1
|
Yao S, Kendrick KM. How does oxytocin modulate human behavior? Mol Psychiatry 2025:10.1038/s41380-025-02898-1. [PMID: 39827220 DOI: 10.1038/s41380-025-02898-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 12/19/2024] [Accepted: 01/14/2025] [Indexed: 01/22/2025]
Abstract
While the highly evolutionarily conserved hypothalamic neuropeptide, oxytocin (OT) can influence cognitive, emotional and social functions, and may have therapeutic potential in disorders with social dysfunction, it is still unclear how it acts. Here, we review the most established findings in both animal model and human studies regarding stimuli which evoke OT release, its primary functional effects and the mechanisms whereby exogenous administration influences brain and behavior. We also review progress on whether OT administration can improve social symptoms in autism spectrum disorder and schizophrenia and consider possible impediments to translational success. Importantly, we emphasize that OT acting via its extensive central or peripheral receptors primarily influences behavior indirectly through neuromodulatory interactions with classical transmitters and other peptides which themselves can independently influence behavior. We also emphasize that exogenous administration studies increasingly demonstrate peripheral effects of OT may be of greater importance than originally thought, especially involving the vagus. Overall, we propose a hierarchical model whereby OT's neuromodulatory actions influence behavior across interconnected functional domains and ultimately help to promote survival, security and sociability. Initially, OT potently facilitates attention to salient social and other important stimuli and additionally modulates cognitive, emotional and reward processing in a person- and context-dependent manner to promote interpersonal social understanding, attraction and bonds on the one hand and social group cohesion through increased conformity, altruistic punishment and moral emotions on the other. OT also increases co-operation and protection across both social domains. We hope this review and model will promote further research and help aid future translation success.
Collapse
Affiliation(s)
- Shuxia Yao
- The Center of Psychosomatic Medicine, Sichuan Provincial Center for Mental Health, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China.
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Laboratory for Neuroinformation, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, 611731, China.
| | - Keith M Kendrick
- The Center of Psychosomatic Medicine, Sichuan Provincial Center for Mental Health, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China.
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Laboratory for Neuroinformation, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, 611731, China.
| |
Collapse
|
2
|
Du R, Liang T, Lu G. Modulation of empathic abilities by the interplay between estrogen receptors and arginine vasopressin. Neurosci Res 2025; 210:11-18. [PMID: 39245211 DOI: 10.1016/j.neures.2024.09.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 08/05/2024] [Accepted: 09/04/2024] [Indexed: 09/10/2024]
Abstract
This review examines the complex interactions between estrogen receptors α and β (ERα and ERβ) and arginine vasopressin (AVP), delving into their significant roles in modulating empathy, a critical psychological component in human social dynamics. Empathy, integrating affective and cognitive elements, is anchored in neural regions like the amygdala and prefrontal cortex. ERα and ERβ, pivotal in estrogen regulation, influence neurotransmitter dynamics and neural network activities, crucial for empathic development. AVP, key in regulating water balance, blood pressure, and social behaviors, interplays with these receptors, profoundly impacting empathic responses. The study highlights that ERα predominantly enhances empathy, especially affective empathy, by stimulating AVP synthesis and release. In contrast, ERβ may diminish empathy in certain contexts by suppressing AVP expression and activity. The intricate interplay, homeostatic balance, and mutual conversion between ERα and ERβ in AVP regulation are identified as challenging yet crucial areas for future research. These findings provide essential insights into the neurobiological underpinnings of empathy, offering new avenues for therapeutic interventions in social cognitive disorders and emotional dysregulation.
Collapse
Affiliation(s)
- Rui Du
- Institute for Biomedical Sciences of Pain, Tangdu Hospital, Fourth Military Medical University, Xi'an 710038, China
| | - Ting Liang
- Institute for Biomedical Sciences of Pain, Tangdu Hospital, Fourth Military Medical University, Xi'an 710038, China
| | - Guofang Lu
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers and National Clinical Research Center for Digestive Diseases, Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi'an 710032, China.
| |
Collapse
|
3
|
D'Addario C, Di Bartolomeo M. Epigenetic Control in Schizophrenia. Subcell Biochem 2025; 108:191-215. [PMID: 39820863 DOI: 10.1007/978-3-031-75980-2_5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2025]
Abstract
Schizophrenia is a severe and complex psychiatric condition ranking among the top 15 leading causes of disability worldwide. Despite the well-established heritability component, a complex interplay between genetic and environmental risk factors plays a key role in the development of schizophrenia and psychotic disorders in general. This chapter covers all the clinical evidence showing how the analysis of the epigenetic modulation in schizophrenia might be relevant to understand the pathogenesis of schizophrenia as well as potentially useful to develop new pharmacotherapies.
Collapse
Affiliation(s)
- Claudio D'Addario
- Department of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, Teramo, Italy.
| | - Martina Di Bartolomeo
- Department of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, Teramo, Italy
| |
Collapse
|
4
|
Effah F, Nidadavolu P, de Gusmão Taveiros Silva NK, Wojtowicz M, Camarini R, Zimmer A, Bailey A. Differential temporal decline of cerebral oxytocin and μ-opioid receptor density during the aging process in mice. Eur J Neurosci 2024; 60:6686-6703. [PMID: 39435722 PMCID: PMC11612844 DOI: 10.1111/ejn.16578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 09/26/2024] [Accepted: 09/30/2024] [Indexed: 10/23/2024]
Abstract
Aging is often associated with changes in social, sexual, emotional and pain functioning, as well as with the increased prevalence of certain psychopathologies. However, the neurodevelopmental basis underpinning these age-related changes remains to be determined. Considering the key roles of oxytocin (OTR) and μ-opioid (MOPr) receptor systems in regulating social, sexual, pain, reward and emotional processing, it seems plausible that they are also implicated in age-related behavioural alterations. Although the ontogeny of both receptors has been well characterized in rodent brains from early development till adulthood, little is known concerning the neuroadaptations occurring from middle age to old age. Therefore, we mapped the neuroadaptations in OTR and MOPr in the brains of mice at those developmental endpoints. Quantitative OTR and MOPr autoradiographic binding was carried out in the brains of male mice at 2, 6, 9, 12 and 18 months of age. A significant whole brain decline in OTR density was detected between 2 and 6 months of age, with no additional decline thereafter. Interestingly, for MOPrs, the decline in density was not detected until 9 months of age. Region-specific age-related decline in OTR density was concentrated in the lateral anterior olfactory nuclei (AOL) and, for MOPr, in the AOL and the nucleus accumbens. Identifying the tipping point of these age-related variations in both receptors may assist with our understanding of the neurobiology underlining age-related changes in social, pain and emotional functioning/processing. It may also help us target interventions to specific developmental windows to abrogate certain age-related psychopathologies.
Collapse
Affiliation(s)
- Felix Effah
- Pharmacology Section, St. George's School of Health & Medical SciencesCity St George's University of London, Cranmer TerraceLondonUK
| | - Prakash Nidadavolu
- Institute of Molecular Psychiatry, Medical Faculty, University of BonnBonnGermany
| | | | - Milosz Wojtowicz
- Pharmacology Section, St. George's School of Health & Medical SciencesCity St George's University of London, Cranmer TerraceLondonUK
| | - Rosana Camarini
- Pharmacology DepartmentUniversidade de Sao PauloSão PauloBrazil
| | - Andreas Zimmer
- Institute of Molecular Psychiatry, Medical Faculty, University of BonnBonnGermany
| | - Alexis Bailey
- Pharmacology Section, St. George's School of Health & Medical SciencesCity St George's University of London, Cranmer TerraceLondonUK
| |
Collapse
|
5
|
Petersson M, Uvnäs-Moberg K. Interactions of Oxytocin and Dopamine-Effects on Behavior in Health and Disease. Biomedicines 2024; 12:2440. [PMID: 39595007 PMCID: PMC11591571 DOI: 10.3390/biomedicines12112440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Revised: 10/14/2024] [Accepted: 10/19/2024] [Indexed: 11/28/2024] Open
Abstract
The hypothalamic neuropeptide and hormone oxytocin are of fundamental importance for maternal, social, and sexual behavior. Deviations in oxytocin levels have also been associated with anxiety, autism spectrum disorders (ASD), depression, ADHD (attention deficit hyperactivity disorder), and schizophrenia. Both oxytocin and dopamine are often considered reward- and feel-good hormones, and dopamine is associated with the above-mentioned behaviors and, and dopamine is also associated with the above-mentioned behaviors and disorders. Although being structurally totally different, oxytocin, a peptide, and dopamine, a monoamine, they have a number of similar effects. They are synthesized both in the brain and in the periphery, and they affect each other's release and receptors. In addition, oxytocin and dopamine are released in response to, for example, social interaction, sex, feeding, and massage. This review discusses interactions between oxytocin and dopamine with a specific focus on behavioral effects and possible roles of oxytocin and dopamine in various mental disorders and functional diversities.
Collapse
Affiliation(s)
- Maria Petersson
- Department of Endocrinology, Karolinska University Hospital, 171 76 Stockholm, Sweden
- Department of Molecular Medicine and Surgery, Karolinska Institutet, 171 77 Stockholm, Sweden
| | - Kerstin Uvnäs-Moberg
- Department of Applied Animal Science and Welfare, Swedish University of Agricultural Sciences, 532 31 Skara, Sweden
| |
Collapse
|
6
|
Scarboro SM, López MF, Becker HC. Role of oxytocin and vasopressin in alcohol use disorder. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2024; 178:23-57. [PMID: 39523056 DOI: 10.1016/bs.irn.2024.08.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
Published works highlight the role of neuropeptides in both the development and treatment of AUD. Closely related hypothalamic neuropeptides, oxytocin (OT) and vasopressin (VP), initially recognized for their physiological hormone effects, are increasingly acknowledged for their behavioral influences. Studies consistently demonstrate that OT and VP impact alcohol consumption and related behaviors, implicating them in the neurobiology of addiction. Moreover, stress is a pivotal risk factor for alcohol use and relapse, with OT and VP playing an integral role in the body's stress response system. While previous work has explored the interaction of OT and VP with other substances of abuse, this review focuses on their roles in alcohol-associated behaviors specifically to better understand the role of OT and VP in AUD. Here we synthesize recent preclinical and clinical literature examining changes in OT and VP protein and receptor expression in response to alcohol, as well as research investigating the effects of modulating these systems on alcohol-related behaviors. This review aims to deepen the understanding of OT and VP in the context of AUD with the goal of facilitating future research and enhancing treatment outcomes.
Collapse
Affiliation(s)
- Sutton M Scarboro
- Department of Psychiatry and Behavioral Sciences, Charleston Alcohol Research Center, Medical University of South Carolina, Charleston, SC, United States; Department of Neuroscience, Charleston Alcohol Research Center, Medical University of South Carolina, Charleston, SC, United States
| | - Marcelo F López
- Department of Psychiatry and Behavioral Sciences, Charleston Alcohol Research Center, Medical University of South Carolina, Charleston, SC, United States
| | - Howard C Becker
- Department of Psychiatry and Behavioral Sciences, Charleston Alcohol Research Center, Medical University of South Carolina, Charleston, SC, United States; Department of Neuroscience, Charleston Alcohol Research Center, Medical University of South Carolina, Charleston, SC, United States; RHJ Veterans Administartion Health Care System, Charleston, SC, United States.
| |
Collapse
|
7
|
Koyama Y, Nawa N, Ochi M, Surkan PJ, Fujiwara T. Epistatic interactions between oxytocin- and dopamine-related genes and trust. PLoS One 2024; 19:e0308728. [PMID: 39298414 PMCID: PMC11412487 DOI: 10.1371/journal.pone.0308728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Accepted: 07/29/2024] [Indexed: 09/21/2024] Open
Abstract
Trust is an essential human trait. Although research suggests that the interplay between oxytocinergic and dopaminergic systems affects trust formation, little research has focused on epistatic (i.e., gene by gene) interaction effects of oxytocin- and dopamine-related genes on trust. Using a sample of 348 adults (114 men), we aimed to investigate the associations between genetic variants in oxytocin- and dopamine-related genes and the general, neighborhood, and institutional trust with consideration of sex differences. Three-way interaction between oxytocin-related gene genotypes, dopamine-related genotypes, and sex was found for the oxytocin receptor gene (OXTR)rs1042778 and the Catechol-O-Methyltransferase gene (COMT) rs4680 genotypes (p = 0.02) and for OXTR rs2254298 and the dopamine D2 receptor gene (DRD2) rs1800497 genotypes (p = 0.01). Further sex-stratified analyses revealed that the interaction between OXTR rs1042778 and COMT rs4680 genotypes was associated with neighborhood trust among men (p = 0.0007). Also, the interaction between OXTR rs2254298 and DRD2 rs1800497 genotypes was associated with institutional trust among men (p = 0.005). Post-hoc analyses found that men with OXTR rs1042778 TG/TT and COMT rs4680 GG genotypes reported higher neighborhood trust than those with GG + AG/AA (B = 13.49, SE = 4.68, p = 0.02), TG/TT + AG/AA (B = 23.00, SE = 5.99, p = 0.001), and GG + GG (B = 18.53, SE = 5.25, p = 0.003). Similarly, men with OXTR rs2254298 AG/AA and DRD2 rs1800497 CC genotypes showed higher institutional trust than those with AG/AA + TT/TC (B = 15.67, SE = 5.30, p = 0.02). We could not find any interacting associations among women. While we note that our sample size and candidate gene approach have a potential risk of chance findings, our study provides an important foundation toward further exploration of sex-specific epistatic interaction effects of oxytocin- and dopamine-related genes on trust, indicating the importance of both systems in trust formation.
Collapse
Affiliation(s)
- Yuna Koyama
- Department of Public Health, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| | - Nobutoshi Nawa
- Department of Public Health, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| | - Manami Ochi
- Department of Social Medicine, National Center for Child Health and Development, Tokyo, Japan
- Department of Health and Welfare Services, National Institute of Public Health, Saitama, Japan
| | - Pamela J. Surkan
- Department of International Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, United States of America
| | - Takeo Fujiwara
- Department of Public Health, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
- Department of Social Medicine, National Center for Child Health and Development, Tokyo, Japan
| |
Collapse
|
8
|
Reybrouck M, Podlipniak P, Welch D. Music Listening as Exploratory Behavior: From Dispositional Reactions to Epistemic Interactions with the Sonic World. Behav Sci (Basel) 2024; 14:825. [PMID: 39336040 PMCID: PMC11429034 DOI: 10.3390/bs14090825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 08/21/2024] [Accepted: 09/11/2024] [Indexed: 09/30/2024] Open
Abstract
Listening to music can span a continuum from passive consumption to active exploration, relying on processes of coping with the sounds as well as higher-level processes of sense-making. Revolving around the major questions of "what" and "how" to explore, this paper takes a naturalistic stance toward music listening, providing tools to objectively describe the underlying mechanisms of musical sense-making by weakening the distinction between music and non-music. Starting from a non-exclusionary conception of "coping" with the sounds, it stresses the exploratory approach of treating music as a sound environment to be discovered by an attentive listener. Exploratory listening, in this view, is an open-minded and active process, not dependent on simply recalling pre-existing knowledge or information that reduces cognitive processing efforts but having a high cognitive load due to the need for highly focused attention and perceptual readiness. Music, explored in this way, is valued for its complexity, surprisingness, novelty, incongruity, puzzlingness, and patterns, relying on processes of selection, differentiation, discrimination, and identification.
Collapse
Affiliation(s)
- Mark Reybrouck
- Musicology Research Group, Faculty of Arts, KU Leuven-University of Leuven, 3000 Leuven, Belgium
- Institute for Psychoacoustics and Electronic Music (IPEM), Department of Art History, Musicology and Theatre Studies, 9000 Ghent, Belgium
| | - Piotr Podlipniak
- Institute of Musicology, Adam Mickiewicz University in Poznań, 61-712 Poznań, Poland
| | - David Welch
- Institute Audiology Section, School of Population Health, University of Auckland, Auckland 2011, New Zealand
| |
Collapse
|
9
|
Lee MR, Moore CF, Weerts EM. Oxytocin decreases alcohol self-administration in male baboons. Transl Psychiatry 2024; 14:369. [PMID: 39261461 PMCID: PMC11390958 DOI: 10.1038/s41398-024-03076-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 08/21/2024] [Accepted: 08/27/2024] [Indexed: 09/13/2024] Open
Abstract
The neurohormone oxytocin (OT) has been proposed as a treatment for alcohol and nicotine use disorders. The aim of the present study was to examine whether intravenous (IV) OT decreases alcohol oral self-administration and consumption in nonhuman primates under a 6-h alcohol access procedure as well as alcohol and nicotine (IV) self-administration under 6-h concurrent access conditions. The subjects were five male baboons (Papio anubis) that self-administered oral alcohol (4% w/v) during 6-h sessions under a fixed ratio 3 (FR3) schedule per drink. Baseline levels of alcohol self-administration were established and then OT treatment was initiated. A single dose of OT (20, 40, 80, 120 IU, IV) or its vehicle (saline) was administered before and again in the middle of the 6-h drinking session for 5 consecutive days (total oxytocin dose of 40, 80, 160, 240 IU/day). After each 5-day treatment, baseline levels of alcohol self-administration were reestablished before the next 5-day OT treatment. In addition, the effect of OT on concurrent alcohol and IV nicotine self-administration was explored in 3 of the baboons where alcohol and nicotine were concurrently available during the 6-hr session each under an FR3 schedule for each drug. Establishment of baseline self-administration and 5-day OT treatments were completed as in the alcohol only study. There was a significant overall reduction in alcohol consumption with OT compared to placebo. On post-hoc analysis, after correcting for multiple comparisons, the 40 and 80 IU doses of OT significantly reduced alcohol consumption compared with vehicle, and consumption did not vary significantly within each 5-day treatment period. OT, qualitatively, also reduced the coadministration of both alcohol and nicotine in each baboon for at least one of the OT doses administered. These results underscore the therapeutic potential of oxytocin as a treatment of alcohol use disorder and possibly, co-use of nicotine.
Collapse
Affiliation(s)
- Mary R Lee
- Veterans Affairs Medical Center, Washington, DC, USA
| | - Catherine F Moore
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Elise M Weerts
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
10
|
Wang Y, Xu H, Chen S, Chen J, Zheng Q, Ma Y, Zhao X, Shi Y, Xiao L. Oxytocin Protects Nigrostriatal Dopamine Signal via Activating GABAergic Circuit in the MPTP-Induced Parkinson's Disease Model. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2310244. [PMID: 39099429 PMCID: PMC11423065 DOI: 10.1002/advs.202310244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 07/23/2024] [Indexed: 08/06/2024]
Abstract
The most pronounced neuropathological feature of Parkinson's disease (PD) is the loss of dopamine (DA) neurons in the substantia nigra compacta (SNc), which depletes striatal DA. Hypothalamic oxytocin is found to be reduced in PD patients and closely interacts with the DA system, but the role of oxytocin in PD remains unclear. Here, the disturbances of endogenous oxytocin level and the substantia nigra (SN) oxytocin receptor expression in the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced PD mouse model is observed, correlated with the striatal tyrosine hydroxylase (TH) expression reduction. Killing/silencing hypothalamic oxytocin neurons aggravates the vulnerability of nigrostriatal DA signal to MPTP, whereas elevating oxytocin level by intranasal delivery or microinjecting into the SN promotes the resistance. In addition, knocking out SN oxytocin receptors induces the time-dependent reductions of SNc DA neurons, striatal TH expression, and striatal DA level by increasing neuronal excitotoxicity. These results further uncover that oxytocin dampens the excitatory synaptic inputs onto DA neurons via activating oxytocin receptor-expressed SN GABA neurons, which target GABA(B) receptors expressed in SNc DA neuron-projecting glutamatergic axons, to reduce excitotoxicity. Thus, besides the well-known prosocial effect, oxytocin acts as a key endogenous factor in protecting the nigrostriatal DA system.
Collapse
Affiliation(s)
- Yurong Wang
- Shanghai Stomatological Hospital & School of Stomatology, The State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, and the Institutes of Brain Science, Fudan University, Shanghai, 200032, China
| | - Hao Xu
- Shanghai Stomatological Hospital & School of Stomatology, The State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, and the Institutes of Brain Science, Fudan University, Shanghai, 200032, China
| | - Saiyong Chen
- Shanghai Stomatological Hospital & School of Stomatology, The State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, and the Institutes of Brain Science, Fudan University, Shanghai, 200032, China
| | - Junhao Chen
- Shanghai Stomatological Hospital & School of Stomatology, The State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, and the Institutes of Brain Science, Fudan University, Shanghai, 200032, China
| | - Qimeng Zheng
- Shanghai Stomatological Hospital & School of Stomatology, The State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, and the Institutes of Brain Science, Fudan University, Shanghai, 200032, China
| | - Yuanyuan Ma
- Shanghai Stomatological Hospital & School of Stomatology, The State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, and the Institutes of Brain Science, Fudan University, Shanghai, 200032, China
| | - Xinru Zhao
- Shanghai Stomatological Hospital & School of Stomatology, The State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, and the Institutes of Brain Science, Fudan University, Shanghai, 200032, China
| | - Ying Shi
- Shanghai Stomatological Hospital & School of Stomatology, The State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, and the Institutes of Brain Science, Fudan University, Shanghai, 200032, China
| | - Lei Xiao
- Shanghai Stomatological Hospital & School of Stomatology, The State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, and the Institutes of Brain Science, Fudan University, Shanghai, 200032, China
| |
Collapse
|
11
|
Yang SC, Shieh KR. Higher exploratory and vigilant behaviors related to higher central dopaminergic activities of Formosan wood mice (Apodemus semotus) in light-dark exploration tests. Pharmacol Biochem Behav 2024; 241:173792. [PMID: 38806117 DOI: 10.1016/j.pbb.2024.173792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 05/16/2024] [Accepted: 05/23/2024] [Indexed: 05/30/2024]
Abstract
Formosan wood mice (Apodemus semotus) are endemic rodents in Taiwan. Recently Formosan wood mice exhibit similar locomotor behaviors in the laboratory environment as in the field environment has shown. Contemporaneously, Formosan wood mice have higher moving distances of and central dopaminergic (DAergic) activities than C57BL/6 mice in behavioral test. This study tried to compare the behavioral responses between male Formosan wood mice and male C57BL/6 mice in the light-dark exploration tests. We also measured the levels of DA and 3,4-dihydroxyphenylacetic acid (DOPAC), the primary metabolite of DA, to assess the dopaminergic activity of the medial prefrontal cortex, striatum, and nucleus accumbens. Our data show that Formosan wood mice revealed higher exploration and central DAergic activities than did C57BL/6 mice in the light-dark exploration tests, and diazepam (an anxiolytics) treatment reduced the exploratory activity and central dopaminergic activities in Formosan wood mice, but not in C57BL/6 mice. After repeated exposure to light-dark exploration tests, the latency to dark zone was increased, and the duration in light zone as well as the central DAergic activity were decreased in C57BL/6 mice. This study provides comparative findings; Formosan wood mice showed the higher exploratory activities than C57BL/6 mice did, and their central DAergic activities were related to the behavioral responses in these two mice. This could potentially shed light on the reasons behind the prevalence of higher exploration and central dopaminergic activities. Using Formosan wood mice as a model to study human diseases related to hyperactivity adds significant value to the potential research.
Collapse
Affiliation(s)
- Shu-Chuan Yang
- Holistic Education Center, Tzu Chi University of Science and Technology, Hualien 970, Taiwan; Department of Physiology, Tzu Chi University, Hualien 970, Taiwan
| | - Kun-Ruey Shieh
- Department of Physiology, Tzu Chi University, Hualien 970, Taiwan; Institute of Biomedical Sciences, Tzu Chi University, Hualien 970, Taiwan.
| |
Collapse
|
12
|
Rae M, Gomes I, Spelta LEW, Bailey A, Marcourakis T, Devi L, Camarini R. Environmental enrichment enhances ethanol preference over social reward in male swiss mice: Involvement of oxytocin-dopamine interactions. Neuropharmacology 2024; 253:109971. [PMID: 38705568 PMCID: PMC11145911 DOI: 10.1016/j.neuropharm.2024.109971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 03/18/2024] [Accepted: 04/25/2024] [Indexed: 05/07/2024]
Abstract
The impact of environmental enrichment (EE) on natural rewards, including social and appetitive rewards, was investigated in male Swiss mice. EE, known for providing animals with various stimuli, was assessed for its effects on conditioned place preference (CPP) associated with ethanol and social stimuli. We previously demonstrated that EE increased the levels of the prosocial neuropeptide oxytocin (OT) in the hypothalamus and enhanced ethanol rewarding effects via an oxytocinergic mechanism. This study also investigated the impact of EE on social dominance and motivation for rewards, measured OT-mediated phospholipase C (PLC) activity in striatal membranes, and assessed OT expression in the hypothalamus. The role of dopamine in motivating rewards was considered, along with the interaction between OT and D1 receptors (DR) in the nucleus accumbens (NAc). Results showed that EE mice exhibited a preference for ethanol reward over social reward, a pattern replicated by the OT analogue Carbetocin. EE mice demonstrated increased social dominance and reduced motivation for appetitive taste stimuli. Higher OT mRNA levels in the hypothalamus were followed by diminished OT receptor (OTR) signaling activity in the striatum of EE mice. Additionally, EE mice displayed elevated D1R expression, which was attenuated by the OTR antagonist (L-368-889). The findings underscore the reinforcing effect of EE on ethanol and social rewards through an oxytocinergic mechanism. Nonetheless, they suggest that mechanisms other than the prosocial effect of EE may contribute to the ethanol pro-rewarding effect of EE and Carbetocin. They also point towards an OT-dopamine interaction potentially underlying some of these effects.
Collapse
Affiliation(s)
- Mariana Rae
- Department of Pharmacology, Institute of Biomedical Sciences, University of Sao Paulo, Sao Paulo, SP, 05508-900, Brazil; Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, United States
| | - Ivone Gomes
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, United States
| | - Lidia Emmanuela Wiazowski Spelta
- Department of Clinical and Toxicological Analysis, School of Pharmaceutical Sciences, University of Sao Paulo, Sao Paulo, SP, 05508-000, Brazil
| | - Alexis Bailey
- Pharmacology Section, Institute of Medical and Biomedical Education, St George's University of London, London, UK
| | - Tania Marcourakis
- Department of Clinical and Toxicological Analysis, School of Pharmaceutical Sciences, University of Sao Paulo, Sao Paulo, SP, 05508-000, Brazil
| | - Lakshmi Devi
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, United States
| | - Rosana Camarini
- Department of Pharmacology, Institute of Biomedical Sciences, University of Sao Paulo, Sao Paulo, SP, 05508-900, Brazil.
| |
Collapse
|
13
|
Bergman NJ. New policies on skin-to-skin contact warrant an oxytocin-based perspective on perinatal health care. Front Psychol 2024; 15:1385320. [PMID: 39049943 PMCID: PMC11267429 DOI: 10.3389/fpsyg.2024.1385320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Accepted: 06/10/2024] [Indexed: 07/27/2024] Open
Abstract
Background In 2023, the World Health Organization (WHO) published a Global Position Paper on Kangaroo Mother Care (KMC), which is applicable to all countries worldwide: from the moment of birth, every "small and sick" newborn should remain with mother in immediate and continuous skin-to-skin contact (SSC), receiving all required clinical care in that place. This was prompted by the startling results of a randomized controlled trial published in 2021: in which 1,609 infants receiving immediate SSC were compared with 1,602 controls that were separated from their mothers but otherwise received identical conventional state-of-the-art care. The intervention infants showed a 25% reduction in mortality after 28 days. New perspectives The new WHO guidelines are a significant change from earlier guidance and common clinical practice. The author presents that separating mothers and babies is assumed to be "normal" (a paradigm) but actually puts newborns at increased risk for morbidity and mortality. The author presents arguments and ethical perspectives for a new perspective on what is "normal," keeping newborns with their mothers is the infant's physiological expectation and critical requirement for healthy development. The author reviews the scientific rationale for changing the paradigm, based on synchronous interactions of oxytocin on both mother and infant. This follows a critique of the new policies that highlights the role of immediate SSC. Actionable recommendations This critique strengthens the case for implementing the WHO guidelines on KMC for small and sick babies. System changes will be necessary in both obstetric and neonatal settings to ensure seamless perinatal care. Based on the role of oxytocin, the author identifies that many current routine care practices may actually contribute to stress and increased vulnerability to the newborn. WHO has actionable recommendations about family involvement and presence in newborn intensive care units. Discussion The concepts of resilience and vulnerability have specific definitions well known in perinatal care: the key outcome of care should be resilience rather than merely the absence of vulnerability. Newborns in all settings and contexts need us to re-evaluate our paradigms and adopt and implement the new WHO guidelines on KMC in perinatal care.
Collapse
Affiliation(s)
- Nils J. Bergman
- Department of Women’s and Children’s Health, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
14
|
Clarici A, Bulfon M, Radin Y, Panksepp J. Neuromodulation of safety and surprise in the early stages of infant development: affective homeostatic regulation in bodily and mental functions. Front Psychol 2024; 15:1395247. [PMID: 38903479 PMCID: PMC11187996 DOI: 10.3389/fpsyg.2024.1395247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Accepted: 05/22/2024] [Indexed: 06/22/2024] Open
Abstract
Developing a sense of internal safety and security depends mainly on others: numerous neuromodulators play a significant role in the homeostatic process, regulating the importance of proximity to a caregiver and experiencing feelings that enable us to regulate our interdependence with our conspecifics since birth. This array of neurofunctional structures have been called the SEPARATION DISTRESS system (now more commonly known as the PANIC/ GRIEF system). This emotional system is mainly involved in the production of depressive symptoms. The disruption of this essential emotional balance leads to the onset of feelings of panic followed by depression. We will focus on the neuropeptides that play a crucial role in social approach behavior in mammals, which enhance prosocial behavior and facilitate the consolidation of social bonds. We propose that most prosocial behaviors are regulated through the specific neuromodulators acting on salient intersubjective stimuli, reflecting an increased sense of inner confidence (safety) in social relationships. This review considers the neurofunctional link between the feelings that may ultimately be at the base of a sense of inner safety and the central neuromodulatory systems. This link may shed light on the clinical implications for the development of early mother-infant bonding and the depressive clinical consequences when this bond is disrupted, such as in post-partum depression, depressive feelings connected to, addiction, neurofunctional disorders, and psychological trauma.
Collapse
Affiliation(s)
- Andrea Clarici
- Department of Medical, Surgical and Health Sciences, Cattinara Hospital, University of Trieste, Trieste, Italy
| | - Matteo Bulfon
- Department of Pediatrics, Institute for Maternal and Child Health, IRCCS “Burlo Garofolo”, Trieste, Italy
| | - Yvonne Radin
- Department of Pediatrics, Institute for Maternal and Child Health, IRCCS “Burlo Garofolo”, Trieste, Italy
| | - Jaak Panksepp
- College of Veterinary Medicine, Washington State University, Pullman, WA, United States
| |
Collapse
|
15
|
Rappeneau V, Castillo Díaz F. Convergence of oxytocin and dopamine signalling in neuronal circuits: Insights into the neurobiology of social interactions across species. Neurosci Biobehav Rev 2024; 161:105675. [PMID: 38608828 DOI: 10.1016/j.neubiorev.2024.105675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 03/21/2024] [Accepted: 04/10/2024] [Indexed: 04/14/2024]
Abstract
Social behaviour is essential for animal survival, and the hypothalamic neuropeptide oxytocin (OXT) critically impacts bonding, parenting, and decision-making. Dopamine (DA), is released by ventral tegmental area (VTA) dopaminergic neurons, regulating social cues in the mesolimbic system. Despite extensive exploration of OXT and DA roles in social behaviour independently, limited studies investigate their interplay. This narrative review integrates insights from human and animal studies, particularly rodents, emphasising recent research on pharmacological manipulations of OXT or DA systems in social behaviour. Additionally, we review studies correlating social behaviour with blood/cerebral OXT and DA levels. Behavioural facets include sociability, cooperation, pair bonding and parental care. In addition, we provide insights into OXT-DA interplay in animal models of social stress, autism, and schizophrenia. Emphasis is placed on the complex relationship between the OXT and DA systems and their collective influence on social behaviour across physiological and pathological conditions. Understanding OXT and DA imbalance is fundamental for unravelling the neurobiological underpinnings of social interaction and reward processing deficits observed in psychiatric conditions.
Collapse
Affiliation(s)
- Virginie Rappeneau
- Department of Behavioural and Molecular Neurobiology, Regensburg Center of Neuroscience, University of Regensburg, Universitaetsstr. 31, Regensburg 93053, Germany.
| | - Fernando Castillo Díaz
- Department of Behavioural and Molecular Neurobiology, Regensburg Center of Neuroscience, University of Regensburg, Universitaetsstr. 31, Regensburg 93053, Germany
| |
Collapse
|
16
|
Baslam A, Kabdy H, Chait Y, Azraida H, El Yazouli L, Aboufatima R, Chait A, Baslam M. Gut Microbiome-Mediated Mechanisms in Alleviating Opioid Addiction with Aqueous Extract of Anacyclus pyrethrum. Biomedicines 2024; 12:1152. [PMID: 38927359 PMCID: PMC11200529 DOI: 10.3390/biomedicines12061152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 05/20/2024] [Accepted: 05/21/2024] [Indexed: 06/28/2024] Open
Abstract
The escalating rates of morbidity and mortality associated with opioid use disorder (OUD) have spurred a critical need for improved treatment outcomes. This study aimed to investigate the impact of prolonged exposure to Fentanyl, a potent opioid, on behavior, biochemical markers, oxidative stress, and the composition of the gut microbiome. Additionally, we sought to explore the therapeutic potential of Anacyclus pyrethrum in mitigating the adverse effects of Fentanyl withdrawal. The study unveiled that chronic Fentanyl administration induced a withdrawal syndrome characterized by elevated cortisol levels (12.09 mg/mL, compared to 6.3 mg/mL for the control group). This was accompanied by heightened anxiety, indicated by a reduction in time spent and entries made into the open arm in the Elevated Plus Maze Test, as well as depressive-like behaviors, manifested through increased immobility time in the Forced Swim Test. Additionally, Fentanyl exposure correlated with decreased gut microbiome density and diversity, coupled with heightened oxidative stress levels, evidenced by elevated malondialdehyde (MDA) and reduced levels of catalase (CAT) and superoxide dismutase (SOD). However, both post- and co-administration of A. pyrethrum exhibited substantial improvements in these adverse effects, effectively alleviating symptoms associated with OUD withdrawal syndrome and eliciting positive influences on gut microbiota. In conclusion, this research underscores the therapeutic potential of A. pyrethrum in managing Fentanyl withdrawal symptoms. The findings indicate promising effects in alleviating behavioral impairments, reducing stress, restoring gut microbiota, and mitigating oxidative stress, offering valuable insights for addressing the challenges of OUD treatment.
Collapse
Affiliation(s)
- Abdelmounaim Baslam
- Laboratory of Pharmacology, Neurobiology, Anthropobiology and Environment, Department of Biology, Faculty of Sciences Semlalia, Cadi Ayyad University, Marrakech 40000, Morocco; (A.B.); (H.A.)
| | - Hamid Kabdy
- Laboratory of Pharmacology, Neurobiology, Anthropobiology and Environment, Department of Biology, Faculty of Sciences Semlalia, Cadi Ayyad University, Marrakech 40000, Morocco; (A.B.); (H.A.)
| | - Yassine Chait
- Agadir Souss Massa University Hospital, Faculty of Medicine and Pharmacy, Ibn Zohr University, Agadir 80000, Morocco
| | - Hajar Azraida
- Laboratory of Pharmacology, Neurobiology, Anthropobiology and Environment, Department of Biology, Faculty of Sciences Semlalia, Cadi Ayyad University, Marrakech 40000, Morocco; (A.B.); (H.A.)
| | - Loubna El Yazouli
- Laboratory of Pharmacology, Neurobiology, Anthropobiology and Environment, Department of Biology, Faculty of Sciences Semlalia, Cadi Ayyad University, Marrakech 40000, Morocco; (A.B.); (H.A.)
| | - Rachida Aboufatima
- Laboratory of Biological Engineering, Faculty of Sciences and Technology, Sultan Moulay Slimane University, Beni Mellal 23000, Morocco
| | - Abderrahman Chait
- Laboratory of Pharmacology, Neurobiology, Anthropobiology and Environment, Department of Biology, Faculty of Sciences Semlalia, Cadi Ayyad University, Marrakech 40000, Morocco; (A.B.); (H.A.)
| | - Marouane Baslam
- Center of Agrobiotechnology and Bioengineering, Research Unit Labelled CNRST (Centre AgroBiotech-URL-7 CNRST-05), Cadi Ayyad University, Marrakech 40000, Morocco
- Laboratory of Agro-Food, Biotechnologies and Valorization of Plant Bioresources (AGROBIOVAL), Department of Biology, Faculty of Science Semlalia, Cadi Ayyad University (UCA), Marrakech 40000, Morocco
- Laboratory of Biochemistry, Department of Applied Biological Chemistry, Faculty of Agriculture, University of Niigata, Niigata 950-2181, Japan
- GrowSmart, Seoul 07516, Republic of Korea
| |
Collapse
|
17
|
Uvnäs-Moberg K, Gross MM, Calleja-Agius J, Turner JD. The Yin and Yang of the oxytocin and stress systems: opposites, yet interdependent and intertwined determinants of lifelong health trajectories. Front Endocrinol (Lausanne) 2024; 15:1272270. [PMID: 38689729 PMCID: PMC11058227 DOI: 10.3389/fendo.2024.1272270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Accepted: 04/01/2024] [Indexed: 05/02/2024] Open
Abstract
During parturition and the immediate post-partum period there are two opposite, yet interdependent and intertwined systems that are highly active and play a role in determining lifelong health and behaviour in both the mother and her infant: the stress and the anti-stress (oxytocin) system. Before attempting to understand how the environment around birth determines long-term health trajectories, it is essential to understand how these two systems operate and how they interact. Here, we discuss together the hormonal and neuronal arms of both the hypothalamic-pituitary-adrenal (HPA) axis and the oxytocinergic systems and how they interact. Although the HPA axis and glucocorticoid stress axis are well studied, the role of oxytocin as an extremely powerful anti-stress hormone deserves more attention. It is clear that these anti-stress effects depend on oxytocinergic nerves emanating from the supraoptic nucleus (SON) and paraventricular nucleus (PVN), and project to multiple sites at which the stress system is regulated. These, include projections to corticotropin releasing hormone (CRH) neurons within the PVN, to the anterior pituitary, to areas involved in sympathetic and parasympathetic nervous control, to NA neurons in the locus coeruleus (LC), and to CRH neurons in the amygdala. In the context of the interaction between the HPA axis and the oxytocin system birth is a particularly interesting period as, for both the mother and the infant, both systems are very strongly activated within the same narrow time window. Data suggest that the HPA axis and the oxytocin system appear to interact in this early-life period, with effects lasting many years. If mother-child skin-to-skin contact occurs almost immediately postpartum, the effects of the anti-stress (oxytocin) system become more prominent, moderating lifelong health trajectories. There is clear evidence that HPA axis activity during this time is dependent on the balance between the HPA axis and the oxytocin system, the latter being reinforced by specific somatosensory inputs, and this has long-term consequences for stress reactivity.
Collapse
Affiliation(s)
- Kerstin Uvnäs-Moberg
- Department of Animal Environment and Health, Section of Anthrozoology and Applied Ethology, Swedish University of Agricultural Sciences, Skara, Sweden
| | - Mechthild M. Gross
- Midwifery Research and Education Unit, Hannover Medical School, Hannover, Germany
| | - Jean Calleja-Agius
- Department of Anatomy, Faculty of Medicine and Surgery, University of Malta, Msida, Malta
| | - Jonathan D. Turner
- Immune Endocrine Epigenetics Research Group, Department of Infection and Immunity, Luxembourg Institute of Health, Esch sur Alzette, Luxembourg
| |
Collapse
|
18
|
Viudez-Martínez A, Torregrosa AB, Navarrete F, García-Gutiérrez MS. Understanding the Biological Relationship between Migraine and Depression. Biomolecules 2024; 14:163. [PMID: 38397400 PMCID: PMC10886628 DOI: 10.3390/biom14020163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 01/08/2024] [Accepted: 01/09/2024] [Indexed: 02/25/2024] Open
Abstract
Migraine is a highly prevalent neurological disorder. Among the risk factors identified, psychiatric comorbidities, such as depression, seem to play an important role in its onset and clinical course. Patients with migraine are 2.5 times more likely to develop a depressive disorder; this risk becomes even higher in patients suffering from chronic migraine or migraine with aura. This relationship is bidirectional, since depression also predicts an earlier/worse onset of migraine, increasing the risk of migraine chronicity and, consequently, requiring a higher healthcare expenditure compared to migraine alone. All these data suggest that migraine and depression may share overlapping biological mechanisms. Herein, this review explores this topic in further detail: firstly, by introducing the common epidemiological and risk factors for this comorbidity; secondly, by focusing on providing the cumulative evidence of common biological aspects, with a particular emphasis on the serotoninergic system, neuropeptides such as calcitonin-gene-related peptide (CGRP), pituitary adenylate cyclase-activating polypeptide (PACAP), substance P, neuropeptide Y and orexins, sexual hormones, and the immune system; lastly, by remarking on the future challenges required to elucidate the etiopathological mechanisms of migraine and depression and providing updated information regarding new key targets for the pharmacological treatment of these clinical entities.
Collapse
Affiliation(s)
- Adrián Viudez-Martínez
- Hospital Pharmacy Service, Hospital General Dr. Balmis de Alicante, 03010 Alicante, Spain;
| | - Abraham B. Torregrosa
- Instituto de Neurociencias, Universidad Miguel Hernández, 03550 San Juan de Alicante, Spain; (A.B.T.); (F.N.)
- Research Network on Primary Addictions, Instituto de Salud Carlos III, MICINN and FEDER, 28029 Madrid, Spain
- Instituto de Investigación Sanitaria y Biomédica de Alicante (ISABIAL), 03010 Alicante, Spain
| | - Francisco Navarrete
- Instituto de Neurociencias, Universidad Miguel Hernández, 03550 San Juan de Alicante, Spain; (A.B.T.); (F.N.)
- Research Network on Primary Addictions, Instituto de Salud Carlos III, MICINN and FEDER, 28029 Madrid, Spain
- Instituto de Investigación Sanitaria y Biomédica de Alicante (ISABIAL), 03010 Alicante, Spain
| | - María Salud García-Gutiérrez
- Instituto de Neurociencias, Universidad Miguel Hernández, 03550 San Juan de Alicante, Spain; (A.B.T.); (F.N.)
- Research Network on Primary Addictions, Instituto de Salud Carlos III, MICINN and FEDER, 28029 Madrid, Spain
- Instituto de Investigación Sanitaria y Biomédica de Alicante (ISABIAL), 03010 Alicante, Spain
| |
Collapse
|
19
|
Chen Y, Sun J, Tao J, Sun T. Treatments and regulatory mechanisms of acoustic stimuli on mood disorders and neurological diseases. Front Neurosci 2024; 17:1322486. [PMID: 38249579 PMCID: PMC10796816 DOI: 10.3389/fnins.2023.1322486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Accepted: 12/13/2023] [Indexed: 01/23/2024] Open
Abstract
Acoustic stimuli such as music or ambient noise can significantly affect physiological and psychological health in humans. We here summarize positive effects of music therapy in premature infant distress regulation, performance enhancement, sleep quality control, and treatment of mental disorders. Specifically, music therapy exhibits promising effects on treatment of neurological disorders such as Alzheimer's disease (AD) and Parkinson's disease (PD). We also highlight regulatory mechanisms by which auditory intervention affects an organism, encompassing modulation of immune responses, gene expression, neurotransmitter regulation and neural circuitry. As a safe, cost-effective and non-invasive intervention, music therapy offers substantial potential in treating a variety of neurological conditions.
Collapse
Affiliation(s)
- Yikai Chen
- Center for Precision Medicine, School of Medicine and School of Biomedical Sciences, Huaqiao University, Xiamen, China
| | - Julianne Sun
- Xiamen Institute of Technology Attached School, Xiamen, China
| | - Junxian Tao
- Center for Precision Medicine, School of Medicine and School of Biomedical Sciences, Huaqiao University, Xiamen, China
| | - Tao Sun
- Center for Precision Medicine, School of Medicine and School of Biomedical Sciences, Huaqiao University, Xiamen, China
| |
Collapse
|
20
|
Havranek T, Bacova Z, Bakos J. Oxytocin, GABA, and dopamine interplay in autism. Endocr Regul 2024; 58:105-114. [PMID: 38656256 DOI: 10.2478/enr-2024-0012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 04/26/2024] Open
Abstract
Oxytocin plays an important role in brain development and is associated with various neurotransmitter systems in the brain. Abnormalities in the production, secretion, and distribution of oxytocin in the brain, at least during some stages of the development, are critical for the pathogenesis of neuropsychiatric diseases, particularly in the autism spectrum disorder. The etiology of autism includes changes in local sensory and dopaminergic areas of the brain, which are also supplied by the hypothalamic sources of oxytocin. It is very important to understand their mutual relationship. In this review, the relationship of oxytocin with several components of the dopaminergic system, gamma-aminobutyric acid (GABA) inhibitory neurotransmission and their alterations in the autism spectrum disorder is discussed. Special attention has been paid to the results describing a reduced expression of inhibitory GABAergic markers in the brain in the context of dopaminergic areas in various models of autism. It is presumed that the altered GABAergic neurotransmission, due to the absence or dysfunction of oxytocin at certain developmental stages, disinhibits the dopaminergic signaling and contributes to the autism symptoms.
Collapse
Affiliation(s)
- Tomas Havranek
- Institute of Experimental Endocrinology, Biomedical Research Center, Slovak Academy of Sciences, Bratislava, Slovakia
- Faculty of Medicine, Comenius University, Bratislava, Slovakia
| | - Zuzana Bacova
- Institute of Experimental Endocrinology, Biomedical Research Center, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Jan Bakos
- Institute of Experimental Endocrinology, Biomedical Research Center, Slovak Academy of Sciences, Bratislava, Slovakia
- Faculty of Medicine, Comenius University, Bratislava, Slovakia
| |
Collapse
|
21
|
Bode A. Romantic love evolved by co-opting mother-infant bonding. Front Psychol 2023; 14:1176067. [PMID: 37915523 PMCID: PMC10616966 DOI: 10.3389/fpsyg.2023.1176067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Accepted: 09/18/2023] [Indexed: 11/03/2023] Open
Abstract
For 25 years, the predominant evolutionary theory of romantic love has been Fisher's theory of independent emotion systems. That theory suggests that sex drive, romantic attraction (romantic love), and attachment are associated with distinct neurobiological and endocrinological systems which evolved independently of each other. Psychological and neurobiological evidence, however, suggest that a competing theory requires attention. A theory of co-opting mother-infant bonding sometime in the recent evolutionary history of humans may partially account for the evolution of romantic love. I present a case for this theory and a new approach to the science of romantic love drawing on human psychological, neurobiological, and (neuro)endocrinological studies as well as animal studies. The hope is that this theoretical review, along with other publications, will generate debate in the literature about the merits of the theory of co-opting mother-infant bonding and a new evolutionary approach to the science of romantic love.
Collapse
|
22
|
Kraus J, Výborová E, Silani G. The effect of intranasal oxytocin on social reward processing in humans: a systematic review. Front Psychiatry 2023; 14:1244027. [PMID: 37779612 PMCID: PMC10536251 DOI: 10.3389/fpsyt.2023.1244027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Accepted: 08/30/2023] [Indexed: 10/03/2023] Open
Abstract
Understanding the neurobiology of social reward processing is fundamental, holding promises for reducing maladaptive/dysfunctional social behaviors and boosting the benefits associated with a healthy social life. Current research shows that processing of social (vs. non-social) rewards may be driven by oxytocinergic signaling. However, studies in humans often led to mixed results. This review aimed to systematically summarize available experimental results that assessed the modulation of social reward processing by intranasal oxytocin (IN-OXY) administration in humans. The literature search yielded 385 results, of which 19 studies were included in the qualitative synthesis. The effects of IN-OXY on subjective, behavioral, and (neuro)physiological output variables are discussed in relation to moderating variables-reward phase, reward type, onset and dosage, participants' sex/gender, and clinical condition. Results indicate that IN-OXY is mostly effective during the consumption ("liking") of social rewards. These effects are likely exerted by modulating the activity of the prefrontal cortex, insula, precuneus, anterior cingulate cortex, amygdala, and striatum. Finally, we provide suggestions for designing future oxytocin studies. Systematic review registration https://www.crd.york.ac.uk/prospero/display_record.php?ID=CRD42021278945, identifier CRD42021278945.
Collapse
Affiliation(s)
- Jakub Kraus
- Department of Clinical and Health Psychology, Faculty of Psychology, University of Vienna, Vienna, Austria
- Department of Psychology, Faculty of Arts, Comenius University in Bratislava, Bratislava, Slovakia
- Department of Psychology, Faculty of Social Studies, Masaryk University, Brno, Czechia
| | - Eliška Výborová
- Department of Psychology, Faculty of Social Studies, Masaryk University, Brno, Czechia
- Faculty of Psychology and Neuroscience, Maastricht University, Maastricht, Netherlands
| | - Giorgia Silani
- Department of Clinical and Health Psychology, Faculty of Psychology, University of Vienna, Vienna, Austria
| |
Collapse
|
23
|
Perlstein S, Wagner N, Domínguez-Álvarez B, Gómez-Fraguela JA, Romero E, Lopez-Romero L, Waller R. Psychometric Properties, Factor Structure, and Validity of the Sensitivity to Threat and Affiliative Reward Scale in Children and Adults. Assessment 2023; 30:1914-1934. [PMID: 36245403 PMCID: PMC10687739 DOI: 10.1177/10731911221128946] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Callous-Unemotional (CU) traits identify children at high risk of antisocial behavior. A recent theoretical model proposed that CU traits arise from low sensitivity to threat and affiliation. To assess these dimensions, we developed the parent- and self-reported Sensitivity to Threat and Affiliative Reward Scale (STARS) and tested its psychometric properties, factor structure, and construct validity. Samples 1 (N =3 03; age 3-10; United States) and 2 (N = 854 age 5-9; Spain) were children and Sample 3 was 514 young adults (Mage = 19.89; United States). In Sample 1, differential item functioning and item response theory techniques were used to identify the best-performing items from a 64-item pool, resulting in 28 items that functioned equivalently across age and gender. Factor analysis indicated acceptable fit for the theorized two-factor structure with separate threat and affiliation factors in all three samples, which showed predictive validity in relation to CU traits in children and psychopathic traits in young adults.
Collapse
|
24
|
Bargiota SI, Papakonstantinou AV, Christodoulou NG. Oxytocin as a treatment for high-risk psychosis or early stages of psychosis: a mini review. Front Psychiatry 2023; 14:1232776. [PMID: 37663608 PMCID: PMC10470639 DOI: 10.3389/fpsyt.2023.1232776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Accepted: 07/25/2023] [Indexed: 09/05/2023] Open
Abstract
Individuals at clinical high risk for psychosis (CHR-P) present as help-seeking individuals with social deficits as well as cognitive and functional impairment and have a 23-36% risk of transition to first-episode psychosis. The therapeutic role of intranasal oxytocin (ΟΤ) in psychiatric disorders has been widely studied during the last decades, concerning its effects on social behavior in humans. A literature search was conducted via Pubmed and Scopus, using the search terms "oxytocin" and "psychosis." Six studies were included in the current review. There were differences in terms of demographics, intervention type, and outcome measures. ΟΤ may affect the social cognition skills of people at prodromal and early stages of psychosis, but its effect on clinical symptoms is ambiguous. Because of the high level of heterogeneity of existing studies, more original studies are needed to examine and clarify whether OT improves high-risk and early psychosis populations.
Collapse
Affiliation(s)
- Stavroula I. Bargiota
- Department of Psychiatry, Faculty of Medicine, University of Thessaly, Larissa, Greece
| | - Anna V. Papakonstantinou
- Faculty of Health Sciences, School of Medicine, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | | |
Collapse
|
25
|
Jin Y, Song D, Yan Y, Quan Z, Qing H. The Role of Oxytocin in Early-Life-Stress-Related Neuropsychiatric Disorders. Int J Mol Sci 2023; 24:10430. [PMID: 37445607 DOI: 10.3390/ijms241310430] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 06/16/2023] [Accepted: 06/19/2023] [Indexed: 07/15/2023] Open
Abstract
Early-life stress during critical periods of brain development can have long-term effects on physical and mental health. Oxytocin is a critical social regulator and anti-inflammatory hormone that modulates stress-related functions and social behaviors and alleviates diseases. Oxytocin-related neural systems show high plasticity in early postpartum and adolescent periods. Early-life stress can influence the oxytocin system long term by altering the expression and signaling of oxytocin receptors. Deficits in social behavior, emotional control, and stress responses may result, thus increasing the risk of anxiety, depression, and other stress-related neuropsychiatric diseases. Oxytocin is regarded as an important target for the treatment of stress-related neuropsychiatric disorders. Here, we describe the history of oxytocin and its role in neural circuits and related behaviors. We then review abnormalities in the oxytocin system in early-life stress and the functions of oxytocin in treating stress-related neuropsychiatric disorders.
Collapse
Affiliation(s)
- Yue Jin
- Key Laboratory of Molecular Medicine and Biotherapy, School of Life Science, Beijing Institute of Technology, Beijing 100081, China
| | - Da Song
- Key Laboratory of Molecular Medicine and Biotherapy, School of Life Science, Beijing Institute of Technology, Beijing 100081, China
| | - Yan Yan
- Key Laboratory of Molecular Medicine and Biotherapy, School of Life Science, Beijing Institute of Technology, Beijing 100081, China
| | - Zhenzhen Quan
- Key Laboratory of Molecular Medicine and Biotherapy, School of Life Science, Beijing Institute of Technology, Beijing 100081, China
| | - Hong Qing
- Key Laboratory of Molecular Medicine and Biotherapy, School of Life Science, Beijing Institute of Technology, Beijing 100081, China
| |
Collapse
|
26
|
Song J. Amygdala activity and amygdala-hippocampus connectivity: Metabolic diseases, dementia, and neuropsychiatric issues. Biomed Pharmacother 2023; 162:114647. [PMID: 37011482 DOI: 10.1016/j.biopha.2023.114647] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 03/30/2023] [Accepted: 03/31/2023] [Indexed: 04/04/2023] Open
Abstract
With rapid aging of the population worldwide, the number of people with dementia is dramatically increasing. Some studies have emphasized that metabolic syndrome, which includes obesity and diabetes, leads to increased risks of dementia and cognitive decline. Factors such as insulin resistance, hyperglycemia, high blood pressure, dyslipidemia, and central obesity in metabolic syndrome are associated with synaptic failure, neuroinflammation, and imbalanced neurotransmitter levels, leading to the progression of dementia. Due to the positive correlation between diabetes and dementia, some studies have called it "type 3 diabetes". Recently, the number of patients with cognitive decline due to metabolic imbalances has considerably increased. In addition, recent studies have reported that neuropsychiatric issues such as anxiety, depressive behavior, and impaired attention are common factors in patients with metabolic disease and those with dementia. In the central nervous system (CNS), the amygdala is a central region that regulates emotional memory, mood disorders, anxiety, attention, and cognitive function. The connectivity of the amygdala with other brain regions, such as the hippocampus, and the activity of the amygdala contribute to diverse neuropathological and neuropsychiatric issues. Thus, this review summarizes the significant consequences of the critical roles of amygdala connectivity in both metabolic syndromes and dementia. Further studies on amygdala function in metabolic imbalance-related dementia are needed to treat neuropsychiatric problems in patients with this type of dementia.
Collapse
Affiliation(s)
- Juhyun Song
- Department of Anatomy, Chonnam National University Medical School, Hwasun 58128, Jeollanam-do, Republic of Korea.
| |
Collapse
|
27
|
Shan D, Dai Z, Ge F, Zhang Y, Zheng Y, Gao X, Han J. The Mediating Role of Positive Attitudes on the Relationship Between Esports Gaming Hours and Psychological Well-Being During the COVID-19 Pandemic. Cureus 2023; 15:e36334. [PMID: 37077609 PMCID: PMC10109217 DOI: 10.7759/cureus.36334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/18/2023] [Indexed: 03/19/2023] Open
Abstract
Electronic sports game (esports) gaming has seen a surge in popularity, especially during the coronavirus disease 2019 (COVID-19) pandemic, with more young people turning to it as an alternative to physical activities. However, the impact of esports gaming on mental health is a matter of concern. Previous studies have produced inconsistent findings on the relationship between gaming hours and mental health, and the moderating factors involved remain unexplored. This study aimed to investigate the moderating effect of participants' subjective attitudes toward esports gaming on the relationship between daily gaming hours and psychological well-being (PWB) among Chinese young adults during the COVID-19 lockdown. A nationwide online survey was conducted on 550 Chinese young adults using the Credamo platform. Ryff's Psychological Well-Being Scales (42-Item version) were used to assess PWB levels. The analysis included 453 participants. Gaming hours were negatively correlated with PWB scores. However, when considering the moderating effect of subjective attitudes, the association between gaming hours and PWB scores was largely positive. Our study suggests that subjective attitudes toward esports gaming outweigh gaming hours in promoting personal psychological well-being. We propose practical recommendations for healthy esports participation patterns that prioritize positive attitudes, especially in similar future scenarios like COVID-19. Our findings may inform future psychological intervention and research in the esports domain.
Collapse
|
28
|
Siecinski SK, Giamberardino SN, Spanos M, Hauser AC, Gibson JR, Chandrasekhar T, Trelles MDP, Rockhill CM, Palumbo ML, Cundiff AW, Montgomery A, Siper P, Minjarez M, Nowinski LA, Marler S, Kwee LC, Shuffrey LC, Alderman C, Weissman J, Zappone B, Mullett JE, Crosson H, Hong N, Luo S, She L, Bhapkar M, Dean R, Scheer A, Johnson JL, King BH, McDougle CJ, Sanders KB, Kim SJ, Kolevzon A, Veenstra-VanderWeele J, Hauser ER, Sikich L, Gregory SG. Genetic and epigenetic signatures associated with plasma oxytocin levels in children and adolescents with autism spectrum disorder. Autism Res 2023; 16:502-523. [PMID: 36609850 PMCID: PMC10023458 DOI: 10.1002/aur.2884] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Accepted: 12/19/2022] [Indexed: 01/09/2023]
Abstract
Oxytocin (OT), the brain's most abundant neuropeptide, plays an important role in social salience and motivation. Clinical trials of the efficacy of OT in autism spectrum disorder (ASD) have reported mixed results due in part to ASD's complex etiology. We investigated whether genetic and epigenetic variation contribute to variable endogenous OT levels that modulate sensitivity to OT therapy. To carry out this analysis, we integrated genome-wide profiles of DNA-methylation, transcriptional activity, and genetic variation with plasma OT levels in 290 participants with ASD enrolled in a randomized controlled trial of OT. Our analysis identified genetic variants with novel association with plasma OT, several of which reside in known ASD risk genes. We also show subtle but statistically significant association of plasma OT levels with peripheral transcriptional activity and DNA-methylation profiles across several annotated gene sets. These findings broaden our understanding of the effects of the peripheral oxytocin system and provide novel genetic candidates for future studies to decode the complex etiology of ASD and its interaction with OT signaling and OT-based interventions. LAY SUMMARY: Oxytocin (OT) is an abundant chemical produced by neurons that plays an important role in social interaction and motivation. We investigated whether genetic and epigenetic factors contribute to variable OT levels in the blood. To this, we integrated genetic, gene expression, and non-DNA regulated (epigenetic) signatures with blood OT levels in 290 participants with autism enrolled in an OT clinical trial. We identified genetic association with plasma OT, several of which reside in known autism risk genes. We also show statistically significant association of plasma OT levels with gene expression and epigenetic across several gene pathways. These findings broaden our understanding of the factors that influence OT levels in the blood for future studies to decode the complex presentation of autism and its interaction with OT and OT-based treatment.
Collapse
Affiliation(s)
- Stephen K Siecinski
- Duke Molecular Physiology Institute, Duke University School of Medicine, Durham, NC, USA
| | | | - Marina Spanos
- Department of Psychiatry and Behavioral Sciences, Duke University School of Medicine, Durham, NC, USA
| | - Annalise C Hauser
- Duke Molecular Physiology Institute, Duke University School of Medicine, Durham, NC, USA
| | - Jason R Gibson
- Duke Molecular Physiology Institute, Duke University School of Medicine, Durham, NC, USA
| | - Tara Chandrasekhar
- Department of Psychiatry and Behavioral Sciences, Duke University School of Medicine, Durham, NC, USA
| | - M D Pilar Trelles
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Carol M Rockhill
- Department of Psychiatry, Seattle Children’s Hospital and the University of Washington, Seattle, WA, USA
| | - Michelle L Palumbo
- Department of Psychiatry, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | | | | | - Paige Siper
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Mendy Minjarez
- Department of Psychiatry, Seattle Children’s Hospital and the University of Washington, Seattle, WA, USA
| | - Lisa A Nowinski
- Department of Psychiatry, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Sarah Marler
- Department of Psychiatry, Vanderbilt University, Nashville, TN, USA
| | - Lydia C Kwee
- Duke Molecular Physiology Institute, Duke University School of Medicine, Durham, NC, USA
| | | | - Cheryl Alderman
- Department of Psychiatry and Behavioral Sciences, Duke University School of Medicine, Durham, NC, USA
- Duke Clinical Research Institute, Duke University School of Medicine, Durham, NC, USA
| | - Jordana Weissman
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Brooke Zappone
- Department of Psychiatry, Seattle Children’s Hospital and the University of Washington, Seattle, WA, USA
| | - Jennifer E Mullett
- Department of Psychiatry, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Hope Crosson
- Department of Psychiatry, Columbia University, New York, NY, USA
| | - Natalie Hong
- Department of Psychiatry, Columbia University, New York, NY, USA
| | - Sheng Luo
- Duke Clinical Research Institute, Duke University School of Medicine, Durham, NC, USA
- Department of Biostatistics and Bioinformatics, Duke University School of Medicine, Durham, NC, USA
| | - Lilin She
- Duke Clinical Research Institute, Duke University School of Medicine, Durham, NC, USA
| | - Manjushri Bhapkar
- Duke Clinical Research Institute, Duke University School of Medicine, Durham, NC, USA
| | - Russell Dean
- Department of Psychiatry, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Abby Scheer
- Department of Psychiatry and Behavioral Sciences, Duke University School of Medicine, Durham, NC, USA
| | - Jacqueline L Johnson
- Department of Psychiatry, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Bryan H King
- Department of Psychiatry, Seattle Children’s Hospital and the University of Washington, Seattle, WA, USA
| | - Christopher J McDougle
- Department of Psychiatry, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Kevin B Sanders
- Department of Psychiatry, Vanderbilt University, Nashville, TN, USA
| | - Soo-Jeong Kim
- Department of Psychiatry, Seattle Children’s Hospital and the University of Washington, Seattle, WA, USA
| | - Alexander Kolevzon
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | | | - Elizabeth R Hauser
- Duke Molecular Physiology Institute, Duke University School of Medicine, Durham, NC, USA
- Department of Biostatistics and Bioinformatics, Duke University School of Medicine, Durham, NC, USA
| | - Linmarie Sikich
- Department of Psychiatry and Behavioral Sciences, Duke University School of Medicine, Durham, NC, USA
- Duke Clinical Research Institute, Duke University School of Medicine, Durham, NC, USA
| | - Simon G Gregory
- Duke Molecular Physiology Institute, Duke University School of Medicine, Durham, NC, USA
- Department of Neurology, Duke University School of Medicine, Durham, NC, USA
| |
Collapse
|
29
|
Lotter LD, Kohl SH, Gerloff C, Bell L, Niephaus A, Kruppa JA, Dukart J, Schulte-Rüther M, Reindl V, Konrad K. Revealing the neurobiology underlying interpersonal neural synchronization with multimodal data fusion. Neurosci Biobehav Rev 2023; 146:105042. [PMID: 36641012 DOI: 10.1016/j.neubiorev.2023.105042] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 12/22/2022] [Accepted: 01/10/2023] [Indexed: 01/13/2023]
Abstract
Humans synchronize with one another to foster successful interactions. Here, we use a multimodal data fusion approach with the aim of elucidating the neurobiological mechanisms by which interpersonal neural synchronization (INS) occurs. Our meta-analysis of 22 functional magnetic resonance imaging and 69 near-infrared spectroscopy hyperscanning experiments (740 and 3721 subjects) revealed robust brain regional correlates of INS in the right temporoparietal junction and left ventral prefrontal cortex. Integrating this meta-analytic information with public databases, biobehavioral and brain-functional association analyses suggested that INS involves sensory-integrative hubs with functional connections to mentalizing and attention networks. On the molecular and genetic levels, we found INS to be associated with GABAergic neurotransmission and layer IV/V neuronal circuits, protracted developmental gene expression patterns, and disorders of neurodevelopment. Although limited by the indirect nature of phenotypic-molecular association analyses, our findings generate new testable hypotheses on the neurobiological basis of INS.
Collapse
Affiliation(s)
- Leon D Lotter
- Child Neuropsychology Section, Department of Child and Adolescent Psychiatry, Psychosomatics and Psychotherapy, University Hospital RWTH Aachen, Aachen, Germany; Institute of Neuroscience and Medicine - Brain & Behaviour (INM-7), Jülich Research Centre, Jülich, Germany; Institute of Systems Neuroscience, Medical Faculty, Heinrich Heine University Düsseldorf, Düsseldorf, Germany; Max Planck School of Cognition, Stephanstrasse 1A, 04103 Leipzig, Germany.
| | - Simon H Kohl
- Child Neuropsychology Section, Department of Child and Adolescent Psychiatry, Psychosomatics and Psychotherapy, University Hospital RWTH Aachen, Aachen, Germany; JARA Brain Institute II, Molecular Neuroscience and Neuroimaging (INM-11), Jülich Research Centre, Jülich, Germany
| | - Christian Gerloff
- Child Neuropsychology Section, Department of Child and Adolescent Psychiatry, Psychosomatics and Psychotherapy, University Hospital RWTH Aachen, Aachen, Germany; JARA Brain Institute II, Molecular Neuroscience and Neuroimaging (INM-11), Jülich Research Centre, Jülich, Germany; Chair II of Mathematics, Faculty of Mathematics, Computer Science and Natural Sciences, RWTH Aachen University, Aachen, Germany
| | - Laura Bell
- Child Neuropsychology Section, Department of Child and Adolescent Psychiatry, Psychosomatics and Psychotherapy, University Hospital RWTH Aachen, Aachen, Germany; Audiovisual Media Center, Medical Faculty, RWTH Aachen University, Aachen, Germany
| | - Alexandra Niephaus
- Child Neuropsychology Section, Department of Child and Adolescent Psychiatry, Psychosomatics and Psychotherapy, University Hospital RWTH Aachen, Aachen, Germany
| | - Jana A Kruppa
- Child Neuropsychology Section, Department of Child and Adolescent Psychiatry, Psychosomatics and Psychotherapy, University Hospital RWTH Aachen, Aachen, Germany; JARA Brain Institute II, Molecular Neuroscience and Neuroimaging (INM-11), Jülich Research Centre, Jülich, Germany; Department of Child and Adolescent Psychiatry and Psychotherapy, University Medical Center Göttingen, Göttingen, Germany
| | - Juergen Dukart
- Institute of Neuroscience and Medicine - Brain & Behaviour (INM-7), Jülich Research Centre, Jülich, Germany; Institute of Systems Neuroscience, Medical Faculty, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Martin Schulte-Rüther
- Child Neuropsychology Section, Department of Child and Adolescent Psychiatry, Psychosomatics and Psychotherapy, University Hospital RWTH Aachen, Aachen, Germany; JARA Brain Institute II, Molecular Neuroscience and Neuroimaging (INM-11), Jülich Research Centre, Jülich, Germany; Department of Child and Adolescent Psychiatry and Psychotherapy, University Medical Center Göttingen, Göttingen, Germany
| | - Vanessa Reindl
- Child Neuropsychology Section, Department of Child and Adolescent Psychiatry, Psychosomatics and Psychotherapy, University Hospital RWTH Aachen, Aachen, Germany; JARA Brain Institute II, Molecular Neuroscience and Neuroimaging (INM-11), Jülich Research Centre, Jülich, Germany; Psychology, School of Social Sciences, Nanyang Technological University, S639818, Singapore
| | - Kerstin Konrad
- Child Neuropsychology Section, Department of Child and Adolescent Psychiatry, Psychosomatics and Psychotherapy, University Hospital RWTH Aachen, Aachen, Germany; JARA Brain Institute II, Molecular Neuroscience and Neuroimaging (INM-11), Jülich Research Centre, Jülich, Germany
| |
Collapse
|
30
|
Heteromerization of Dopamine D2 and Oxytocin Receptor in Adult Striatal Astrocytes. Int J Mol Sci 2023; 24:ijms24054677. [PMID: 36902106 PMCID: PMC10002782 DOI: 10.3390/ijms24054677] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 02/22/2023] [Accepted: 02/23/2023] [Indexed: 03/06/2023] Open
Abstract
The ability of oxytocin (OT) to interact with the dopaminergic system through facilitatory D2-OT receptor (OTR) receptor-receptor interaction in the limbic system is increasingly considered to play roles in social or emotional behavior, and suggested to serve as a potential therapeutic target. Although roles of astrocytes in the modulatory effects of OT and dopamine in the central nervous system are well recognized, the possibility of D2-OTR receptor-receptor interaction in astrocytes has been neglected. In purified astrocyte processes from adult rat striatum, we assessed OTR and dopamine D2 receptor expression by confocal analysis. The effects of activation of these receptors were evaluated in the processes through a neurochemical study of glutamate release evoked by 4-aminopyridine; D2-OTR heteromerization was assessed by co-immunoprecipitation and proximity ligation assay (PLA). The structure of the possible D2-OTR heterodimer was estimated by a bioinformatic approach. We found that both D2 and OTR were expressed on the same astrocyte processes and controlled the release of glutamate, showing a facilitatory receptor-receptor interaction in the D2-OTR heteromers. Biochemical and biophysical evidence confirmed D2-OTR heterodimers on striatal astrocytes. The residues in the transmembrane domains four and five of both receptors are predicted to be mainly involved in the heteromerization. In conclusion, roles for astrocytic D2-OTR in the control of glutamatergic synapse functioning through modulation of astrocytic glutamate release should be taken into consideration when considering interactions between oxytocinergic and dopaminergic systems in striatum.
Collapse
|
31
|
Liu X, Yu W, Mu X, Zhang W, Wang X, Gu Q. A fluorescence probe based on carbon dots for determination of dopamine utilizing its self-polymerization. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2023; 287:122112. [PMID: 36395584 DOI: 10.1016/j.saa.2022.122112] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2022] [Revised: 11/02/2022] [Accepted: 11/07/2022] [Indexed: 06/16/2023]
Abstract
A rapid and sensitive strategy for sensing dopamine (DA) was proposed based on the fluorescence quenching effects of polydopamine (PDA) on carbon dots (CDs). The green-emission fluorescence CDs were synthesized via a facile one-pot hydrothermal approach by employing p-phenylenediamine and ethanol as reagents. In alkaline environments, DA would polymerize to form PDA on surface of CDs, resulting in the fluorescence quenching of the detection system owing to the effects of fluorescence resonance energy transfer (FERT) and inner filter effect (IFE). The proposed fluorescence probe exhibits good selectivity and sensitivity to DA in the concentration range of 0.1-15 μM, with a limit of detection (LOD) of 37 nM. Results of detecting DA in serum samples indicate the broad potential of the proposed strategy for future application in diagnosis of DA-related diseases.
Collapse
Affiliation(s)
- Xin Liu
- College of Chemistry, Jilin University, Qianjin Street 2699, Changchun 130012, China
| | - Wei Yu
- Department of Hand Surgery, China-Japan Union Hospital of Jilin University, 126 Xiantai Street, Changchun 130033, China
| | - Xiaowei Mu
- College of Chemistry, Jilin University, Qianjin Street 2699, Changchun 130012, China
| | - Wei Zhang
- College of Chemistry, Jilin University, Qianjin Street 2699, Changchun 130012, China
| | - Xinghua Wang
- College of Chemistry, Jilin University, Qianjin Street 2699, Changchun 130012, China.
| | - Qiang Gu
- College of Chemistry, Jilin University, Qianjin Street 2699, Changchun 130012, China.
| |
Collapse
|
32
|
Liu Y, Gu R, Gao M, Wei Y, Shi Y, Wang X, Gu Y, Gu X, Zhang H. Emerging role of substance and energy metabolism associated with neuroendocrine regulation in tumor cells. Front Endocrinol (Lausanne) 2023; 14:1126271. [PMID: 37051193 PMCID: PMC10084767 DOI: 10.3389/fendo.2023.1126271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/17/2022] [Accepted: 02/07/2023] [Indexed: 03/29/2023] Open
Abstract
Cancer is the second most common cause of mortality in the world. One of the unresolved difficult pathological mechanism issues in malignant tumors is the imbalance of substance and energy metabolism of tumor cells. Cells maintain life through energy metabolism, and normal cells provide energy through mitochondrial oxidative phosphorylation to generate ATP, while tumor cells demonstrate different energy metabolism. Neuroendocrine control is crucial for tumor cells' consumption of nutrients and energy. As a result, better combinatorial therapeutic approaches will be made possible by knowing the neuroendocrine regulating mechanism of how the neuroendocrine system can fuel cellular metabolism. Here, the basics of metabolic remodeling in tumor cells for nutrients and metabolites are presented, showing how the neuroendocrine system regulates substance and energy metabolic pathways to satisfy tumor cell proliferation and survival requirements. In this context, targeting neuroendocrine regulatory pathways in tumor cell metabolism can beneficially enhance or temper tumor cell metabolism and serve as promising alternatives to available treatments.
Collapse
Affiliation(s)
- Yingying Liu
- Institute for Immunology and School of Medicine, Tsinghua University, Beijing, China
- School of Chinese Medicine and School of Integrated Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Renjun Gu
- School of Chinese Medicine and School of Integrated Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Murong Gao
- Beijing Rehabilitation Hospital Affiliated to Capital Medical University, Beijing, China
| | - Yangwa Wei
- Department of Hepatobiliary Surgery, Hainan Provincial People’s Hospital, Haikou, China
| | - Yu Shi
- Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Xu Wang
- School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China
| | - Yihuang Gu
- School of Acupuncture and Tuina, School of Regimen and Rehabilitation, Nanjing University of Chinese Medicine, Nanjing, China
- The Second Hospital of Nanjing, Nanjing, China
- *Correspondence: Hongru Zhang, ; Xin Gu, ; Yihuang Gu,
| | - Xin Gu
- School of Chinese Medicine and School of Integrated Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China
- *Correspondence: Hongru Zhang, ; Xin Gu, ; Yihuang Gu,
| | - Hongru Zhang
- School of Chinese Medicine and School of Integrated Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China
- *Correspondence: Hongru Zhang, ; Xin Gu, ; Yihuang Gu,
| |
Collapse
|
33
|
Briscoe L, Marsland L, Doyle C, Docherty G, Flynn A, Gichuru P. A mixed method study to explore the maternal impact and outcomes of a specialist Building Attachment and Bonds Service (The BABS Study). Health Care Women Int 2022; 45:1345-1366. [PMID: 36322644 DOI: 10.1080/07399332.2022.2129643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 09/23/2022] [Accepted: 09/23/2022] [Indexed: 06/16/2023]
Abstract
Our intent was to explore if maternal anxiety, depression, reflective functioning and level of attachment significantly changed after the Building Bonds and Attachment Service (BABS) Intervention. We measured outcomes for 46 at risk mothers via HADS; MAAS; MPAS and P-PRFQ. Our findings, triangulated with 32 semi structured interviews identified that BABS intervention made a significant difference to participants who were admitted during the antenatal period (Pregnant group: depression 9.63[CI:7.63-11.63; p < 0.001]; anxiety 9.40[CI: 7.56-11.24]; p < 0.001]; reflective functioning 30.78[CI:24.84-36.72; p < 0.001] and maternal attachment 8.78[CI:4.08-13.48]; p 0.001). Suicidal contemplation was prevented for two women. Our conclusions explained the service made a significant difference to the lives of mothers between baseline and post intervention for pregnant mothers with anxiety and depression who struggled to bond with their baby. Appropriate referral may help to increase accessibility to those who may benefit most. Further research needs to test if this care model would be acceptable to culturally diverse populations.
Collapse
Affiliation(s)
- Lesley Briscoe
- Maternal and Neonatal Health Researcher, Medical Education Department, Edge Hill University, Lancashire, UK
| | - Lisa Marsland
- Parent Infant Mental Health & Service Lead for Mersey Care NHS Foundation Trust, Liverpool, UK
| | - Carmel Doyle
- Midwifery Department, Liverpool Women's Hospital NHS Trust, Liverpool, UK
| | - Gemma Docherty
- Administration Department Mersey Care, NHS Foundation Trust, UK
| | - Anita Flynn
- Department of Nursing, Faculty of Health Social Care and Medicine, Edge Hill University, Lancashire, UK
| | - Phillip Gichuru
- Medical Education Department, Edge Hill University, Lancashire, UK
| |
Collapse
|
34
|
Neuroimaging genetics of oxytocin: A transcriptomics-informed systematic review. Neurosci Biobehav Rev 2022; 142:104912. [DOI: 10.1016/j.neubiorev.2022.104912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 08/10/2022] [Accepted: 10/06/2022] [Indexed: 11/20/2022]
|
35
|
Borie AM, Young LJ, Liu RC. Sex-specific and social experience-dependent oxytocin-endocannabinoid interactions in the nucleus accumbens: implications for social behaviour. Philos Trans R Soc Lond B Biol Sci 2022; 377:20210057. [PMID: 35858094 PMCID: PMC9272148 DOI: 10.1098/rstb.2021.0057] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Accepted: 04/13/2022] [Indexed: 08/31/2023] Open
Abstract
Oxytocin modulates social behaviour across diverse vertebrate taxa, but the precise nature of its effects varies across species, individuals and lifetimes. Contributing to this variation is the fact that oxytocin's physiological effects are mediated through interaction with diverse neuromodulatory systems and can depend on the specifics of the local circuits it acts on. Furthermore, those effects can be influenced by both genetics and experience. Here we discuss this complexity through the lens of a specific neuromodulatory system, endocannabinoids, interacting with oxytocin in the nucleus accumbens to modulate prosocial behaviours in prairie voles. We provide a survey of current knowledge of oxytocin-endocannabinoid interactions in relation to social behaviour. We review in detail recent research in monogamous female prairie voles demonstrating that social experience, such as mating and pair bonding, can change how oxytocin modulates nucleus accumbens glutamatergic signalling through the recruitment of endocannabinoids to modulate prosocial behaviour toward the partner. We then discuss potential sex differences in experience-dependent modulation of the nucleus accumbens by oxytocin in voles based on new data in males. Finally, we propose that future oxytocin-based precision medicine therapies should consider how prior social experience interacts with sex and genetics to influence oxytocin actions. This article is part of the theme issue 'Interplays between oxytocin and other neuromodulators in shaping complex social behaviours'.
Collapse
Affiliation(s)
- Amélie M. Borie
- Center for Translational Social Neuroscience, Emory University, Atlanta, GA 30322, USA
- Silvio O. Conte Center for Oxytocin and Social Cognition, Emory University, Atlanta, GA 30322, USA
- Yerkes National Primate Research Center, Emory University, Atlanta, GA 30322, USA
- Department of Biology, Emory University, Atlanta, GA 30322, USA
| | - Larry J. Young
- Center for Translational Social Neuroscience, Emory University, Atlanta, GA 30322, USA
- Silvio O. Conte Center for Oxytocin and Social Cognition, Emory University, Atlanta, GA 30322, USA
- Yerkes National Primate Research Center, Emory University, Atlanta, GA 30322, USA
- Department of Psychiatry and Behavioral Science, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Robert C. Liu
- Center for Translational Social Neuroscience, Emory University, Atlanta, GA 30322, USA
- Silvio O. Conte Center for Oxytocin and Social Cognition, Emory University, Atlanta, GA 30322, USA
- Yerkes National Primate Research Center, Emory University, Atlanta, GA 30322, USA
- Department of Biology, Emory University, Atlanta, GA 30322, USA
| |
Collapse
|
36
|
Paletta P, Bass N, Kavaliers M, Choleris E. The role of oxytocin in shaping complex social behaviours: possible interactions with other neuromodulators. Philos Trans R Soc Lond B Biol Sci 2022; 377:20210058. [PMID: 35858107 PMCID: PMC9272141 DOI: 10.1098/rstb.2021.0058] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Accepted: 11/08/2021] [Indexed: 08/31/2023] Open
Abstract
This review explores the role of oxytocin in the mediation of select social behaviours, with particular emphasis on female rodents. These behaviours include social recognition, social learning, pathogen detection and avoidance, and maternal care. Specific brain regions where oxytocin has been shown to directly mediate various aspects of these social behaviours, as well as other proposed regions, are discussed. Possible interactions between oxytocin and other regulatory systems, in particular that of oestrogens and dopamine, in the modulation of social behaviour are considered. Similarities and differences between males and females are highlighted. This article is part of the theme issue 'Interplays between oxytocin and other neuromodulators in shaping complex social behaviours'.
Collapse
Affiliation(s)
- Pietro Paletta
- Department of Psychology and Neuroscience Program, University of Guelph, MacKinnon Building Room 4020, 50 Stone Road E., Guelph, ON, Canada N1G 2W1
| | - Noah Bass
- Department of Psychology and Neuroscience Program, University of Guelph, MacKinnon Building Room 4020, 50 Stone Road E., Guelph, ON, Canada N1G 2W1
| | - Martin Kavaliers
- Department of Psychology and Neuroscience Program, University of Guelph, MacKinnon Building Room 4020, 50 Stone Road E., Guelph, ON, Canada N1G 2W1
- Department of Psychology, Western University, London, Ontario, Canada
| | - Elena Choleris
- Department of Psychology and Neuroscience Program, University of Guelph, MacKinnon Building Room 4020, 50 Stone Road E., Guelph, ON, Canada N1G 2W1
| |
Collapse
|
37
|
Putnam PT, Chang SWC. Oxytocin does not stand alone. Philos Trans R Soc Lond B Biol Sci 2022; 377:20210047. [PMID: 35858106 PMCID: PMC9272150 DOI: 10.1098/rstb.2021.0047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Accepted: 06/03/2022] [Indexed: 11/26/2022] Open
Affiliation(s)
- Philip T. Putnam
- Department of Psychology, Yale University, New Haven, CT 06520, USA
| | - Steve W. C. Chang
- Department of Psychology, Yale University, New Haven, CT 06520, USA
- Department of Neuroscience, Yale University School of Medicine, New Haven, CT 06510, USA
- Kavli Institute for Neuroscience, Yale University School of Medicine, New Haven, CT 06510, USA
- Wu Tsai Institute, Yale University, New Haven, CT 06510, USA
| |
Collapse
|
38
|
Grieb ZA, Lonstein JS. Oxytocin interactions with central dopamine and serotonin systems regulate different components of motherhood. Philos Trans R Soc Lond B Biol Sci 2022; 377:20210062. [PMID: 35858105 PMCID: PMC9272149 DOI: 10.1098/rstb.2021.0062] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Accepted: 01/09/2022] [Indexed: 08/31/2023] Open
Abstract
The role of oxytocin in maternal caregiving and other postpartum behaviours has been studied for more than five decades. How oxytocin interacts with other neurochemical systems to enact these behavioural changes, however, is only slowly being elucidated. The best-studied oxytocin-neurotransmitter interaction is with the mesolimbic dopamine system, and this interaction is essential for maternal motivation and active caregiving behaviours such as retrieval of pups. Considerably less attention has been dedicated to investigating how oxytocin interacts with central serotonin to influence postpartum behaviour. Recently, it has become clear that while oxytocin-dopamine interactions regulate the motivational and pup-approach aspects of maternal caregiving behaviours, oxytocin-serotonin interactions appear to regulate nearly all other aspects including postpartum nursing, aggression, anxiety-like behaviour and stress coping strategy. Collectively, oxytocin's interactions with central dopamine and serotonin systems are thus critical for the entire suite of behavioural adaptations exhibited in the postpartum period, and these sites of interaction are potential pharmacological targets for where oxytocin could help to ameliorate deficits in maternal caregiving and poor postpartum mental health. This article is part of the theme issue 'Interplays between oxytocin and other neuromodulators in shaping complex social behaviours'.
Collapse
Affiliation(s)
- Zachary A. Grieb
- Neuroscience Institute, Georgia State University, Atlanta, GA 30303, USA
| | - Joseph S. Lonstein
- Psychology Department, Michigan State University, East Lansing, MI 48824, USA
| |
Collapse
|
39
|
Cantabella E, Camilleri V, Cavalie I, Dubourg N, Gagnaire B, Charlier TD, Adam-Guillermin C, Cousin X, Armant O. Revealing the Increased Stress Response Behavior through Transcriptomic Analysis of Adult Zebrafish Brain after Chronic Low to Moderate Dose Rates of Ionizing Radiation. Cancers (Basel) 2022; 14:cancers14153793. [PMID: 35954455 PMCID: PMC9367516 DOI: 10.3390/cancers14153793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2022] [Revised: 07/29/2022] [Accepted: 08/01/2022] [Indexed: 12/10/2022] Open
Abstract
Simple Summary The increasing use of radiopharmaceuticals for medical diagnostics and radiotherapy raises concerns regarding health risks for both humans and the environment. Additionally, in the context of major nuclear accidents like in Chernobyl and Fukushima, very little is known about the effects of chronic exposure to low and moderate dose rates of ionizing radiation (IR). Many studies demonstrated the sensibility of the developmental brain, but little data exists for IR at low dose rates and their impact on adults. In this study, we characterized the molecular mechanisms that orchestrate stress behavior caused by chronic exposure to low to moderate dose rates of IR using the adult zebrafish model. We observed the establishment of a congruent stress response at both the molecular and individual levels. Abstract High levels of ionizing radiation (IR) are known to induce neurogenesis defects with harmful consequences on brain morphogenesis and cognitive functions, but the effects of chronic low to moderate dose rates of IR remain largely unknown. In this study, we aim at defining the main molecular pathways impacted by IR and how these effects can translate to higher organizational levels such as behavior. Adult zebrafish were exposed to gamma radiation for 36 days at 0.05 mGy/h, 0.5 mGy/h and 5 mGy/h. RNA sequencing was performed on the telencephalon and completed by RNA in situ hybridization that confirmed the upregulation of oxytocin and cone rod homeobox in the parvocellular preoptic nucleus. A dose rate-dependent increase in differentially expressed genes (DEG) was observed with 27 DEG at 0.05 mGy/h, 200 DEG at 0.5 mGy/h and 530 DEG at 5 mGy/h. Genes involved in neurotransmission, neurohormones and hypothalamic-pituitary-interrenal axis functions were specifically affected, strongly suggesting their involvement in the stress response behavior observed after exposure to dose rates superior or equal to 0.5 mGy/h. At the individual scale, hypolocomotion, increased freezing and social stress were detected. Together, these data highlight the intricate interaction between neurohormones (and particularly oxytocin), neurotransmission and neurogenesis in response to chronic exposure to IR and the establishment of anxiety-like behavior.
Collapse
Affiliation(s)
- Elsa Cantabella
- Institut de Radioprotection et de Sûreté Nucléaire (IRSN), Pôle Santé Environnement-Environnement (PSE-ENV)/Service de Recherche sur les Transferts et les Effets des Radionucléides sur les Ecosystèmes (SRTE)/Laboratoire de Recherche sur les Effets des Radionucléides sur les Ecosystèmes (LECO), Cadarache, 13115 Saint-Paul-lez-Durance, France
- Correspondence: (E.C.); (O.A.)
| | - Virginie Camilleri
- Institut de Radioprotection et de Sûreté Nucléaire (IRSN), Pôle Santé Environnement-Environnement (PSE-ENV)/Service de Recherche sur les Transferts et les Effets des Radionucléides sur les Ecosystèmes (SRTE)/Laboratoire de Recherche sur les Effets des Radionucléides sur les Ecosystèmes (LECO), Cadarache, 13115 Saint-Paul-lez-Durance, France
| | - Isabelle Cavalie
- Institut de Radioprotection et de Sûreté Nucléaire (IRSN), Pôle Santé Environnement-Environnement (PSE-ENV)/Service de Recherche sur les Transferts et les Effets des Radionucléides sur les Ecosystèmes (SRTE)/Laboratoire de Recherche sur les Effets des Radionucléides sur les Ecosystèmes (LECO), Cadarache, 13115 Saint-Paul-lez-Durance, France
| | - Nicolas Dubourg
- Institut de Radioprotection et de Sûreté Nucléaire (IRSN), Pôle Santé Environnement-Environnement (PSE-ENV)/Service de Recherche sur les Transferts et les Effets des Radionucléides sur les Ecosystèmes (SRTE)/Laboratoire de Recherche sur les Effets des Radionucléides sur les Ecosystèmes (LECO), Cadarache, 13115 Saint-Paul-lez-Durance, France
| | - Béatrice Gagnaire
- Institut de Radioprotection et de Sûreté Nucléaire (IRSN), Pôle Santé Environnement-Environnement (PSE-ENV)/Service de Recherche sur les Transferts et les Effets des Radionucléides sur les Ecosystèmes (SRTE)/Laboratoire de Recherche sur les Effets des Radionucléides sur les Ecosystèmes (LECO), Cadarache, 13115 Saint-Paul-lez-Durance, France
| | - Thierry D. Charlier
- Univ. Rennes, Inserm, EHESP, Irset (Institut de Recherche en Santé, Environnement et Travail), UMR_S 1085, 35000 Rennes, France
| | - Christelle Adam-Guillermin
- Institut de Radioprotection et de Sûreté Nucléaire (IRSN), Pôle Santé Environnement-Santé (PSE-Santé)/Service de Recherche en Dosimétrie (SDOS)/Laboratoire de Micro-Irradiation, de Métrologie et de Dosimétrie des Neutrons (LMDN), Cadarache, 13115 Saint-Paul-lez-Durance, France
| | - Xavier Cousin
- MARBEC, Univ. Montpellier, CNRS, Ifremer, IRD, INRAE, 34250 Palavas Les Flots, France
| | - Oliver Armant
- Institut de Radioprotection et de Sûreté Nucléaire (IRSN), Pôle Santé Environnement-Environnement (PSE-ENV)/Service de Recherche sur les Transferts et les Effets des Radionucléides sur les Ecosystèmes (SRTE)/Laboratoire de Recherche sur les Effets des Radionucléides sur les Ecosystèmes (LECO), Cadarache, 13115 Saint-Paul-lez-Durance, France
- Correspondence: (E.C.); (O.A.)
| |
Collapse
|
40
|
Hsu JH, Tan CH, Yu RL. Impact of catechol-O-methyltransferase genetic polymorphisms and age on empathy. CURRENT PSYCHOLOGY 2022. [DOI: 10.1007/s12144-022-03434-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
41
|
Heseding HM, Jahn K, Eberlein CK, Wieting J, Maier HB, Proskynitopoulos PJ, Glahn A, Bleich S, Frieling H, Deest M. Distinct promoter regions of the oxytocin receptor gene are hypomethylated in Prader-Willi syndrome and in Prader-Willi syndrome associated psychosis. Transl Psychiatry 2022; 12:246. [PMID: 35688807 PMCID: PMC9187685 DOI: 10.1038/s41398-022-02014-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 05/23/2022] [Accepted: 05/30/2022] [Indexed: 11/12/2022] Open
Abstract
Prader-Willi syndrome (PWS) is a rare neurodevelopmental disorder caused by a loss of usually paternally expressed, maternally imprinted genes located on chromosome 15q11-q13. Individuals with PWS display a specific behavioral phenotype and have a higher susceptibility than the general population for certain psychiatric conditions, especially psychosis. An impairment of the oxytocin system has been described in Prader-Willi syndrome, but has not yet been investigated in detail on the epigenetic level. Recent studies have pointed out altered methylation patterns of the oxytocin receptor gene (OXTR) in various psychiatric disorders, including psychosis. In this study, we investigated methylation rates of CpG dinucleotides in the promoter region of the oxytocin receptor gene via bisulfite-sequencing using DNA extracted from peripheral blood samples of 31 individuals with PWS and 14 controls matched for age, sex, and BMI. Individuals with PWS show significantly lower methylation in the intron 1 region of the OXTR than neurotypical controls (p = 0.012). Furthermore, male PWS subjects with psychosis show significantly lower methylation of the OXTR exon 1 region than those without psychosis (p = 0.002). Transcription factor binding site analysis revealed E2F1 as a transcription factor potentially binding to the exon 1 region. E2F1 is physiologically regulated by Necdin, an anti-apoptotic protein whose corresponding gene is located within the PWS locus. This study provides evidence of a disruption of the Oxytocin system on an epigenetic level in PWS in general and in individuals with PWS and psychosis.
Collapse
Affiliation(s)
- Hannah M. Heseding
- grid.10423.340000 0000 9529 9877Department of Psychiatry, Social Psychiatry and Psychotherapy, Hannover Medical School, Hannover, Germany
| | - Kirsten Jahn
- grid.10423.340000 0000 9529 9877Department of Psychiatry, Social Psychiatry and Psychotherapy, Hannover Medical School, Hannover, Germany
| | - Christian K. Eberlein
- grid.10423.340000 0000 9529 9877Department of Psychiatry, Social Psychiatry and Psychotherapy, Hannover Medical School, Hannover, Germany
| | - Jelte Wieting
- grid.10423.340000 0000 9529 9877Department of Psychiatry, Social Psychiatry and Psychotherapy, Hannover Medical School, Hannover, Germany
| | - Hannah B. Maier
- grid.10423.340000 0000 9529 9877Department of Psychiatry, Social Psychiatry and Psychotherapy, Hannover Medical School, Hannover, Germany
| | - Phileas J. Proskynitopoulos
- grid.10423.340000 0000 9529 9877Department of Psychiatry, Social Psychiatry and Psychotherapy, Hannover Medical School, Hannover, Germany
| | - Alexander Glahn
- grid.10423.340000 0000 9529 9877Department of Psychiatry, Social Psychiatry and Psychotherapy, Hannover Medical School, Hannover, Germany
| | - Stefan Bleich
- grid.10423.340000 0000 9529 9877Department of Psychiatry, Social Psychiatry and Psychotherapy, Hannover Medical School, Hannover, Germany
| | - Helge Frieling
- grid.10423.340000 0000 9529 9877Department of Psychiatry, Social Psychiatry and Psychotherapy, Hannover Medical School, Hannover, Germany
| | - Maximilian Deest
- Department of Psychiatry, Social Psychiatry and Psychotherapy, Hannover Medical School, Hannover, Germany.
| |
Collapse
|
42
|
Flanagan J, Chatzittofis A, Boström ADE, Hallberg J, Öberg KG, Arver S, Jokinen J. High Plasma Oxytocin Levels in Men With Hypersexual Disorder. J Clin Endocrinol Metab 2022; 107:e1816-e1822. [PMID: 35108393 PMCID: PMC9016473 DOI: 10.1210/clinem/dgac015] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Indexed: 01/23/2023]
Abstract
CONTEXT Hypersexual disorder (HD) involves excessive, persistent sexual behaviors related to various mood states and the diagnosis compulsive sexual behavior disorder is included as an impulse control disorder in the 11th revision of the International Classification of Diseases. Although the neurobiology behind the disorder is not clear, some studies suggest dysregulated hypothalamic-pituitary-adrenal axis. Oxytocin acts as counterregulatory neuroendocrine hormone to cortisol and is also involved in sexual behavior. OBJECTIVE We hypothesized that oxytocin may play a role in the pathophysiology of HD with compensatory actions to cortisol. DESIGN Longitudinal. SETTING ANOVA clinic (Karolinska University Hospital). PATIENTS OR OTHER PARTICIPANTS 64 males with HD and 38 age-matched healthy volunteers. MAIN OUTCOME MEASURES Plasma oxytocin levels, measured with radioimmunoassay; Hypersexual Disorder Screening Inventory; and Hypersexual Disorder: Current Assessment Scale for assessing hypersexual symptoms. INTERVENTIONS A patient subgroup (n = 30) completed the manual-based group-administered cognitive-behavioral therapy (CBT) program for HD, and posttreatment oxytocin levels were measured. RESULTS Hypersexual men (n = 64) exhibited significantly higher oxytocin plasma levels (mean ± SD: 31.0 ± 9.9 pM) compared with healthy volunteers (16.9 ± 3.9 pM; P < 0.001). There were significant positive correlations between oxytocin levels and the rating scales measuring hypersexual behavior. Patients who completed CBT treatment (n = 30) had a significant reduction of oxytocin plasma levels from pretreatment (30.5 ± 10.1 pM) to posttreatment (20.2 ± 8.0 pM; P < 0.001). CONCLUSIONS The results suggest that the hyperactive oxytocinergic system in hypersexual men may be a compensatory mechanism to attenuate hyperactive stress.
Collapse
Affiliation(s)
- John Flanagan
- Department of Medicine, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Andreas Chatzittofis
- Medical School, University of Cyprus, Nicosia, Cyprus
- Department of Clinical Sciences/Psychiatry, Umeå University, Umeå,Sweden
- Correspondence: Andreas Chatzittofis, MD, PhD, University of Cyprus, Medical School, Palaios dromos Lefkosias Lemesou No.215/6 2029 Aglantzia, Nicosia, Cyprus.
| | - Adrian Desai E Boström
- Department of Clinical Sciences/Psychiatry, Umeå University, Umeå,Sweden
- Neuropaediatric Unit, Department of Women’s and Children’s Health, Karolinska Institutet, Stockholm, Sweden
| | - Jonas Hallberg
- Department of Medicine, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Katarina Görts Öberg
- Department of Medicine, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Stefan Arver
- Department of Medicine, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Jussi Jokinen
- Department of Clinical Sciences/Psychiatry, Umeå University, Umeå,Sweden
- Department of Clinical Neuroscience/Psychiatry, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
43
|
Sanson A, Bosch OJ. Dysfunctions of brain oxytocin signaling: Implications for poor mothering. Neuropharmacology 2022; 211:109049. [PMID: 35390436 DOI: 10.1016/j.neuropharm.2022.109049] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 03/03/2022] [Accepted: 03/29/2022] [Indexed: 10/18/2022]
Abstract
Good mothering has profound impact on both the mother's and the young's well-being. Consequently, experiencing inadequate maternal care - or even neglect - in the first stages of life is a major risk factor for the development of psychiatric disorders, and even for poor parenting towards the future offspring. Thus, understanding the neurobiological basis of maternal neglect becomes crucial. Along with other neurotransmitters and neuropeptides, oxytocin (OXT) has long been known as one of the main modulators of maternal behavior. In rodents, disruptions of central OXT transmission have been associated with poor maternal responses, like impaired onset of nursing behaviors, and reduced care and defense of the pups. Importantly, such behavioral and molecular deficits can be transmitted through generations, creating a vicious circle of low-quality maternal behavior. Similarly, evidence from human studies shows that OXT signaling is defective in conditions of inadequate mothering and child neglect. On those premises, this review aims at providing a comprehensive overview of animal and human studies linking perturbed OXT transmission to poor maternal behavior. Considering the important fallouts of inadequate maternal responses, we believe that unraveling the alterations in OXT transmission might provide useful insights for a better understanding of maternal neglect and, ultimately, for future intervention approaches.
Collapse
Affiliation(s)
- Alice Sanson
- Department of Behavioural and Molecular Neurobiology, Regensburg Center of Neuroscience, University of Regensburg, Regensburg, Germany.
| | - Oliver J Bosch
- Department of Behavioural and Molecular Neurobiology, Regensburg Center of Neuroscience, University of Regensburg, Regensburg, Germany.
| |
Collapse
|
44
|
Uvnäs Moberg K, Petersson M. Physiological effects induced by stimulation of cutaneous sensory nerves, with a focus on oxytocin. Curr Opin Behav Sci 2022. [DOI: 10.1016/j.cobeha.2021.10.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
45
|
Bowen MT, George O, Muskiewicz DE, Hall FS. FACTORS CONTRIBUTING TO THE ESCALATION OF ALCOHOL CONSUMPTION. Neurosci Biobehav Rev 2022; 132:730-756. [PMID: 34839930 PMCID: PMC8892842 DOI: 10.1016/j.neubiorev.2021.11.017] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 11/05/2021] [Accepted: 11/12/2021] [Indexed: 01/03/2023]
Abstract
Understanding factors that contribute to the escalation of alcohol consumption is key to understanding how an individual transitions from non/social drinking to AUD and to providing better treatment. In this review, we discuss how the way ethanol is consumed as well as individual and environmental factors contribute to the escalation of ethanol consumption from intermittent low levels to consistently high levels. Moreover, we discuss how these factors are modelled in animals. It is clear a vast array of complex, interacting factors influence changes in alcohol consumption. Some of these factors act early in the acquisition of ethanol consumption and initial escalation, while others contribute to escalation of ethanol consumption at a later stage and are involved in the development of alcohol dependence. There is considerable need for more studies examining escalation associated with the formation of dependence and other hallmark features of AUD, especially studies examining mechanisms, as it is of considerable relevance to understanding and treating AUD.
Collapse
Affiliation(s)
- Michael T. Bowen
- The University of Sydney, Brain and Mind Centre, Sydney, NSW, 2050, Australia,The University of Sydney, Faculty of Science, School of Psychology, Sydney, NSW, 2006, Australia,Corresponding Author: Michael T. Bowen, Brain and Mind Centre, The University of Sydney, 94 Mallett Street, Camperdown, Sydney, NSW, 2050, Australia,
| | - Olivier George
- Department of Psychology, University of California, San Diego, School of Medicine, La Jolla, CA, 92093, USA
| | - Dawn E. Muskiewicz
- Department of Pharmacology & Experimental Therapeutics, College of Pharmacology and Pharmacological Science, University of Toledo, OH, USA
| | - F. Scott Hall
- Department of Pharmacology & Experimental Therapeutics, College of Pharmacology and Pharmacological Science, University of Toledo, OH, USA
| |
Collapse
|
46
|
Roschina OV, Levchuk LA, Boiko AS, Michalitskaya EV, Epimakhova EV, Losenkov IS, Simutkin GG, Loonen AJM, Bokhan NA, Ivanova SA. Beta-Endorphin and Oxytocin in Patients with Alcohol Use Disorder and Comorbid Depression. J Clin Med 2021; 10:jcm10235696. [PMID: 34884397 PMCID: PMC8658665 DOI: 10.3390/jcm10235696] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 11/05/2021] [Accepted: 12/01/2021] [Indexed: 02/07/2023] Open
Abstract
Background: The neuropeptides β-endorphin and oxytocin are released into the bloodstream as hormones from the pituitary gland but also have an important function as neuroregulators in the forebrain. The blood levels of both polypeptides have been shown to reflect depressive symptoms. β-Endorphin, in particular, is also involved in abstinence from alcohol. Methods: The serum levels of β-endorphin and oxytocin were measured during the early withdrawal phase in patients with alcohol use disorder (AUD) with (N = 35) or without (N = 45) depressive comorbidity and compared with those in healthy volunteers (N = 23). In addition to comparing the groups, the study examined whether serum levels correlated with various psychometric measures of dependence, depression and aggression, as well as with clinical characteristics of dependence. Results: Both serum levels of beta-endorphin and oxytocin were significantly lower in patients than those in healthy controls (p = 0.011 for β-endorphin and p = 0.005 for oxytocin, Kruskal–Wallis test). In patients with depressive comorbidity, the significance was greatest (p = 0.005 for β-endorphin and p = 0.004 for oxytocin, U-test). There was no correlation with clinical or psychometric parameters (p > 0.05, Spearman test), but beta-endorphin levels did correlate significantly with physical aggression (p = 0.026, Spearman test). Conclusions: Serum levels of β-endorphin and oxytocin are lower in patients with AUD, particularly in those with depressive comorbidity. β-Endorphin levels correlated with physical aggression according to the Buss–Durkee (BDHI) estimates.
Collapse
Affiliation(s)
- Olga V. Roschina
- Mental Health Research Institute, Tomsk National Research Medical Center of the Russian Academy of Sciences, 634014 Tomsk, Russia; (O.V.R.); (L.A.L.); (A.S.B.); (E.V.M.); (E.V.E.); (I.S.L.); (G.G.S.); (N.A.B.); (S.A.I.)
| | - Lyudmila A. Levchuk
- Mental Health Research Institute, Tomsk National Research Medical Center of the Russian Academy of Sciences, 634014 Tomsk, Russia; (O.V.R.); (L.A.L.); (A.S.B.); (E.V.M.); (E.V.E.); (I.S.L.); (G.G.S.); (N.A.B.); (S.A.I.)
| | - Anastasiia S. Boiko
- Mental Health Research Institute, Tomsk National Research Medical Center of the Russian Academy of Sciences, 634014 Tomsk, Russia; (O.V.R.); (L.A.L.); (A.S.B.); (E.V.M.); (E.V.E.); (I.S.L.); (G.G.S.); (N.A.B.); (S.A.I.)
| | - Ekaterina V. Michalitskaya
- Mental Health Research Institute, Tomsk National Research Medical Center of the Russian Academy of Sciences, 634014 Tomsk, Russia; (O.V.R.); (L.A.L.); (A.S.B.); (E.V.M.); (E.V.E.); (I.S.L.); (G.G.S.); (N.A.B.); (S.A.I.)
| | - Elena V. Epimakhova
- Mental Health Research Institute, Tomsk National Research Medical Center of the Russian Academy of Sciences, 634014 Tomsk, Russia; (O.V.R.); (L.A.L.); (A.S.B.); (E.V.M.); (E.V.E.); (I.S.L.); (G.G.S.); (N.A.B.); (S.A.I.)
| | - Innokentiy S. Losenkov
- Mental Health Research Institute, Tomsk National Research Medical Center of the Russian Academy of Sciences, 634014 Tomsk, Russia; (O.V.R.); (L.A.L.); (A.S.B.); (E.V.M.); (E.V.E.); (I.S.L.); (G.G.S.); (N.A.B.); (S.A.I.)
| | - German G. Simutkin
- Mental Health Research Institute, Tomsk National Research Medical Center of the Russian Academy of Sciences, 634014 Tomsk, Russia; (O.V.R.); (L.A.L.); (A.S.B.); (E.V.M.); (E.V.E.); (I.S.L.); (G.G.S.); (N.A.B.); (S.A.I.)
| | - Anton J. M. Loonen
- Groningen Research Institute of Pharmacy (GRIP), PharmacoTherapy, -Epidemiology & -Economics, University of Groningen, 9713AV Groningen, The Netherlands
- Correspondence:
| | - Nikolay A. Bokhan
- Mental Health Research Institute, Tomsk National Research Medical Center of the Russian Academy of Sciences, 634014 Tomsk, Russia; (O.V.R.); (L.A.L.); (A.S.B.); (E.V.M.); (E.V.E.); (I.S.L.); (G.G.S.); (N.A.B.); (S.A.I.)
- Psychiatry, Addictology and Psychotherapy Department, Siberian State Medical University, 634050 Tomsk, Russia
| | - Svetlana A. Ivanova
- Mental Health Research Institute, Tomsk National Research Medical Center of the Russian Academy of Sciences, 634014 Tomsk, Russia; (O.V.R.); (L.A.L.); (A.S.B.); (E.V.M.); (E.V.E.); (I.S.L.); (G.G.S.); (N.A.B.); (S.A.I.)
- Psychiatry, Addictology and Psychotherapy Department, Siberian State Medical University, 634050 Tomsk, Russia
| |
Collapse
|
47
|
Leithead AB, Tasker JG, Harony‐Nicolas H. The interplay between glutamatergic circuits and oxytocin neurons in the hypothalamus and its relevance to neurodevelopmental disorders. J Neuroendocrinol 2021; 33:e13061. [PMID: 34786775 PMCID: PMC8951898 DOI: 10.1111/jne.13061] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 10/14/2021] [Accepted: 10/30/2021] [Indexed: 11/27/2022]
Abstract
Oxytocin (OXT) neurons of the hypothalamus are at the center of several physiological functions, including milk ejection, uterus contraction, and maternal and social behavior. In lactating females, OXT neurons show a pattern of burst firing and inter-neuron synchronization during suckling that leads to pulsatile release of surges of OXT into the bloodstream to stimulate milk ejection. This pattern of firing and population synchronization may be facilitated in part by hypothalamic glutamatergic circuits, as has been observed in vitro using brain slices obtained from male rats and neonates. However, it remains unknown how hypothalamic glutamatergic circuits influence OXT cell activity outside the context of lactation. In this review, we summarize the in vivo and in vitro studies that describe the synchronized burst firing pattern of OXT neurons and the implication of hypothalamic glutamate in this pattern of firing. We also make note of the few studies that have traced glutamatergic afferents to the hypothalamic paraventricular and supraoptic nuclei. Finally, we discuss the genetic findings implicating several glutamatergic genes in neurodevelopmental disorders, including autism spectrum disorder, thus underscoring the need for future studies to investigate the impact of these mutations on hypothalamic glutamatergic circuits and the OXT system.
Collapse
Affiliation(s)
- Amanda B. Leithead
- Department of PsychiatryIcahn School of Medicine at Mount SinaiNew YorkNYUSA
- Seaver Autism Center for Research and TreatmentNew YorkNYUSA
- Department of NeuroscienceIcahn School of Medicine at Mount SinaiNew YorkNYUSA
- Friedman Brain Institute at the Icahn School of Medicine at Mount SinaiNew YorkNYUSA
| | - Jeffrey G. Tasker
- Neurobiology DivisionDepartment of Cell and Molecular BiologyTulane UniversityNew OrleansLAUSA
| | - Hala Harony‐Nicolas
- Department of PsychiatryIcahn School of Medicine at Mount SinaiNew YorkNYUSA
- Seaver Autism Center for Research and TreatmentNew YorkNYUSA
- Department of NeuroscienceIcahn School of Medicine at Mount SinaiNew YorkNYUSA
- Friedman Brain Institute at the Icahn School of Medicine at Mount SinaiNew YorkNYUSA
- Mindich Child Health and Development Institute at the Icahn School of Medicine at Mount SinaiNew YorkNYUSA
| |
Collapse
|
48
|
Le Roux M, Möller M, Harvey BH. Prolonged efavirenz exposure reduces peripheral oxytocin and vasopressin comparable to known drugs of addiction in male Sprague Dawley rats. IBRO Neurosci Rep 2021; 11:56-63. [PMID: 34939063 PMCID: PMC8664698 DOI: 10.1016/j.ibneur.2021.06.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2020] [Revised: 03/03/2021] [Accepted: 06/22/2021] [Indexed: 11/27/2022] Open
Abstract
INTRODUCTION Several drugs of abuse (DOA) are capable of modulating neurohypophysial hormones, such as oxytocin (OT) and vasopressin (VP), potentially resulting in the development of psychological abnormalities, such as cognitive dysfunction, psychoses, and affective disorders. Efavirenz (EFV), widely used in Africa and globally to treat HIV, induces diverse neuropsychiatric side effects while its abuse has become a global concern. The actions of EFV may involve neurohypophysial system (NS) disruption like that of known DOA. This study investigated whether sub-chronic EFV exposure, at a previously-determined rewarding dose, alters peripheral OT and VP levels versus that of a control, ∆9-tetrahydrocannabinol (∆9-THC), methamphetamine (MA) and cocaine. MATERIALS AND METHODS To simulate the conditions under which reward-driven behavior had previously been established for EFV, male Sprague Dawley rats (n = 16/exposure) received intraperitoneal vehicle (control) or drug administration across an alternating sixteen-day dosing protocol. Control administration (saline/olive oil; 0.2 ml) occurred on odd-numbered and drug administration (EFV: 5 mg/kg, ∆9-THC: 0.75 mg/kg, MA: 1 mg/kg, or cocaine: 20 mg/kg) on even-numbered days followed by euthanasia, trunk blood collection and plasma extraction for neuropeptide assay. Effect of drug exposure on peripheral OT and VP levels was assessed versus controls and quantified using specific ELISA kits. Statistical significance was determined by Kruskal-Wallis ANOVA, with p < 0.05. Ethics approval: NWU-00291-17-A5. RESULTS Delta-9-THC reduced OT and VP plasma levels (p < 0.0001, p = 0.0141; respectively), cocaine reduced plasma OT (p = 0.0023), while MA reduced plasma VP levels (p = 0.0001), all versus control. EFV reduced OT and VP plasma levels (p < 0.0001; OT and VP) versus control, and similar to ∆9-THC. CONCLUSION EFV markedly affects the NS in significantly reducing both plasma OT and VP equivalent to DOA. Importantly, EFV has distinct effects on peripheral OT and VP levels when assessed within the context of drug dependence. The data highlights a possible new mechanism underlying previously documented EFV-induced effects in rats, and whereby EFV may induce neuropsychiatric adverse effects clinically; also providing a deeper understanding of the suggested abuse-potential of EFV.
Collapse
Key Words
- 5-HT, 5-hydroxytryptamine (serotonin)
- ADH, antidiuretic hormone
- AEA, N-arachidonoylethanolamine (anandamide)
- ANOVA, one-way analysis of variance
- ARRIVE, animal research: reporting of in vivo experiments (guidelines)
- ARV, antiretroviral
- Ach, acetylcholine
- CB, cannabinoid
- CNS, central nervous system
- CPP, conditioned place preference
- Cocaine
- DA, dopamine
- DAT, dopamine transporter
- DOA‘s, drug(s) of abuse
- ECS, endocannabinoid system
- EFV, efavirenz
- ELISA, enzyme-linked immunosorbent assay
- Efavirenz
- GABA, gamma-aminobutyric acid
- Glu, glutamate
- HIV, human immunodeficiency virus
- HNS, hypothalamic neurohypophysial system
- HPA, hypothalamic-pituitary-adrenal (axis)
- IP, intraperitoneal
- IV, intravenous
- M, muscarinic
- MA, methamphetamine
- MAO, monoamine oxidase
- Methamphetamine
- NAc, nucleus accumbens
- NE, norepinephrine
- NO, nitric oxide
- NPAE, neuropsychiatric adverse effect
- OT, oxytocin
- OTR, oxytocin receptor
- Oxytocin
- PND, postnatal day
- PVN, paraventricular nucleus
- SC, subcutaneous
- SD, Sprague Dawley (rat)
- SEM, standard error of the mean
- SERT, serotonin transporter
- SON, supraoptic nucleus
- VMAT, vesicular monoamine transporter
- VP, vasopressin
- VPR, vasopressin receptor
- Vasopressin
- cART, combined antiretroviral therapy
- ∆9-THC, delta-9-tetrahydrocannabinol
- ∆9-tetrahydrocannabinol
Collapse
Affiliation(s)
- Mandi Le Roux
- Division of Pharmacology, School of Pharmacy, North-West University, Potchefstroom, South Africa
- Centre of Excellence for Pharmaceutical Sciences (PharmaCenTM), School of Pharmacy, North-West University, Potchefstroom, South Africa
| | - Marisa Möller
- Division of Pharmacology, School of Pharmacy, North-West University, Potchefstroom, South Africa
- Centre of Excellence for Pharmaceutical Sciences (PharmaCenTM), School of Pharmacy, North-West University, Potchefstroom, South Africa
| | - Brian H. Harvey
- Division of Pharmacology, School of Pharmacy, North-West University, Potchefstroom, South Africa
- Centre of Excellence for Pharmaceutical Sciences (PharmaCenTM), School of Pharmacy, North-West University, Potchefstroom, South Africa
| |
Collapse
|
49
|
Magwai T, Shangase KB, Oginga FO, Chiliza B, Mpofana T, Xulu KR. DNA Methylation and Schizophrenia: Current Literature and Future Perspective. Cells 2021; 10:2890. [PMID: 34831111 PMCID: PMC8616184 DOI: 10.3390/cells10112890] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 10/09/2021] [Accepted: 10/12/2021] [Indexed: 12/12/2022] Open
Abstract
Schizophrenia is a neuropsychiatric disorder characterized by dissociation of thoughts, idea, identity, and emotions. It has no central pathophysiological mechanism and precise diagnostic markers. Despite its high heritability, there are also environmental factors implicated in the development of schizophrenia. Epigenetic factors are thought to mediate the effects of environmental factors in the development of the disorder. Epigenetic modifications like DNA methylation are a risk factor for schizophrenia. Targeted gene approach studies attempted to find candidate gene methylation, but the results are contradictory. Genome-wide methylation studies are insufficient in literature and the available data do not cover different populations like the African populations. The current genome-wide studies have limitations related to the sample and methods used. Studies are required to control for these limitations. Integration of DNA methylation, gene expression, and their effects are important in the understanding of the development of schizophrenia and search for biomarkers. There are currently no precise and functional biomarkers for the disorder. Several epigenetic markers have been reported to be common in functional and peripheral tissue. This makes the peripheral tissue epigenetic changes a surrogate of functional tissue, suggesting common epigenetic alteration can be used as biomarkers of schizophrenia in peripheral tissue.
Collapse
Affiliation(s)
- Thabo Magwai
- Department of Physiology, School of Laboratory Medicine and Medical Sciences, University of Kwa-Zulu Natal, Durban 4001, South Africa; (K.B.S.); (F.O.O.); (T.M.)
- National Health Laboratory Service, Department of Chemical Pathology, University of Kwa-Zulu Natal, Durban 4085, South Africa
| | - Khanyiso Bright Shangase
- Department of Physiology, School of Laboratory Medicine and Medical Sciences, University of Kwa-Zulu Natal, Durban 4001, South Africa; (K.B.S.); (F.O.O.); (T.M.)
| | - Fredrick Otieno Oginga
- Department of Physiology, School of Laboratory Medicine and Medical Sciences, University of Kwa-Zulu Natal, Durban 4001, South Africa; (K.B.S.); (F.O.O.); (T.M.)
| | - Bonginkosi Chiliza
- Department of Psychiatry, Nelson R Mandela School of Medicine, University of Kwa-Zulu Natal, Durban 4001, South Africa;
| | - Thabisile Mpofana
- Department of Physiology, School of Laboratory Medicine and Medical Sciences, University of Kwa-Zulu Natal, Durban 4001, South Africa; (K.B.S.); (F.O.O.); (T.M.)
| | - Khethelo Richman Xulu
- Department of Physiology, School of Laboratory Medicine and Medical Sciences, University of Kwa-Zulu Natal, Durban 4001, South Africa; (K.B.S.); (F.O.O.); (T.M.)
| |
Collapse
|
50
|
Sasaki K, Ferdousi F, Fukumitsu S, Kuwata H, Isoda H. Antidepressant- and anxiolytic-like activities of Rosmarinus officinalis extract in rodent models: Involvement of oxytocinergic system. Biomed Pharmacother 2021; 144:112291. [PMID: 34653760 DOI: 10.1016/j.biopha.2021.112291] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Revised: 09/29/2021] [Accepted: 10/05/2021] [Indexed: 01/18/2023] Open
Abstract
BACKGROUND Oxytocin (OXT), a neuropeptide involved in mammal reproductive and prosocial behaviors, has been reported to interact with various stressor-provoked neurobiological changes, including neuroendocrine, neurotransmitter, and inflammatory processes. In view of disturbances in psychosocial relationships due to social isolation and physical distancing measures amid the COVID-19 pandemic, being one of the triggering factors for the recent rise in depression and anxiety, OXT is a potential candidate for a new antidepressant. METHODS In this present study, we have aimed to investigate the effects of oral administration of Rosmarinus officinalis extract (RE), extracted from distillation residue of rosemary essential oil, on central OXT level in the context of other stress biomarkers and neurotransmitter levels in mice models. Tail suspension test (TST) and elevated plus maze test (EPMT) following LPS injection were employed to assess depressive- and anxiety-like behavior in mice, respectively. FINDINGS Pretreatment with RE for seven days significantly improved behavior in TST and EPMT. Whole-genome microarray analysis reveals that RE significantly reversed TST stress-induced alterations in gene expressions related to oxytocinergic and neurotransmitter pathways and inflammatory processes. In both models, RE significantly increased central Oxt and Oxtr expressions, as well as OXT protein levels. RE also significantly attenuated stress-induced changes in serum corticosterone, brain and serum BDNF levels, and brain neurotransmitters levels in both models. INTERPRETATION Altogether, our study is the first to report antidepressant- and anxiolytic-like activities of RE through modulating oxytocinergic system in mice brain and thus highlights the prospects of RE in the treatment of depressive disorders of psychosocial nature.
Collapse
Affiliation(s)
- Kazunori Sasaki
- Alliance for Research on the Mediterranean and North Africa (ARENA), University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8572, Japan; Open Innovation Laboratory for Food and Medicinal Resource Engineering, National Institute of Advanced Industrial Science and Technology (AIST) and University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8572, Japan
| | - Farhana Ferdousi
- Alliance for Research on the Mediterranean and North Africa (ARENA), University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8572, Japan; Open Innovation Laboratory for Food and Medicinal Resource Engineering, National Institute of Advanced Industrial Science and Technology (AIST) and University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8572, Japan; Faculty of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8572, Japan
| | - Satoshi Fukumitsu
- Alliance for Research on the Mediterranean and North Africa (ARENA), University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8572, Japan; Tsukuba Life Science Innovation Program (T-LSI), University of Tsukuba, 1-1-1 Tennodai, Tsukuba, 305-8577 Ibaraki, Japan
| | - Hidetoshi Kuwata
- Alliance for Research on the Mediterranean and North Africa (ARENA), University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8572, Japan
| | - Hiroko Isoda
- Alliance for Research on the Mediterranean and North Africa (ARENA), University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8572, Japan; Open Innovation Laboratory for Food and Medicinal Resource Engineering, National Institute of Advanced Industrial Science and Technology (AIST) and University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8572, Japan; Faculty of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8572, Japan; Tsukuba Life Science Innovation Program (T-LSI), University of Tsukuba, 1-1-1 Tennodai, Tsukuba, 305-8577 Ibaraki, Japan.
| |
Collapse
|