1
|
Karakaya Suzan Ö, Bektaş M, Altındiş M, Kaya Ö, Eroğlu A, Çetinkaya Özdemir S, Tecik S, Emecen AN, Çınar N. Examining the changes in the prevalence of Hepatitis a in Türkiye: systematic review and metaanalysis. BMC Public Health 2024; 24:3280. [PMID: 39593006 PMCID: PMC11590238 DOI: 10.1186/s12889-024-20783-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Accepted: 11/18/2024] [Indexed: 11/28/2024] Open
Abstract
BACKGROUND The incidence of Hepatitis A is increasing worldwide. Yearly classification of Hepatitis A Seroprevalence for different times in different regions of Türkiye allows indirect measurement of year-specific incidence rates of HAV infection and can be considered the best way to define Hepatitis A status. This study aimed to examine the change in the incidence of hepatitis A by systematically evaluating the available data on the seroprevalence of anti-HAV antibodies in the Turkish population. METHODS Studies published between First January, 2000- 31 December 2023 that meet the inclusion criteria searched between 16.09.2023 and 31.01.2024 in nine databases (MEDLINE, Web of Science, PubMed, ScienceDirect, Scopus, Eric, CINAHL Complate, TR DİZİN, TÜBİTAK Ulakbim). Independently by two reviewers evaluated all titles and abstracts with consensus-based decision making. The Joanna Briggs Institution (JBI) Analytical Cross Sectional Studies and Prevelance Studies list were used in this study. Pooled prevalence was calculated using 95% confidence intervals. Heterogeneity between studies was assessed by Cochrane's Q and I2. The random effect model was selected by Cochrane's Q and I2. Funnel plots were used for publication bias. The data were analyzed via Jamovi 1.2.22. RESULTS Data were extracted from 63 studies. Pooled prevalence was calculated using 95% confidence intervals. Funnel plots were used for publication bias. In this meta-analysis, data were obtained from all geographical regions of Türkiye, and the general prevalence of Hepatitis A in the population was found to be 53% [95% CI 0.47, 0.59; I2 = 99.94%]. In subgroup analysis conducted by year, the prevalence of hepatitis A was 45% [95% CI 0.22, 0.67; I2 = 99.8%] between 2002 and 2006, 52% [95% CI 0.39, 0.65; I2 = 99.54%] between 2007 and 2011, 60% [95% CI 0.49, 0.70; I2 = 99.9%] between 2012 and 2016, and 51% [95% CI 0.41, 0.61; I2 = 99.97%] as of 2017. Additionally, a systematic review revealed that vaccination, socioeconomic status, and sex may also affect HAV seroprevalence. CONCLUSIONS HAV seroprevalence in Türkiye; It was observed that it increased between 2002 and 2016 and decreased until today as of 2017. This systematic review provide a comprehensive overview of HAV virus epidemiology and identify key knowledge gaps, contributing crucial information for influencing factors. TRIAL REGISTRATION PROSPERO ID = CRD42023464384.
Collapse
Affiliation(s)
- Özge Karakaya Suzan
- Department of Nursing, Faculty of Health Sciences, Sakarya University, Esentepe Campus, Serdivan, Sakarya, 54187, Turkey.
| | - Murat Bektaş
- Pediatric Nursing Department, Dokuz Eylul University, Faculty of Nursing, Izmir, 35340, Turkey
| | - Mustafa Altındiş
- Department of Clinical Virology and Microbiology, Sakarya University Faculty of Medicine, Sakarya, Turkey
| | - Özge Kaya
- Institute of Health Sciences, Sakarya University, Sakarya, Turkey
| | - Ayşe Eroğlu
- Institute of Health Sciences, Sakarya University, Sakarya, Turkey
| | - Serap Çetinkaya Özdemir
- Department of Nursing, Faculty of Health Sciences, Sakarya University, Esentepe Campus, Serdivan, Sakarya, 54187, Turkey
| | - Seda Tecik
- Institute of Health Sciences, Sakarya University, Sakarya, Turkey
| | - Ahmet Naci Emecen
- Department of Public Health, Epidemiology Subsection, Faculty of Medicine, Dokuz Eylül University, Izmir, Turkey
| | - Nursan Çınar
- Department of Nursing, Faculty of Health Sciences, Sakarya University, Esentepe Campus, Serdivan, Sakarya, 54187, Turkey
| |
Collapse
|
2
|
Amri M, Jubinville É, Goulet-Beaulieu V, Fliss I, Jean J. Evaluation of inhibitory activity of essential oils and natural extracts on foodborne viruses. J Appl Microbiol 2024; 135:lxae221. [PMID: 39174457 DOI: 10.1093/jambio/lxae221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 08/09/2024] [Accepted: 08/21/2024] [Indexed: 08/24/2024]
Abstract
AIMS Enteric viruses are recognized as a major concern in health care and in the food sector in Canada. Novel clean-label strategies for controlling enteric viruses are sought in the food industry. In this study, we examined the antiviral potential of plant extracts and essential oils on murine norovirus 1 (MNV-1), hepatitis A virus (HAV), and herpes simplex virus 1 (HSV-1). METHODS AND RESULTS Inactivation of the viruses by grape seed, blueberry, green tea, and cranberry extracts and by rosemary and thyme essential oils was measured using plaque formation assay. Concentrations ranging from 50 to 200 000 ppm with a contact time of 90 min were tested. Grape seed extract at 10 000 ppm was the most effective (P < 0.05) at reducing MNV-1 and HAV infectious titers, respectively, by 2.85 ± 0.44 log10 and 1.94 ± 0.17 log10. HSV-1 titer was reduced by 3.81 ± 0.40 log10 at 1000 ppm grape seed extract. CONCLUSIONS Among the plant products tested, grape seed extract was found the most effective at reducing the infectious titers of MNV-1, HAV, and HSV.
Collapse
Affiliation(s)
- Mariem Amri
- Department of Food Sciences, Institute of Nutrition and Functional Foods (INAF), Université Laval, Québec, PQ, G1V 0A6, Canada
| | - Éric Jubinville
- Department of Food Sciences, Institute of Nutrition and Functional Foods (INAF), Université Laval, Québec, PQ, G1V 0A6, Canada
| | - Valérie Goulet-Beaulieu
- Department of Food Sciences, Institute of Nutrition and Functional Foods (INAF), Université Laval, Québec, PQ, G1V 0A6, Canada
| | - Ismail Fliss
- Department of Food Sciences, Institute of Nutrition and Functional Foods (INAF), Université Laval, Québec, PQ, G1V 0A6, Canada
| | - Julie Jean
- Department of Food Sciences, Institute of Nutrition and Functional Foods (INAF), Université Laval, Québec, PQ, G1V 0A6, Canada
| |
Collapse
|
3
|
Carmo dos Santos M, Cerqueira Silva AC, dos Reis Teixeira C, Pinheiro Macedo Prazeres F, Fernandes dos Santos R, de Araújo Rolo C, de Souza Santos E, Santos da Fonseca M, Oliveira Valente C, Saraiva Hodel KV, Moraes dos Santos Fonseca L, Sampaio Dotto Fiuza B, de Freitas Bueno R, Bittencourt de Andrade J, Aparecida Souza Machado B. Wastewater surveillance for viral pathogens: A tool for public health. Heliyon 2024; 10:e33873. [PMID: 39071684 PMCID: PMC11279281 DOI: 10.1016/j.heliyon.2024.e33873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 06/03/2024] [Accepted: 06/28/2024] [Indexed: 07/30/2024] Open
Abstract
A focus on water quality has intensified globally, considering its critical role in sustaining life and ecosystems. Wastewater, reflecting societal development, profoundly impacts public health. Wastewater-based epidemiology (WBE) has emerged as a surveillance tool for detecting outbreaks early, monitoring infectious disease trends, and providing real-time insights, particularly in vulnerable communities. WBE aids in tracking pathogens, including viruses, in sewage, offering a comprehensive understanding of community health and lifestyle habits. With the rise in global COVID-19 cases, WBE has gained prominence, aiding in monitoring SARS-CoV-2 levels worldwide. Despite advancements in water treatment, poorly treated wastewater discharge remains a threat, amplifying the spread of water-, sanitation-, and hygiene (WaSH)-related diseases. WBE, serving as complementary surveillance, is pivotal for monitoring community-level viral infections. However, there is untapped potential for WBE to expand its role in public health surveillance. This review emphasizes the importance of WBE in understanding the link between viral surveillance in wastewater and public health, highlighting the need for its further integration into public health management.
Collapse
Affiliation(s)
- Matheus Carmo dos Santos
- SENAI Institute of Innovation (ISI) in Health Advanced Systems (CIMATEC ISI SAS), SENAI CI-MATEC, Salvador, 41650-010, Bahia, Brazil
| | - Ana Clara Cerqueira Silva
- SENAI Institute of Innovation (ISI) in Health Advanced Systems (CIMATEC ISI SAS), SENAI CI-MATEC, Salvador, 41650-010, Bahia, Brazil
| | - Carine dos Reis Teixeira
- SENAI Institute of Innovation (ISI) in Health Advanced Systems (CIMATEC ISI SAS), SENAI CI-MATEC, Salvador, 41650-010, Bahia, Brazil
| | - Filipe Pinheiro Macedo Prazeres
- SENAI Institute of Innovation (ISI) in Health Advanced Systems (CIMATEC ISI SAS), SENAI CI-MATEC, Salvador, 41650-010, Bahia, Brazil
| | - Rosângela Fernandes dos Santos
- SENAI Institute of Innovation (ISI) in Health Advanced Systems (CIMATEC ISI SAS), SENAI CI-MATEC, Salvador, 41650-010, Bahia, Brazil
| | - Carolina de Araújo Rolo
- SENAI Institute of Innovation (ISI) in Health Advanced Systems (CIMATEC ISI SAS), SENAI CI-MATEC, Salvador, 41650-010, Bahia, Brazil
| | - Emanuelle de Souza Santos
- SENAI Institute of Innovation (ISI) in Health Advanced Systems (CIMATEC ISI SAS), SENAI CI-MATEC, Salvador, 41650-010, Bahia, Brazil
| | - Maísa Santos da Fonseca
- SENAI Institute of Innovation (ISI) in Health Advanced Systems (CIMATEC ISI SAS), SENAI CI-MATEC, Salvador, 41650-010, Bahia, Brazil
| | - Camila Oliveira Valente
- SENAI Institute of Innovation (ISI) in Health Advanced Systems (CIMATEC ISI SAS), SENAI CI-MATEC, Salvador, 41650-010, Bahia, Brazil
| | - Katharine Valéria Saraiva Hodel
- SENAI Institute of Innovation (ISI) in Health Advanced Systems (CIMATEC ISI SAS), SENAI CI-MATEC, Salvador, 41650-010, Bahia, Brazil
| | - Larissa Moraes dos Santos Fonseca
- SENAI Institute of Innovation (ISI) in Health Advanced Systems (CIMATEC ISI SAS), SENAI CI-MATEC, Salvador, 41650-010, Bahia, Brazil
| | - Bianca Sampaio Dotto Fiuza
- SENAI Institute of Innovation (ISI) in Health Advanced Systems (CIMATEC ISI SAS), SENAI CI-MATEC, Salvador, 41650-010, Bahia, Brazil
| | - Rodrigo de Freitas Bueno
- Federal University of ABC. Center of Engineering, Modelling and Applied Social Sciences (CECS), Santo Andre, São Paulo, Brazil
| | - Jailson Bittencourt de Andrade
- University Center SENAI CIMATEC, SENAI CIMATEC, Salvador, 41650-010, Bahia, Brazil
- Centro Interdisciplinar de Energia e Ambiente – CIEnAm, Federal University of Bahia, Salvador, 40170-115, Brazil
| | - Bruna Aparecida Souza Machado
- SENAI Institute of Innovation (ISI) in Health Advanced Systems (CIMATEC ISI SAS), SENAI CI-MATEC, Salvador, 41650-010, Bahia, Brazil
- University Center SENAI CIMATEC, SENAI CIMATEC, Salvador, 41650-010, Bahia, Brazil
| |
Collapse
|
4
|
Alshiban NM, Aleyiydi MS, Nassar MS, Alhumaid NK, Almangour TA, Tawfik YM, Damiati LA, Almutairi AS, Tawfik EA. Epidemiologic and clinical updates on viral infections in Saudi Arabia. Saudi Pharm J 2024; 32:102126. [PMID: 38966679 PMCID: PMC11223122 DOI: 10.1016/j.jsps.2024.102126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/06/2024] Open
Abstract
In the past two decades, the world has witnessed devastating pandemics affecting the global healthcare infrastructure and disrupting society and the economy worldwide. Among all pathogens, viruses play a critical role that is associated with outbreaks due to their wide range of species, involvement of animal hosts, easily transmitted to humans, and increased rates of infectivity. Viral disease outbreaks threaten public health globally due to the challenges associated with controlling and eradicating them. Implementing effective viral disease control programs starts with ongoing surveillance data collection and analyses to detect infectious disease trends and patterns, which is critical for maintaining public health. Viral disease control strategies include improved hygiene and sanitation facilities, eliminating arthropod vectors, vaccinations, and quarantine. The Saudi Ministry of Health (MOH) and the Public Health Authority (also known as Weqayah) in Saudi Arabia are responsible for public health surveillance to control and prevent infectious diseases. The notifiable viral diseases based on the Saudi MOH include hepatitis diseases, viral hemorrhagic fevers, respiratory viral diseases, exanthematous viral diseases, neurological viral diseases, and conjunctivitis. Monitoring trends and detecting changes in these viral diseases is essential to provide proper interventions, evaluate the established prevention programs, and develop better prevention strategies. Therefore, this review aims to highlight the epidemiological updates of the recently reported viral infections in Saudi Arabia and to provide insights into the recent clinical treatment and prevention strategies.
Collapse
Affiliation(s)
- Noura M. Alshiban
- Advanced Diagnostics and Therapeutics Institute, Health Sector, King Abdulaziz City for Science and Technology, Riyadh 11442, Saudi Arabia
| | - Munirah S. Aleyiydi
- Advanced Diagnostics and Therapeutics Institute, Health Sector, King Abdulaziz City for Science and Technology, Riyadh 11442, Saudi Arabia
| | - Majed S. Nassar
- Advanced Diagnostics and Therapeutics Institute, Health Sector, King Abdulaziz City for Science and Technology, Riyadh 11442, Saudi Arabia
| | - Nada K. Alhumaid
- Advanced Diagnostics and Therapeutics Institute, Health Sector, King Abdulaziz City for Science and Technology, Riyadh 11442, Saudi Arabia
| | - Thamer A. Almangour
- Department of Clinical Pharmacy, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Yahya M.K. Tawfik
- Department of Clinical Pharmacy, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Laila A. Damiati
- Department of Biological Sciences, College of Science, University of Jeddah, Jeddah 23218, Saudi Arabia
| | | | - Essam A. Tawfik
- Advanced Diagnostics and Therapeutics Institute, Health Sector, King Abdulaziz City for Science and Technology, Riyadh 11442, Saudi Arabia
| |
Collapse
|
5
|
Yang Z, Kulka M, Yang Q, Papafragkou E, Yu C, Wales SQ, Ngo D, Chen H. Whole-Genome Sequencing-Based Confirmatory Methods on RT-qPCR Results for the Detection of Foodborne Viruses in Frozen Berries. FOOD AND ENVIRONMENTAL VIROLOGY 2024; 16:225-240. [PMID: 38687458 PMCID: PMC11186866 DOI: 10.1007/s12560-024-09591-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Accepted: 02/13/2024] [Indexed: 05/02/2024]
Abstract
Accurate detection, identification, and subsequent confirmation of pathogens causing foodborne illness are essential for the prevention and investigation of foodborne outbreaks. This is particularly true when the causative agent is an enteric virus that has a very low infectious dose and is likely to be present at or near the limit of detection. In this study, whole-genome sequencing (WGS) was combined with either of two non-targeted pre-amplification methods (SPIA and SISPA) to investigate their utility as a confirmatory method for RT-qPCR positive results of foods contaminated with enteric viruses. Frozen berries (raspberries, strawberries, and blackberries) were chosen as the food matrix of interest due to their association with numerous outbreaks of foodborne illness. The hepatitis A virus (HAV) and human norovirus (HuNoV) were used as the contaminating agents. The non-targeted WGS strategy employed in this study could detect and confirm HuNoV and HAV at genomic copy numbers in the single digit range, and in a few cases, identified viruses present in samples that had been found negative by RT-qPCR analyses. However, some RT-qPCR-positive samples could not be confirmed using the WGS method, and in cases with very high Ct values, only a few viral reads and short sequences were recovered from the samples. WGS techniques show great potential for confirmation and identification of virally contaminated food items. The approaches described here should be further optimized for routine application to confirm the viral contamination in berries.
Collapse
Affiliation(s)
- Zhihui Yang
- Division of Molecular Biology, Office of Applied Research and Safety Assessment, Center for Food Safety and Applied Nutrition, U.S. Food and Drug Administration, 8301 Muirkirk Road, Laurel, MD, 20708, USA.
| | - Michael Kulka
- Division of Molecular Biology, Office of Applied Research and Safety Assessment, Center for Food Safety and Applied Nutrition, U.S. Food and Drug Administration, 8301 Muirkirk Road, Laurel, MD, 20708, USA
| | - Qianru Yang
- Division of Molecular Biology, Office of Applied Research and Safety Assessment, Center for Food Safety and Applied Nutrition, U.S. Food and Drug Administration, 8301 Muirkirk Road, Laurel, MD, 20708, USA
| | - Efstathia Papafragkou
- Division of Molecular Biology, Office of Applied Research and Safety Assessment, Center for Food Safety and Applied Nutrition, U.S. Food and Drug Administration, 8301 Muirkirk Road, Laurel, MD, 20708, USA
| | - Christine Yu
- Division of Molecular Biology, Office of Applied Research and Safety Assessment, Center for Food Safety and Applied Nutrition, U.S. Food and Drug Administration, 8301 Muirkirk Road, Laurel, MD, 20708, USA
| | - Samantha Q Wales
- Division of Molecular Biology, Office of Applied Research and Safety Assessment, Center for Food Safety and Applied Nutrition, U.S. Food and Drug Administration, 8301 Muirkirk Road, Laurel, MD, 20708, USA
| | - Diana Ngo
- Division of Molecular Biology, Office of Applied Research and Safety Assessment, Center for Food Safety and Applied Nutrition, U.S. Food and Drug Administration, 8301 Muirkirk Road, Laurel, MD, 20708, USA
| | - Haifeng Chen
- Division of Molecular Biology, Office of Applied Research and Safety Assessment, Center for Food Safety and Applied Nutrition, U.S. Food and Drug Administration, 8301 Muirkirk Road, Laurel, MD, 20708, USA
| |
Collapse
|
6
|
Usuda D, Kaneoka Y, Ono R, Kato M, Sugawara Y, Shimizu R, Inami T, Nakajima E, Tsuge S, Sakurai R, Kawai K, Matsubara S, Tanaka R, Suzuki M, Shimozawa S, Hotchi Y, Osugi I, Katou R, Ito S, Mishima K, Kondo A, Mizuno K, Takami H, Komatsu T, Nomura T, Sugita M. Current perspectives of viral hepatitis. World J Gastroenterol 2024; 30:2402-2417. [PMID: 38764770 PMCID: PMC11099385 DOI: 10.3748/wjg.v30.i18.2402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 04/23/2024] [Accepted: 04/25/2024] [Indexed: 05/11/2024] Open
Abstract
Viral hepatitis represents a major danger to public health, and is a globally leading cause of death. The five liver-specific viruses: Hepatitis A virus, hepatitis B virus, hepatitis C virus, hepatitis D virus, and hepatitis E virus, each have their own unique epidemiology, structural biology, transmission, endemic patterns, risk of liver complications, and response to antiviral therapies. There remain few options for treatment, in spite of the increasing prevalence of viral-hepatitis-caused liver disease. Furthermore, chronic viral hepatitis is a leading worldwide cause of both liver-related morbidity and mortality, even though effective treatments are available that could reduce or prevent most patients' complications. In 2016, the World Health Organization released its plan to eliminate viral hepatitis as a public health threat by the year 2030, along with a discussion of current gaps and prospects for both regional and global eradication of viral hepatitis. Today, treatment is sufficiently able to prevent the disease from reaching advanced phases. However, future therapies must be extremely safe, and should ideally limit the period of treatment necessary. A better understanding of pathogenesis will prove beneficial in the development of potential treatment strategies targeting infections by viral hepatitis. This review aims to summarize the current state of knowledge on each type of viral hepatitis, together with major innovations.
Collapse
Affiliation(s)
- Daisuke Usuda
- Department of Emergency and Critical Care Medicine, Juntendo University Nerima Hospital, Nerima 177-8521, Tokyo, Japan
| | - Yuki Kaneoka
- Department of Emergency and Critical Care Medicine, Juntendo University Nerima Hospital, Nerima 177-8521, Tokyo, Japan
| | - Rikuo Ono
- Department of Emergency and Critical Care Medicine, Juntendo University Nerima Hospital, Nerima 177-8521, Tokyo, Japan
| | - Masashi Kato
- Department of Emergency and Critical Care Medicine, Juntendo University Nerima Hospital, Nerima 177-8521, Tokyo, Japan
| | - Yuto Sugawara
- Department of Emergency and Critical Care Medicine, Juntendo University Nerima Hospital, Nerima 177-8521, Tokyo, Japan
| | - Runa Shimizu
- Department of Emergency and Critical Care Medicine, Juntendo University Nerima Hospital, Nerima 177-8521, Tokyo, Japan
| | - Tomotari Inami
- Department of Emergency and Critical Care Medicine, Juntendo University Nerima Hospital, Nerima 177-8521, Tokyo, Japan
| | - Eri Nakajima
- Department of Emergency and Critical Care Medicine, Juntendo University Nerima Hospital, Nerima 177-8521, Tokyo, Japan
| | - Shiho Tsuge
- Department of Emergency and Critical Care Medicine, Juntendo University Nerima Hospital, Nerima 177-8521, Tokyo, Japan
| | - Riki Sakurai
- Department of Emergency and Critical Care Medicine, Juntendo University Nerima Hospital, Nerima 177-8521, Tokyo, Japan
| | - Kenji Kawai
- Department of Emergency and Critical Care Medicine, Juntendo University Nerima Hospital, Nerima 177-8521, Tokyo, Japan
| | - Shun Matsubara
- Department of Emergency and Critical Care Medicine, Juntendo University Nerima Hospital, Nerima 177-8521, Tokyo, Japan
| | - Risa Tanaka
- Department of Emergency and Critical Care Medicine, Juntendo University Nerima Hospital, Nerima 177-8521, Tokyo, Japan
| | - Makoto Suzuki
- Department of Emergency and Critical Care Medicine, Juntendo University Nerima Hospital, Nerima 177-8521, Tokyo, Japan
| | - Shintaro Shimozawa
- Department of Emergency and Critical Care Medicine, Juntendo University Nerima Hospital, Nerima 177-8521, Tokyo, Japan
| | - Yuta Hotchi
- Department of Emergency and Critical Care Medicine, Juntendo University Nerima Hospital, Nerima 177-8521, Tokyo, Japan
| | - Ippei Osugi
- Department of Emergency and Critical Care Medicine, Juntendo University Nerima Hospital, Nerima 177-8521, Tokyo, Japan
| | - Risa Katou
- Department of Emergency and Critical Care Medicine, Juntendo University Nerima Hospital, Nerima 177-8521, Tokyo, Japan
| | - Sakurako Ito
- Department of Emergency and Critical Care Medicine, Juntendo University Nerima Hospital, Nerima 177-8521, Tokyo, Japan
| | - Kentaro Mishima
- Department of Emergency and Critical Care Medicine, Juntendo University Nerima Hospital, Nerima 177-8521, Tokyo, Japan
| | - Akihiko Kondo
- Department of Emergency and Critical Care Medicine, Juntendo University Nerima Hospital, Nerima 177-8521, Tokyo, Japan
| | - Keiko Mizuno
- Department of Emergency and Critical Care Medicine, Juntendo University Nerima Hospital, Nerima 177-8521, Tokyo, Japan
| | - Hiroki Takami
- Department of Emergency and Critical Care Medicine, Juntendo University Nerima Hospital, Nerima 177-8521, Tokyo, Japan
| | - Takayuki Komatsu
- Department of Emergency and Critical Care Medicine, Juntendo University Nerima Hospital, Nerima 177-8521, Tokyo, Japan
- Department of Sports Medicine, Faculty of Medicine, Juntendo University, Bunkyo 113-8421, Tokyo, Japan
| | - Tomohisa Nomura
- Department of Emergency and Critical Care Medicine, Juntendo University Nerima Hospital, Nerima 177-8521, Tokyo, Japan
| | - Manabu Sugita
- Department of Emergency and Critical Care Medicine, Juntendo University Nerima Hospital, Nerima 177-8521, Tokyo, Japan
| |
Collapse
|
7
|
Gandhi AP, AL-Mohaithef M, Aparnavi P, Bansal M, Satapathy P, Kukreti N, Rustagi S, Khatib MN, Gaidhane S, Zahiruddin QS. Global outbreaks of foodborne hepatitis A: Systematic review and meta-analysis. Heliyon 2024; 10:e28810. [PMID: 38596114 PMCID: PMC11002584 DOI: 10.1016/j.heliyon.2024.e28810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 03/24/2024] [Accepted: 03/25/2024] [Indexed: 04/11/2024] Open
Abstract
Hepatitis A Virus (HAV) is a significant threat in terms of food safety. A systematic literature search with the research question "What are the clinical outcomes of foodborne Hepatitis A virus infections?" was conducted. The pooled estimate of the outcomes-mortality, hospitalization, and severity rates, along with a 95% confidence interval (CI), was estimated. After screening, 33 studies were included for the data extraction and meta-analysis. The pooled prevalence of hospitalization among the HAV-positive patients was estimated to be 32% (95% CI 21-44), with high heterogeneity (I2 = 98%, p < 0.01). Australia had the highest hospitalization rate, with 82%, followed by Europe (42%). The hospitalization rate showed a significantly increasing trend (beta = 0.015, p=0.002) over the period. The pooled prevalence of mortality among the HAV-positive patients was estimated to be <1%, with low heterogeneity (I2 = 5%, p = 0.39). A wide range of food products were linked with the HAV outbreaks.
Collapse
Affiliation(s)
- Aravind P. Gandhi
- Department of Community Medicine, All India Institute of Medical Sciences, Nagpur, India
| | - Mohammed AL-Mohaithef
- Department of Public Health, College of Health Sciences, Saudi Electronic University, Riyadh, Saudi Arabia
| | - P. Aparnavi
- Department of Community Medicine, KMCH Institute of Health Sciences & Research, Coimbatore, India
| | - Monika Bansal
- MarksMan Healthcare, Research Services, Hyderabad, India
| | - Prakasini Satapathy
- Center for Global Health Research, Saveetha Medical College and Hospital, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India
- Medical Laboratories Techniques Department, AL-Mustaqbal University, 51001, Hillah, Babil, Iraq
| | - Neelima Kukreti
- School of Pharmacy, Graphic Era Hill University, Dehradun, 248001, India
| | - Sarvesh Rustagi
- School of Applied and Life Sciences, Uttaranchal University, Dehradun, Uttarakhand, India
| | - Mahalaqua Nazli Khatib
- Division of Evidence Synthesis, Global Consortium of Public Health and Research, Datta Meghe Institute of Higher Education, Wardha, India
| | - Shilpa Gaidhane
- One Health Centre (COHERD), Jawaharlal Nehru Medical College, Datta Meghe Institute of Higher Education, Wardha, India
| | - Quazi Syed Zahiruddin
- South Asia Infant Feeding Research Network (SAIFRN), Division of Evidence Synthesis, Global Consortium of Public Health and Research, Datta Meghe Institute of Higher Education, Wardha, India
| |
Collapse
|
8
|
Olaimat AN, Taybeh AO, Al-Nabulsi A, Al-Holy M, Hatmal MM, Alzyoud J, Aolymat I, Abughoush MH, Shahbaz H, Alzyoud A, Osaili T, Ayyash M, Coombs KM, Holley R. Common and Potential Emerging Foodborne Viruses: A Comprehensive Review. Life (Basel) 2024; 14:190. [PMID: 38398699 PMCID: PMC10890126 DOI: 10.3390/life14020190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 01/17/2024] [Accepted: 01/26/2024] [Indexed: 02/25/2024] Open
Abstract
Human viruses and viruses from animals can cause illnesses in humans after the consumption of contaminated food or water. Contamination may occur during preparation by infected food handlers, during food production because of unsuitably controlled working conditions, or following the consumption of animal-based foods contaminated by a zoonotic virus. This review discussed the recent information available on the general and clinical characteristics of viruses, viral foodborne outbreaks and control strategies to prevent the viral contamination of food products and water. Viruses are responsible for the greatest number of illnesses from outbreaks caused by food, and risk assessment experts regard them as a high food safety priority. This concern is well founded, since a significant increase in viral foodborne outbreaks has occurred over the past 20 years. Norovirus, hepatitis A and E viruses, rotavirus, astrovirus, adenovirus, and sapovirus are the major common viruses associated with water or foodborne illness outbreaks. It is also suspected that many human viruses including Aichi virus, Nipah virus, tick-borne encephalitis virus, H5N1 avian influenza viruses, and coronaviruses (SARS-CoV-1, SARS-CoV-2 and MERS-CoV) also have the potential to be transmitted via food products. It is evident that the adoption of strict hygienic food processing measures from farm to table is required to prevent viruses from contaminating our food.
Collapse
Affiliation(s)
- Amin N. Olaimat
- Department of Clinical Nutrition and Dietetics, Faculty of Applied Medical Sciences, The Hashemite University, P.O. Box 330127, Zarqa 13133, Jordan; (M.A.-H.); (M.H.A.)
| | - Asma’ O. Taybeh
- Department of Nutrition and Food Technology, Faculty of Agriculture, Jordan University of Science and Technology, P.O. Box 3030, Irbid 22110, Jordan; (A.O.T.); (A.A.-N.); (T.O.)
| | - Anas Al-Nabulsi
- Department of Nutrition and Food Technology, Faculty of Agriculture, Jordan University of Science and Technology, P.O. Box 3030, Irbid 22110, Jordan; (A.O.T.); (A.A.-N.); (T.O.)
| | - Murad Al-Holy
- Department of Clinical Nutrition and Dietetics, Faculty of Applied Medical Sciences, The Hashemite University, P.O. Box 330127, Zarqa 13133, Jordan; (M.A.-H.); (M.H.A.)
| | - Ma’mon M. Hatmal
- Department of Medical Laboratory Sciences, Faculty of Applied Medical Sciences, The Hashemite University, P.O. Box 330127, Zarqa 13133, Jordan;
| | - Jihad Alzyoud
- Department of Anatomy, Physiology and Biochemistry, Faculty of Medicine, The Hashemite University, P.O. Box 330127, Zarqa 13133, Jordan; (J.A.); (I.A.)
| | - Iman Aolymat
- Department of Anatomy, Physiology and Biochemistry, Faculty of Medicine, The Hashemite University, P.O. Box 330127, Zarqa 13133, Jordan; (J.A.); (I.A.)
| | - Mahmoud H. Abughoush
- Department of Clinical Nutrition and Dietetics, Faculty of Applied Medical Sciences, The Hashemite University, P.O. Box 330127, Zarqa 13133, Jordan; (M.A.-H.); (M.H.A.)
- Science of Nutrition and Dietetics Program, College of Pharmacy, Al Ain University, Abu Dhabi P.O. Box 64141, United Arab Emirates
| | - Hafiz Shahbaz
- Department of Food Science and Human Nutrition, University of Veterinary and Animal Sciences, Lahore 54000, Pakistan;
| | - Anas Alzyoud
- Faculty of Medicine, The Hashemite University, P.O. Box 330127, Zarqa 13133, Jordan;
| | - Tareq Osaili
- Department of Nutrition and Food Technology, Faculty of Agriculture, Jordan University of Science and Technology, P.O. Box 3030, Irbid 22110, Jordan; (A.O.T.); (A.A.-N.); (T.O.)
- Department of Clinical Nutrition and Dietetics, College of Health Sciences, University of Sharjah, Sharjah P.O. Box 27272, United Arab Emirates
| | - Mutamed Ayyash
- Department of Food Science, College of Agriculture and Veterinary Medicine, United Arab Emirates University, P.O. Box 15551, Al Ain 53000, United Arab Emirates;
| | - Kevin M. Coombs
- Department of Medical Microbiology and Infectious Diseases, Max Rady College of Medicine, University of Manitoba, Winnipeg, MB R3E 0J9, Canada;
| | - Richard Holley
- Department of Food and Human Nutritional Sciences, University of Manitoba, Winnipeg, MB R3T 2N2, Canada;
| |
Collapse
|
9
|
Son JW, Han S, Hyun SW, Song MS, Ha SD. Synergistic effects of sequential treatment using disinfectant and e-beam for inactivation of hepatitis a virus on fresh vegetables. Food Res Int 2023; 173:113254. [PMID: 37803566 DOI: 10.1016/j.foodres.2023.113254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 07/05/2023] [Accepted: 07/06/2023] [Indexed: 10/08/2023]
Abstract
Hepatitis A virus (HAV) has adversely affected public health worldwide, causing an economic burden on many countries. Fresh vegetables are reported as a source of HAV infections during production, harvesting, and distribution, which cause the emergence of foodborne illnesses. Therefore, in this study, the synergistic effects of chemical (sodium hypochlorite [NaOCl] and chlorine dioxide [ClO2]) and physical (electron-beam [e-beam] irradiation) sequential treatment for HAV inactivation on fresh vegetables were investigated, and the physicochemical quality changes of vegetables were evaluated after each treatment. On bell pepper and cucumber sequentially treated with NaOCl (50-500 ppm) and e-beam (1-5 kGy), the HAV titer was reduced by 0.19-4.69 and 0.28-4.78 log10 TCID50/mL, respectively. Sequential treatment with ClO2 (10-250 ppm) and e-beam (1-5 kGy) reduced the HAV titer on bell pepper and cucumber by 0.41-4.78 and 0.26-4.80 log10 TCID50/mL, respectively. The sequential treatments steadily decreased the HAV titers on each food by a significant difference (p < 0.05) compared to the controls. The treatment combinations of 500 ppm NaOCl and 3 kGy (e-beam) on bell pepper and 150 ppm NaOCl and 1 kGy (e-beam) on cucumber provided maximum synergistic effects. It was also found that sequential treatment with 50 ppm ClO2 and 5 kGy (e-beam) on bell pepper and 10 ppm ClO2 and 5 kGy (e-beam) on cucumber most efficiently inactivated HAV. Additionally, bell pepper and cucumber showed no significant quality changes (p < 0.05) after the treatment. Therefore, the sequential treatment with NaOCl or ClO2 and e-beam is expected to effectively control HAV on fresh vegetables without changing the food quality compared to either treatment alone.
Collapse
Affiliation(s)
- Jeong Won Son
- Advanced Food Safety Research Group, BrainKorea21 Plus, Chung-Ang University, Anseong, Gyeonggi-do 17546, Republic of Korea
| | - Sangha Han
- Advanced Food Safety Research Group, BrainKorea21 Plus, Chung-Ang University, Anseong, Gyeonggi-do 17546, Republic of Korea
| | - Seok-Woo Hyun
- Advanced Food Safety Research Group, BrainKorea21 Plus, Chung-Ang University, Anseong, Gyeonggi-do 17546, Republic of Korea
| | - Min Su Song
- Advanced Food Safety Research Group, BrainKorea21 Plus, Chung-Ang University, Anseong, Gyeonggi-do 17546, Republic of Korea
| | - Sang-Do Ha
- Advanced Food Safety Research Group, BrainKorea21 Plus, Chung-Ang University, Anseong, Gyeonggi-do 17546, Republic of Korea.
| |
Collapse
|
10
|
Fallucca A, Restivo V, Sgariglia MC, Roveta M, Trucchi C. Hepatitis a Vaccine as Opportunity of Primary Prevention for Food Handlers: A Narrative Review. Vaccines (Basel) 2023; 11:1271. [PMID: 37515087 PMCID: PMC10383099 DOI: 10.3390/vaccines11071271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 07/17/2023] [Accepted: 07/18/2023] [Indexed: 07/30/2023] Open
Abstract
The hepatitis A virus (HAV) is still a leading cause of viral hepatitis worldwide. After a long incubation period, the clinical manifestations range from asymptomatic infection to acute liver failure. The severity of the disease increases with age and pre-existing liver disease. The transmission is mainly via person-to-person contact or ingestion of contaminated food or water. Food contamination can occur at any step of the food chain, especially when infected people handle not-heated or otherwise-treated food. HAV is endemic in low-income countries because of poor sanitary and sociodemographic conditions. The populations of developed countries are highly susceptible, and large outbreaks occur when HAV is introduced from endemic countries due to globalization, travel, and movement of foodstuffs. HAV prevention includes hygiene practices, immunoglobulins, and vaccination. Safe and effective inactivated and live attenuated vaccines are available and provide long-term protection. The vaccine targets are children and subjects at increased risk of HAV exposure or serious clinical outcomes. This review discusses the critical role of food handlers in the spread of HAV and the opportunity for food industry employers to consider food handler immunization a tool to manage both food safety in compliance with HACCP principles and food operators' biologic risk.
Collapse
Affiliation(s)
- Alessandra Fallucca
- Department of Health Promotion, Maternal and Infant Care, Internal Medicine and Medical Specialties (PROMISE) “G. D’Alessandro”, University of Palermo, 90127 Palermo, Italy
| | - Vincenzo Restivo
- Department of Health Promotion, Maternal and Infant Care, Internal Medicine and Medical Specialties (PROMISE) “G. D’Alessandro”, University of Palermo, 90127 Palermo, Italy
| | | | - Marco Roveta
- Food Hygiene and Nutrition Service, Department of Prevention, Local Health Unit 3, 16142 Genoa, Italy
| | - Cecilia Trucchi
- Food Hygiene and Nutrition Service, Department of Prevention, Local Health Unit 3, 16142 Genoa, Italy
| |
Collapse
|
11
|
Uwishema O, Abbass M, Rai A, Arab S, El Saleh R, Uweis L, Wellington J, Musabirema F, Adanur I, Onyeaka H. Hepatitis A virus outbreak in Lebanon: Is it a matter of concern? Ann Med Surg (Lond) 2022; 82:104585. [PMID: 36148083 PMCID: PMC9486044 DOI: 10.1016/j.amsu.2022.104585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Accepted: 09/04/2022] [Indexed: 02/07/2023] Open
Abstract
Lebanon has been grappling with hepatitis A virus (HAV) outbreaks for 3 decades, to an extent that it has been now termed an endemic zone for HAV. However, the rise in cases above the annual average concerns a potential outbreak in the North, and the Bekaa governorates of Lebanon must be highlighted. Although the Lebanese health authorities have ordered a probe into the possible causes of the outbreak, it has been speculated that the immigration of Syrian refugees has overburdened public health services. Reduced seroprevalence of HAV immunoglobulin G has also led to an epidemiological shift from child to adult populations. The current economic crisis affecting Lebanese society is another significant problem that could have contributed to the rise in incidents. This article examines Lebanon's current HAV outbreak and epidemiological status, offering suggestions for the future. In the event of an outbreak, the infrastructure for water sanitation and sewage is known to allow HAV to spread via the faecal-oral pathway. Maintaining personal hygiene, early detection, and vaccination have all been recommended as significant regional and individual control measures.
Collapse
Affiliation(s)
- Olivier Uwishema
- Oli Health Magazine Organization, Research and Education, Kigali, Rwanda
- Clinton Global Initiative University, New York, USA
- Faculty of Medicine, Karadeniz Technical University, Trabzon, Turkey
| | - Mortada Abbass
- Oli Health Magazine Organization, Research and Education, Kigali, Rwanda
- Faculty of Medicine, Beirut Arab University, Beirut, Lebanon
| | - Anushree Rai
- Oli Health Magazine Organization, Research and Education, Kigali, Rwanda
- Chhattisgarh Institute of Medical Sciences, Bilaspur, Chhattisgarh, India
| | - Sara Arab
- Oli Health Magazine Organization, Research and Education, Kigali, Rwanda
- Faculty of Medicine, Beirut Arab University, Beirut, Lebanon
| | - Rayyan El Saleh
- Oli Health Magazine Organization, Research and Education, Kigali, Rwanda
- Faculty of Medicine, Beirut Arab University, Beirut, Lebanon
| | - Lama Uweis
- Oli Health Magazine Organization, Research and Education, Kigali, Rwanda
- Faculty of Medicine, Beirut Arab University, Beirut, Lebanon
| | - Jack Wellington
- Oli Health Magazine Organization, Research and Education, Kigali, Rwanda
- Faculty of Medicine, Cardiff University School of Medicine, Cardiff University, Cardiff, UK
| | - Felix Musabirema
- Clinical Research Physician at Rwanda Zambia Health Research Group (RZHRG), Kigali, Rwanda
| | - Irem Adanur
- Oli Health Magazine Organization, Research and Education, Kigali, Rwanda
- Faculty of Medicine, Karadeniz Technical University, Trabzon, Turkey
| | - Helen Onyeaka
- School of Chemical Engineering, University of Birmingham, Edgbaston, Birmingham, B152TT, UK
| |
Collapse
|
12
|
Srisa A, Promhuad K, San H, Laorenza Y, Wongphan P, Wadaugsorn K, Sodsai J, Kaewpetch T, Tansin K, Harnkarnsujarit N. Antibacterial, Antifungal and Antiviral Polymeric Food Packaging in Post-COVID-19 Era. Polymers (Basel) 2022; 14:4042. [PMID: 36235988 PMCID: PMC9573034 DOI: 10.3390/polym14194042] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 09/21/2022] [Accepted: 09/23/2022] [Indexed: 12/22/2022] Open
Abstract
Consumers are now more concerned about food safety and hygiene following the COVID-19 pandemic. Antimicrobial packaging has attracted increased interest by reducing contamination of food surfaces to deliver quality and safe food while maintaining shelf life. Active packaging materials to reduce contamination or inhibit viral activity in packaged foods and on packaging surfaces are mostly prepared using solvent casting, but very few materials demonstrate antiviral activity on foods of animal origin, which are important in the human diet. Incorporation of silver nanoparticles, essential oils and natural plant extracts as antimicrobial agents in/on polymeric matrices provides improved antifungal, antibacterial and antiviral properties. This paper reviews recent developments in antifungal, antibacterial and antiviral packaging incorporating natural or synthetic compounds using preparation methods including extrusion, solvent casting and surface modification treatment for surface coating and their applications in several foods (i.e., bakery products, fruits and vegetables, meat and meat products, fish and seafood and milk and dairy foods). Findings showed that antimicrobial material as films, coated films, coating and pouches exhibited efficient antimicrobial activity in vitro but lower activity in real food systems. Antimicrobial activity depends on (i) polar or non-polar food components, (ii) interactions between antimicrobial compounds and the polymer materials and (iii) interactions between environmental conditions and active films (i.e., relative humidity, oxygen and water vapor permeability and temperature) that impact the migration or diffusion of active compounds in foods. Knowledge gained from the plethora of existing studies on antimicrobial polymers can be effectively utilized to develop multifunctional antimicrobial materials that can protect food products and packaging surfaces from SARS-CoV-2 contamination.
Collapse
Affiliation(s)
- Atcharawan Srisa
- Department of Packaging and Materials Technology, Faculty of Agro-Industry, Kasetsart University, 50 Ngam Wong Wan Rd., Latyao, Chatuchak, Bangkok 10900, Thailand
| | - Khwanchat Promhuad
- Department of Packaging and Materials Technology, Faculty of Agro-Industry, Kasetsart University, 50 Ngam Wong Wan Rd., Latyao, Chatuchak, Bangkok 10900, Thailand
| | - Horman San
- Department of Packaging and Materials Technology, Faculty of Agro-Industry, Kasetsart University, 50 Ngam Wong Wan Rd., Latyao, Chatuchak, Bangkok 10900, Thailand
| | - Yeyen Laorenza
- Department of Packaging and Materials Technology, Faculty of Agro-Industry, Kasetsart University, 50 Ngam Wong Wan Rd., Latyao, Chatuchak, Bangkok 10900, Thailand
| | - Phanwipa Wongphan
- Department of Packaging and Materials Technology, Faculty of Agro-Industry, Kasetsart University, 50 Ngam Wong Wan Rd., Latyao, Chatuchak, Bangkok 10900, Thailand
| | - Kiattichai Wadaugsorn
- Department of Packaging and Materials Technology, Faculty of Agro-Industry, Kasetsart University, 50 Ngam Wong Wan Rd., Latyao, Chatuchak, Bangkok 10900, Thailand
| | - Janenutch Sodsai
- Department of Packaging and Materials Technology, Faculty of Agro-Industry, Kasetsart University, 50 Ngam Wong Wan Rd., Latyao, Chatuchak, Bangkok 10900, Thailand
| | - Thitiporn Kaewpetch
- Department of Packaging and Materials Technology, Faculty of Agro-Industry, Kasetsart University, 50 Ngam Wong Wan Rd., Latyao, Chatuchak, Bangkok 10900, Thailand
| | - Kittichai Tansin
- Department of Packaging and Materials Technology, Faculty of Agro-Industry, Kasetsart University, 50 Ngam Wong Wan Rd., Latyao, Chatuchak, Bangkok 10900, Thailand
| | - Nathdanai Harnkarnsujarit
- Department of Packaging and Materials Technology, Faculty of Agro-Industry, Kasetsart University, 50 Ngam Wong Wan Rd., Latyao, Chatuchak, Bangkok 10900, Thailand
- Center for Advanced Studies for Agriculture and Food, Kasetsart University, 50 Ngam Wong Wan Rd., Latyao, Chatuchak, Bangkok 10900, Thailand
| |
Collapse
|
13
|
McClure M, Nsubuga J, Montgomery MP, Jenkins E, Crosby A, Schoelen D, Basler C, Ramachandran S, Lin Y, Xia GL, Khudaykov Y, Suktankar V, Wagley A, Thomas V, Woods J, Hintz L, Oliveira J, Sandoval AL, Frederick J, Hendrickson B, Gieraltowski L, Viazis S. A 2019 Outbreak Investigation of Hepatitis A Virus Infections in the United States Linked to Imported Fresh Blackberries. FOOD AND ENVIRONMENTAL VIROLOGY 2022; 14:236-245. [PMID: 35871245 PMCID: PMC9631456 DOI: 10.1007/s12560-022-09527-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Accepted: 06/23/2022] [Indexed: 06/15/2023]
Abstract
Globally, hepatitis A virus (HAV) is one of the most common agents of acute viral hepatitis and causes approximately 1.4 million cases and 90,000 deaths annually despite the existence of an effective vaccine. In 2019, federal, state, and local partners investigated a multi-state outbreak of HAV infections linked to fresh blackberries sourced from multiple suppliers in Michoacán, Mexico. A total of 20 individuals with outbreak-related HAV infection were reported in seven states, including 11 hospitalizations, and no deaths. The Food and Drug Administration (FDA), the Centers for Disease Control and Prevention (CDC), and Nebraska State and Douglas County Health Departments conducted a traceback investigation for fresh blackberries reportedly purchased by 16 ill persons. These individuals reported purchasing fresh blackberries from 11 points of service from September 16 through 29, 2019 and their clinical isolates assessed through next-generation sequencing and phylogenetic analysis were genetically similar. The traceback investigation did not reveal convergence on a common grower or packing house within Mexico, but all of the blackberries were harvested from growers in Michoacán, Mexico. FDA did not detect the pathogen after analyzing fresh blackberry samples from four distributors, one consumer, and from nine importers at the port of entry as a result of increased screening. Challenges included gaps in traceability practices and the inability to recover the pathogen from sample testing, which prohibited investigators from determining the source of the implicated blackberries. This multi-state outbreak illustrated the importance of food safety practices for fresh produce that may contribute to foodborne illness outbreaks.
Collapse
Affiliation(s)
- Monica McClure
- Center for Food Safety and Applied Nutrition, Food and Drug Administration, College Park, MD, USA.
| | - Johnson Nsubuga
- Center for Food Safety and Applied Nutrition, Food and Drug Administration, College Park, MD, USA
| | | | - Erin Jenkins
- Center for Food Safety and Applied Nutrition, Food and Drug Administration, College Park, MD, USA
| | - Alvin Crosby
- Center for Food Safety and Applied Nutrition, Food and Drug Administration, College Park, MD, USA
| | - Daniela Schoelen
- Center for Food Safety and Applied Nutrition, Food and Drug Administration, College Park, MD, USA
| | - Colin Basler
- Centers for Disease Control and Prevention, Atlanta, GA, USA
| | | | - Yulin Lin
- Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Guo-Liang Xia
- Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Yury Khudaykov
- Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Vilasini Suktankar
- Center for Food Safety and Applied Nutrition, Food and Drug Administration, College Park, MD, USA
| | - Angela Wagley
- Office of Regulatory Affairs, Food and Drug Administration, Southeast Food and Feed Laboratory, Atlanta, GA, USA
| | - Vincent Thomas
- Office of Regulatory Affairs, Food and Drug Administration, Southeast Food and Feed Laboratory, Atlanta, GA, USA
| | - Jacquelina Woods
- Center for Food Safety and Applied Nutrition, Food and Drug Administration, Dauphin Island, AL, USA
| | - Leslie Hintz
- Center for Food Safety and Applied Nutrition, Food and Drug Administration, College Park, MD, USA
| | - Janete Oliveira
- Office of the Commissioner, Food and Drug Administration, Silver Spring, MD, USA
| | - Ana Lilia Sandoval
- Office of the Commissioner, Food and Drug Administration, Silver Spring, MD, USA
| | | | - Blake Hendrickson
- Nebraska Department of Health and Human Services, Lincoln, NE, 68509, USA
| | | | - Stelios Viazis
- Center for Food Safety and Applied Nutrition, Food and Drug Administration, College Park, MD, USA
| |
Collapse
|
14
|
Larocque É, Lévesque V, Lambert D. Crystal digital RT-PCR for the detection and quantification of norovirus and hepatitis A virus RNA in frozen raspberries. Int J Food Microbiol 2022; 380:109884. [PMID: 36055105 DOI: 10.1016/j.ijfoodmicro.2022.109884] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 08/17/2022] [Accepted: 08/18/2022] [Indexed: 10/31/2022]
Abstract
Berries are important vehicles for norovirus (NoV) and hepatitis A virus (HAV) foodborne outbreaks. Sensitive and quantitative detection of these viruses in food samples currently relies on RT-qPCR, but remains challenging due to their low concentration and the presence of RT-qPCR inhibitors. Moreover, quantification requires a standard curve. In this study, crystal digital RT-PCR (RT-cdPCR) assays were adapted from RT-qPCR sets of primers and probe currently used in our diagnostic laboratory for the detection and precise quantification of norovirus genogroups I and II (NoV GI, GII) and hepatitis A virus (HAV) RNA in frozen raspberry samples. We selected assay conditions based on optimal separation of positive and negative droplets, and peak resolution. Using virus-specific in vitro RNA transcripts diluted in raspberry RNA extracts, we showed that all three RT-cdPCR assays were sensitive, and we estimated the 95 % detection limit at 9 copies per RT-cdPCR reaction for NoV GI, 3 for NoV GII, and 14 for HAV. Serial dilutions of the RNA transcripts showed excellent linearity over a range of four orders of magnitude. We achieved precise quantification (CV ≤ 35 %) of the RNA transcripts between runs down to 15-145 copies per reaction for NoV GI, <20 for NoV GII, and < 15 for HAV. The three RT-cdPCR assays also proved to be tolerant to inhibitors from frozen raspberries, although not as tolerant as the RT-qPCR assays in the case of NoV GI and HAV. We further evaluated the assays with inoculated frozen raspberry samples and compared their performance to that of the RT-qPCR assays. As compared to the corresponding RT-qPCR assays, the NoV GI and HAV RT-cdPCR assays showed a decreased qualitative sensitivity, while the NoV GII RT-cdPCR assay had an increased sensitivity. As for quantification, the NoV GI and NoV GII RT-cdPCR assays produced similar estimates of RNA copy number than their respective RT-qPCR assays, whereas for HAV, the RT-cdPCR assay produced lower estimates than the RT-qPCR assay. However, all the RT-cdPCR assays provided more precise quantitative measurements at low levels of contamination than the RT-qPCR assays. In conclusion, the potential of the RT-cdPCR assays in this study to detect viral RNA from frozen raspberries varied according to assay, but these RT-cdPCR assays should be considered for precise absolute quantification in difficult matrices such as frozen raspberries.
Collapse
Affiliation(s)
- Émilie Larocque
- Food Virology National Reference Centre, St. Hyacinthe Laboratory, Canadian Food Inspection Agency (CFIA), 3400 Casavant Boulevard West, St. Hyacinthe, QC J2S 8E3, Canada.
| | - Valérie Lévesque
- Food Virology National Reference Centre, St. Hyacinthe Laboratory, Canadian Food Inspection Agency (CFIA), 3400 Casavant Boulevard West, St. Hyacinthe, QC J2S 8E3, Canada
| | - Dominic Lambert
- Food Virology National Reference Centre, St. Hyacinthe Laboratory, Canadian Food Inspection Agency (CFIA), 3400 Casavant Boulevard West, St. Hyacinthe, QC J2S 8E3, Canada
| |
Collapse
|
15
|
Impact of COVID-19 to customers switching intention in the food segments: The push, pull and mooring effects in consumer migration towards organic food. Food Qual Prefer 2022. [DOI: 10.1016/j.foodqual.2022.104561] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
|
16
|
Hepatitis A and E in the Mediterranean: A systematic review. Travel Med Infect Dis 2022; 47:102283. [PMID: 35227863 DOI: 10.1016/j.tmaid.2022.102283] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 01/05/2022] [Accepted: 02/23/2022] [Indexed: 11/23/2022]
|
17
|
Ilyas S, Hutahaean S, Cahaya Situmorang P. Analysis of Cytochrome c Expression on Liver Histology of Hepatitis Rats after Administration of Tin and Olive Leaf Ethanol Extract. Pak J Biol Sci 2022; 25:835-842. [PMID: 36098086 DOI: 10.3923/pjbs.2022.835.842] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
<b>Background and Objective:</b> Hepatitis is a liver illness caused by a viral infection, autoimmune conditions or the use of certain medicines. In molecular hepatitis treatment, cytochrome c can be used as a potential predictor of the severity of liver impairment. In Asia, particularly in Indonesia, antioxidant-rich plants include <i>Ficus</i> <i>carica</i> and <i>Olea europaea.</i> This study aimed to see what impact cytochrome c in hepatitis after these two botanicals were administered. <b>Materials and Methods:</b> Rats were grouped as follows: Normal rats with no additions or herbs (G<sub>0</sub>), the physiological solution group (G<sub>1</sub>), the intravenous administration of the quercetin-copper (II) (G<sub>2</sub>), Olive leaf extract or OLE (300 mg kg<sup></sup><sup>1</sup> b.wt.) (G<sub>3</sub>) and Tin leaf extract or TLE (100 mg kg<sup></sup><sup>1</sup> b.wt.) (G<sub>4</sub>). For an animal model of hepatitis, the rats were given thioacetamide 280 mg kg<sup></sup><sup>1</sup> b.wt., 8 days later. The rats were dissected and blood and liver samples were collected for enzyme and immunohistochemistry examination. <b>Results:</b> Malondialdehyde (MDA), superoxide dismutase (SOD) and cytochrome c expression levels differed significantly (p<0.05) across treatment groups in rat's models of hepatitis. Hepatocytes first displayed symptoms of lipid degradation, inflammatory and necrosis cells. When administered quercetin and the two herbs, necrosis and inflammatory cells were reduced, demonstrating that OLE and TLE can enhance liver histology and lower cytochrome c expression in a mouse model of hepatitis. <b>Conclusion:</b> Administration of Olive leaf extract (OLE) and Tin leaf extract (TLE) can improve liver histology in hepatitis model rats while decreasing cytochrome c expression, which is a mechanism for hepatocyte cell death.
Collapse
|
18
|
Trmčić A, Demmings E, Kniel K, Wiedmann M, Alcaine S. Food Safety and Employee Health Implications of COVID-19: A Review. J Food Prot 2021; 84:1973-1989. [PMID: 34265068 PMCID: PMC9906301 DOI: 10.4315/jfp-21-201] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Accepted: 07/14/2021] [Indexed: 11/11/2022]
Abstract
The COVID-19 pandemic has greatly impacted the U.S. food supply and consumer behavior. Food production and processing are being disrupted as illnesses, proactive quarantines, and government-mandated movement restrictions cause labor shortages. In this environment, the food industry has been required to adopt new, additional practices to minimize the risk of COVID-19 cases and outbreaks among its workforce. Successfully overcoming these challenges requires a comprehensive approach that addresses COVID-19 transmission both within and outside the facility. Possible interventions include strategies (i) to vaccinate employees, (ii) to assure that employees practice social distancing, (iii) to assure that employees wear face coverings, (iv) to screen employees for COVID-19, (v) to assure that employees practice frequent hand washing and avoid touching their faces, (vi) to clean frequently touched surfaces, and (vii) to assure proper ventilation. Compliance with these control strategies must be verified, and an overall COVID-19 control culture must be established to implement an effective program. Despite some public misperceptions about the health risk of severe acute respiratory syndrome coronavirus 2 on foods or food packaging, both the virus biology and epidemiological data clearly support a negligible risk of COVID-19 transmission through food and food packing. However, COVID-19 pandemic-related supply chain and workforce disruptions and the shift in resources to protect food industry employees from COVID-19 may increase the actual food safety risks. The goal of this review was to describe the COVID-19 mitigation practices adopted by the food industry and the potential impact of these practices and COVID-19-related disruptions on the industry's food safety mission. A review of these impacts is necessary to ensure that the food industry is prepared to maintain a safe and nutritious food supply in the face of future global disruptions.
Collapse
Affiliation(s)
- Aljoša Trmčić
- Department of Food Science, Cornell University, Ithaca, New York 14850
| | | | - Kalmia Kniel
- Department of Animal and Food Sciences, University of Delaware, Newark, Delaware 19716, USA
| | - Martin Wiedmann
- Department of Food Science, Cornell University, Ithaca, New York 14850
| | - Sam Alcaine
- Department of Food Science, Cornell University, Ithaca, New York 14850
| |
Collapse
|
19
|
Martini S, Suryadi Rahman F. Determinants of hepatitis A infection among students: A case study of an outbreak in Jember, Indonesia. J Public Health Res 2021; 11. [PMID: 34595900 PMCID: PMC8859719 DOI: 10.4081/jphr.2021.2309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Accepted: 08/24/2021] [Indexed: 11/22/2022] Open
Abstract
BACKGROUND Hepatitis A often occurs in school among students in the form of an outbreak. The transmission was through fecal-oral (Common Source) provided that the epidemic curve is close to propagated. The aim of the current study was to analyze the determinants of Hepatitis A Infection among students. Design and methods: This study was a case-control study which was conducted at SMAN Plus with a sample size of 80 students chosen by using simple random sampling. The data obtained were then analyzed using logistic regression with 95% confidence level (α = 0.05), while the strength of the relationship between variables was identified using Odds Ratio (OR). RESULTS Most of the students were at the age of 17 to 19 years old (65%) and male (57.5%). The average age in the case group was 17.1 years old, while in the control group was 16.75 years old. The habit of consuming raw foods (p = 0.001) as well as eating and drink at the same time during an activity (p = 0.000) had a significant influence on the outbreak of Hepatitis A in the curve epidemic of common source. CONCLUSIONS The outbreak is confirmed as a transmission occurs through fecal-oral which the common source epidemic curve. Risk factors that have been proven to be related to Hepatitis A include consuming raw food, eating shared meals during an activity, and drinking with shared drinking utensils.
Collapse
Affiliation(s)
- Santi Martini
- Division of Epidemiology, Faculty of Public Health, Universitas Airlangga, Surabaya.
| | - Firman Suryadi Rahman
- Doctoral Program of Public Health, Faculty of Public Health Universitas Airlangga, Surabaya.
| |
Collapse
|
20
|
Lewin BJ, Rodriguez J, Yang SJ, Tartof SY. Predictors of hepatitis A immunity in adults in California in order to better utilize hepatitis A vaccine. Vaccine 2021; 39:5484-5489. [PMID: 34454784 DOI: 10.1016/j.vaccine.2021.08.056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Revised: 08/12/2021] [Accepted: 08/13/2021] [Indexed: 11/30/2022]
Abstract
BACKGROUND Hepatitis A vaccine recommendations now include homelessness, illegal drug use, and HIV, as well as traditional risk factors and travel to areas endemic for hepatitis A. We examined a large diverse population for predictors of Hepatitis A immunity in order to better utilize Hepatitis A vaccine. METHODS We performed a cross-sectional descriptive study of members of a large integrated health plan with a test for Hepatitis A Immunoglobulin G (IgG) between January 1st, 2007, and December 31st, 2017. Exclusion criteria included age <18 years, <6 months of continuous enrollment, and Hepatitis A vaccine prior to Hepatitis A test. Variables of interest were age, gender, primary language spoken, ethnicity/race, neighborhood household income, and history of travel or history of jaundice. Multivariable logistic regression was performed to evaluate the association of risk factors on Hepatitis A immunity. RESULTS Of the 318,170 persons ≥ 18 years tested for Hepatitis A immunity, 155, 842 persons had a reactive Hepatitis A IgG test (49%). The lowest prevalence was for Whites at 28.1% followed by Blacks at 35.8%. Hispanics and Asian/Pacific Islanders had prevalence rates of 63% and 68.2% respectively. In adjusted analyses, Asian/Pacific Islanders, Hispanics and Blacks were 5.17, 3.44 and 1.42 times more likely to have Hepatitis A immunity than Whites. Those that spoke Spanish or language other than English or Spanish as their primary preferred language were 6.11 and 3.27 time more likely to have immunity than English speakers. Known travel history conferred a 2.16 likelihood of Hepatitis A immunity. CONCLUSIONS Persons of Hispanic and Asian/Pacific Islander background as well as persons with a preferred spoken language other than English have a high prevalence of Hepatitis A immunity. Testing for Hepatitis A immunity prior to vaccination should be considered for these groups.
Collapse
Affiliation(s)
- Bruno J Lewin
- Kaiser Permanente Southern California, Department of Family Medicine, Kaiser Permanente Bernard J. Tyson School of Medicine, Department of Clinical Science, United States.
| | - Janelle Rodriguez
- Kaiser Permanente Southern California, Department of Family Medicine, United States
| | - Su-Jau Yang
- Kaiser Permanente Southern California, Department of Research & Evaluation, United States
| | - Sara Y Tartof
- Kaiser Permanente Southern California, Department of Research & Evaluation, Kaiser Permanente Bernard J. Tyson School of Medicine, Department of Health Systems Science, United States
| |
Collapse
|
21
|
Cuevas-Ferrando E, Allende A, Pérez-Cataluña A, Truchado P, Hernández N, Gil MI, Sánchez G. Occurrence and Accumulation of Human Enteric Viruses and Phages in Process Water from the Fresh Produce Industry. Foods 2021; 10:foods10081853. [PMID: 34441630 PMCID: PMC8391481 DOI: 10.3390/foods10081853] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 08/09/2021] [Accepted: 08/09/2021] [Indexed: 11/24/2022] Open
Abstract
The virological quality of process water (PW) used by the produce industry has received limited attention. As a first step to overcoming technical limitations in monitoring viruses in PW, the analytical performance of ultrafiltration was assessed to concentrate viral particles from 20 L of spiked PW. The selected method used for sample concentration of PW was carefully validated, thus enabling the accurate quantification and estimation of viral titers of human enteric viruses and phages. PW from the produce industry was collected periodically from the washing tanks of commercial facilities. The analysis of coliphages was performed by plaque assay, while the occurrence of enteric viruses and crAssphage was determined by molecular techniques. Significant differences in the physicochemical composition of PW, mostly due to the different nature of fresh produce types and differences in the sanitizer used in commercial operation, were observed. Accumulation of crAssphage and coliphages was observed in PW, but correlation with human enteric viruses was not possible due to the low prevalence of these pathogens in the PW analyzed. The obtained results showed that depending on the type of product washed, the product/water ratio and the residual concentrations of the sanitizers, the prevalence and concentration of bacteriophages changed significantly.
Collapse
Affiliation(s)
- Enric Cuevas-Ferrando
- Department of Preservation and Food Safety Technologies, Institute of Agrochemistry and Food Technology, IATA-CSIC, Av. Agustín Escardino 7, 46980 Valencia, Spain; (E.C.-F.); (A.P.-C.)
| | - Ana Allende
- Research Group on Microbiology and Quality of Fruits and Vegetables, Department of Food Science and Technology, CEBAS-CSIC, Campus Universitario de Espinardo, 30100 Murcia, Spain; (A.A.); (P.T.); (N.H.); (M.I.G.)
| | - Alba Pérez-Cataluña
- Department of Preservation and Food Safety Technologies, Institute of Agrochemistry and Food Technology, IATA-CSIC, Av. Agustín Escardino 7, 46980 Valencia, Spain; (E.C.-F.); (A.P.-C.)
| | - Pilar Truchado
- Research Group on Microbiology and Quality of Fruits and Vegetables, Department of Food Science and Technology, CEBAS-CSIC, Campus Universitario de Espinardo, 30100 Murcia, Spain; (A.A.); (P.T.); (N.H.); (M.I.G.)
| | - Natalia Hernández
- Research Group on Microbiology and Quality of Fruits and Vegetables, Department of Food Science and Technology, CEBAS-CSIC, Campus Universitario de Espinardo, 30100 Murcia, Spain; (A.A.); (P.T.); (N.H.); (M.I.G.)
| | - Maria Isabel Gil
- Research Group on Microbiology and Quality of Fruits and Vegetables, Department of Food Science and Technology, CEBAS-CSIC, Campus Universitario de Espinardo, 30100 Murcia, Spain; (A.A.); (P.T.); (N.H.); (M.I.G.)
| | - Gloria Sánchez
- Department of Preservation and Food Safety Technologies, Institute of Agrochemistry and Food Technology, IATA-CSIC, Av. Agustín Escardino 7, 46980 Valencia, Spain; (E.C.-F.); (A.P.-C.)
- Correspondence:
| |
Collapse
|
22
|
Shenoy B, Andani A, Kolhapure S, Agrawal A, Mazumdar J. Endemicity change of hepatitis A infection necessitates vaccination in food handlers: An Indian perspective. Hum Vaccin Immunother 2021; 18:1868820. [PMID: 33595412 PMCID: PMC8920195 DOI: 10.1080/21645515.2020.1868820] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
In the last two decades, outbreaks due to the foodborne hepatitis A virus (HAV) have been frequently reported in India, with adolescents and adults primarily affected. In India, most food handlers are adolescents and young adults who might be exposed to unsatisfactory environmental conditions and poor water quality. This increases the risk of HAV infection and consequently compounds the risk of HAV transmission from food handlers to susceptible populations. Given the shift in hepatitis A endemicity from high to intermediate levels in India, implementing the vaccination of food handlers has become important as it can also contribute to the elimination of hepatitis A in India. This narrative review makes a case for hepatitis A immunization of food handlers in India considering the growing food industry, evolving food culture, and the substantial burden caused by hepatitis A outbreaks.
What is the context?
Hepatitis A disease is a common form of viral hepatitis and is transmitted through contaminated food and water or through close contact with an infected person. The virus with stands high temperature and can survive on surfaces for long periods of time. In India, the burden of hepatitis A has shifted from children to adolescents and adults who are more culnerable to infection. They present a high risk of complications, often requiring hopitalization. The prevention of the disease has often bee neglected, inadequate safety measures for the preparation of food (via food handlers) is a known risk factor for the transmission of hepatitis A.
What is new?
Our review highlights the relationship between food handling and hepatitis A infection among adolescents and adults in Inida. The lack of knowledge of food safety regulations and hygiene measures among food handlers and the organizations that guide them may contribute to the spread of hepatitis A.
What is the impact?
Sanitation efforts, awareness and educational programs for food are needed to help reduce the transmission of hepatitis A virus and disease, yet these measures alone may not be sufficient. Vaccination among high-risk populations such as food handlers can prevent hepatitis A infection and its complications as well as transmission.
Collapse
Affiliation(s)
- Bhaskar Shenoy
- Department of Paediatrics, Division of Pediatric Infectious Diseases, Manipal Hospital, Bangalore, India
| | | | | | | | | |
Collapse
|
23
|
Trudel-Ferland M, Jubinville E, Jean J. Persistence of Hepatitis A Virus RNA in Water, on Non-porous Surfaces, and on Blueberries. Front Microbiol 2021; 12:618352. [PMID: 33613487 PMCID: PMC7890088 DOI: 10.3389/fmicb.2021.618352] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Accepted: 01/15/2021] [Indexed: 11/17/2022] Open
Abstract
Enteric viruses, such as human norovirus and hepatitis A virus (HAV), are the leading cause of transmissible foodborne illness. Fresh produce such as berries are often contaminated by infected food handlers, soiled water, or food contact surfaces. The gold-standard method for virus detection throughout the food chain is RT-qPCR, which detects portions of genomes including non-infectious viral particles and naked viral RNA. The aim of this study was to evaluate the persistence of heat-inactivated HAV in water, phosphate-buffered saline, on stainless steel and polyvinyl chloride, and on blueberries at −80°C, −20°C, 4°C, and room temperature. In water and phosphate-buffered saline, viral RNA could be detected for up to 90 days regardless of temperature when the initial load was 2.5 × 104 or 2.5 × 106 genome copies. It was detected on polyvinyl chloride and blueberries under most conditions. On stainless steel, the large initial load persisted for 90 days, while the medium-level load was detected only up to 16 days at room temperature or 60 days at 4°C. The detection of non-infectious viral RNA can confound investigations of gastroenteritis outbreaks. Pretreatments that discriminate between naked RNA, non-infectious virions and infectious virions need to be included in the RT-qPCR method in order to reduce the risk of positive results associated with non-infectious viral particles.
Collapse
Affiliation(s)
- Mathilde Trudel-Ferland
- Institute of Nutrition and Functional Foods (INAF), Université Laval, Quebec City, QC, Canada
| | - Eric Jubinville
- Institute of Nutrition and Functional Foods (INAF), Université Laval, Quebec City, QC, Canada
| | - Julie Jean
- Institute of Nutrition and Functional Foods (INAF), Université Laval, Quebec City, QC, Canada
| |
Collapse
|