygotes. There was also some evidence that those with a high-fat diet consumed less food than those with a low-fat diet, but little evidence that individuals with medium- or high-fat diets ate faster. Conclusions: We demonstrated the potential for assessing eating weight and speed in a short-term home setting and combining this with information in a research setting. This study may offer the opportunity to design interventions tailored for at-risk eating behaviours, offering advantages over the "one size fits all" approach of current failing obesity interventions.
Collapse
Affiliation(s)
- Kaitlin H. Wade
- Medical Research Council (MRC) Integrative Epidemiology Unit, University of Bristol, Bristol, BS8 2BN, UK
- Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, BS8 2BN, UK
| | - Laura Clifford
- Department of Paediatric Respiratory Medicine, Bristol Royal Hospital for Children, Bristol, BS2 8BJ, UK
| | - Andrew J. Simpkin
- Medical Research Council (MRC) Integrative Epidemiology Unit, University of Bristol, Bristol, BS8 2BN, UK
- School of Mathematics, Statistics and Applied Mathematics, National University of Ireland, Galway, H91 H3CY, Ireland
| | - Rhona Beynon
- Medical Research Council (MRC) Integrative Epidemiology Unit, University of Bristol, Bristol, BS8 2BN, UK
- Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, BS8 2BN, UK
| | - Laura Birch
- NIHR Bristol Biomedical Research Centre Nutrition Theme, University of Bristol, University Hospitals Bristol Education & Research Centre, Bristol, BS1 3NU, UK
| | - Kate Northstone
- Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, BS8 2BN, UK
| | - Sarah Matthews
- Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, BS8 2BN, UK
| | - George Davey Smith
- Medical Research Council (MRC) Integrative Epidemiology Unit, University of Bristol, Bristol, BS8 2BN, UK
- Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, BS8 2BN, UK
| | - Julian Hamilton-Shield
- NIHR Bristol Biomedical Research Centre Nutrition Theme, University of Bristol, University Hospitals Bristol Education & Research Centre, Bristol, BS1 3NU, UK
| | - Nicholas J. Timpson
- Medical Research Council (MRC) Integrative Epidemiology Unit, University of Bristol, Bristol, BS8 2BN, UK
- Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, BS8 2BN, UK
| |
Collapse
|
18
|
Trans-palmitoleic acid reduces adiposity via increased lipolysis in a rodent model of diet-induced obesity. Br J Nutr 2021; 127:801-809. [PMID: 33958011 DOI: 10.1017/s0007114521001501] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Obesity is defined as increased adiposity, which leads to metabolic disease. The growth of adipose tissue depends on its capacity to expand through hyperplasia or hypertrophy, in order to buffer energy surplus. Also, during the establishment of obesity, adipose tissue expansion reflects adipose lipid metabolism (lipogenesis and/or lipolysis). It is well known that dietary factors can modify lipid metabolism promoting or preventing the development of metabolic abnormalities that concur with obesity. Trans-palmitoleic acid (TP), a biomarker of dairy consumption, has been associated with reduced adiposity in clinical studies. Thus, we aimed to evaluate the effect of TP over adiposity and lipid metabolism-related genes in a rodent model of diet-induced obesity (DIO). To fulfil this aim, we fed C57BL/6 mice with a Control or a High-Fat diet, added with or without TP (3 g/kg diet), during 11 weeks. Body weight and food intake were monitored, fat pads were weighted, histology of visceral adipose tissue was analysed and lipid metabolism-related gene expression was explored by qPCR. Results show that TP consumption prevented weight gain induced by high-fat diet, reduced visceral adipose tissue weight and adipocyte size, while increasing the expression of lipolytic molecules. In conclusion, we show for the first time that TP influences adipose tissue metabolism, specifically lipolysis, resulting in decreased adiposity and reduced adipocyte size in a DIO mice model.
Collapse
|
19
|
Nychyk O, Barton W, Rudolf AM, Boscaini S, Walsh A, Bastiaanssen TFS, Giblin L, Cormican P, Chen L, Piotrowicz Y, Derous D, Fanning Á, Yin X, Grant J, Melgar S, Brennan L, Mitchell SE, Cryan JF, Wang J, Cotter PD, Speakman JR, Nilaweera KN. Protein quality and quantity influence the effect of dietary fat on weight gain and tissue partitioning via host-microbiota changes. Cell Rep 2021; 35:109093. [PMID: 33979605 DOI: 10.1016/j.celrep.2021.109093] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Revised: 03/08/2021] [Accepted: 04/16/2021] [Indexed: 11/30/2022] Open
Abstract
We investigated how protein quantity (10%-30%) and quality (casein and whey) interact with dietary fat (20%-55%) to affect metabolic health in adult mice. Although dietary fat was the main driver of body weight gain and individual tissue weight, high (30%) casein intake accentuated and high whey intake reduced the negative metabolic aspects of high fat. Jejunum and liver transcriptomics revealed increased intestinal permeability, low-grade inflammation, altered lipid metabolism, and liver dysfunction in casein-fed but not whey-fed animals. These differential effects were accompanied by altered gut size and microbial functions related to amino acid degradation and lipid metabolism. Fecal microbiota transfer confirmed that the casein microbiota increases and the whey microbiota impedes weight gain. These data show that the effects of dietary fat on weight gain and tissue partitioning are further influenced by the quantity and quality of the associated protein, primarily via effects on the microbiota.
Collapse
Affiliation(s)
- Oleksandr Nychyk
- Food Biosciences Department, Teagasc Food Research Centre, Moorepark, Fermoy, County Cork P61 C996, Ireland
| | - Wiley Barton
- Food Biosciences Department, Teagasc Food Research Centre, Moorepark, Fermoy, County Cork P61 C996, Ireland; VistaMilk Research Centre, Teagasc, Moorepark, Fermoy, County Cork P61 C996, Ireland
| | - Agata M Rudolf
- Key State Laboratory for Molecular Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Serena Boscaini
- Food Biosciences Department, Teagasc Food Research Centre, Moorepark, Fermoy, County Cork P61 C996, Ireland; Department of Anatomy and Neuroscience, University College Cork, Cork T12 YT20, Ireland
| | - Aaron Walsh
- Food Biosciences Department, Teagasc Food Research Centre, Moorepark, Fermoy, County Cork P61 C996, Ireland
| | - Thomaz F S Bastiaanssen
- Department of Anatomy and Neuroscience, University College Cork, Cork T12 YT20, Ireland; APC Microbiome Ireland, University College Cork, Cork T12 YT20, Ireland
| | - Linda Giblin
- Food Biosciences Department, Teagasc Food Research Centre, Moorepark, Fermoy, County Cork P61 C996, Ireland; VistaMilk Research Centre, Teagasc, Moorepark, Fermoy, County Cork P61 C996, Ireland
| | - Paul Cormican
- Animal and Grassland Research and Innovation Centre, Teagasc, Grange, Dunsany, County Meath, Ireland
| | - Liang Chen
- CAS Key Laboratory for Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Yolanda Piotrowicz
- School of Biological Sciences, University of Aberdeen, Aberdeen AB24 2TZ, UK
| | - Davina Derous
- School of Biological Sciences, University of Aberdeen, Aberdeen AB24 2TZ, UK
| | - Áine Fanning
- APC Microbiome Ireland, University College Cork, Cork T12 YT20, Ireland
| | - Xiaofei Yin
- School of Agriculture and Food Science, Institute of Food and Health and Conway Institute, University College Dublin, Dublin, Ireland
| | - Jim Grant
- Teagasc Food Research Centre, Ashtown, Dublin 15, Ireland
| | - Silvia Melgar
- APC Microbiome Ireland, University College Cork, Cork T12 YT20, Ireland
| | - Lorraine Brennan
- VistaMilk Research Centre, Teagasc, Moorepark, Fermoy, County Cork P61 C996, Ireland; School of Agriculture and Food Science, Institute of Food and Health and Conway Institute, University College Dublin, Dublin, Ireland
| | - Sharon E Mitchell
- School of Biological Sciences, University of Aberdeen, Aberdeen AB24 2TZ, UK
| | - John F Cryan
- Department of Anatomy and Neuroscience, University College Cork, Cork T12 YT20, Ireland; APC Microbiome Ireland, University College Cork, Cork T12 YT20, Ireland
| | - Jun Wang
- CAS Key Laboratory for Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Paul D Cotter
- Food Biosciences Department, Teagasc Food Research Centre, Moorepark, Fermoy, County Cork P61 C996, Ireland; VistaMilk Research Centre, Teagasc, Moorepark, Fermoy, County Cork P61 C996, Ireland; APC Microbiome Ireland, University College Cork, Cork T12 YT20, Ireland
| | - John R Speakman
- Key State Laboratory for Molecular Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; School of Biological Sciences, University of Aberdeen, Aberdeen AB24 2TZ, UK; CAS Center of Excellence in Animal Evolution and Genetics, Kunming Institute of Zoology, Kunming, China; Center for Energy Metabolism and Reproduction, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong, China
| | - Kanishka N Nilaweera
- Food Biosciences Department, Teagasc Food Research Centre, Moorepark, Fermoy, County Cork P61 C996, Ireland; VistaMilk Research Centre, Teagasc, Moorepark, Fermoy, County Cork P61 C996, Ireland.
| |
Collapse
|
20
|
Atakan MM, Koşar ŞN, Güzel Y, Tin HT, Yan X. The Role of Exercise, Diet, and Cytokines in Preventing Obesity and Improving Adipose Tissue. Nutrients 2021; 13:nu13051459. [PMID: 33922998 PMCID: PMC8145589 DOI: 10.3390/nu13051459] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 04/20/2021] [Accepted: 04/22/2021] [Indexed: 12/17/2022] Open
Abstract
The prevalence of obesity continues to rise worldwide despite evidence-based public health recommendations. The promise to adopt a healthy lifestyle is increasingly important for tackling this global epidemic. Calorie restriction or regular exercise or a combination of the two is accepted as an effective strategy in preventing or treating obesity. Furthermore, the benefits conferred by regular exercise to overcome obesity are attributed not only to reduced adiposity or reduced levels of circulating lipids but also to the proteins, peptides, enzymes, and metabolites that are released from contracting skeletal muscle or other organs. The secretion of these molecules called cytokines in response to exercise induces browning of white adipose tissue by increasing the expression of brown adipocyte-specific genes within the white adipose tissue, suggesting that exercise-induced cytokines may play a significant role in preventing obesity. In this review, we present research-based evidence supporting the effects of exercise and various diet interventions on preventing obesity and adipose tissue health. We also discuss the interplay between adipose tissue and the cytokines secreted from skeletal muscle and other organs that are known to affect adipose tissue and metabolism.
Collapse
Affiliation(s)
- Muhammed Mustafa Atakan
- Division of Exercise Nutrition and Metabolism, Faculty of Sport Sciences, Hacettepe University, 06800 Ankara, Turkey; (M.M.A.); (Ş.N.K.); (Y.G.)
| | - Şükran Nazan Koşar
- Division of Exercise Nutrition and Metabolism, Faculty of Sport Sciences, Hacettepe University, 06800 Ankara, Turkey; (M.M.A.); (Ş.N.K.); (Y.G.)
| | - Yasemin Güzel
- Division of Exercise Nutrition and Metabolism, Faculty of Sport Sciences, Hacettepe University, 06800 Ankara, Turkey; (M.M.A.); (Ş.N.K.); (Y.G.)
| | - Hiu Tung Tin
- Institute for Health and Sport (iHeS), Victoria University, P.O. Box 14428, Melbourne 8001, Australia;
| | - Xu Yan
- Institute for Health and Sport (iHeS), Victoria University, P.O. Box 14428, Melbourne 8001, Australia;
- Sarcopenia Research Program, Australia Institute for Musculoskeletal Sciences (AIMSS), Melbourne 3021, Australia
- Correspondence: ; Tel.: +61-3-9919-4024; Fax: +61-3-9919-5615
| |
Collapse
|
21
|
Drabińska N, Wiczkowski W, Piskuła MK. Recent advances in the application of a ketogenic diet for obesity management. Trends Food Sci Technol 2021. [DOI: 10.1016/j.tifs.2021.01.080] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
22
|
Vaidehi U, Shashikala S, Mirnalini K. Association between Food Habits and Nutritional Status of Secondary School Students in Kuala Lumpur, Malaysia: Baseline Findings from Nuteen Project. J Nutr Sci Vitaminol (Tokyo) 2021; 66:S256-S261. [PMID: 33612607 DOI: 10.3177/jnsv.66.s256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Dietary habits and choice of food influences nutritional status of adolescence. Malnutrition have been associated with adolescents' dietary habits that may predispose to chronic disease during their adulthood. The aim of this study is to determine the association between food habit and nutritional status of adolescents. In the baseline study, a total of 924 students from 10 secondary schools were randomly selected from a total of 62 secondary schools in Kuala Lumpur. The students were assessed on various dietary components including food habits using a structured questionnaire as well as for anthropometry measurements. All data were analyzed using SPSS 23. The prevalence of obesity was significantly higher among males compared to females (16.4% vs. 8.4%, X2=25.42, p<0.001). Food habit exhibits an inversed association with z-score of body mass index for age (β=-0.107, 95% CI=-0.053, -0.013), especially via food habits such as often eat dinner (r=-0.102, p=0.002), often have breakfast before school (r=-0.100, p=0.002), often eat cake or dessert at meal (r=-0.110, p=0.001), often drink eight glasses of water (r=0.132, p<0.001), often eat food from school canteen (r=-0.071, p=0.031) and often bring own snack from home (r=-0.112, p=0.001). This study suggested that the type of food and timing of meal should be considered to prevent obesity among adolescents.
Collapse
Affiliation(s)
- U Vaidehi
- Faculty of Applied Sciences, UCSI University
| | | | - K Mirnalini
- Faculty of Applied Sciences, UCSI University
| |
Collapse
|
23
|
Yam P, Albright J, VerHague M, Gertz ER, Pardo-Manuel de Villena F, Bennett BJ. Genetic Background Shapes Phenotypic Response to Diet for Adiposity in the Collaborative Cross. Front Genet 2021; 11:615012. [PMID: 33643372 PMCID: PMC7905354 DOI: 10.3389/fgene.2020.615012] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Accepted: 12/15/2020] [Indexed: 12/13/2022] Open
Abstract
Defined as chronic excessive accumulation of adiposity, obesity results from long-term imbalance between energy intake and expenditure. The mechanisms behind how caloric imbalance occurs are complex and influenced by numerous biological and environmental factors, especially genetics, and diet. Population-based diet recommendations have had limited success partly due to the wide variation in physiological responses across individuals when they consume the same diet. Thus, it is necessary to broaden our understanding of how individual genetics and diet interact relative to the development of obesity for improving weight loss treatment. To determine how consumption of diets with different macronutrient composition alter adiposity and other obesity-related traits in a genetically diverse population, we analyzed body composition, metabolic rate, clinical blood chemistries, and circulating metabolites in 22 strains of mice from the Collaborative Cross (CC), a highly diverse recombinant inbred mouse population, before and after 8 weeks of feeding either a high protein or high fat high sucrose diet. At both baseline and post-diet, adiposity and other obesity-related traits exhibited a broad range of phenotypic variation based on CC strain; diet-induced changes in adiposity and other traits also depended largely on CC strain. In addition to estimating heritability at baseline, we also quantified the effect size of diet for each trait, which varied by trait and experimental diet. Our findings identified CC strains prone to developing obesity, demonstrate the genotypic and phenotypic diversity of the CC for studying complex traits, and highlight the importance of accounting for genetic differences when making dietary recommendations.
Collapse
Affiliation(s)
- Phoebe Yam
- Integrative Genetics and Genomics Graduate Group, University of California, Davis, Davis, CA, United States
- Western Human Nutrition Research Center, Agricultural Research Service, US Department of Agriculture, Davis, CA, United States
| | - Jody Albright
- Nutrition Research Institute, University of North Carolina, Chapel Hill, NC, United States
| | - Melissa VerHague
- Nutrition Research Institute, University of North Carolina, Chapel Hill, NC, United States
| | - Erik R. Gertz
- Western Human Nutrition Research Center, Agricultural Research Service, US Department of Agriculture, Davis, CA, United States
| | | | - Brian J. Bennett
- Integrative Genetics and Genomics Graduate Group, University of California, Davis, Davis, CA, United States
- Western Human Nutrition Research Center, Agricultural Research Service, US Department of Agriculture, Davis, CA, United States
- Department of Nutrition, University of California, Davis, Davis, CA, United States
| |
Collapse
|
24
|
Wade KH, Clifford L, Simpkin AJ, Beynon R, Birch L, Northstone K, Matthews S, Davey Smith G, Hamilton-Shield J, Timpson NJ. Piloting the objective measurement of eating weight and speed at a population scale: a nested study within the Avon Longitudinal Study of Parents and Children. Wellcome Open Res 2021; 5:185. [PMID: 34195383 PMCID: PMC8215563 DOI: 10.12688/wellcomeopenres.16091.2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/14/2021] [Indexed: 11/08/2023] Open
Abstract
Background: Effective measurement and adaption of eating behaviours, such as eating speed, may improve weight loss and weight over time. We assessed whether the Mandometer, a portable weighing scale connected to a computer that generates a graph of food removal rate from the plate to which it is connected, together with photo-imaging of food, might prove an effective approach to measuring eating behaviours at large scale. Methods: We deployed the Mandometer in the home environment to measure main meals over three days of 95 21-year-old participants of the Avon Longitudinal Study of Parents and Children. We used multi-level models to describe food weight and eating speed and, as exemplar analyses, examined the relationship of eating behaviours with body mass index (BMI), dietary composition (fat content) and genotypic variation (the FTO rs9939609 variant). Using this pilot data, we calculated the sample size required to detect differences in food weight and eating speed between groups of an exposure variable. Results: All participants were able to use the Mandometer effectively after brief training. In exemplar analyses, evidence suggested that obese participants consumed more food than those of "normal" weight (i.e., BMI 19 to <25 kg/m 2) and that A/A FTO homozygotes (an indicator of higher weight) ate at a faster rate compared to T/T homozygotes. There was also some evidence that those with a high-fat diet consumed less food than those with a low-fat diet, but no strong evidence that individuals with medium- or high-fat diets ate at a faster rate. Conclusions: We demonstrated the potential for assessing eating weight and speed in a short-term home setting and combining this with information in a research setting. This study may offer the opportunity to design interventions tailored for at-risk eating behaviours, offering advantages over the "one size fits all" approach of current failing obesity interventions.
Collapse
Affiliation(s)
- Kaitlin H. Wade
- Medical Research Council (MRC) Integrative Epidemiology Unit, University of Bristol, Bristol, BS8 2BN, UK
- Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, BS8 2BN, UK
| | - Laura Clifford
- Department of Paediatric Respiratory Medicine, Bristol Royal Hospital for Children, Bristol, BS2 8BJ, UK
| | - Andrew J. Simpkin
- Medical Research Council (MRC) Integrative Epidemiology Unit, University of Bristol, Bristol, BS8 2BN, UK
- School of Mathematics, Statistics and Applied Mathematics, National University of Ireland, Galway, H91 H3CY, Ireland
| | - Rhona Beynon
- Medical Research Council (MRC) Integrative Epidemiology Unit, University of Bristol, Bristol, BS8 2BN, UK
- Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, BS8 2BN, UK
| | - Laura Birch
- NIHR Bristol Biomedical Research Centre Nutrition Theme, University of Bristol, University Hospitals Bristol Education & Research Centre, Bristol, BS1 3NU, UK
| | - Kate Northstone
- Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, BS8 2BN, UK
| | - Sarah Matthews
- Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, BS8 2BN, UK
| | - George Davey Smith
- Medical Research Council (MRC) Integrative Epidemiology Unit, University of Bristol, Bristol, BS8 2BN, UK
- Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, BS8 2BN, UK
| | - Julian Hamilton-Shield
- NIHR Bristol Biomedical Research Centre Nutrition Theme, University of Bristol, University Hospitals Bristol Education & Research Centre, Bristol, BS1 3NU, UK
| | - Nicholas J. Timpson
- Medical Research Council (MRC) Integrative Epidemiology Unit, University of Bristol, Bristol, BS8 2BN, UK
- Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, BS8 2BN, UK
| |
Collapse
|
25
|
A circadian rhythm-related MTNR1B genetic variant (rs10830963) modulates glucose metabolism and insulin resistance after body weight loss secondary to biliopancreatic diversion surgery. NUTR HOSP 2020; 37:1143-1149. [PMID: 33119394 DOI: 10.20960/nh.03153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022] Open
Abstract
Introduction Objective: the rs10830963 SNP of the MTNR1B gene may be related with biochemical changes after weight loss induced by caloric restriction. We investigated the role of this SNP on biochemical parameters after biliopancreatic diversion (BPD) surgery in morbid obese subjects. Patients and methods: one hundred and fifty-four patients with morbid obesity, without diabetes mellitus type 2, were enrolled. Their biochemical and anthropometric parameters were recorded before the procedure and after one, two, and three years of follow-up. All subjects were genotyped (rs10830963) at baseline. Results: the decrease in fasting insulin levels seen after the first year (delta: -3.9 ± 1.2 mIU/L vs. -1.8 ± 1.1 mIU/L; p = 0.03), the second year (delta: -5.0 ± 0.3 mIU/L vs. -2.3 ± 0.2 mIU/L; p = 0.01) and the third year (delta: -5.1 ± 1.9 mIU/L vs. -2.8 ± 1.1 mIU/L; p = 0.02) was higher in non-G-allele carriers than in G-allele carriers. Additionally, the improvement of HOMA-IR levels at year one (delta: -0.7 ± 0.2 mIU/L vs. -0.2 ± 0.2 mIU/L; p = 0.03), year two (delta: -1.0 ± 0.3 mIU/L vs. -0.5 ± 0.2 mIU/L; p = 0.01) and year three (delta: -1.2 ± 0.3 mIU/L vs. -0.4 ± 0.2 mIU/L; p = 0.03) was also higher in non-G-allele carriers than in G-allele carriers. Finally, basal glucose levels after the first year (delta: -10.1 ± 2.4 mg/dL vs. -3.6 ± 1.8 mg/dL; p = 0.02), the second year (delta: -16.0 ± 2.3 mg/dL vs. -8.4 ± 2.2 mg/dL; p = 0.01) and the third year (delta: -17.4 ± 3.1 mg/dL vs. -8.8 ± 2.9 mg/dL; p = 0.03) were higher in non-G-allele carriers than in G-allele carriers, too. Improvements seen in comorbidities were similar in both genotype groups. Conclusion: our study showed an association of the rs10830963 MTNR1B polymorphism after massive weight loss with lower glucose response, insulin resistance, and fasting insulin levels in G-allele carriers.
Collapse
|
26
|
Wade KH, Clifford L, Simpkin AJ, Beynon R, Birch L, Northstone K, Matthews S, Davey Smith G, Hamilton-Shield J, Timpson NJ. Piloting the objective measurement of eating behaviour at a population scale: a nested study within the Avon Longitudinal Study of Parents and Children. Wellcome Open Res 2020; 5:185. [PMID: 34195383 PMCID: PMC8215563 DOI: 10.12688/wellcomeopenres.16091.1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/23/2020] [Indexed: 12/12/2022] Open
Abstract
Background: Effective measurement and adaption of eating behaviours, such as eating speed, may improve weight loss and weight over time. We assessed whether the Mandometer, a portable weighing scale connected to a computer that generates a graph of food removal rate from the plate to which it is connected, together with photo-imaging of food, might prove an effective approach to measuring eating behaviours at large scale. Methods: We deployed the Mandometer in the home environment to measure main meals over three days of 95 21-year-old participants of the Avon Longitudinal Study of Parents and Children. We used multi-level models to describe food weight and eating speed and, as exemplar analyses, examined the relationship of eating behaviours with body mass index (BMI), dietary composition (fat content) and genotypic variation (the FTO rs9939609 variant). Using this pilot data, we calculated the sample size required to detect differences in food weight and eating speed between groups of an exposure variable. Results: All participants were able to use the Mandometer effectively after brief training. In exemplar analyses, evidence suggested that obese participants consumed more food than those of "normal" weight (i.e., BMI 19 to <25 kg/m 2) and that A/A FTO homozygotes (an indicator of higher weight) ate at a faster rate compared to T/T homozygotes. There was also some evidence that those with a high-fat diet consumed less food than those with a low-fat diet, but no strong evidence that individuals with medium- or high-fat diets ate at a faster rate. Conclusions: We demonstrated the potential for assessing eating behaviour in a short-term home setting and combining this with information in a research setting. This study may offer the opportunity to design interventions tailored for at-risk eating behaviours, offering advantages over the "one size fits all" approach of current failing obesity interventions.
Collapse
Affiliation(s)
- Kaitlin H. Wade
- Medical Research Council (MRC) Integrative Epidemiology Unit, University of Bristol, Bristol, BS8 2BN, UK
- Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, BS8 2BN, UK
| | - Laura Clifford
- Department of Paediatric Respiratory Medicine, Bristol Royal Hospital for Children, Bristol, BS2 8BJ, UK
| | - Andrew J. Simpkin
- Medical Research Council (MRC) Integrative Epidemiology Unit, University of Bristol, Bristol, BS8 2BN, UK
- School of Mathematics, Statistics and Applied Mathematics, National University of Ireland, Galway, H91 H3CY, Ireland
| | - Rhona Beynon
- Medical Research Council (MRC) Integrative Epidemiology Unit, University of Bristol, Bristol, BS8 2BN, UK
- Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, BS8 2BN, UK
| | - Laura Birch
- NIHR Bristol Biomedical Research Centre Nutrition Theme, University of Bristol, University Hospitals Bristol Education & Research Centre, Bristol, BS1 3NU, UK
| | - Kate Northstone
- Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, BS8 2BN, UK
| | - Sarah Matthews
- Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, BS8 2BN, UK
| | - George Davey Smith
- Medical Research Council (MRC) Integrative Epidemiology Unit, University of Bristol, Bristol, BS8 2BN, UK
- Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, BS8 2BN, UK
| | - Julian Hamilton-Shield
- NIHR Bristol Biomedical Research Centre Nutrition Theme, University of Bristol, University Hospitals Bristol Education & Research Centre, Bristol, BS1 3NU, UK
| | - Nicholas J. Timpson
- Medical Research Council (MRC) Integrative Epidemiology Unit, University of Bristol, Bristol, BS8 2BN, UK
- Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, BS8 2BN, UK
| |
Collapse
|
27
|
San-Cristobal R, Navas-Carretero S, Martínez-González MÁ, Ordovas JM, Martínez JA. Contribution of macronutrients to obesity: implications for precision nutrition. Nat Rev Endocrinol 2020; 16:305-320. [PMID: 32235875 DOI: 10.1038/s41574-020-0346-8] [Citation(s) in RCA: 110] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 03/04/2020] [Indexed: 01/03/2023]
Abstract
The specific metabolic contribution of consuming different energy-yielding macronutrients (namely, carbohydrates, protein and lipids) to obesity is a matter of active debate. In this Review, we summarize the current research concerning associations between the intake of different macronutrients and weight gain and adiposity. We discuss insights into possible differential mechanistic pathways where macronutrients might act on either appetite or adipogenesis to cause weight gain. We also explore the role of dietary macronutrient distribution on thermogenesis or energy expenditure for weight loss and maintenance. On the basis of the data discussed, we describe a novel way to manage excessive body weight; namely, prescribing personalized diets with different macronutrient compositions according to the individual's genotype and/or enterotype. In this context, the interplay of macronutrient consumption with obesity incidence involves mechanisms that affect appetite, thermogenesis and metabolism, and the outcomes of these mechanisms are altered by an individual's genotype and microbiota. Indeed, the interactions of the genetic make-up and/or microbiota features of a person with specific macronutrient intakes or dietary pattern consumption help to explain individualized responses to macronutrients and food patterns, which might represent key factors for comprehensive precision nutrition recommendations and personalized obesity management.
Collapse
Affiliation(s)
- Rodrigo San-Cristobal
- Precision Nutrition and Cardiometabolic Health, IMDEA-Food Institute (Madrid Institute for Advanced Studies), Campus of International Excellence (CEI) UAM+CSIC, Spanish National Research Council, Madrid, Spain
| | - Santiago Navas-Carretero
- Centre for Nutrition Research, University of Navarra, Pamplona, Spain.
- CIBERobn, Centro de Investigacion Biomedica en Red Area de Fisiologia de la Obesidad y la Nutricion, Madrid, Spain.
- IdisNA, Navarra Institute for Health Research, Pamplona, Spain.
| | - Miguel Ángel Martínez-González
- CIBERobn, Centro de Investigacion Biomedica en Red Area de Fisiologia de la Obesidad y la Nutricion, Madrid, Spain
- IdisNA, Navarra Institute for Health Research, Pamplona, Spain
- Department of Preventive Medicine and Public Health, School of Medicine, University of Navarra, Pamplona, Spain
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - José María Ordovas
- Nutrition and Genomics Laboratory, JM-USDA Human Nutrition Research Center on Aging at Tufts University, Boston, MA, USA
- Department of Cardiovascular Epidemiology and Population Genetics, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
- Nutritional Genomics of Cardiovascular Disease and Obesity Fundation IMDEA Food, Campus of International Excellence, Spanish National Research Council, Madrid, Spain
| | - José Alfredo Martínez
- Precision Nutrition and Cardiometabolic Health, IMDEA-Food Institute (Madrid Institute for Advanced Studies), Campus of International Excellence (CEI) UAM+CSIC, Spanish National Research Council, Madrid, Spain
- Centre for Nutrition Research, University of Navarra, Pamplona, Spain
- CIBERobn, Centro de Investigacion Biomedica en Red Area de Fisiologia de la Obesidad y la Nutricion, Madrid, Spain
- IdisNA, Navarra Institute for Health Research, Pamplona, Spain
| |
Collapse
|
28
|
Perez-Diaz-del-Campo N, Abete I, Cantero I, Marin-Alejandre BA, Monreal JI, Elorz M, Herrero JI, Benito-Boillos A, Riezu-Boj JI, Milagro FI, Tur JA, Martinez JA, Zulet MA. Association of the SH2B1 rs7359397 Gene Polymorphism with Steatosis Severity in Subjects with Obesity and Non-Alcoholic Fatty Liver Disease. Nutrients 2020; 12:nu12051260. [PMID: 32365683 PMCID: PMC7282006 DOI: 10.3390/nu12051260] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Revised: 04/24/2020] [Accepted: 04/27/2020] [Indexed: 12/12/2022] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) is a major cause of liver disease worldwide. Some genetic variants might be involved in the progression of this disease. The study hypothesized that individuals with the rs7359397 T allele have a higher risk of developing severe stages of NAFLD compared with non-carriers where dietary intake according to genotypes could have a key role on the pathogenesis of the disease. SH2B1 genetic variant was genotyped in 110 overweight/obese subjects with NAFLD. Imaging techniques, lipidomic analysis and blood liver biomarkers were performed. Body composition, general biochemical and dietary variables were also determined. The SH2B1 risk genotype was associated with higher HOMA-IR p = 0.001; and Fatty Liver Index (FLI) p = 0.032. Higher protein consumption (p = 0.028), less mono-unsaturated fatty acid and fiber intake (p = 0.045 and p = 0.049, respectively), was also referred to in risk allele genotype. Lipidomic analysis showed that T allele carriers presented a higher frequency of non-alcoholic steatohepatitis (NASH) (69.1% vs. 44.4%; p = 0.006). In the genotype risk group, adjusted logistic regression models indicated a higher risk of developing an advanced stage of NAFLD measured by FLI (OR 2.91) and ultrasonography (OR 4.15). Multinomial logistic regression models showed that risk allele carriers had higher liver fat accumulation risk (RRR 3.93) and an increased risk of NASH (RRR 7.88). Consequently, subjects carrying the T allele were associated with a higher risk of developing a severe stage of NAFLD. These results support the importance of considering genetic predisposition in combination with a healthy dietary pattern in the personalized evaluation and management of NAFLD.
Collapse
Affiliation(s)
- Nuria Perez-Diaz-del-Campo
- Department of Nutrition, Food Science and Physiology, Faculty of Pharmacy and Nutrition, University of Navarra, 31008 Pamplona, Spain; (N.P-D.-d.-C.); (I.C.); (B.A.M.-A.); (J.I.R.-B.); (F.I.M.); (J.A.M.)
- Centre for Nutrition Research, Faculty of Pharmacy and Nutrition, University of Navarra, 31008 Pamplona, Spain
| | - Itziar Abete
- Department of Nutrition, Food Science and Physiology, Faculty of Pharmacy and Nutrition, University of Navarra, 31008 Pamplona, Spain; (N.P-D.-d.-C.); (I.C.); (B.A.M.-A.); (J.I.R.-B.); (F.I.M.); (J.A.M.)
- Centre for Nutrition Research, Faculty of Pharmacy and Nutrition, University of Navarra, 31008 Pamplona, Spain
- Biomedical Research Centre Network in Physiopathology of Obesity and Nutrition (CIBERobn), Instituto de Salud Carlos III, 28029 Madrid, Spain;
- Navarra Institute for Health Research (IdiSNA), 31008 Pamplona, Spain; (J.I.M.); (M.E.); (J.I.H.); (A.B.-B.)
- Correspondence: (I.A.); (M.A.Z.); Tel.: +34-948-25-60-00 (I.A.)
| | - Irene Cantero
- Department of Nutrition, Food Science and Physiology, Faculty of Pharmacy and Nutrition, University of Navarra, 31008 Pamplona, Spain; (N.P-D.-d.-C.); (I.C.); (B.A.M.-A.); (J.I.R.-B.); (F.I.M.); (J.A.M.)
- Centre for Nutrition Research, Faculty of Pharmacy and Nutrition, University of Navarra, 31008 Pamplona, Spain
| | - Bertha Araceli Marin-Alejandre
- Department of Nutrition, Food Science and Physiology, Faculty of Pharmacy and Nutrition, University of Navarra, 31008 Pamplona, Spain; (N.P-D.-d.-C.); (I.C.); (B.A.M.-A.); (J.I.R.-B.); (F.I.M.); (J.A.M.)
- Centre for Nutrition Research, Faculty of Pharmacy and Nutrition, University of Navarra, 31008 Pamplona, Spain
| | - J. Ignacio Monreal
- Navarra Institute for Health Research (IdiSNA), 31008 Pamplona, Spain; (J.I.M.); (M.E.); (J.I.H.); (A.B.-B.)
- Clinical Chemistry Department, Clínica Universidad de Navarra, 31008 Pamplona, Spain
| | - Mariana Elorz
- Navarra Institute for Health Research (IdiSNA), 31008 Pamplona, Spain; (J.I.M.); (M.E.); (J.I.H.); (A.B.-B.)
- Department of Radiology, Clínica Universidad de Navarra, 31008 Pamplona, Spain
| | - José Ignacio Herrero
- Navarra Institute for Health Research (IdiSNA), 31008 Pamplona, Spain; (J.I.M.); (M.E.); (J.I.H.); (A.B.-B.)
- Liver Unit, Clinica Universidad de Navarra, 31008 Pamplona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), 28029 Madrid, Spain
| | - Alberto Benito-Boillos
- Navarra Institute for Health Research (IdiSNA), 31008 Pamplona, Spain; (J.I.M.); (M.E.); (J.I.H.); (A.B.-B.)
- Department of Radiology, Clínica Universidad de Navarra, 31008 Pamplona, Spain
| | - Jose I. Riezu-Boj
- Department of Nutrition, Food Science and Physiology, Faculty of Pharmacy and Nutrition, University of Navarra, 31008 Pamplona, Spain; (N.P-D.-d.-C.); (I.C.); (B.A.M.-A.); (J.I.R.-B.); (F.I.M.); (J.A.M.)
- Centre for Nutrition Research, Faculty of Pharmacy and Nutrition, University of Navarra, 31008 Pamplona, Spain
- Navarra Institute for Health Research (IdiSNA), 31008 Pamplona, Spain; (J.I.M.); (M.E.); (J.I.H.); (A.B.-B.)
| | - Fermín I. Milagro
- Department of Nutrition, Food Science and Physiology, Faculty of Pharmacy and Nutrition, University of Navarra, 31008 Pamplona, Spain; (N.P-D.-d.-C.); (I.C.); (B.A.M.-A.); (J.I.R.-B.); (F.I.M.); (J.A.M.)
- Centre for Nutrition Research, Faculty of Pharmacy and Nutrition, University of Navarra, 31008 Pamplona, Spain
- Biomedical Research Centre Network in Physiopathology of Obesity and Nutrition (CIBERobn), Instituto de Salud Carlos III, 28029 Madrid, Spain;
- Navarra Institute for Health Research (IdiSNA), 31008 Pamplona, Spain; (J.I.M.); (M.E.); (J.I.H.); (A.B.-B.)
| | - Josep A. Tur
- Biomedical Research Centre Network in Physiopathology of Obesity and Nutrition (CIBERobn), Instituto de Salud Carlos III, 28029 Madrid, Spain;
- Research Group on Community Nutrition and Oxidative Stress, University of Balearic Islands & Balearic Islands Institute for Health Research (IDISBA), 07122 Palma, Spain
| | - J. Alfredo Martinez
- Department of Nutrition, Food Science and Physiology, Faculty of Pharmacy and Nutrition, University of Navarra, 31008 Pamplona, Spain; (N.P-D.-d.-C.); (I.C.); (B.A.M.-A.); (J.I.R.-B.); (F.I.M.); (J.A.M.)
- Centre for Nutrition Research, Faculty of Pharmacy and Nutrition, University of Navarra, 31008 Pamplona, Spain
- Biomedical Research Centre Network in Physiopathology of Obesity and Nutrition (CIBERobn), Instituto de Salud Carlos III, 28029 Madrid, Spain;
- Navarra Institute for Health Research (IdiSNA), 31008 Pamplona, Spain; (J.I.M.); (M.E.); (J.I.H.); (A.B.-B.)
| | - M. Angeles Zulet
- Department of Nutrition, Food Science and Physiology, Faculty of Pharmacy and Nutrition, University of Navarra, 31008 Pamplona, Spain; (N.P-D.-d.-C.); (I.C.); (B.A.M.-A.); (J.I.R.-B.); (F.I.M.); (J.A.M.)
- Centre for Nutrition Research, Faculty of Pharmacy and Nutrition, University of Navarra, 31008 Pamplona, Spain
- Biomedical Research Centre Network in Physiopathology of Obesity and Nutrition (CIBERobn), Instituto de Salud Carlos III, 28029 Madrid, Spain;
- Navarra Institute for Health Research (IdiSNA), 31008 Pamplona, Spain; (J.I.M.); (M.E.); (J.I.H.); (A.B.-B.)
- Correspondence: (I.A.); (M.A.Z.); Tel.: +34-948-25-60-00 (I.A.)
| |
Collapse
|
29
|
Blueberry and cardiovascular disease risk factors: A systematic review and meta-analysis of randomized controlled trials. Complement Ther Med 2020; 53:102389. [PMID: 33066847 DOI: 10.1016/j.ctim.2020.102389] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Revised: 03/23/2020] [Accepted: 03/24/2020] [Indexed: 11/22/2022] Open
Abstract
BACKGROUND AND AIMS Cardiovascular disease (CVD) remains an important cause of mortality and morbidity that can be prevented by the consumption of healthy foods. These include blueberry, a dark coloured berry containing extremely high amounts of functional ingredients. We therefore examined the extent to which supplementation with blueberry effects on CVD risk indices. METHODS We searched the ISI Web of Science, Scopus, PubMed and Cochrane Library on March 2020 and checked reference lists from primary studies and review articles for any additional studies. No language restrictions were applied. All randomized and controlled clinical trials (RCTs) using blueberry supplements to modify CVD risk factors were included in our analysis. RESULTS Mean Difference (MD) was pooled using a random effects model and 11 studies were included in the final analysis. Pooled effect size showed that supplementation with blueberry had a small insignificant effect in reducing plasma triglycerides (MD = -0.27 mmol/l; 95 % CI: -0.57, 0.17, p = 0.06). Although current study found no differences between blueberry and control groups for any other outcomes, subgroup analysis suggested a favourable impact of blueberry on reducing body weight. Significant weight loss was indicated from studies longer with a follow up of more than 6 weeks or with blueberry powder or freeze-dried blueberry. CONCLUSION Current evidence is insufficient to show a benefit of blueberry supplements in modifying CVD risk factors across a variety of adult populations. Robust data and larger studies are required to assess potential effects.
Collapse
|
30
|
Vorobyeva V, Vorobyeva I, Kochetkova A, Mazo V, Zorin S, Sharafetdinov K. Specialized hypocholesterolemic foods: Ingredients, technology, effects. FOODS AND RAW MATERIALS 2020. [DOI: 10.21603/2308-4057-2020-1-20-29] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Introduction. Overweight and obesity are leading risk factors for metabolic syndrome (MS). From 20 to 35% of Russian people have this condition, depending on their age. MS is a precursor of cardiovascular disease, diabetes mellitus, diabetic nephropathy, and nonalcoholic steatohepatitis. Specialized foods (SFs) with hypocholesteremic effects are an important component of the diet therapy for MS patients. Creating local SFs to optimize the nutritional status of MS patients and prevent related diseases is a highly promising area of research. The aim of our study was to develop the formulation and technology of SFs and evaluate their effectiveness in MS treatment. Study objects and methods. The objects of the study were food ingredients and SFs. Safety indicators and micronutrient contents were determined by standard methods, whereas nutritional and energy values and amino acid contents were determined by calculation. Results and discussion. Based on medical requirements, we selected functional ingredients and developed a formulation and technology of SFs with an optimized protein, fat, and carbohydrate composition. The formulation included essential micronutrients and biologically active substances with a desirable physiological effect. Clinical trials involved 15 MS patients aged from 27 to 59. For two weeks, they had a low-calorie standard diet with one serving of SFs in the form of a drink instead of a second breakfast. The patients showed a significant improvement in anthropometric indicators. Blood serum tests revealed decreased contents of total cholesterol (by 16.9%), low-density lipoprotein cholesterol (by 15.3%), and triglycerides (by 27.9%). Conclusion. We developed technical specifications and produced a pilot batch of SFs. The trials showed an improvement of lipid metabolism in the MS patients who were taking SFs as part of their diet therapy.
Collapse
Affiliation(s)
| | - Irina Vorobyeva
- Federal Research Centre of Nutrition, Biotechnology and Food Safety
| | - Alla Kochetkova
- Federal Research Centre of Nutrition, Biotechnology and Food Safety
| | - Vladimir Mazo
- Federal Research Centre of Nutrition, Biotechnology and Food Safety
| | - Sergey Zorin
- Federal Research Centre of Nutrition, Biotechnology and Food Safety
| | | |
Collapse
|
31
|
Zhong Y, Pan Y, Liu L, Li H, Li Y, Jiang J, Xiang J, Zhang J, Chu W. Effects of high fat diet on lipid accumulation, oxidative stress and autophagy in the liver of Chinese softshell turtle (Pelodiscus sinensis). Comp Biochem Physiol B Biochem Mol Biol 2020; 240:110331. [DOI: 10.1016/j.cbpb.2019.110331] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Revised: 08/03/2019] [Accepted: 08/23/2019] [Indexed: 12/19/2022]
|
32
|
Ramos-Lopez O, Cuervo M, Goni L, Milagro FI, Riezu-Boj JI, Martinez JA. Modeling of an integrative prototype based on genetic, phenotypic, and environmental information for personalized prescription of energy-restricted diets in overweight/obese subjects. Am J Clin Nutr 2020; 111:459-470. [PMID: 31751449 DOI: 10.1093/ajcn/nqz286] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Accepted: 10/25/2019] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Interindividual variability in weight loss and metabolic responses depends upon interactions between genetic, phenotypic, and environmental factors. OBJECTIVE We aimed to model an integrative (nutri) prototype based on genetic, phenotypic, and environmental information for the personalized prescription of energy-restricted diets with different macronutrient distribution. METHODS A 4-mo nutritional intervention was conducted in 305 overweight/obese volunteers involving 2 energy-restricted diets (30% restriction) with different macronutrient distribution: a moderately high-protein (MHP) diet (30% proteins, 30% lipids, and 40% carbohydrates) and a low-fat (LF) diet (22% lipids, 18% proteins, and 60% carbohydrates). A total of 201 subjects with good dietary adherence were genotyped for 95 single nucleotide polymorphisms (SNPs) related to energy homeostasis. Genotyping was performed by targeted next-generation sequencing. Two weighted genetic risk scores for the MHP (wGRS1) and LF (wGRS2) diets were computed using statistically relevant SNPs. Multiple linear regression models were performed to estimate percentage BMI decrease depending on the dietary macronutrient composition. RESULTS After energy restriction, both the MHP and LF diets induced similar significant decreases in adiposity, body composition, and blood pressure, and improved the lipid profile. Furthermore, statistically relevant differences in anthropometric and biochemical markers depending on sex and age were found. BMI decrease in the MHP diet was best predicted at ∼28% (optimism-corrected adjusted R2 = 0.279) by wGRS1 and age, whereas wGRS2 and baseline energy intake explained ∼29% (optimism-corrected adjusted R2 = 0.287) of BMI decrease variability in the LF diet. The incorporation of these predictive models into a decision algorithm allowed the personalized prescription of the MHP and LF diets. CONCLUSIONS Different genetic, phenotypic, and exogenous factors predict BMI decreases depending on the administration of a hypocaloric MHP diet or an LF diet. This holistic approach may help to personalize dietary advice for the management of excessive body weight using precision nutrition variables.This trial was registered at clinicaltrials.gov as NCT02737267.
Collapse
Affiliation(s)
- Omar Ramos-Lopez
- Department of Nutrition, Food Science, and Physiology, and Center for Nutrition Research, University of Navarra, Pamplona, Spain.,Faculty of Medicine and Psychology, Autonomous University of Baja California, Tijuana, Mexico
| | - Marta Cuervo
- Department of Nutrition, Food Science, and Physiology, and Center for Nutrition Research, University of Navarra, Pamplona, Spain.,Navarra Institute for Health Research, Pamplona, Spain.,Biomedical Research Center Network in Physiopathology of Obesity and Nutrition (CIBERobn), Carlos III Health Institute, Madrid, Spain
| | - Leticia Goni
- Department of Nutrition, Food Science, and Physiology, and Center for Nutrition Research, University of Navarra, Pamplona, Spain
| | - Fermin I Milagro
- Department of Nutrition, Food Science, and Physiology, and Center for Nutrition Research, University of Navarra, Pamplona, Spain.,Biomedical Research Center Network in Physiopathology of Obesity and Nutrition (CIBERobn), Carlos III Health Institute, Madrid, Spain
| | - Jose I Riezu-Boj
- Department of Nutrition, Food Science, and Physiology, and Center for Nutrition Research, University of Navarra, Pamplona, Spain.,Navarra Institute for Health Research, Pamplona, Spain
| | - J Alfredo Martinez
- Department of Nutrition, Food Science, and Physiology, and Center for Nutrition Research, University of Navarra, Pamplona, Spain.,Navarra Institute for Health Research, Pamplona, Spain.,Biomedical Research Center Network in Physiopathology of Obesity and Nutrition (CIBERobn), Carlos III Health Institute, Madrid, Spain
| |
Collapse
|
33
|
Costa e Silva LM, Pereira de Melo ML, Faro Reis FV, Monteiro MC, dos Santos SM, Quadros Gomes BA, Meller da Silva LH. Comparison of the Effects of Brazil Nut Oil and Soybean Oil on the Cardiometabolic Parameters of Patients with Metabolic Syndrome: A Randomized Trial. Nutrients 2019; 12:E46. [PMID: 31877968 PMCID: PMC7019763 DOI: 10.3390/nu12010046] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Revised: 12/07/2019] [Accepted: 12/18/2019] [Indexed: 01/15/2023] Open
Abstract
Recent evidence suggests that replacing saturated fat with unsaturated fat is beneficial for cardiovascular health. This study compared the effects of Brazil nut oil (BNO) and soybean oil (SO) supplementation for 30 days on anthropometric, blood pressure, biochemical, and oxidative parameters in patients with metabolic syndrome (MS). Thirty-one patients with MS were randomly allocated to receive 30 sachets with 10 mL each of either BNO (n = 15) or SO (n = 16) for daily supplementation. Variables were measured at the beginning of the study and after 30 days of intervention. No change in anthropometric and blood pressure variables were observed (p > 0.05). Total (p = 0.0253) and low-density lipoprotein (p = 0.0437) cholesterol increased in the SO group. High-density lipoprotein cholesterol decreased (p = 0.0087) and triglycerides increased (p = 0.0045) in the BNO group. Malondialdehyde levels decreased in the BNO group (p = 0.0296) and total antioxidant capacity improved in the SO group (p = 0.0110). Although the addition of oils without lifestyle interventions did not affect anthropometric findings or blood pressure and promoted undesirable results in the lipid profile in both groups, daily supplementation of BNO for 30 days decreased lipid peroxidation, contributing to oxidative stress reduction.
Collapse
Affiliation(s)
- Lívia Martins Costa e Silva
- LAMEFI—Laboratory of Physical Measures, Postgraduate Program in Food Science and Technology, Federal University of Para, Belém Pará 66075-900, Brazil
| | | | | | - Marta Chagas Monteiro
- Postgraduate Program in Pharmaceutical Sciences, Federal University of Para, Belém Pará 66075-900, Brazil
| | - Savio Monteiro dos Santos
- Postgraduate Program in Pharmaceutical Sciences, Federal University of Para, Belém Pará 66075-900, Brazil
| | - Bruno Alexandre Quadros Gomes
- Neuroscience and Cellular Biology Postgraduation Program, Biological Science Institute, Federal University of Para, Belém Pará 66075-900, Brazil
| | - Luiza Helena Meller da Silva
- LAMEFI—Laboratory of Physical Measures, Postgraduate Program in Food Science and Technology, Federal University of Para, Belém Pará 66075-900, Brazil
| |
Collapse
|
34
|
Ezquerro S, Rodríguez A, Portincasa P, Frühbeck G. Effects of Diets on Adipose Tissue. Curr Med Chem 2019; 26:3593-3612. [PMID: 28521681 DOI: 10.2174/0929867324666170518102340] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2016] [Revised: 03/16/2017] [Accepted: 03/16/2017] [Indexed: 12/15/2022]
Abstract
BACKGROUND Obesity is a major health problem that has become a global epidemic. Overweight and obesity are commonly associated with the development of several pathologies, such as insulin resistance, cardiovascular diseases, sleep apnea and several types of cancer, which can lead to further morbidity and mortality. An increased abdominal adiposity renders overweight and obese individuals more prone to metabolic and cardiovascular problems. OBJECTIVE This Review aims to describe the dietary strategies to deal with excess adiposity given the medical, social and economic consequences of obesity. METHODS One hundred and eighty-five papers were included in the present Review. RESULTS Excess adiposity leads to several changes in the biology, morphology and function of the adipose tissue, such as adipocyte hypertrophy and hyperplasia, adipose tissue inflammation and fibrosis and an impaired secretion of adipokines, contributing to the onset of obesity- related comorbidities. The first approach for obesity management and prevention is the implementation of a diet combined with physical activity. The present review summarizes the compelling evidence showing body composition changes, impact on cardiometabolism and potential adverse effects of very-low calorie, low- and high-carbohydrate, high-protein or low-fat diets. The use of macronutrients during the preprandial and postprandial state has been also reviewed to better understand the metabolic changes induced by different dietary interventions. CONCLUSION Dietary changes should be individualised, tailored to food preferences and allow for flexible approaches to reducing calorie intake in order to increase the motivation and compliance of overweight and obese patients.
Collapse
Affiliation(s)
- Silvia Ezquerro
- Metabolic Research Laboratory, Clínica Universidad de Navarra, IdiSNA, Pamplona, Spain.,CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), Instituto de Salud Carlos III, Madrid, Spain
| | - Amaia Rodríguez
- Metabolic Research Laboratory, Clínica Universidad de Navarra, IdiSNA, Pamplona, Spain.,CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), Instituto de Salud Carlos III, Madrid, Spain
| | - Piero Portincasa
- Clinica Medica "A. Murri", Department of Biomedical Sciences and Human Oncology University of Bari Medical School, Policlinico Hospital, Bari, Italy
| | - Gema Frühbeck
- Metabolic Research Laboratory, Clínica Universidad de Navarra, IdiSNA, Pamplona, Spain.,CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), Instituto de Salud Carlos III, Madrid, Spain.,Department of Endocrinology & Nutrition, Clínica Universidad de Navarra, Pamplona, Spain
| |
Collapse
|
35
|
Liljensøe A, Laursen JO, Bliddal H, Søballe K, Mechlenburg I. Weight Loss Intervention Before Total Knee Replacement: A 12-Month Randomized Controlled Trial. Scand J Surg 2019; 110:3-12. [DOI: 10.1177/1457496919883812] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Background and Aims: Obesity is an increasing problem in patients after total knee replacement. The aim of this study was to investigate whether a weight loss intervention before primary total knee replacement would improve quality of life, knee function, mobility, and body composition 1 year after surgery. Material and Methods: Patients scheduled for total knee replacement due to osteoarthritis of the knee and obesity were randomized to a control group receiving standard care or to an intervention group receiving 8-week low-energy diet before total knee replacement. Patient-reported quality of life, 6-Min Walk Test, and body composition by dual-energy X-ray absorptiometry were assessed before intervention for the diet group, and within 1 week preoperatively for both groups, and the changes in outcome from baseline to 1 year after total knee replacement were compared between groups. The number of participants was lower than planned, which might introduce a type-2 error and underestimate the trend for a better outcome after weight loss. Results: The analyses are based on a total of 76 patients, 38 in each group. This study showed major improvement in both study groups in quality of life and knee function, though no statistically significant differences between the groups were observed 1 year after total knee replacement. The average weight loss after 8-week preoperative intervention was 10.7 kg and consisted of a 6.7 kg reduction in fat mass. One year after total knee replacement, the participants in the diet group managed to maintain the weight reduction, whereas there was no change in the control group. Conclusion: The results suggest that it is feasible and safe to implement an intensive weight loss program shortly before total knee replacement. The preoperative intervention resulted in a 10% body weight loss, improved body composition, lower cardiovascular risk factors, and sustained s-leptin.
Collapse
Affiliation(s)
- A. Liljensøe
- Department of Orthopaedic Surgery, Aarhus University Hospital, Aarhus, Denmark
| | - J. O. Laursen
- Department of Orthopedics, Hospital of Southern Jutland, Aabenraa, Denmark
| | - H. Bliddal
- The Parker Institute and Department of Rheumatology, Copenhagen University Hospital, Bispebjerg-Frederiksberg, Denmark
| | - K. Søballe
- Department of Orthopaedic Surgery, Aarhus University Hospital, Aarhus, Denmark
| | - I. Mechlenburg
- Department of Orthopaedic Surgery, Aarhus University Hospital, Aarhus, Denmark
| |
Collapse
|
36
|
Ramos-Lopez O, Riezu-Boj JI, Milagro FI, Cuervo M, Goni L, Martinez JA. Models Integrating Genetic and Lifestyle Interactions on Two Adiposity Phenotypes for Personalized Prescription of Energy-Restricted Diets With Different Macronutrient Distribution. Front Genet 2019; 10:686. [PMID: 31417605 PMCID: PMC6683656 DOI: 10.3389/fgene.2019.00686] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Accepted: 07/01/2019] [Indexed: 12/13/2022] Open
Abstract
Aim: To analyze the influence of genetics and interactions with environmental factors on adiposity outcomes [waist circumference reduction (WCR) and total body fat loss (TFATL)] in response to energy-restricted diets in subjects with excessive body weight. Materials and Methods: Two hypocaloric diets (30% energy restriction) were prescribed to overweight/obese subjects during 16 weeks, which had different targeted macronutrient distribution: a low-fat (LF) diet (22% energy from lipids) and a moderately high-protein (MHP) diet (30% energy from proteins). At the end of the trial, a total of 201 participants (LF diet = 105; MHP diet = 96) who presented good/regular dietary adherence were genotyped for 95 single nucleotide polymorphisms (SNPs) previously associated with weight loss through next-generation sequencing from oral samples. Four unweighted (uGRS) and four weighted (wGRS) genetic risk scores were computed using statistically relevant SNPs for each outcome by diet. Predictions of WCR and TFATL by diet were modeled through recognized multiple linear regression models including genetic (single SNPs, uGRS, and wGRS), phenotypic (age, sex, and WC, or TFAT at baseline), and environment variables (physical activity level and energy intake at baselines) as well as eventual interactions between genes and environmental factors. Results: Overall, 26 different SNPs were associated with differential adiposity outcomes, 9 with WCR and 17 with TFATL, most of which were specific for each dietary intervention. In addition to conventional predictors (age, sex, lifestyle, and adiposity status at baseline), the calculated uGRS/wGRS and interactions with environmental factors were major contributors of adiposity responses. Thus, variances in TFATL-LF diet, TFATL-MHP diet, WCR-LF diet, and WCR-MHP diet were predicted by approximately 38% (optimism-corrected adj. R2 = 0.3792), 32% (optimism-corrected adj. R2 = 0.3208), 22% (optimism-corrected adj. R2 = 0.2208), and 21% (optimism-corrected adj. R2 = 0.2081), respectively. Conclusions: Different genetic variants and interactions with environmental factors modulate the differential individual responses to MHP and LF dietary interventions. These insights and models may help to optimize personalized nutritional strategies for modeling the prevention and management of excessive adiposity through precision nutrition approaches taking into account not only genetic information but also the lifestyle/clinical factors that interplay in addition to age and sex.
Collapse
Affiliation(s)
- Omar Ramos-Lopez
- Department of Nutrition, Food Science and Physiology, and Center for Nutrition Research, University of Navarra, Pamplona, Spain.,Medical and Psychology School, Autonomous University of Baja California, Tijuana, Baja California, Mexico
| | - Jose I Riezu-Boj
- Department of Nutrition, Food Science and Physiology, and Center for Nutrition Research, University of Navarra, Pamplona, Spain.,Navarra Institute for Health Research (IdiSNA), Pamplona, Spain
| | - Fermin I Milagro
- Department of Nutrition, Food Science and Physiology, and Center for Nutrition Research, University of Navarra, Pamplona, Spain.,CIBERobn, Fisiopatología de la Obesidad y la Nutrición; Carlos III Health Institute, Madrid, Spain
| | - Marta Cuervo
- Department of Nutrition, Food Science and Physiology, and Center for Nutrition Research, University of Navarra, Pamplona, Spain.,Navarra Institute for Health Research (IdiSNA), Pamplona, Spain.,CIBERobn, Fisiopatología de la Obesidad y la Nutrición; Carlos III Health Institute, Madrid, Spain
| | - Leticia Goni
- Department of Nutrition, Food Science and Physiology, and Center for Nutrition Research, University of Navarra, Pamplona, Spain
| | - J Alfredo Martinez
- Department of Nutrition, Food Science and Physiology, and Center for Nutrition Research, University of Navarra, Pamplona, Spain.,Navarra Institute for Health Research (IdiSNA), Pamplona, Spain.,CIBERobn, Fisiopatología de la Obesidad y la Nutrición; Carlos III Health Institute, Madrid, Spain.,Madrid Institute of Advanced Studies (IMDEA Food), Madrid, Spain
| |
Collapse
|
37
|
Clark SL, Ramdath DD, King BV, O'Connor KE, Aliani M, Hawke A, Duncan AM. Food Type and Lentil Variety Affect Satiety Responses but Not Food Intake in Healthy Adults When Lentils Are Substituted for Commonly Consumed Carbohydrates. J Nutr 2019; 149:1180-1188. [PMID: 31152672 DOI: 10.1093/jn/nxz050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2018] [Revised: 01/04/2018] [Accepted: 02/28/2019] [Indexed: 11/14/2022] Open
Abstract
BACKGROUND Lentils have potential to increase satiety and may contribute to a body weight management strategy; however, the effects on satiety of replacing common food ingredients with lentils within food products remain largely unknown. OBJECTIVE The aim of this study was to determine the effects of replacing wheat and rice with 2 lentil varieties within muffins and chilies on satiety, test-meal food intake, and 24-h energy intake. METHODS Healthy adults consumed muffins or chilies in which wheat or rice was substituted with green (61.8 g) or red (54 g) lentils in 2 randomized crossover studies (muffin study: n = 24, mean ± SE age: 25.4 ± 0.9 y, BMI (in kg/m2): 23.2 ± 0.5; chili study: n = 24, age: 25.7 ± 1.0 y, BMI: 23.2 ± 0.5), with ≥1-wk washout periods between study visits and studies. Subjective appetite sensations measured over 180 min were summarized with total area under the curve (AUC), food intake was measured at an ad libitum test meal, and 24-h energy intake was measured using weighed food records. Treatment effects were compared within each study using repeated-measures ANCOVA (subjective appetite sensations) and ANOVA (food intake, 24-h energy intake). RESULTS Green, but not red, lentil chili significantly increased fullness AUC (17.5%, P = 0.02) and decreased desire to eat AUC (20.1%, P = 0.02) and prospective food consumption AUC (16.7%, P = 0.04) compared with rice chili, with no significant differences between chili treatments for test-meal food intake or 24-h energy intake. Muffin treatments did not significantly differ for any outcomes. CONCLUSIONS Replacing rice with green, but not red lentils within chili increases satiety but does not decrease food intake, whereas replacing wheat with lentils within muffins does not increase satiety or decrease food intake in healthy adults. Further study of the role of lentil replacement in food products in body weight management is warranted. This trial was registered at clinicaltrials.gov as NCT03128684.
Collapse
Affiliation(s)
- Sandra L Clark
- Department of Human Health & Nutritional Sciences, University of Guelph, Guelph, Ontario, Canada
| | - D Dan Ramdath
- Guelph Research and Development Centre, Agriculture and Agri-Food Canada, Guelph, Ontario, Canada
| | - Brittany V King
- Department of Human Health & Nutritional Sciences, University of Guelph, Guelph, Ontario, Canada
| | - Katherine E O'Connor
- Department of Human Health & Nutritional Sciences, University of Guelph, Guelph, Ontario, Canada
| | - Michel Aliani
- Department of Food and Human Nutritional Sciences, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Aileen Hawke
- Guelph Research and Development Centre, Agriculture and Agri-Food Canada, Guelph, Ontario, Canada
| | - Alison M Duncan
- Department of Human Health & Nutritional Sciences, University of Guelph, Guelph, Ontario, Canada
| |
Collapse
|
38
|
Biomarkers of Oxidative Stress in Metabolic Syndrome and Associated Diseases. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2019; 2019:8267234. [PMID: 31191805 PMCID: PMC6525823 DOI: 10.1155/2019/8267234] [Citation(s) in RCA: 178] [Impact Index Per Article: 29.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/25/2018] [Revised: 02/08/2019] [Accepted: 03/19/2019] [Indexed: 12/11/2022]
Abstract
Metabolic syndrome (MS) represents worldwide public health issue characterized by a set of cardiovascular risk factors including obesity, diabetes, dyslipidemia, hypertension, and impaired glucose tolerance. The link between the MS and the associated diseases is represented by oxidative stress (OS) and by the intracellular redox imbalance, both caused by the persistence of chronic inflammatory conditions that characterize MS. The increase in oxidizing species formation in MS has been accepted as a major underlying mechanism for mitochondrial dysfunction, accumulation of protein and lipid oxidation products, and impairment of the antioxidant systems. These oxidative modifications are recognized as relevant OS biomarkers potentially able to (i) clarify the role of reactive oxygen and nitrogen species in the etiology of the MS, (ii) contribute to the diagnosis/evaluation of the disease's severity, and (iii) evaluate the utility of possible therapeutic strategies based on natural antioxidants. The antioxidant therapies indeed could be able to (i) counteract systemic as well as mitochondrial-derived OS, (ii) enhance the endogenous antioxidant defenses, (iii) alleviate MS symptoms, and (iv) prevent the complications linked to MS-derived cardiovascular diseases. The focus of this review is to summarize the current knowledge about the role of OS in the development of metabolic alterations characterizing MS, with particular regard to the occurrence of OS-correlated biomarkers, as well as to the use of therapeutic strategies based on natural antioxidants.
Collapse
|
39
|
Jang H, Park K. Omega-3 and omega-6 polyunsaturated fatty acids and metabolic syndrome: A systematic review and meta-analysis. Clin Nutr 2019; 39:765-773. [PMID: 31010701 DOI: 10.1016/j.clnu.2019.03.032] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2018] [Revised: 03/09/2019] [Accepted: 03/26/2019] [Indexed: 12/31/2022]
Abstract
BACKGROUND & AIMS Previous studies suggest that polyunsaturated fatty acids (PUFAs) may reduce the risk of metabolic diseases, but some have shown ambiguous results. The aim of this study was to systematically evaluate and summarize available evidence on the association between omega-3 and omega-6 PUFA levels and risk of metabolic syndrome (MetS). METHODS A systematic literature search of articles published until December 2017 was conducted in PubMed, Web of Science, and Cochrane Library databases. Meta-analyses of the highest vs. lowest categories of omega-3 and omega-6 PUFAs were conducted using the random effects models. RESULTS Thirteen studies (2 case-control, 9 cross-sectional, 1 nested case-control, and 1 prospective cohort) with 36,542 individuals were included. Higher omega-3 PUFA levels in diets or blood were associated with a 26% reduction in the risk of MetS (odds ratio (OR)/relative risk (RR) 0.74, 95% confidence interval (CI) 0.62-0.89). This inverse association was evident among studies with Asian populations (OR/RR 0.69, 95% CI 0.54-0.87), but not among those with American/European populations (OR/RR 0.84, 95% CI 0.55-1.28). Null results were found regarding the association between circulating/dietary omega-6 PUFAs and MetS. CONCLUSION The present meta-analysis indicates that higher intakes of omega-3 PUFAs, but not omega-6 PUFAs, was associated with lower MetS risk; adding to the current body of evidence on the metabolic health effects of circulating/dietary omega-3 PUFAs.
Collapse
Affiliation(s)
- Haeun Jang
- Department of Food and Nutrition, Yeungnam University, 280 Daehak-Ro, Gyeongsan, Gyeongbuk, 38541, Republic of Korea
| | - Kyong Park
- Department of Food and Nutrition, Yeungnam University, 280 Daehak-Ro, Gyeongsan, Gyeongbuk, 38541, Republic of Korea.
| |
Collapse
|
40
|
ÇAKIR Ö, UÇARLI C, TARHAN Ç, PEKMEZ M, TURGUT-KARA N. Nutritional and health benefits of legumes and their distinctive genomic properties. FOOD SCIENCE AND TECHNOLOGY 2019. [DOI: 10.1590/fst.42117] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
41
|
Nolde JM, Laupenmühlen J, Al-Zubaidi A, Heldmann M, Münte TF, Jauch-Chara K. Endocrine responses and food intake in fasted individuals under the influence of glucose ingestion. PLoS One 2019; 14:e0211514. [PMID: 30682147 PMCID: PMC6347228 DOI: 10.1371/journal.pone.0211514] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2018] [Accepted: 01/15/2019] [Indexed: 02/06/2023] Open
Abstract
Introduction Different metabolic conditions can affect what and how much we eat. Hormones of glucose metabolism and adipokines such as adiponectin take part in the control of these decisions and energy balance of the body. However, a comprehensive understanding of how these endocrine and metabolic factors influence food intake has not been reached. We hypothesised that the amount of food a person consumes differs substantially after a fasting period even after the energy deficit was partially removed by glucose ingestion and endocrine signals like insulin and C-peptide indicated a high glucose metabolic status. Furthermore, the macronutrient composition of the consumed food and a possible association with adiponectin under the influence of glucose ingestion was assessed. Methods In a within-subject design, 24 healthy males participated in both a fasting (42 h) and control (non-fasting) condition. A total of 20 blood samples from each subject were collected during each condition to assess serum levels of adiponectin, insulin, C-peptide, cortisol and ACTH. At the end of each condition food intake was measured with an ad libitum buffet after the acute energy deficit was compensated using a carbohydrate-rich drink. Results The total amount of caloric intake and single macronutrients was higher after the fasting intervention after replenishment with glucose. All recorded hormone levels, except for adiponectin, were significantly different for at least one of the study intervals. The relative proportions of the macronutrient composition of the consumed food were stable in both conditions under the influence of glucose ingestion. In the non-fasting condition, the relative amount of protein intake correlated with adiponectin levels during the experiment. Discussion and conclusion An anabolic glucose metabolism after glucose ingestion following a fasting intervention did not even out energy ingestion compared to a control group with regular food intake and glucose ingestion. Anorexigenic hormones like insulin in this context were not able despite higher levels than in the control condition to ameliorate the drive for food intake to normal or near normal levels. Relative macronutrient intake remains stable under these varying metabolic conditions and glucose influence. Serum adiponectin levels showed a positive association with the relative protein intake in the non-fasting condition under the influence of glucose although adiponectin levels overall did not differ in between the conditions.
Collapse
Affiliation(s)
- Janis Marc Nolde
- Department of Neurology, University of Lübeck, Lübeck, Germany
- * E-mail: (JMN); (KJ-C)
| | | | | | - Marcus Heldmann
- Department of Neurology, University of Lübeck, Lübeck, Germany
| | - Thomas F. Münte
- Department of Neurology, University of Lübeck, Lübeck, Germany
| | - Kamila Jauch-Chara
- Department of Psychiatry, University of Kiel, Kiel, Germany
- * E-mail: (JMN); (KJ-C)
| |
Collapse
|
42
|
Ribeiro FM, Ribeiro CFA, G ACM, Castro AP, Almeida JA, Franco OL, Petriz BA. Limited Effects of Low-to-Moderate Aerobic Exercise on the Gut Microbiota of Mice Subjected to a High-Fat Diet. Nutrients 2019; 11:E149. [PMID: 30641996 PMCID: PMC6357116 DOI: 10.3390/nu11010149] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2018] [Revised: 12/26/2018] [Accepted: 01/03/2019] [Indexed: 12/20/2022] Open
Abstract
Several studies have indicated that diet and exercise may modulate the gut microbiota in obese subjects. Both interventions were shown to alter the microbiota orthogonally. However, this relationship has not been fully explored. This study analyzed the effects of low-to-moderate aerobic training on the fecal microbiota of mice subjected to a high-fat diet (HFD). Here, 40 male mice (C57Bl/6) were divided into two groups with standard diet (SD; 12.4% lipid) and HFD (60.3% lipid) for four months. These groups were divided into four, named SD control, HF control, SD trained and HF trained. All animals were submitted to an incremental test to estimate low-to-moderate maximum speed. Training consisted of 30 min·day-1, 5 days/week, for 8 weeks. The HFD increased the body weight (p < 0.0001) and adiposity index (p < 0.05). HFD also negatively influenced performance in exercise training. Moreover, the diversity of gut microbiota was reduced by the HFD in all groups. A low-to-moderate exercise was ineffective in modulating the gut microbiota composition in mice subjected to HFD. These findings suggest that two months of low-to-moderate exercise does not achieve a preponderant modulatory effect on shaping microbiota when submitted to the high-fat diet.
Collapse
Affiliation(s)
- Filipe M Ribeiro
- Post-Graduation Program in Physical Education, Catholic University of Brasilia, Brasilia, 71966-700, DF, Brazil.
- Center for Proteomic and Biochemical Analysis, Post-Graduation in Genomic and Biotechnology Sciences, Catholic University of Brasilia, Brasília, 71966-700, DF, Brazil.
- University Center-UDF, Research Group of Molecular Exercise Physiology, Brasilia, 70390-045 DF, Brazil.
| | - Camila F A Ribeiro
- S-Inova Biotech, Catholic University Dom Bosco, Biotechnology Program, Campo Grande, 79000-000, MS, Brazil.
| | - Ana Cláudia M G
- University Center-UDF, Research Group of Molecular Exercise Physiology, Brasilia, 70390-045 DF, Brazil.
| | - Alinne P Castro
- S-Inova Biotech, Catholic University Dom Bosco, Biotechnology Program, Campo Grande, 79000-000, MS, Brazil.
| | - Jeeser A Almeida
- Programa de Pós-Graduação em Saúde e Desenvolvimento na Região Centro Oeste-PPGSD, Faculdade de Medicina-FAMED, Universidade Federal de Mato Grosso do Sul, Campo Grande, 71966-700, MS, Brazil.
| | - Octavio L Franco
- Center for Proteomic and Biochemical Analysis, Post-Graduation in Genomic and Biotechnology Sciences, Catholic University of Brasilia, Brasília, 71966-700, DF, Brazil.
- S-Inova Biotech, Catholic University Dom Bosco, Biotechnology Program, Campo Grande, 79000-000, MS, Brazil.
| | - Bernardo A Petriz
- Center for Proteomic and Biochemical Analysis, Post-Graduation in Genomic and Biotechnology Sciences, Catholic University of Brasilia, Brasília, 71966-700, DF, Brazil.
- University Center-UDF, Research Group of Molecular Exercise Physiology, Brasilia, 70390-045 DF, Brazil.
| |
Collapse
|
43
|
Hadi A, Askarpour M, Miraghajani M, Symonds ME, Sheikhi A, Ghaedi E. Effects of strawberry supplementation on cardiovascular risk factors: a comprehensive systematic review and meta-analysis of randomized controlled trials. Food Funct 2019; 10:6987-6998. [DOI: 10.1039/c9fo01684h] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Based on our findings, strawberry supplements that contained 10–454 g day−1 freeze-dried/fresh strawberries and taken for 3–12 weeks can improve DBP, CRP, MDA and LDL.
Collapse
Affiliation(s)
- Amir Hadi
- Halal Research Center of IRI
- FDA
- Tehran
- Iran
- Department of Clinical Nutrition
| | - Moein Askarpour
- Department of Community Nutrition
- School of Nutritional Sciences and Dietetics
- Tehran University of Medical Sciences
- Tehran
- Iran
| | - Maryam Miraghajani
- Cancer Research Center
- Shahid Beheshti University of Medical Sciences
- Tehran
- Iran
- The Early Life Research Unit
| | - Michael E. Symonds
- The Early Life Research Unit
- Academic Division of Child Health
- Obstetrics and Gynaecology
- and Nottingham Digestive Disease Centre and Biomedical Research Centre
- The School of Medicine
| | - Ali Sheikhi
- Department of Community Nutrition
- School of Nutritional Sciences and Dietetics
- Tehran University of Medical Sciences
- Tehran
- Iran
| | - Ehsan Ghaedi
- Students’ Scientific Research Center (SSRC)
- Tehran University of Medical Sciences (TUMS)
- Tehran
- Iran
- Department of Cellular and Molecular Nutrition
| |
Collapse
|
44
|
Zhou T, Sun D, Heianza Y, Li X, Champagne CM, LeBoff MS, Shang X, Pei X, Bray GA, Sacks FM, Qi L. Genetically determined vitamin D levels and change in bone density during a weight-loss diet intervention: the Preventing Overweight Using Novel Dietary Strategies (POUNDS Lost) Trial. Am J Clin Nutr 2018; 108:1129-1134. [PMID: 30475961 PMCID: PMC6924262 DOI: 10.1093/ajcn/nqy197] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2018] [Accepted: 07/20/2018] [Indexed: 12/23/2022] Open
Abstract
Background Obesity is closely associated with bone health. Although diet and weight loss produce many metabolic benefits, studies of weight loss diets on bone health are conflicting. Genetic variations, such as vitamin D levels, may partly account for these conflicting observations by regulating bone metabolism. Objective We investigated whether the genetic variation associated with vitamin D concentration affected changes in bone mineral density (BMD) in response to a weight-loss diet intervention. Design In the 2-y Preventing Overweight Using Novel Dietary Strategies (POUNDS Lost) trial, BMD was measured for 424 participants who were randomly assigned to 1 of 4 diets varying in macronutrient intakes. A genetic risk score (GRS) was calculated based on 3 genetic variants [i.e., 7-dehydrocholesterol reductase (DHCR7) rs12785878, cytochrome P450 2R1 (CYP2R1) rs10741657 and group-specific component globulin (GC) rs2282679] related to circulating vitamin D levels. A dual-energy X-ray absorptiometry scan was performed to assess changes in whole-body BMD over 2 y. The final analysis included 370 participants at baseline. Results We found a significant interaction between dietary fat intake and vitamin D GRS on 2-y changes in whole-body BMD (P-interaction = 0.02). In the high-fat diet group, participants with higher GRS showed significantly less reduction in whole-body BMD than those with lower GRS, whereas the genetic associations were not significant in the low-fat diet group. We also found a significant interaction between dietary fat intake and the GRS on 6-mo change in femur neck BMD (P-interaction = 0.02); however, the interaction became nonsignificant at 2 y. Conclusion Our data indicate that dietary fat intake may modify the effect of vitamin D-related genetic variation on changes in BMD. Overweight or obese patients predisposed to sufficient vitamin D may benefit more in maintaining BMD along with weight loss by eating a low-fat diet. This trial was registered at clinicaltrials.gov as NCT03258203.
Collapse
Affiliation(s)
- Tao Zhou
- Department of Epidemiology, School of Public Health and Tropical Medicine, Tulane University, New Orleans, LA
- Department of Public Health Laboratory Sciences, West China School of Public Health, Sichuan University, Sichuan Province, China
| | - Dianjianyi Sun
- Department of Epidemiology, School of Public Health and Tropical Medicine, Tulane University, New Orleans, LA
| | - Yoriko Heianza
- Department of Epidemiology, School of Public Health and Tropical Medicine, Tulane University, New Orleans, LA
| | - Xiang Li
- Department of Epidemiology, School of Public Health and Tropical Medicine, Tulane University, New Orleans, LA
| | | | | | - Xiaoyun Shang
- Department of Pediatrics, Children's Hospital New Orleans, New Orleans, LA
| | - Xiaofang Pei
- Department of Public Health Laboratory Sciences, West China School of Public Health, Sichuan University, Sichuan Province, China
| | - George A Bray
- Pennington Biomedical Research Center, Louisiana State University, Baton Rouge, LA
| | - Frank M Sacks
- Department of Nutrition, Harvard TH Chan School of Public Health, Boston, MA
| | - Lu Qi
- Department of Epidemiology, School of Public Health and Tropical Medicine, Tulane University, New Orleans, LA
- Department of Medicine, Channing Division of Network Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA
- Department of Nutrition, Harvard TH Chan School of Public Health, Boston, MA
| |
Collapse
|
45
|
Nutrition care guidelines for men with prostate cancer undergoing androgen deprivation therapy: do we have enough evidence? Prostate Cancer Prostatic Dis 2018; 22:221-234. [PMID: 30279584 DOI: 10.1038/s41391-018-0099-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2018] [Revised: 08/24/2018] [Accepted: 09/16/2018] [Indexed: 12/16/2022]
Abstract
BACKGROUND To review the evidence available to support clinical practice guidelines for dietary interventions aimed at mitigating the side effects of androgen deprivation therapy (ADT) in men with prostate cancer, and to identify future research priorities. METHODS An analytical model was designed to select and interpret evidence for the effect of dietary interventions on ADT side effects. Key terms identified articles that investigated dietary interventions to mitigate ADT side effects among men treated for prostate cancer. Medline, Embase, Proquest, CINAHL, Cochrane databases, and PubMed were searched from inception through June, 2018. Clinical trial registries were also searched for up-to-date study protocols. Articles were not restricted on design. Methodological quality was assessed using the mixed methods appraisal tool. RESULTS Sixteen articles met inclusion criteria, each with distinct dietary interventions. Twelve studies used interventions that combined diet with physical activity and/or medication and/or counselling. Four articles examined the effect of diet alone on ADT side effects. Of those, three articles measured changes to participants' dietary intake and influence on ADT side effects. One article showed daily caffeinated beverages improved cancer-related fatigue. Two articles showed no impact of isoflavone supplementation on hot flushes, quality of life, body mass index, or blood lipids. Dietary intake and compliance was poorly reported across all studies limiting knowledge of acceptability and feasibility for dietary interventions. Information on the nutrition care practices and views of clinicians treating men for prostate cancer is limited. No articles measured the impact of diet on long-term ADT side effects. Methodological quality of included papers ranged from weak to strong. CONCLUSIONS Current evidence for dietary interventions to mitigate ADT side effects is limited. Further investigations are warranted to explore the impact of changes in dietary intake on ADT side effects before practice guidelines can be considered.
Collapse
|
46
|
Othman F, Mohamad Nor NS, Appannah G, Zaki NAM, Ambak R, Omar A, Fazliana M, Salleh R, Yusof BNM, Muksan N, Aris T. Prediction of body fat loss in relation to change in nutrient intake among housewives participating in the MyBFF@home study. BMC Womens Health 2018; 18:102. [PMID: 30066632 PMCID: PMC6069758 DOI: 10.1186/s12905-018-0594-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Diet compositions are likely to be one of the influential factors for body fat deposition. The aim of this paper was to determine the nutrient changes and its association to body fat loss among the overweight and obese housewives in the MyBFF@home study. METHODS Data of participants in the MyBFF@home study (intervention and control groups) were analysed. Participants in the intervention group received personalised dietary counselling consisted of reduced calorie diet 1200-1500 kcal/day, while the control group was assigned to receive women's health seminars. The dietary assessment was done during the intervention phase at baseline, 1 month (m), 2 m, 3 m and 6 m using a 3-day food diary. Body fat was measured using a bioelectrical impedance analyser (In-body 720) at baseline and at the end of the intervention phase. The mean differences of nutrient intake and body compositions during the intervention phase were measured with paired t-test. The changes in body fat and nutrients intake were calculated by subtracting baseline measurements from those taken at 6 months. Multiple linear regression analysis was conducted to determine the extent to which the changes in each gram of nutrients per 1000 kcal were predictive of changes in body fat mass. RESULTS There were significant reductions in energy, all macronutrients, dietary fibre, calcium and iron intake in both study groups after the intervention phase (p < 0.05). In the intervention group, body fat loss increased with the reduction of each gram of carbohydrate, protein and fat per 1000 kcal, (p < 0.05), and decreased with the reduction of each gram of calcium and fibre intake per 1000 kcal (p < 0.05). In the control group, body fat loss increased with the reduction of each gram fat per 1000 kcal (p < 0.05) and decreased with the reduction of each gram iron per 1000 kcal. CONCLUSION Changes in the intake of various nutrients have different effects on body fat loss between the intervention and control group.
Collapse
Affiliation(s)
- Fatimah Othman
- Centre for Nutrition Epidemiology Research, Institute for Public Health, National Institutes of Health, Ministry of Health Malaysia, Jalan Bangsar, 50590 Kuala Lumpur, Malaysia
| | - Noor Safiza Mohamad Nor
- Centre for Nutrition Epidemiology Research, Institute for Public Health, National Institutes of Health, Ministry of Health Malaysia, Jalan Bangsar, 50590 Kuala Lumpur, Malaysia
| | - Geeta Appannah
- Department of Nutrition and Dietetics, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang, Malaysia
| | - Nor Azian Mohd Zaki
- Centre for Nutrition Epidemiology Research, Institute for Public Health, National Institutes of Health, Ministry of Health Malaysia, Jalan Bangsar, 50590 Kuala Lumpur, Malaysia
| | - Rashidah Ambak
- Centre for Nutrition Epidemiology Research, Institute for Public Health, National Institutes of Health, Ministry of Health Malaysia, Jalan Bangsar, 50590 Kuala Lumpur, Malaysia
| | - Azahadi Omar
- Centre for Nutrition Epidemiology Research, Institute for Public Health, National Institutes of Health, Ministry of Health Malaysia, Jalan Bangsar, 50590 Kuala Lumpur, Malaysia
| | - Mansor Fazliana
- Diabetes and Endocrine Unit, Cardiovascular, Diabetes and Nutrition Centre, Institute for Medical Research, Kuala Lumpur, Malaysia
| | - Ruhaya Salleh
- Centre for Nutrition Epidemiology Research, Institute for Public Health, National Institutes of Health, Ministry of Health Malaysia, Jalan Bangsar, 50590 Kuala Lumpur, Malaysia
| | - Barakatun Nisak Mohd Yusof
- Department of Nutrition and Dietetics, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang, Malaysia
| | | | - Tahir Aris
- Centre for Nutrition Epidemiology Research, Institute for Public Health, National Institutes of Health, Ministry of Health Malaysia, Jalan Bangsar, 50590 Kuala Lumpur, Malaysia
| |
Collapse
|
47
|
Di Sebastiano KM, Pinthus JH, Duivenvoorden WCM, Mourtzakis M. Glucose impairments and insulin resistance in prostate cancer: the role of obesity, nutrition and exercise. Obes Rev 2018; 19:1008-1016. [PMID: 29573216 DOI: 10.1111/obr.12674] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/06/2017] [Revised: 01/04/2018] [Accepted: 01/15/2018] [Indexed: 01/21/2023]
Abstract
BACKGROUND Hyperinsulinemia, obesity and related metabolic diseases are associated with prostate cancer development. Prostate cancer patients undergoing androgen deprivation therapy (ADT) are at increased risk for metabolic syndrome, cardiovascular disease and diabetes, while pre-existing metabolic conditions may be exacerbated. PURPOSE An integrative approach is used to describe the interactions between insulin, glucose metabolism, obesity and prostate cancer. The potential role of nutrition and exercise will also be examined. FINDINGS Hyperinsulinemia is associated with prostate cancer development, progression and aggressiveness. Prostate cancer patients who undergo ADT are at risk of diabetes in survivorship. It is unclear whether this is a direct result of treatment or related to pre-existing metabolic features (e.g. hyperinsulinemia and obesity). Obesity and metabolic syndrome are also associated with prostate cancer development and poorer outcomes for cancer survivors, which may be driven by hyperinsulinemia, pro-inflammation, hyperleptinemia and/or hypoadiponectinemia. CONCLUSIONS Independently evaluating changes in glucose metabolism near the time of prostate cancer diagnosis and during long-term ADT treatment is important to distinguish their unique contributions to the development of metabolic disturbances. Integrative approaches, including metabolic, clinical and body composition measures, are needed to understand the role of adiposity and insulin resistance in prostate cancer and to develop effective nutrition and exercise interventions to improve secondary diseases in survivorship.
Collapse
Affiliation(s)
- K M Di Sebastiano
- Department of Kinesiology, University of Waterloo, Waterloo, ON, Canada
| | - J H Pinthus
- Department of Surgery, Division of Urology, McMaster University, Hamilton, ON, Canada
| | - W C M Duivenvoorden
- Department of Surgery, Division of Urology, McMaster University, Hamilton, ON, Canada
| | - M Mourtzakis
- Department of Kinesiology, University of Waterloo, Waterloo, ON, Canada
| |
Collapse
|
48
|
Hjelmesæth J, Åsberg A, Andersson S, Sandbu R, Robertsen I, Johnson LK, Angeles PC, Hertel JK, Skovlund E, Heijer M, Ek AL, Krogstad V, Karlsen TI, Christensen H, Andersson TB, Karlsson C. Impact of body weight, low energy diet and gastric bypass on drug bioavailability, cardiovascular risk factors and metabolic biomarkers: protocol for an open, non-randomised, three-armed single centre study (COCKTAIL). BMJ Open 2018; 8:e021878. [PMID: 29844102 PMCID: PMC5988193 DOI: 10.1136/bmjopen-2018-021878] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
INTRODUCTION Roux-en-Y gastric bypass (GBP) is associated with changes in cardiometabolic risk factors and bioavailability of drugs, but whether these changes are induced by calorie restriction, the weight loss or surgery per se, remains uncertain. The COCKTAIL study was designed to disentangle the short-term (6 weeks) metabolic and pharmacokinetic effects of GBP and a very low energy diet (VLED) by inducing a similar weight loss in the two groups. METHODS AND ANALYSIS This open, non-randomised, three-armed, single-centre study is performed at a tertiary care centre in Norway. It aims to compare the short-term (6 weeks) and long-term (2 years) effects of GBP and VLED on, first, bioavailability and pharmacokinetics (24 hours) of probe drugs and biomarkers and, second, their effects on metabolism, cardiometabolic risk factors and biomarkers. The primary outcomes will be measured as changes in: (1) all six probe drugs by absolute bioavailability area under the curve (AUCoral/AUCiv) of midazolam (CYP3A4 probe), systemic exposure (AUCoral) of digoxin and rosuvastatin and drug:metabolite ratios for omeprazole, losartan and caffeine, levels of endogenous CYP3A biomarkers and genotypic variation, changes in the expression and activity data of the drug-metabolising, drug transport and drug regulatory proteins in biopsies from various organs and (2) body composition, cardiometabolic risk factors and metabolic biomarkers. ETHICS AND DISSEMINATION The COCKTAIL protocol was reviewed and approved by the Regional Committee for Medical and Health Research Ethics (Ref: 2013/2379/REK sørøst A). The results will be disseminated to academic and health professional audiences and the public via presentations at conferences, publications in peer-reviewed journals and press releases and provided to all participants. TRIAL REGISTRATION NUMBER NCT02386917.
Collapse
Affiliation(s)
- Jøran Hjelmesæth
- The Morbid Obesity Center, Vestfold Hospital Trust, Tønsberg, Norway
- Department of Endocrinology, Morbid Obesity and Preventive Medicine, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Anders Åsberg
- Department of Pharmaceutical Biosciences, School of Pharmacy, University of Oslo, Oslo, Norway
- Department of Transplantation Medicine, Oslo University Hospital, Rikshospitalet, Oslo, Norway
| | - Shalini Andersson
- Drug Metabolism and Pharmacokinetics, Cardiovascular, Renal and Metabolism, IMED Biotech Unit, AstraZeneca Gothenburg, Gothenburg, Sweden
| | - Rune Sandbu
- The Morbid Obesity Center, Vestfold Hospital Trust, Tønsberg, Norway
| | - Ida Robertsen
- Department of Pharmaceutical Biosciences, School of Pharmacy, University of Oslo, Oslo, Norway
| | | | | | | | - Eva Skovlund
- Department of Public Health and Nursing, Norwegian University of Science and Technology, Trondheim, Norway
| | - Maria Heijer
- Study Operations, Early Clinical Development, IMED Biotech Unit, AstraZeneca Gothenburg, Gothenburg, Sweden
| | - Anna-Lena Ek
- Study Operations, Early Clinical Development, IMED Biotech Unit, AstraZeneca Gothenburg, Gothenburg, Sweden
| | - Veronica Krogstad
- Department of Pharmaceutical Biosciences, School of Pharmacy, University of Oslo, Oslo, Norway
| | - Tor-Ivar Karlsen
- The Morbid Obesity Center, Vestfold Hospital Trust, Tønsberg, Norway
- Faculty of Health and Sports Science, University of Agder, Kristiansand, Norway
| | - Hege Christensen
- Department of Pharmaceutical Biosciences, School of Pharmacy, University of Oslo, Oslo, Norway
| | - Tommy B Andersson
- Drug Metabolism and Pharmacokinetics, Cardiovascular, Renal and Metabolism, IMED Biotech Unit, AstraZeneca Gothenburg, Gothenburg, Sweden
- Department of Physiology and Pharmacology, Section of Pharmacogenetics, Karolinska Institutet, Stockholm, Sweden
| | - Cecilia Karlsson
- Cardiovascular, Renal and Metabolism Translational Medicine Unit, Early Clinical Development, IMED Biotech Unit, AstraZeneca Gothenburg, Gothenburg, Sweden
- Department of Molecular and Clinical Medicine, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|
49
|
Goutzourelas N, Orfanou M, Charizanis I, Leon G, Spandidos DA, Kouretas D. GSH levels affect weight loss in individuals with metabolic syndrome and obesity following dietary therapy. Exp Ther Med 2018; 16:635-642. [PMID: 30116319 PMCID: PMC6090313 DOI: 10.3892/etm.2018.6204] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2018] [Accepted: 05/10/2018] [Indexed: 12/19/2022] Open
Abstract
This study examined the effects of redox status markers on metabolic syndrome (MetS) and obesity before and after dietary intervention and exercise for weight loss. A total of 103 adults suffering from MetS and obesity participated in this study and followed a personalized diet plan for 6 months. Body weight, body fat (BF) percentage (BF%), respiratory quotient (RQ) and the redox status markers, reduced glutathione (GSH), thiobarbituric acid reactive substances (TBARS) and protein carbonyls (CARB), were measured twice in each individual, before and after intervention. Dietary intervention resulted in weight loss, a reduction in BF% and a decrease in RQ. The GSH levels were significantly decreased following intervention, while the levels of TBARS and CARB were not affected. Based on the initial GSH levels, the patients were divided into 2 groups as follows: The high GSH group (GSH, >3.5 µmol/g Hb) and the low GSH group (GSH <3.5 µmol/g Hb). Greater weight and BF loss were observed in patients with high GSH levels. It was observed that patients with MetS and obesity with high GSH values responded better to the dietary therapy, exhibiting more significant changes in weight and BF%. This finding underscores the importance of identifying redox status markers, particularly GSH, in obese patients with MetS. Knowing the levels of GSH may aid in developing a better design of an individualized dietary plan for individuals who wish to lose weight.
Collapse
Affiliation(s)
- Nikolaos Goutzourelas
- Department of Biochemistry and Biotechnology, University of Thessaly, 41500 Larissa, Greece.,Eatwalk IKE, 15124 Athens, Greece
| | | | | | | | - Demetrios A Spandidos
- Laboratory of Clinical Virology, University of Crete, Medical School, 71409 Heraklion, Greece
| | - Demetrios Kouretas
- Department of Biochemistry and Biotechnology, University of Thessaly, 41500 Larissa, Greece
| |
Collapse
|
50
|
Effects of a 6-month caloric restriction induced-weight loss program in obese postmenopausal women with and without the metabolic syndrome: a MONET study. Menopause 2018; 24:908-915. [PMID: 28399005 DOI: 10.1097/gme.0000000000000862] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
OBJECTIVE To compare the effects of a caloric restriction (CR) on body composition, lipid profile, and glucose homeostasis in obese postmenopausal women with and without metabolic syndrome (MetS). METHODS Secondary analyses were performed on 73 inactive obese postmenopausal women (age 57.7 ± 4.8 years; body mass index 32.4 ± 4.6 kg/m) who participated in the 6-month CR arm of a study of the Montreal-Ottawa New Emerging Team. The harmonized MetS definition was used to categorize participants with MetS (n = 20, 27.39%) and without MetS (n = 53, 72.61%). Variables of interest were: body composition (dual-energy X-ray absorptiometry), body fat distribution (computed tomography scan), glucose homeostasis at fasting state and during a euglycemic/hyperinsulinemic clamp, fasting lipids, and resting blood pressure. RESULTS By design, the MetS group had a worse cardiometabolic profile, whereas both groups were comparable for age. Fifty-five participants out of 73 displayed no change in MetS status after the intervention. Twelve participants out of 20 (or 60.0%) in the MetS group had no more MetS after weight loss (P = NS), whereas 6 participants out of 53 (or 11.3%) in the other group developed the MetS after the intervention (P = NS). Overall, indices of body composition and body fat distribution improved significantly and similarly in both groups (P between 0.03 and 0.0001). Furthermore, with the exception of triglyceride levels and triglycerides/high-density lipoprotein cholesterol ratio, which decrease significantly more in the MetS group (P ≤ 0.05), no difference was observed between groups for the other variables of the cardiometabolic profile. CONCLUSIONS Despite no overall significant effects on MetS, heteregeneous results were obtained in response to weight loss in the present study, with some improving the MetS, whereas other displaying deteriorations. Further studies are needed to identify factors and phenotypes associated with positive and negative cardiometabolic responses to CR intervention.
Collapse
|