1
|
Sgambellone S, Khanfar MA, Marri S, Villano S, Nardini P, Frank A, Reiner-Link D, Stark H, Lucarini L. Histamine H 3 receptor antagonist/nitric oxide donors as novel promising therapeutic hybrid-tools for glaucoma and retinal neuroprotection. Biomed Pharmacother 2024; 180:117454. [PMID: 39321511 DOI: 10.1016/j.biopha.2024.117454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2024] [Revised: 09/11/2024] [Accepted: 09/19/2024] [Indexed: 09/27/2024] Open
Abstract
Glaucoma is a degenerative optic neuropathy in which the degeneration of optic nerve and blindness occur. The main cause is a malfunction of ciliary processes (protrusions of the ciliary bodies) resulting in increased intraocular pressure (IOP). Ocular hypertension (OHT) causes ischemic events leading to retinal ganglion cell (RGC) depletion and blindness. Histaminergic and nitrergic systems are involved in the regulation of IOP. Therefore, we developed novel hybrid compounds that target histamine H3 receptor (H3R) with nitric oxide (NO) releasing features (ST-1989 and ST-2130). After H3R binding was proven in vitro, we investigated their effects in two OHT models in New Zealand White rabbits. Compound ST-1989 showed the highest NO elevation, together with antioxidative and anti-inflammatory features partly superior to the co-administered H3R antagonist (ciproxifan) and NO donor (molsidomine). This hybrid compound demonstrated IOP reduction in both OHT models induced by intravitreal injection of hypertonic saline and carbomer into the anterior chamber of the eye, respectively. Ocular perfusion and photoreceptor neuroprotection were evaluated in a model of ischemia/reperfusion (I/R) of the ophthalmic artery induced by repeated sub-tenon injections of endothelin-1 (ET-1), twice a week for six weeks. Compound ST-1989 counteracts retinal degeneration reducing ophthalmic artery resistance index and increasing photoreceptor responses, thus rescuing RGCs. Our results indicate that compound ST-1989 is a promising molecule with long-lasting hypotensive effects and good effectiveness in reducing inflammation, oxidative stress, and RGCs apoptosis. In conclusion, these hybrid compounds could be a novel strategy to combat glaucomatous blindness and RGC depletion for ocular diseases involving retinal damage.
Collapse
Affiliation(s)
- Silvia Sgambellone
- Department of Neurosciences, Psychology, Drug Research and Child Health (NEUROFARBA), University of Florence, Florence, Italy
| | - Mohammad A Khanfar
- Institute of Pharmaceutical and Medicinal Chemistry, Heinrich Heine University Düsseldorf, Düsseldorf, Germany; College of Pharmacy, Alfaisal University, Al Takhassusi Rd, Riyadh 11533, Saudi Arabia
| | - Silvia Marri
- Department of Neurosciences, Psychology, Drug Research and Child Health (NEUROFARBA), University of Florence, Florence, Italy
| | - Serafina Villano
- Department of Neurosciences, Psychology, Drug Research and Child Health (NEUROFARBA), University of Florence, Florence, Italy
| | - Patrizia Nardini
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | - Annika Frank
- Institute of Pharmaceutical and Medicinal Chemistry, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - David Reiner-Link
- Institute of Pharmaceutical and Medicinal Chemistry, Heinrich Heine University Düsseldorf, Düsseldorf, Germany; Department of Drug Design & Pharmacology, University of Copenhagen, Copenhagen, Denmark
| | - Holger Stark
- Institute of Pharmaceutical and Medicinal Chemistry, Heinrich Heine University Düsseldorf, Düsseldorf, Germany.
| | - Laura Lucarini
- Department of Neurosciences, Psychology, Drug Research and Child Health (NEUROFARBA), University of Florence, Florence, Italy.
| |
Collapse
|
2
|
Gruenwald A, Neururer M, Eidenhammer S, Nerlich A, Popper H. The cGAS-STING pathway drives inflammation in Usual Interstitial Pneumonia, phagocytosis could prevent inflammation but is inhibited by the don't eat me signal CD47. Pathol Res Pract 2024; 260:155432. [PMID: 38944022 DOI: 10.1016/j.prp.2024.155432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 06/21/2024] [Accepted: 06/26/2024] [Indexed: 07/01/2024]
Abstract
BACKGROUND Usual Interstitial Pneumonia (UIP) a fibrosing pneumonia is associated with idiopathic pulmonary fibrosis, chronic autoimmune disease (AID), or hypersensitivity pneumonia. Oxygen radicals, due to tobacco smoke, can damage DNA and might upregulate PARP1. Cytosolic DNA from dying pneumocytes activate cytosolic GMP-AMP-synthase-stimulator of interferon genes (cGAS-STING) pathway and TREX1. Prolonged inflammation induces senescence, which might be inhibited by phagocytosis, eliminating nuclear debris. We aimed to evaluate activation of cGAS-STING-TREX1 pathway in UIP, and if phagocytosis and anti-phagocytosis might counteract inflammation. METHODS 44 cases of UIP with IPF or AID were studied for the expression of cGAS, pSTING, TREX1 and PARP1. LAMP1 and Rab7 expression served as phagocytosis markers. CD47 protecting phagocytosis and p16 to identify senescent cells were also studied. RESULTS Epithelial cells in remodeled areas and macrophages expressed cGAS-pSTING, TREX1; epithelia but not macrophages stained for PARP1. Myofibroblasts, endothelia, and bronchial/bronchiolar epithelial cells were all negative except early myofibroblastic foci expressing cGAS. Type II pneumocytes expressed cGAS and PARP1, but less pSTING. TREX1 although expressed was not activated. Macrophages and many regenerating epithelial cells expressed LAMP1 and Rab7. CD47, the 'don't-eat-me-signal', was expressed by macrophages and epithelial cells including senescence cells within the remodeled areas. CONCLUSIONS The cGAS-STING pathway is activated in macrophages and epithelial cells within remodeled areas. LikelyTREX1 because not activated cannot sufficiently degrade DNA fragments. PARP1 activation points to smoking-induced oxygen radical release, prolonging inflammation and leading to fibrosis. By expressing CD47 epithelial cells within remodeled areas protect themselves from being eliminated by phagocytosis.
Collapse
Affiliation(s)
- Alissa Gruenwald
- Diagnostic and Research Institute of Pathology, Medical University of Graz, Austria
| | - Margarete Neururer
- Diagnostic and Research Institute of Pathology, Medical University of Graz, Austria
| | - Sylvia Eidenhammer
- Diagnostic and Research Institute of Pathology, Medical University of Graz, Austria
| | - Andreas Nerlich
- Department of Pathology, Clinics München-Bogenhausen, Englschalkinger Straße 77, München 81925, Germany
| | - Helmut Popper
- Diagnostic and Research Institute of Pathology, Medical University of Graz, Austria.
| |
Collapse
|
3
|
Bao P, Wang X, Zhang X, Yu Y, Ma Y, Zhang H, Wang Y, Liu X, Gong P, Zhang N, Lee SO, Li X, Li J. Clonorchis sinensis aggravated liver fibrosis by activating PARP-1 signaling to induce parthanatos via DNA damage. Vet Parasitol 2024; 330:110217. [PMID: 38861911 DOI: 10.1016/j.vetpar.2024.110217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 05/27/2024] [Accepted: 05/30/2024] [Indexed: 06/13/2024]
Abstract
Clonorchis sinensis is an important food-borne zoonotic parasite that is highly associated with liver fibrosis and cholangiocarcinoma. Further understanding of the pathogenesis of C. sinensis, especially liver fibrosis, could help us develop novel strategies for controlling clonorchiasis. Poly (ADP-ribose) polymerase-1 (PARP-1) can induce cellular parthanatos which is reported to be involved in liver fibrosis. Currently, whether C. sinensis could activate PARP-1 signaling to induce parthanatos or whether parthanatos play a role in C. sinensis-induced liver fibrosis is not clear. In the present study, the expression of PARP-1 and parthanatos indicators were detected in C. sinensis-infected mouse liver and in human intrahepatic biliary epithelial cells (HiBEpiCs) incubated with excretory/secretory products (ESPs) of C. sinensis. To explore the role of PARP-1 in C. sinensis infection, PARP-1 inhibitor NMS-P118 was used to block PARP-1 expression in vivo and vitro. The mortality rate, body weight, worm load, liver and bile duct lesions as well as PARP-1 and parthanatos indicators in C57BL/6 mice infected with C. sinensis, or in HiBEpiCs incubated with C. sinensis ESPs and NMS-P118 were analyzed and compared to the group without NMS-P118. The results showed that C. sinensis infection induced the activation of PARP-1 signaling as well as the translocation of AIF and MIF into the nucleus in mouse liver. ESPs of C. sinensis could induce PARP-1 up-regulation, ATP depletion and DNA damage in HiBEpiCs, indicating that C. sinensis could induce parthanatos. Inhibiting PARP-1 with NMS-P118 significantly reduced liver fibrosis and the number of larvae, increased the survival rate and body weight gain of the mice infected with C. sinensis. In addition, NMS-P118 decreased the expression of PARP-1 and alleviated ATP depletion as well as DNA damage in HiBEpiCs incubated with ESPs of C. sinensis. Our data indicated that C. sinensis and its ESPs could activate PARP-1 signaling to induce cellular parthanatos. NMS-P118 treatment alleviated liver fibrosis and promoted survival of the mice by inhibiting PARP-1, which suggested that PARP-1 could be used as a potential therapeutic target against clonorchiasis.
Collapse
Affiliation(s)
- Penglin Bao
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun 130062, China.
| | - Xiaocen Wang
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun 130062, China.
| | - Xu Zhang
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun 130062, China.
| | - Yanhui Yu
- Second Affiliated Hospital, Jilin University, Changchun, China.
| | - Yeting Ma
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun 130062, China.
| | - Haoyang Zhang
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun 130062, China.
| | - Yuru Wang
- College of Public Health, Jilin Medical University, Jilin 132013, China.
| | - Xiaolei Liu
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun 130062, China.
| | - Pengtao Gong
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun 130062, China.
| | - Nan Zhang
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun 130062, China.
| | - Soon-Ok Lee
- Department of Medical Research Center for Bioreaction to Reactive Oxygen Species, Biomedical Science Institute, School of Medicine, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea.
| | - Xin Li
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun 130062, China.
| | - Jianhua Li
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun 130062, China.
| |
Collapse
|
4
|
An B, Fang Y, Wang L, Nie W, Wang M, Nie H, Wu C, Wang R. Inhibition of TGF-β1/Smad3 signaling by compound 5aa: A potential treatment for idiopathic pulmonary fibrosis. Bioorg Chem 2024; 147:107374. [PMID: 38636433 DOI: 10.1016/j.bioorg.2024.107374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 04/04/2024] [Accepted: 04/13/2024] [Indexed: 04/20/2024]
Abstract
The incidence of idiopathic pulmonary fibrosis (IPF) has been steadily increasing each year, posing significant challenges in its treatment. In this study, we conducted the design and synthesis of 23 new inhibitors that specifically target the TGF-β1/Smad3 pathway. Initially, we employed a cell model of TGF-β-induced pulmonary fibrosis, using cell survival rate and HYP expression as indicators to identify the potent ingredient 5aa, which demonstrated significant anti-pulmonary fibrosis activity. Subsequently, we induced mice with bleomycin (BLM) to establish an experimental animal model of pulmonary fibrosis, and evaluated the pharmacodynamics of 5aa in vivo against pulmonary fibrosis. The alterations in HYP and collagen levels in BLM-induced pulmonary fibrosis mice were analyzed using ELISA and immunohistochemistry techniques. The results indicated that compound 5aa effectively suppressed the fibrotic response induced by TGF-β1, inhibited the expression of the fibrotic marker α-SMA, and hindered the EMT process in NIH3T3 cells. Additionally, oral administration of 5aa demonstrated significant therapeutic effects in a mouse model of IPF, comparable to the established drug Nintedanib. Moreover, compound 5aa exhibited higher bioavailability in vivo compared to Nintedanib. These collective outcomes suggest that 5aa holds promise as a potential inhibitor of TGF-β1/Smad3 signaling for the treatment of IPF.
Collapse
Affiliation(s)
- Baijiao An
- The Key Laboratory of biomarker high throughput screening and target translation of breast and gastrointestinal tumor, Affiliated Zhongshan Hospital of Dalian University, No.6 Jiefang Street, Zhongshan District, Dalian, Liaoning 116001, China; School of Biomedical Engineering, Dalian University of Technology, Dalian 116024, China; School of Pharmacy, Binzhou Medical University, Yantai, Shandong, 264003, China
| | - Yanhua Fang
- The Key Laboratory of biomarker high throughput screening and target translation of breast and gastrointestinal tumor, Affiliated Zhongshan Hospital of Dalian University, No.6 Jiefang Street, Zhongshan District, Dalian, Liaoning 116001, China
| | - Lihan Wang
- School of Pharmacy, Binzhou Medical University, Yantai, Shandong, 264003, China
| | - Wenyan Nie
- School of Pharmacy, Binzhou Medical University, Yantai, Shandong, 264003, China
| | - Mengxuan Wang
- School of Pharmacy, Binzhou Medical University, Yantai, Shandong, 264003, China
| | - Haoran Nie
- School of Pharmacy, Binzhou Medical University, Yantai, Shandong, 264003, China
| | - Chengjun Wu
- School of Biomedical Engineering, Dalian University of Technology, Dalian 116024, China.
| | - Ruoyu Wang
- The Key Laboratory of biomarker high throughput screening and target translation of breast and gastrointestinal tumor, Affiliated Zhongshan Hospital of Dalian University, No.6 Jiefang Street, Zhongshan District, Dalian, Liaoning 116001, China.
| |
Collapse
|
5
|
Wang S, Yu J, Liu Y, Yu J, Ma Y, Zhou L, Liu X, Liu L, Li W, Niu X. Bletilla striata polysaccharide attenuated the progression of pulmonary fibrosis by inhibiting TGF-β1/Smad signaling pathway. JOURNAL OF ETHNOPHARMACOLOGY 2024; 323:117680. [PMID: 38171465 DOI: 10.1016/j.jep.2023.117680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2023] [Revised: 12/09/2023] [Accepted: 12/26/2023] [Indexed: 01/05/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Bletilla striata, a traditional medicinal plant, has been utilized as a folk medicine for many years because of its superior biological activity in China. However, Bletilla striata polysaccharide (BSP) has received less attention, and its specific mechanism for ameliorating pulmonary fibrosis is completely unclear. AIMS OF THE STUDY In this study, we aim to assess BSP on the treatment of PF and explore potential mechanisms. MATERIALS AND METHODS BSP was successfully extracted and purified from Bletilla striata. The mechanisms were assessed in bleomycin-induced pulmonary fibrosis model and lung fibroblasts activated by transforming growth factor-β1 (TGF-β1). Histological analysis, immunofluorescence, Western blot and flow cytometry were used to explore the alterations after BSP intervention. RESULTS The results in vivo showed an anti-PF effect of BSP treatment, which reduced pathogenic damages. Furthermore, TGF-β1-induced abnormal migration and upregulated expression of collagen I (COL1A1), vimentin and α-smooth muscle actin (α-SMA) were suppressed by BSP in L929 cells. Moreover, the abnormal proliferation was retarded by inhibiting the cell cycle of G1 to S phase. Immunofluorescence assay showed that BSP activated autophagy and played an antifibrotic role by inhibiting the expression of p62 and phospho-mammalian target of rapamycin (p-mTOR). Last but not least, the suppression of TGF-β1/Smad signaling pathway was critical for BSP to perform therapeutic effects in vitro and in vivo. CONCLUSION The possible mechanisms were involved in improving ECM deposition, regulating cell migration and proliferation, and promoting cellular autophagy. Briefly, all of the above revealed that BSP might be a novel therapy for treating pulmonary fibrosis.
Collapse
Affiliation(s)
- Siqi Wang
- School of Pharmacy, Xi'an Jiaotong University, Xi'an, PR China
| | - Jiabao Yu
- School of Pharmacy, Xi'an Jiaotong University, Xi'an, PR China
| | - Yang Liu
- School of Pharmacy, Xi'an Jiaotong University, Xi'an, PR China
| | - Jinjin Yu
- School of Pharmacy, Xi'an Jiaotong University, Xi'an, PR China
| | - Yajing Ma
- School of Pharmacy, Xi'an Jiaotong University, Xi'an, PR China
| | - Lili Zhou
- School of Pharmacy, Xi'an Jiaotong University, Xi'an, PR China
| | - Xinyao Liu
- School of Pharmacy, Xi'an Jiaotong University, Xi'an, PR China
| | - Lingyi Liu
- School of Pharmacy, Xi'an Jiaotong University, Xi'an, PR China
| | - Weifeng Li
- School of Pharmacy, Xi'an Jiaotong University, Xi'an, PR China.
| | - Xiaofeng Niu
- School of Pharmacy, Xi'an Jiaotong University, Xi'an, PR China.
| |
Collapse
|
6
|
Ghafouri‐Fard S, Askari A, Shoorei H, Seify M, Koohestanidehaghi Y, Hussen BM, Taheri M, Samsami M. Antioxidant therapy against TGF-β/SMAD pathway involved in organ fibrosis. J Cell Mol Med 2024; 28:e18052. [PMID: 38041559 PMCID: PMC10826439 DOI: 10.1111/jcmm.18052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 11/01/2023] [Accepted: 11/14/2023] [Indexed: 12/03/2023] Open
Abstract
Fibrosis refers to excessive build-up of scar tissue and extracellular matrix components in different organs. In recent years, it has been revealed that different cytokines and chemokines, especially Transforming growth factor beta (TGF-β) is involved in the pathogenesis of fibrosis. It has been shown that TGF-β is upregulated in fibrotic tissues, and contributes to fibrosis by mediating pathways that are related to matrix preservation and fibroblasts differentiation. There is no doubt that antioxidants protect against different inflammatory conditions by reversing the effects of nitrogen, oxygen and sulfur-based reactive elements. Oxidative stress has a direct impact on chronic inflammation, and as results, prolonged inflammation ultimately results in fibrosis. Different types of antioxidants, in the forms of vitamins, natural compounds or synthetic ones, have been proven to be beneficial in the protection against fibrotic conditions both in vitro and in vivo. In this study, we reviewed the role of different compounds with antioxidant activity in induction or inhibition of TGF-β/SMAD signalling pathway, with regard to different fibrotic conditions such as gastro-intestinal fibrosis, cardiac fibrosis, pulmonary fibrosis, skin fibrosis, renal fibrosis and also some rare cases of fibrosis, both in animal models and cell lines.
Collapse
Affiliation(s)
- Soudeh Ghafouri‐Fard
- Department of Medical Genetics, School of MedicineShahid Beheshti University of Medical SciencesTehranIran
| | - Arian Askari
- Phytochemistry Research CenterShahid Beheshti University of Medical SciencesTehranIran
| | - Hamed Shoorei
- Cellular and Molecular Research CenterBirjand University of Medical SciencesBirjandIran
- Clinical Research Development Unit of Tabriz Valiasr HospitalTabriz University of Medical SciencesTabrizIran
| | - Mohammad Seify
- Research and Clinical Center for Infertility, Yazd Reproductive Sciences InstituteShahid Sadoughi University of Medical SciencesYazdIran
| | - Yeganeh Koohestanidehaghi
- Research and Clinical Center for Infertility, Yazd Reproductive Sciences InstituteShahid Sadoughi University of Medical SciencesYazdIran
| | - Bashdar Mahmud Hussen
- Department of Clinical Analysis, College of PharmacyHawler Medical UniversityErbilIraq
| | - Mohammad Taheri
- Institute of Human GeneticsJena University HospitalJenaGermany
- Urology and Nephrology Research CenterShahid Beheshti University of Medical SciencesTehranIran
| | - Majid Samsami
- Cancer Research Center, Loghman Hakim HospitalShahid Beheshti University of Medical SciencesTehranIran
| |
Collapse
|
7
|
Zeng HH, Ma M, Wang YL, Chen MH, Huang DB. Hyperoside attenuates carbon tetrachloride-induced hepatic fibrosis via the poly(ADP-ribose)polymerase-1-high mobility group protein 1 pathway. Eur J Pharmacol 2023; 960:176178. [PMID: 37923159 DOI: 10.1016/j.ejphar.2023.176178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2023] [Revised: 10/29/2023] [Accepted: 11/01/2023] [Indexed: 11/07/2023]
Abstract
Oxidative stress and inflammation have been implicated in hepatic fibrosis. Antioxidant and anti-inflammatory activities are among the pharmacological effects of hyperoside. This study aimed to evaluate the impact of hyperoside on hepatic fibrosis and elucidate the underlying processes that perpetuate this relationship. The findings indicated that hyperoside significantly protects mouse livers against damage, inflammation, and fibrosis. Specifically, attenuation of hepatic fibrosis is associated with lower expression of HMGB1 protein and reduced expression of Toll-like receptor 4, PARP-1, and nuclear factor-kB (NF-κB) p65 mRNA and protein. Furthermore, hyperoside inhibited the cytoplasmic translocation of HMGB1 and nuclear localization of NF-κB p65 in the hepatic tissues of mice. The results of this study indicate that hyperoside may impose a blocking or reversing effect on hepatic fibrosis; additionally, the corresponding hyperoside-dependent mechanism may be linked to PARP-1-HMGB1 pathway regulation.
Collapse
Affiliation(s)
- H H Zeng
- Health Science Center, Hubei Minzu University, Enshi, 445000, China.
| | - M Ma
- Health Science Center, Hubei Minzu University, Enshi, 445000, China.
| | - Y L Wang
- Health Science Center, Hubei Minzu University, Enshi, 445000, China.
| | - M H Chen
- Health Science Center, Hubei Minzu University, Enshi, 445000, China.
| | - D B Huang
- Health Science Center, Hubei Minzu University, Enshi, 445000, China.
| |
Collapse
|
8
|
Schuhwerk H, Brabletz T. Mutual regulation of TGFβ-induced oncogenic EMT, cell cycle progression and the DDR. Semin Cancer Biol 2023; 97:86-103. [PMID: 38029866 DOI: 10.1016/j.semcancer.2023.11.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 10/06/2023] [Accepted: 11/23/2023] [Indexed: 12/01/2023]
Abstract
TGFβ signaling and the DNA damage response (DDR) are two cellular toolboxes with a strong impact on cancer biology. While TGFβ as a pleiotropic cytokine affects essentially all hallmarks of cancer, the multifunctional DDR mostly orchestrates cell cycle progression, DNA repair, chromatin remodeling and cell death. One oncogenic effect of TGFβ is the partial activation of epithelial-to-mesenchymal transition (EMT), conferring invasiveness, cellular plasticity and resistance to various noxae. Several reports show that both individual networks as well as their interface affect chemo-/radiotherapies. However, the underlying mechanisms remain poorly resolved. EMT often correlates with TGFβ-induced slowing of proliferation, yet numerous studies demonstrate that particularly the co-activated EMT transcription factors counteract anti-proliferative signaling in a partially non-redundant manner. Collectively, evidence piled up over decades underscore a multifaceted, reciprocal inter-connection of TGFβ signaling / EMT with the DDR / cell cycle progression, which we will discuss here. Altogether, we conclude that full cell cycle arrest is barely compatible with the propagation of oncogenic EMT traits and further propose that 'EMT-linked DDR plasticity' is a crucial, yet intricate facet of malignancy, decisively affecting metastasis formation and therapy resistance.
Collapse
Affiliation(s)
- Harald Schuhwerk
- Department of Experimental Medicine 1, Nikolaus-Fiebiger Center for Molecular Medicine, Friedrich-Alexander University of Erlangen-Nürnberg, Erlangen, Germany.
| | - Thomas Brabletz
- Department of Experimental Medicine 1, Nikolaus-Fiebiger Center for Molecular Medicine, Friedrich-Alexander University of Erlangen-Nürnberg, Erlangen, Germany; Comprehensive Cancer Center Erlangen-EMN, Erlangen University Hospital, Friedrich-Alexander University Erlangen-Nürnberg, Erlangen, Germany.
| |
Collapse
|
9
|
Liu H, Lai W, Nie H, Shi Y, Zhu L, Yang L, Tian L, Li K, Bian L, Xi Z, Lin B. PM 2.5 triggers autophagic degradation of Caveolin-1 via endoplasmic reticulum stress (ERS) to enhance the TGF-β1/Smad3 axis promoting pulmonary fibrosis. ENVIRONMENT INTERNATIONAL 2023; 181:108290. [PMID: 37924604 DOI: 10.1016/j.envint.2023.108290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Revised: 10/19/2023] [Accepted: 10/24/2023] [Indexed: 11/06/2023]
Abstract
Air pollution is highly associated with respiratory diseases. However, the influence and mechanism of particulate matter with aerodynamic equal to or less than 2.5 μm (PM2.5) in lung homeostasis remain unclear. Herein, we demonstrated the induction of pulmonary fibrosis (PF) by PM2.5 exposure. The animal model showed that PM2.5 exposure could activate the oxidative stress and inflammation response, promoting epithelial-mesenchymal transition and accumulation of collagen, high expression of pro-fibrotic factors, and pathological characteristics of fibrosis. The proteomic analysis indicated that PM2.5 exposure decreased the expression of caveolin-1 (Cav-1), and many differential proteins were enriched in the TGF-β1/Smad, endoplasmic reticulum stress (ERS) and autophagy pathways. Combining in vivo and in vitro experiments, it was found that PM2.5 exposure could reduce Cav-1 protein levels and activate TGF-β1/Smad3 signaling pathways through ERS and autophagy pathways, thereby inducing cell apoptosis and promoting pulmonary fibrosis. However, inhibiting ERS could alleviate the occurrence of autophagy, and blocking the autophagy system could increase the level of Cav-1 protein and inhibit TGF- β 1/Smad3 signaling pathway to improve pulmonary fibrosis. Therefore, we demonstrated that the exposure of PM2.5 could enhance the ERS induced-autophagy-mediated Cav-1 degradation, thus activating the TGF-β1/Smad3 axis to promote pneumonocytes apoptosis and overproduction of extracellular matrix (ECM), finally aggravating PF. Moreover, our findings revealed that intermittent exposure to high doses of PM2.5 was more toxic than continuous exposure to low dose.
Collapse
Affiliation(s)
- Huanliang Liu
- Tianjin Institute of Environmental and Operational Medicine, Tianjin 300050, China; Tianjin Key Laboratory of Risk Assessment and Control Technology for Environment & Food Safety, Tianjin 300050, China
| | - Wenqing Lai
- Tianjin Institute of Environmental and Operational Medicine, Tianjin 300050, China; Tianjin Key Laboratory of Risk Assessment and Control Technology for Environment & Food Safety, Tianjin 300050, China
| | - Huipeng Nie
- Tianjin Institute of Environmental and Operational Medicine, Tianjin 300050, China; Tianjin Key Laboratory of Risk Assessment and Control Technology for Environment & Food Safety, Tianjin 300050, China
| | - Yue Shi
- Tianjin Institute of Environmental and Operational Medicine, Tianjin 300050, China; Tianjin Key Laboratory of Risk Assessment and Control Technology for Environment & Food Safety, Tianjin 300050, China
| | - Lina Zhu
- Tianjin Institute of Environmental and Operational Medicine, Tianjin 300050, China; Tianjin Key Laboratory of Risk Assessment and Control Technology for Environment & Food Safety, Tianjin 300050, China
| | - Linhui Yang
- Tianjin Institute of Environmental and Operational Medicine, Tianjin 300050, China; Tianjin Key Laboratory of Risk Assessment and Control Technology for Environment & Food Safety, Tianjin 300050, China
| | - Lei Tian
- Tianjin Institute of Environmental and Operational Medicine, Tianjin 300050, China; Tianjin Key Laboratory of Risk Assessment and Control Technology for Environment & Food Safety, Tianjin 300050, China
| | - Kang Li
- Tianjin Institute of Environmental and Operational Medicine, Tianjin 300050, China; Tianjin Key Laboratory of Risk Assessment and Control Technology for Environment & Food Safety, Tianjin 300050, China
| | - Liping Bian
- Tianjin Institute of Environmental and Operational Medicine, Tianjin 300050, China; Tianjin Key Laboratory of Risk Assessment and Control Technology for Environment & Food Safety, Tianjin 300050, China
| | - Zhuge Xi
- Tianjin Institute of Environmental and Operational Medicine, Tianjin 300050, China; Tianjin Key Laboratory of Risk Assessment and Control Technology for Environment & Food Safety, Tianjin 300050, China.
| | - Bencheng Lin
- Tianjin Institute of Environmental and Operational Medicine, Tianjin 300050, China; Tianjin Key Laboratory of Risk Assessment and Control Technology for Environment & Food Safety, Tianjin 300050, China.
| |
Collapse
|
10
|
Sgambellone S, Febo M, Durante M, Marri S, Villano S, Bereshchenko O, Migliorati G, Masini E, Riccardi C, Bruscoli S, Lucarini L. Role of histamine H 4 receptor in the anti-inflammatory pathway of glucocorticoid-induced leucin zipper (GILZ) in a model of lung fibrosis. Inflamm Res 2023; 72:2037-2052. [PMID: 37815550 PMCID: PMC10611623 DOI: 10.1007/s00011-023-01802-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 09/11/2023] [Accepted: 09/26/2023] [Indexed: 10/11/2023] Open
Abstract
INTRODUCTION This study investigates the interactions between histaminergic system and glucocorticoid-induced leucin zipper (GILZ) in the inflammatory process and glucocorticoid modulation in lung fibrosis. METHODS Wild-type (WT) and GILZ Knock-Out (KO) mice were treated with bleomycin (0.05 IU) or saline, delivered by intra-tracheal injection. After surgery, mice received a continuous infusion of JNJ7777120 (JNJ, 2 mg/kg b.wt.) or vehicle for 21 days. Lung function was studied by measuring airway resistance to air insufflation through the analysis of pressure at airway opening (PAO). Lung samples were collected to evaluate the expression of histamine H4R, Anx-A1, and p65-NF-kB, the activity of myeloperoxidase (MPO), and the production of pro-inflammatory cytokines. RESULTS Airway fibrosis and remodeling were assessed by measuring TGF-β production and α-SMA deposition. JNJ reduces PAO in WT but not in GILZ KO mice (from 22 ± 1 mm to 15 ± 0.5 and from 24 ± 1.5 to 19 ± 0.5 respectively), MPO activity (from 204 ± 3.13 pmol/mg to 73.88 ± 2.63 in WT and from 221 ± 4.46 pmol/mg to 107 ± 5.54 in GILZ KO), the inflammatory response, TGF-β production, and α-SMA deposition in comparison to WT and GILZ KO vehicle groups. CONCLUSION In conclusion, the role of H4R and GILZ in relation to glucocorticoids could pave the way for innovative therapies to counteract pulmonary fibrosis.
Collapse
Affiliation(s)
- Silvia Sgambellone
- Section of Pharmacology, Department of Neuroscience, Psychology, Drug Research and Child Health (NEUROFARBA), University of Florence, Viale Gaetano Pieraccini, 6, 50139, Florence, Italy
| | - Marta Febo
- Section of Pharmacology, Department of Medicine and Surgery, University of Perugia, Piazzale Severi, 1 06132 S. Andrea Delle Fratte, Perugia, Italy
| | - Mariaconcetta Durante
- Section of Pharmacology, Department of Neuroscience, Psychology, Drug Research and Child Health (NEUROFARBA), University of Florence, Viale Gaetano Pieraccini, 6, 50139, Florence, Italy
| | - Silvia Marri
- Section of Pharmacology, Department of Neuroscience, Psychology, Drug Research and Child Health (NEUROFARBA), University of Florence, Viale Gaetano Pieraccini, 6, 50139, Florence, Italy
| | - Serafina Villano
- Section of Pharmacology, Department of Neuroscience, Psychology, Drug Research and Child Health (NEUROFARBA), University of Florence, Viale Gaetano Pieraccini, 6, 50139, Florence, Italy
| | - Oxana Bereshchenko
- Department of Philosophy, Social Sciences and Education, University of Perugia, 06100, Perugia, Italy
| | - Graziella Migliorati
- Section of Pharmacology, Department of Medicine and Surgery, University of Perugia, Piazzale Severi, 1 06132 S. Andrea Delle Fratte, Perugia, Italy
| | - Emanuela Masini
- Section of Pharmacology, Department of Neuroscience, Psychology, Drug Research and Child Health (NEUROFARBA), University of Florence, Viale Gaetano Pieraccini, 6, 50139, Florence, Italy
| | - Carlo Riccardi
- Section of Pharmacology, Department of Medicine and Surgery, University of Perugia, Piazzale Severi, 1 06132 S. Andrea Delle Fratte, Perugia, Italy
| | - Stefano Bruscoli
- Section of Pharmacology, Department of Medicine and Surgery, University of Perugia, Piazzale Severi, 1 06132 S. Andrea Delle Fratte, Perugia, Italy
| | - Laura Lucarini
- Section of Pharmacology, Department of Neuroscience, Psychology, Drug Research and Child Health (NEUROFARBA), University of Florence, Viale Gaetano Pieraccini, 6, 50139, Florence, Italy.
| |
Collapse
|
11
|
Li WH, Wang F, Song GY, Yu QH, Du RP, Xu P. PARP-1: a critical regulator in radioprotection and radiotherapy-mechanisms, challenges, and therapeutic opportunities. Front Pharmacol 2023; 14:1198948. [PMID: 37351512 PMCID: PMC10283042 DOI: 10.3389/fphar.2023.1198948] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2023] [Accepted: 05/22/2023] [Indexed: 06/24/2023] Open
Abstract
Background: Since its discovery, poly (ADP-ribose) polymerase 1 (PARP-1) has been extensively studied due to its regulatory role in numerous biologically crucial pathways. PARP inhibitors have opened new therapeutic avenues for cancer patients and have gained approval as standalone treatments for certain types of cancer. With continued advancements in the research of PARP inhibitors, we can fully realize their potential as therapeutic targets for various diseases. Purpose: To assess the current understanding of PARP-1 mechanisms in radioprotection and radiotherapy based on the literature. Methods: We searched the PubMed database and summarized information on PARP inhibitors, the interaction of PARP-1 with DNA, and the relationships between PARP-1 and p53/ROS, NF-κB/DNA-PK, and caspase3/AIF, respectively. Results: The enzyme PARP-1 plays a crucial role in repairing DNA damage and modifying proteins. Cells exposed to radiation can experience DNA damage, such as single-, intra-, or inter-strand damage. This damage, associated with replication fork stagnation, triggers DNA repair mechanisms, including those involving PARP-1. The activity of PARP-1 increases 500-fold on DNA binding. Studies on PARP-1-knockdown mice have shown that the protein regulates the response to radiation. A lack of PARP-1 also increases the organism's sensitivity to radiation injury. PARP-1 has been found positively or negatively regulate the expression of specific genes through its modulation of key transcription factors and other molecules, including NF-κB, p53, Caspase 3, reactive oxygen species (ROS), and apoptosis-inducing factor (AIF). Conclusion: This review provides a comprehensive analysis of the physiological and pathological roles of PARP-1 and examines the impact of PARP-1 inhibitors under conditions of ionizing radiation exposure. The review also emphasizes the challenges and opportunities for developing PARP-1 inhibitors to improve the clinical outcomes of ionizing radiation damage.
Collapse
Affiliation(s)
- Wen-Hao Li
- School of Food and Biomedicine, Zaozhuang University, Zaozhuang, Shandong, China
| | - Fei Wang
- School of Food and Biomedicine, Zaozhuang University, Zaozhuang, Shandong, China
| | - Gui-Yuan Song
- School of Public Health, Weifang Medical University, Weifang, Shandong, China
| | - Qing-Hua Yu
- School of Public Health, Weifang Medical University, Weifang, Shandong, China
| | - Rui-Peng Du
- School of Food and Biomedicine, Zaozhuang University, Zaozhuang, Shandong, China
| | - Ping Xu
- School of Food and Biomedicine, Zaozhuang University, Zaozhuang, Shandong, China
- School of Public Health, Weifang Medical University, Weifang, Shandong, China
| |
Collapse
|
12
|
Huang H, Wei S, Wu X, Zhang M, Zhou B, Huang D, Dong W. Dihydrokaempferol attenuates CCl 4-induced hepatic fibrosis by inhibiting PARP-1 to affect multiple downstream pathways and cytokines. Toxicol Appl Pharmacol 2023; 464:116438. [PMID: 36841340 DOI: 10.1016/j.taap.2023.116438] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 02/16/2023] [Accepted: 02/20/2023] [Indexed: 02/27/2023]
Abstract
The pathophysiological mechanism of hepatic fibrosis (HF) is related to the excessive activation of the DNA repair enzyme poly ADP-ribose polymerase-1 (PARP-1). The drugs, targeting PARP-1, are scarce. Therefore, the lead compound, moderately inhibiting PARP-1, with anti-HF properties should be identified. This study screened dihydrokaempferol (DHK) from herbs based on preliminary studies to intervene in a CCl4-induced liver injury and HF model in mice. In vitro, the expression levels of PARP-1-regulated related proteins and phosphorylation were examined. The binding pattern of DHK and PARP-1 was analyzed using molecular docking and molecular dynamics platforms. The results showed that DHK could significantly attenuate CCl4-induced liver injury and HF in mice. Moreover, it could also attenuate the toxic effects of CCl4 on HepG2 and inhibit α-SMA and Collagen 1/3 synthesis of LX-2 cells in-vitro. Molecular docking revealed that DHK could competitively bind to the Glu-988 and His-862 residues of the upstream DNA repair enzyme PARP-1, moderately inhibiting its overactivation. This led to maintaining NAD+ levels and energy metabolism in hepatocytes and inhibiting the activation of PARP-1-regulated downstream signaling pathways (TGF-β1, etc.), related proteins (p-Smd2/3, etc.), and inflammatory mediators while acting indirectly. Thus, DHK could attenuate CCl4-induced liver injury and HF in mice in a different mechanism from those of the existing reported flavonoids. It was associated with inhibiting the expression of downstream pathways and related cytokines by competitively binding to PARP-1. This study might provide a basis and direction for the design and exploration of anti-HF lead compounds.
Collapse
Affiliation(s)
- Hancheng Huang
- Department of Gastroenterology, Renmin Hospital of Wuhan University, Wuhan, Hubei, China; Key Laboratory of Hubei Province for Digestive System Disease, Wuhan, Hubei, China
| | - Shuchun Wei
- Department of Gastroenterology, Renmin Hospital of Wuhan University, Wuhan, Hubei, China; Key Laboratory of Hubei Province for Digestive System Disease, Wuhan, Hubei, China
| | - Xiaohan Wu
- Department of Gastroenterology, Renmin Hospital of Wuhan University, Wuhan, Hubei, China; Key Laboratory of Hubei Province for Digestive System Disease, Wuhan, Hubei, China
| | - Mengke Zhang
- Department of Pharmacy, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Benhong Zhou
- Department of Pharmacy, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Debin Huang
- Department of Pharmacy, Hubei Minzu University, Enshi, Hubei, China
| | - Weiguo Dong
- Department of Gastroenterology, Renmin Hospital of Wuhan University, Wuhan, Hubei, China.
| |
Collapse
|
13
|
Zhu J, Liu L, Ma X, Cao X, Chen Y, Qu X, Ji M, Liu H, Liu C, Qin X, Xiang Y. The Role of DNA Damage and Repair in Idiopathic Pulmonary Fibrosis. Antioxidants (Basel) 2022; 11:2292. [PMID: 36421478 PMCID: PMC9687113 DOI: 10.3390/antiox11112292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 11/11/2022] [Accepted: 11/17/2022] [Indexed: 11/22/2022] Open
Abstract
The mortality rate of idiopathic pulmonary fibrosis (IPF) increases yearly due to ineffective treatment. Given that the lung is exposed to the external environment, it is likely that oxidative stress, especially the stimulation of DNA, would be of particular importance in pulmonary fibrosis. DNA damage is known to play an important role in idiopathic pulmonary fibrosis initiation, so DNA repair systems targeting damage are also crucial for the survival of lung cells. Although many contemporary reports have summarized the role of individual DNA damage and repair pathways in their hypotheses, they have not focused on idiopathic pulmonary fibrosis. This review, therefore, aims to provide a concise overview for researchers to understand the pathways of DNA damage and repair and their roles in IPF.
Collapse
Affiliation(s)
- Jiahui Zhu
- School of Basic Medicine, Central South University, Changsha 410000, China
| | - Lexin Liu
- School of Basic Medicine, Central South University, Changsha 410000, China
| | - Xiaodi Ma
- School of Basic Medicine, Central South University, Changsha 410000, China
| | - Xinyu Cao
- School of Basic Medicine, Central South University, Changsha 410000, China
| | - Yu Chen
- Department of Medical Laboratory, School of Medicine, Hunan Normal University, Changsha 410000, China
| | - Xiangping Qu
- School of Basic Medicine, Central South University, Changsha 410000, China
- Department of Physiology, School of Basic Medicine, Central South University, Changsha 410000, China
| | - Ming Ji
- School of Basic Medicine, Central South University, Changsha 410000, China
- Department of Physiology, School of Basic Medicine, Central South University, Changsha 410000, China
| | - Huijun Liu
- School of Basic Medicine, Central South University, Changsha 410000, China
- Department of Physiology, School of Basic Medicine, Central South University, Changsha 410000, China
| | - Chi Liu
- School of Basic Medicine, Central South University, Changsha 410000, China
- Department of Physiology, School of Basic Medicine, Central South University, Changsha 410000, China
| | - Xiaoqun Qin
- School of Basic Medicine, Central South University, Changsha 410000, China
- Department of Physiology, School of Basic Medicine, Central South University, Changsha 410000, China
| | - Yang Xiang
- School of Basic Medicine, Central South University, Changsha 410000, China
- Department of Physiology, School of Basic Medicine, Central South University, Changsha 410000, China
| |
Collapse
|
14
|
Sgambellone S, Marri S, Catarinicchia S, Pini A, Tosh DK, Jacobson KA, Masini E, Salvemini D, Lucarini L. Adenosine A 3 Receptor (A 3AR) Agonist for the Treatment of Bleomycin-Induced Lung Fibrosis in Mice. Int J Mol Sci 2022; 23:13300. [PMID: 36362112 PMCID: PMC9657240 DOI: 10.3390/ijms232113300] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 10/27/2022] [Accepted: 10/28/2022] [Indexed: 07/25/2023] Open
Abstract
Adenosine receptors (ARs) are involved in the suppression and development of inflammatory and fibrotic conditions. Specifically, AR activation promotes differentiation of lung fibroblasts into myofibroblasts, typical of a fibrotic event. Pulmonary fibrosis is a severe disease characterized by inflammation and fibrosis of unknown etiology and lacking an effective treatment. The present investigation explored the action of MRS5980, a new, highly potent and selective A3AR agonist, in an established murine model of lung fibrosis. The effects of either vehicle or MRS5980 were studied in mice following intratracheal bleomycin administration. We evaluated the role of the A3AR agonist on lung stiffness, studying the airway resistance to inflation, oxidative stress (8-OHdG and MDA), inflammation, pro- and anti-inflammatory marker levels (IL-1β, IL-6, TNF-α, IL-10 and IL-17A) and fibrosis establishment, evaluating transforming growth factor (TGF)-β expression and α-smooth muscle actin (α-SMA) deposition in lungs. Bleomycin administration increased lung stiffness, TGF-β levels, α-SMA deposition, and inflammatory and oxidative stress markers. The treatment with MRS5980 attenuated all the analyzed functional, biochemical and histopathological markers in a dose-dependent manner. Our findings support the therapeutic potential of A3AR agonists in lung fibrosis by demonstrating reduced disease progression, as indicated by decreased inflammation, TGF-β expression and fibrotic remodeling.
Collapse
Affiliation(s)
- Silvia Sgambellone
- Department of Neuroscience, Psychology, Drug Research and Child Health (NEUROFARBA), Section of Pharmacology, University of Florence, Viale Gaetano Pieraccini, 6, 50139 Florence, Italy
| | - Silvia Marri
- Department of Neuroscience, Psychology, Drug Research and Child Health (NEUROFARBA), Section of Pharmacology, University of Florence, Viale Gaetano Pieraccini, 6, 50139 Florence, Italy
| | - Stefano Catarinicchia
- Department of Experimental and Clinical Medicine, Section of Histology, University of Florence, Viale Gaetano Pieraccini, 6, 50139 Florence, Italy
| | - Alessandro Pini
- Department of Experimental and Clinical Medicine, Section of Histology, University of Florence, Viale Gaetano Pieraccini, 6, 50139 Florence, Italy
| | - Dilip K. Tosh
- Laboratory of Bioorganic Chemistry, National Institute of Diabetes & Digestive & Kidney Diseases, National Institutes of Health, 9000 Rockville Pike, Bethesda, MD 20892, USA
| | - Kenneth A. Jacobson
- Laboratory of Bioorganic Chemistry, National Institute of Diabetes & Digestive & Kidney Diseases, National Institutes of Health, 9000 Rockville Pike, Bethesda, MD 20892, USA
| | - Emanuela Masini
- Department of Neuroscience, Psychology, Drug Research and Child Health (NEUROFARBA), Section of Pharmacology, University of Florence, Viale Gaetano Pieraccini, 6, 50139 Florence, Italy
| | - Daniela Salvemini
- Pharmacology and Physiology, Saint Louis University, School of Medicine, 1402 South Grand Blvd, St. Louis, MO 63104, USA
| | - Laura Lucarini
- Department of Neuroscience, Psychology, Drug Research and Child Health (NEUROFARBA), Section of Pharmacology, University of Florence, Viale Gaetano Pieraccini, 6, 50139 Florence, Italy
| |
Collapse
|
15
|
Ai D, Wu J, Cai H, Zhao D, Chen Y, Wei J, Xu J, Zhang J, Wang L. A multi-task FP-GNN framework enables accurate prediction of selective PARP inhibitors. Front Pharmacol 2022; 13:971369. [PMID: 36304149 PMCID: PMC9592829 DOI: 10.3389/fphar.2022.971369] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Accepted: 09/14/2022] [Indexed: 08/16/2024] Open
Abstract
PARP (poly ADP-ribose polymerase) family is a crucial DNA repair enzyme that responds to DNA damage, regulates apoptosis, and maintains genome stability; therefore, PARP inhibitors represent a promising therapeutic strategy for the treatment of various human diseases including COVID-19. In this study, a multi-task FP-GNN (Fingerprint and Graph Neural Networks) deep learning framework was proposed to predict the inhibitory activity of molecules against four PARP isoforms (PARP-1, PARP-2, PARP-5A, and PARP-5B). Compared with baseline predictive models based on four conventional machine learning methods such as RF, SVM, XGBoost, and LR as well as six deep learning algorithms such as DNN, Attentive FP, MPNN, GAT, GCN, and D-MPNN, the evaluation results indicate that the multi-task FP-GNN method achieves the best performance with the highest average BA, F1, and AUC values of 0.753 ± 0.033, 0.910 ± 0.045, and 0.888 ± 0.016 for the test set. In addition, Y-scrambling testing successfully verified that the model was not results of chance correlation. More importantly, the interpretability of the multi-task FP-GNN model enabled the identification of key structural fragments associated with the inhibition of each PARP isoform. To facilitate the use of the multi-task FP-GNN model in the field, an online webserver called PARPi-Predict and its local version software were created to predict whether compounds bear potential inhibitory activity against PARPs, thereby contributing to design and discover better selective PARP inhibitors.
Collapse
Affiliation(s)
- Daiqiao Ai
- School of Biology and Biological Engineering, Guangdong Provincial Key Laboratory of Fermentation and Enzyme Engineering, Joint International Research Laboratory of Synthetic Biology and Medicine, Guangdong Provincial Engineering and Technology Research Center of Biopharmaceuticals, South China University of Technology, Guangzhou, China
| | - Jingxing Wu
- School of Biology and Biological Engineering, Guangdong Provincial Key Laboratory of Fermentation and Enzyme Engineering, Joint International Research Laboratory of Synthetic Biology and Medicine, Guangdong Provincial Engineering and Technology Research Center of Biopharmaceuticals, South China University of Technology, Guangzhou, China
| | - Hanxuan Cai
- School of Biology and Biological Engineering, Guangdong Provincial Key Laboratory of Fermentation and Enzyme Engineering, Joint International Research Laboratory of Synthetic Biology and Medicine, Guangdong Provincial Engineering and Technology Research Center of Biopharmaceuticals, South China University of Technology, Guangzhou, China
| | - Duancheng Zhao
- School of Biology and Biological Engineering, Guangdong Provincial Key Laboratory of Fermentation and Enzyme Engineering, Joint International Research Laboratory of Synthetic Biology and Medicine, Guangdong Provincial Engineering and Technology Research Center of Biopharmaceuticals, South China University of Technology, Guangzhou, China
| | - Yihao Chen
- School of Biology and Biological Engineering, Guangdong Provincial Key Laboratory of Fermentation and Enzyme Engineering, Joint International Research Laboratory of Synthetic Biology and Medicine, Guangdong Provincial Engineering and Technology Research Center of Biopharmaceuticals, South China University of Technology, Guangzhou, China
| | - Jiajia Wei
- School of Biology and Biological Engineering, Guangdong Provincial Key Laboratory of Fermentation and Enzyme Engineering, Joint International Research Laboratory of Synthetic Biology and Medicine, Guangdong Provincial Engineering and Technology Research Center of Biopharmaceuticals, South China University of Technology, Guangzhou, China
| | - Jianrong Xu
- Department of Pharmacology and Chemical Biology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Academy of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Jiquan Zhang
- Guizhou Provincial Engineering Technology Research Center for Chemical Drug R&D, College of Pharmacy, Guizhou Medical University, Guiyang, China
| | - Ling Wang
- School of Biology and Biological Engineering, Guangdong Provincial Key Laboratory of Fermentation and Enzyme Engineering, Joint International Research Laboratory of Synthetic Biology and Medicine, Guangdong Provincial Engineering and Technology Research Center of Biopharmaceuticals, South China University of Technology, Guangzhou, China
| |
Collapse
|
16
|
Birrer MJ, Fujiwara K, Oaknin A, Randall L, Ojalvo LS, Valencia C, Ray-Coquard I. The Changing Landscape of Systemic Treatment for Cervical Cancer: Rationale for Inhibition of the TGF-β and PD-L1 Pathways. Front Oncol 2022; 12:814169. [PMID: 35280818 PMCID: PMC8905681 DOI: 10.3389/fonc.2022.814169] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Accepted: 01/24/2022] [Indexed: 12/28/2022] Open
Abstract
Cervical cancer is one of the most common and lethal cancers among women worldwide. Treatment options are limited in patients with persistent, recurrent, or metastatic cervical cancer, with <20% of women living >5 years. Persistent human papillomavirus (HPV) infection has been implicated in almost all cases of cervical cancer. HPV infection not only causes normal cervical cells to transform into cancer cells, but also creates an immunosuppressive environment for cancer cells to evade the immune system. Recent clinical trials of drugs targeting the PD-(L)1 pathway have demonstrated improvement in overall survival in patients with cervical cancer, but only 20% to 30% of patients show overall survival benefit beyond 2 years, and resistance to these treatments remains common. Therefore, novel treatment strategies targeting HPV infection-associated factors are currently being evaluated in clinical trials. Bintrafusp alfa is a first-in-class bifunctional fusion protein composed of the extracellular domain of the TGF-βRII receptor (a TGF-β "trap") fused to a human immunoglobulin G1 monoclonal antibody that blocks PD-L1. Early clinical trials of bintrafusp alfa have shown promising results in patients with advanced cervical cancer.
Collapse
Affiliation(s)
- Michael J Birrer
- Winthrop P. Rockefeller Cancer Institute, University of Arkansas Medical School, Little Rock, AR, United States
| | - Keiichi Fujiwara
- Department of Gynecologic Oncology, Saitama Medical University International Medical Center, Saitama, Japan
| | - Ana Oaknin
- Gynaecological Cancer Program, Vall d'Hebron Institute of Oncology, Vall d'Hebron University Hospital, Barcelona, Spain
| | - Leslie Randall
- Massey Cancer Center, Virginia Commonwealth University, Richmond, VA, United States
| | - Laureen S Ojalvo
- EMD Serono Research & Development Institute, Inc., Billerica, MA, United States
| | - Christian Valencia
- EMD Serono Research & Development Institute, Inc., Billerica, MA, United States
| | - Isabelle Ray-Coquard
- GINECO Group & Department of Medical Oncology, Centre Leon Berard, University Claude Bernard Lyon, Lyon, France
| |
Collapse
|
17
|
Henderson J, O'Reilly S. The emerging role of metabolism in fibrosis. Trends Endocrinol Metab 2021; 32:639-653. [PMID: 34024695 DOI: 10.1016/j.tem.2021.05.003] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Accepted: 05/04/2021] [Indexed: 12/21/2022]
Abstract
The metabolic shift that cancer cells undergo towards aerobic glycolysis was identified as a defining feature in tumours almost 100 years ago; however, it has only recently become apparent that similar metabolic reprogramming is a key feature in other diseases - with fibrosis now entering the fray. In this perspective, an overview of the recent evidence implicating increased glycolysis and glutaminolysis as mediators of fibrosis is presented, with a particular emphasis on the novel therapeutic possibilities this introduces. Furthermore, the impact that metabolic reprogramming has on redox homeostasis is discussed, providing an insight into how this often-overlooked mechanism may drive the pathogenesis.
Collapse
Affiliation(s)
- John Henderson
- Department of Applied Sciences, Northumbria University, Ellison Place, Newcastle upon Tyne NE1 8ST, UK
| | - Steven O'Reilly
- Biosciences, Durham University, South Road, Durham DH1 3LE, UK. steven.o'
| |
Collapse
|
18
|
Role of rivaroxaban in sunitinib-induced renal injuries via inhibition of oxidative stress-induced apoptosis and inflammation through the tissue nacrosis factor-α induced nuclear factor-κappa B signaling pathway in rats. J Thromb Thrombolysis 2021; 50:361-370. [PMID: 32358665 DOI: 10.1007/s11239-020-02123-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Rivaroxaban (RIVA) inhibits factor Xa and exhibits antithrombotic and anti-inflammatory activities by inhibiting several cellular signaling molecules. Sunitinib (SUN) is FDA approved first-line drug for metastatic renal cancers and advanced cancerous states of gastrointestinal tract. Present hypothesis was aimed to examine the nephroprotective potential of RIVA in SUN-induced nephrotoxicity, mediated through the inhibition of oxidative stress-induced apoptosis and inflammation, via the TNF-α/NFk-B signaling pathways. Wistar rats 200-250 g were selected and divided randomely in 5 groups (n = 6): Group 1 kept as normal control; Group 2 as disease control and exposed to SUN 50 mg/kg thrice-weekly upto 21 days; Groups 3 and 4, were treatment groups and administered SUN 50 mg/kg thrice-weekly as of group 2 and treated with RIVA 5 and 10 mg/kg/daily for 21 days, respectively; and Group 5 fed with RIVA alone (10 mg/kg/daily for 21 days). Serum was separated from blood to estimate serum biochemical parameters and kidney tissues were collected to estimate antioxidant enzyme, mRNA and protein expression. SUN exposure significantly elevated levels of creatinine, urea, uric acid, blood urea nitrogen, albumin, and bilirubin, and decreased serum magnesium and iron levels. Malondialdehyde and catalase levels were significantly increased and glutathione and glutathione reductase levels were significantly decreased. Intracellular levels of caspase-3 and TNF-α were significantly increased; RIVA treatment restored the altered levels. In SUN-exposed animals, western blotting revealed significantly elevated NFk-B, IL-17, and MCP-1 expression, and IKBα levels were significantly downregulated; RIVA restored these levels to normal values.RIVA treatment significantly restored the apoptotic and inflammatory parameters in SUN-damaged renal tissues.
Collapse
|
19
|
Yao Y, Yuan Y, Lu Z, Ma Y, Xie Y, Wang M, Liu F, Zhu C, Lin C. Effects of Nervilia fordii Extract on Pulmonary Fibrosis Through TGF-β/Smad Signaling Pathway. Front Pharmacol 2021; 12:659627. [PMID: 33953686 PMCID: PMC8090936 DOI: 10.3389/fphar.2021.659627] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Accepted: 03/22/2021] [Indexed: 12/20/2022] Open
Abstract
Idiopathic pulmonary fibrosis (IPF) is a progressive and irreversible interstitial pulmonary disease with a poor prognosis. The extract of Nervilia fordii (NFE) has shown remarkable benefit in the treatment of acute lung injury, lung cancer, and severe acute respiratory syndrome (SARS). However, the potential mechanism and efficacy of NFE in the treatment of IPF remain unknown. In this study, a systematic network pharmacology analysis was used to predict the mechanism and efficacy of NFE in the treatment of IPF, based on the major components of NFE elucidated by UPLC-TOF-MS/MS. The potential molecular interactions between the compounds and potential targets were predicted using molecular docking. In vivo, rats with pulmonary fibrosis induced by a single intratracheal injection of bleomycin (BLM) were orally administered NFE for 14 days. Lung index and biochemical levels were determined, and histopathological analysis using hematoxylin and eosin (H&E) and Masson staining was performed. The effects of NFE on fibroblast proliferation in Lipopolysaccharide (LPS) and TGF-β1-induced mouse 3T6 fibroblasts were evaluated in vitro. In total, 20 components were identified in NFE, and 102 potential targets for IPF treatment were predicted. These targets potentially participate in processes regulated by transmembrane receptor protein tyrosine kinase, ERBB2, and et al. Molecular docking results predicted high affinity interactions between three components (rhamnazin, rhamnetin, and rhamnocitrin) and the potential targets, suggesting that TGF-β is the most important potential target of NFE in the treatment of pulmonary fibrosis. NFE significantly decreased the lung index and alleviated BLM-induced pulmonary fibrosis in rats. Histopathological observation of lung tissues showed that NFE alleviated inflammation and collagen deposition in BLM-induced rats. NFE inhibited the migration of LPS- and TGF-β1-induced 3T6 fibroblasts, reduced the contents of hydroxyproline and collagen, and contributed to anti-inflammation and anti-oxidation. With the intervention of NFE, the protein and RNA expression of TGF-β1, a-SMA, Smad3/4, p-Smad3/4, CTGF, and p-ERK1/2 were significantly downregulated, while Smad7 and ERK1/2 were upregulated significantly in vivo and in vitro. These findings indicated that NFE may exert therapeutic effects on pulmonary fibrosis by alleviating inflammation, oxidation, and collagen deposition. The mechanism related to the inhibition of the TGF-β/Smad signaling pathway.
Collapse
Affiliation(s)
- Yufeng Yao
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Yue Yuan
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Zenghui Lu
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Yunxia Ma
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Yuanyuan Xie
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Meiqi Wang
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Fangle Liu
- School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Chenchen Zhu
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Chaozhan Lin
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China
| |
Collapse
|
20
|
Durante M, Sgambellone S, Lucarini L, Failli P, Laurino A, Collotta D, Provensi G, Masini E, Collino M. D-Tagatose Feeding Reduces the Risk of Sugar-Induced Exacerbation of Myocardial I/R Injury When Compared to Its Isomer Fructose. Front Mol Biosci 2021; 8:650962. [PMID: 33928123 PMCID: PMC8076855 DOI: 10.3389/fmolb.2021.650962] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Accepted: 03/25/2021] [Indexed: 11/17/2022] Open
Abstract
It is known that fructose may contribute to myocardial vulnerability to ischemia/reperfusion (I/R) injury. D-tagatose is a fructose isomer with less caloric value and used as low-calorie sweetener. Here we compared the metabolic impact of fructose or D-tagatose enriched diets on potential exacerbation of myocardial I/R injury. Wistar rats were randomizedly allocated in the experimental groups and fed with one of the following diets: control (CTRL), 30% fructose-enriched (FRU 30%) or 30% D-tagatose-enriched (TAG 30%). After 24 weeks of dietary manipulation, rats underwent myocardial injury caused by 30 min ligature of the left anterior descending (LAD) coronary artery followed by 24 h′ reperfusion. Fructose consumption resulted in body weight increase (49%) as well as altered glucose, insulin and lipid profiles. These effects were associated with increased I/R-induced myocardial damage, oxidative stress (36.5%) and inflammation marker expression. TAG 30%-fed rats showed lower oxidative stress (21%) and inflammation in comparison with FRU-fed rats. Besides, TAG diet significantly reduced plasmatic inflammatory cytokines and GDF8 expression (50%), while increased myocardial endothelial nitric oxide synthase (eNOS) expression (59%). Overall, we demonstrated that D-tagatose represents an interesting sugar alternative when compared to its isomer fructose with reduced deleterious impact not only on the metabolic profile but also on the related heart susceptibility to I/R injury.
Collapse
Affiliation(s)
- Mariaconcetta Durante
- Department of Neuroscience, Psychology, Drug Research and Child Health (NEUROFARBA), Section of Pharmacology and Toxicology, University of Florence, Florence, Italy
| | - Silvia Sgambellone
- Department of Neuroscience, Psychology, Drug Research and Child Health (NEUROFARBA), Section of Pharmacology and Toxicology, University of Florence, Florence, Italy
| | - Laura Lucarini
- Department of Neuroscience, Psychology, Drug Research and Child Health (NEUROFARBA), Section of Pharmacology and Toxicology, University of Florence, Florence, Italy
| | - Paola Failli
- Department of Neuroscience, Psychology, Drug Research and Child Health (NEUROFARBA), Section of Pharmacology and Toxicology, University of Florence, Florence, Italy
| | - Annunziatina Laurino
- Department of Neuroscience, Psychology, Drug Research and Child Health (NEUROFARBA), Section of Pharmacology and Toxicology, University of Florence, Florence, Italy
| | - Debora Collotta
- Department of Drug Science and Technology, University of Turin, Turin, Italy
| | - Gustavo Provensi
- Department of Neuroscience, Psychology, Drug Research and Child Health (NEUROFARBA), Section of Pharmacology and Toxicology, University of Florence, Florence, Italy
| | - Emanuela Masini
- Department of Neuroscience, Psychology, Drug Research and Child Health (NEUROFARBA), Section of Pharmacology and Toxicology, University of Florence, Florence, Italy
| | - Massimo Collino
- Department of Drug Science and Technology, University of Turin, Turin, Italy
| |
Collapse
|
21
|
El-Hamoly T, Hajnády Z, Nagy-Pénzes M, Bakondi E, Regdon Z, Demény MA, Kovács K, Hegedűs C, Abd El-Rahman SS, Szabó É, Maléth J, Hegyi P, Virág L. Poly(ADP-Ribose) Polymerase 1 Promotes Inflammation and Fibrosis in a Mouse Model of Chronic Pancreatitis. Int J Mol Sci 2021; 22:ijms22073593. [PMID: 33808340 PMCID: PMC8037143 DOI: 10.3390/ijms22073593] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Revised: 03/13/2021] [Accepted: 03/23/2021] [Indexed: 12/14/2022] Open
Abstract
Chronic pancreatitis (CP) is an inflammatory disease of the pancreas characterized by ductal obstructions, tissue fibrosis, atrophy and exocrine and endocrine pancreatic insufficiency. However, our understanding is very limited concerning the disease’s progression from a single acute inflammation, via recurrent acute pancreatitis (AP) and early CP, to the late stage CP. Poly(ADP-ribose) polymerase 1 (PARP1) is a DNA damage sensor enzyme activated mostly by oxidative DNA damage. As a co-activator of inflammatory transcription factors, PARP1 is a central mediator of the inflammatory response and it has also been implicated in acute pancreatitis. Here, we set out to investigate whether PARP1 contributed to the pathogenesis of CP. We found that the clinically used PARP inhibitor olaparib (OLA) had protective effects in a murine model of CP induced by multiple cerulein injections. OLA reduced pancreas atrophy and expression of the inflammatory mediators TNFα and interleukin-6 (IL-6), both in the pancreas and in the lungs. Moreover, there was significantly less fibrosis (Masson’s trichrome staining) in the pancreatic sections of OLA-treated mice compared to the cerulein-only group. mRNA expression of the fibrosis markers TGFβ, smooth muscle actin (SMA), and collagen-1 were markedly reduced by OLA. CP was also induced in PARP1 knockout (KO) mice and their wild-type (WT) counterparts. Inflammation and fibrosis markers showed lower expression in the KO compared to the WT mice. Moreover, reduced granulocyte infiltration (tissue myeloperoxidase activity) and a lower elevation of serum amylase and lipase activity could also be detected in the KO mice. Furthermore, primary acinar cells isolated from KO mice were also protected from cerulein-induced toxicity compared to WT cells. In summary, our data suggest that PARP inhibitors may be promising candidates for repurposing to treat not only acute but chronic pancreatitis as well.
Collapse
Affiliation(s)
- Tarek El-Hamoly
- Department of Medical Chemistry, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary; (T.E.-H.); (Z.H.); (M.N.-P.); (E.B.); (Z.R.); (K.K.); (C.H.)
- Drug Radiation Research Department, National Centre for Radiation Research and Technology, Atomic Energy Authority, 11787 Cairo, Egypt
| | - Zoltán Hajnády
- Department of Medical Chemistry, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary; (T.E.-H.); (Z.H.); (M.N.-P.); (E.B.); (Z.R.); (K.K.); (C.H.)
- Doctoral School of Molecular Medicine, University of Debrecen, 4032 Debrecen, Hungary
| | - Máté Nagy-Pénzes
- Department of Medical Chemistry, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary; (T.E.-H.); (Z.H.); (M.N.-P.); (E.B.); (Z.R.); (K.K.); (C.H.)
- Doctoral School of Molecular Medicine, University of Debrecen, 4032 Debrecen, Hungary
| | - Edina Bakondi
- Department of Medical Chemistry, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary; (T.E.-H.); (Z.H.); (M.N.-P.); (E.B.); (Z.R.); (K.K.); (C.H.)
| | - Zsolt Regdon
- Department of Medical Chemistry, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary; (T.E.-H.); (Z.H.); (M.N.-P.); (E.B.); (Z.R.); (K.K.); (C.H.)
- Doctoral School of Molecular Medicine, University of Debrecen, 4032 Debrecen, Hungary
| | - Máté A. Demény
- MTA-DE Cell Biology and Signaling Research Group, 4032 Debrecen, Hungary;
| | - Katalin Kovács
- Department of Medical Chemistry, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary; (T.E.-H.); (Z.H.); (M.N.-P.); (E.B.); (Z.R.); (K.K.); (C.H.)
- MTA-DE Cell Biology and Signaling Research Group, 4032 Debrecen, Hungary;
| | - Csaba Hegedűs
- Department of Medical Chemistry, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary; (T.E.-H.); (Z.H.); (M.N.-P.); (E.B.); (Z.R.); (K.K.); (C.H.)
| | - Sahar S. Abd El-Rahman
- Department of Pathology, Faculty of Veterinary Medicine, Cairo University, 12211 Giza, Egypt;
| | - Éva Szabó
- Department of Dermatology, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary;
| | - József Maléth
- First Department of Medicine, University of Szeged, 6720 Szeged, Hungary;
- HAS-USZ Momentum Epithel Cell Signalling and Secretion Research Group, 6720 Szeged, Hungary
- Department of Public Health, University of Szeged, 6720 Szeged, Hungary
| | - Péter Hegyi
- János Szentágothai Research Centre, Institute for Translational Medicine, Medical School, University of Pécs, 7624 Pécs, Hungary;
- Momentum Gastroenterology Multidisciplinary Research Group, Hungarian Academy of Sciences, University of Szeged, 6720 Szeged, Hungary
| | - László Virág
- Department of Medical Chemistry, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary; (T.E.-H.); (Z.H.); (M.N.-P.); (E.B.); (Z.R.); (K.K.); (C.H.)
- MTA-DE Cell Biology and Signaling Research Group, 4032 Debrecen, Hungary;
- Correspondence:
| |
Collapse
|
22
|
Mansour HH, Omran MM, Hasan HF, El Kiki SM. Modulation of bleomycin-induced oxidative stress and pulmonary fibrosis by N-acetylcysteine in rats via AMPK/SIRT1/NF-κβ. Clin Exp Pharmacol Physiol 2020; 47:1943-1952. [PMID: 32658336 DOI: 10.1111/1440-1681.13378] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Revised: 07/07/2020] [Accepted: 07/08/2020] [Indexed: 12/12/2022]
Abstract
The efficacy of bleomycin (BLM) as an antineoplastic drug is limited to the development of dose and time-dependent pulmonary fibrosis. This study was intended to investigate the effect of N-acetylcysteine (NAC) on BLM-induced pulmonary fibrosis in rats. Twenty rats were randomly divided to the following four groups: Group one served as control; group two received BLM (15 mg/kg, intraperitoneal (ip)) for five consecutive days; group three received NAC (200 mg/kg, ip) for five consecutive days; and group four received NAC 1 hour before BLM for 5 days. The expression of connective tissue growth factor (CTGF), platelet-derived growth factor (PDGF), silent information regulator l (SIRT1), AMP-activated protein kinase (AMPK) were determined by qRT-PCR in lung tissues. The changes in transforming growth factor-beta1 (TGF-β1), tumour necrosis factor-α (TNF-α), interleukin-β1 (IL-β1) and nuclear factor kappa-β (NF-κβ) in serum were measured by ELISA. The tissue antioxidant status was determined biochemically. BLM administration caused pulmonary fibrosis as evidenced by increased levels of inflammatory mediators (TGF-β1, TNF-α, IL-β1 and NF-κβ) in serum (P < .05), elevated lipid peroxidation and nitric oxide and depleted endogenous antioxidants in lung tissue (P < .05). The expression levels of SIRT1 and AMPK were significantly decreased (P < .05), while the expression levels of CTGF and PDGF were increased significantly in the BLM group as compared to the control group (P < .05). These alterations were normalized by NAC intervention. NAC markedly attenuated the lung histopathological changes and reduced collagen deposition. These results suggest that NAC exerted an ameliorative effect against BLM-induced oxidative damage and pulmonary fibrosis via SIRT1/ AMPK/ NF-κβ pathways.
Collapse
Affiliation(s)
- Heba H Mansour
- Health Radiation Research Department, National Center for Radiation Research and Technology, Atomic Energy Authority, Cairo, Egypt
| | - Mervat M Omran
- Pharmacology Unit, Cancer Biology Department, National Cancer Institute, Cairo University, Cairo, Egypt
| | - Hesham F Hasan
- Radiation Biology Department, National Center for Radiation Research and Technology, Atomic Energy Authority, Cairo, Egypt
| | - Shereen M El Kiki
- Health Radiation Research Department, National Center for Radiation Research and Technology, Atomic Energy Authority, Cairo, Egypt
| |
Collapse
|
23
|
Effect of SIS3 on Extracellular Matrix Remodeling and Repair in a Lipopolysaccharide-Induced ARDS Rat Model. J Immunol Res 2020; 2020:6644687. [PMID: 33294466 PMCID: PMC7714568 DOI: 10.1155/2020/6644687] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2020] [Revised: 11/04/2020] [Accepted: 11/05/2020] [Indexed: 12/14/2022] Open
Abstract
The remodeling of the extracellular matrix (ECM) in the parenchyma plays an important role in the development of acute respiratory distress syndrome (ARDS), a disease characterized by lung injury. Although it is clear that TGF-β1 can modulate the expression of the extracellular matrix (ECM) through intracellular signaling molecules such as Smad3, its role as a therapeutic target against ARDS remains unknown. In this study, a rat model was established to mimic ARDS via intratracheal instillation of lipopolysaccharide (LPS). A selective inhibitor of Smad3 (SIS3) was intraperitoneally injected into the disease model, while phosphate-buffered saline (PBS) was used in the control group. Animal tissues were then evaluated using histological analysis, immunohistochemistry, RT-qPCR, ELISA, and western blotting. LPS was found to stimulate the expression of RAGE, TGF-β1, MMP2, and MMP9 in the rat model. Moreover, treatment with SIS3 was observed to reverse the expression of these molecules. In addition, pretreatment with SIS3 was shown to partially inhibit the phosphorylation of Smad3 and alleviate symptoms including lung injury and pulmonary edema. These findings indicate that SIS3, or the blocking of TGF-β/Smad3 pathways, could influence remodeling of the ECM and this may serve as a therapeutic strategy against ARDS.
Collapse
|
24
|
Szabo C, Martins V, Liaudet L. Poly(ADP-Ribose) Polymerase Inhibition in Acute Lung Injury. A Reemerging Concept. Am J Respir Cell Mol Biol 2020; 63:571-590. [PMID: 32640172 PMCID: PMC7605157 DOI: 10.1165/rcmb.2020-0188tr] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Accepted: 06/08/2020] [Indexed: 12/15/2022] Open
Abstract
PARP1, the major isoform of a family of ADP-ribosylating enzymes, has been implicated in the regulation of various biological processes including DNA repair, gene transcription, and cell death. The concept that PARP1 becomes activated in acute lung injury (ALI) and that pharmacological inhibition or genetic deletion of this enzyme can provide therapeutic benefits emerged over 20 years ago. The current article provides an overview of the cellular mechanisms involved in the pathogenetic roles of PARP1 in ALI and provides an overview of the preclinical data supporting the efficacy of PARP (poly[ADP-ribose] polymerase) inhibitors. In recent years, several ultrapotent PARP inhibitors have been approved for clinical use (for the therapy of various oncological diseases): these newly-approved PARP inhibitors were recently reported to show efficacy in animal models of ALI. These observations offer the possibility of therapeutic repurposing of these inhibitors for patients with ALI. The current article lays out a potential roadmap for such repurposing efforts. In addition, the article also overviews the scientific basis of potentially applying PARP inhibitors for the experimental therapy of viral ALI, such as coronavirus disease (COVID-19)-associated ALI.
Collapse
Affiliation(s)
- Csaba Szabo
- Chair of Pharmacology, Section of Medicine, University of Fribourg, Fribourg, Switzerland; and
| | - Vanessa Martins
- Chair of Pharmacology, Section of Medicine, University of Fribourg, Fribourg, Switzerland; and
| | - Lucas Liaudet
- Service of Adult Intensive Care Medicine, University Hospital Medical Center, Lausanne University, Lausanne, Switzerland
| |
Collapse
|
25
|
MiR-200a inversely correlates with Hedgehog and TGF-β canonical/non-canonical trajectories to orchestrate the anti-fibrotic effect of Tadalafil in a bleomycin-induced pulmonary fibrosis model. Inflammopharmacology 2020; 29:167-182. [PMID: 32914382 DOI: 10.1007/s10787-020-00748-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Accepted: 08/25/2020] [Indexed: 12/17/2022]
Abstract
Few reports have documented the ability of phosphodiesterase-5 inhibitors (PDE-5-Is) to ameliorate idiopathic pulmonary fibrosis (IPF) mainly by their anti-inflammatory/antioxidant capacities, without unveiling the possible molecular mechanisms involved. Because of the recent role of miR-200 family and Sonic Hedgehog (SHH) trajectory in IPF, we have studied their impact on the anti-fibrotic potential of tadalafil against bleomycin-induced pulmonary fibrosis. Animals were allocated into normal-control, bleomycin-fibrotic control, and bleomycin post-treated with tadalafil or dexamethasone, as the reference drug. On the molecular level, tadalafil has reverted the bleomycin effect on all the assessed parameters. Tadalafil upregulated the gene expression of miR-200a, but decreased the smoothened (SMO) and the transcription factors glioma-associated oncogene homolog (Gli-1, Gli-2), members of SHH pathway. Additionally, tadalafil ebbed transforming growth factor (TGF)-β, its canonical (SMAD-3/alpha smooth muscle actin [α-SMA] and Snail), and non-canonical (p-Akt/p-Forkhead box O3 (FOXO3) a) pathways. Besides, a strong negative correlation between miR-200a and the analyzed pathways was proved. The effect of tadalafil was further confirmed by the improved lung structure and the reduced Ashcroft score/collagen deposition. The results were comparable to that of dexamethasone. In conclusion, our study has highlighted the involvement of miR-200a in the anti-fibrotic effect of tadalafil with the inhibition of SHH hub and the pro-fibrotic pathways (TGF-β/ SMAD-3/α-SMA, Snail and p-AKT/p-FOXO3a). Potential anti-fibrotic effect of tadalafil. Modulation of miR200a/SHH/canonical and non-canonical TGF-β trajectories. → : stimulatory effect; ┴: inhibitory effect.
Collapse
|
26
|
Lucarini L, Durante M, Sgambellone S, Lanzi C, Bigagli E, Akgul O, Masini E, Supuran CT, Carta F. Effects of New NSAID-CAI Hybrid Compounds in Inflammation and Lung Fibrosis. Biomolecules 2020; 10:biom10091307. [PMID: 32927723 PMCID: PMC7564963 DOI: 10.3390/biom10091307] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Revised: 09/02/2020] [Accepted: 09/08/2020] [Indexed: 02/07/2023] Open
Abstract
Pulmonary fibrosis is a severe lung disease with progressive worsening of dyspnea, characterized by chronic inflammation and remodeling of lung parenchyma. Carbonic anhydrases are a family of zinc-metallo-enzymes that catalyze the reversible interconversion of carbon-dioxide and water to bicarbonate and protons. Carbonic Anhydrase Inhibitor (CAI) exhibited anti-inflammatory effects in animals with permanent-middle-cerebral artery occlusion, arthritis and neuropathic pain. The pharmacological profile of a new class of hybrid compounds constituted by a CAI connected to a Nonsteroidal-Anti-Inflammatory Drug (NSAID) was studied in the modulation of inflammation and fibrosis. In-vitro tests were performed to assess their effects on cyclo-oxygenase enzyme (COX)-1 and COX-2, namely inhibition of platelet aggregation and thromboxane B2 production in the human-platelet-rich plasma, and reduction of Prostaglandin-E2 production in lipopolysaccharide-treated-RAW-264.7 macrophage cell line. The activity of compound 3, one of the most active, was studied in a model of bleomycin-induced lung fibrosis in C57BL/6 mice. The hybrid compounds showed a higher potency in inhibiting PGE2 production, but not in modifying the platelet aggregation and the TXB2 production in comparison to the reference molecules, indicating an increased activity in COX-2 inhibition. In the in-vivo murine model, the compound 3 was more effective in decreasing inflammation, lung stiffness and oxidative stress in comparison to the reference drugs given alone or in association. In conclusion, these CAI-NSAID hybrid compounds are promising new anti-inflammatory drugs for the treatment of lung chronic inflammatory diseases.
Collapse
Affiliation(s)
- Laura Lucarini
- Department of Neuroscience, Psychology, Drug Research and Child Health (NEUROFARBA), Pharmacology and Toxicology Section, University of Florence, Viale G. Pieraccini n. 6, 50139 Florence, Italy; (M.D.); (S.S.); (C.L.); (E.B.); (E.M.)
- Correspondence: ; Tel.: +39-055-2758299
| | - Mariaconcetta Durante
- Department of Neuroscience, Psychology, Drug Research and Child Health (NEUROFARBA), Pharmacology and Toxicology Section, University of Florence, Viale G. Pieraccini n. 6, 50139 Florence, Italy; (M.D.); (S.S.); (C.L.); (E.B.); (E.M.)
| | - Silvia Sgambellone
- Department of Neuroscience, Psychology, Drug Research and Child Health (NEUROFARBA), Pharmacology and Toxicology Section, University of Florence, Viale G. Pieraccini n. 6, 50139 Florence, Italy; (M.D.); (S.S.); (C.L.); (E.B.); (E.M.)
| | - Cecilia Lanzi
- Department of Neuroscience, Psychology, Drug Research and Child Health (NEUROFARBA), Pharmacology and Toxicology Section, University of Florence, Viale G. Pieraccini n. 6, 50139 Florence, Italy; (M.D.); (S.S.); (C.L.); (E.B.); (E.M.)
| | - Elisabetta Bigagli
- Department of Neuroscience, Psychology, Drug Research and Child Health (NEUROFARBA), Pharmacology and Toxicology Section, University of Florence, Viale G. Pieraccini n. 6, 50139 Florence, Italy; (M.D.); (S.S.); (C.L.); (E.B.); (E.M.)
| | - Ozlem Akgul
- Faculty of Pharmacy, Department of Pharmaceutical Chemistry, Ege University Bornova, 35100 Izmir, Turkey;
| | - Emanuela Masini
- Department of Neuroscience, Psychology, Drug Research and Child Health (NEUROFARBA), Pharmacology and Toxicology Section, University of Florence, Viale G. Pieraccini n. 6, 50139 Florence, Italy; (M.D.); (S.S.); (C.L.); (E.B.); (E.M.)
| | - Claudiu T. Supuran
- Department of NEUROFARBA, Pharmaceutical Science Section, University of Florence, Via Ugo Schiff 6, Sesto Fiorentino, 50019 Florence, Italy; (C.T.S.); (F.C.)
| | - Fabrizio Carta
- Department of NEUROFARBA, Pharmaceutical Science Section, University of Florence, Via Ugo Schiff 6, Sesto Fiorentino, 50019 Florence, Italy; (C.T.S.); (F.C.)
| |
Collapse
|
27
|
Akula SM, Abrams SL, Steelman LS, Candido S, Libra M, Lerpiriyapong K, Cocco L, Ramazzotti G, Ratti S, Follo MY, Martelli AM, Blalock WL, Piazzi M, Montalto G, Cervello M, Notarbartolo M, Basecke J, McCubrey JA. Cancer therapy and treatments during COVID-19 era. Adv Biol Regul 2020; 77:100739. [PMID: 32773105 PMCID: PMC7319627 DOI: 10.1016/j.jbior.2020.100739] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Accepted: 06/23/2020] [Indexed: 04/12/2023]
Abstract
The COVID-19 pandemic has put a serious strain on health treatments as well at the economies of many nations. Unfortunately, there is not currently available vaccine for SARS-Cov-2/COVID-19. Various types of patients have delayed treatment or even routine check-ups and we are adapting to a virtual world. In many cases, surgeries are delayed unless they are essential. This is also true with regards to cancer treatments and screening. Interestingly, some existing drugs and nutraceuticals have been screened for their effects on COVID-19. Certain FDA approved drugs, vitamin, natural products and trace minerals may be repurposed to treat or improve the prevention of COVID-19 infections and disease progression. This review article will summarize how the treatments of various cancer patients has changed during the COVID-19 era as well as discuss the promise of some existing drugs and other agents to be repurposed to treat this disease.
Collapse
Affiliation(s)
- Shaw M Akula
- Department of Microbiology and Immunology, Brody School of Medicine at East Carolina University, Greenville, NC, 27858, USA
| | - Stephen L Abrams
- Department of Microbiology and Immunology, Brody School of Medicine at East Carolina University, Greenville, NC, 27858, USA
| | - Linda S Steelman
- Department of Microbiology and Immunology, Brody School of Medicine at East Carolina University, Greenville, NC, 27858, USA
| | - Saverio Candido
- Department of Biomedical and Biotechnological Sciences-Oncological, Clinical and General Pathology Section, University of Catania, Catania, Italy; Research Center for Prevention, Diagnosis and Treatment of Cancer (PreDiCT), University of Catania, Catania, Italy
| | - Massimo Libra
- Department of Biomedical and Biotechnological Sciences-Oncological, Clinical and General Pathology Section, University of Catania, Catania, Italy; Research Center for Prevention, Diagnosis and Treatment of Cancer (PreDiCT), University of Catania, Catania, Italy
| | - Kvin Lerpiriyapong
- Center of Comparative Medicine and Pathology, Memorial Sloan-Kettering Cancer Center, Weill Cornell Medicine and the Hospital for Special Surgery, New York City, NY, USA
| | - Lucio Cocco
- Dipartimento di Scienze Biomediche e Neuromotorie, Università di Bologna, Bologna, Italy
| | - Giulia Ramazzotti
- Dipartimento di Scienze Biomediche e Neuromotorie, Università di Bologna, Bologna, Italy
| | - Stefano Ratti
- Dipartimento di Scienze Biomediche e Neuromotorie, Università di Bologna, Bologna, Italy
| | - Matilde Y Follo
- Dipartimento di Scienze Biomediche e Neuromotorie, Università di Bologna, Bologna, Italy
| | - Alberto M Martelli
- Dipartimento di Scienze Biomediche e Neuromotorie, Università di Bologna, Bologna, Italy
| | - William L Blalock
- Istituto di Genetica Molecolare-Luigi Luca Cavalli Sforza, UOS Bologna, Consiglio Nazionale Delle Ricerche (IGM-CNR), Bologna, Italy; IRCCS, Istituto Ortopedico Rizzoli, Bologna, Italy
| | - Manuela Piazzi
- Istituto di Genetica Molecolare-Luigi Luca Cavalli Sforza, UOS Bologna, Consiglio Nazionale Delle Ricerche (IGM-CNR), Bologna, Italy; IRCCS, Istituto Ortopedico Rizzoli, Bologna, Italy
| | - Giuseppe Montalto
- Department of Health Promotion, Maternal and Child Care, Internal Medicine and Medical Specialties, University of Palermo, Palermo, Italy; Institute for Biomedical Research and Innovation, National Research Council (CNR), Palermo, Italy
| | - Melchiorre Cervello
- Institute for Biomedical Research and Innovation, National Research Council (CNR), Palermo, Italy
| | - Monica Notarbartolo
- Department of Biological, Chemical and Pharmaceutical Science and Technology (STEBICEF), University of Palermo, Palermo, Italy
| | - Jorg Basecke
- Sankt-Josefs Hospital, Krankenhausstrasse 13, 49661, Cloppenburg, Germany
| | - James A McCubrey
- Department of Microbiology and Immunology, Brody School of Medicine at East Carolina University, Greenville, NC, 27858, USA.
| |
Collapse
|
28
|
Curtin N, Bányai K, Thaventhiran J, Le Quesne J, Helyes Z, Bai P. Repositioning PARP inhibitors for SARS-CoV-2 infection(COVID-19); a new multi-pronged therapy for acute respiratory distress syndrome? Br J Pharmacol 2020; 177:3635-3645. [PMID: 32441764 PMCID: PMC7280733 DOI: 10.1111/bph.15137] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Revised: 05/11/2020] [Accepted: 05/14/2020] [Indexed: 01/08/2023] Open
Abstract
Clinically approved PARP inhibitors (PARPi) have a mild adverse effect profile and are well tolerated as continuous daily oral therapy. We review the evidence that justifies the repurposing of PARPi to block the proliferation of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and combat the life-threatening sequelae of coronavirus disease 2019 (COVID-19) by several mechanisms. PARPi can effectively decrease IL-6, IL-1 and TNF-α levels (key interleukins in SARS-CoV-2-induced cytokine storm) and can alleviate subsequent lung fibrosis, as demonstrated in murine experiments and clinical trials. PARPi can tune macrophages towards a tolerogenic phenotype. PARPi may also counteract SARS-CoV-2-induced and inflammation-induced cell death and support cell survival. PARPi is effective in animal models of acute respiratory distress syndrome (ARDS), asthma and ventilator-induced lung injury. PARPi may potentiate the effectiveness of tocilizumab, anakinra, sarilumab, adalimumab, canakinumab or siltuximab therapy. The evidence suggests that PARPi would benefit COVID-19 patients and trials should be undertaken.
Collapse
Affiliation(s)
- Nicola Curtin
- Translational and Clinical Research Institute, Newcastle University Centre for Cancer, Faculty of Medical SciencesNewcastle UniversityNewcastle upon TyneUK
| | - Krisztián Bányai
- Institute for Veterinary Medical ResearchCentre for Agricultural ResearchBudapestHungary
| | | | - John Le Quesne
- MRC Toxicology UnitUniversity of CambridgeLeicesterUK
- Leicester Cancer Research CentreUniversity of Leicester, Leicester Royal InfirmaryLeicesterUK
- Glenfield HospitalUniversity Hospitals Leicester NHS TrustLeicesterUK
| | - Zsuzsanna Helyes
- Department of Pharmacology and Pharmacotherapy, Medical School; Centre for Neuroscience and János Szentágothai Research CentreUniversity of PécsPécsHungary
| | - Péter Bai
- Department of Medical Chemistry, Faculty of MedicineUniversity of DebrecenDebrecenHungary
- MTA‐DE Lendület Laboratory of Cellular MetabolismDebrecenHungary
- Research Center for Molecular Medicine, Faculty of MedicineUniversity of DebrecenDebrecenHungary
| |
Collapse
|
29
|
Cevikbas F, Lerner EA. Physiology and Pathophysiology of Itch. Physiol Rev 2020; 100:945-982. [PMID: 31869278 PMCID: PMC7474262 DOI: 10.1152/physrev.00017.2019] [Citation(s) in RCA: 126] [Impact Index Per Article: 31.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Revised: 10/31/2019] [Accepted: 12/04/2019] [Indexed: 02/06/2023] Open
Abstract
Itch is a topic to which everyone can relate. The physiological roles of itch are increasingly understood and appreciated. The pathophysiological consequences of itch impact quality of life as much as pain. These dynamics have led to increasingly deep dives into the mechanisms that underlie and contribute to the sensation of itch. When the prior review on the physiology of itching was published in this journal in 1941, itch was a black box of interest to a small number of neuroscientists and dermatologists. Itch is now appreciated as a complex and colorful Rubik's cube. Acute and chronic itch are being carefully scratched apart and reassembled by puzzle solvers across the biomedical spectrum. New mediators are being identified. Mechanisms blur boundaries of the circuitry that blend neuroscience and immunology. Measures involve psychophysics and behavioral psychology. The efforts associated with these approaches are positively impacting the care of itchy patients. There is now the potential to markedly alleviate chronic itch, a condition that does not end life, but often ruins it. We review the itch field and provide a current understanding of the pathophysiology of itch. Itch is a disease, not only a symptom of disease.
Collapse
Affiliation(s)
- Ferda Cevikbas
- Dermira, Inc., Menlo Park, California; and Harvard Medical School and the Cutaneous Biology Research Center at Massachusetts General Hospital, Charlestown, Massachusetts
| | - Ethan A Lerner
- Dermira, Inc., Menlo Park, California; and Harvard Medical School and the Cutaneous Biology Research Center at Massachusetts General Hospital, Charlestown, Massachusetts
| |
Collapse
|
30
|
‘PARP’ing fibrosis: repurposing poly (ADP ribose) polymerase (PARP) inhibitors. Drug Discov Today 2020; 25:1253-1261. [DOI: 10.1016/j.drudis.2020.04.019] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2019] [Revised: 04/14/2020] [Accepted: 04/24/2020] [Indexed: 12/20/2022]
|
31
|
Zingerone ameliorates oxidative stress and inflammation in bleomycin-induced pulmonary fibrosis: modulation of the expression of TGF-β1 and iNOS. Naunyn Schmiedebergs Arch Pharmacol 2020; 393:1659-1670. [PMID: 32377772 DOI: 10.1007/s00210-020-01881-7] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2020] [Accepted: 04/22/2020] [Indexed: 12/16/2022]
Abstract
Idiopathic pulmonary fibrosis (IPF) is an interstitial lung disease with limited treatment options. Zingerone found in ginger (Zingiber officinale L.) has many pharmacological effects, especially antiinflammatory and antioxidant activity. However, the effect of zingerone on pulmonary fibrosis (PF) is not fully known. The aim of this study was to investigate the effect of zingerone on bleomycin (BLM)-induced PF and its underlying mechanisms. Wistar-albino rats were given single dose of BLM (5 mg/kg, intratracheal) or vehicle (saline). In treatment groups, zingerone (50 and 100 mg/kg, p.o.) was administered orally for 14 days after BLM administration. Rats and lung tissue were weighed to determine lung index. Antioxidant, antiinflammatory effects, and hydroxyproline content of zingerone were determined by ELISA method. Pulmonary inflammation, collagen deposition, and fibrosis score were determined with Hematoxylin-Eosin (HxE) and Masson's trichrome staining. Transforming growth factor-beta 1 (TGF-β1) and inducible nitric oxide synthase (iNOS) expressions were detected immunohistochemically. BLM administration increased lipid peroxidation (MDA) and decreased superoxide dismutase (SOD) and glutathione peroxidase (GPx) activity. In addition, BLM caused increased levels of tumor necrosis factor alpha (TNF-α) and interleukin-1β (IL-1β) in bronchoalveolar lavage fluid (BALF) and accumulation of collagen bundles. Zingerone administration decreased collagen accumulation, TNF-α and IL-1β levels, MDA level, TGF-β1, and iNOS expression and increased SOD and GPx activity. Histopathological findings supported the results. These results show that zingerone (50 and 100 mg/kg) at both doses significantly contributes to healing of PF by improving inflammation, oxidative stress, and histopathological alterations and by affecting TGF-β1 and iNOS signaling pathways.
Collapse
|
32
|
Kay N, Huang CY, Shiu LY, Yu YC, Chang Y, Suen JL, Tsai EM, Huang SJ. The Effects of Anti-TGF-β1 on Epithelial-Mesenchymal Transition in the Pathogenesis of Adenomyosis. Reprod Sci 2020; 27:1698-1706. [PMID: 32253735 DOI: 10.1007/s43032-020-00139-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2019] [Accepted: 01/02/2020] [Indexed: 12/17/2022]
Abstract
Adenomyosis is defined as the presence of endometrial glands and stroma in the myometrium. The mechanisms associated with the pathogenesis of adenomyosis remain unclear. Epithelial-mesenchymal transition (EMT) is characterized by losing cell polarity and cell-cell adhesion together with gaining migratory and invasive properties of stromal cells to become mesenchymal stem cells. Transforming growth factor-β1 (TGF-β1), an anti-inflammatory cytokine secreted by multiple cell types, plays a crucial role in embryogenesis and tissue homeostasis. The induction of EMT and ultimate fibrosis by TGF-β1 is suggested to play a critical role in the pathogenesis of adenomyosis. Thus, this study aims to demonstrate the occurrence of EMT in and the effects of anti-TGF-β1 on the pathogenesis of adenomyosis. ICR mice were fed with 1 μg/g body weight of tamoxifen (TAM) by in the first 4 postnatal days (PNDs). Subsequently, the right and left uterine horns were correspondingly injected with or without 10 μg of anti-TGF-β1 neutralizing antibody on PND42 followed by sacrifice on PND64. E-cadherin, vimentin, and α-smooth muscle actin (α-SMA) expression in the uteri was evaluated by qRT-PCR, Western blot, and immunohistochemistry. Clusters of endometrial glands and increased numbers of vimentin-positive stromal cells in the disrupted α-SMA-positive myometrium were observed in the uteri from TAM-treated mice. Numbers of stromal cells in the myometrium and the disrupted myometrial continuity were reduced by anti-TGF-β1. Moreover, uterine expression of E-cadherin and vimentin/α-SMA was increased and decreased by anti-TGF-β1 treatment, respectively. Anti-TGF-β1 successfully inhibits EMT and the development of adenomyosis in mouse uteri.
Collapse
Affiliation(s)
- Nari Kay
- Department of Obstetrics and Gynecology, E-Da Hospital, Kaohsiung, Taiwan.,Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, 100, Tzyou 1st Rd., Kaohsiung, 807, Taiwan
| | - Chun-Yen Huang
- Department of Medical Research, E-Da Hospital, Kaohsiung, Taiwan
| | - Li-Yen Shiu
- Department of Medical Research, E-Da Hospital, Kaohsiung, Taiwan
| | - Ya-Chun Yu
- Department of Medical Research, E-Da Hospital, Kaohsiung, Taiwan
| | - Yu Chang
- Department of Obstetrics and Gynecology, E-Da Hospital, Kaohsiung, Taiwan.,School of Medicine, College of Medicine, I-Shou University, Kaohsiung, Taiwan
| | - Jau-Ling Suen
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, 100, Tzyou 1st Rd., Kaohsiung, 807, Taiwan.,Department of Medical Research, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
| | - Eing-Mei Tsai
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, 100, Tzyou 1st Rd., Kaohsiung, 807, Taiwan. .,Department of Obstetrics and Gynecology, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan.
| | - S Joseph Huang
- Department of Obstetrics and Gynecology, E-Da Hospital, Kaohsiung, Taiwan. .,School of Medicine, College of Medicine, I-Shou University, Kaohsiung, Taiwan. .,Department of Obstetrics and Gynecology, Morsani College of Medicine, University of South Florida, 12901 Bruce B Downs Blvd., MDC48, Tampa, FL, 33612, USA.
| |
Collapse
|
33
|
Oh JJ, Carter JJ, Nemeno JGE, Dix RD. Parthanatos-associated proteins are stimulated intraocularly during development of experimental murine cytomegalovirus retinitis in mice with retrovirus-induced immunosuppression. J Med Virol 2019; 92:394-398. [PMID: 31670405 DOI: 10.1002/jmv.25619] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Accepted: 10/29/2019] [Indexed: 11/07/2022]
Abstract
The mechanisms that contribute to retinal tissue destruction during the onset and progression of AIDS-related human cytomegalovirus (HCMV) retinitis remain unclear. Evidence for the stimulation of multiple cell death pathways including apoptosis, necroptosis, and pyroptosis during the pathogenesis of experimental murine cytomegalovirus (MCMV) retinitis in mice with retrovirus-induced immunosuppression (MAIDS) has been reported. Parthanatos is a caspase-independent cell death pathway mediated by rapid overactivation of poly (ADP-ribose) polymerase-1 (PARP-1) and distinct from other cell death pathways. Using the MAIDS model of MCMV retinitis, studies were performed to test the hypothesis that intraocular MCMV infection of mice with MAIDS stimulates parthanatos-associated messenger RNAs (mRNAs) and proteins within the eye during the development of retinal necrosis that takes place by 10 days after MCMV infection. MCMV-infected eyes of MAIDS mice exhibited significant stimulation of PARP-1 mRNA and proteins at 3 days after infection but declined thereafter at 6 and 10 days after infection. Additional studies showed the intraocular stimulation of mRNAs or proteins before MCMV retinitis development for two additional participants in parthanatos, polymer of ADP-ribose and poly (ADP-ribose) glycohydrolase. These results provide new evidence for a role for parthanatos during MAIDS-related MCMV retinitis that may also extend to AIDS-related HCMV retinitis.
Collapse
Affiliation(s)
- Jay J Oh
- Department of Biology, Viral Immunology Center, Georgia State University, Atlanta, Georgia
| | - Jessica J Carter
- Department of Biology, Viral Immunology Center, Georgia State University, Atlanta, Georgia.,Department of Ophthalmology, Emory University School of Medicine, Atlanta, Georgia
| | - Judee Grace E Nemeno
- Department of Biology, Viral Immunology Center, Georgia State University, Atlanta, Georgia
| | - Richard D Dix
- Department of Biology, Viral Immunology Center, Georgia State University, Atlanta, Georgia.,Department of Ophthalmology, Emory University School of Medicine, Atlanta, Georgia
| |
Collapse
|
34
|
Luisi MLE, Lucarini L, Biffi B, Rafanelli E, Pietramellara G, Durante M, Vidali S, Provensi G, Madiai S, Gheri CF, Masini E, Ceccherini MT. Effect of Mediterranean Diet Enriched in High Quality Extra Virgin Olive Oil on Oxidative Stress, Inflammation and Gut Microbiota in Obese and Normal Weight Adult Subjects. Front Pharmacol 2019; 10:1366. [PMID: 31803056 PMCID: PMC6872540 DOI: 10.3389/fphar.2019.01366] [Citation(s) in RCA: 69] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Accepted: 10/28/2019] [Indexed: 12/26/2022] Open
Abstract
Introduction: The Mediterranean Diet (MD) is useful in the prevention of overweight, obesity and metabolic disease. High Quality-Extra Virgin Olive Oil (HQ-EVOO), an essential component of this diet, exerts protective effects against chronic diseases. Gut Microbiota (GM), recognized as a key factor in driving metabolic activities, is involved in the regulation of host immunity. Lactic Acid Bacteria (LAB) and their probio-active cellular substances produce beneficial effects in the gastrointestinal tract. Materials and Methods: Eighteen overweight/obese subjects (cases, BMI ≥25 kg/m2) and 18 normal weight controls (BMI 18.5–24.9 kg/m2) were fed with MD enriched with 40 g/die HQ-EVOO for three months. Feces and blood samples were collected at time 0 (T0) and after three months (T1) for LAB composition, oxidative stress, metabolic and inflammation parameter determinations. Results: Myeloperoxidase and 8-hydroxy-2-deoxyguanosine, markers of inflammation and oxidative stress, were significantly decreased after MD rich in HQ-EVOO both in controls and in cases. Proinflammatory cytokines levels were significantly decreased in cases in comparison to controls, while IL-10 and adiponectin were significantly increased in cases. LAB’s rpoB copies/ng of DNA increased 55.6 folds in cases compared to their baseline after MD rich in HQ-EVOO. MD rich in HQ-EVOO increased adiponectin and IL-10 concentration in overweight/obese subjects and decreased oxidative stress and inflammation parameters and at the same time, increased LAB number in GM. Discussion: Our results indicate that MD rich in HQ-EVOO induces an increase of LAB in GM and could have a potential role in the prevention of inflammation. Clinical Trial Registration:www.ClinicalTrials.gov, identifier NCT03441802.
Collapse
Affiliation(s)
| | - Laura Lucarini
- Department of Neuroscience, Drug Area and Child Health (NEUROFARBA), University of Florence, Florence, Italy
| | - Barbara Biffi
- Department of Dietology and Clinical Nutrition, IRCCS Don Gnocchi Foundation, Florence, Italy
| | - Elena Rafanelli
- Department of Dietology and Clinical Nutrition, IRCCS Don Gnocchi Foundation, Florence, Italy
| | - Giacomo Pietramellara
- Department of Agriculture, Food, Environment and Forestry (DAGRI), University of Florence, Florence, Italy
| | - Mariaconcetta Durante
- Department of Neuroscience, Drug Area and Child Health (NEUROFARBA), University of Florence, Florence, Italy
| | - Sofia Vidali
- Department of Diagnostic Imaging, Molecular Imaging Interventional Radiology and Radiation Therapy, University Hospital Policlinico Tor Vergata, Rome, Italy
| | - Gustavo Provensi
- Department of Neuroscience, Drug Area and Child Health (NEUROFARBA), University of Florence, Florence, Italy
| | - Sara Madiai
- Department of Dietology and Clinical Nutrition, IRCCS Don Gnocchi Foundation, Florence, Italy
| | - Chiara Francesca Gheri
- Department of Dietology and Clinical Nutrition, IRCCS Don Gnocchi Foundation, Florence, Italy
| | - Emanuela Masini
- Department of Neuroscience, Drug Area and Child Health (NEUROFARBA), University of Florence, Florence, Italy
| | - Maria Teresa Ceccherini
- Department of Agriculture, Food, Environment and Forestry (DAGRI), University of Florence, Florence, Italy
| |
Collapse
|
35
|
Chen CC, Chueh FS, Peng SF, Huang WW, Tsai CH, Tsai FJ, Huang CY, Tang CH, Yang JS, Hsu YM, Yin MC, Huang YP, Chung JG. Cantharidin decreased viable cell number in human osteosarcoma U-2 OS cells through G 2/M phase arrest and induction of cell apoptosis. Biosci Biotechnol Biochem 2019; 83:1912-1923. [PMID: 31187696 DOI: 10.1080/09168451.2019.1627182] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Cantharidin (CTD), a sesquiterpenoid bioactive substance, has been reported to exhibit anticancer activity against various types of cancer cells. The aim of the present study was to investigate the apoptosis effects and the underlying mechanisms of CTD on osteosarcoma U-2 OS cells. Results showed that CTD induced cell morphologic changes, reduced total viable cells, induced DNA damage, and G2/M phase arrest. CTD increased the production of reactive oxygen species and Ca2+, and elevated the activities of caspase-3 and -9, but decreased the level of mitochondrial membrane potential. Furthermore, CTD increased the ROS- and ER stress-associated protein expressions and increased the levels of pro-apoptosis-associated proteins, but decreased that of anti-apoptosis-associated proteins. Based on these observations, we suggested that CTD decreased cell number through G2/M phase arrest and the induction of cell apoptosis in U-2 OS cells and CTD could be a potential candidate for osteosarcoma treatments.
Collapse
Affiliation(s)
- Chia-Ching Chen
- Department of Biological Science and Technology, China Medical University , Taichung , Taiwan
| | - Fu-Shin Chueh
- Department of Food Nutrition and Health Biotechnology, Asia University , Taichung , Taiwan
| | - Shu-Fen Peng
- Department of Biological Science and Technology, China Medical University , Taichung , Taiwan
| | - Wen-Wen Huang
- Department of Biological Science and Technology, China Medical University , Taichung , Taiwan
| | - Chang-Hai Tsai
- China Medical University Children's Hospital, China Medical University , Taichung , Taiwan.,Department of Healthcare Administration, Asia University , Taichung , Taiwan
| | - Fuu-Jen Tsai
- Department of Healthcare Administration, Asia University , Taichung , Taiwan.,School of Chinese Medicine, College of Chinese Medicine, China Medical University , Taichung , Taiwan
| | - Chih-Yang Huang
- Graduate Institute of Biomedical Sciences, China Medical University , Taichung , Taiwan.,Graduate Institute of Chinese Medical Science, China Medical University , Taichung , Taiwan.,Chinese Medicine Research Center, China Medical University , Taichung , Taiwan.,Department of Pharmacology, School of Medicine, China Medical University , Taichung , Taiwan.,Department of Medical Research, China Medical University Hospital, China Medical University , Taichung , Taiwan.,Department of Physiology, College of Medicine, China Medical University , Taichung , Taiwan.,Department of Biotechnology, College of Medical and Health Science, Asia University , Taichung , Taiwan
| | - Chih-Hsin Tang
- Chinese Medicine Research Center, China Medical University , Taichung , Taiwan.,Department of Pharmacology, School of Medicine, China Medical University , Taichung , Taiwan.,Department of Biotechnology, College of Medical and Health Science, Asia University , Taichung , Taiwan
| | - Jai-Sing Yang
- Department of Medical Research, China Medical University Hospital, China Medical University , Taichung , Taiwan
| | - Yuan-Man Hsu
- Department of Biological Science and Technology, China Medical University , Taichung , Taiwan
| | - Mei-Chin Yin
- Department of Food Nutrition and Health Biotechnology, Asia University , Taichung , Taiwan.,Department of Medical Research, China Medical University Hospital, China Medical University , Taichung , Taiwan
| | - Yi-Ping Huang
- Department of Physiology, College of Medicine, China Medical University , Taichung , Taiwan
| | - Jing-Gung Chung
- Department of Biological Science and Technology, China Medical University , Taichung , Taiwan.,Department of Biotechnology, College of Medical and Health Science, Asia University , Taichung , Taiwan
| |
Collapse
|
36
|
Durante M, Sgambellone S, Lanzi C, Nardini P, Pini A, Moroni F, Masini E, Lucarini L. Effects of PARP-1 Deficiency and Histamine H 4 Receptor Inhibition in an Inflammatory Model of Lung Fibrosis in Mice. Front Pharmacol 2019; 10:525. [PMID: 31164820 PMCID: PMC6535496 DOI: 10.3389/fphar.2019.00525] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2019] [Accepted: 04/26/2019] [Indexed: 01/02/2023] Open
Abstract
Pulmonary fibrosis is the most frequent form of interstitial lung disease. Effective therapies are not yet available; novel therapeutic approaches are needed for counteracting fibrosis. Poly(ADP-ribose) polymerases are enzymes, involved in DNA repair and cell apoptosis. PARP-1 deficient mice exhibited reduced lung fibrosis in response to bleomycin treatment compared to wild-type controls. Histamine H4 receptors (H4Rs) have been recognized as a new target for inflammatory and immune diseases, and H4R ligands reduced inflammation and oxidative stress in lung tissue. The aim of the study was to evaluate the cross-talk between PARP-1 and H4R in a model of bleomycin-induced lung fibrosis in PARP-1−/− and WT mice. Animals were treated with bleomycin or saline by intra-tracheal injection. JNJ7777120, an H4R antagonist, or VUF8430, an H4R agonist, were administered i.p for 21 days. Airway resistance to inflation was evaluated, and lung tissues were processed for PARylated protein content, oxidative stress evaluation, and histology of small bronchi. The levels of pro-inflammatory (IL-1β and TNF-α), regulatory (IL-10), and pro-fibrotic (TGF-β) cytokines were evaluated. The deposition of αSMA was determined by immunofluorescence analysis. The results indicate that JNJ7777120 reduces PARylated protein production, decreases oxidative stress damage, and MPO, a marker for leukocyte tissue infiltration, in PARP-1−/− mice. A significant decrease in the production of both IL-1β and TNF-α and a significant increase in IL-10 levels are observed in mice treated with H4R antagonist, suggesting a crucial anti-inflammatory activity of JNJ7777120. The smooth muscle layer thickness, the goblet cell relative number, and collagen deposition decreased following JNJ7777120 administration. The H4R antagonist treatment also reduces TGF-β production and αSMA deposition, suggesting an important role of JNJ7777120 in airway remodeling. Our results show that PARylation is essential for the pathogenesis of pulmonary fibrosis and propose that PARP-1 and H4Rs are both involved in inflammatory and fibrotic responses. JNJ7777120 treatment, in a condition of PARP-1 inhibition, exerts anti-inflammatory and anti-fibrotic effects, reducing airway remodeling and bronchoconstriction. Therefore, selective inhibition of H4Rs together with non-toxic doses of selective PARP-1 inhibitors could have clinical relevance for the treatment of idiopathic pulmonary fibrosis.
Collapse
Affiliation(s)
- Mariaconcetta Durante
- Section of Pharmacology, Department of Neurosciences, Psychology, Drug Research and Child Health (NEUROFARBA), University of Florence, Florence, Italy
| | - Silvia Sgambellone
- Section of Pharmacology, Department of Neurosciences, Psychology, Drug Research and Child Health (NEUROFARBA), University of Florence, Florence, Italy
| | - Cecilia Lanzi
- Medical Toxicology Unit, Careggi-University Hospital (AOUC), Florence, Italy
| | - Patrizia Nardini
- Section of Histology, Department of Clinical and Experimental Medicine, University of Florence, Florence, Italy
| | - Alessandro Pini
- Section of Histology, Department of Clinical and Experimental Medicine, University of Florence, Florence, Italy
| | - Flavio Moroni
- Section of Pharmacology, Department of Neurosciences, Psychology, Drug Research and Child Health (NEUROFARBA), University of Florence, Florence, Italy
| | - Emanuela Masini
- Section of Pharmacology, Department of Neurosciences, Psychology, Drug Research and Child Health (NEUROFARBA), University of Florence, Florence, Italy
| | - Laura Lucarini
- Section of Pharmacology, Department of Neurosciences, Psychology, Drug Research and Child Health (NEUROFARBA), University of Florence, Florence, Italy
| |
Collapse
|
37
|
Park TH, Kim CW, Choi JS, Park YJ, Chong Y, Park MJ, Cho Y. PARP1 Inhibition as a Novel Therapeutic Target for Keloid Disease. Adv Wound Care (New Rochelle) 2019; 8:186-194. [PMID: 31119062 PMCID: PMC6529855 DOI: 10.1089/wound.2018.0910] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Accepted: 01/07/2019] [Indexed: 12/24/2022] Open
Abstract
Objective: Inactivation of poly(ADP-ribose) polymerase 1 (PARP1) has been found to have protective effect in several fibrotic diseases. But the effect is not studied yet in keloids. Herein, we evaluated the therapeutic effect of PARP1 inhibitor, rucaparib, for keloids. Approach: The protein expressions of PARP1 and smad3 were evaluated with western blotting in keloids and controls. The effect of rucaparib was evaluated using 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay and migration assay. We further analyzed the effect of rucaparib on patient-derived keloid xenograft murine model. Results: The protein expressions of PARP1 and smad3 were significantly higher in keloid tissue. Rucaparib (20 μM) significantly suppressed the proliferation of keloid fibroblasts. Moreover, the combination of rucaparib (20 μM) and triamcinolone (50 μM) showed additive suppressive effect on keloid fibroblasts. Migration assay showed that rucaparib (10 μM) significantly suppressed the migration of keloid fibroblasts. Fibrosis markers in keloid fibroblasts significantly decreased after rucaparib treatment (20 μM). In patient-derived keloid xenograft model, rucaparib significantly reduced the size of keloid tissue. Innovation and Conclusion: The study data suggest PARP1 might be a novel therapeutic target for keloid disease. PARP1 inhibitor, rucaparib, might be a promising therapeutic drug for the treatment of keloid disease.
Collapse
Affiliation(s)
- Tae Hwan Park
- Department of Plastic and Reconstructive Surgery, CHA Bundang Medical Center, CHA University School of Medicine, Seongnam, Republic of Korea
| | - Chan Woo Kim
- Department of Plastic and Reconstructive Surgery, CHA Bundang Medical Center, CHA University School of Medicine, Seongnam, Republic of Korea
| | - Jin Sik Choi
- Department of Plastic and Reconstructive Surgery, CHA Bundang Medical Center, CHA University School of Medicine, Seongnam, Republic of Korea
| | - Yun Joo Park
- Department of Radiology, Hallym University Sacred Heart Hospital, Hallym University College of Medicine, Anyang, Republic of Korea
| | - Yosep Chong
- Department of Hospital Pathology, Yeouido St. Mary's Hospital, The Catholic University of Korea College of Medicine, Seoul, Republic of Korea
| | - Min Ji Park
- Department of Internal Medicine, Gangnam CHA Medical Center, CHA University School of Medicine, Seoul, Republic of Korea
| | - Yuri Cho
- Department of Internal Medicine, Gangnam CHA Medical Center, CHA University School of Medicine, Seoul, Republic of Korea
| |
Collapse
|
38
|
Yangyin Yiqi Mixture Ameliorates Bleomycin-Induced Pulmonary Fibrosis in Rats through Inhibiting TGF-β1/Smad Pathway and Epithelial to Mesenchymal Transition. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2019; 2019:2710509. [PMID: 30719057 PMCID: PMC6335662 DOI: 10.1155/2019/2710509] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/27/2018] [Revised: 12/06/2018] [Accepted: 12/16/2018] [Indexed: 11/17/2022]
Abstract
Objective The aim of the current study was to investigate the protective effect of Yangyin Yiqi Mixture (YYYQ) on Bleomycin-induced pulmonary fibrosis in rats based on TGF-β1/Smad signal pathway and epithelial to mesenchymal transition (EMT). Methods 120 Wistar rats were randomly divided into six groups: control group, BLM group, BLM + Pred group, BLM+YYYQ-L group, BLM+YYYQ-M group, and BLM+YYYQ-H group. Rats were given an intratracheal instillation of 3 mg/kg BLM to establish the pulmonary fibrosis model and followed by different dosages of YYYQ (11, 22, 44g/kg, via intragastric gavage) or prednisone soluble (4.2mg/kg, via intragastric gavage) or water. After 14 days and 28 days, tissue sections were stained with hematoxylin-eosin and Masson's trichrome to observe histopathological changes. Protein levels of TGF-β1, CTGF, Interleukin 18, and hydroxyproline were detected by ELISA method, and mRNA expressions of TGF-β1, TβRI, TβRII, Smad3, Smad7, α-SMA, E-cadherin, laminin, and collagen I were detected by RT-PCR. Results TGF-β1, CTGF, Interleukin 18, and hydroxyproline levels and mRNA expression of TGF-β1, TβRI, TβRII, Smad3, α-SMA, laminin, and collagen I were significantly increased (p <0.01), while Smad7 and E-cadherin levels were significantly decreased in BLM group (p <0.01). YYYQ-M and YYYQ-H group had downregulated the TGF-β1, CTGF, hydroxyproline contents, and mRNA expression of TGF-β1, TβRI, TβRII, Smad3, α-SMA, laminin, and collagen I and upregulated mRNA levels of Smad7 and E-cadherin significantly (p <0.01 or p <0.05). The result from the present study, which was also supported by histological evidence, suggested that YYYQ-M group and YYYQ-H group exhibited better treatment effect on Bleomycin-induced pulmonary fibrotic rats when compared to that of BLM + Pred group (p <0.01). Meanwhile, the effect of YYYQ, in three different dosages, on the level of interleukin 18 was not significant. Conclusion These results showed that YYYQ has the potential of ameliorating the progression of pulmonary fibrosis, and the mechanism may be related to suppressing TGF-β1/Smad signal pathway and EMT in BLM-induced pulmonary fibrosis of rats.
Collapse
|
39
|
Reduced Susceptibility to Sugar-Induced Metabolic Derangements and Impairments of Myocardial Redox Signaling in Mice Chronically Fed with D-Tagatose when Compared to Fructose. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2018; 2018:5042428. [PMID: 30327714 PMCID: PMC6169220 DOI: 10.1155/2018/5042428] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Accepted: 08/12/2018] [Indexed: 01/03/2023]
Abstract
Background D-tagatose is an isomer of fructose and is ~90% as sweet as sucrose with less caloric value. Nowadays, D-tagatose is used as a nutritive or low-calorie sweetener. Despite clinical findings suggesting that D-tagatose could be beneficial in subjects with type 2 diabetes, there are no experimental data comparing D-tagatose with fructose, in terms of metabolic derangements and related molecular mechanisms evoked by chronic exposure to these two monosaccharides. Materials and methods C57Bl/6j mice were fed with a control diet plus water (CD), a control diet plus 30% fructose syrup (L-Fr), a 30% fructose solid diet plus water (S-Fr), a control diet plus 30% D-tagatose syrup (L-Tg), or a 30% D-tagatose solid diet plus water (S-Tg), during 24 weeks. Results Both solid and liquid fructose feeding led to increased body weight, abnormal systemic glucose homeostasis, and an altered lipid profile. These effects were associated with vigorous increase in oxidative markers. None of these metabolic abnormalities were detected when mice were fed with both the solid and liquid D-tagatose diets, either at the systemic or at the local level. Interestingly, both fructose formulations led to significant Advanced Glycation End Products (AGEs) accumulation in mouse hearts, as well as a robust increase in both myocardial AGE receptor (RAGE) expression and NF-κB activation. In contrast, no toxicological effects were shown in hearts of mice chronically exposed to liquid or solid D-tagatose. Conclusion Our results clearly suggest that chronic overconsumption of D-tagatose in both formulations, liquid or solid, does not exert the same deleterious metabolic derangements evoked by fructose administration, due to differences in carbohydrate interference with selective proinflammatory and oxidative stress cascades.
Collapse
|
40
|
Eastwood MP, Deprest J, Russo FM, Wang H, Mulhall D, Iwasiow B, Mahood TH, Keijzer R. MicroRNA 200b is upregulated in the lungs of fetal rabbits with surgically induced diaphragmatic hernia. Prenat Diagn 2018; 38:645-653. [PMID: 29932217 DOI: 10.1002/pd.5318] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2018] [Revised: 06/13/2018] [Accepted: 06/14/2018] [Indexed: 01/12/2023]
Abstract
OBJECTIVE Profiling of miR-200b expression and its targets (transforming growth factor [TGF]-β2 and ZEB2) in the surgical rabbit congenital diaphragmatic hernia (DH) model before and after tracheal occlusion (TO). METHODS Thirty-eight timed-pregnant rabbits had left DH creation on gestational day (GD) 23. On GD28, 17 randomly selected fetuses had TO. We harvested fetuses at GD23, GD28, or GD30. We calculated lung-to-body weight ratios, processed lungs for miR-200b in situ hybridization and real-time quantitative polymerase chain reaction, and evaluated effects on downstream targets TGF-β2 or ZEB2. RESULTS We obtained 16 DH fetuses (n = 7 GD28 and n = 9 GD30), 13 TO fetuses (GD30), and 38 control fetuses (n = 15 GD23, n = 11 GD28, and n = 12 GD30). Diaphragmatic hernia lungs were hypoplastic, and TO resulted in control lung-to-body weight ratio levels. Term miR-200b-3p levels were significantly upregulated in the hypoplastic compared with control ipsilateral lung (1.906 ± 0.90 vs 0.7429 ± 0.44) (P < .01). Fetal TO ipsilateral lungs displayed a variable miR-200b response on in situ hybridization and polymerase chain reaction, with levels similar to control and congenital DH lungs. The TGF-β2 was unchanged in hypoplastic and TO lungs, and ZEB2 tended to be reduced in TO compared with DH lungs (1.79 [0.4-2.9] vs 0.73 [0.5-1.4]). CONCLUSIONS Hypoplastic fetal rabbit lungs display upregulation of miR-200b expression although downstream targets are not different from controls. Following TO, fetal rabbit lungs display a variable miR-200b response.
Collapse
Affiliation(s)
- Mary Patrice Eastwood
- Cluster Organ Systems, Department of Development and Regeneration, and Center for Surgical Technologies, Group Biomedical Sciences, KU Leuven, Leuven, Belgium
| | - Jan Deprest
- Cluster Organ Systems, Department of Development and Regeneration, and Center for Surgical Technologies, Group Biomedical Sciences, KU Leuven, Leuven, Belgium.,Fetal Medicine Unit, Clinical Department of Obstetrics and Gynaecology, University Hospitals Leuven, Leuven, Belgium.,Research Department of Maternal Fetal Medicine, Institute for Women's Health (IWH), University College London, London, UK
| | - Francesca Maria Russo
- Cluster Organ Systems, Department of Development and Regeneration, and Center for Surgical Technologies, Group Biomedical Sciences, KU Leuven, Leuven, Belgium.,Fetal Medicine Unit, Clinical Department of Obstetrics and Gynaecology, University Hospitals Leuven, Leuven, Belgium
| | - Hongmei Wang
- Cluster Organ Systems, Department of Development and Regeneration, and Center for Surgical Technologies, Group Biomedical Sciences, KU Leuven, Leuven, Belgium
| | - Drew Mulhall
- Department of Surgery, Pediatrics & Child Health, University of Manitoba, Winnipeg, MB, Canada.,Department of Physiology, University of Manitoba, Winnipeg, MB, Canada.,Biology of Breathing, Children's Hospital Research Institute of Manitoba, Winnipeg, MB, Canada
| | - Barbara Iwasiow
- Department of Surgery, Pediatrics & Child Health, University of Manitoba, Winnipeg, MB, Canada.,Department of Physiology, University of Manitoba, Winnipeg, MB, Canada.,Biology of Breathing, Children's Hospital Research Institute of Manitoba, Winnipeg, MB, Canada
| | - Thomas H Mahood
- Department of Surgery, Pediatrics & Child Health, University of Manitoba, Winnipeg, MB, Canada.,Department of Physiology, University of Manitoba, Winnipeg, MB, Canada.,Biology of Breathing, Children's Hospital Research Institute of Manitoba, Winnipeg, MB, Canada
| | - Richard Keijzer
- Department of Surgery, Pediatrics & Child Health, University of Manitoba, Winnipeg, MB, Canada.,Department of Physiology, University of Manitoba, Winnipeg, MB, Canada.,Biology of Breathing, Children's Hospital Research Institute of Manitoba, Winnipeg, MB, Canada
| |
Collapse
|
41
|
Dharwal V, Naura AS. PARP-1 inhibition ameliorates elastase induced lung inflammation and emphysema in mice. Biochem Pharmacol 2018; 150:24-34. [PMID: 29355504 DOI: 10.1016/j.bcp.2018.01.027] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2017] [Accepted: 01/12/2018] [Indexed: 12/23/2022]
Abstract
COPD is associated with high morbidity and mortality and no effective treatment is available till date. We have previously reported that PARP-1 plays an important role in the establishment of airway inflammation associated with asthma and ALI. In the present work, we have evaluated the beneficial effects of PARP-1 inhibition on COPD pathogenesis utilizing elastase induced mouse model of the disease. Our data show that PARP-1 inhibition by olaparib significantly reduced the elastase-induced recruitment of inflammatory cells particularly neutrophils in the lungs of mice when administered at a dose of 5 mg/kg b.wt (i.p.). Reduction in the lung inflammation was associated with suppressed myeloperoxidase activity. Further, the drug restored the redox status in the lung tissues towards normal as reflected by the levels of ROS, GSH and MDA. Olaparib administration prior to elastase instillation blunted the phosphorylation of P65-NF-κB at Ser 536 without altering phosphorylation of its inhibitor IκBα in the lungs. Furthermore, olaparib down regulated the elastase-induced expression of NF-κB dependent pro-inflammatory cytokines (TNF-A, IL-6), chemokine (MIP-2) and growth factor (GCSF) severely both at the mRNA and protein levels. Additionally, PARP-1 heterozygosity suppressed the recruitment of inflammatory cells and production of TNF-A, IL-6, MIP-2 and GCSF in the BALF to the similar extent as exhibited by olaparib administration. Finally, PARP-1 inhibition by olaparib or gene deletion protected against elastase-induced emphysema markedly. Overall, our data strongly suggest that PARP-1 plays a critical role in elastase induced lung inflammation and emphysema, and thus may be a new drug target candidate in COPD.
Collapse
Affiliation(s)
- Vivek Dharwal
- Department of Biochemistry, Panjab University, Chandigarh, India
| | - Amarjit S Naura
- Department of Biochemistry, Panjab University, Chandigarh, India.
| |
Collapse
|
42
|
Vongphouttha C, Zhu J, Deng S, Tai W, Wu W, Li Z, Lei W, Wang Y, Dong Z, Zhang T. Rapamycin protects against paraquat-induced pulmonary epithelial-mesenchymal transition via the Wnt/β-catenin signaling pathway. Exp Ther Med 2018; 15:3045-3051. [PMID: 29599839 DOI: 10.3892/etm.2018.5795] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2017] [Accepted: 11/17/2017] [Indexed: 12/26/2022] Open
Abstract
Paraquat (PQ) is a herbicide that is widely used in developing countries, and pulmonary fibrosisis one of the most typical features of PQ poisoning. The molecular mechanism underlying PQ toxicity is largely unknown, which makes it difficult to treat. In the present study, western blot analysis, reverse transcription-quantitative polymerase chain reaction and fluorescent immunostaining were used to analyze the effects of rapamycin on PQ-induced epithelial-mesenchymal transition (EMT) in A549 and MRC-5 cells. It was revealed that rapamycin significantly downregulated the mesenchymal cell marker, α-smooth muscle actin, and significantly upregulated the epithelial cell marker, E-cadherin, at mRNA and protein expression levels compared with the PQ group. Treatment with PQ significantly increased Wnt1, low-density lipoprotein receptor-related protein (LRP)5, LRP6 and β-catenin expression levels in A549 cells, while rapamycin significantly inhibited these effects of PQ. Activation of the Wnt signaling pathway using lithium chloride attenuated the inhibitory effects of rapamycin on PQ-induced EMT. In conclusion, rapamycin protects against PQ-induced pulmonary EMT via the Wnt/β-catenin signaling pathway.
Collapse
Affiliation(s)
- Chanthasone Vongphouttha
- Department of Respiratory Medicine, The Second Affiliated Hospital of Kunming Medical University, Kunming, Yunnan 650101, P.R. China
| | - Jie Zhu
- Department of Internal Medicine, Beijing Capital International Airport Hospital, Beijing 100621, P.R. China
| | - Shuhao Deng
- Department of Respiratory Medicine, The Second Affiliated Hospital of Kunming Medical University, Kunming, Yunnan 650101, P.R. China
| | - Wenlin Tai
- Department of Clinical Laboratory, Yunnan Molecular Diagnostic Center, The Second Affiliated Hospital of Kunming Medical University, Kunming, Yunnan 650101, P.R. China
| | - Wenjuan Wu
- Department of Respiratory Medicine, The Second Affiliated Hospital of Kunming Medical University, Kunming, Yunnan 650101, P.R. China
| | - Zhenkun Li
- Department of Respiratory Medicine, The Second Affiliated Hospital of Kunming Medical University, Kunming, Yunnan 650101, P.R. China
| | - Wen Lei
- Department of Respiratory Medicine, The Second Affiliated Hospital of Kunming Medical University, Kunming, Yunnan 650101, P.R. China
| | - Yin Wang
- Department of Respiratory Medicine, The Second Affiliated Hospital of Kunming Medical University, Kunming, Yunnan 650101, P.R. China
| | - Zhaoxing Dong
- Department of Respiratory Medicine, The Second Affiliated Hospital of Kunming Medical University, Kunming, Yunnan 650101, P.R. China
| | - Tao Zhang
- Department of Respiratory Medicine, The Second Affiliated Hospital of Kunming Medical University, Kunming, Yunnan 650101, P.R. China
| |
Collapse
|
43
|
Mini E, Landini I, Lucarini L, Lapucci A, Napoli C, Perrone G, Tassi R, Masini E, Moroni F, Nobili S. The Inhibitory Effects of HYDAMTIQ, a Novel PARP Inhibitor, on Growth in Human Tumor Cell Lines With Defective DNA Damage Response Pathways. Oncol Res 2017; 25:1441-1451. [PMID: 28429680 PMCID: PMC7841208 DOI: 10.3727/096504017x14926854178616] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
The poly(ADP-ribose) polymerase (PARP) enzymes play a key role in the regulation of cellular processes (e.g., DNA damage repair, genomic stability). It has been shown that PARP inhibitors (PARPIs) are selectively cytotoxic against cells having dysfunctions in genes involved in DNA repair mechanisms (synthetic lethality). Drug-induced PARP inhibition potentiates the activity of anticancer drugs such as 5-fluorouracil in enhancing DNA damage, whose repair involves PARP-1 activity. The aim of this study was to evaluate the inhibitory effects of a novel PARPI, HYDAMTIQ, on growth in human tumor cell lines characterized by different features with regard to DNA damage response pathways (BRCA mutational status, microsatellite status, and ATM expression level) and degree of sensitivity/resistance to 5-fluorouracil. HYDAMTIQ showed a more potent inhibitory effect on cell growth in a BRCA2 mutant cell line (CAPAN-1) compared with wild-type cells (C2-6, C2-12, and C2-14 CAPAN-1 clones, and MCF-7). No statistically significant difference was observed after HYDAMTIQ exposure between cells having a different MS status or a different MRE11 mutational status. HYDAMTIQ induced greater antiproliferative effects in SW620 cells expressing a low level of ATM than in H630 cells expressing a high level of ATM. Finally, the combination of HYDAMTIQ and 5-fluorouracil exerted a synergistic effect on the inhibition of SW620 cell growth and an antagonistic effect on that of H630 cell growth. Our results show that the novel PARP inhibitor HYDAMTIQ potently inhibits the growth of human tumor cells with defective DNA damage response pathways and exerts synergistic cytotoxicity in combination with 5-fluorouracil. These data provide relevant examples of synthetic lethality and evidence for further development of this novel PARPI.
Collapse
Affiliation(s)
- Enrico Mini
- *Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | - Ida Landini
- *Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | - Laura Lucarini
- †Department of NEUROFARBA, University of Florence, Florence, Italy
| | - Andrea Lapucci
- *Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | - Cristina Napoli
- ‡Department of Health Sciences, University of Florence, Florence, Italy
| | - Gabriele Perrone
- *Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | - Renato Tassi
- *Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | - Emanuela Masini
- †Department of NEUROFARBA, University of Florence, Florence, Italy
| | - Flavio Moroni
- †Department of NEUROFARBA, University of Florence, Florence, Italy
| | - Stefania Nobili
- ‡Department of Health Sciences, University of Florence, Florence, Italy
| |
Collapse
|
44
|
Xuanfei L, Hao C, Zhujun Y, Yanming L, Jianping G. Imidazoline I2 receptor inhibitor idazoxan regulates the progression of hepatic fibrosis via Akt-Nrf2-Smad2/3 signaling pathway. Oncotarget 2017; 8:21015-21030. [PMID: 28423499 PMCID: PMC5400562 DOI: 10.18632/oncotarget.15472] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2016] [Accepted: 02/07/2017] [Indexed: 12/11/2022] Open
Abstract
Liver fibrosis is a global health problem and its relationship with imidazoline I2 receptor has not been reported. This study aimed to investigate the effects and underlying mechanisms of imidazoline I2 receptor (I2R) inhibitor idazoxan (IDA) on carbon tetrachloride (CCl4)-induced liver fibrosis. In vivo liver fibrosis in mice was induced by intraperitoneally injections of CCl4 for eight weeks, and in vitro studies were performed on activated LX2 cells treated with transforming growth factor-β (TGF-β). Our results showed that IDA significantly improved liver inflammation, ameliorated hepatic stellate cells activation and reduced collagen accumulation by suppressing the pro-fibrogenic signaling of TGF-β/Smad. Further investigation showed that IDA significantly balanced oxidative stress through improving the expressions and activities of anti-oxidant and detoxifying enzymes and activating Nrf2-the key defender against oxidative stress with anti-fibrotic potentials. Even more impressively, knock out of Nrf2 or suppression of Akt by perifosine (PE) eliminated the anti-oxidant and anti-fibrotic effects of IDA in vivo and in vitro, suggesting that Akt/Nrf2 constitutes a critical component of IDA's protective functions. Taken together, IDA exhibits potent effects against liver fibrosis via Akt-Nrf2-Smad2/3 signaling pathway, which suggests that specifically targeting I2R may be a potentially useful therapeutic strategy for liver fibrosis.
Collapse
Affiliation(s)
- Li Xuanfei
- Department of Hepatobiliary Surgery, The Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, P. R. China
| | - Chen Hao
- Department of Hepatobiliary Surgery, The Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, P. R. China
| | - Yi Zhujun
- Department of Hepatobiliary Surgery, The Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, P. R. China
| | - Liu Yanming
- Department of Gastroenterology, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430041, Hubei, P. R. China
| | - Gong Jianping
- Department of Hepatobiliary Surgery, The Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, P. R. China
| |
Collapse
|
45
|
Li J, Dou D, Li P, Luo W, Lv W, Zhang C, Song X, Yang Y, Zhang Y, Xu Y, Xiao F, Wei Y, Qin J, Li H, Yang X. PARP-1 serves as a novel molecular marker for hepatocellular carcinoma in a Southern Chinese Zhuang population. Tumour Biol 2017; 39:1010428317706914. [PMID: 28714367 DOI: 10.1177/1010428317706914] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
PARP-1 (poly(ADP-ribose) polymerase-1) plays an important role in tumorigenesis. Since its effects on different populations are varied, this study investigated the impact of PARP-1 on primary hepatocellular carcinoma in a Southern Chinese Zhuang population. We assessed the global PARP-1 messenger RNA expression in patients with hepatocellular carcinoma using The Cancer Genome Atlas dataset. Increased PARP-1 expression, related to alpha-fetoprotein level, was observed. The area under the receiver operating characteristic curve value was 0.833. Kaplan-Meier survival curves indicated that higher PARP-1 expression was not correlated with poorer overall survival and recurrence-free survival. In a Zhuang population, PARP-1 messenger RNA and protein levels were increased in the hepatocellular carcinoma tissue and its adjacent liver tissues as assessed by quantitative polymerase chain reaction, immunohistochemistry, and western blotting. Higher PARP-1 level was associated with a higher tumor stage (p < 0.05), without correlation with age, gender, smoking, drinking, tumor size, serum alpha-fetoprotein level, hepatitis B virus infection, metastasis, and invasion (p > 0.05). Further analysis suggested that H2AX, a PARP-1 protein interaction partner, was coordinated with PARP-1 in hepatocellular carcinoma tumorigenesis. Overall, some new characteristics of PARP-1 expression were noted in the Zhuang population. PARP-1 is a novel promising diagnostic marker for hepatocellular carcinoma in the Southern Chinese Zhuang population.
Collapse
Affiliation(s)
- Jiatong Li
- 1 Medical Scientific Research Center, Guangxi Medical University, Nanning, P.R. China
| | - Dongwei Dou
- 1 Medical Scientific Research Center, Guangxi Medical University, Nanning, P.R. China.,2 Department of Breast Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, P.R. China
| | - Ping Li
- 3 Department of Pathology, The First Affiliated Hospital of Guangxi Medical University, Nanning, P.R. China
| | - Wenqi Luo
- 3 Department of Pathology, The First Affiliated Hospital of Guangxi Medical University, Nanning, P.R. China
| | - Wenxin Lv
- 4 Department of Urology, Fourth Affiliated Hospital of Guangxi Medical University, Liuzhou, P.R. China
| | - Chengdong Zhang
- 5 School of Life Sciences, Fudan University, Shanghai, P.R. China
| | - Xiaowei Song
- 1 Medical Scientific Research Center, Guangxi Medical University, Nanning, P.R. China
| | - Yuan Yang
- 5 School of Life Sciences, Fudan University, Shanghai, P.R. China
| | - Yuening Zhang
- 1 Medical Scientific Research Center, Guangxi Medical University, Nanning, P.R. China
| | - Yanzhen Xu
- 1 Medical Scientific Research Center, Guangxi Medical University, Nanning, P.R. China
| | - Feifan Xiao
- 1 Medical Scientific Research Center, Guangxi Medical University, Nanning, P.R. China
| | - Yan Wei
- 3 Department of Pathology, The First Affiliated Hospital of Guangxi Medical University, Nanning, P.R. China
| | - Jian Qin
- 6 School of Public Health, Guangxi Medical University, Nanning, P.R. China
| | - Hongtao Li
- 1 Medical Scientific Research Center, Guangxi Medical University, Nanning, P.R. China
| | - Xiaoli Yang
- 1 Medical Scientific Research Center, Guangxi Medical University, Nanning, P.R. China
| |
Collapse
|
46
|
Berger NA, Besson VC, Boulares AH, Bürkle A, Chiarugi A, Clark RS, Curtin NJ, Cuzzocrea S, Dawson TM, Dawson VL, Haskó G, Liaudet L, Moroni F, Pacher P, Radermacher P, Salzman AL, Snyder SH, Soriano FG, Strosznajder RP, Sümegi B, Swanson RA, Szabo C. Opportunities for the repurposing of PARP inhibitors for the therapy of non-oncological diseases. Br J Pharmacol 2017; 175:192-222. [PMID: 28213892 DOI: 10.1111/bph.13748] [Citation(s) in RCA: 152] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2017] [Revised: 02/06/2017] [Accepted: 02/13/2017] [Indexed: 12/12/2022] Open
Abstract
The recent clinical availability of the PARP inhibitor olaparib (Lynparza) opens the door for potential therapeutic repurposing for non-oncological indications. Considering (a) the preclinical efficacy data with PARP inhibitors in non-oncological diseases and (b) the risk-benefit ratio of treating patients with a compound that inhibits an enzyme that has physiological roles in the regulation of DNA repair, we have selected indications, where (a) the severity of the disease is high, (b) the available therapeutic options are limited, and (c) the duration of PARP inhibitor administration could be short, to provide first-line options for therapeutic repurposing. These indications are as follows: acute ischaemic stroke; traumatic brain injury; septic shock; acute pancreatitis; and severe asthma and severe acute lung injury. In addition, chronic, devastating diseases, where alternative therapeutic options cannot halt disease development (e.g. Parkinson's disease, progressive multiple sclerosis or severe fibrotic diseases), should also be considered. We present a preclinical and clinical action plan for the repurposing of PARP inhibitors. LINKED ARTICLES This article is part of a themed section on Inventing New Therapies Without Reinventing the Wheel: The Power of Drug Repurposing. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v175.2/issuetoc.
Collapse
Affiliation(s)
- Nathan A Berger
- Center for Science, Health and Society, Case Western Reserve University School of Medicine, Cleveland, OH, USA
| | - Valerie C Besson
- EA4475 - Pharmacologie de la Circulation Cérébrale, Faculté de Pharmacie de Paris, Université Paris Descartes, Sorbonne Paris Cité, Paris, France
| | - A Hamid Boulares
- The Stanley Scott Cancer Center, School of Medicine, Louisiana State University Health Sciences Center, New Orleans, LA, USA
| | - Alexander Bürkle
- Molecular Toxicology Group, Department of Biology, University of Konstanz, Constance, Germany
| | - Alberto Chiarugi
- Department of Health Sciences, Section of Clinical Pharmacology and Oncology, Headache Center - University Hospital, University of Florence, Florence, Italy
| | - Robert S Clark
- Department of Critical Care Medicine and Safar Center for Resuscitation Research, University of Pittsburgh, Pittsburgh, PA, USA
| | - Nicola J Curtin
- Newcastle University, Northern Institute for Cancer Research, Medical School, University of Newcastle Upon Tyne, Newcastle Upon Tyne, UK
| | | | - Ted M Dawson
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering and Department of Neurology and Department of Pharmacology and Molecular Sciences and Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Valina L Dawson
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering and Department of Neurology and Department of Physiology and Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - György Haskó
- Department of Surgery and Center for Immunity and Inflammation, Rutgers-New Jersey Medical School, Newark, NJ, USA
| | - Lucas Liaudet
- Department of Intensive Care Medicine and Burn Center, University Hospital Medical Center, Faculty of Biology and Medicine, Lausanne, Switzerland
| | - Flavio Moroni
- Department of Neuroscience, Università degli Studi di Firenze, Florence, Italy
| | - Pál Pacher
- Laboratory of Physiologic Studies, Section on Oxidative Stress Tissue Injury, NIAAA, NIH, Bethesda, USA
| | - Peter Radermacher
- Institute of Anesthesiological Pathophysiology and Process Engineering, University Hospital, Ulm, Germany
| | | | - Solomon H Snyder
- Department of Neurology and Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Francisco Garcia Soriano
- Departamento de Clínica Médica, Faculdade de Medicina da Universidade de São Paulo, São Paulo, SP, Brazil
| | - Robert P Strosznajder
- Laboratory of Preclinical Research and Environmental Agents, Department of Neurosurgery, Mossakowski Medical Research Centre, Polish Academy of Sciences, Warsaw, Poland
| | - Balázs Sümegi
- Department of Biochemistry and Medical Chemistry, University of Pécs, Pécs, Hungary
| | - Raymond A Swanson
- Department of Neurology, University of California San Francisco and San Francisco Veterans Affairs Medical Center, San Francisco, CA, USA
| | - Csaba Szabo
- Department of Anesthesiology, University of Texas Medical Branch, Galveston, TX, USA
| |
Collapse
|
47
|
Duan Y, Zhu W, Liu M, Ashraf M, Xu M. The expression of Smad signaling pathway in myocardium and potential therapeutic effects. Histol Histopathol 2016; 32:651-659. [PMID: 27844469 DOI: 10.14670/hh-11-845] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Myocardial infarction (MI) is a life-threatening disease. The expression of Smad proteins in the ischemic myocardium changes significantly following myocardial infarction, suggesting a close relationship between Smad proteins and heart remodeling. Moreover, it is known that the expression of Smads is regulated by transforming growth factor-β (TGF-β) and bone morphogenetic proteins (BMP). Based on these findings, regulating the expression of Smad proteins by targeting TGF-β and BMP in the ischemic myocardium may be considered to be a possible therapeutic strategy for the treatment of myocardial infarction.
Collapse
Affiliation(s)
- Yuping Duan
- School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, P.R. China.,Department of Pathology and Laboratory Medicine, University of Cincinnati Medical Center, Cincinnati, OH, USA
| | - Wei Zhu
- School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, P.R. China.
| | - Min Liu
- Department of Pathology and Laboratory Medicine, University of Cincinnati Medical Center, Cincinnati, OH, USA
| | - Muhammad Ashraf
- Department of Pathology and Laboratory Medicine, University of Cincinnati Medical Center, Cincinnati, OH, USA
| | - Meifeng Xu
- Department of Pathology and Laboratory Medicine, University of Cincinnati Medical Center, Cincinnati, OH, USA.
| |
Collapse
|